RANDOM ACCESS MEMORY CHECKER

by

Jiinwei Hung

Submitted in Partial Fulfillment of the Requirements for the Degree of
 Master of Science in Engineering
 in the
 Electrical Engineering
 Program

ABSTRACT

8085 MICROPROCESSOR BASED
 RANDOM ACCESS MEMORY CHECKER

Jiinwei Hung
Master of Science in Engineering
Youngstown State University , 1986

Three stand-alone microcomputer 8085-based memory checkers, which include (1) SRAM checker, (2) $16 \mathrm{k} * 1$ DRAM checker and (3) 64k*1 DRAM checker, were designed and built sucessfully with the aid of a microcomputer development system. These boards can be implemented to test additional memory chips using the design technique presented.

The software system is composed of two parts, one for the pattern test and the other for the sensitivity test. The system is able to detect hard memory errors, soft memory errors and bit-to-bit interference within a single byte and within bytes stored in memory. The analysis of typical software is discussed and the 8085 assembly testing programs are included.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Professor Samuel J. Skarote for his constant guidance and assistance. Thank you!

My deepest respect goes to my parents, who encouraged and supported me to come to Y.S.U.

Finally I would like to express my appreciation to those people working in the school electronic shop for their assistance.

TABLE OF CONTENTS

PAGE
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF SYMBOLS vii
LIST OF FIGURES iX
LIST OF TABLES x
CHAPTER

1. INTRODUCTION. 1
1.1 Introduction 1
1.2 Semiconductor Test 1
1.3 Automatic Testing Equipment 2
1.4 Memory Test With The Microcomputer. 3
2. RANDOM ACCESS MEMORY OVERVIEW. 6
2.1 What is RAM 6
2.2 RAM Type 6
2.2.1 SRAM 7
2.2.2 DRAM. 8
2.2 .3 iRAM 9
2.2.4 Comparision of DRAM and SRAM. 9
3. MEMORY FAILURE ANALYSIS. 12
3.1 Introduction. 12
3.2 Error Classification. 12
3.2.1 Hard Memory Error 12
3.2.2 Soft Memory Error 13
4. TESTING ALGORITHM 15
4.1 Algorithm Research 15
4.1.1 The First Method 15
4.1.2 The Second Method. 15
4.1.3 The Third Method 16
4.1.4 The Fourth Method. 16
4.1.5 The Fifth Method 18
4.1.6 The Sixth Method 18
4.2 Algorithm Used in The RAM Checkers. 20
5. HARDWARE DESIGN AND ANALYSIS 22
5.1 Static Memory Checker 22
5.1.1 Hardware of The Static Memory Checker. 22
5.1.2 Testing Chips in The SRAM Checker. 25
5.1.3 Future Expansion 25
5.2 16k DRAM Checker 27
5.2.1 Hardware Description. 27
5.2.2 Testing Chips in The 16 k DRAM Checker. 30
5.2.3 Future Expansion 30
5.3 64k DRAM Checker 31
5.3.1 Hardware Analysis 34
5.3.2 Testing Chips in The 64 k DRAM Checker. 35
5.3.3 Future Expansion. 36
6. SOFTWARE DESIGN 37
6.1 Testing Program for The Static RAM Checker. 37
6.2 Testing Program for The 16 k DRAM Checker. 44
6.3 Testing Program for The 64 k DRAM Checker. 47
7. SUMMARY 50
7.1 Performance Evaluation of The RAM Checkers.. 50
7.2 Conclusion 51
APPENDIX A. TESTING PROGRAM LISTING FOR SRAMS 53
APPENDIX B. TESTING PROGRAM LISTING FOR 16K DRAM 62
APPENDIX C. TESTING PROGRAM LISTING FOR 64 K DRAM 66
APPENDIX D. SPECIFICATION OF CHIPS USED IN THE
CHECKERS 71
BIBLIOGRAPHY 89

LIST OF SYMBOLS

DEFINITION

A8-A15 Address Bus 8-15
ADO-AD7 Address \& Data Bus 0-7
ATE Automatic Testing Equipment
BJT Bipolar Junction Transistor
CMOS Complementary Metal Oxide Semiconductor

CPU
Central Processing Unit
DRAM
Dynamic Random Access Memory
ECC
Error Correction Code

ECL Emitter-Coupled Logic

IC
I^{2} L

I / O
iRAM

MDS

MOS

MHz
mW

NMOS
ns
$10^{(-9)}$ Second (nanosecond)
PCB Printed Circuit Board

RAM Random Access Memory
ROM Read Only Memory
SRAM Static Random Access Memory
SSI Small Scale Integration

TTL

VLSI

Transistor Transistor Logic

Very Large Scale Integration

LIST OF FIGURES

FIGURE PAGE

1. Memory Organization 7
2. CMOS Memory Cell 8
3. DRAM Cell. 9
4. 2117 Failure Distrubution. 13
5. Combined Distribution of Failure Types 14
6. Static RAM Checker 23
7. SRAM Tester Schematic. 24
8. 3205 Output Analysis 26
9. 16k DRAM Checker. 28
10. 16k DRAM Tester Schematic 29
11. Data Latch Method 31
12. 64k DRAM Checker. 32
13. 64k DRAM Tester Schematic 33
14. Overlap Structure 34
15. SRAM Testing Program Flowchart 38
16. 16k DRAM Testing Program Flowchart 44
17. 64k DRAM Testing Program Flowchart. 47

LIST OF TABLES

TABLE PAGE

1. Testing Pattern. 17
2. Execution Time for Each Test 20
3. 2114 Family 25
4. 3205 Address Assignment 26
5. 4116 Family 30
6. 8203 Bank Selection 30
7. 8203 Active RAS Address Assignment 31
8. 4164 Family 35

CHAPTER 1

INTRODUCTION

1.1 Introduction

Have you ever had a computer program which ran sucessfully for a long time only to have it suddenly fail? Or are you getting inconsistent results from the expected data? One of the reasons is probably only because one bit out of several hundred thousands erred. A computer system, whether a large computer or a microcomputer, requires a large memory to store data and program instructions. Memory does fail, thus, testing memory becomes important. With the rapid growth of the computer industry in the recent years, the use of semiconductor devices continuously grows at an increasing rate. On theother hand, quality assurance of integrated circuit is being emphasized more each day. However, there also exists thepossibility of purchasing a bad memory chip. Once we have doubt about a chip, it wouldn't be too difficult for a qualified person, who is very familiar with the computer system, to find the defective memory chip if the chip is used as the read/write memory in the computer system. But for the general technician, a random access memory checker is indispensable.
1.2 Semiconductor Test

In general, the sophisticated tests applying to a
semiconductor device include three parts: DC test, AC test, and FUNCTION test. ${ }^{1}$
(1) DC test: Electrical DC parametric test verifies specific parameters in terms of voltage or current. This test measures the resulting voltage by applying current to the devices, or measures the resulting current by applying voltages to the devices.
(2) AC test: The AC parametric test verifies the time-related parameters specified in terms of seconds. The basic characteristic of $A C$ parametric test is the measurement of the timing relationship at which devices operate such as rise time, fall time, propagation time, delay time, set-up time, release time and access time.
(3) FUNCTION test: This test verifies that the devices perform functionally correct, which is the best test required for the semiconductor.
1.3 Automatic Testing Equipment ${ }^{1}$ (ATE)

ATE is a consequence of computers being interfaced with digitally-controlled stimulus and measurement instruments. ATE dramatically improves the measurement accuracy of test. It reduces the human error in testing and enhances confidence in equipment performance and failure diagnosis. It simplifies the test work and can do mass testing within a short time. ATE is divided into three
${ }^{1}$ F.H. Chen. "Design and Implementation for A General Purpose IC Tester Based on A Microcomputer" Chen Kung University ,1983 , p. 1
classes: benchtop, dedicated and general purpose.

1. Benchtop Tester: Benchtop testers usually have limited test capability and are small in size. Normally, they are controlled by a hardware designed decoder or controller. The characteristics of a benchtop tester include its low cost and manual or fixed programs with go/no-go test that may or may not have data readout. Benchtop testers are not easy to maintain, although they are easy to use.
2. Dedicated Tester: The dedicated tester is specified for one device family such as memories. Most dedicated testers are computer controlled.
3. General Purpose Tester: The general purpose tester is a flexible configuration to accommodate almost any device type. Sophisticated computer-controlled hardware and software are also mandatory in this system. This tester tests almost everything from VLSI to SSI. The basic components of this general purpose tester include a computer controller, a stimulus and response unit, and a device-undertest interface.

Generally speaking, a general purpose tester is powerfulfor tésting IC's, but they are normally controlled by a mainframe or a minicomputer. The price of this equipment is high and the equipment is hard to maintain.
1.4 Memory Test With The Microcomputer

The memory chip must be tested to confirm both the uniqueness of the address and the absence of the bit-to-bit interference (a bit may affect the value of another bit on
the same chip). Based on this, the most perfect test is to check 2^{16324} combinations for $a \operatorname{k}$ by 8 bit memory chip. It could take a lot of time if each possible combination were tested separately even when using a computer. A large amount of research has been done on this in order to find other testing algorithms which could shorten the testing time (Refer to chapter IV).

The rapid rise in the use of the microcomputer can be explained by the many available applications for the relatively low cost of the microcomputer hardware. This makes many applications economically feasible. Many instruments that have been controlled by a main frame or minicomputer before are now being replaced by the microcomputer where high accuracy, speed and complexity are not strictly in demand. Traditionally, memory chips are checked by a universal testing machine which costs several hundred thousand dollars. The cost prohibits a microcomputer owner from acquiring a universal testing machine. Since the microcomputer has become a powerful tool for equipment or instrumentation, it is used along with its well structured support chips (such as ROM, RAM) within the design of a small, low cost and user-friendly computerized memory tester. The cost of incorporating a 8085 microcomputer in a checker was at the time of investigation only forty dollars. Because of their simplicity, these memory testers can quickly perform a functional test on RAMs.

Chapter 2 describes the basic memory cell organization andthree different types of memory. This
the same chip). Based on this, the most perfect test is to check 216324 combinations for a 2 k by 8 bit memory chip. It could take a lot of time if each possible combination were tested separately even when using a computer. A large amount of research has been done on this in order to find other testing algorithms which could shorten the testing time (Refer to chapter IV).

The rapid rise in the use of the microcomputer can be explained by the many available applications for the relatively low cost of the microcomputer hardware. This makes many applications economically feasible. Many instruments that have been controlled by a main frame or minicomputer before are now being replaced by the microcomputer where high accuracy, speed and complexity are not strictly in demand. Traditionally, memory chips are checked by a universal testing machine which costs several hundred thousand dollars. The cost prohibits a microcomputer owner from acquiring a universal testing machine. Since the microcomputer has become a powerful tool for equipment or instrumentation, it is used along with its well structured support chips \{such as ROM, RAM) within the design of a small, low cost and user-friendly computerized memory tester. The cost of incorporating a 8085 microcomputer in a checker was at the time of investigation only forty dollars. Because of their simplicity, these memory testers can quickly perform a functional test on RAMs.

Chapter 2 describes the basic memory cell organization and three different types of memory. This

CHAPTER 2

RANDOM ACCESS MEMORY OVERVIEW
2.1 What is RAM?

RAM stands for random access memory which may use MOS or BJT devices in either SRAM or DRAM. BJT devices have a better performance at high speeds than the MOS RAMs because they are manufactured using TTL, ECL, or $I^{2} I$ technology. Modern MOS RAMs are manufactured using NMOS or CMOS technology. CMOS is especially useful in applications which require low power consumption. A random access memory is one in which the time required for storing (writing) and retrieving (reading) information is independent of the physical location (within the memory) of the stored data. Figure 1 shows a conceptual organization of a memory constituting W words of B bits, each requiring an address of n bits $\left(2^{n}=w\right)$.
2.2 RAM Type

The two-basic RAM types that have evolved'since 1970 are the DRAM and SRAM. DRAM stands for dynamic RAM, and SRAM stands for static RAM. There is another memory called Integrated RAM or iRAM which offers the advantages of the SRAM's design simplicity and the DRAM's high packing capacity. 2
${ }^{2}$ Intel Memory Component Handbook 1983, pp íl, l-2
chapter gives the reader background information on the memory chip. Chapter 3 describes the failure analysis of the memory chips to help the reader have a basic understanding of memory failure. Chapter 4 contains the software testing algorithms which have been developed and the testing methods used for testing of the RAMs. Chapter 5 contains the circuitry of the RAM checkers and the procedures to extend the capability to test additional RAM chips. Chapter 6 contains the software system used in the RAM checkers, and finally, the summary of this thesis is presented in chapter 7.

2.2.1 SRAM

A static RAM device uses a flip-flop circuit for each bit. Data stored in the flip-flop circuit are retained until they are altered by writing new data in that location or when electric power is lost. More recently, considerable progress has been made in the development of the high speed, low power, high density static MCS RAM. The current state-of-the-art in commercially available static MGS RAM chip is represented by the IMS-1400 manufactured by Inmos. This is a $16 k$ memory chip featuring 45 nS access time and a maximum power dissipation of 660 mW when in operation and 110 mW when in the standby mode. ${ }^{3}$

FIGURE 1. Memory Crganization
${ }^{3}$ Sedral Smith, Micro-Electronic Circuit, Holt Rinehart and Winston, 1982, p.763

SRAM requires relatively large silicon areas because it is composed of 6-8 MOS transistors, which limits the chip size of the memory. Figure 2 shows a basic cell of the CMOS memory.

FIGURE 2. CMOS Memory Cell

2.2.2 DRAM

A major breakthrough in the development of the RAM technology was the invention of the one-transistor memory called DRAM, which is noted for its high capacity, moderate speed and low power consumption. This device uses a capacitor-like element and a driving transistor for each bit.Since the charge on the capacitor decays with time, it requires a periodic refresh signal to maintain the data storage. Traditionally, the refresh circuit is built on the

PCB on which the DRAMs are installed. The computer is prohibited from doing a read/write during the refreshing period. Figure 3 shows the structure of a DRAM cell.

FIGURE 3. DRAM Cell

2.2.3 iRAM

Integrated RAM, which integrates a dynamic RAM and its control and refresh circuitry on one substrater has the characteristics of a DRAM, but looks like a SRAM.
2.2.4 Comparison of DRAM and SRAM

Dynamic memories are notoriously difficult to work with because of the refresh process which may cause timing problems. Although SRAM is much easier to use than DRAM, attention must be given to the size and cost.

Before considering iRAM, SRAM is a good choice for
the designer who builds boards smaller than $8 k$ bytes because the high price is offset by the dynamic control circuitry. Cn the other hand, for building boards larger than $64 k$ bytes, DRAM is preferred because power consideration and package density begin to take precedence over circuit complexity.

When comparing these two types of memory, there are three major advantages of a DRAM which become apparent.

1. The density of a DRAM is much higher than the SRAM's. That is why DRAM boards contain more memory chips than the SRAM boards even with the supporting control circuitry that the DRAM board requires.
2. A dynamic RAM has less power dissipation. This reduces not only the amount of heat generated but also the current requirements for the power source. Typically, a 64 k . type dynamic memory board dissipates approximately 8 watts compared to 50 watts for the same size of memory of the static memory board. The decrease in power dissipation can make a big difference in the reliability of the entire system.
3. The third advantage of a DRAM is its low cost because of the high density of memory per chip.

In the comparison of these two memories, dynamic memories have slower data-access time (although they are more than fast enough for the average microprocessor). There is. still one aspect that could make the SRAM a better choice. That is, not all types of direct memory access controllers will conveniently interface with all types of dynamic memory
boards. ${ }^{4}$

4 Larry Malakoff, "Dynamic Memory Intelligence Decision" Byte, Feb 1981, p. 142

CHAPTER 3

MEMORY FAILURE ANALYSIS

3.1 Introduction

Faulty memory is a very difficult problem to detect. Most distributers of memory board kits supply a simple test designed to detect some errors. These tests are ineffective in detecting a certain type of failure such as pattern sensitivity.

A number of methods are applied to calculate the reliability of a model memory system. Intel developed a chip 8206/8206-2 using ECC ${ }^{5}$ which can correct a single bit failure and detect double bit errors. Studying memory failure analysis is fundamental to any new development in order to evolve other good algorithms and chips to prevent the memory defect or even to correct it without the user's awareness. 3.2 Error Classification.

Normally, the memory errors are classified into two categories, hard memory errors and soft memory errors.
3.2.1 Hard Memory Error

There are two types of hard memory errors, struct-at0 , struct-at-1, which are permanent errors such as shorts, open leads, micro-cracks or other instrinsic flaws. They -
${ }^{5}$ Intel Memory Component Handbook 1983, pp 3-164, 3179.
are classed as single cell failures, row failures, column failures, combined row failures, half-chip failures and full chip failures. FIGURE 4' shows the failure distribution of a 2117 RAM chip.

Combined Hard Failures 0.027% / 1000 hrs

FIGURE 4. 2117 Failure Distribution
3.2.2 Soft Memory Error

A soft memory error occurs when the current state of a dynamic memory bit is changed by ionizing radiation from the plastic or ceramic integrated circuit package. In _ contrast to a hard memory error, a soft memory error is

```
`Ibid., pp 3-164, 3-179
```

characterized by being a random, non-recurring, nondestructive single cell error. A soft error can also be the result of a timing problem, or a refresh problem when using dynamic memory. Bit-to-bit interference could be caused by a soft memory error. Sometimes it is incorrect for the first time read out, but correct for the second time read out. This type of error is associated with the system level problem and the rate of failure is hard to quantify; in any event it is assumed to be very small. FIGURE 5^{5} shows the combined distribution of failure types.

> Soft Error Single Cell Rate- 0.1% Per 1000 hrs Hard Error Combined Rate- 0.027% Per 1000 hrs Total $=0.127 \%$ Per 1000 hrs

Hard error 50.0\% single cell 15.6\% row 28.1\% column
6.2\% row/column

FIGURE 5. Combined Distribution of Failure Type

$$
{ }^{5} \text { Ibid., pp3-164, 3-179 }
$$

CHAPTER 4

TESTING ALGORITHM

The few testing algorithms available today will be examined in order to determine which algorithms will be implemented in the RAM checkers.

4.1 Algorithm Research

During the algorithm research, it was found that there are six major ways to test memory chip. These algorithms will be briefly described.

4.1.1 The First Method ${ }^{6}$

The first method is called the walking-address memory test. Starting at an even memory address given by the user,the algorithm writes the most significant byte of the address into all of the even memory locations and then verifies the byte's content. Next the least significant byte of the address is written into all of the odd or next memory locations and then verified. Finally, the program goes back to the starting address and verifies the contents of all locations. This memory test is rapid, but it could miss hard memory errors like struck-at-0 or 1.

4.1.2 The Second Method ${ }^{6}$

6 H.R. Pinnick Jr. " Testing Your Memory Using the Barber-pole Algorithm ", Byte Dec, pp 414-444

The second method stores 55H (0101 0101 in binary) into the even.locations and AAH (1010 1010 in binary) into the odd locations then checks the contents of all locations, The test is repeated with the contents of even and odd locations interchanged. This rapid test checks both hard and soft memory errors, but it has no cross-bit-check for the soft memory errors.
4.1.3 The Third Method ${ }^{6}$

The most extensive memory test algorithms are probably the gallop-read and gallop-write test. The gallopread test clears memory to all zeroes in all locations and stores $F F H$ (1111 1111 in binary) in a specified starting address. This test reads all other locations and verifies the presence of $O O H$ except for the location which containsFFH. Next the pattern $F F H$ is written into the next location, and the reading and verification of all locations are repeated until the end of the locations. The gallop-write test is similar with the gallop-read test except that $00 H$ is replaced by FFH, and FFH is replaced by the OOH. . These tests are excellent for testing memory except they are extremely time consuming and they have difficulty in detecting the error if one data bit affects another data bit.
4.1.4 The Fourth Method ${ }^{6}$
${ }^{6}$ Ibid. pp 414-444

The method is called the barber-pole algorithm because patterns used for the test are similar to the barber-pole (rotate by shifting 0 or by shifting 1). Refer to Table 1.

First, consider the test for a 2114 type static $1 k * 4$ memory chip. The nine patterns of Table 1 are written into each location one at a time and then the pattern is retrieved from the location after each write to memory in order to check if it is the same as previously written. The process is repeated until the end of the memory location is reached.

TABLE		Testing Pattern
BINAR		HEX
0000	0000	OOH
0001	0001	11H
0010	0010	22 H
0100	0100	44 H
1000	1000	88H
1110	1110	EEH
1101	1101	DDH
1011	1011	BBH
0111	0111	77H

For another type of memory such as $2 k * 8$, the test patterns will be a little different. They are 01H, 02H, 04H, $08 \mathrm{H}, 10 \mathrm{H}, 20 \mathrm{H}, 40 \mathrm{H}, 80 \mathrm{H}, \mathrm{FEH}, \mathrm{FDH}, \mathrm{FBH}, \mathrm{F} 7 \mathrm{H}, \mathrm{EFH}, \mathrm{DFH}, \mathrm{BFH}$ and 7 FH .

The barber-pole testing algorithm is very good at detecting both hard memory errors and soft memory errors, except, it only finds the interaction within one byte. It is impossible to detect whether the rest of memory is affected at other locations.

4.1.5 The Fifth Method ${ }^{7}$

The fifth test, called the memory pattern sensitivity test, is a little different from the previous testing methods mentioned above. The program works by initializing the memorytobetested with a sequence consisting of 00 H to FFH. Then pointers are set at the beginning and end of the same block of memory. Next, the data at each of the pointer location is exchanged and the pointers are then moved toward one another. The process of exchanging and moving repeats until the pointers meet. The inverted sequence is then checked for accuracy. If any discrepancies are encountered, the memory is defective.
4.1.6 The Sixth Method: Optimal RAM Test Algorithm ${ }^{8}$

Before stating the algorithm, the following notations are introduced. Let A_{u} be the memory address u.

$$
\begin{aligned}
& 0 \leq u<2^{n} \\
& \pi 0=\left\{A_{u} / u=0 \quad(\operatorname{modulo} 3)\right\} \\
& \pi 1=\left\{A_{u} / \mathbf{u}=1 \quad(\operatorname{modulo} 3) 3\right. \\
& \pi 2=\left\{A_{u} / u=2 \text { (modulo 3) } 3\right.
\end{aligned}
$$

Algorithm
Step 1: Write the all 0 words, WO, at all locations.
$A_{j} \in \pi 1$ and $A_{k} \in \pi / 2$
Step 2: Write the all 1 word, W1, at all locations.

7 Don Gins, " A Memory Sensitivity Test ", Byte, Oct1978, pp 12-16

8 John Knaizuk, J.R. And C.R.P. Hartmann, " An Algorithm for Testing Random Access Memory ", IEEE Transaction on Computers, April 1977, pp 414-416.

$A_{i} \in \pi 0$

Step 3: Read all locations $A_{j} \in \mathbb{\Pi}$:
if output $=W 0$; no fault indicated
$\neq \mathrm{WO}$; RAM fault indicated
Step 4: Write all 1 word $W 1$ at all locations.

$A_{j} \in \pi 1$

Step 5: Read all location $A_{k} \in \pi 2$:
if output=w0; no fault indicated
$\neq \mathrm{W} 0$; RAM fault indicated
Step 6: Read all location $A_{i} \in \mathbb{T} 0$ and $A_{j} \in \mathbb{T}$:
if output=W1; no fault indicated
fw0; RAM fault indicated
Step 7: Write and read the all 0 words WO at all locations

$$
A_{i} \in \pi 0
$$

if output=W0; no fault indicated
fW0; RAM fault indicated
Step 8: Write and then read the all 1 word $W 1$ at all locations.
$A_{k} \in \pi{ }^{2}$
if output=W1: no fault indicated
$\neq W 1: \quad$ RAM fault indicated
end.

This algorithm presents an algorithm that optimizes in detecting any single struct-at-0 or struct-at-1 fault in a random access memory.

Since the RAM checkers designed in this thesis are for the intensive memory testing, execution time is of minor importance. It is desirable to have a good and detailed testing program to judge the memory once there is any doubt. This type of testing algorithm will not be feasible for production testing purposes. When the time becomes important to the user, a short test option for testing DRAM boards is added to give the user a flexible choice for the testing. Refer to Table 2.

TABLE 2. Execution Time for Each Test

Long Test

RAM Type	8155	2114	4116	4164
RAM Size	$.25 k * 8$	$2 k * 4$	$16 \mathrm{~K} * 1$	$64 \mathrm{k} * 1$
Test Time	4 sec	20 sec	120 sec	271 sec

Short Test

RAM Type	8155	2114	4116	4164
RAM Size	$.25 k * 8$	$2 k * 4$	$16 k \star 1$	$64 k * 1$
Test Time	4 sec	20 sec	6 sec	13 sec

As stated before, the larger the number of -tests; the greater will be the reliability. In the RAM checkers, gallop-read, gallop-write barber-pole and sensitivity testing theories were combined together to arrive at the testing methods selected for the design of the checkers. The difference between the long and short test is that the short test doesn't include the gallop-read test and gallop-write test.

The testing program is composed of two parts, one is for the pattern test, the other is for the sensitivity test. First, the byte $O O H$ is stored into all the memory locations, next using the barber-pole algorithm, storing the baber-pole testing patterns sequentially begining with the first memory location, the data is then verified until the end of the testing pattern is reached. Suppose a discrepancy is found in the middle of test, the program will then be aborted and go to the fail indication routine. After the last testing pattern is read, the rest of the memory locations will be checked one at a time to verify those OOH (or FFH) values which did not change (the short test doesn't include this). The process will be repeated until every memory location is checked. This completes the pattern test.

The sensitivity test is performed after the pattern test. A sequence of 256 bytes will be stored into the memory in increasing order. The number of the byte depends on the size of memory. For instance, for a $1 k * 4$ memory chip, only 16 bytes are used and for a $16 \mathrm{k} * 1$ memory size, only 2 bytes are used. Next, the contents of the memory locations are interchanged. If upon checking, the sequence of the numbers is found to be in decreasing order the memory chip is good, otherwise it is a defective chip. When this method is applied to a 8155 chip (256 bytes by eight), the pass test time is about 4 seconds. For the $2114(2 k * 4)$ chip, the pass. test time takes approximately 20 seconds when the 3.579545 MHz crystal is used.

The memory checkers which are for testing a SRAM, a $16 \mathrm{k} * 1$ DRAM and a $64 \mathrm{k} * 1$ DRAM are based on the use of 8085 CPU. Hardware circuitry will be now studied individually.

5.1 Static Memory Checker

This checker was sucessfully designed to test memory chips of the 2114 type and the 8155 family. It can be expanded to test additional memory chips with the aid of a microcomputer design system using the following design technique.
5.1.1 Hardware of The Static Memory Checker

Figure 6 shows the photograph of this Checker, and Figure 7 shows the schematic. This checker is designed to test many different types of static memory chips.

In Figure 7, it can be seen that INTEL 8212 is used as the address latch enabled by the ALE signal. The LEDs which indicate the test results are connected to the PA $1 / 0$ ports of the 8155. For this reason the 8155 chip could not be removed from the board even if it is not the unit under test. There is a dip switch consisting of four switches in which only one is used on the board. When the switch is atthe ON position, the 2114 test is selected, otherwise the 8155 is the unit under test.

5.1.2 Testing Chips in The SRAM Checker

Table 3 lists the memory chips that can be tested using this checker in addition to the INTEL memory chip 8155.

TABLE 3. 2114 Family

VENDER	PART NUMBER
Intel	$2114 \mathrm{~A} / 2114 \mathrm{AL}$
TI	TMS $2114 / \mathrm{TMS} 2114 \mathrm{~L}$
AMD	$9114 / 91 \mathrm{~L} 14$
EA	EA2114L
EMM/SEMI	2114
Fairchild	F2114
Hitachi	HM472114A
Intel	$2114 A / 2114 A L$
Intersil	IM2114/IM2114L
Mitsubishi	M5L2114L
Motorola	MCM2114/MCM21L14
National SC	MM2114/MM2114L
NEC	upD2114/upD2114L
OKI	MSM2114/MSM2114L
Synertek	SY2114/SY2114L

5.1.3 Future Expansion

This testing board is a model for the SRAM checker. Future expansions can be implemented by using the following hardware design procedures:

1. Connected the chip select ($\overline{\mathrm{CS}})$ line with the output of 3205. Refer to Figure 8.

The address of each output of decorder 3205 is listed in Table 4.

2. Connect the data and address lines to ADO through AD7, and A8 through A15.

The 8085 microprocessor can run at maximum speed of $3 \mathrm{MHz}.{ }^{9}$ In order for it to work with most of the-memory chips, approximately half of the maximum speed is considered as the best choice. For this board $3.57945 / 2 \mathrm{MHz}$ is chosen. If the memory can not be matched with the existing bcard, it is suggested that the board be interfaced to the MDS, which can implement the additional controlcircuitry.

9
Mcs-80/85 TM Family User Manual, Oct 1979, p6-4

5.2 16k DRAM Checker

Two test methods are used on the DRAM checkers. The user can choose a long or a short test by setting the connected dip switch on the testing board to either the ON or OFF position.

5.2.1 Hardware Description

This board is designed as a 16k RAM checker. Figure 9 shows the photograph, and Figure 10 shows the schematic of this checker.

On this board, the 8755 serves as program memory storage and as $1 / 0$ for the system. In order to have the expected data come from the memory under test, a data latch LS373 is necessary, the $\overline{X A C K}$ signal (TRANSFER ACKNOWLEDGE pin \#29 of the the 8203) serves as the strobe in this case, and the LS373 is disabled when the 8755 is in the enabled state.

The INTEL 8203 is a dynamic RAM controller designed to provide all necessary signals when using the 2164, 2118, and 2117 DRAM in a microcomputer system. The 8203 provides multiplexed addresses, an address strobe, refresh logic, and refresh/access arbitration. 10

5.2.2 Testing Chips in The 16 k DRAM Checker

Table 5 lists the $16 k$ DRAM chips that can be tested using this checker.

TABLE 5. 4116 Family

VENDER	PART NUMBER
TI	TMS 4116
AMD	AM9026
Fairchild	F4116
Fujitsu	MB8116
Hitachi	HM4716
Intel	2117
Intersil	IM4116
ITT	ITT4116
Mitsubitsu	M5k4116
Mostek	MK4116
Motorola	MCM4116
National	MM5290
NEC	UPD416
GKI	MSM3716
Toshiba	TMM416

5.2.3 Future Expansion

Future hardware expansion is made possible by the following procedures in addition to the data and address lines being connected to the CPU (ADO-AD7 and A8-A15).

1. Connect the $\overline{R A S}$ of the new memory chip to the $\overline{\mathrm{RAS}}$ signal coming from the 8203, refer to Table 6.

TABLE 6. 8203 Bank Selection INPUTS CUTPUTS

B1	B0	$\overline{\text { RASO }}$	$\overline{\text { RAS1 }}$	$\overline{\text { RAS2 }}$	$\overline{\text { RAS3 }}$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

The addresses assigned to the $\overline{R A S}$ signal are shown in

Table 7.

TABIE 7.
8203 Active RAS Address Assignment

Active	
$\overline{\text { RAS }}$	Assigned Address
$\overline{\overline{R A S O}}$	$0000 \mathrm{H}-3 \mathrm{FFFH}$
$\overline{\text { RASI }}$	$4000 \mathrm{H}-7 \mathrm{FFFH}$
$\overline{\text { RAS2 }}$	$8000 \mathrm{H}-\mathrm{BFFFH}$
$\overline{\text { RAS }}$	$\mathrm{C} 000 \mathrm{H}-\mathrm{FFFFH}$

Locations 0 to 3 FFFH are being used by the ROM and 4000 H to 7 FFFH by the 4116.
2. In the case $\overline{\operatorname{RAS} 2}$ is used, $\overline{02}$ coming from the 3025 should be connected as shown in Figure 11 in order to disable the data latch when the memory chip addresses are not activated.

5.3 64k DRAM Checker

This DRAM testing board is very similar to the $16 k$ DRAM testing boards except that this board has to test $64 \underline{k}$ locations. The 8085 is capable of addressing 64 k locations.

FIGURE 11. Data Latch Method

FlGURI: 13.: 64 k DRAM Tester Schematic

5.3.1 Hardware Analysis

This board is designed to test a 64 k RAM. Refer t Figure 12 and Figure 13 for the photograph and schematic.

In addition to being similar in structure with the previous two boards discussed, this bcard requires virtual memory in order to test 64 k locations when the 8085 is used as the microprocessor. The main feature of this board is that it uses the overlap method to satisfy the requirements of testing the 64 k DRAM. Figure 14 shows the hardware structure of this overlap method.

When the ports PB4 to PB7 are asserted high, the LS 125 goes to the high impedence state. $\overline{00}-\overline{\mathrm{C} 7}$ coming from the 8203 will be connected to the 4164 through the inverters. For this case, the locations $8000 \mathrm{H}-\mathrm{FFFFH}$ addressed by the processor will be mapped to the locations 7FFFH-0000H within the memory chip. On the other hand, when a Low is asserted on the port PB4 to PB7, the LS126 goes to high impedence state and $8000 \mathrm{H}-\mathrm{FFFFH}$ addressed by the processor is equal to $8000 \mathrm{H}-\mathrm{FFFFH}$ within the 4164.

Combining these two cases, 0-FFFFH locations in the memory chip will be checked by setting the output port PB4PB7 High and then Low.
5.3.2 Testing Chips in The 64 k DRAM Checker

Table 8 lists the 4164 family that can be tested using this checker.

Refer to TABLE 8.

TABLE 8. 4164 Family

VENDER	PART NUMBER
-TI	TMS4164
Fairchild	F64k
Fujitsu	MB8264
Hitachi	HM4864
Intel	2164
Mitsubishi	M5k4164s
Mostek	Mk4164
Motorola	MCM666
National	NMC4164
NEC	UPD4164
GKI	MSM3764
Toshiba	TMM4164

5.3.3 Future Expansion

Future expansion can be obtained by sharing all of the signal lines with the 4164 except for the data line ADO used by the 4164. The rest of the data lines AD1-AD7 are available to be used as any data signal. Cf course, the software must be modified to support this change.

SGFTWARE DESIGN

This chapter is concerned about the testing software of the three testers. Since the 8085 CPU is used, 8085 machine codes are employed in the checker software design. Each of the three programs contains two parts. The first part is called the pattern test routine. It checks the uniqueness of each byte and makes sure that every single bit is valid. After each location is checked, the gallop-read test is applied to the rest of the memory within this block (256 bytes is defined as a block). In this case, most of the interference between bytes will be detected. The second part of the program is the sensitivity test routine which is very useful in detecting the interference between bytes. For the case of the 8155, OOH - FFH is written into consecutive memory locations. Then the contents of the memory are reversed. If the sequence of $\mathrm{FFH}, \mathrm{FEH}, \ldots \mathrm{O} \mathrm{H}, \mathrm{O}, \mathrm{H}, \mathrm{OOH}$ is not read from the 8155 memory locations, an error is detected and this memory chip is defective. During the search for defective memory chips in the school's electronic shop, one 4164 chip was found which passed the pattern test but failed the sensitivity test.
6.1 Testing Program for The Static RAM Checker

This program is illustrated in Figure 15, and the complete assembly language program is contained in the Appendix A.

FIGURE 15. SRAM Testing Program Flowchart (continued)

FIGURE 15. SRAM Testing Program Flowchart (continued)

FIGURE 15. SRAM Testing Program Flowchart (continued)

FIGURE 15. SRAM Testing Program Flowchart (continued)

FIGURE 15. SRAM Testing Program Flowchart (continued)

FIGURE 15. SRAM Testing Program Flowchart
6.2 Testing Program for The 16 k DRAM Checker

This testing program is similar with the SRAM testing program except that it only has one data line. The testing flowchart is shown in Figure 16 and the assembly language program is contained in Appendix B.

FIGURE 16. 16k DRAM Testing Program Flowchart (continued)

FIGURE 16. 16K DRAM Testing Program Flowchart

6.3 Testing Program for The 64k DRAM Checker

The two testing programs for the $16 k$ DRAM and the 64 k DRAM are very similar because both of them have one data line excluding the $64 k$ DRAM which has two sets of locations $8000 \mathrm{H}-\mathrm{FFFFH}$ addressed by the 8085. The program flowchart is shown in Figure 17, and the complete assembly language program is contained in the Appendix C.

FIGURE 17. 64k DRAM Testing Program Flowchart (continued)

FIGURE 17. 64K DRAM Testing Program Flowchart

CHAPTER 7

SUMMARY

With the aid of a microcomputer design system, three RAM testing boards for a SRAM checker, a 16 k DRAM checker, and a 64 k DRAM checker respectively were sucessfully designed and built. The basic description of RAMs is discussed in chapter 2, the software system is described in chapter 6 and testing programs are listed in Appendix A, B and C. Many hardware and software problems are easily detected and solved with the use of a MDS, which helps to save a lot of time duringthe development process of the RAM testing boards. With the aid of a MDS, these checkers can be expanded to test additional memory chips.

7.1 Performance Evaluation of The Checkers

These RAM testers are designed to detect both the-hard memory errors and soft memory errors to a high degree of accuracy. The testing accuracy of the RAM checkers can not be assigned a percentage value for RAMs in general but only for a particular RAM since the fabrication process differ for eachtype of RAM. Every memory chip type has its special characteristic and the failure distribution is different for each one. In Chapter 3, it was pointed out that soft memory errors associated with the system level problem and the rate of failure are hard to quantify. This is why no algorithm has ever been claimed to have a
percentile associated with its performance.
The testing method for SRAM is composed of barberpole algorithm, sensitivity test algorithm and gallop-read alogrithm. For the DRAM, the same method can not be applied because of the long execution time (at least one hour is needed to test the 64 k DRAM under 3.58 Mz with the same method that was applied to the SRAM). That is why only the barber-pole, the sensitivity algorithm and part of the gallop-write algorithms are employed by the DRAM checkers. The performance of the testing method when combining algorithms should be better than using a single algorithm which was discussed in Chapter 4.

7.2 Conclusion

Application of the microcomputer controlled RAMcheckers for the SRAM (8155 and 2114) and the DRAM (41.16, 4164) results in detecting memory failures at a low cost and with a high degree of reliability.

In addition to the personal usage, these RAM testers could be very useful when starting up a small electronic assembly plant where an inexpensive tool, instead of a sophisticated ATE, is needed to give a good evaluation of memory chips, if the DC and AC parameters are not critical.

These RAM testers are very easy to use. No special training is needed to operate them. PASS and FAIL indicatingLEDs on the front panel will show the user if the RAM passes or fails the test.

As was indicated in the previous chapters, the RAM
checkers could be expanded to check other memory chips. Software writing may not be easy except for those who have the assembly language programming ability. The memory chips to be tested in the RAM checkers are required to accompany the 8085 CPU. Cther chips that are used with a CPU other than the 8085 could be tested by employing the same technique described in this thesis except that the characteristics of the different types of CPU must be taken into account.

Recently, more powerful microcomputers with supporting hardware and software were developed. For instance, a 32 -bit microcomputer was successfully manufactured. It is expected that the memory checker using the microcomputer-controlled program will become more sophisticated as other good testing algorithms evolve.

APPENDIX A

TESTING PROGRAM LISITING FOR SRAM

LOC	OBJ	LINE	SOUEEE STATEMENT									
0017		SS		30 V	A， H							
0013	FE21	56		CFI	2：H	；if not excede 2100 30to 9000						
001A	ここ1400	57		JNZ	0000	，						
		Eb	；									
		59	；									
		00										
		61	；＊Get tne Pattern from location PAT one gy one，wrtte into the ；location ，and pull it out to do tne testing．Go to 0 test anen＂ ；＊runring out of tne pattern at each loation． 									
		$\begin{aligned} & 52 \\ & 63 \end{aligned}$										
		44										
		55	;									
		66	，									
0010	210020	57		LXI	H，STS1	；startins address						
0020	118000	68	LOOP1：	－XI	D，FAT	；oattern stored here						
0023	三日	69		LJQFE： $\begin{aligned} & \text { MOSU } \\ & \text { MOV } \\ & \text { A，M }\end{aligned}$								
0024	7E	70					；if psttern is 0 ，then so the zero					
0025	FEOO	71		CPI	OH							
0027	CA3500	72	JZ		ZERO	；test．						
－002A	EB	73	XCHG			；locat：on stored with pattern						
0028	77	74		mav	M，A							
002C	46	75		MOU	B，M	jcheck＇ocation content dith pattern						
0020	38	75		Cra	8							
OOZE	C28000	77		Jnz	FAIL	；store if not equal tnen jurip to tne						
0031	13	78		INX	0	；FAIL sourisatine．Otherwise 30 to next；iocation．						
0032	Cこ2300	79		JMP	LOOF2							
		30	；									
		81	； 2 ERoES TEST									
		82										
		33										
		84	；＊This test 15 to test tf all those locations otner than tne ；＊specified one contain 0 ．									
		35										
		86										
0035	EI	87	ZERO ：	：XCHG								
0036	7E	88		MOV	A，M	；get the compilment of the inital jvalue to mask this specified locatton．						
0337	$2 F$	59		CMA								
0038	47	90		nov	B，A							
0039	110020	91		LXI	D，STS2							
0035	Es	92		XCH0								
003D	7E	93	0LF：	：MOU	A，M							
003E	FEOO	94		CPI	OH	；compare all tie content：of locations ；with zeros						
		95										
0040	C2E500	96 97		SNZ	MAP	；if not 0 ，then sots MAP subroutine ；to eneck ：f it is allowed．						
0043	23	98	CON1 ：	：INX	H							
0044	7 C	99		MOU	A，H							
0045	FEこ1	LOO		CF：	2：H							
0047	C23000	131		JNZ	OLF＇							
004A	EB	102		XCHG								
004B	23	103		INX	H	i jump to succedins location						
004C	7 C	104		MOV	A，${ }^{\text {A }}$	jcneck if test coaplete ？						
004D	FE21	105		CFI	21.4							
004F	CAHJOO	106		12	SETST	；if complete sot0 sensitivity test						
0052	C32000	107		JHP	LOOFI	；or continue tne ？3ttern test ；acd up the content with that of ；the specified one						
0055	TE	108	MAP ：	：MOV	A，M							
005：	90	139		AOD	B							

ISIS－II 8090／gogs MACRO ASSEMBLER，U4．1 MODULE EAGE 4

20	OBJ	LIME	SOURCE Statement				
OOBH	23	155		INX	H		
jOBC	7C	100		MOU	A，H		
OOBEI	Fミこ1	157		CFI	21H		
OOBF	CACS00	108		12	CHK：		
		169					
		170					
00ca	$0 C$	171		INR	C		
00C3	C3FA00	$17 \pm$		JHF	CON72		
00C3	1：FFこ0	173	OHK1	－x：	U，EnS1		
00c9	210020	174		－xz	H，STO1		
OOCC	46	175	－0093：	MOU	B，M		
0025	EP	176		XCHG			
OOCE	4E	177		nov	C，M		
00CF	70	178		nov	M，B		
OODO	EY	179		XCHG			
3001	71	130		MOV	M, C		
0002	1 F	191		ncx	\square		
0003	23	132		INX	H		
00114	7 I	133		MOU	A，		
0005	FEQO	134		CFI	8 OH		
0007	caccoo	185		JN2	LOOP3		
		196	，				
		137					
		139					
00na	210020	190		－x：	H，STE1		
00nd	1600	191		MVI	5 OOH		
OORF	15	192	LOOP 4 ：	DCR	I		
OOEO	Chá100	193		」2	F＇ASS		
OOE3	97	194		SUB	A		
0054	7 E	195		MOU	A，M		
OOES	23	196		INX	H		
OOES	96	197		SUB	M		
00E7	DAEO00	198		JC	FAIL		
OOEA	CAR000	190		Jこ	FAIL		
OOED	C3DF00	200		JMP	LOOF． 4		
		201	，				
		202	swar EQU 0900H				
0800		203					
ORFF		204	EN21	EQU	OPFFH		
0200		205	Pat2	EQU	O200H		
		206	；\＃＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊				
		207					
		208	；arsor ithm used 15 tne same as tne one beibg used in tne above＊				
		209	；＊prosram．＊				
		$2: 0$	；＊＊＊				
		211	，				
		212					
		213	；TEST 2114 CHIP				
		214 215					
		216					
		217					
		213					
		219					

```
OEIS-II 8OBO/BOBS MACRO ASSEMRLER, リ4.1 MODULE PAGE S
```


ISISTI 80BO/OOBS MACกิO ASSEMRLER, V4.: MODULE PAGE 6

ISIS－II 8080 30ES MACRO ASSEMELER，U4．1 MODULE PAGE 7

LOC	OBJ	LINE	SOURCE STATEMENT		
0206	F7	330	DB	OFTH	
0207	Fo	331		$D B \quad O F O H$	
		3コこ	－		
		333	；		
		334	；PART I？		
		T35			
		336	；＊This is to 10 the SENSITIVITY TEST to ensure the menory is＇nt ；＊affected oy the other memory dur：ns tne suitenins period．		
		337			
		338	；＊By storins 00 －OF into the first seecified locations suoset		
		339	；tnen soon to other subset till tie end of the locations＊		
		340	；Reverse those contents in the subset n i it falls unless tne＊		
		341			
		342	；＊or：jer． 		
		$3+3$			
		344	；SENSITITY TEST FOR 2114		
0208	210008	345	SETSE：LXI	H，STE1	
O20s	11FFOS	346	LXI	$[1, E N 21$	
020E	OEOO	347	M MUI	C，00	
0210	71	348	LOMP9：MOU	M，C	
0211	OC	349		C	
0212	23	350		H	
0213	75	351	INX MOU	A，H	
0214	FEOC	352	CPI	OCH	
0210	E2：002	－53	JNZ	LOOPQ	
0219	210003	354	REV：LXI		
02：C	46	355		B，M	
0215	Es	355	LOOFA：MOU XCHG MOU		
021E	7E	357		A，M	
021．5	70	358	mov	M，${ }^{\text {a }}$	
0220	Es	359	xCHG		
$0 こ 21$	77	360	Ma＇	M，A	
$02 こ 2$	18	361	2 Cx	D	
0ここコ	23	362	INX	H	
022． 4	75	363	MOU	A，H	
0225	FEOA	364	CFI	OAH	
0227	CA2002	30́5	$J 2$	CHK	
022a	C3：C02	366	JMP	LOOP？$\mathrm{H}_{1} \mathrm{ST} 21$	
0220	210008	367	CHKLOOPB		
0230	46	368		$\mathrm{H}, \mathrm{ST} 21$ E, M	
0231	70	369	nov	A，L	
0232	30	370	ADD	${ }^{\text {B }}$	
0233	E60F	571	ANI	OFH	
0235	FEOF	372	CFI	OF：H	
0237	C29C01	373	JNZ	FA12	
023A	23	374	INX	H	
023B	70	375	40＇	A，H	
023C	FEOC	376	CP I	OCH	
023E	ca3002	377	JNZ	$\begin{aligned} & \text { LOOPB } \\ & \text { iss } \end{aligned}$	
0241	C39701	379	JM＇		
		379	END		

EXTERNAL SYMROLS

APPENDIX B


```
SIS-I1 8080/8095 MACRO ASSEMBLER, U4.1 MOIULE F.AGE 3
```

LOC	OBJ	LINE	SOURCE STATEMENT		
009F	70	110	mov	M, B	; move M to H
0095	28	111	DCX	H	iderrease H
00911	77	112	nov	M, A	; move A to M
007E	23	113	INX	H	; incresse H
009F	C39200	114	JMF	LOOF'A	; Jump to LOOFA
		115	; The followins	prosraat i	s to check if the contents of
		116	ieach location	are in th	e risht sequence uhich we demand.
OOA2	210040	117	CHK : LXI	H,ST16	
OOAS	7E	118	LOOPE: MOU	A, M	; move M to A
00A6	23	117	INX	H	; increase H
00A7	EE	120	CMF	M	; compare uith M
OOAQ	CA6F00	121	JZ	FAIL	;if not equal so to FAIL
OOAB	7 C	122	nov	A, H	icheck if test complete
OOAC	FEBO	133	CFI	BOH	
OOAE	CA6600	124	$J 2$	PASS	
0081	C3A500	125	JMP	LOOFP	; 0 o, so on
		126			
		127	ENI		

FUELIC SYMEOLS

EXTERNAL SYMEOLS

USER	MFOLS										
AAA	A 0060	RFA	A 0039	CCC	A 0062	CHK	A OOA2	ENi6	A 7FFF	FAIL	A 006 F
LEMON	A 0070	LOOF 1	A 0014	LOOF2	A 0020	LOOP3	A 0028	LOOP4	A 0351	LOOFS	A 0036
LOOF'F	A O2AE	FASS	A 0066	REV	A 208 F	SENST	A 007E	ST16	A 4000	ZEFO	A 0042

APPENDIX C

TESTING PROGRAM LISTING FOR 64K DRAM

IS:S-II BOBO/BOBS MACRO ASSEMGLEf, 14.1 MODULE PAGE 1

LOC	OBJ	LINE	SOURCE STATEMENT			
OOA1	C29800	110	JNZ	L00FS	Ino, So to LOOPS	
		111	ithe followins	prosram	is to interchanse the memory	
		112	icontent, 8000	~ 8001	, 8002~8003, .-.	
OOA4	210080	113	REV : LXI	HiST64		
OOA7	46	114	LOOPA: nov	B, M		
OOAB	23	115	INX	H		
OOA9	7 C	116	MOU	A, H	;	
OOAA	FEOO	117	CPI	OOH		
OOAC	CAP700	118	J2	CHK	Iif reverision is completed so ; to check it.	
		119				
OOAF	7 E	120	MOU	A, H	imove n to A	
OOPO	70	121	MOU	M, B	inove n to B	
0081	2B	122	DCX	H	; decrease H	
0082	77	123	nov	M, A	inove A to n	
0083	23	124	INX	H	jincresse H	
0084	C3A>00	125	JMP	LOOFA	; jump to LOOPA	
		126	The following jeach location	prosram is to check if the contents of are in the risht sequence which we demand.		
		127				
0087	210080	128	CHK : LXI	H.ST64		
OOPA	7 E	129	LOOPB: MOU	A, M	inove M to A	
OOPR	23	130	INX	H	innerease H	
OOPC	RE	131	CMP	H	;compare with M	
OOBD	CA7100	132	J2	FAIL	Iif not equal so to FAIL	
00CO	7 C	133	HOU	$\mathrm{A}_{\text {I }} \mathrm{H}$	icheck if test complete	
00C1	FEOO	134	CPI	OOH		
00c3	CIPA00	135	JNZ	LOOPP	ino, so on	
00C6	3AFE20	136	LDA	20FEH	iyes, load 20FE to A	
00C9	FE06	137	CFI	06H	iconfare uith 6	
OOCF	CA7700	138	$J 2$	PASS	;if it is equal so to PASS	
OOCE	21FA20	139	LXI	H, IOFAH	ino, reset	
00D1	3604	140	MUI	$\mathrm{H}, 04 \mathrm{H}$;PASS indicator data	
00013	23	141	INX	H		
00114	3602	142	MVI	H, O2H	;FAIL indicator deta	
0006	23	143	INX	H		
00017	3600	144	MUI	M, OH	ILEDON indicator data	
0019	23	145	INX	H		
OODA	3606	146	MUI	M, 06H	illejof indieator data	
OOPC	7 E	147	MOU	A, M		
OODD	0322	148	OUT	22H	ireset Led	
OODF	32FE=0	149	STA	20FEH	I	
OOE2	C31ECO	150	JMP	START	;so to another 8000 to ;FFFF routine.	
		152	END			

PUBLIC SYMBOLS

EXTERNAL SYMROLS

AAA	A 0071	ERE	A	0046	CCL	A 0073	CHK	A	0087	EN64	A FFFF	FAIL	A 0071
LEDON	A 0083	LOOP1	A	0021	LOOP 2	A 002d	LOOP 3	A	0038	LOOP 4	A 0062	LOOPS	A 0098
LOOP 0	A OOBA	PASS	-A	0077	REV	A OOA4	SENST	A	0093	ST64	A B002	START	A 001E

APPENDIX D

SPECIFICATION OF CHIPS USED IN THE CHECKERS

Figure 2 8085A Pinout Diagram
8085A FUNCTIONAL PIN DEFINITION
The following describes the function of each pin:

Symbol	Function
$A_{8}-A_{15}$ (Output. 3-stat.)	Address Bus: The most significant 8 bits of the memory aaaress or the 8 bits of the $1 / O$ address. 3-stated during Hold and Halt modes and during RESET.
$\mathrm{ADO}_{3} 7$ (Input/Output, 3-state)	Multipiexed Address/Data Bus: Lower 8 bits of the memory address or 1/O addressı appear on the bus during the first clock cycle (T state) of a machtne cycle. It then becomes the data bus durlng the secona ana third clock cycies.
ALE (Output)	Address Latch Enable It occurs during the first clock state of a mactine cycle and enables the address to get latched into the on-chio latch of peripherals The fatling edge of ALE is set to guarantee setup and hold times for the address information The fallino edae of ALE can also be used to strobe the status information ALE is never 3-stated
So. \mathbf{S}_{1}, and $10 / \overline{\mathbf{M}}$ (Output)	
	Machine cycle status:
	10/M Si So Status
	$0 \quad 0 \quad 1$ Memory write
	010 Memory read
	$101 / 0$ write
	110 //O read
	- 11 Opcode fetch
	111 Interruot Acknowledge
	00 Halt
	$X \times$ Hold
	X X Reset
	3-state high impedance
	$X=$ unspecified

Symbol	Function
	St can oe used as an advanced R / \bar{W} status. $10 / \bar{M} . S_{0}$ and S; become valid at the beginning of a macnine cycle and remain stable throughout the cycle The failing edge of ALE mav be used to latch the state of these lines
$\overline{A D}$ (Output. 3-state)	READ control A low level on $\overline{\mathrm{AD}}$ in. dicates the selected memory or $1: 0$ device is to be read and that the Data Bus is avallable lor the data transter 3-stated during Hold and Halt modes and durtng RESET
$\overline{W R}$ (Output, 3-atate)	WRITE control A low level on $\overline{W R}$ indicates the data on the Data Bus is to be written into the selected memory or $1 / O$ location Data is set up at the trailing edge of WR 3-stated during Hold and Halt modes and during RESET
READY (Input)	If READY is high during a read or write cycle. it indicates that the memory or peripheral is ready to send or receive data If READY is low the cou will wait an integral number of clock cycles for READY to go high before completing the read or write cycle
HOLD (Input)	HOLD indicates that another master is requesting the use of the address and data buses The cpu. upon receiving the hold request. will relinquish the use of the bus as soon as the completion of the current bus transfer Internal processing can continue The processor can regain the bus only alter the HOLD is removed When the HOLD is acknowledged the Address. Data. $\overline{R D}, \overline{W R}$, ana $10 / \bar{M}$ lines are 3-stated
HLDA (Output)	HOLD ACKNOWLEDGE Indicates that the cou has received the HOLD request and that it will relinguish the bus in the next clock cycle HLDA goes low after the Hold request is removed. The cou takes the bus one half clock cycle alter HLDA goes low
INTR (Inpul)	INTERRUPT REOUEST is used as a general purpose interruot It is sampled only during the next to the last clock cycle of an instruction and during Hold and Halt states If it is active the Program Counter PC will be inhibited irom incrementing and an INTA will be issued During this cycle a RESTART or CALL instruction can be inserted to jump to the interrudt service routine The INTR is enabled and disabled by software it is disabled by Reset and immediately atter an interrupt is acceoted.

8085A FUNCTIONAL PIN DESCRIPTION (Continued)

$\frac{\text { Symbol }}{\text { INTA }}$
(Output)

RST 5.5
RST 6.5
RST 7.5
(Inputs)

TRAP
(Input)
(Input)

Function	Symbol
INTERRUPT ACKNOWLEDGE is used instead of and has the same timing as $\overline{\text { PO }}$ during the instruction cycle atter an INTR is accepted. It can be used to activate the 8259 Interrupt anid or some other interrupt port.	
RESTART INTERRUPTS. These three inouts nave the same timing as INTR exceot they cause an internal RESTART lo be automatically inserted	RESET OUT (Output)
The priority of these Interrupts is ordered as shown in Table 1 These interrupts have a higner priority than INTR. In adcition, they may oe indıvidually masked out using the SIM instruction.	$\begin{aligned} & x_{1}, x_{2} \\ & \text { (Input) } \end{aligned}$
Trap Interrupt is a nonmaskable RESTART interrupt. It is recognized at the same ume as INTR or RST 5.5-7 5. It is unaffected by any mask or Interrupt Enadie. It has the highest prority of any interruot. See Table 1)	CLK (Output) SID
Sets tha'Program Conuntero zero hna resets the interrupt Enable anaHLDA flip-flops. The data and address buses and the control innes are 3 -stated during RESET and because of the asynenronous nature of RESET. the processor's internal registers and flags may be altered by RESET with unpredictable results. RESET IN is a	(Input) SOD (Output) Vce $v_{s s}$

Function
Schmitt-triggered inout. allowing connection to an R-C network lor power-on RESET delay The cou is held in the reset condition as long as AESET iN is apolied

Indicates cou is being reset. Can de used as a system reset The signal is syncnronized to the processor clock and lasts an integral numoer of clock periocs.
X_{1} and X_{2} are connected io a crystal. LC, or RC network to arive ine interna clock generator χ_{1} can also oe an external clock indut from alogic gate. The input frequency is dividea by 2 to give rhe processors internal operating frequency

Clock Output for use as a system clock The periog of CLK is iwice ine Xi. X_{2} input period

Serial inout dataline. The data on inis line is loaded into accumulator bit 7 wnenever a RIM instruction is executed.
Serial output data line The output SOD is set or reset as specified by the SIM instruction.
-5 volt supply.
Ground Reference

TABLE 1. INTERRUPT PRIORITY, RESTART ADDRESS. AND SENSITIVITY

	Priority	Address Branched To (1) When Interrupt Occurs	Type Trigger
Name	1	24 H	Rising edge AND nign level urtil sampled
TRAP	2	3 CH	Aising edge !latenea:
RST 75	2	34 H	Hign level untul sampled
RST 65	$\mathbf{3}$	2CH	Hign level until sampled
RST 55	4	See Note 2	Hign level until sampled
INTR	5		

NOTES.

1) The processor pushes the PC on the stack before branching to the indicated address.

12: The address branched to depends on the instruction provided to the cou when the interrup: is acknowledged.

- 8 Latches in a Single Package
- 3.s:ate Bus-Driving True Outpurs
- Full Parallel Access for Loading
- Buffered Control Inputs

1 P-N-P Inputs Reduce D-C Loading on Data Lines

- Package Options Include Both Plastic end Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliabiiity

meription

These 8-bit latches feature three-state outputs 'designed specifically for driving highly capacitive or relatively lowmpedance loads. They are particularly suitable for implementing buffer registers, I/O pons, bidirectional bus drivers, and working registers.

The eight latches of the 'ALS373 and 'AS373 are transparent 0 -rype latches. While the enable (C) is high the Q outputs will follow the data (O) inputs. When the enable is taken low, the Q outputs will be latched at the levels that were set up at the D nouts.
A buffered output-control input $(\overline{O C})$ can be used to place the sight outputs in either a normal logic state (high or low logic beveis) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.
The output control $\overline{O C}$ does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are off.

The SN54ALS373 and SN54AS373 are characterized for operation over the full miiitary temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ALS 373 and SN74AS373 are characterized for oderation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE LEACH LATCHI

INPUTS			$\begin{gathered} \hline \text { OUTPUT } \\ 0 \\ \hline \end{gathered}$
$\overline{\mathrm{OC}}$	ENABLE C	0	
L	H	H	H
L	H	L	L
L	6	x	Qo
H	X	X	2

 (TOP VIEW)
    ```
SN54ALS373. SN54AS373 . . . J PACKAGE
```

SN54ALS373. SN54AS373 . . . J PACKAGE
SN74ALS373. SN74AS373 . . . N PACKAGE
SN74ALS373. SN74AS373 . . . N PACKAGE
(TOP VIEW)

```
(TOP VIEW)
```



```
SN74ALS373. SN74AS373 . . . N PACKAGE
(TOP VIEW)
```


SN54ALS373. SN54AS373 . . . FH PACKAGE
SN74ALS373. SN74AS373 . . . FN PACKAGE
(TOP VIEW)

TYPES SN54ALS373, SN54AS373, SN74ALS373, SN74AS373 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS
lo. c symbol

logic diagram (positive logic)

Pin numbers shown are for J and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage. VCC | |
| :---: | :---: |
| Indut voitage . 71 | |
| Voltage applied to a disabled 3-state output . 5-5; | |
| Operating free-air temperature range: SN54ALS373. SN54AS373 - $55^{\circ} \mathrm{C}$ 隹 125° \% | |
| SN74ALS373. SN74AS373 | . $0^{\circ} \mathrm{C}$ to 70°. |
| Storage temperature range | $65^{\circ} \mathrm{C}$ to 150 Y |

8755A/8755A-2
 16,384-BIT EPROM WITH I/O

- 2048 Words $\times 8$ Bits
- Single +5 V Power Supply (V_{cc})
- Directly Compatible with 8085A and 8088 Microprocessors
- U.V. Erasable and Electrically

Reprogrammable

- 2 General Purpose 8•Bit I/O Ports
- Each IIO Port Line Individually Programmable as Input or Output
- Multiplexed Address and Data Bus
- 40-Pin DIP
- Internal Address Latch

The intel ${ }^{\bullet}$ 8755A is an erasable and electrically reprogrammable ROM (EPROM) and $1 / O$ chio to be used in the 8085A and 8088 microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. It has a maxımum access time of 450 ns to permit use with no watt states in an 8085A.CPU.
The $1 / O$ portion consists ot 2 general purpose $1 / O$ ports. Each $1 / O$ port has 8 port lines, and each $1 / O$ port line is individually programmable as input or oulput.
The 8755A-2 is a high speed selected version ot the 8755A compatible with the $5 \mathrm{MHz} 8085 \mathrm{~A}-2$ and the full speed 5 MHz 8088.

8755A FUNCTIONAL PIN DEFINITION

| Symbol | Function | Symbol | Functlon |
| :---: | :---: | :---: | :---: |
| ALE Andut | When Address Latch Enable goes high. $A D_{0-7}$. $10 / M, A_{8} 10 . C_{2}$, and $\overline{\mathrm{CE}} \mathrm{E}_{1}$ enter the address latches. The signals AD. $10 / \mathrm{M}$. AB-io. CE: are latcned in at the tralling edge of ALE. | READY IOUTDUT: | READY is a 3-state outoul controlled by $C E_{2}, \overline{C E}_{1}$. ALE and CLK. READY is lorced low when the Chio Enables are active during the lime ALEis hign and rematns low until the rising eage of the next CLK. ISee Figure 6 |
| ADO-7 (InDut/outpul) | Bidirectional Address/Data bus. The lower 8-bits of the PROM or $1 / 0$ address are apolied to the bus ines when ALE is high.
 During an $1 / 0$ cycle. Porr A or 8 are selected based on the latched value of $A D_{0}$. If $\overline{A D}$ or $\overline{O A}$ is low when the latched Chio Enables are actlve. the output bullers present data on the bus. | PA0-7 (input/output) | These are general purpose $1 / O$ oins Their inout/output direction is determined by the conlents ol Dara Direc. tion RegisterıOOR, Port Ais selected for wrile operations when the Chio Enables are actlve and $\overline{1 O W}$ is low and a 0 was previously latched from $A D D_{1}$.
 Read operation is selected bv either $\overline{I O R}$ low and acive Chio Enables and $A D_{0}$ and $A D_{1}$ low or $1 O / \bar{M}$ hign $\overline{R D}$ low. actlve Chio Enaoles. and ADo and AD, low |
| A8-10 IInput) | These are the high order bits of the PROM address. They do not affect 1/O oderations. | | |
| $\begin{aligned} & \text { PROGi言1 } \\ & C E_{2} \\ & \text { indul। } \end{aligned}$ | Chio Enable Inputs: $\overline{C E}$ is active low and $C E_{2}$ is actuve high. The 8755A can be accessed only when BOTH Chip Enables are active at the time the ALE signal latches them uo. If | PB_{0-7} (input/output) | This general purpose $1 / 0$ port is identical to Port A except that it is selected by a 1 latched from $A D_{0}$ and a 0 from $A D_{1}$. |
| | either Chip Enable inout is not active. the $A O_{0-7}$ and READY outputs will be in a high Impedance state. $\overline{C E} 1$ is also used as a programming pin. : See | RESET
 (inout) | In normal operation. an input hign on RESET causes all pins in Ports A and B to assume input mode sclear DDR registerl. |
| | section on programming.1 | $\overline{O R}$ (input) | When the Chip Enables are actlve. a tow on $\overline{\mathrm{OR}}$ will output the selected I/O port onto the AD bus $\overline{I O R}$ low performs the same function as the combination of $10 / \bar{M} \mathrm{htgh}$ and $\overline{R D}$ low. When $\overline{O R}$ is not used in a system. $\overline{I O R}$ should be tied to Vec ""1" |
| $10 / \bar{M}$ input) | If the latched $10 / \bar{M}$ is high when $\overline{R D}$ is low. the output data comes from an I/O port. If it is low the output data comes from the PROM. | | |
| RD (input | If the tatched Chip Enables are actlve when $\overline{\mathrm{RD}}$ goes low, the $\mathrm{AD} 0-7$ output buffers are enabled and output either the selected PROM location or I/O port. When both $\overline{R D}$ and $\overline{O R}$ are high. the AD0-7 output buffers are 3-stated.
 If the latched Chio Enables are active. a low on $\overline{\mathrm{OW}}$ causes the output port pointed to by the latched value of ADo to be written with the data on ADo-7. The state of $10 / \bar{M}$ is ignored. | | |
| | | Vee | +5 vol't supply. |
| | | Vss | Ground Reference. |
| | | Voo | $V_{O O}$ is a programming voltage. and must be tied to $\mathbf{4} 5 \mathrm{~V}$ when the 8755A |
| IOW input | | | is being read.
 For programming. a high voltage is supplied with $V_{00}=25 \mathrm{~V}$. iypical See section on programmIng. |
| CLK induti | The CLK is used to force the READY into its htgh impedance state after it has been forced low by $\overline{\mathrm{CE}}_{1}$ tow. CE_{2} high, and ALE hign. | | |

64K DYNAMIC RAM CONTROLLER

Rovldes All Signals Necessary to
Control 64K (2164) and 16K (2117, 21 18)
Dynamic Memories
Directly Addresses and Drives Up to 64 Oovices Without External Drivers

Provides Address Multiplexing and Strobes

Rovides a Refresh Timer and a Refresh Pounter

Provides Refresh/Access Arbitration
nternal Clock Capability with the 8203-1 und the 8203-3

- Fully Compatible with Intela 8080A, 8085A, iAPX 88, andiAPX 86 Family Microprocessors

■ Decodes CPU Status for Advanced Read Capability In 16K mode with the 8203-1 and the 8203-3.

■ Provides System Acknowledge and Transfer Acknowledge Signals

- Refresh Cycles May be Internally or Externally Requested (For Transparent Refresh)
- Internal Series Damping Resistors on All RAM Outputs
antel 8203 is a Dynamic Ram System Controller designed to provide all signals necessary to use 2164.2118 2117 Dynamic RAMs in microcomputer systems. The 8203 provides multiplexed addresses and address roces. refresh logic. retresh/access arbitration. Refresh cycles can be started internally or externally. The m-1 and the 8203-3 support an internal crystal oscillator and AdvancedRead Capability. The 8203-3isa85\%V VC r

Figure 1. 8203 Block Diagram

Flgure 2 Pln Conflguration

[^0]Table 1. PIn Descriptions

| Symbol | Pin
 No. | Type | Name and Function |
| :---: | :---: | :---: | :---: |
| ALo
 AL_{2}
 AL_{3}
 $A L_{4}$.
 Al_{5}
 A_{g} | $\begin{array}{\|l\|} \hline 8 \\ 8 \\ 10 \\ 12 \\ 14 \\ 18 \\ 18 \end{array}$ | | Addreaa Low: CPU addreas Inputs ured to generate memory row addrese. |
| AHO_{0}
 AH_{1}
 AH_{2}
 AH_{3}
 AH_{4}
 AH_{5}
 AH_{6} | $\begin{aligned} & \mathbf{5} \\ & 4 \\ & 3 \\ & 2 \\ & 1 \\ & 39 \\ & 38 \end{aligned}$ | $\left\lvert\, \begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}\right.$ | Addreas High: CPU address Inputs ured to generate memory column addresa. |
| $\begin{aligned} & B_{0} / A L_{7} \\ & B_{1} / O P_{1} / \\ & A_{7} \end{aligned}$ | $\begin{aligned} & 24 \\ & 25 \end{aligned}$ | 1 | Bank Select Inputs: Used to gate the appropriate RAS output for a memory cycle. $\mathbf{B}_{\boldsymbol{1}} / O P_{1}$ ODtion used to aelect the Advanced Read Mode. (Not available in 84K mode.) See Figure 5.
 When in 64K RAM Mode. pins 24 and 25 operate as the AL7 and AH7 addreas inputs. |
| PCS | 33 | 1 | Protected Chip Select: Used to enable the memory read and write Inputs. Once a cycle is started. it will not abort even it PCS goes inactive before cycle completion. |
| W | 31 | 1 | Memory Write Request. |
| RD/SI | 32 | 1 | Memory Road Request: $\$ 1$ functton used in Advanced Read mode selected by OP ; ($\mathbf{p i n} \mathbf{2 5}$). |
| REFRQ/
 ALE | 34 | 1 | External Refresh Requeat: ALE function used in Advanced Read mode. selected by OP 1 (pin 25). |
| | $\begin{aligned} & 7 \\ & 9 \\ & 11 \\ & 13 \\ & 15 \\ & 17 \\ & 10 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Output of tho Mulliplexer: There outputs are designed to drive the addresses of the Oynamtc RAM array. (Note that the $\overline{\mathrm{OUT}_{0}} \mathbf{0} 7 \mathrm{pins}$ do not require Inverters or drivers for proper 00 . eration.) |
| | 28 | 0 | Write Enable: Drives the Wnte Enable inputs of the Dynamic RAM array. |
| CAS | 27 | 0 | Column Address Strobe: This output is used to laten the Column Address into the Dynamtc RAM array |

| Symbol | Pln
 No. | Typo | Name and Function |
| :---: | :---: | :---: | :---: |
| AASO
 हAS;
 $\overline{\text { वAS }}_{2}{ }^{\prime}$
 ठUT?
 $_{\text {AAS }_{3} / B_{0}}^{0}$ | $\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 28 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 110 \end{aligned}$ | Row Addreaa Strobe: Used 10 laten the Row Address into the: bank of dynamic RAMs. select ed by the 8203 Bank Serect oins (BO. $\mathrm{B}_{1} / O P_{1}$) In 64K mode. only $\overline{\text { AAS }}_{g}$ and $\overline{\operatorname{AAS}}$, are avariable: pin 23 operates as तुग, and pin 28 operates as the $80 j$ bank select inout. |
| $\overline{\text { XACK }}$ | 29 | 0 | Transfor Acknowledge: This output is a strobe indicating vatid data durtng a read cycle $\boldsymbol{\alpha}$ । data written durtng a write cycie XACR can be used to latch vaiid data from the RAM array. |
| $\overline{S A C K}$ | 30 | 0 | System Acknowledge: This output indieates the beginning of I a memory access cycle. It eun be used as an advanced trans., fer acknowledge to eliminate: watt states. (Note. If a memory accesa request is made durtnga! retresh cycte. $\overline{\text { SACK is delayed }}$ until XACK in the memory act cess cycie). |
| $\begin{aligned} & X_{0} / O P_{2} \\ & X_{1} / C L K \end{aligned}$ | $\begin{aligned} & 36 \\ & 37 \end{aligned}$ | $\begin{aligned} & 1 / 0 \\ & 1 / 0 \end{aligned}$ | Oscillatop Inputs: These induts I are designed for a quartz crystall to control the frequency of the oscillator. If $\mathrm{X}_{\mathrm{O}} / \mathrm{OP}_{2}$ is shorted to pin $40(\mathrm{~V} \mathbf{C C})$ or if $\mathrm{X}_{\mathrm{O}} / \mathrm{OP}_{\mathbf{2}} 18$ connected to +12 V through 1 $1 \mathrm{~K} \Omega$ rasistop then $X_{1} /$ CLK becomes a $\pi /$ ingut for an external clock. (Note: Crystal modal for the 8203-1 and the 8203-3 only). |
| $16 \mathrm{~K} / \overline{64 \mathrm{~K}}$ | 35 | : | Mode Select: This Input selectı\| 18K mode (2117. 2118) or 64K mode (2164). Pins 23-28 change functton based on the mode of operation. |
| Vec | 40 | | Power Supply: +5 V . |
| GNO | 20 | | Ground. |

Functional Description

The 8203 provides a complete dynamic RAM controler for microprocessor systems as well as expätision memory boards. All of the necessary control signals are provided for 2164.2118 and 2117 dynamic RAMs.

The 8203 has two modes, one for 16K dynamic RAMs and one for 64 Ks . controlled by pin 35 .
2048×8 Organization
All Inputs snd Outputs Fully TTL Compatible Static Operation (No Clocks, No Refresh)

- Performance Ranges:

| | ACCESS TIME | CYCLE TIME |
| :---: | :---: | :---: |
| | (MAXI | (MIN) |
| TMS2716-30 | 300 ns | 300 ns |
| TMS2716-45 | 450 ns | 450 ns |

- 3-State Outputs for OR-Ties
- N-Channel Silicon-Gate Technology
- 8-Bit Output for Use in MicroprocessorBased Systems
- Low Power. . . 315 mW (Typical)
description
The TMS2716 is an ultra-violet light-erasable, electrically programmable read-only memory. It has 16.384 bits organized as 2048 words of 8 -bit length. The device is fabricated using N -channel silicon-gate technology for high-speed and simple interface with MOS and bipolar circuits. All inputs including program data inputsl can be driven by Series 74 circuits without the use of external pull-up resistors and each output can drive one Series 74 or 74LS TTL circuit without external resistors. The TMS2716 guarantees 250 mV dc noise immunity in the low stare. Data outputs are threestate for OR-tying multiple devices on a common bus. The TMS2716 is plug-in compatible with the TMS2708 and the TMS27LO8. Pin compatible mask programmed ROMs are available for large volume requirements.
This EPROM is designed for high-density fixed-memory applications where fast turn arounds and/or program changes are required. It is supplied in a 24 -pin dual-in-line cerpak (JL suffix) package designed for insertion in mounting-hole rows on $600-\mathrm{mil}(15,2 \mathrm{~mm})$ centers. It is designed for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
operation (read model

address (AO-A10)

The address-valid interval determines the device cycle time. The 11 -bit positivelogic address is decoded on-chip to select one of 2048 words of 8 -bit length in the memory array. AO is the least-significant bit and A 10 most-significant bit of the word address.
chip select, program [$\overline{\mathbf{S}}$ (PGM)]
When the chip select is low, all eight outputs are enabled and the eight-bit addressed word can be read. When the chip select is high. all eight outputs are in a high-impedance state.
program
In the program mode. the chip select feature does not function as pin 18 inputs only the program pulse. The program

data out (01.08)
The chip must be selected before the eight-bit output word can be read. Data will remain valid until the address is changed or the chip is deselected. When deselected. the three-state outputs are in a high-impedance state. The outputs will drive TTL circuits without external components.

8205
 HIGH SPEED 1 OUT OF 8 BINARY DECODER

- 110 Port or Memory Selector
- Simple Expansion - Enable Inputs
- High Speed Schottky Bipolar Technology - 18 ns Max Delay
- Directly Compatible with TTL Logic Circuits
- Low Input Load Current - 0.25 mA Max, 116 Standard TTL Input Load
- Minimum Line Reflection - Low Voltage Diode Input Clamp
- Outputs Sink 10 mA Min
- 16-Pin Dual In-Line Ceramic or Plastic Package

Abstract

The Intel ${ }^{9} 8205$ decoder can be used for expansion of systems which utilize inout ports. output ports, and memory components with active low chio select input When the 8205 is enabled, one of its 8 outouts goes "low ', Ihus a single row of a memory system is selected. The 3 -chip enable inputs on the 8205 allow easy system expansion For very large systems, 8205 decoders can be cascaded such that each decoder can drive 8 other decoders for arbitrary memory expansions.

The 8205 is packaged in a standard 16-pin dual in-line package. and its performance is specilied over the temperature range of $\mathbf{O}^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. ambient. The use of Schottky barrier diode clamped transistors to ottain fast switching speeds results in higher performance than equivalent devices made with a gold diffussion process.

PIN CONFIGURATION

PIN NAMES

| $A_{0} A_{2}$ | AODRESS INPUTS |
| :--- | :--- |
| $\bar{E}_{1} E_{j}$ | ENABLE INPUTS |
| $\sigma_{\sigma} \sigma_{1}$ | OECODEOPOUTPUTS |

LOGIC SYMBOL

8155/8156/8155-2/8156-2
2048 BII STATIC MOS RAM WITH I/O PORTS AND TIMER

256 Word x 8 Bits
Single +5 V Power Supply
Completely Static Operation
- Internal Address Latch
2 Programmable 8 Bit $1 / O$ Ports

. 1 Programmable 6-Bit I/O Port

- Programmable 14-Bit Binary Counter1 Timer
- Compatible with 8085A and 8088 CPU
8 Multiplexed Address and Data Bus
- 40 Pin DIP

The 8155 and 89156 are RAM and I/O chips to be used in the 8085A and 8088 microprocessor systems. The RAM portion is designed with 2048 static cells organized as 256×8. They have a maximum access time of 400 ns lo permit use with no wat states in 8085A CPU. The $\mathbf{8 1 5 5 - 2}$ and 8156 -2 have maximum access times of 330 ns for use with the 8085A-2 and the full speed 5 MHz 8088 CPU.

The I/O portion consisis of three general purpose $1 / O$ ports. One of the three ports can be programmed to be status pins, thus allowing the other two ports to operate in handshake mode.

A 14-bit programmable counter/timer is jalso included on chip to provide either a square wave or terminal count pulse for the CPU system depending on timer mode.

81551'8156 PIN FUNCTIONS

| Symbol | Eunction | Symbol | Function |
| :---: | :---: | :---: | :---: |
| RESET 'inoul | Pulse provided by the 8085A to iniPlalize the system connect to 8085A fESET OUT indut hign on thistine resets the chip and initializes the Ihree 1:O sorts to inout mode The widn of RESET Duise snould ypically be two 8085A clock cycle times. | ALE indul
 $10 / \bar{M}$ inout | Address Latch Énable: This control signal latches ooth the address on the $A D_{0-7}$ lines and the stare of the Cho Enable and $10 / \bar{M}$. into the chio at the falling edge of ALE.
 Selects memory if low and 1/0 and command/status registers if hign |
| $A D_{n-:}$ 'input | 3 -stale Acoress/Data lines that Interface with the CPU lower 8-bil AddressiData Bus. The 8 -bit address is latened into the address laten inside the 3155156 on the falling eoge of ALE The adaress can be etther for the memorv section or the $/ / O$ section dedenaing on the $10 / \overline{\mathrm{M}}$ Input. The 8 -bil data is etther written into the enio or read trom the chip. depending on the $\overline{W R}$ or $\overline{R D}$ indut signal. | PAO-i 81 ingut/output
 PSo-;i8, inout/output | These 8 ons are general ouroose i/O pins. The in cut direction is selectea by programming the command register
 These 8 oins are general ouroose l/ O pins The invout direction is selected by programming the command register |
| | | $\mathrm{PC}_{0-5 \cdot 6}$ input/output; | These 6 pins can function as etther inout port. oulput dort, or as control |
| CE or $\overline{C E}$ 'input' | Chio Enable: On the 8155. this oin is CE and is ACTIVE LOW. On the 8156. this pin is CE and is ACTIVE HIGH | | signals for PA and PE Programming is done through the command register When PC_{0-5} are used as control |
| $\overline{R D}$ indut | Read control. input low on this line with the Chio Enable artive enables and $A D_{0-7}$ buffers. If $10 / \bar{M}$ oin is low. the RAM content will be read out to the AD bus Otherwise the content of the selected $/ / \mathrm{O}$ port or command/ status registers will be read to the AD bus. | | signais, they will provide the following:
 $\mathrm{PC}_{0}-\mathrm{A}$ INTR Port A interrud:
 $P C_{1}-A B F$ Port A Buffer Full,
 $\mathrm{PC}_{2}-\overline{\text { ASTE }}$ Por: A Strobe
 PC3-EINTR Port 9 Interruot
 PC4 $-\overline{B E F}$ Port E Buffer Full
 PC5-E STB: Port B Strooe. |
| $\overline{W R}$ inout | Write control: Indut low on this line with the Chio Enable active causes the data on the Address/Data bus to be written to the RAM or I/Oports and command/status register depending on $10 / \bar{M}$ | TIMER IN inout) | Input to the counter-timer |
| | | TIMER OUT coutput | Timer outout. This output can be etther a square wave or a oulse depencing on the timer mode. |
| | | Vcc | +5 volt supply |
| | | Vss | Gro ind Reference. |

- Previously Called TMS4045/TMS40L45
- 1024 X 4 Organization
- Single +5-V Supply
- High Donsity $300-\mathrm{mil}$ (7.62 mmi 18-Pin Package
- Fully Static Operation iNo Clocks. No Refresh. No Timing Strobel
- 4 Performance Ranges:

ACCESS READ OR WRITE
TIME CYCLE
(MAX) (MINI
TMS2114.15. TMS2114L-15 $150 \mathrm{~ns} \quad 150 \mathrm{~ns}$ TMS2114-20. TMS2114L-20 200 ns 200 ns TMS2114-25. TMS2114L-25 250 ns 250 ns TMS2114-45. TMS2114L-45 450 ns 450 ns

- $400-\mathrm{mV}$ Guaranteed DC Nolse Immunity with Standard TTL Loads - No Pull-up Resistors Required
- Common I/O Capability
- 3-State Outputs and Chip Select Control for OR-Tie Capability
- Fan-Out to 2 Series 74. 1 Series 74S. or 8 Series 74LS TTL Loads
- Low Power Dissipation

MAX
(OPERATING)
TMS2114 550 mW
TMS2114L 330 mW

TMS2114. TMS2114L... N PACKAGE
(TOP VIEWI

| PIN NOMENCLATURE | |
| :---: | :---: |
| A0 ${ }^{-1} \mathrm{~A} 9$ | Addresses |
| 001 - DQ4 | Sata incoata Oul |
| S | Chio Select |
| $V_{\text {ce }}$ | +6-V Sudily |
| Vss W | Ground Write Enabla |

dascriptlon

This series of static random-accessmemories is organized as 1024 words of 4 bits each. Static design results in reducing overhead costs by etimination of refresh-clocking circuitry and by simplification of timing reavirements. Because chis series is fully static. chip select may be tied low to further simplify system timing. Output data is aiways available during a reed.cycle.

All inputs and outputs are fully compatible with Series 74. $\mathbf{7 4 S}$ or 74LS TTL. No pull-up resistors are required. This 4K Siatic RAM series is manufactured using TI's reliable N -channel silicon-gate technology to optimize the cost/ performance relationship.

The TMS2114/2114L series is offered In the 18-pin duel-in-line plastic (NL suffix) package designed for insertion in mounting-hole rows on $300-\mathrm{mrl} 17.62 \mathrm{~mm} /$ centers. The senes is guaranteed for operation from $0^{\circ} \mathrm{C} 1070^{\circ} \mathrm{Cm}$.

- 16,384 X 1 Organization
- 10\% Tolerance on All Supplies

All Inpurs Including Clocks TTL-Compatibie
Unlatched Three-State Fully TTL-Compatible Output

- 3 Performance Ranges:

| | ACCESS | ACCESS | READ | READ. |
| :---: | :---: | :---: | :---: | :---: |
| | TIME | TIME | OR | MODIFY- |
| | ROW | COLUMN | WRITE | WRITEr |
| | ADDRESS ADDRESS | CYCLE | CYCLE | |
| | (MAX) | (MAX) | (MINI | (MIN) |
| TMS4116-15 | 150 ns | 100 ns | $\mathbf{3 7 5} \mathrm{~ns}$ | $\mathbf{3 7 5} \mathrm{~ns}$ |
| TMS4116-20 | 200 ns | 135 ns | 375 ns | 375 ns |
| TMS4116-25 | 250 ns | 165 ns | 410 ns | 515 ns |

- Page-Mode Operation for Faster Access Time
- Common I/O Capability with "Early Write" Feature
- Low-Power Dissipation
- Operating 462 mW (Max)
- Standby 20 mW (Max)
- 1-T Cell Design, N-Channel Silicon-Gate Technology
- 16 - Pin 300-Mil (7.62 mm) Package Configuration

description

The TMS4116 series is composed of monolithic high-speed dynamic 16,384-bit MOS random-access memories organized as 16,384 one-bit words, and employs single-transistor storage cells and N -channel silicon-gate technology.
All inputs and outputs are compatible with Series 74 TTL circuits including clocks: Row Address Strobe $\overline{\operatorname{RAS}}$ (or $\overline{\mathrm{R}}$) and Column Address Strobe $\overline{\mathrm{CAS}}$ (or $\overline{\mathrm{C}}$). All address lines (AO through A6) and data in (D) are latched on chip to simplify system design. Data out (Q) is unlatched to allow greater system flexibility.

Typical power dissipation is less than 350 milliwatts active and 6 milliwatts during standby (VCC is not required during standby operation). To retain data. only 10 milliwatts average power is required which includes the power consumed to refresh the contents of the memory.

The TMS4116 series is offered in a 16 -pin dual-in-line plastic (NL suffix) package and is guaranteed for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Package is designed for insertion in mounting-hole rows on $300-\mathrm{mil}(7.62 \mathrm{~mm} /$ centers.

- 65.536×1 Organization
- Singie $+5-\mathrm{V}$ Supply (10% Tolerance)
- JEDEC Standardized Pin-Out in Dual-In-Line Packages
- Upward Piñ Compatible with TMS4116 (16K Dynamic RAM)
- First Military Version of 64K DRAM
- Available Temperature Ranges:
- M.... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- S... $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
- $\mathrm{E} . . .-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- L. . . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Long Refresh Period... 4 milliseconds
- Low Refresh Overhead Time ... As Low As 1.8% of Total Refresh Period
- All Inputs, Outputs. Clocks Fully TLL Compatible
- 3-State Unlatched Output
- Common I/O Capability with "Early Write" Feature
- Page-Mode Operation for Faster Access
- Low Power Dissipation
- Operating ... 125 mW (TYP)
- Standby . . . 17.5 mW (TYP)
- Performance Ranges (S. E, L Temperature

| Ranges): | ACCESS | ACCESS | READ | head |
| :---: | :---: | :---: | :---: | :---: |
| | time | time | OR | MODIFY- |
| | ROW | COLUMN | WRITE | WRITE |
| | ADDRESS | ADDRESS | CYCLE | CYCLE |
| | (MAX) | (MAX) | (MINI | IMINI |
| -4164-12 | 120 ns - | 70 ns | 230 ns | 260 ns |
| '4164-15 | 150 ns | 85 ns | 260 ns | 285 ns |
| '4164-20 | 200 ns | 135 ns | 326 ns | 345 ns |

- New SMOS (Scaied-MOS) N-Channel Technology

description

The '4164 is a high-speed. 65,536-bit, dynamic random-access memory, organized as 65.536 words of one bit each. It employs state-of-the-art SMOS (scaled MOS) N -channel double-level poiysilicon gate technology for very high performance combined with low cost and improved reliability.

TMS4164... NL PACKAGE
 SMJ4164...JD PACKAGE

(TOP VIEW)
NE TIUTD $\square_{\frac{v_{S S}}{C A S}}$

SMU4164... FE PACKAGE
(TOP VIEW)

| | PIN NOMENCLATURE |
| :--- | :--- |
| AO-A7 | Address Inputs |
| $\overline{\text { CAS }}$ | Column Address Strobe |
| D | Data-In \quad |
| NC | No-Connection |
| \mathbf{a} | Data-Out |
| $\overline{\text { RAS }}$ | Row Address Strobe |
| $V D D$ | $+5-V$ Supply |
| $V_{S S}$ | Ground |
| \bar{W} | Write Enable |

8212
 8-BIT INPUT/OUTPUT PORT

- Fully Parallel 8-Bit Data Register and Buffer
- Service Request Flip-Flop for Interrupt Generation
- Low Input Load Current - .25mA Max.
- Three State Outputs
- Outputs Sink 15 mA
- 3.65V Output High Voltage for Direct Interface to 8008, 8080A, or 8085A CPU
- Asynchronous Register Clear
- Replaces Buffers. Latches and Multiplexers in Microcomputer Systems
- Reduces System Package Count

The $82 i 2$ input/outout port consists of an 8 -bit latch with 3-state outout buffers along with control and device selection logic Also included is a service request flip-flop for the generation and control of interrudts to the microprocessor The device is mulimode in nature it can be used to implement latches. gated buffers or multiolexers Thus. all of the principal derioneral and input/output functions of a microcomputer system can be implemented with this device

FUNCTIONAL DESCRIPTION

Data Latch

The 8 thp-flops that make up the data laten are of a "D" type oesign The output. Q. of the tho-flop will follow the data input D. while the clock input C : is mign. Latcning will occur wnen the clock C. returns low.

The latched data is cleared by an asynchronous rese

Output Bufter

The outputs of the data laten, Q iare connected to 3-state. non-inverting output bufters. These butfers have a common control line : ENi: this control line either enables the duffer to transmit the data from the outputs of the data laten O_{1} or disadies the butfer, forcing the output into a hign impedance state. (3-state)
The nign-impedance state allows the designer to connect the 8212 directly onto the microprocessor bi-directional dala ous.

Control Logic

The 8212 has control inouts $\overline{\mathrm{DS} 1 .}$ DS2. MD and STB. These inputs are used to control devica selection, data latcning, output buffer state and service request flip-flop.

DS1, DS2 (Device Select)

These 2 inputs are used for device selection. When $\overline{D S 1}$ is low and DS2 is nigh $\overline{\mathrm{DS} 1}$ - DS2: the device is selected. In the selected state the output buffer is enabled and the service request flip-flop $S R$, is asynchronously set.

MD (Mode)

This input is used to control the state of the output buffer and to determine the source of the clock input (C, to the data laten.
When MD is hign output model the output buffers are enabled and the source of clock, C; to the data laten is from the device selection logic ($\overline{\mathrm{DS} 1} \cdot \mathrm{DS} 2$).
When MO is low, input modet the output ouffer state is determined by the device selection togic ($\overline{0 S 1}$. OS2) and the source of clock; C; to the data latch is the STB Strode, input.

STB (Strobe)

This input is used as the ciock C : to the data latch for the indut mode $M D=0$) and to syncnronously reset the service request llip-llop , SA.
Note that the SR flip-flop is negative edge triggered.

Service Request Flip-Flop

The $S R$) flip-lloo is used to generate and control interrupts in microcomputer systems. it is asyncnionously set by the CLR indut lactive low: When the : SR : thoflop is set it is in the non-interrupting state.
The outout of the |SR| llid-llop, O, is connecied to an inverting inout of a "NOR" gate. The other input to the "NOR" gate is non-inverting and is connected to the device selection logic $\overline{D S 1}$. DS21. The output of the "NOR" gate : $\overline{\operatorname{NNT}}$, is active low interrupting state for connection to active low input prionity generaling circuits.

BIBILOGRAPHY

Books

Intel Memory Component Handbook 1983.
MCS-80185 TM Family User Manual Oct 1979.
Sedra Smith, Micro-Electronic Circuit, Holt Rinehart and Winston 1982.

Articles

F.H Chen. "Design and Implementation for A General Purpose IC Tester Based on A Microcomputer" Chen Kung University , 1983, p. 1

John Knaizuk, J R., And C.R.P Hartmann " An Algorithm for Testing Random Access Memory ", IEEE Transaction on Computer, April 1977, pp 414-416

Don Kinz, " A Memory Pattern Sensitivity Test ", Byte, Oct 1978, PP 12-16

Larry Malakoff, "Dynamic Memory: Making AnIntellengent Decision ", Byte, p 142, Feb 1981
H.R Pinnick Jr. " Testing Your Memory Using the Barber-pole Algorithm ", Byte, Dec 1982, pp 414-444

[^0]: comonation 189

