8085 MICROPROCESSOR BASED

RANDOM ACCESS MEMORY CHECKER

by

Jiinwei Hung

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in Engineering

in the

Electrical Engineering

Program

<u>3/8/86</u> Date -Prof S. J. Skarote Advisor

Sally M. b 11....h. 14 1986 Graduate School

YOUNGSTOWN STATE UNIVERSITY

March, 1986

ABSTRACT

8085 MICROPROCESSOR BASED RANDOM ACCESS MEMORY CHECKER

Jiinwei Hung

Master of Science in Engineering Youngstown State University , 1986

Three stand-alone microcomputer 8085-based memory checkers, which include (1) SRAM checker, (2) 16k*1 DRAM checker and (3) 64k*1 DRAM checker, were designed and built sucessfully with the aid of a microcomputer development system. These boards can be implemented to test additional memory chips using the design technique presented.

The software system is composed of two parts, one for the pattern test and the other for the sensitivity test. The system is able to detect hard memory errors, soft_ memory errors and bit-to-bit interference within a single byte and within bytes stored in memory. The analysis of typical software is discussed and the 8085 assembly testing programs are included.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Professor Samuel J. Skarote for his constant guidance and assistance. Thank you!

My deepest respect goes to my parents, who encouraged and supported me to come to Y.S.U.

Finally I would like to express my appreciation to those people working in the school electronic shop for their assistance.

TABLE OF CONTENTS

-

	PAGE		
ABSTRACT	ii		
ACKNOWLEDGEMENTS			
TABLE OF CONTENTS	iv		
LIST OF SYMBOLS	vii		
LIST OF FIGURES			
LIST OF TABLES	х		
CHAPTER			
1. INTRODUCTION	1		
1.1 Introduction	1		
1.2 Semiconductor Test	1		
1.3 Automatic Testing Equipment	2		
1.4 Memory Test With The Microcomputer	3		
2. RANDOM ACCESS MEMORY OVERVIEW	6		
2.1 What is RAM	6		
2.2 RAM Type	6	_	
2.2.1 SRAM	7		
2.2.2 DRAM	8		
2.2.3 iRAM	9		
2.2.4 Comparision of DRAM and SRAM	9		
3. MEMORY FAILURE ANALYSIS.	12		
3.1 Introduction	12		
3.2 Error Classification	12		
3.2.1 Hard Memory Error	12		
3.2.2 Soft Memory Error	13		

4. TESTING ALGORITHM	15			
4.1 Algorithm Research	15			
4.1.1 The First Method	15			
4.1.2 The Second Method	15			
4.1.3 The Third Method	16			
4.1.4 The Fourth Method	16			
4.1.5 The Fifth Method	18			
4.1.6 The Sixth Method	18			
4.2 Algorithm Used in The RAM Checkers	20			
5. HARDWARE DESIGN AND ANALYSIS	22			
5.1 Static Memory Checker	22			
5.1.1 Hardware of The Static Memory Checker	22			
5.1.2 Testing Chips in The SRAM Checker	25			
5.1.3 Future Expansion	25			
5.2 16k DRAM Checker 27				
5.2.1 Hardware Description	27			
5.2.2 Testing Chips in The 16k DRAM Checker	30 _			
5.2.3 Future Expansion	30			
5.3 64k DRAM Checker 31				
5.3.1 Hardware Analysis	34			
5.3.2 Testing Chips in The 64k DRAM Checker	35			
5.3.3 Future Expansion	36			
6. SOFTWARE DESIGN 37				
6.1 Testing Program for The Static RAM Checker. 37				
6.2 Testing Program for The 16k DRAM Checker 44				
6.3 Testing Program for The 64k DRAM Checker 47				

7∎ SUN	MMARY	50
7.1 1	Performance Evaluation of The RAM Checkers	50
7.2 (Conclusion	51
APPENDIX 2	A. TESTING PROGRAM LISTING FOR SRAMS	53
APPENDIX H	B. TESTING PROGRAM LISTING FOR 16K DRAM	62
APPENDIX (C. TESTING PROGRAM LISTING FOR 64K DRAM	66
APPENDIX I	D. SPECIFICATION OF CHIPS USED IN THE	
	CHECKERS	71
BIBLIOGRAF	РНҮ	89

LIST OF SYMBOLS

SYMBOL	DEFINITION		
A8-A15	Address Bus 8-15		
ADO-AD7	Address & Data Bus 0-7		
ATE	Automatic Testing Equipment		
BJT	Bipolar Junction Transistor		
CMOS	Complementary Metal Oxide Semiconductor		
CPU	Central Processing Unit		
DRAM	Dynamic Random Access Memory		
ECC	Error Correction Code		
ECL	Emitter-Coupled Logic		
IC	Integrated Circuit		
l ² L	Integrated Injection Logic		
1/0	Input or Output		
iRAM	integrated Random Access Memory		
MDS	Microcomputer Development System		
MOS	Metal Oxide Semiconductor		
MHz	10 ⁶ Hertz (megahertz)		
mW	10 ⁽⁻³⁾ Watt (Milliwatt)		
NMOS	N Type MOS		
nS	10 ⁽⁻⁹⁾ Second (nanosecond)		
PCB	Printed Circuit Board		
RAM	Random Access Memory		
ROM	Read Only Memory		
SRAM	Static Random Access Memory		
SSI	Small Scale Integration		

- TTL Transistor Transistor Logic
- VLSI Very Large Scale Integration

LIST OF FIGURES

FIGURE		PAGE
1.	Memory Organization	7
2.	CMOS Memory Cell	8
3.	DRAM Cell	9
4.	2117 Failure Distrubution	13
5.	Combined Distribution of Failure Types	14
6.	Static RAM Checker	23
7.	SRAM Tester Schematic	24
8.	3205 Output Analysis	26
9.	16k DRAM Checker	28
10.	16k DRAM Tester Schematic	29
11.	Data Latch Method	31
12.	64k DRAM Checker	32
13.	64k DRAM Tester Schematic	33
14.	Overlap Structure	34
15.	SRAM Testing Program Flowchart	38
16.	16k DRAM Testing Program Flowchart	44
17.	64k DRAM Testing Program Flowchart	47

LIST OF TABLES

TABLE	PAGE
1. Testing Pattern	
2. Execution Time for	Each Test
3. 2114 Family	
4. 3205 Address Assign	nment
5. 4116 Family	
6. 8203 Bank Selection	n
7. 8203 Active RAS Add	dress Assignment
8. 4164 Family	

CHAPTER 1

INTRODUCTION

1.1 Introduction

Have you ever had a computer program which ran sucessfully for a long time only to have it suddenly fail? Or are you getting inconsistent results from the expected One of the reasons is probably only because one data? bit out of several hundred thousands erred. A computer system, whether a large computer or a microcomputer, requires a large memory to store data and program instructions. Memory does fail, thus, testing memory becomes important. With the rapid growth of the computer industry in the recent years, the use of semiconductor devices continuously grows at an increasing rate. On theother hand, quality assurance of integrated circuit is being emphasized more each day. However, there also exists thepossibility of purchasing a bad memory chip. Once we have doubt about a chip, it wouldn't be too difficult for a qualified person, who is very familiar with the computer system, to find the defective memory chip if the chip is used as the read/write memory in the computer system. But for the general technician, a random access memory checker is indispensable.

1.2 Semiconductor Test

In general, the sophisticated tests applying to a

semiconductor device include three parts: DC test, AC test, and FUNCTION test.¹

(1) DC test: Electrical DC parametric test verifies specific parameters in terms of voltage or current. This test measures the resulting voltage by applying current to the devices, or measures the resulting current by applying voltages to the devices.

(2) AC test: The AC parametric test verifies the time-related parameters specified in terms of seconds. The basic characteristic of AC parametric test is the measurement of the timing relationship at which devices operate such as rise time, fall time, propagation time, delay time, set-up time, release time and access time.

(3) FUNCTION test: This test verifies that the devices perform functionally correct, which is the best test required for the semiconductor.

1.3 Automatic Testing Equipment¹ (ATE)

ATE is a consequence of computers being interfaced with digitally-controlled stimulus and measurement instruments. ATE dramatically improves the measurement accuracy of test. It reduces the human error in testing and enhances confidence in equipment performance and failure diagnosis. It simplifies the test work and can do mass testing within a short time. ATE is divided into three

¹F.H. Chen. "Design and Implementation for A General Purpose IC Tester Based on A Microcomputer" Chen Kung University ,1983 , p.1

classes: benchtop, dedicated and general purpose.

1. Benchtop Tester: Benchtop testers usually have limited test capability and are small in size. Normally, they are controlled by a hardware designed decoder or controller. The characteristics of a benchtop tester include its low cost and manual or fixed programs with go/no-go test that may or may not have data readout. Benchtop testers are not easy to maintain, although they are easy to use.

2. Dedicated Tester: The dedicated tester is specified for one device family such as memories. Most dedicated testers are computer controlled.

3. General Purpose Tester: The general purpose tester is a flexible configuration to accommodate almost any device type. Sophisticated computer-controlled hardware and software are also mandatory in this system. This tester tests almost everything from VLSI to SSI. The basic components of this general purpose tester include a computer controller, a stimulus and response unit, and a device-undertest interface.

Generally speaking, a general purpose tester is powerful for testing IC's, but they are normally controlled by a mainframe or a minicomputer. The price of this equipment is high and the equipment is hard to maintain.

1.4 Memory Test With The Microcomputer

The memory chip must be tested to confirm both the uniqueness of the address and the absence of the bit-to-bit interference (a bit may affect the value of another bit on the same chip). Based on this, the most perfect test is to check 2^{16324} combinations for a 2k by 8 bit memory chip. It could take a lot of time if each possible combination were tested separately even when using a computer. A large amount of research has been done on this in order to find other testing algorithms which could shorten the testing time (Refer to chapter IV).

The rapid rise in the use of the microcomputer can be explained by the many available applications for the relatively low cost of the microcomputer hardware. This makes many applications economically feasible. Manv instruments that have been controlled by a main frame or minicomputer before are now being replaced by the microcomputer where high accuracy, speed and complexity are not strictly in demand. Traditionally, memory chips are checked by a universal testing machine which costs several hundred thousand dollars. The cost prohibits a microcomputer owner from acquiring a universal testing machine. Since the microcomputer has become a powerful tool for equipment or instrumentation, it is used along with its well structured support chips (such as ROM, RAM) within the design of a small, low cost and user-friendly computerized memory tester. The cost of incorporating a 8085 microcomputer in a checker was at the time of investigation only forty dollars. Because of their simplicity, these memory testers can quickly perform a functional test on RAMs.

Chapter 2 describes the basic memory cell organization and three different types of memory. This

the same chip). Based on this, the most perfect test is to check 2^{16324} combinations for a 2k by 8 bit memory chip. It could take a lot of time if each possible combination were tested separately even when using a computer. A large amount of research has been done on this in order to find other testing algorithms which could shorten the testing time (Refer to chapter IV).

The rapid rise in the use of the microcomputer can be explained by the many available applications for the relatively low cost of the microcomputer hardware. This makes many applications economically feasible. Many instruments that have been controlled by a main frame or minicomputer before are now being replaced by the microcomputer where high accuracy, speed and complexity are not strictly in demand. Traditionally, memory chips are checked by a universal testing machine which costs several hundred thousand dollars. The cost prohibits a microcomputer owner from acquiring a universal testing machine. Since the microcomputer has become a powerful tool for equipment or instrumentation, it is used along with its well structured support chips {such as ROM, RAM) within the design of a small, low cost and user-friendly computerized memory tester. The cost of incorporating a 8085 microcomputer in a checker was at the time of investigation only forty dollars. Because of their simplicity, these memory testers can quickly perform a functional test on RAMs.

Chapter 2 describes the basic memory cell organization and three different types of memory. This

CHAPTER 2

RANDOM ACCESS MEMORY OVERVIEW

2.1 What is RAM?

RAM stands for random access memory which may use MOS or BJT devices in either SRAM or DRAM. BJT devices have a better performance at high speeds than the MOS RAMs because they are manufactured using TTL, ECL, or I^2L technology. Modern MOS RAMs are manufactured using NMOS or CMOS technology. CMOS is especially useful in applications which require low power consumption. A random access memory is one in which the time required for storing (writing) and retrieving (reading) information is independent of the physical location (within the memory) of the stored data. Figure 1 shows a conceptual organization of a memory constituting W words of B bits, each requiring an address of n bits ($2^n=W$).

2.2 RAM Type

The two-basic RAM types that have evolved since 1970 are the DRAM and SRAM. DRAM stands for dynamic RAM, and SRAM stands for static RAM. There is another memory called Integrated RAM or iRAM which offers the advantages of the SRAM's design simplicity and the DRAM's high packing capacity.2

²Intel Memory Component Handbook 1983, pp 1-1, 1-2

chapter gives the reader background information on the memory chip. Chapter 3 describes the failure analysis of the memory chips to help the reader have a basic understanding of memory failure. Chapter 4 contains the software testing algorithms which have been developed and the testing methods used for testing of the RAMs. Chapter 5 contains the circuitry of the RAM checkers and the procedures to extend the capability to test additional RAM chips. Chapter 6 contains the software system used in the RAM checkers, and finally, the summary of this thesis is presented in chapter 7.

2.2.1 SRAM

A static RAM device uses a flip-flop circuit for each bit. Data stored in the flip-flop circuit are retained until they are altered by writing new data in that location or when electric power is lost. More recently, considerable progress has been made in the development of the high speed, low power, high density static MCS RAM. The current stateof-the-art in commercially available static MGS RAM chip is represented by the IMS-1400 manufactured by Inmos. This is a 16k memory chip featuring 45 nS access time and a maximum power dissipation of 660 mW when in operation and 110 mW when in the standby mode.³

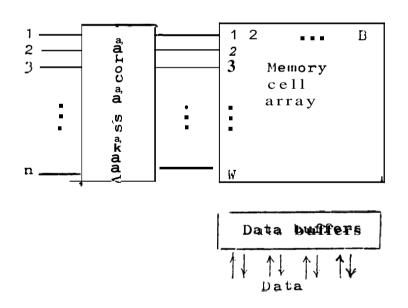


FIGURE 1. Memory Crganization

³Sedral Smith, Micro-Electronic Circuit, Holt Rinehart and Winston, 1982, p.763 SRAM requires relatively large silicon areas because it is composed of 6-8 MOS transistors, which limits the chip size of the memory. Figure 2 shows a basic cell of the CMOS memory.

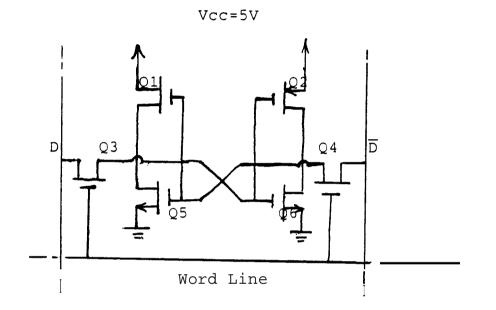


FIGURE 2. CMOS Memory Cell

2.2.2 DRAM

A major breakthrough in the development of the RAM technology was the invention of the one-transistor memory called DRAM, which is noted for its high capacity, moderate speed and low power consumption. This device uses a capacitor-like element and a driving transistor for each bit.. Since the charge on the capacitor decays with time, it requires a periodic refresh signal to maintain the data storage. Traditionally, the refresh circuit is built on the PCB on which the DRAMs are installed. The computer is prohibited from doing a read/write during the refreshing period. Figure 3 shows the structure of a DRAM cell.

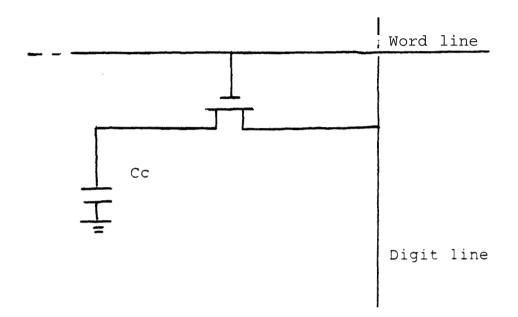


FIGURE 3. DRAM Cell

2.2.3 iRAM

Integrated RAM, which integrates a dynamic RAM and its control and refresh circuitry on one substrate, has the characteristics of a DRAM, but looks like a SRAM.

2.2.4 Comparison of DRAM and SRAM

Dynamic memories are notoriously difficult to work with because of the refresh process which may cause timing problems. Although SRAM is much easier to use than DRAM, attention must be given to the size and cost.

Before considering iRAM, SRAM is a good choice for

the designer who builds boards smaller than 8k bytes because the high price is offset by the dynamic control circuitry. Cn the other hand, for building boards larger than 64k bytes, DRAM is preferred because power consideration and package density begin to take precedence over circuit complexity.

When comparing these two types of memory, there are three major advantages of a DRAM which become apparent.

1. The density of a DRAM is much higher than the SRAM's. That is why DRAM boards contain more memory chips than the SRAM boards even with the supporting control circuitry that the DRAM board requires.

2. A dynamic RAM has less power dissipation. This reduces not only the amount of heat generated but also the current requirements for the power source. Typically, a 64k. type dynamic memory board dissipates approximately 8 watts compared to 50 watts for the same size of memory of the static memory board. The decrease in power dissipation can make a big difference in the reliability of the entire system.

3. The third advantage of a DRAM is its low cost because of the high density of memory per chip.

In the comparison of these two memories, dynamic memories have slower data-access time (although they are more than fast enough for the average microprocessor). There is_ still one aspect that could make the SRAM a better choice. That is, not all types of direct memory access controllers will conveniently interface with all types of dynamic memory boards. 4

⁴ Larry Malakoff, "Dynamic Memory: Making An Intelligence Decision" Byte, Feb 1981, p.142

CHAPTER 3

MEMORY FAILURE ANALYSIS

3.1 Introduction

Faulty memory is a very difficult problem to detect. Most distributers of memory board kits supply a simple test designed to detect some errors. These tests are ineffective in detecting a certain type of failure such as pattern sensitivity.

A number of methods are applied to calculate the reliability of a model memory system. Intel developed a chip 8206/8206-2 using ECC⁵ which can correct a single bit failure and detect double bit errors. Studying memory failure analysis is fundamental to any new development in order to evolve other good algorithms and chips to prevent the memory defect or even to correct it without the user's awareness.

3.2 Error Classification.

Normally, the memory errors are classified into two categories, hard memory errors and soft memory errors.

3.2.1 Hard Memory Error

There are two types of hard memory errors, struct-at-0, struct-at-1, which are permanent errors such as shorts, open leads, micro-cracks or other instrinsic flaws. They-

 5 Intel Memory Component Handbook 1983, pp 3-164, 3-179.

are classed as single cell failures, row failures, column failures, combined row failures, half-chip failures and full chip failures. FIGURE 4' shows the failure distribution of a 2117 RAM chip.

Combined Hard Failures 0.027% / 1000 hrs

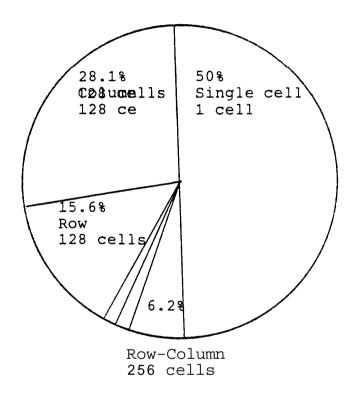
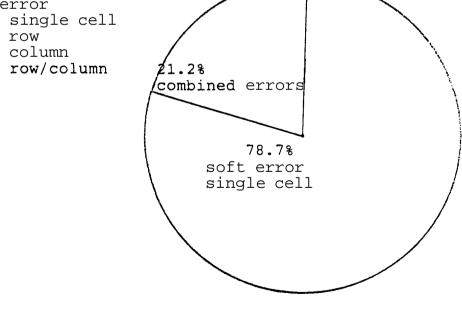
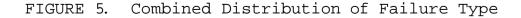


FIGURE 4. 2117 Failure Distribution

3.2.2 Soft Memory Error


A soft memory error occurs when the current state of a dynamic memory bit is changed by ionizing radiation from the plastic or ceramic integrated circuit package. In_ contrast to a hard memory error, a soft memory error is


⁵Ibid., pp 3-164, 3-179

characterized by being a random, non-recurring, nondestructive single cell error. A soft error can also be the result of a timing problem, or a refresh problem when using dynamic memory. Bit-to-bit interference could be caused by a soft memory error. Sometimes it is incorrect for the first time read out, but correct for the second time read This type of error is associated with the system level out. problem and the rate of failure is hard to quantify; in any event it is assumed to be very small. FIGURE 5⁵ shows the combined distribution of failure types.

> Soft Error Single Cell Rate- 0.1% Per 1000 hrs Hard Error Combined Rate- 0.027% Per 1000 hrs Total 0.127% Per 1000 hrs =

Hard error 50.0% single cell 15.6% row 28.1% column 6.2% row/column

⁵Ibid., pp3-164, 3-179

CHAPTER 4

TESTING ALGORITHM

The few testing algorithms available today will be examined in order to determine which algorithms will be implemented in the RAM checkers.

4.1 Algorithm Research

During the algorithm research, it was found that there are six major ways to test memory chip. These algorithms will be briefly described.

4.1.1 The First Method⁶

The first method is called the walking-address memory test. Starting at an even memory address given by the user,the algorithm writes the most significant byte of the address into all of the even memory locations and then verifies the byte's content. Next the least significant byte of the address is written into all of the odd or next memory locations and then verified. Finally, the program goes back to the starting address and verifies the contents of all locations. This memory test is rapid, but it could miss hard memory errors like struck-at-0 or 1.

4.1.2 The Second Method⁶

⁶ H.R. Pinnick Jr. " Testing Your Memory Using the Barber-pole Algorithm ", Byte Dec, pp 414-444

The second method stores 55H (0101 0101 in binary) into the even.locations and AAH (1010 1010 in binary) into the odd locations then checks the contents of all locations, The test is repeated with the contents of even and odd locations interchanged. This rapid test checks both hard and soft memory errors, but it has no cross-bit-check for the soft memory errors.

4.1.3 The Third Method⁶

The most extensive memory test algorithms are probably the gallop-read and gallop-write test. The gallopread test clears memory to all zeroes in all locations and stores FFH (1111 1111 in binary) in a specified starting This test reads all other locations and verifies address. the presence of OOH except for the location which contains-FFH. Next the pattern FFH is written into the next location, and the reading and verification of all locations are repeated until the end of the locations. The gallop-write test is similar with the gallop-read test except that OOH is replaced by FFH, and FFH is replaced by the OOH. These tests are excellent for testing memory except they are extremely time consuming and they have difficulty in detecting the error if one data bit affects another data bit.

4.1.4 The Fourth Method⁶

⁶Ibid. pp 414-444

The method is called the barber-pole algorithm because patterns used for the test are similar to the barber-pole (rotate by shifting 0 or by shifting 1). Refer to Table 1.

First, consider the test for a 2114 type static 1k*4 memory chip. The nine patterns of Table 1 are written into each location one at a time and then the pattern is retrieved from the location after each write to memory in order to check if it is the same as previously written. The process is repeated until the end of the memory location is reached.

TABLE	1.	Testing	Pattern
BINARY	ζ		HEX
0000	0000)	OOH
0001	0001	L	11H
0010	0010)	22H
0100	0100)	44H
1000	1000)	88H
1110	1110)	EEH
1101	1101	L	DDH
1011	1011	L	BBH
0111	0111	_	77H

For another type of memory such as 2k*8, the test patterns will be a little different. They are 01H, 02H, 04H, 08H, 10H, 20H, 40H, 80H, FEH, FDH, FBH, F7H, EFH, DFH, BFH and 7FH.

The barber-pole testing algorithm is very good at detecting both hard memory errors and soft memory errors, except, it only finds the interaction within one byte. It is impossible to detect whether the rest of memory is affected at other locations.

4.1.5 The Fifth Method⁷

The fifth test, called the memory pattern sensitivity test, is a little different from the previous testing methods mentioned above. The program works by initializing the memorytobetested with a sequence consisting of 00H to FFH. Then pointers are set at the beginning and end of the same block of memory. Next, the data at each of the pointer location is exchanged and the pointers are then moved toward one another. The process of exchanging and moving repeats until the pointers meet. The inverted sequence is then checked for accuracy. If any discrepancies are encountered, the memory is defective.

4.1.6 The Sixth Method: Optimal RAM Test Algorithm⁸ Before stating the algorithm, the following notations are introduced. Let A_{11} be the memory address u.

> $0 \le u < 2^n$ $\pi 0 = \{A_u / u = 0 \pmod{3}\}$ $\pi 1 = \{A_u / u = 1 \pmod{3}\}$ $\pi 2 = \{A_u / u = 2 \pmod{3}\}$

Algorithm

Step 1: Write the all 0 words, WO, at all locations.

 $A_i \in \pi 1$ and $A_k \in \pi 2$

Step 2: Write the all 1 word, W1, at all locations.

7 Don Kins, " A Memory Sensitivity Test ", Byte, Oct-1978, pp 12-16

⁸ John Knaizuk, J.R. And C.R.P. Hartmann, " An Algorithm for Testing Random Access Memory ", IEEE Transaction on Computers, April 1977, pp 414-416.

Step 3: Read all locations $A_{j} \notin \pi_{1}$: if output =W0; no fault indicated **≠**W0; RAM fault indicated Step 4: Write all 1 word W1 at all locations. A_j *E* **π**1 Step 5: Read all location $A_k \in \pi_2$: if output=W0; no fault indicated **≠**W0; RAM fault indicated Step 6: Read all location $A_i \in \pi^0$ and $A_j \in \pi^1$: if output=W1; no fault indicated *↓*w0; RAM fault indicated Step 7: Write and read the all 0 words WO at all locations

А, Е ПО

if output=W0; no fault indicated ₩0; RAM fault indicated Step 8: Write and then read the all 1 word W1 at all locations.

 $A_{k} \in \pi 2$

if output=W1: no fault indicated **≠**W1: RAM fault indicated

end.

algorithm presents an algorithm that optimizes This in detecting any single struct-at-0 or struct-at-1 fault in a random access memory.

A; **Επ**0

4.2 Algorithm Used in The RAM Checkers

Since the RAM checkers designed in this thesis are for the intensive memory testing , execution time is of minor importance. It is desirable to have a good and detailed testing program to judge the memory once there is any doubt. This type of testing algorithm will not be feasible for production testing purposes. When the time becomes important to the user, a short test option for testing DRAM boards is added to give the user a flexible choice for the testing. Refer to Table 2.

TABLE 2. Execution Time for Each Test

RAM Type 8155 2114 4116 4164 RAM Size .25k*8 2k*4 16K*1 64k*1 Test Time 4 sec 20 sec 120 sec 271 sec Short Test RAM Type 8155 2114 4116 4164 .25k*8 RAM Size 2k*4 16k*1 64k*1 Test Time 4 sec 20 sec 6 sec 13 sec

Long Test

As stated before, the larger the number of -tests; the greater will be the reliability. In the RAM checkers, gallop-read, gallop-write barber-pole and sensitivity testing theories were combined together to arrive at the testing methods selected for the design of the checkers. The difference between the long and short test is that the short test doesn't include the gallop-read test and gallop-write test. The testing program is composed of two parts, one is for the pattern test, the other is for the sensitivity test. First, the byte OOH is stored into all the memory locations, next using the barber-pole algorithm, storing the baber-pole testing patterns sequentially begining with the first memory location, the data is then verified until the end of the testing pattern is reached. Suppose a discrepancy is found in the middle of test, the program will then be aborted and go to the fail indication routine. After the last testing pattern is read, the rest of the memory locations will be checked one at a time to verify those OOH (or FFH) values which did not change (the short test doesn't include this). The process will be repeated until every memory location is checked. This completes the pattern test.

The sensitivity test is performed after the pattern test. A sequence of 256 bytes will be stored into the memory in increasing order. The number of the byte depends on the size of memory. For instance, for a 1k*4 memory chip, only 16 bytes are used and for a 16k*1 memory size, only 2 bytes are used. Next, the contents of the memory locations are interchanged. If upon checking, the sequence of the numbers is found to be in decreasing order the memory chip is good, otherwise it is a defective chip. When this method is applied to a 8155 chip (256 bytes by eight), the pass test time is about 4 seconds. For the 2114 (2k*4) chip, the pass_ test time takes approximately 20 seconds when the 3.579545 MHz crystal is used.

CHAPTER 5

HARDWARE DESIGN AND ANALYSIS

The memory checkers which are for testing a SRAM, a 16k*1 DRAM and a 64k*1 DRAM are based on the use of 8085 CPU. Hardware circuitry will be now studied individually.

5.1 Static Memory Checker

This checker was sucessfully designed to test memory chips of the 2114 type and the 8155 family. It can be expanded to test additional memory chips with the aid of a microcomputer design system using the following design technique.

5.1.1 Hardware of The Static Memory Checker

Figure 6 shows the photograph of this Checker, and Figure 7 shows the schematic. This checker is designed to test many different types of static memory chips.

In Figure 7, it can be seen that INTEL 8212 is used as the address latch enabled by the ALE signal. The LEDs which indicate the test results are connected to the PA 1/0 ports of the 8155. For this reason the 8155 chip could not be removed from the board even if it is not the unit under test. There is a dip switch consisting of four switches in which only one is used on the board. When the switch is atthe ON position, the 2114 test is selected, otherwise the 8155 is the unit under test.

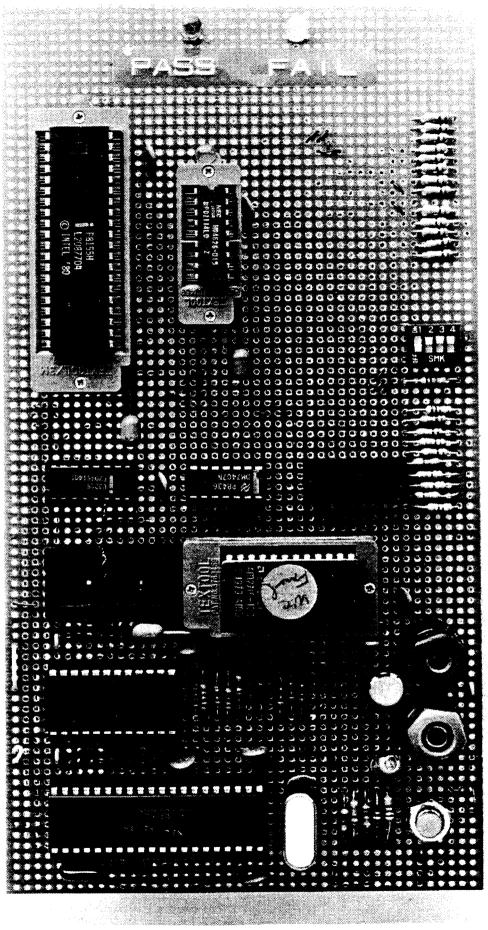
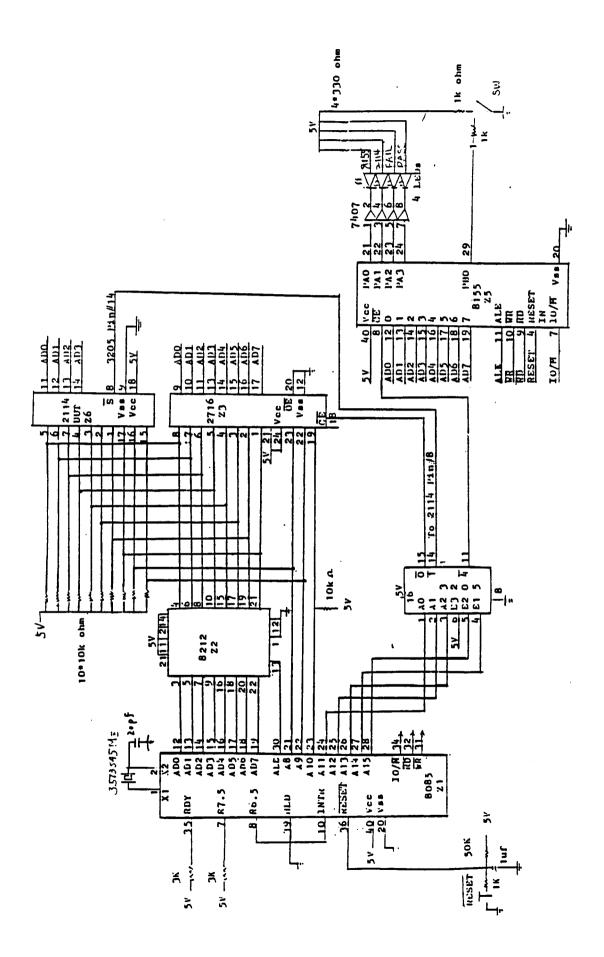
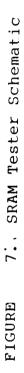




FIGURE 12. 64k DRAM Checker

_1

5.1.2 Testing Chips in The SRAM Checker

Table 3 lists the memory chips that can be tested using this checker in addition to the INTEL memory chip 8155.

TABLE 3. 2114 Family

VENDER	PART NUMBER
Intel	2114A/2114AL
TI	TMS 2114/TMS 2114L
AMD	9114/91L14
EA	EA2114L
EMM/SEMI	2114
Fairchild	F2114
Hitachi	HM472114A
Intel	2114A/2114AL
Intersil	IM2114/IM2114L
Mitsubishi	M5L2114L
Motorola	MCM2114/MCM21L14
National SC	MM2114/MM2114L
NEC	upD2114/upD2114L
OKI	MSM2114/MSM2114L
Synertek	SY2114/SY2114L

5.1.3 Future Expansion

This testing board is a model for the SRAM checker._-Future expansions can be implemented by using the following hardware design procedures:

1. Connected the chip select (\overline{CS}) line with the output of 3205. Refer to Figure 8.

The address of each output of decorder 3205 is listed in Table 4.

25

01 02 3205 03 04	14 13 12 11 10 9	to 2716 to 2114 future expansion future expansion to 8155 future expansion future expansion future expansion
---------------------------	---------------------------------	---

FIGURE 8. 3205 Output Analysis

TABLE 4. 3205 Address Assignment

OUTPUT	PIN NUMBER	ADDRESS
00 01 02 03 04 05 05	15 14 13 12 11 10 9	0000H-1FFFH 2000H-3FFFH 4000H-5FFFH 6000H-7FFFH 8000H-9FFFH A000H-BFFFH C000H-DFFFH
07	7	E000H-FFFFH

2. Connect the data and address lines to ADO^{-} through AD7, and A8 through A15.

The 8085 microprocessor can run at maximum speed of 3 MHz.⁹ In order for it to work with most of the-memory chips, approximately half of the maximum speed is considered as the best choice. For this board 3.57945/2 MHz is chosen. If the memory can not be matched with the existing board, it is suggested that the board be interfaced to the MDS, which can implement the additional control⁻ circuitry.

⁹ Mcs-80/85 TM Family User Manual, Oct 1979, p6-4

5.2 16k DRAM Checker

Two test methods are used on the DRAM checkers. The user can choose a long or a short test by setting the connected dip switch on the testing board to either the ON or OFF position.

5.2.1 Hardware Description

This board is designed as a 16k RAM checker. Figure 9 shows the photograph, and Figure 10 shows the schematic of this checker.

On this board, the 8755 serves as program memory storage and as 1/0 for the system. In order to have the expected data come from the memory under test, a data latch LS373 is necessary, the XACK signal (TRANSFER ACKNOWLEDGE pin #29 of the the 8203) serves as the strobe in this case, and the LS373 is disabled when the 8755 is in the enabled state.

The INTEL 8203 is a dynamic RAM controller designed to provide all necessary signals when using the 2164, 2118, and 2117 DRAM in a microcomputer system. The 8203 provides multiplexed addresses, an address strobe, refresh logic, and refresh/access arbitration.10

10

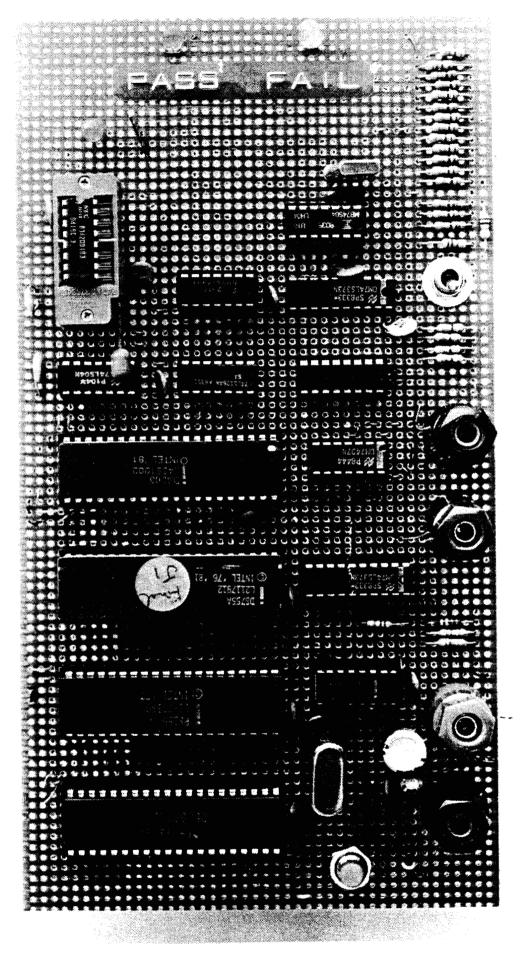


FIGURE 9. 16k DRAM Checker

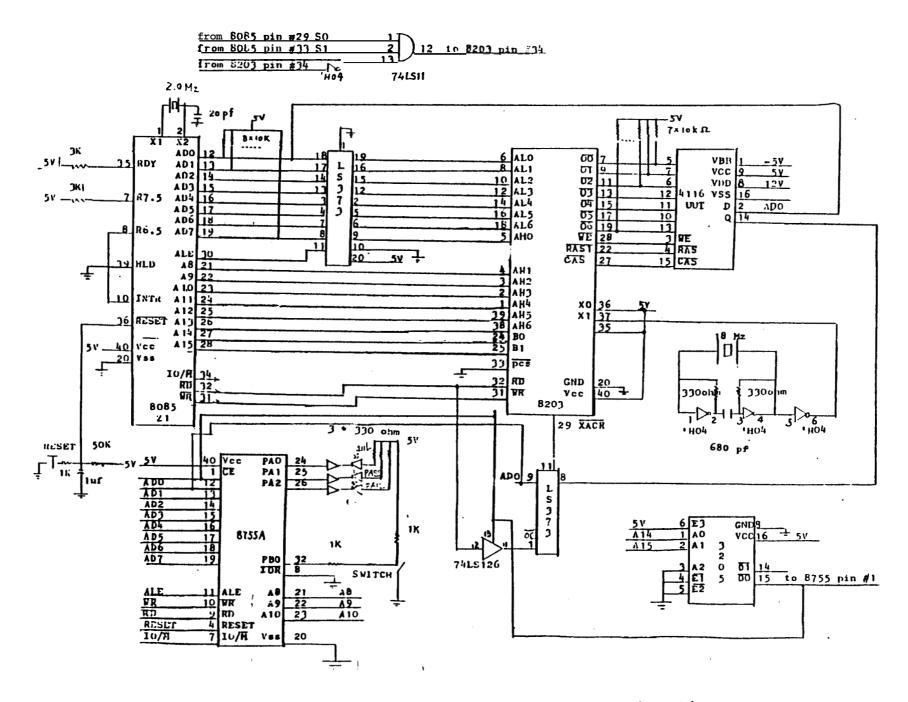


FIGURE 10. 16k DRAM Tester Schematic

5.2.2 Testing Chips in The 16k DRAM Checker

Table 5 lists the 16k DRAM chips that can be tested using this checker.

TABLE 5. 4116 Family

VENDER	PART NUMBER
TI AMD Fairchild Fujitsu Hitachi Intel Intersil ITT Mitsubitsu Mostek Motorola National NEC GKI	TMS 4116 AM9026 F4116 MB8116 HM4716 2117 IM4116 ITT4116 M5k4116 MK4116 MK4116 MM5290 upD416 MSM3716
Toshiba	TMM416

5.2.3 Future Expansion

Future hardware expansion is made possible by the following procedures in addition to the data and address lines being connected to the CPU (ADO-AD7 and A8-A15).

1. Connect the \overline{RAS} of the new memory chip to the \overline{RAS} signal coming from the 8203, refer to Table 6.

TABLE 6. 8203 Bank Selection

INPUTS

CUTPUTS

В1	в0	RASO	RAS1	RAS2	RAS3
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

The addresses assigned to the \overline{RAS} signal are shown in

Table 7.

TABLE 7. 8203 Active RAS Address Assignment Active RAS Assigned Address RASO 0000H-3FFFH RASI 4000H-7FFFH RAS2 8000H-BFFFH RAS3 C000H-FFFFH

Locations 0 to 3FFFH are being used by the ROM and 4000H to 7FFFH by the 4116.

2. In the case $\overline{RAS2}$ is used, $\overline{O2}$ coming from the 3025 should be connected as shown in Figure 11 in order to disable the data latch when the memory chip addresses are not activated.

5.3 64k DRAM Checker

This DRAM testing board is very similar to the 16k DRAM testing boards except that this board has to test 64k locations. The 8085 is capable of addressing 64k locations.

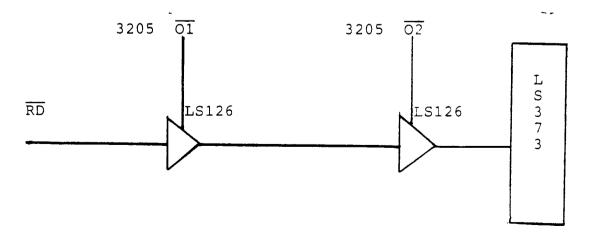


FIGURE 11. Data Latch Method

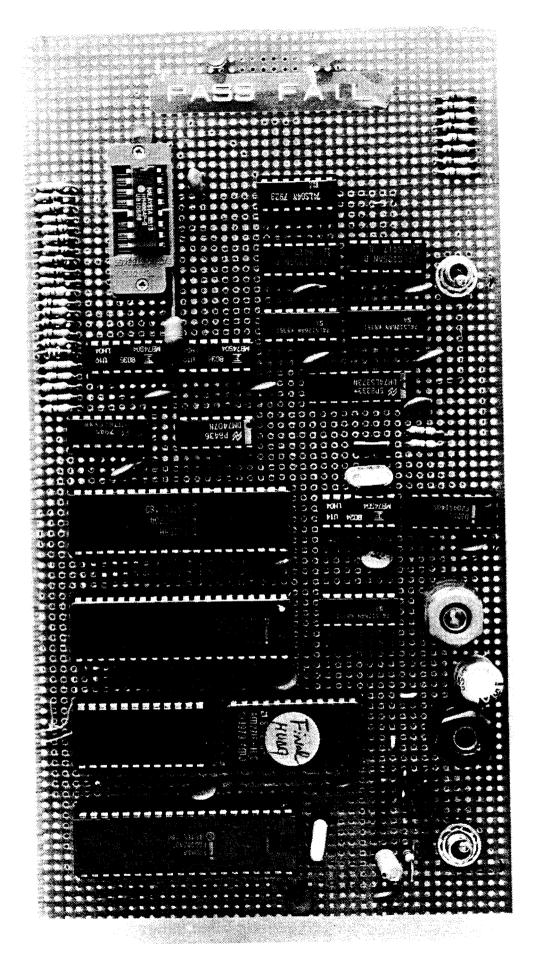
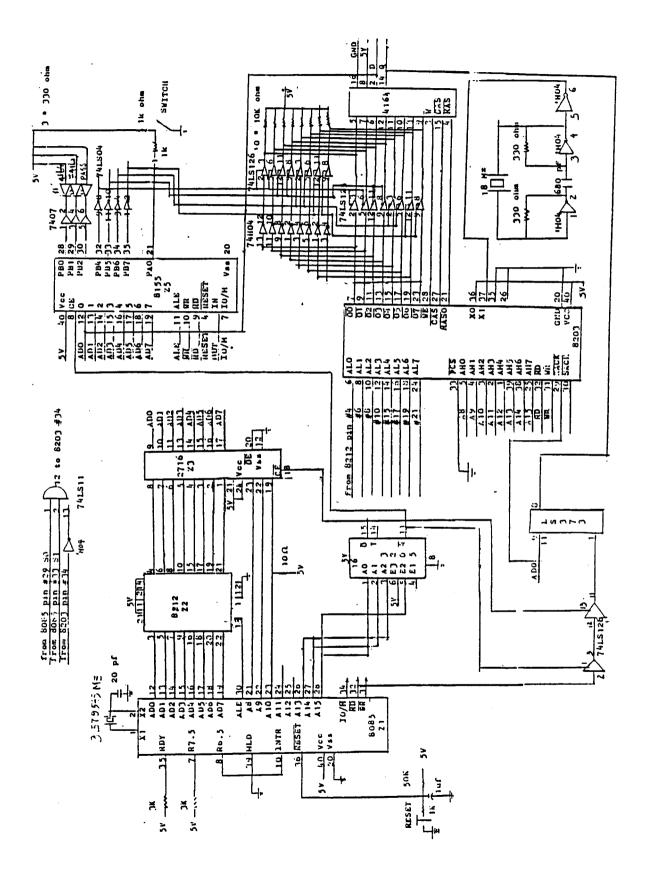
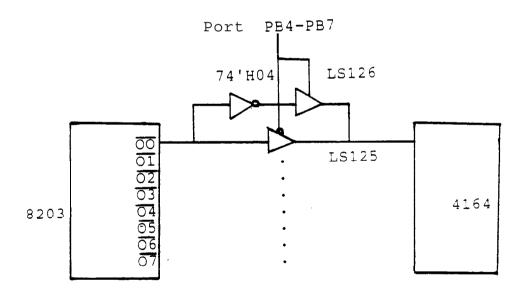


FIGURE 12. 64k DRAM Checker




FIGURE 13. 64k DRAM Tester Schematic

33

5.3.1 Hardware Analysis

This board is designed to test a 64k RAM. Refer to Figure 12 and Figure 13 for the photograph and schematic.

In addition to being similar in structure with the previous two boards discussed, this board requires virtual memory in order to test 64k locations when the 8085 is used as the microprocessor. The main feature of this board is that it uses the overlap method to satisfy the requirements of testing the 64k DRAM. Figure 14 shows the hardware structure of this overlap method.

When the ports PB4 to PB7 are asserted high, the LS125 goes to the high impedence state. 00-C7 coming from the 8203 will be connected to the 4164 through the inverters. For this case, the locations 8000H-FFFFH addressed by the processor will be mapped to the locations 7FFFH-0000H within the memory chip. On the other hand, when a Low is asserted on the port PB4 to PB7, the LS126 goes to high impedence state and 8000H-FFFFH addressed by the processor is equal to 8000H-FFFFH within the 4164.

Combining these two cases, 0-FFFFH locations in the memory chip will be checked by setting the output port PB4-PB7 High and then Low.

5.3.2 Testing Chips in The 64k DRAM Checker

Table 8 lists the 4164 family that can be tested _ using this checker.

Refer to TABLE 8.

TABLE 8. 4164 Family

VENDER	PART NUMBER
- TI Fairchild Fujitsu Hitachi Intel Mitsubishi Mostek Motorola National NEC GKI	TMS4164 F64k MB8264 HM4864 2164 M5k4164s Mk4164 MCM666 NMC4164 upD4164 MSM3764
Toshiba	TMM4164

5.3.3 Future Expansion

Future expansion can be obtained by sharing all of the signal lines with the 4164 except for the data line ADO used by the 4164. The rest of the data lines AD1-AD7 are available to be used as any data signal. Cf course, the software must be modified to support this change.

CHAPTER 6

SGFTWARE DESIGN

This chapter is concerned about the testing software of the three testers. Since the 8085 CPU is used, 8085 machine codes are employed in the checker software design. Each of the three programs contains two parts. The first part is called the pattern test routine. It checks the uniqueness of each byte and makes sure that every single bit is valid. After each location is checked, the gallop-read test is applied to the rest of the memory within this block (256 bytes is defined as a block). In this case, most of the interference between bytes will be detected. The second part of the program is the sensitivity test routine which is very useful in detecting the interference between bytes. For the case of the 8155, OOH - FFH is written into consecutive memory locations. Then the contents of the memory are reversed. If the sequence of FFH, FEH, ... 02H, 01H, OOH is not read from the 8155 memory locations, an error is detected and this memory chip is defective. During the search for defective memory chips in the school's electronic shop, one 4164 chip was found which passed the pattern test but failed the sensitivity test.

6.1 Testing Program for The Static RAM Checker

This program is illustrated in Figure 15, and the complete assembly language program is contained in the Appendix A.

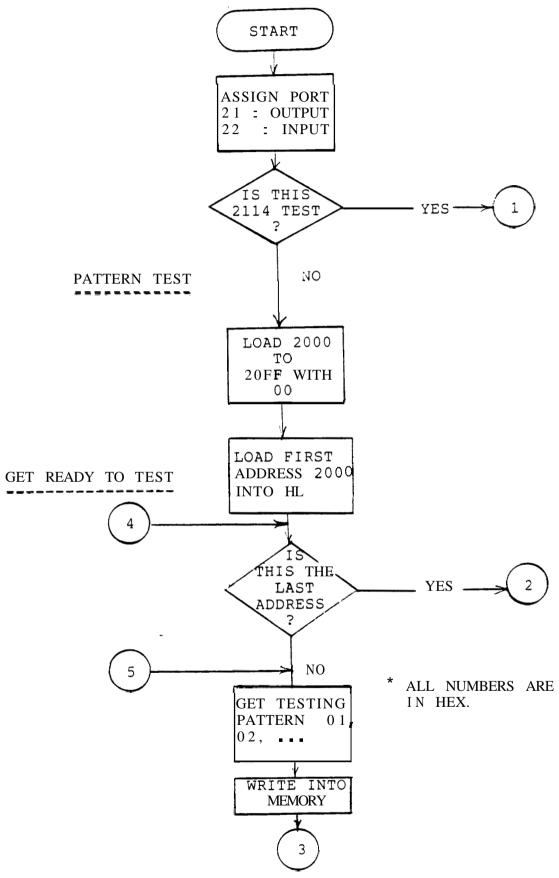


FIGURE 15. SRAM Testing Program Flowchart (continued)

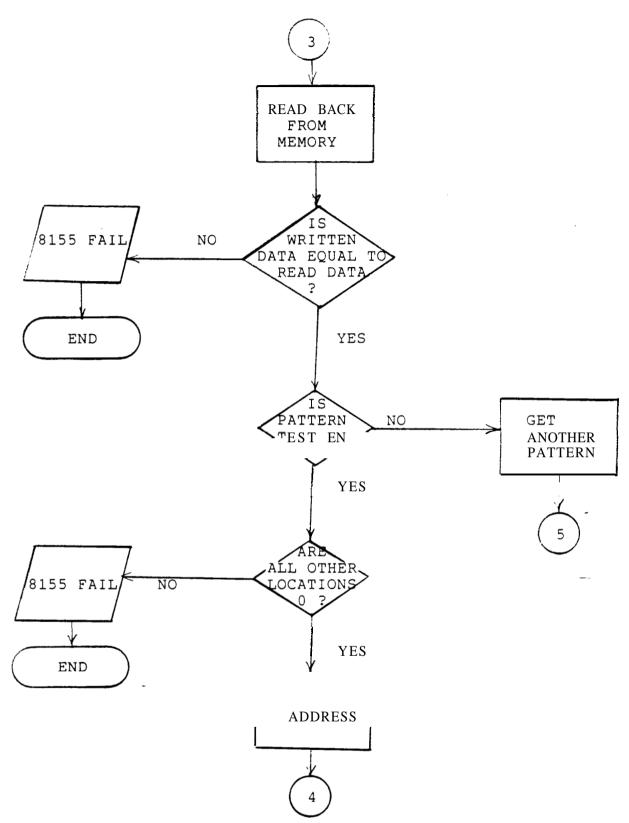


FIGURE 15. SRAM Testing Program Flowchart (continued)

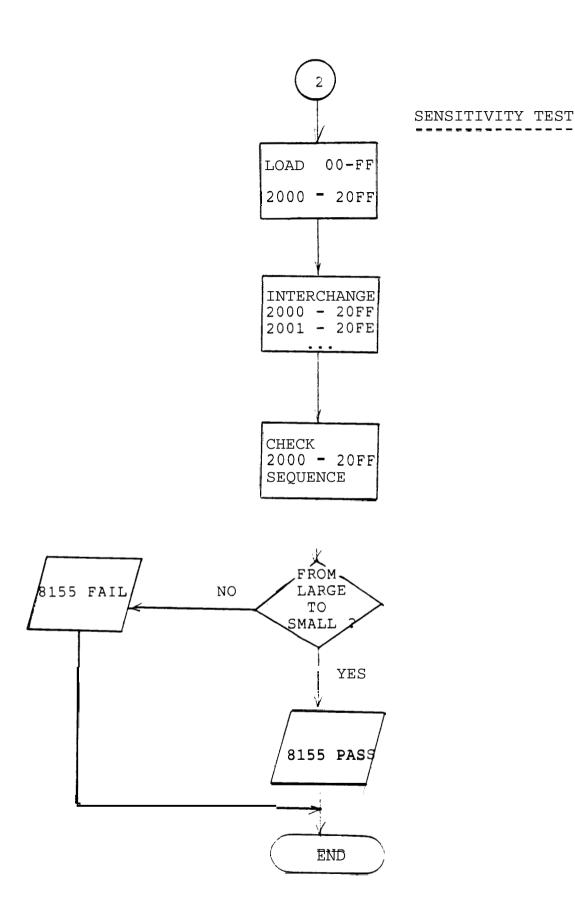


FIGURE 15. SRAM Testing Program Flowchart (continued)

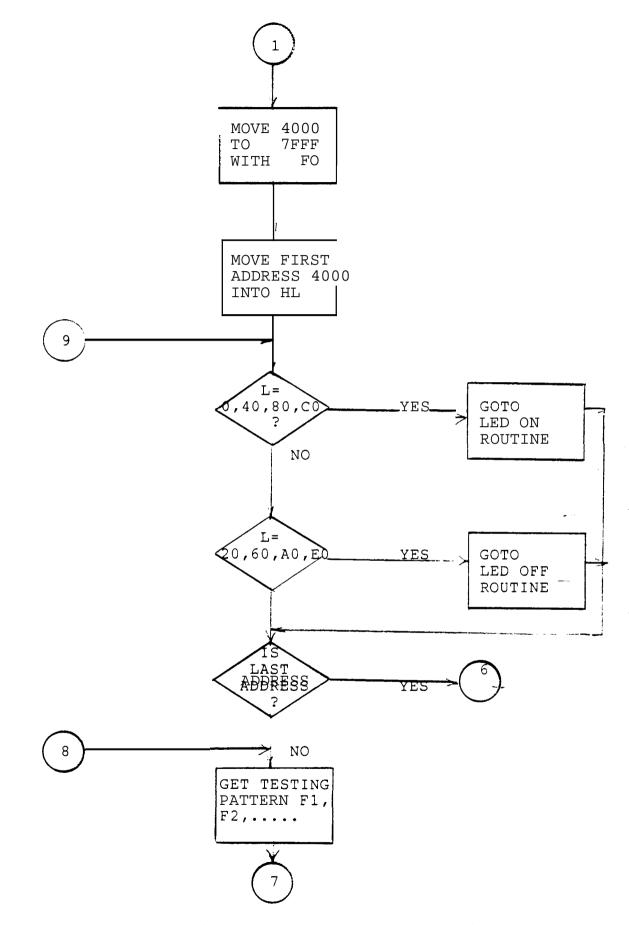


FIGURE 15. SRAM Testing Program Flowchart (continued)

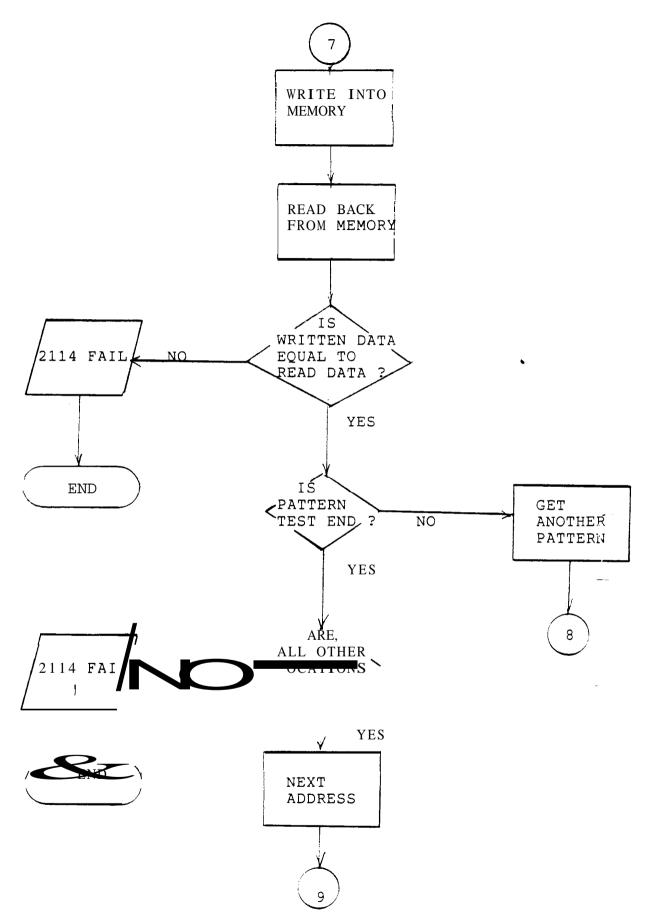


FIGURE 15. SRAM Testing Program Flowchart (continued)

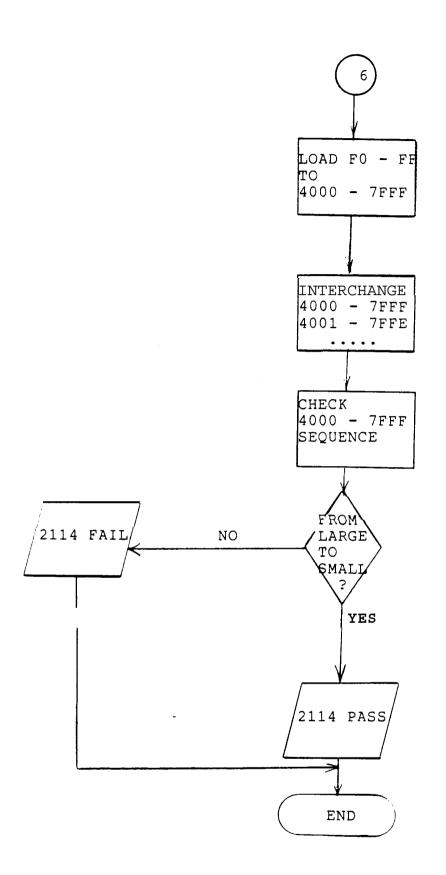


FIGURE 15. SRAM Testing Program Flowchart

This testing program is similar with the SRAM testing program except that it only has one data line. The testing flowchart is shown in Figure 16 and the assembly language program is contained in Appendix B.

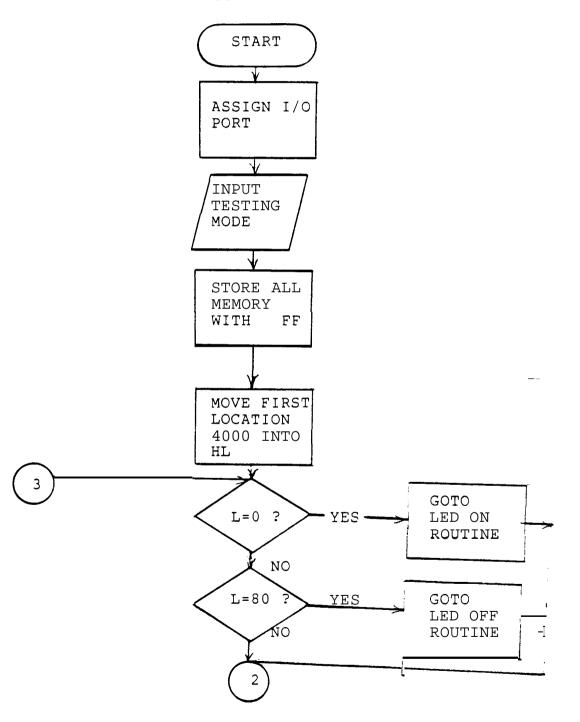


FIGURE 16. 16k DRAM Testing Program Flowchart (continued)

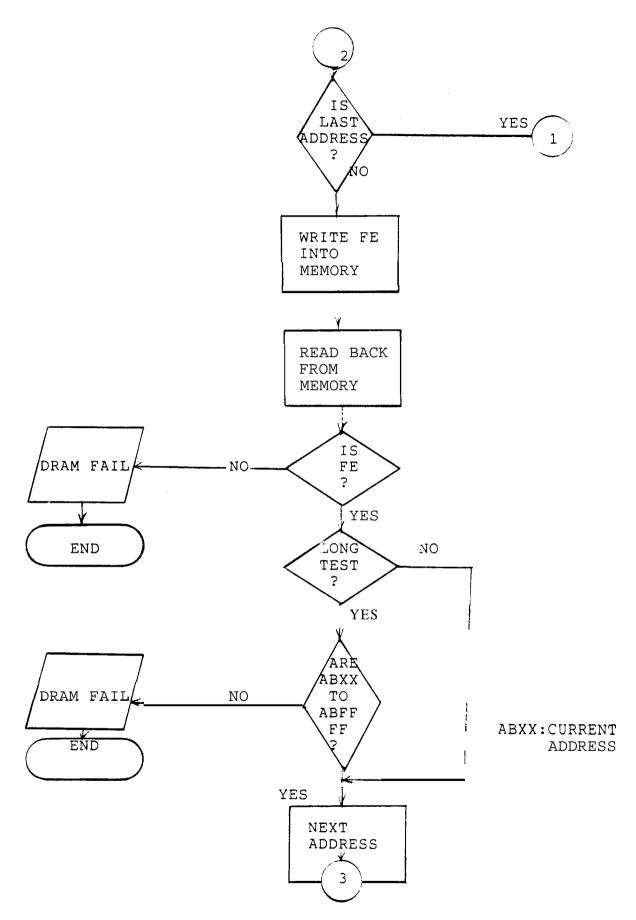
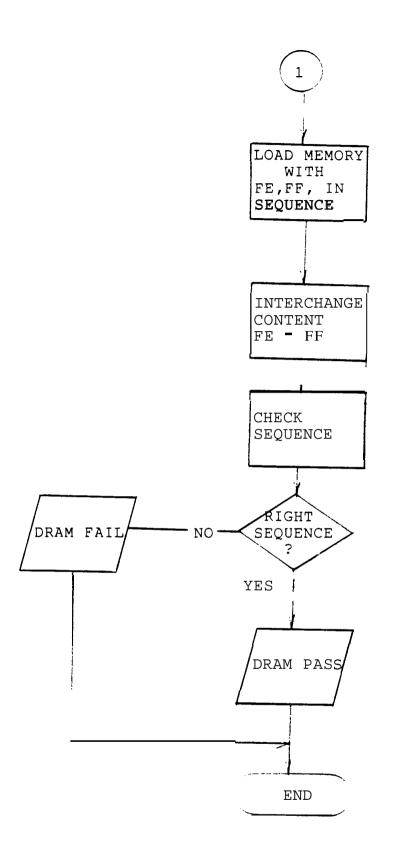



FIGURE 16. 16k DRAM Testing Program Flowchart (continued)

6.3 Testing Program for The 64k DRAM Checker

The two testing programs for the 16k DRAM and the 64k DRAM are very similar because both of them have one data line excluding the 64k DRAM which has two sets of locations 8000H-FFFFH addressed by the 8085. The program flowchart is shown in Figure 17, and the complete assembly language program is contained in the Appendix C.

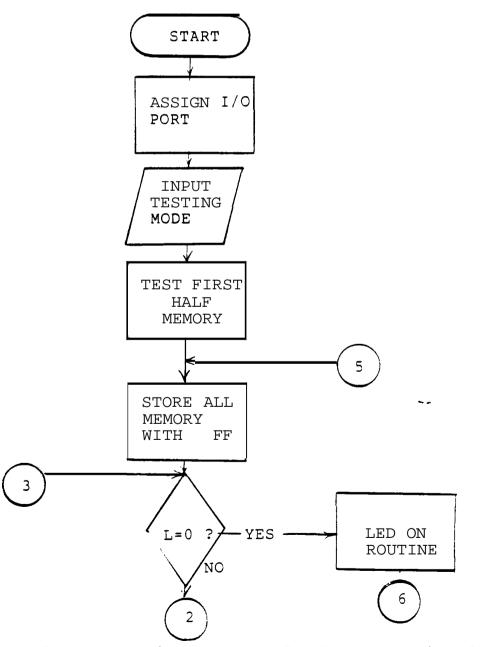


FIGURE 17. 64k DRAM Testing Program Flowchart (continued)

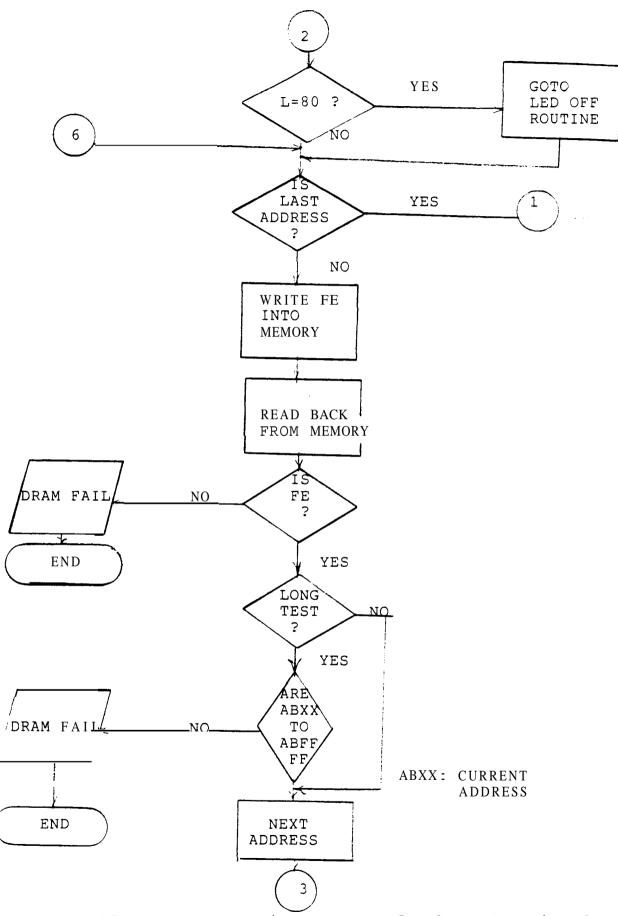


FIGURE 17. 64k DRAM Testing Program Flowchart (continued)

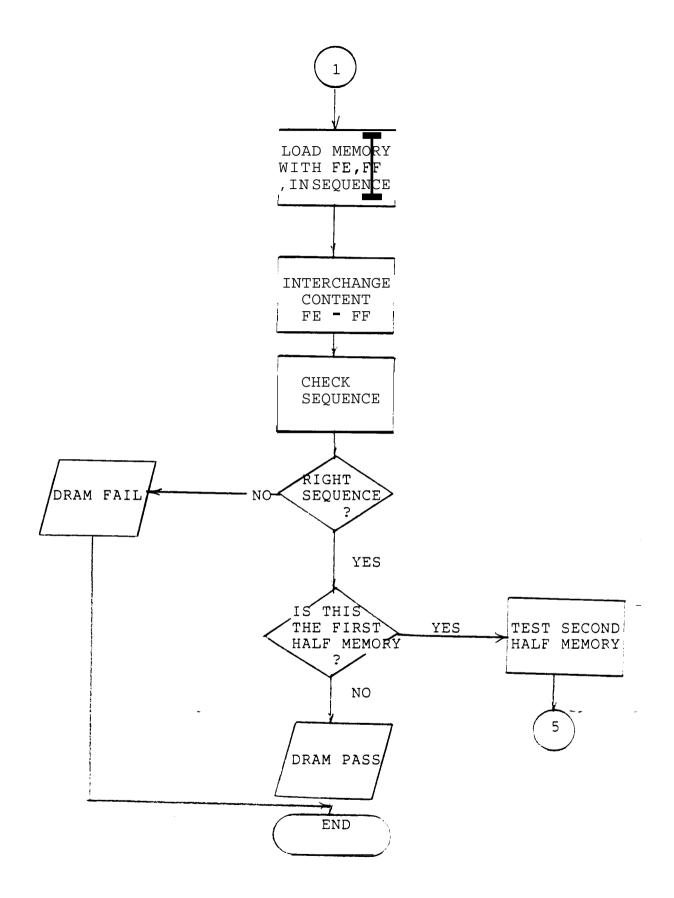


FIGURE 17. 64K DRAM Testing Program Flowchart

CHAPTER 7

SUMMARY

With the aid of a microcomputer design system, three RAM testing boards for a SRAM checker, a 16k DRAM checker, and a 64k DRAM checker respectively were sucessfully designed and built. The basic description of RAMs is discussed in chapter 2, the software system is described in chapter 6 and testing programs are listed in Appendix A, B and C. Many hardware and software problems are easily detected and solved with the use of a MDS, which helps to save a lot of time during the development process of the RAM testing boards. With the aid of a MDS, these checkers can be expanded to test additional memory chips.

7.1 Performance Evaluation of The Checkers

These RAM testers are designed to detect both the-hard memory errors and soft memory errors to a high degree of accuracy. The testing accuracy of the RAM checkers can not be assigned a percentage value for RAMs in general but only for a particular RAM since the fabrication process differ for eachtype of RAM. Every memory chip type has its special characteristic and the failure distribution is different for each one. In Chapter 3, it was pointed out that soft memory errors associated with the system level problem and the rate of failure are hard to quantify. This is why no algorithm has ever been claimed to have a percentile associated with its performance.

The testing method for SRAM is composed of barberpole algorithm, sensitivity test algorithm and gallop-read alogrithm. For the DRAM, the same method can not be applied because of the long execution time (at least one hour is needed to test the 64k DRAM under 3.58 Mz with the same method that was applied to the SRAM). That is why only the barber-pole, the sensitivity algorithm and part of the gallop-write algorithms are employed by the DRAM checkers. The performance of the testing method when combining algorithms should be better than using a single algorithm which was discussed in Chapter 4.

7.2 Conclusion

Application of the microcomputer controlled RAMcheckers for the SRAM (8155 and 2114) and the DRAM (4116, 4164) results in detecting memory failures at a low cost and with a high degree of reliability.

In addition to the personal usage, these RAM testers could be very useful when starting up a small electronic assembly plant where an inexpensive tool, instead of a sophisticated ATE, is needed to give a good evaluation of memory chips, if the DC and AC parameters are not critical.

These RAM testers are very easy to use. No special training is needed to operate them. PASS and FAIL indicating-LEDs on the front panel will show the user if the RAM passes or fails the test.

As was indicated in the previous chapters, the RAM

checkers could be expanded to check other memory chips. Software writing may not be easy except for those who have the assembly language programming ability. The memory chips to be tested in the RAM checkers are required to accompany the 8085 CPU. Cther chips that are used with a CPU other than the 8085 could be tested by employing the same technique described in this thesis except that the characteristics of the different types of CPU must be taken into account.

Recently, more powerful microcomputers with supporting hardware and software were developed. For instance, a 32-bit microcomputer was successfully manufactured. It is expected that the memory checker using the microcomputer-controlled program will become more sophisticated as other good testing algorithms evolve.

APPENDIX A

TESTING PROGRAM LISITING FOR SRAM

rec ort	LINE	SOURCE STATEMENT
		;*************************************
	4	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	7	;DESCRIPTION: ;************************************
	9 10	<pre>;* TEST for the stat:c RAMs (015512114)</pre>
	12 13	<pre>if the unit unuer checked. * if Port 21122 are being used br the 3085 to indicate the testing * </pre>
	14 15 16)* result, in any event , it is prohibited to remove \$155. * ;***********************************
		; ;FART I ;************************************
	20 21	<pre>/* Fattern test program is using the similar barber pole and # /* mapped zeroes algorithm. * /**********************************</pre>
	23 24	; ;
0080 2000 20FF	26 27	;TEST S155 memory chip PAT EQU 0090H ;testing pattern stored here STB1 EQU 2000H ;starting address of 8155 ENS1 EQU 20FFH ;end address of 3155
0000	29 30 31	ORG OH jstartins program address
	as 34	;*************************************
0000 3E01	36	;*************************************
0002 D320 0004 DB22 0005 E401 0008 FE01	37 38 39 40	OUT 20H IN 22H Gread the switch and select ANI 01H Gine unit under test CFI 01H
000A (22001 000D 2EFE 000F D321	41 42 43 44	JNZ TE21 Jif panel=01 so to 2114 test A+OFEH Jturn on the 3155 indicator. OUT 21H
	45 46 47 48	
0011 210020	50 51 52	; LXI HISTB1 istarting address of 8155
0014 3600 0016 23	53 54	0000: MVI M,OH jmove all locations with 0 INX H ,

ISIS-1: 3080/8085	MACRO ASSEMBLER	V4.1 MODULE	E PAGE 2
LOC OBJ	LINE SO	URCE STATEMENT	
0017 7C 0019 FE21	ت	DV AVH FI 21H	; if not exccde 2100 soto 3050
001A C21400		NZ 0000	,
	60 ;*******		不能不能能能能能能能能能能能能能能能能能能能能能能能能能能能能能能能能能能能
	62 J# locat:	on , and pull it out	ion PAT one by one , write into the * to do the testing. Go to 0 test when*
	44 ;********	s out of the pattern	
	55 ; 6 6 ;		
0010 210020 0020 118000	57 L 68 LOOP1: L	XI H/ST91 XI D/PAT	jstarting address jpattern stored here
0023 EB 0024 7E	69 LOOF2; X		
0025 FEOO 0027 CA3500		PI OH Z ZERO	lif Pattern is 0 /then do the zero itest.
*002A EB 0028 77	73 X	CHG QV M2A	flocation stored with pattern
002C 46 002D 38	75 M	DV BIM	icheck 'ocation content with Pattern
OOZE C28000 0031 13	77	NZ FAIL NX D	<pre>/store if not equal then jump to the /FAIL sourugt:ne .Otherwise so to next</pre>
0031 13 0032 C32300	-	MP LOOP2	Flocation.
	81	TOT	
	82 ;ZEROES T 33 ;********	*****	*****
	35 J¥ specif	ied one contain 0 .	! those iocat:ons otner than the # # #*******
0035 EB	87 ZERO : X	(CHG	
0036 7E 0337 2F	39 C	IGV AVM	jeet the compliment of the initial jvalue to mask this specified locatton.
0038 47 0039 110020	91 L	IOV B7A XI D7ST91	
0035 EB 003D 7E	93 OLP : M	(CHG 10V A,M	
0031 FEOO	94 C 95	CPI CH	JCompare all the content: of locations Jwith zeros
0040 025500	96 97	INZ MAP	<pre>if not 0 ; then soto MAP subroutine ito check :f it is allowed.</pre>
0043 23 0044 7	98 CON1 : I 99 M	NX H IDV AzH	
0045 FE21 0047 C23D00	L00 C	IPI 21H INZ OLP	
004A EB 004B 23	102 >	KCHG NX H	ijume to succeding location
004C 7C 004D FE21	104	10V A7H DEL 21H) cneck if test COmplete ?
004F CAHJOO 0052 C32000	106	JZ SETST JHP LOOP1)if complete sot0 sensitivity test)or continue the Pattern test
0055 75 0056 90	108 MAP : 5		iadd up the content with that of ithe specified one

FOG ORT	LINE SOURCE STATEMENT	
0057 FEFF 0059 C28000 005C 3600 0055 C34300		t is Reval FFH to FAIL suproutine
3061 3EF6 0063 0321 0065 76	113 PASS : MVI A)0F6H iset the page 115 OUT 21H 116 HLT 117 ; 113 ;	ss light on
	119 ;TESTING PATTERN 120 ;************************************	
	121 ;* These are 'he testing patterns for the	
	122 J* OOH is followed to rerrent the end of t	
	123 ;************************************	*****
0080	124 ORG PAT 125 38 01H	
0080 01 0081 02	125 35 VIA 126 BB 02H	
0032 04	127 DB 04H	
0083 08	12B DB 08H	
0034 10	129 DH 10H	
0085 20	130 DB 20H	
0036 40	131 DB 40H	
0087 30 0083 FE	132 DB 30H 133 DB OFEH	
0083 FL 0089 FD	134 DB OF DH	
008A FB	135 DB OFBH	
0088 F7	136 DB 0F7H	
008C EF	137 DB 0EFH	
OUBD DF	138 DB ODFH	
00SE BF OOBF 7F	139 DB OPFH 140 DB 075H	
0090 00	140 DE 07FH 141 DE OOH	
0050 00	142 /	
	143 ;	
	144 ;***********************************	
	145 ;* This is to turn on the FAIL LED display	
OOBO	146 ;************************************	*********************
OOBO JEFA		IL light on.
00B2 D322	149 OUT 22H	
OOBJ 76	150 HLT	
	151 I	
	152 ;	
	153	*****
	155)* This is to do the SENSITIVITY TEST to (
	156 J# affected by the other locations dur ne	
	157 J* By storing Q ~ FF into the location 200	
	153 ;* reverse the sequence, then check if the	
	159 ;* locations are in the reverse sequence 160 ;************************************	
	161 JSENSITIVITY TEST:	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
0095 210020		to the locations from
OOBS OEOO	163 MVI C/00H /2000~20ff	
00BA 71	164 CONT2: MOV M/C ;C is the c	ontent of each location.

~ .

_

LOC OBJ	LINE	SOURCE	STATEMENT	
OOBH 23 009C 7C 00BD FE21 OOBF CAC6	165 166 157 00 168 169 170	INX Mgy CFI Jz	Н А,Н 21Н СНК1	<pre>;increase the location . ;cneck if done ? ;yes; so on to CHK routine to ;interchange the content of specified ;locations.</pre>
00C2 0C 00C3 C3BA 00C3 11FF 00C9 2100 00CC 46 00C9 EP	171 00 172 20 173 20 174 175 176	INR JHF CHK1 : LXI LXI LOOP3: MOV XCHG	C CON72 U,EN91 H,STB1 B,M	<pre>>interchange the contents of locatons ;2000~20FF;2001~20FE;1002~20FD</pre>
OOCE 4E 00CF 70 OODO EY 3001 71 00D2 1B 00D3 23 00D4 7B	177 178 179 180 191 192 193	NOV NOV XCHG MGV DCX INX MGV	СуМ Мув Мус D H Аус	icheck if all done
0005 FEQO 00D7 C2CC	194 00 185 196 187 188 189	CPI JNZ THE FOLLOWIN IN THE ORDER	80H LOOP3 G PROGRAM I FROM LARGE	S TO CHECK IF THE CONTENT OF THE ARRAY IS
00DA 2100 00DD 1600 00DF 15 00E0 CA61 00E3 97 00E4 7E 00E5 23	191 192	LXI MVI LOOP4: DCR JI SUB MOU INX	H,ST81 D,00H D PASS A A,M H	; ; ;reset the carry flag
00E6 96 00E7 DABO OOEA CARO OOED C3DF	00 199 00 200 201 202	1	M FAIL FAIL LOOP4	
0800 08FF 0200	204 205 206 207 208 209 210 210 211 212 213	PAT2 EQU J############## J# The follow J# algor(thm J# program. J####################################	used is the	**************************************
	215 216 217 213	JFATTERN TEST J*********** J* The follow J* the 2114	*********** IINS Prosram Ndicator.	*************************************

LOC OBJ	LINE SOURCE STATEMENT	
0120 0120 3EFF 0122 D322 0124 3EFD 0125 D321	222 OUT 22H	pass indicator e 2114 indicator
0128 210008 0128 36F0 .)LID 23 0125 7C 012F FE0C 0131 C22801	227 ;***********************************	e contents of tne መደመርሃ for tne zero test + ************************************
0134 210009	240 ;* Get the pattern from location PAT2 one 241 ;* location , and puil it out for the tes 242 ;* run out of the pattern at each locatio 243 ;************************************	sting. Goto O test unen *
9137 110002 013A 7D 013B FE00 013U CAA801 0140 FE20 0142 CAA101 0145 FE40	247 L00P6: LXI D;FAT2 248 MOV A;L ;move L to A 249 CFI 00H ;if L=O so to LEI 250 JZ LEDON 251 CFI 20H ;if L=20 so to LEI 252 JZ LEDOF 253 CPI 40H ;if L=40 so to LEI	DOF
0147 CAA801 014A FE60 014C CAA101 014F FE80 0151 CAA801 0154 FEAO 0156 CAA101 0159 FECO	254 JZ LEDON 255 CPI 60H ; if L=60 go to LE 256 JZ LEDOF 257 CPI 80H iif L=80 so to LE 258 JZ LEDON 257 CPI 00H ; if L=40 go to LE 258 JZ LEDON 259 CPI 00H ; if L=40 go to LE 160 JZ LEDOF 261 CFI 00H ; if L=20 go to LE	EDON EDOF
015B CAA801 015E FEE0 0160 CAA101 0163 EB 0164 7E 0165 FEF0 0167 CA7301 0164 EB 0167 4F 016C 77 016D 7E 016E F6F0 0170 Y9	262 JZ LÉDON 263 CPI QEQH ;if L=E0 so to LE 264 JZ LEDDF 255 LQOF7: XCHG 266 NOV A,M 267 CPI 0F0H 258 JZ ZOTE 269 XCHG 270 NOV C,A 271 MOV A,M 273 QRI 0F0H 274 QMP C	

LCC	OBJ	LINE	SOURCE	STATEMENT				
0171	029001	275	JNZ	FAI2				
0174		276	INX	3				
	536301	277	JMP	LCOP7				
		273						
		<u>=79</u>						
			·ZEROES TEST	FOR 2114		*****	****	
		281	·	te chock if	é all locat	Lions otner than		
			Jans lest is			cions other than		
				*****	*********	******	*****	
0178	EB	285	ZOTE : XCHG					
0179		296	MOV	EIL				
017A		237	HOV	D,H				
017B		'138	INX	H				
0170		299	MOV	A/H				
	FEOC	290 271	CPI JZ	OCH SETS2				
01/F	CA0802	272	LOOPS: MOV	ArM				
	FOFO	293	ORI	OFOH				
	FEFO	294	CPI	OFOH				
	029001	275	JNZ	FAI2				
018A		296	INX	н				
0188	7C	297	MOV	A,H				
	FEOC	298	CPI	OCH				
	C28201	299	JNZ	LOOFB				
0191		300 301	MOV MOV	L1E H1D				
0192		301	INX	H				
	C33701	303	JMP					
	JEFS	304	PSS : nvr	LOOP6 A,OFSH				
0199	D321	305	OUT	21H				
019F		305	HLT					
	3EF9	307	FAI2 : HVI	A,OF9H				
	0321	301.3	OUT	21H				
01A0	JEFD	309 310	HLT LEDOF: MVI	A, OFDH				
	5 9321	311	OUT	21H				
	5 C34301	312	JMP	LOOP7				
	3 3EF1	313		A,OF1H				
	0321	314	OUT	21H				
01A0	C36301	315	JMP	LOOP7				
		316						
		317	, TESTING PAT	TEDN TOD 011	4			
		319	***********	*********	. <u></u> }#*#*******	****	*****	
						the 2114 memory		
		321	;¥ follo⊔ed	to represt t	he end of	the test.	*	-
		322			*******	*****	*****	
0200		323		PAT2				
0200		324		OF1H				
	1 52	325 326		052H				
	2 F4 3 F8	326 327		0F4H 0F8H				
	4 FE	328		OFEH				
	5 70	329		OFDH				

ISIS-II	8080/3085	MACRO	ASSEMBLER,	V4.1	
1313 11	0000/0000				

0204 F7 0227 F0 330 DB 0F7H 331 DB 0F0H 333; 333; 333; 333; 333; 333; 333; 333; 333; 333; 333; 333; 333; 333; 334; 335; 335; 335; 335; 335; 335; 335; 337; 336; 337;	LOC	OBJ	LINE	SOURCE	STATEMENT
<pre>334 iPART II 335 j===================================</pre>			331 332		
 335 i* This is to do the SENSITIVITY TEST to ensure the memory is'nt 337 i* affected by the other memory during the suitching period. 338 j* By storing 00 ~ OF into the first sectified locations subset 339 i* then soon to other subset till the end of the locations subset 339 i* then soon to other subset till the end of the locations subset 341 j* array is in the order from large to small unen us ener. the * 342 i* order. 344 JSENTITY TEST FOR 2114 2008 210008 345 SETS2: LXI H:3721 2020 000 347 HVI C.00 2010 71 348 LOUPP: MOV H.C 2021 71 348 LOUPP: MOV H.C 2021 71 348 LOUPP: MOV H.C 2021 72 350 INX H 2021 23 350 INX H 2021 210008 354 REV : LXI H:3721 2021 220 2153 JNZ LOOPP 2021 210008 354 REV : LXI H:3721 2021 220 213 350 INX H 2021 77 360 MOV A:H 2022 21 0008 367 CHK LXI H:ST21 2023 23 362 INX H 2023 245 JJZ CHK 2023 246 368 LOOPB INV A:H 2023 2560F 371 CHK LXI H:ST21 2023 260F 371 AND B 2023 271 373 MOV A:H 2023 271 374 MOV A:H 2023 75 CPC01 375 MOV A:H 2023 75 MOV A			334 PART I	-	
<pre>337)* affected by the other memory during the switching period. * 338)* By storing 00 ~ OF into the first specified locations subset 339)* then soon to other subset till the end of the locations * 340)* Reverse those contents in the subset n : it fails unless the' 341)* array is in the order from larSe to shall upon up ender. the * 342)* order. 343 ;***********************************</pre>					
339 ;* inen soon to other subset till the end of the locations 340 ;* Reverse those contents in the subset n : it fails unless the* 341 ;* array is in the order from large to shall upon up ender. the * 342 ;* order. 343 ;***********************************					
340 ;* Reverse those contents in the subset n : it fails unless the: 341 ;* order. 342 ;* order. 343 ;************************************					
341 ;# array is in the order from large to small unen ue enec. the * 342 ;# order. 343 ;###################################					
343 :************************************					
344 JSENSITITY TEST FOR 2114 0208 210008 345 SETS2: LXI H,ST21 0208 11FF03 344 LXI D,EN21 0208 0E00 347 MVI C,00 0210 71 348 LOUP9: MVV N.C 0211 0C 349 INR C 0211 23 350 INX H 0213 7C 351 MOV A/H 0214 FE0C 352 JNX L 0214 FE0C 352 JNX L 0214 FE0C 355 LOOP9 OCH 0215 7C 353 JNV LOOP9 0212 210008 354 REV : LXI H.ST21 0215 7C 353 MOV A/H 0217 70 360 MOV A/H 02220 EB 357 XCHG D 02221 R					•
0208 21000B 345 SETS2: LXI H,ST21 0208 11FF03 346 LXI D,EN21 0206 0E00 347 HVI C,00 0211 01 348 LGDP9: MOV M/C 0211 01 349 INR C 0212 23 350 INX H 0213 7C 351 MGV A,H 0214 FE0C 352 CPI OCH 0215 210003 354 REY: LXI H,ST21 0212 46 355 LGDFA: MOV 0215 72 353 JNZ LGDP9 0215 72 355 XCHG C 0215 72 353 MOV A,M 0215 70 358 MOV M,A 0212 18 361 DCX D 0222 18 364 CFI OAH 0223 7C 363 MOV A,H 0224 7C 364 CFI OAH 0225 FEOA 364 CFI OAH 0230 46 368 LOOPB : NOV A,H					
0200 11FF03 346 LXI D,EN21 0200 0800 347 MVI C,00 0210 71 348 L0DP9: MOV M,C 0211 0C 349 INR C 0211 0C 349 INR C 0211 7C 351 MOV A,H 0213 7C 351 MOV A,H 0214 FE0C 352 CPI OCH 0216 021002 353 JNZ L0DP9 0217 210003 354 REU : LXI H,ST21 0212 46 355 L0DFA: MOV B,H 0212 7E 357 MOV A,M 0211 70 358 MOV A,M 0211 77 360 MOV M/A 0221 77 360 MOV A/H 0222 18 361 DCX D 0223 7C 363 MOV A/H 0224 7C 363 MOV A/H 0223 7C 364 DP LOP? 0224 7C 365 JZ CHK <	0208	210008			
0210 71 348 LOOP9: MOV M,C 0211 0C 349 INR C 0212 23 350 INX H 0213 7C 351 MOV A,H 0214 FEOC 352 CPI OCH 0214 FEOC 352 CPI OCH 0214 FEOC 353 JNZ LOOP9 0217 210008 354 REU LXI H,ST21 0210 EB 355 LOOFA: MOV A,H 0217 7 360 MOV A,H 0217 7 360 MOV M,A 0221 77 360 MOV M,A 0222 18 361 DCX D 0223 23 362 INX H 0224 7C 363 MOV A,H 0227 KA2D02 365 JZ CHK 0223 S46 S68 LOOP8 D 0231					
0211 0C 349 INR C 0212 23 350 INX H 0213 7C 351 MOV A,H 0214 FE0C 352 CPI OCH 0214 FE0C 353 JNZ LOOP9 0214 521002 353 JNZ LOOP9 0210 EB 356 XCHG XCHG 0211 FE 357 MOU A,M 0212 IB 361 DCX D 0223 7C 363 MOU M/A 0224 7C 363 MOU A/H 0225 FEOA 364 CFI OAH 0227 CA2NO2 365 JZ CHK 0230 46 368 LOOPB LOOP9 0231 7D 369<					
0212 23 350 INX H 0213 7C 351 MOV A,H 0214 FE0C 352 CPI OCH 0216 221002 353 JNZ LODP9 0217 210003 354 REV LXI H,ST21 0210 EB 355 LODFA: MOV B,M 02117 7C 358 MOV B,M 0212 FE 357 MOV A,M 0217 70 358 MOV M,B 0210 EB 357 XCHG 02117 77 360 MOU M,A 02221 IB 361 DCX D 02232 364 CPI OAH 02237 FEOA 364 CPI OAH 02237 CA21002 365 JZ CHK 0230 46 368 LOOPB INOV A,L 0231 7D 369 INOV A,L 02323 S60F<					
0213 7C 351 MOV A,H 0214 FEOC 352 CPI OCH 0216 621002 353 JNZ LODP9 0212 210003 354 REV LXI H,ST21 0210 21003 354 REV LXI H,ST21 0211 7E 355 XCHG Ocus Distribution 0215 7E 357 MOV A,M 0215 70 358 MOV M,B 0220 EB 357 XCHG Ocus 0221 77 360 MOV M,A 0222 1B 361 DCX D 0223 23 362 INX H 0224 7C 363 MOV A,H 0225 FEOA 364 CFI OAH 02210 210008 367 CHK LXI H_IST21 0230 46 368 LOOPB IOV A,H 0231 7D 369					
0216 C21002 353 JNZ LODP9 0217 210008 354 REV : LXI H;3T21 0210 210098 355 LODPA: MOV B;M 0211 EB 355 XCHG 0212 7E 357 MOV A;M 0215 7C 358 MOV A;M 0220 EB 357 XCHG 0221 77 360 MOV M;A 0222 18 361 DCX D 0223 23 364 CFI OAH 0225 FEOA 364 CFI OAH 0227 CA2D02 365 JZ CHK 0228 C31002 366 JMP LOOP? 0230 46 368 LOOPB DOV A;L 0231 7D 369 NOV A;L A 0232 30 370 ADD B B 0233 EdoF 371 ANI OFH 0237 <td< td=""><td></td><td></td><td></td><td></td><td>A,H</td></td<>					A,H
0219 210008 354 REV : LXI H,ST21 021C 46 355 LDDFA: MOV B,M 021D EB 354 XCHG 021F 70 358 MOV M,B 02127 258 357 XCHG 0220 EB 357 XCHG 0221 77 360 MOV M,A 0223 23 364 DCX D 0223 23 364 CFI OAH 0225 FEOA 364 CFI OAH 0227 CA2D02 365 JZ CHK 0220 EFEOA 364 CFI OAH 0227 CA2D02 365 JZ CHK 0230 46 368 LOOPP? 0231 0231 7D 369 INOV A,L 0232 30 370 ADD B 0233 EAOF 371 ANI OFH 0235 FEOF 372 CFI OFH <td></td> <td></td> <td></td> <td>-</td> <td></td>				-	
021C 46 355 LOOPA: MOV B,M 021D EB 356 XCHG 021F 7E 357 MOV A,M 021F 7C 358 MOV M,B 021C 2B 357 XCHG 0217 70 360 MOV M,A 0221 27 360 MOV M,A 0222 1B 361 DCX D 0223 23 362 INX H 0225 FEOA 364 CFI OAH 0225 FEOA 364 CFI OAH 0225 FEOA 364 CFI OAH 0227 CA21002 365 JZ CHK 0228 210008 367 CHK : LXI H:ST21 0230 46 368 LOOPB : DOV A,L 0231 7D 369 DOV A,L 0232 SEOF 371 ANI OFH 0235 FEOF 372 CFI <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
021D EB 354 XCHG 021F 7E 357 MOV A,M 021F 70 358 MOV M,B 0220 EB 359 XCHG 0221 77 360 MOU M,A 0222 18 361 DCX D 0223 23 362 INX H 0224 7C 363 MOV A,H 0225 FE0A 364 CFI OAH 0227 CA2D02 365 JZ CHK 0227 CA2D02 366 JMP LOOP? 0220 210008 367 CHK LXI 0230 46 368 LOOPB DOV 0231 7D 369 DOV A,L 0232 30 370 ADD B 0233 E60F 371 ANI 0FH 0235 FE0F 372 CFI 0FH 0238 7C 375 MOV A,H 0238 7C 375 MOV A,H 0232 FE0C 374 INX H 0232 FE0C 375 MOV					
021F 70 358 MOV M,B 0220 EB 357 XCHG 0221 77 360 MOV M,A 0222 177 360 MOV M,A 0223 23 361 DCX D 0223 23 362 INX H 0224 7C 363 MOV A,H 0225 FEOA 364 CFI OAH 0227 CA2D02 365 JZ CHK 0227 CA2D02 366 JMP LOOP? 0221 210008 367 CHK LXI H:ST21 0230 46 368 LOOPB : DOV B,M 0231 7D 369 NOV A,L 0233 E40F 371 ANI 0FH 0235 FEOF 372 CFI OFH 0235 FEOF 373 JNZ FA12 0238 7C 375 MOV A,H 0236 FEOC				XCHG	
0220 EB 359 XCHG 0221 77 360 MOV M+A 0222 1B 361 DCX D 0223 23 362 INX H 0224 7C 363 MOV A+H 0225 FEOA 364 CFI OAH 0227 CA2D02 365 JZ CHK 0224 C31C02 366 JMP LOOP? 0210 10008 367 CHK LXI H:ST21 0230 46 368 LOOPB : NOV A+L 0231 7D 369 NOV A+L 0232 30 370 ADD B 0233 E40F 371 ANI 0FH 0233 E40F 371 ANI 0FH 0233 E40F 373 JNZ FA12 0234 23 374 INX H 0235 7E0C 375 MOV A/H 0236 7E0C					
0221 77 360 MOU M+A 0222 18 361 DCX D 0223 23 362 INX H 0224 7C 363 MOU A,H 0225 FE0A 364 CFI OAH 0227 CA2D02 365 JZ CHK 0220 C31C02 366 JMP LOOP? 0210 210008 367 CHK LXI 0230 46 368 LOOPB NOV 0231 7D 369 NOV A/L 0232 30 370 ADD B 0233 E40F 371 ANI 0FH 0233 E40F 371 ANI 0FH 0233 E40F 371 ANI 0FH 0233 E40F 374 INX H 0235 FE0F 372 CFI 0FH 0238 7C 375 MOV A/H 0238 7C 375 CPI OCH 0232 CFE0C 374 INX H 0232 C23002 377 JNZ LOOPB 0241 C397					n,8
0222 1B 361 3CX D 0223 23 362 INX H 0224 7C 363 MOV A,H 0225 7C 364 CFI OAH 0227 CA2D02 365 JZ CHK 0227 CA2D02 366 JMP LOOP? 0220 210008 367 CHK LXI Hist21 0230 46 368 LOOPB DOV A,L 0231 7D 369 IOV A,L 0232 30 370 ADD B 0233 E40F 371 ANI 0FH 0235 FEOF 372 CFI 0FH 0237 C29C01 373 JNZ FA12 0238 23 374 INX H 0238 7CC 375 MOV A,H 0232 CFEOC 374 CPI OCH 0232 C72002 377 JNZ LOOPB 0234					H/A
0224 7C 363 MOV A,H 0225 FEOA 364 CFI OAH 0227 CA2D02 365 JZ CHK 0227 CA2D02 365 JZ CHK 0224 C31C02 366 JMP LOOP? 0210 210008 367 CHK LXI HIST21 0230 46 368 LOOPB NOV A,L 0231 7D 369 NOV A,L 0232 30 370 ADD B 0233 E60F 371 ANI OFH 0237 C29C01 373 JNZ FA12 0238 Z3 374 INX H 0237 FEOC 375 MOV A,H 0238 7C2 375 MOV A,H 0232 Z3002 377 JNZ LOOPB 0234 C39701 378 JMP PSS	0222	18	361	DCX	
0225 FEOA 364 CFI OAH 0227 CA2D02 365 JZ CHK 022A C31C02 366 JMP LOOP? 021D 210008 367 CHK LXI H1ST21 0230 46 368 LOOPB NV B,M 0231 7D 369 NOV A,L 0232 30 370 ADD B 0233 E40F 371 ANI 0FH 0233 E40F 371 ANI 0FH 0235 FEOF 372 CFI 0FH 0237 C29C01 373 JNZ FA12 0238 Z3 374 INX H 0237 FEOC 375 MOV A,H 0232 FEOC 375 CPI OCH 0232 CFEOC 377 JNZ LOOPB 0241 C39701 379 JMP PSS					
0227 CA2D02 365 JZ CHK 022A C31C02 366 JMP LOOP? 021D 210008 367 CHK : LXI 0230 46 368 LOOPB NOV S/M 0231 7D 369 NOV A/L 0232 30 370 ADD B 0233 E40F 371 ANI OFH 0235 FE0F 372 CFI OFH 0237 C29C01 373 JNZ FA12 0238 23 374 INX H 0238 7C 375 MOV A/H 0232 CFE0C 374 CPI OCH 0232 75 MOV A/H OCH 0232 72001 379 JMP PSS					
022D 210008 367 CHK : LXI H:ST21 0230 46 368 LOOPB : NOV B,M 0231 7D 369 NOV A,L 0232 30 370 ADD B 0233 E60F 371 ANI 0FH 0237 C29C01 373 JNZ FA12 0238 72 374 INX H 0237 72 375 MOV A,H 0238 72 375 MOV A,H 0232 23002 377 JNZ LOOPB 0241 C39701 378 JMP PSS					
0230 46 368 LOOPB : NOV B,M 0231 7D 369 NOV A,L 0232 30 370 ADD B 0233 E60F 371 ANI OFH 0237 C29C01 373 JNZ FA12 0238 Z3 374 INX H 0237 FEOC 375 MOV A,H 0232 CFEOC 376 CPI OCH 0232 3701 JNY JMP PSS					
0231 7D 369 NOV A/L 0232 30 370 ADD B 0233 E40F 371 ANI OFH 0235 FE0F 372 CFI OFH 0237 C29C01 373 JNZ FA12 0238 23 374 INX H 0237 72 375 MOV A/H 0238 7C 375 MOV A/H 0232 FE0C 374 CPI OCH 0232 F2002 377 JNZ LOOPB 0241 C39701 379 JMP PSS					
0232 30 370 ADD B 0233 E60F 371 ANI 0FH 0235 FE0F 372 CFI 0FH 0237 C29C01 373 JNZ FA12 0238 Z3 374 INX H 0235 FE0C 375 MOV A,H 0238 7C 375 MOV A,H 0232 FE0C 374 CPI OCH 0232 C23002 377 JNZ LOOPB 0241 C39701 379 JMP PSS					
0235 FEOF 372 CFI OFH 0237 C29C01 373 JNZ FA12 023A 23 374 INX H 023B 7C 375 MOV A,H 023C FEOC 374 CPI OCH 023E C23002 377 JNZ LOOPB 0241 C39701 378 JMP PSS					
0237 C29C01 373 JNZ FA12 023A 23 374 INX H 023B 7C 375 MOV A,H 023C FEOC 376 CPI OCH 023E C23002 377 JNZ LOOPB 0241 C39701 378 JMP PSS					
023A 23 374 INX H 023B 7C 375 MOV A,H 023C FE0C 374 CPI OCH 023E C23002 377 JNZ LOOPB 024L C39701 379 JMP PSS					
023B 7C 375 MOV A/H 023C FEOC 374 CPI OCH 023E C23002 377 JNZ LOOPB 0241 C39701 379 JMP PSS					
023E C23002 377 JNZ LOOPB 0241 C39701 379 JMP PSS	023B	70	375		
0241 C39701 379 JMP PSS					
			-		
			379	END	

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

CHK FAIL LOOPS Map	A 022D A 0080 A 012B A 0055	CHK1 LEDOF LOOP6 OLP	A 00C6 A 01A1 A 0137 A 003D	CON1 LEDON LOOP7 0000	A 0043 A 0168 A 0163 A 0014	CONT2 LOOP1 LOOP8 FASS	A 0020 A 0182 A 0061	EN21 L00P2 L00P9 FAT	A 08FF A 0023 A 0210 A 0080	EN81 LOOF3 LOOFA FAT2	A 20F ^c A 002. A 021. A 020
REV ZOTE	A 0219 A 0178	SETS2	A 020B	SETST	A 0085	ST21	A OBOO	ST81	a 2000	TE21	A 012

ASSEMBLY COMPLETE, NO ERRORS

APPENDIX B

TESTING PROGRAM LISTING FOR 16K DRAM

ISIS-II BOBO/BOB5 MACRO) ASSEMBLER) V4.1	MOI	DULE PAGE	1
LOC DBJ LINE	SOURCE S	TATEMENT		
	;*************************************	16K DYNA ***********	AMIC MEMORY TES ***************	57. * ***********
٤ ٢ ١ 1 1 1 1 1 1 1 1	<pre>i ;* This testing) ;* have for the) ;* that the USP ;* method Bither ;* setting the</pre>	Program use stat:c KAH r can nave a c with or w togsie swite	es tne Same als test. The only a Choi Ce to sel itnout tne MAPF Ch on the tront	orithn as We • g difference is* lect the testins 'EI 1 test Dy * ; panel. *
16	FART I, PATTER		tarting address	for (116
7FFF 18	B EN16 EQU	7FFFH Jer	nd address tor	
0000 19 0000 3EFF 20 0002 D302 23		2Н	ssign the 1/0 r	ort
0004 3EFE 2: 0006 D300 2:	OUT	A,OFEH ;se Oh	et the 4116 (n:	icator on
0008 3E00 24 000A D303 25	S OUT	ЗН	ssign the 1/0 =	ort
OCOC DB01 20 OCOE E601 27		01H Fre	ead the toggie	Switch Position
0010 4F 25 0011 110040 25 30	2 LXI			hory locations w:th
0014 36FF 3: 0016 23 3: 0017 7C 3: 0018 FEB0 34 0014 C21400 3:	LOOF1: MVI INX MOV CFI	H)0FFH H A)H S0H L00P1	1	
001D 210040 30			ove frrst locat et ready for t:	
0010 7D 38 0011 FEOO 39 0023 CA7000 40	B LOOP?: MOV CPI JZ	A/L / H OOH LEDON	f L=0 so to LEM	ION routine
0026 FEB0 41 0028 CA7700 42	2 JZ	LEDOF	f L=80 so to L9	LNUF FOUT He
002B 3EFE 43 002D 77 44	MOV	MaA inc	ove FE to A ove A to memory	location
002E 7E 45 002F F6FE 46		A)M)nu OFEH	ove back to A	
0031 FEFE 47 0033 C26B00 48	• • •		ompare with FE ot equal, so to	FAIL
0036 C34200 49 0039 7C 50	JMF	ZERO ; y	es, so to ZERO s test complete	routine
003A FEB0 51 003C C22000 51	. CFI	BOH	o, so to LOOP2	-
003F C37E00 51 0042 79 54	3 7500 - MHG	SENST Jy	es, so to SENS heck the togsle	
•••••••••••••••••••••••••••••••••••••••		/ _ /		

	MODULE	FAGE	2
--	--------	------	---

LOC	OBJ	LINE		SOURCE	STATEMENT	
003P	7E	55		ноч	A, M	Jaove back to A
0030	F6FE	56		ORI	OFEH	
003E	FEFE	57		CFI	OFEH	icompare with FE
0040	C27D00	58		JNZ	FAIL	inot equal, so to FAIL
0043	C34F00	59		JMP	ZERO	ives, so to ZERO routine
0046	70	60	BBB :	MOV	A,H	Jis test completed ?
0047	FE00	61		CFI	оон	
0049	000220	62		JNZ	LOOF2	ino, so to LOOP2
0040	C39300	63		JMP	SENST	jyes, go to SENST
004F	3AFF20	64	ZERO :	LŪA	20FFH	Icheck the toggle position
0052	E602	65		ANI	02H	
0054	FE02	. 66		CFI	02H	icompare with 02
0056	CA7300	67		JZ	CCC	Jequal, so to CCC
0057		68		MOV	Ert	ino, store HL to DE
005A		69		MOV	D'H	
005P		70		INX	н	Jincrease HL
005C		71		MOV	AIL	Jcheck if L larger than FF
	0600	72		SUI	он	
	CA7100	73		JZ	AAA	jyes, so to AAA
0062			L00P4:		A≠M	jno, start one test
	F6FE	75		ORI	OFEH	
	FEFF	76		CFI		Jcheck if is one?
	C27D00	77		JNZ	FAIL)no, so to FAIL
006A		78		MOV	ArL	
006B		79		INX	н	Inext location
	FEFF	80		CFI		fif it larger than FF
006E	C26200	81		JNZ	L00P4	ino, so to LOOP4
0071	6F	82	AAA :	MOV	L/E	jyes, mov DE back to HL
0072	62	83		MOV	HJD	
0073	23 ,	84	: 222	INX	н	Fincrease HL
0074	C34600	85		JMP	BBB	ieo to BBB
0077	3AFA20	86	PASS :	LDA	20FAH	JPASS indicator data
007A	D322	87		OUT	22H	
007C	76	88		HLT		
007D	3AFB20	87	FAIL :	LDA	20FBH	JFAIL indicator data
0080	D322	90		OUT	22H	
0082	76	91		HLT		
0083	3AFC20	92	LEDON:	LDA	20FCH	ILEDON indicator data
0086	0322	93		OUT	22H	
	C33900	94		JMP	LOOP3	
	3AFD20	95	LEIOF :			JLEDOFF indicator data
008E	0322	96		OUT	22H	
0070	C33800	97		JMP	LOOP3	
		98	JThis P	art of	the test i	is to verify the sensitivity of
		99	imemory			
		100	JThe fo	lling p	rogram is	to store 0,1,0,1 to memory
			Flocati			
0093	210080	102	SENST:	LXI	H,ST64	Fload 0/1/0/1sequence to memory
0096	11FFFF	103		LXI	D,EN64	
0099	0E00	104		MVI	C,00	
007B		105	L00P5:	MOV	H,C	
0090	00	106		INR	С	
007D	23	107		INX	н	
009E	70	108		MOV	A,H	fif it complete?
009F	FEOO	107	-	CPI	оон	~

S S-	1 8080/8085	MACRO	ASSEMBLER, ♥4	. 1	MODULE	FAGE	3
LOC	OBJ	LINE	SOURCE	STATEMENT			
0091 0090 0091 0095 0095	2B 77			LOOPA 9 program		SPEH SPEH SELOOPA Sck if ti	ne contents of e uhi ch we demand.
00A5 00A6 00A7 00AQ 00AB 00AC 00AE	23 BE CA6B00 7C	117 118 117 120 121 122 133 124 125 126 127	CHK : LXI LOOPB: MOV INX CMP JZ NOV CFI JZ JMP END	H,ST16 A,M H FAIL A,H BOH PASS LOOFP	inove M increas icompare if not icheck i ino, so	e H uith M equal s f test	D to FAIL complete

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

ASSEMBLY COMPLETE, NO ERRORS

APPENDIX C

TESTING PROGRAM LISTING FOR 64K DRAM

ISIS-II 8080/8085	MACRO	ASSEMBLE	R; 94.1		MODULE	PAGE	1
LOC OBJ	LINE	s	OURCE S	TATEMENT			
			******				*****
	_	;* ;******	******		YNAMIC :		±S ● *******
	4	;					
	6	J DESCRIP					
	7	•					***************** igor:thm as we *
	9	}¥ have	for the	static F	RAM test.	The on	ly difference is*
							elect the testing PPED 1 test by *
	12	;¥ setti	ng tne	toggle sw	itch on	the from	nt panei. 🔺
							u e שפהסר ש method* e 3055. There are
				FFFF loca	stion .	selected	by one I/O port#
	17			*****	*****	****	* ********
	13 19						
	20	PART I		N TEST			
3000 FFFF	21 22	3764 EN64	EQU EQU	8000H OFFFFH		ng addre: ires: fo	ss for 4164 r 4154
0000	23		ORG	СН			
0000 3E02 0001 D329	24 25		MVI OUT	A,02H 20H	jassian	the 1/0	PORT
0004 3EFE	26		MV	A, OFEH	;set the	e 4164 🕫	ndicator on
0006 D322 0008 32FE20	27 29		OUT STA	22H 20FEH	store	for late	r Usase
000B DB21 000D 32FF20	29 30		I N STA	21H 20FFH	Jread th		e switch position
0010 21FA20	31		LXI	H, 20FAH	,		
0013 36FC 0015 23	32 33		MVI INX	M#OFCH H	jstore '	the 1st	routine PASS data
0016 36FA	34		MVI	MANFAH	;store	the 1st	routine FAIL data
0018 23 0019 36F8	35 36		INX MVI	H M,OFSH	;store	the 1st	routine LLDON data
0013 23 0010 36FE	37 38		INX nu∎	H N≠0FEH			routine LEDOF data
001E 210080	33	START:		H∎ST64			emory locations with
0021 36FF	40 41	L00P1;	MUT	n,0FFH	JFF		
0023 23	42		INX	Н			
0024 7C 0025 FEOO	43 44		MOV CFI	A7H OOH			
0027 C22100	45		JNZ	LOOP1			otion to 11
002A 210090	46 47		LXI	H,ST64			ation to H <u>L</u> , the test.
0021 71 0025 FEOO	48 49	L00P2:	MOV CPI	A,L COH	71f L=0	so to 🛓	ENON routine
0030 C A9300	50		JZ	LEDON			
0033 FEB0 0035 CA8800	51 52		CPI Jz	BOH Ledof	Fif L=8	o so to	LENOF routine
0038 3EFE	53	- LOOP3:	MVI	A,OFEH	imove F		~.
003A 77	54		MOV	MyA	;move A	to m emo	ry location

~

LOC	OHJ	LINE		SOURCE S	TATEMENT	
0043	FE01	55		CFI	01H	Jcompare with 01
0045	CA6200	56		JZ	200	iequal, so to CCC
0048		57		MOV	EIL	ind, store HL to DE
0049		58		MOV	D/H	• • • •
004A		59		INX	Η	Johnsteine HL
0048		60 61		MOV Sui	A J L CH	icheck if L larser than FF
	D600 Ca6000	62		JZ	666	iyes, go to AAA
0051		63	LOOP4:		AJM	ing, start one test
	FOFE	64		OR I	OFEH	
	FEFF	65		CFI	OFFH	Jcheck if it one?
0056	C26B00	66		JNZ	FAIL	ino, do to FAIL
0059		67		nov	AIL	
005A		68	-	INX	Н	inext location
	FEFF	69		CPI	OFFH)if it larger than FF ?
	C25100	70		JNZ	LOOP4	ino, so to LOOP4
0060		71	AAA :	MOV	LIE	jyes, aov DE back to HL
0061 0061		72 73	ccc :	MOV	н,р Н	jincrease HL
	C33900	74	u	INX JMP	п BBR	jso to BBH
	3EFC	75	PASS :		A, OFCH	FASS indicator data
	0300	76	17.00	OUT	CH CH	
006A		77		HLT	G.I.	
	JEFA	78	FAL:	· · — ·	A, OFAH	FAIL indicator data
	D300	79		ОЛ	ан	
006F		80		HLT		
	3EFB	81	LEDON:		A, OF BH	;LEDON indicator data
	D300	82		OUT	СН	
	C32B00	83		JMP	LOOP3	
0077		84 85	LEDOF:		A, OFEH OH	ILEDOFF indicator data
	D300 C32B00	86		JMF	LOOP3	
0070	002000		This P			is to verify the sensitivity of
			INCROTY			
				lling pr	osram is	to store 0,1,0,1 to memory
			Hocatio			
007E	110040	91	SENST:	LXI	H,ST16	load 0,1,0,1sequence to memory
0031	11FF7F	92		LXI	D/EN16	
	OECO	93		MVI	C,00	
0085		94	LCOP5:		M,C	
0087		95		INR	С	
0098		96		INX	н	
0009 009A		97 98		MOV CPI	а,н 30Н	lif it complete?
	028600	90		JNZ	LOOP5	ino, 90 to LOOPS
	020000		The fo			s to interchange the memory
						4002~4003,
008F	210040	102		LXI	H,ST16	• •
0092		103	LOOPA:	M07	B,M	
0073		104		INK	Н	
0074		105		nov	AJH	,
0095		106		CF	80H	• • • •
0097	CAA200	107		JZ	CHK	if reversion is completed so
COYA	75	103		MOV	A . M	ito check it.
UIA		109		nuv	AZM	jnove M to A

LÖC OBJ	LINE SOURCE STATEMENT
00A1 C29B00	110 JNZ LOOPS ing, so to LOOPS
	111 JThe following program is to interchange the memory
	112 ;content , 8000 ~ 8001 , 8002~8003,
00A4 210080	113 REV : LXI HIST64
00A7 46	114 LOOPA: NOV B/H
00AB 23	115 INX H
00A7 7C	116 MOV A)H J
OOAA FEOO	117 CPI OOH
OOAC CAP700	118 JZ CHK Iif reverision is completed so
	119 Jto check it.
OOAF 7E	120 MOV A.H imove n to A
OOPO 70	121 MOV M,B Jacve I to B
00B1 2B	122 DCX H jdecrease H
00B2 77	123 NOV H,A JADVE A to N
0083 23	124 INX H Jincrease H
0084 C3A700	125 JMP LOOPA JUMP to LOOPA
	126 JThe following program is to check if the contents of
	127 jeach location are in the right sequence which we demand.
00B7 210080	128 CHK ILXI HIST64
OOPA 7E	129 LOOPB: MOV ArM Jnove M to A
00PR 23	130 INX H Jincrease H
OOPC RE	131 CMP M Jcompare with M
00BD CA7000	132 JZ FAIL IIf not equal so to FAIL
00C0 7C	133 MOV AIH Jcheck if test complete
00C1 FEOO	134 CPI OOH
00C3 C2BA00	135 JNZ LOOPP ing, so on
00C6 3AFE20	136 LDA 20FEH Jyes , load 20FE to A
90C9 FE06	137 CFI OGH jcompute with 6
00CH CA7700	138 JZ PASS Jif it is equal so to PASS
OOCE 21FA20	139 LXI H,20FAH ino, reset
00D1 3604	140 MVI M,04H JPASS indicator data
0003 23	141 INX H
0004 3602	142 MVI M,02H JFAIL indicator data
00D6 23	143 INX H
0007 3600	144 MVI M,OH /LEDON indicator data
0009 23	145 INX H
OODA 3606	146 MVI . M.O6H JLEDOF indicator data
OOPC 7E	147 MOV A, M
OODD 0322	148 OUT 22H Freset LED
OODF 32FE20	149 STA 20FEH I
00E2 C31EC0	150 JMP START ; so to another 8000 to
	151 FFFF routine.
	152 END

ISIS-II 8080/8085 MACRO ASSEMBLER, V4.1 MODULE PAGE 3

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

USER S	SYMBOLS										
AAA	A 0071	BBB	A 0046	CCC	A 0073	CHK	A 0087	EN64	A FFFF	FAIL	A 007D
LEDON	A 0083	LOOP1	A 0021	LOOP2	A 002D	LOOP 3	A 0038	LOOP4	A 0062	LOOPS	A 0098
LOOP0	A OOBA	PASS	-A 0077	REV	A 00A4	SENST	A 0093	ST64	A 8000	START	A 001E

ISIS-II 8080/8085 MACRO ASSEMBLER, V4.1 MODULE PAGE 4

ASSEMBLY COMPLETE, NO ERRORS

APPENDIX D

SPECIFICATION OF CHIPS USED IN THE CHECKERS

			-	_		
Xı	d.	1		40	þ	VCC
X2	d	2		39	þ	HOLD
RESET OUT	d	3		38	Þ	HLDA
SOD	d	1		37	Þ	CLK (OUT)
SID	d	5		36	Þ	RESET IN
TRAP	d	6		35	Þ	READY
RST 7.5		7		34	Þ	10/M
RST 6.5	d	3		33	Þ	S1
RST 5.5		Э		32	Þ	RD
INTR		10	8085A	31	Þ	WA
INTA	d	11	30654	30	Þ	ALE
ADo	d	12		29	Þ	So
AD1	4	13		28	Þ	A15
AD2	d	14		27	Þ	A14
403	đ	15		26	Þ	A13
AD4	d	16		25	Þ	A12
AD5	d	17		24	Þ	A11
AD6		18		23	Þ	A10
AD7	d	19		22	Þ	Ag
∨ss	d	20		21	Þ	Ag
	_			_		+

.

Figure 2 8085A Pinout Diagram

8085A FUNCTIONAL PIN DEFINITION

The following describes the function of each pin:

Symbol	Function	
A8 - A 15 (Output. 3-stat.)	Address Bus: The most significant 8 bits of the memory aaaress or the 8 bits of the I/O address. 3-stated dur- ing Hold and Halt modes and during RESET.	HOL (inpu
AD ₀₋₇ (Input/Output. 3-state)	Multiplexed Address/Data Bus: Low- er 8 bits of the memory address (or I/O address) appear on the bus dur- ing the first clock cycle (T state) of a machtne cycle. It then becomes the data bus during the secona ana third clock cycles.	
ALE (Output)	Address Latch Enable It occurs dur- ing the first clock state of a machine cycle and enables the address to get latched into the on-chip latch of pe- ripherals. The falling edge of ALE is set to guarantee setup and hold times for the address information. The fall- ing edae of ALE can also be used to strobe the status information. ALE is never 3-stated	HLD/ (Out
So. S 1, and IO /M		(Inpu
(Output)	Machine cycle status: IO/M Si So Status 0 0 1 Memory write 0 1 0 Memory read 1 0 1 I/O write 1 1 0 I/O read 0 1 1 Opcode fetch 1 1 Interrupt Acknowledge 0 0 Halt X X Hold X X Reset * = 3-state high impedance	

•	= 3-state	nign	impedani

X = unspecified

Symbol	Function
	St can be used as an advanced \mathbb{R}/\overline{W} status. $10/\overline{M}$.So and St become valid at the beginning of a machine cycle and remain stable throughout the cycle. The falling edge of ALE may be used to latch the state of these lines
RD (Output. 3-state)	READ control A low level on \overline{RD} in- dicates the selected memory or UO device is to be read and that the Data Bus is available for the data transfer 3-stated during Hold and Halt modes and during RESET
WR (Output, 3-atate)	WRITE control A low level on \overline{WR} in- dicates the data on the Data Bus is to be written into the selected memory or I/O location Data is set up at the trailing edge of \overline{WR} 3-stated during Hold and Halt modes and during RESET
READY (Input)	If READY is high during aread or write cycle. it indicates that the memory or peripheral is ready to send or receive data If READY is low the cpu will wait an integral number of clock cycles for READY to go high before completing the read or write cycle
HOLD (Input)	HOLD indicates that another master is requesting the use of the address and data buses The cpu. upon re- ceiving the hold request. will re- linguish the use of the bus as soon as the completion of the current bus transfer Internal processing can con- tinue The processor can regain the bus only alter the HOLD is removed When the HOLD is acknowledged the Address. Data. AD, WR, ana IO/M lines are 3-stated
HLDA (Output)	HOLD ACKNOWLEDGE Indicates that the cpu has received the HOLD request and that it will relinquish the bus in the next clock cycle HLDA goes low after the Hold request is removed. The cpu takes the bus one half clock cycle alter HLDA goes low
INTR (Inpul)	INTERRUPT REOUEST is used as a general purpose interrupt it is sampled only during the next to the last clock cycle of an instruction and during Hold and Halt states if it is active the Program Counter PC will be inhibited from incrementing and an INTA will be issued During this cycle a RESTART or CALL instruction can be inserted to jump to the interrupt service routine. The INTR is enabled and disabled by software.

abled by Reset and immediately atter an interrupt is accepted.

8085A FUNCTIONAL PIN DESCRIPTION (Continued)

Symbol	Function	Symbol	Function
INTA (Output)	INTERRUPT ACKNOWLEDGE is used instead of and has the same timing asi RD during the instruction cycle atter an INTR is accepted. It can be used to activate the 8259 Interrupt chip or some other interrupt port.		Schmitt-triggered input, allowing connection to an R-C network for power-on RESET delay. The cpu is held in the reset condition as long as RESET IN is applied.
RST 5.5 RST 6.5 RST 7.5 (Inputs)	RESTART INTERRUPTS. These three nputs nave the same timing as INTR exceot they cause an internal RE- START Io be automatically inserted	RESET OUT (Output)	Indicates cou is being reset. Can be used as a system reset. The signal is synchronized to the processor clock and lasts an integral number of clock periods.
	The priority of these Interrupts is ordered as shown in Table 1. These interrupts have a higher priority than INTR. In addition, they may be indi- vidually masked out using the SIM instruction.	X ₁ , X ₂ (input)	X1 and X2 are connected to a crystal. LC, or RC network to drive the internal clock generator X1 can also be an external clock input from a logic gate. The input frequency is divided by 2 to give the processors internal oper-
TRAP (Input)	Trap Interrupt :s a nonmaskable RE- START interrupt. It :s recognized at		ating frequency
	the same time as INTR or RST 5.5-7 5. It is unaffected by any mask or Inter- rupt Enable. It has the highest priority	CLK (Output)	Clock Output for use as a system clock The period of CLK is twice the Xi. X ₂ input period
RESET IN (Input)	of any interruot. (See Table 1) Sets the Program Counter to zero and resets the interrupt Enable and HLDA flip-flops. The data and address buses	SID (Input)	Serial input data line. The data on this line is loaded into accumulator bit 7 whenever a RIM instruction is exe- cuted.
	and the control lines are 3-stated dur- ing RESET and because of the asyn- chronous nature of RESET, the pro- cessor's internal registers and flags	SOD (Output)	Serial output data line The output SOD is set or reset as specified by the SIM instruction.
	may be altered by RESET with unpre-	Vcc	+5 voit supply.
	dictable results. RESET IN is a	Vss	Ground Reference

TABLE 1. INTERRUPT PRIORITY, RESTART ADDRESS. AND SENSITIVITY

Name	Priority	Address Branched To (1) When Interrupt Occurs	Type Trigger
TRAP	1	24H	Rising edge AND high level until sampled
RST 7 5	2.	3CH	Rising edge (latched)
RST 6 5	3	34H	High level until sampled
RST 55	4	2CH	High level until sampled
INTR	5	See Note 2	Hign level until sampled

NOTES.

(1) The processor pushes the PC on the stack before branching to the indicated address.

(2: The address branched to depends on the instruction provided to the cpu when the interrupt is acknowledged.

TYPES SN54ALS373, SN54AS373, SN74ALS373, SN74AS373 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS 02661, APRIL 1982 - REVISED DECEMBER 1983

- 8 Latches in a Single Package
- 3-State Bus-Driving True Outputs
- Full Parallel Access for Loading
- Buffered Control Inputs
- P-N-P Inputs Reduce D-C Loading on Data Lines
- Package Options Include Both Plastic end Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

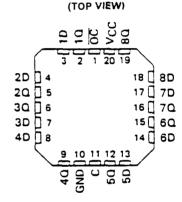
Incription

These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively lowmpedance loads. They are particularly suitable for implementing buffer registers, I/O pons, bidirectional bus drivers, and working registers.

The eight latches of the 'ALS373 and 'AS373 are transparent D-type latches. While the enable (C) is high the Q outputs will follow the data (D) inputs. When the enable is taken low, the Q outputs will be latched at the levels that were set up at the D nputs.

A buffered output-control input $(\overline{\mathbf{OC}})$ can be used to place the sight outputs in either a **normal** logic state (high or low logic **levels**) or a high-impedance state. In the high-impedance state the outputs neither load nor **drive** the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

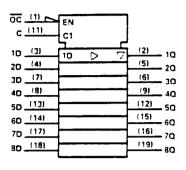
The output control \overrightarrow{OC} does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are off.

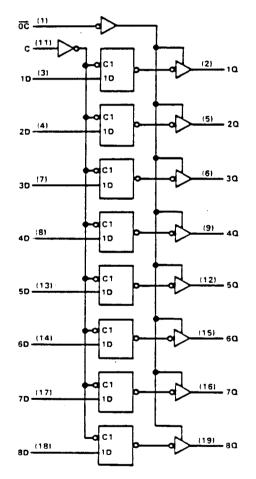

The SN54ALS373 and SN54AS373 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74ALS373 and SN74AS373 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE LEACH LATCH)

	INPUTS		OUTPUT
ŌĊ	ENABLE C	D	a
Ļ	н	н	н
L	н	L	L
L	٤	х	Qo
н	х	х	Z

SN54ALS373, SN54AS373 J PACKAGE SN74ALS373, SN74AS373 N PACKAGE
(TOP VIEW)
10 2 19 80
1 D 🖸 3 18 🗍 8 D
20 🛛 4 🛛 17 🗍 70
20 5 16 70
· 30 🗍 6 15 🗍 60
3D 🗍 7 🛛 14 🗍 6D
48 6 \$ 136 58


SN54ALS373, SN54AS373 . . . FH PACKAGE SN74ALS373, SN74AS373 . . . FN PACKAGE


TYPES SN54ALS373, SN54AS373, SN74ALS373, SN74AS373 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

lo. c symbol

.

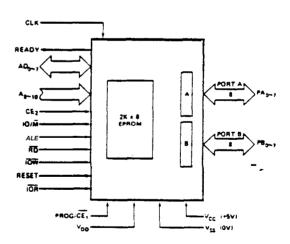
logic diagram (positive logic)

Pin numbers shown are for J and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage. V _{CC}	 		71
Input voltage	 		7 1
Voltage applied to a disabled 3-state output	 		5.5
Operating free-air temperature range: SN54ALS373, SN54AS373	 	- 5 5	°C to 125 ℃
SN74ALS373, SN74AS373	 		0°C to 70 %
Storage temperature range	 	- 65	°C to 150Y

- ∎ 2048 Words × 8 Bits
- Single + 5V Power Supply (Vcc)
- Directly Compatible with 8085A and 8088 Microprocessors
- U.V. Erasable and Electrically Reprogrammable
- Internal Address Latch


- 2 General Purpose 8-Bit I/O Ports
- Each I/O Port Line Individually Programmable as Input or Output
- Multiplexed Address and Data Bus
- 40-Pin DIP

The Intel® 8755A is an erasable and electrically reprogrammable ROM (EPROM) and I/O chip to be used in the 8085A and 8088 microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. It has a maximum access time of 450 ns to permit use with no wait states in an 8085A.CPU.

The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 port lines, and each I/O port line is individually programmable as input or oulput.

The 8755A-2 is a high speed selected version of the 8755A compatible with the 5 MHz 8085A-2 and the full speed 5 MHz 8088.

40 | Vcc 39 | 78, PROG AND CE, CE, [] 2 CLK C 38 0 98 2 з 37 2 185 RESET C Voo C 36 2 *8. 5 READY 35 783 34 0 PB, 33 0 PB, 2 8 AD [] 9 32 0 080 iow d 8755A/ 31 0PA, 10 8755A-2 30 5 . ALE C 11 *°, [29 DPAs 12 28 DPA. A0, 0 13 A0, [14 27 0 443 *°, C 25 2 1 24 7 15 A0, [] 25 274 16 17 24 24 ^U_ [23 . 410 18 AD, [] 19 20 21 Vss

PIN CONFIGURATION

BLOCK DIAGRAM

8755A FUNCTIONAL PIN DEFINITION

Symbol	Function	Symbol	Function
ALE	When Address Latch Enable goes high, AD0-7, IO/M, A6-10, CE2, and CE1 enter the address latches. The signals AD, IO/M, A0-10, CE2 are latched in at the trailing edge of ALE.		READY is a 3-state output controlled by CE ₂ , CE ₁ , ALE and CLK. READY is lorced low when the Chip Enables are active during the time ALE is high and remaths low until the rising eage of the next CLK. iSee Figure 6
AD ₀₋₇ (input/output)	Bidirectional Address/Data bus. The lower 8-bits of the PROM or I/O address are applied to the bus lines when ALE is high. During an I/O cycle. Porr A or B are	PA ₀₋₇ (input/output)	These are general purpose I/O pins. Their input/output direction is deter- mined by the conlents of Dara Direc- tion Register (DDR) PortAis selected
	selected based on the latched value of AD ₀ . If AD or IOR is low when the latched Chip Enables are active, the output buffers present data on the		for write operations when the Chip Enables are active and IOW is low and a 0 was previously latched from ADo, AD1.
As-10 (input)	bus. These are the high order bits of the PROM address. They do not affect I/O operations.		Read operation is selected by either IOR low and active Chip Enables and AD ₀ and AD ₁ low or IO/M high RD low, active Chip Enables, and AD ₀ and AD ₁ low
PROG/ĈÊ1 ĈE2 (Input)	Chip Enable Inputs: CE is active low and CE ₂ is active high. The 8755A can be accessed only when BOTH Chip Enables are active at the time the ALE signal latches them up. If	PB ₀₋₇ (input/output)	This general purpose I/O port is identical to Port A except that it is selected by a 1 latched from AD ₀ and a 0 from AD ₁ .
	either Chip Enable input is not active, the AD0-7 and READY outputs will be in a high Impedance state. CE1 is also used as a programming pin. (See	RESET (Input)	In normal operation, an input high on RESET causes all pins in Ports A and B to assume input mode (clear DDR register).
IO/M (input)	section on programming.) If the latched IO/\overline{M} is high when \overline{RD} is low, the output data comes from an I/O port. If it is low the output data comes from the PROM.	IOR (input)	When the Chip Enables are active a tow on ICR will output the selected I/O port onto the AD bus IOR low performs the same function as the combination of IO/M htgh and RD
RD (input)	If the latched . Chip Enables are active when RD goes low, the AD 0-7 output		Iow. When IOR is not used in a system. IOR should be tied to Vcc ("1"
	buffers are enabled and output either the selected PROM location or I/O	Vcc Vss	+5 vol: supply. Ground Reference.
	port. When both RD and IOR are high. the ADo-7 output buffers are 3-stated.		Vop is a programming voltage. and
IOW	If the latched Chip Enables are active.		must be tied to +5V when the 8755A is being read.
∘input)	a low on IOW causes the output port pointed to by the latched value of AD ₀ to be written with the data on AD ₀₋₇ . The state of IO/\overline{M} is ignored.		For programming. a high voltage is supplied with Voo=25V typical See section on programming.
CLK (input)	The CLK is used to force the READY into its htgh impedance state after it has been forced low by CE1 tow. CE2 high, and ALE high.		

-

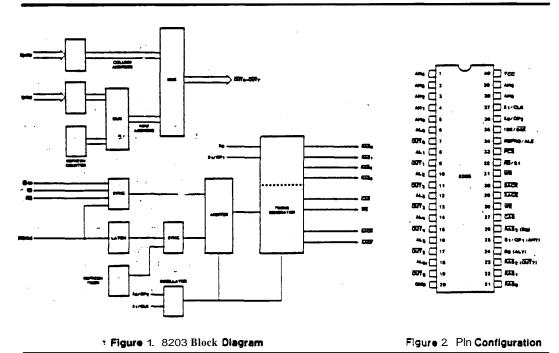
_

- 8203 64K DYNAMIC RAM CONTROLLER

Rovides All **Signals** Necessary to Control 64K (2164) and 16K (2117, 2118) Dynamic **Memories**

Directly Addresses and Drives Up to 64 **Devices** Without External Drivers

Provides Address Multiplexing and Strobes


Rovides a Refresh **Timer** and a Refresh **Counter**

Provides Refresh / Access Arbitration

hternal Clock Capability with the 8203-1 and the 8203-3

- Fully Compatible with Intel^a 8080A, 8085A, iAPX 88, and iAPX 86 Family Microprocessors
- Decodes CPU Status for Advanced Read Capability In 16K mode with the 8203-1 and the 8203-3.
- Provides System Acknowledge and Transfer Acknowledge Signals
- Refresh Cycles May be Internally or Externally Requested (For Transparent Refresh)
- Internal Series Damping Resistors on All RAM Outputs

e Intel⁹ 8203 is a Dynamic Ram System Controller designed to provide all signals necessary to use 2164.2118 2117 Dynamic RAMs in microcomputer systems. The 8203 provides multiplexed addresses and address roots, refresh logic, refresh/access arbitration. Refresh cycles can be started internally or externally. The 20-1 and the 8203–3 support an internal crystal oscillator and Advanced Read Capability. The 8203–3 is a 85% V_{CC} rt

I Greation Adams No Responsibility Zz the Use of Any Circuitry Other Than Circuitry Embodies in an intel Product. No Other Circuit Patent Licenses are impred. JULY 1982 U . 3-259 ORDER NUM BER: 21044-002

_

	Pin	i	
Symbol	No.	Туре	Name and Function
AL0 ÅL2 AL3 AL4 AL5 AL6	8 10 12 14 18 18	1 - 1 1 1 1	Addreaa Low: CPU address In- puts ured to generate memory row address.
AH0 AH1 AH2 AH3 AH4 AH5 AH6	5 4 3 2 1 39 38	1 1 1 1 1 1	Address High: CPU address In- puts ured to generate memory column address.
80/AL7 81/OP1/ AH7	24 25	1	Bank Select Inputs: Used to gate the appropriate RAS output for a memory cycle. B ₁ /OP ₁ op- tion used to select the Advanced Read Mode. (Not available in 84K mode.) See Figure 5. When in 64K RAM Mode. pins 24 and 25 operate as the AL ₇ and AH7 address inputs.
PCS	33	1	Protected Chip Select: Used to enable the memory read and write Inputs. Once a cycle is started. it will not abort even if PCS goes inactive before cycle completion.
WA	31	T	Memory Write Request.
RD/S1	32	1	Memory Road Request: \$1 function used in Advanced Read mode selected by OP 1 (pin 25).
REFRQ/ ALE	34	ł	External Refresh Request: ALE function used in Advanced Read mode. selected by OP 1 (pin 25).
	7 9 11 13 15 17 10	0000000	Output of the Multiplexer: There outputs are designed to drive the addresses of the Dy- namtc RAM array. (Note that the OUT _{0.7} pins do not require In- verters or drivers for proper op- eration.)
	28	0	Write Enable: Drives the Write Enable inputs of the Dynamic RAM array.
	27	0	Column Address Strobe: This output is used to latch the Col- umn Address into the Dynamtc RAM array

Table 1	Pln	Descrip	ptions
---------	-----	---------	--------

Pin No. Typo Name and Function RAS0 21 0 Row Addreas Strobe: Unatterned to the Row Address in bank of dynamic RAMs. RAS1 22 0 latch the Row Address in bank of dynamic RAMs. RAS2/ 23 0 bank of dynamic RAMs. OUT7 ed by the 8203 Bank Selection (B0, B1/OP1) in 64K to only RAS0 and RAS1 are able: pin 23 operates as and pin 28 operates as and pin 28 operates as to bank select input. XACK 29 0 Transfer Acknowledge output is a strobe indicatinid data durting a read cy data written durting a write	sed Io
RAS0 21 O Row Addreaa Strobe: U. RAS1 22 O latch the Row Address in bank of dynamic RAMs.s RAS2/ 23 O bank of dynamic RAMs.s OUT7 ed by the 8203 Bank Sele ed by the 8203 Bank Sele RAS3/B0 28 I/O (B0, B1/OP1) In 64K in only RAS0 and RAS1 are able: pin 23 operates as and pin 28 operates as and pin 28 operates as the bank select input. XACK 29 O Transfer Acknowledge output is a strobe indicatini id data during a read cy	sed I
FAS1 22 O latch the Row Address in bank of dynamic RAMs, so ed by the 8203 Bank Seie OUT7 RAS3/B0 28 I/O (B0, B1/OP1) In 64K only RAS0 and RAS1 are able: pin 23 operates as and pin 28 operates as bank select input. XACK 29 O Transfer Acknowledge output is a strobe indicatinitid data during a read cy	sed I
output is a strobe indicati id data durting a read cy	select ct pins mode, avail- CUT7
XACK can be used to latcl data from the RAM array.	ng val- /cle or cycle h vaiid
SACK 30 O System Acknowledge: output indicates the begin a memory access cycle. be used as an advanced for acknowledge to ein wait states. (Note. If a refreat cycle, SACK is do until XACK in the memo- cess cycle).	ning of It can trans- minate emory urtng a elayed
X ₀ /OP2 36 I/O X ₁ /CLK 37 I/O Oscillator inputs: These are designed for a quartz it to control the frequency oscillator. If X ₀ /OP2 is a to pin 40 (VCC) or if X ₀ // connected to ±12V throw 1KΩ resistor then X ₁ /Cl comes a TTL input for an nal clock. (Note: Crystal for the 8203-1 and the 8 only).	crystal of the horted OP ₂ 18 bugh 1 LK be- exter- moda
change function based	or 648 23-26
mode of operation.	
mode of operation. V _{CC} 40 Power Supply: +5V.	

Functional Description The 8203 provides a complete dynamic RAM controller for microprocessor systems as well as expansion memory boards. All of the necessary control signals are provided for 2164.2118 and 2117 dynamic RAMs.

The 8203 has two modes, one for 16K dynamic RAMs and one for 64Ks. controlled by pin 35.

MOS LSI

TMS2716 2048-WORD BY 8-BIT ERASABLE PROGRAMMABLE READONLY MEMORIES

DECEMBER 1979 - REVISED OCTOBER 1983

2048 X 8 Organization

All Inputs and Outputs Fully TTL Compatible

Static Operation (No Clocks, No Refresh)

Performance Ranges:

	ACCESS TIME	CYCLE TIME
	(MAXI	(MIN)
TMS2716-30	300 ns	300 ns
TMS2716-45	450 ns	450 ns

- 3-State Outputs for OR-Ties
- N-Channel Silicon-Gate Technology
- 8-Bit Output for Use in Microprocessor-Based Systems
- Low Power. ... 315 mW (Typical)

description

The TMS2716 is an ultra-violet light-erasable, electrically programmable read-only memory. It has 16.384 bits organized as 2048 words of 8-bit length. The device is fabricated using N-channel silicon-gate technology for high-speed and simple interface with MOS and bipolar circuits. All inputs (including program data inputs) can be driven by Series 74 circuits

TMS2716 JL PACKAGE (TOP VIEW)					
A7 [] 1		VCC(PE)			
A6 🖸 2	23	A8			
A5 🚺 3	22	A9			
A4 🛛 4	21	VBB			
A3 🔤 5	20	A10			
A2 🔤 6	19 🗌	Voo			
A1 🛄 7	18[]	S(PGM)			
AO 🗌 8	i 17 🔲	08			
01 🛄 9	16	Q7			
02 🛄 10	D 15∐	Q6			
۱ 🖸 ده	1 14 🗌	Q5			
vss 🛄	2 13	Q4			

PIN NOMENCLATURE				
AO-A10	Addresses			
Q1-Q8	Data Out			
S(PGM)	Chip Select (Program)			
VBB VCC(PE)	- 5-V Supply + 5-V Supply (Program Enable)			
VDD	+12-v Supply			
VSS	o ∨ Ground			

without the use of external pull-up resistors and each output can drive one Series 74 or 74LS TTL circuit without external resistors. The TMS2716 guarantees 250 mV dc noise immunity in the low stare. Data outputs are threestate for OR-tying multiple devices on a common bus. The TMS2716 is plug-in compatible with the TMS2708 and the TMS27L08. Pin compatible mask programmed ROMs are available for large volume requirements.

This EPROM is designed for high-density fixed-memory applications where fast turn arounds and/or program changes are required. It is supplied in a 24-pin dual-in-line cerpak (JL suffix) package designed for insertion in mounting-hole rows on 600-mil (15,2 mm) centers. It is designed for operation from 0°C to 70°C.

operation (read model

address (A0-A10)

The address-valid interval determines the device cycle time. The 11-bit positivelogic address is decoded on-chip to select one of 2048 words of 8-bit length in the memory array. AO is the least-significant bit and A10 most-significant bit of the word address.

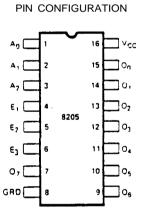
chip select, program [S (PGM)]

When the chip select is low, all eight outputs are enabled and the eight-bit addressed word can be read. When the chip select is high. all eight outputs are in a high-impedance state.

program

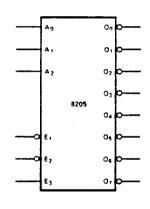
In the program mode, the chip select feature does not function as pin 18 inputs only the program pulse. The program mode is selected by the VCC(PE) pin. Either 0 V or +12 V on this pin will cause the TMS2716 to assume program cycle.

data out (Q1-Q8)


The chip must be selected before the eight-bit output word can be read. Data will remain valid until the address is changed or the chip is deselected. When deselected, the three-state outputs are in a high-impedance state. The outputs will drive TTL circuits without external components.

8205 HIGH SPEED 1 OUT OF 8 BINARY DECODER

- 110 Port or Memory Selector
- Simple Expansion Enable Inputs
- High Speed Schottky Bipolar Technology — 18 ns Max Delay
- Directly Compatible with TTL Logic Circuits
- Low Input Load Current 0.25 mA Max, 116 Standard TTL Input Load
- Minimum Line Reflection Low Voltage Diode Input Clamp
- Outputs Sink 10 mA Min
- 16-Pin Dual In-Line Ceramic or Plastic Package


The Intel⁹ 8205 decoder can be used for expansion of systems which utilize input ports, output ports, and memory components with active low chip select input. When the 8205 is enabled, one of its 8 outputs goes "low ', lhus a single row of a memory system is selected. The 3-chip enable inputs on the 8205 allow easy system expansion. For very large systems, 8205 decoders can be cascaded such that each decoder can drive 8 other decoders for arbitrary memory expansions.

The 8205 is packaged in a standard 16-pin dual in-line package. and its performance is specified over the temperature range of O°C to +75°C, ambient. The use of Schottky barrier diode clamped transistors to obtain fast switching speeds results in higher performance than equivalent devices made with a gold diffussion process.

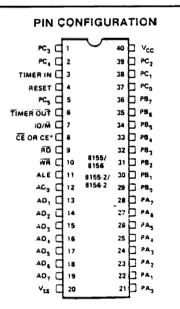
PIN NAMES

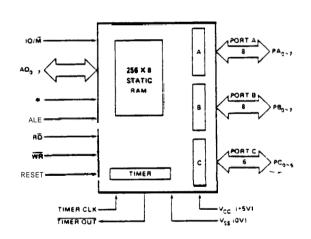
Ag Az	ADDRESS INPUTS
É, E,	ENABLE INPUTS
0,0,	DECODED OUTPUTS

LOGIC SYMBOL

Δ0	DRE	SS	E (NAB	.£			1)UT	9UTS			
4,	Α,	Α,	E,	١,	٤,	0	t	2]	\$	5	G	1
ι	ι	ι	LL	ι	н	l L		н	н	**	н	н	14
н	ι	ι	ίι.	ι	н	1 14	ι	14	н	H		14	× + +
L	14	ι	i.	ι	14	н	н	ι	н	н	**	24	
H	н	ι	L	ι	н	н			ι	н	н	H	
L	L	н	ίι.	L	н	H.	н	+4	74	*	н	14	- 14
н	i.	¥	11	i.	14	н	н	¥	н	- 14	۰.	н	¥
L	ŵ.	Ĥ	Ii.	Ű.	n,	- м	1.4	Ĥ	3¥		- iî	٤.	Ĵ.
Ĥ.	н	н	÷ι.	ĩ.	н	. +4	14	н	н	н	- 14	-	i.
,	,	×.	ιĩ.		1	· ++	н	11	н	н		14	
	÷.		н	ι	ĩ	н	-	14	н	14	24	+4	
x	×	×	i L	H.	ı	ĺн.	H	н	н	н	н		
x	x	×	I H	н	ī.	ĺн.	H	H	н	н	H	H	
×	×	×		i.	Ĥ.	H	н		н	н		н	
-	x	x	1	ň	-	H H	н	н	н	H	14		+4
x	¥	x	1.	н	н		H.	H	н	н	н	н	>+

intal


8155/8156/8155-2/8156-2 2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER


- 256 Word x 8 Bits Single +5V Power Supply **Completely Static Operation** Internal Address Latch 2 Programmable 8 Bit 1/O Ports
- **1** Programmable 6-Bit I/O Port **Programmable 14-Bit Binary Counter1** Timer ■ Compatible with 8085A and 8088 CPU 8 Multiplexed Address and Data Bus 40 Pin DIP

The 8155 and 89156 are RAM and I/O chips to be used in the 8085A and 8088 microprocessor systems. The RAM portion is designed with 2048 static cells organized as 256 x 8. They have a maximum access time of 400 ns lo permit use with no wait states in 8085A CPU. The 8155-2 and 8156-2 have maximum access times of 330 ns for use with the 8085A-2 and the full speed 5 MHz 8088 CPU.

The I/O portion consists of three general purpose I/O ports. One of the three ports can be programmed to be status pins, thus allowing the other two ports to operate in handshake mode.

A 14-bit programmable counter / timer is jalso included on chip to provide either a square wave or terminal count pulse for the CPU system depending on timer mode.

BLOCK DIAGRAM

*: 8155/8155-2 = CE. 8156/8156-2 = CE

81551'8156 PIN FUNCTIONS

Symbol	Function	Sy mbol	Function
RESET	Pulse provided by the 8085A to ini- tialize the system connect to 8085A RESET OUT input high on this line resets the chip and initializes the lhree LO ports to input mode. The	ALE (input)	Address Latch Enable: This control signal latches both the address on the AD_{0-7} lines and the stare of the Chip Enable and $10/\overline{M}$ into the chip at the falling edge of ALE.
	width of RESET pulse should typically be two 8085A clock cycle times.	IO/M .input:	Selects memory if low and 1/0 and command/status registers if high
ADg-7 (input)	3-stale Address/Data lines that Inter- face with the CPU lower 8-bit Ad- dress/Data Bus. The 8-bit address is latched into the address latch inside the 3155156 on the failing edge of	PA ₀₋₇ (8) (input/output)	These 8 pins are general ouroose I/O pins. The in/out direction is selectea by programming the command register
	ALE The address can be either for the memory section or the I/O/section depending on the IO/M Input. The 8-bit data is either written into the	PB ₀₋₇ (8) (input/output)	These 8 pins are general ouroose I/O pins The in/out direction is selected by programming the command register
	chip or read from the chip, depending on the WR or RD input signal.	PC ₀₋₅ (6) (input/output)	These 6 pins can function as either input port, output port, or as control
CE or CE	Chip Enable: On the 8155. this pin is CE and is ACTIVE LOW. On the 8156, this pin is CE and is ACTIVE HIGH		signals for PA and PB Programming is done through the command reg- ister When PC0-5 are used as control
RD Inputi	Read control. Input low on this line with the Chip Enable active enables and AD_{0-7} buffers. If IO/M pin is low, the RAM content will be read out to the AD bus Otherwise the content of the selected I/O port or command/ status registers will be read to the AD bus.		signals, they will provide the fol- lowing: $PC_0 = A INTR Port A Interruption PC_1 = ABF (Port A Buffer Full) PC_2 = ASTB Port A Strobe PC3 = B INTR Port B Interrupt PC4 = B BF Port B Buffer Full) PC5 = B STB (Port B Strobe)$
WR	Write control: Input low on this line	TIMER IN	Input to the counter-timer
(input)	with the Chip Enable active causes the data on the Address/Data bus to be written to the RAM or I/Oports and command/status register depending		Timer output. This output can be either a square wave or a oulse de- pending on the timer mode.
	on IO/M.	Vcc	+5 volt supply
		Vss	Grc and Reference.

Previously Called TMS4045/T	MS40L4	\$5	TMS2114. TMS2114L NL PACKAGE (TOP VIEWI
• 1024 X 4 Organization			
 Single + 5-V Supply 			
 High Density 300-mil (7.62 n Package 	nm) 18-P	lin	
• Fully Static Operation (No Clo Refresh. No Timing Strobe)	ocks. No		A4 3 16 A8 A3 4 15 A9 A0 5 14 DQ1
• 4 Performance Ranges:			A1 6 13 002
TMS2114-15, TMS2114L-15 TMS2114-20, TMS2114L-20 TMS2114-25, TMS2114L-25	TIME (MAX) 150 ns 200 ns 250 ns 450 ns	AD OR WRITE CYCLE (MINI 150 ns 200 ns 250 ns 450 ns	A2 7 12 003 5 8 11 004 VSS 9 10 W
with Standard TTL Loads T Resistors Required		•	PIN NOMENCLATURE
• Common I/O Capability			AO - A9 Addresses

- 3-State Outputs and Chip Select Control for OR-Tie Capability
- Fan-Out to 2 Series 74. 1 Series 74S, or 8 Series 74LS TTL Loads
- Low Power Dissipation

	MAX	
	(OPERATING)	
TMS2114	550 mW	
TMS2114L	330 mW	

AO - A9	Addresses
0Q1 - DQ4	Data In/Data Oul
š ∨cc	Chip Select + 6-V Supply
Vss W	Ground Write Enable

dascription

MOS

LSI

This series of static random-access memories is organized as 1024 words of 4 bits each. Static design results in reducing overhead costs by elimination of refresh-clocking circuitry and by simplification of timing requirements. Because chis series is fully static. chip select may be tied low to further simplify system timing. Output data is elways available during a reed cycle.

All inputs and outputs are fully compatible with Series 74. 74S or 74LS TTL. No pull-up resistors are required. This 4K Static RAM series is manufactured using TI's reliable N-channel silicon-gate technology to optimize the cost/ performance relationship.

The TMS2114/2114L series is offered in the 18-pin duel-in-line plastic (NL suffix) package designed for insertion in mounting-hale rows on 300-mrl (7.52 mm) centers. The series is guaranteed for operation from 0°C to 70°C-.

TIMS4116 16.384-BIT DYNAMIC RANDOM-ACCESS MEMORY

CCTOBER 1977 - REVISED MAY 1982

 16,384 X 1 C 10% Tolerand 	-				TMS41 V _{BB}	16NL PACKAGE (TOP VIEW)
All Inputs Incl	uding Clock	s TTL-Com	patible		D	
Unlatched Thr Output	ee-State Fu	Illy TTL-Co	mpatible		W RAS AO	
• 3 Performance	e Ranges:				A2	11 A4
	ACCESS TIME ROW ADDRESS (MAX)	ACCESS TIME COLUMN ADDRESS (MAX)	READ OR WRITE CYCLE (MINI	READ. MODIFY- WRITE ^r CYCLE (MIN)	A1 VDD	☐7 10 ▲5 ☐8 9 ∨cc
		、	,		PIN	I NOMENCLATURE
TMS4116-15 T MS4116-20 TMS4116-25	1 50 ns 200 ns 250 ns	1 00 ns 135 ns 165 ns	375 ns 375 ns 410 ns	375 ns 375 ns 51 5 ns	AO-A6	Addresses Column Address Strob
 Page-Mode Op Time 	peration for	Faster Acc			D Q RAS	Data Input Data Output Row Address Strobe

- Common I/O Capability with "Early Write" • Feature
- Low-Power Dissipation Operating 462 mW (Max) Standby 20 mW (Max)
- 1-T Cell Design, N-Channel Silicon-Gate Technology
- 16-Pin 300-Mil (7.62 mm) Package • Configuration

description

The TMS4116 series is composed of monolithic high-speed dynamic 16,384-bit MOS random-access memories organized as 16,384 one-bit words, and employs single-transistor storage cells and N-channel silicon-gate technology.

All inputs and outputs are compatible with Series 74 TTL circuits including clocks: Row Address Strobe RAS (or R) and Column Address Strobe CAS (or C). All address lines (AO through A6) and data in (D) are latched op chip to simplify system design. Data out (Q) is unlatched to allow greater system flexibility.

Typical power dissipation is less than 350 milliwatts active and 6 milliwatts during standby (VCC is not required during standby operation). To retain data. only 10 milliwatts average power is required which includes the power consumed to refresh the contents of the memory.

The TMS4116 series is offered in a 16-pin dual-in-line plastic (NL suffix) package and is guaranteed for operation from 0°C to 70°C. Package is designed for insertion in mounting-hole rows on 300-mil (7.62 mm) centers.

A0	12 A3
A2	11 A4
A1	7 10 A5
VDD	8 9 VCC
PIN N	IOMENCLATURE
AO-A6	Addresses
CAS	Column Address Strobe
D	Data Input
Q	Data Output
RAS	Row Address Strobe
VBB	-5-V Power Supply

+5-V Power Supply

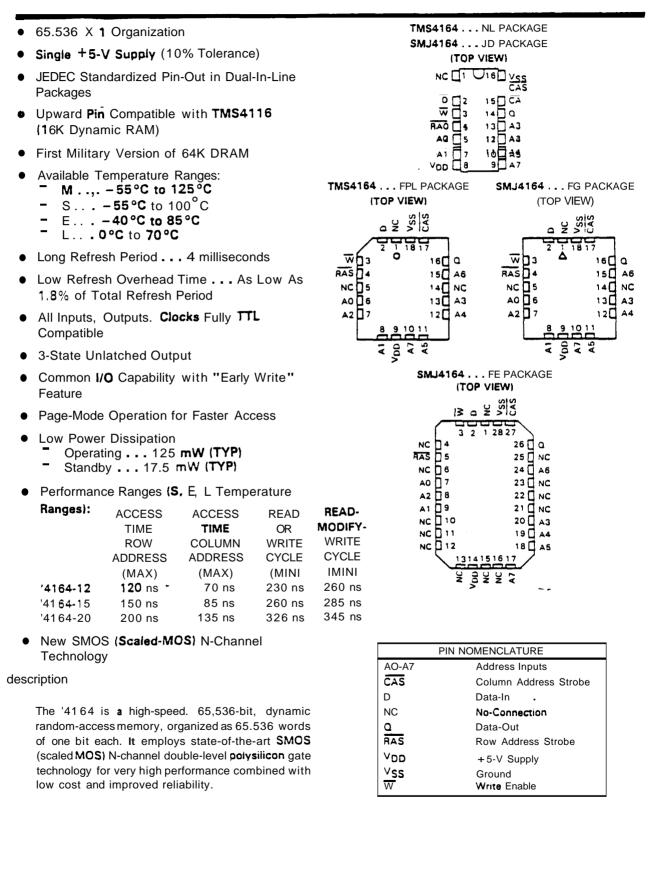
Ground

Write Enable

+12-V Power Supply

Vcc

VDD

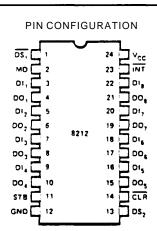

∨ss

W

TMS4164, SMJ4164

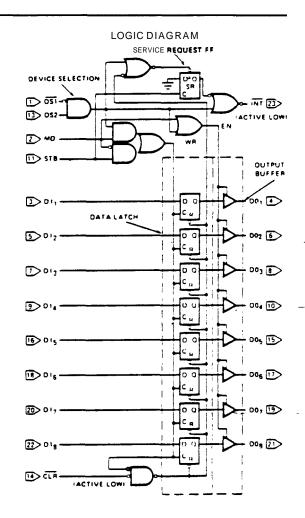
65,536-BIT DYNAMIC RANDOM-ACCESS MEMORY

JULY 1980 - REVISED OCTOBER 1983


MOS

Ι

- Fully Parallel 8-Bit Data Register and Buffer 3.65V Output High Voltage for
- Service Request Flip-Flop for Interrupt Generation
- Low Input Load Current -.25mA Max.
- Three State Outputs
- Outputs Sink 15mA


- 3.65V Output High Voltage for Direct Interface to 8008, 8080A, or 8085A CPU
- Asynchronous Register Clear
- Replaces Buffers. Latches and Multiplexers in Microcomputer Systems
- Reduces System Package Count

The 8212 input/output port consists of an 8-bit latch with 3-state output buffers along with control and device selection logic. Also included is a service request flip-flop for the generation and control of interrupts to the microprocessor. The device is multimode in nature. It can be used to implement latches, gated buffers or multiplexers. Thus, all of the principal peripheral and input/output functions of a microcomputer system can be implemented with this device.

PIN NAMES

Oli Die	DATA IN
00, 004	DATA OUT
05.05,	DEVICE SELECT
YO	MODE
STB	STROBE
INT I	INTERBURTIACTIVELOW
CLA	CLEAR IACTIVE LOW

FUNCTIONAL DESCRIPTION

Data Latch

The 8 flip-flops that make up the data latch are of a "D" type design. The output (Q) of the flip-flop will follow the data input (D) while the clock input (C) is high. Latching will occur when the clock (C, returns low.

The latched data is cleared by an asynchronous reset input (CLR), (Note: Clock (C) Overrides Reset (CLR),)

Output Buffer

The outputs of the data latch (Q) are connected to 3-state. non-inverting output buffers. These buffers have a common control line (EN); this control line either enables the puffer to transmit the data from the outputs of the data latch (Q) or disables the buffer, forcing the output into a high impedance state. (3-state)

The high-impedance state allows the designer to connect the 8212 directly onto the microprocessor bi-directional data pus.

Control Logic

The 8212 has control inputs DS1, DS2, MD and STB. These inputs are used to control device selection, data latching, output buffer state and service request flip-flop.

DS1, DS2 (Device Select)

These 2 inputs are used for device selection. When $\overline{\text{DS1}}$ is low and DS2 is high (DS1 · DS2) the device is selected. In the selected state the output buffer is enabled and the service request flip-flop (SR) is asynchronously set.

MD (Mode)

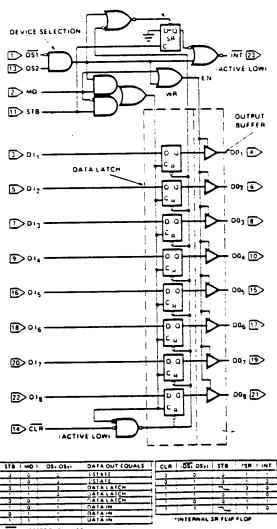
This input is used to control the state of the output buffer and to determine the source of the clock input (C) to the data latch.

When MD is high (output mode) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic $(\overline{\text{DS1}} + \text{DS2})$.

When MD is low input mode? the output buffer state is determined by the device selection logic $(\overline{DS1} \cdot DS2)$ and the source of clock (C) to the data latch is the STB (Strobe) input.

STB (Strobe)

This input is used as the clock (C) to the data latch for the input mode MD = 0 and to synchronously reset the service request flip-flop (SR).


Note that the SR flip-flop is negative edge triggered.

Service Request Flip-Flop

The (SR) flip-flop is used to generate and control interrupts in microcomputer systems. It is asynchronously set by the \overline{CLR} input (active low). When the (SR) flipflop is set it is in the non-interrupting state.

The output of the (SR) flip-flop (Q) is connected to an inverting input of a "NOR" gate. The other input to the "NOR" gate is non-inverting and is connected to the device selection logic .DS1 · DS2). The output of the "NOR" gate (INT) is active low (interrupting state) for connection to active low input priority generating circuits.

SERVICE REQUEST FF

CLR - RESETS DATA LATCH SETS SR FLIP FLOP IND EFFECT ON OUTPUT BUFFERI

BIBILOGRAPHY

Books

Intel Memory Component Handbook 1983.

MCS-80185 TM Family User Manual Oct 1979.

Sedra Smith, Micro-Electronic Circuit, Holt Rinehart and Winston 1982.

Articles

F.H Chen. "Design and Implementation for A General Purpose IC Tester Based on A Microcomputer" Chen Kung University , 1983, p.1

John Knaizuk, J R., And C.R.P Hartmann " An Algorithm for Testing Random Access Memory ", IEEE Transaction on Computer, April 1977, pp 414-416

Don Kinz , " A Memory Pattern Sensitivity Test ", Byte, Oct 1978, PP 12-16

Larry Malakoff, "Dynamic Memory: Making An-Intellengent Decision", Byte, p 142, Feb 1981

H.R Pinnick Jr. " Testing Your Memory Using the Barber-pole Algorithm ", Byte, Dec 1982, pp 414-444