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CHAPTER |

Preliminaries

In this paper L will denote a complete, completely
distributive lattice with an order reversing involution.
We will distinguish the two following subsets of L:
L°=£«eLugeL=>°\$/s or/gs«} , La=zo(eL°=o<</g ande(<b'=7°‘<’5/‘3}.
0eL? will be assumed throughout this paper. Let X be
a set. An L-fuzzy topology T is a collection of L-fuzzy
sets (mappings from X into L) which is closed under arbitrary
suprema and finite infima. Let P(X) be the set of crisp
subsets of X , ¢ : P(X)?P(X) is a semi-closure operator
provided that c{f)=¢, c(X)=X, Acc(A) for AeP(X), and
c(AV B)=c(A)Uc(B) for AB in P(X). For A€P(X), 4Y(A) denotes
the characteristic function of A. By an L-fuzzy topology in
the Lowen sense, we mean a fuzzy topology including the -

constant maps as open sets. For further references on basic

definitions and properties of L-fuzzy topologies see[9].



CHAPTER 1II

| ntroduction

Using Rodabaugh's definition of 4 -closure [é], Klein
has defined L-fuzzy topology producing collection of operators
(L-FTP). Using this concept and the related results, we will
study how a finite family of nested topologies indexed by a
lattice generates a fuzzy topology, Moreover, we will examine
how topological properties are transmitted from the nested
topologies to the induced fuzzy topologies and vice-versa.

In particular, we will refine Kleintresult in{4])about the equi-
valence of fuzzy continuity and level continuity and prove it
to hold for the Lowen topology. W will show that plenty of
suitable closed (open) sets are at our disposition, aresult-
that may be significant with regard to the Tietze'extension
problem. Finally, we will categorically embed topologies _
generated by a finite lattice in topologies generated by the
unit interval, generalising the results obtained so far.

As a general remark, it will appear that properties involving
only open sets (closed) behave relatively well (e.g. c_émpactness,
hausdorff) but that properties requiring in their definition
both open and closed sets are somewhat more elusive to track

down.



CHAPTER III

L-FTF fam|ies of topol ogi es

W now give a summary of the results obtained by
Kieinin [3:4].

Definition 3.1 LetqeL-{lland let A be a crisp subset of X.

The 4-cl osure of A, denoted by cx(A), i s given by:
ca((A)={x=if GeT and G(x)y4 , then GAq(A);!O .

It was shown in [3] that cgis a sem -cl osure operator

ifa\eLa-ill.

Definition 3.2. Let #eL®- glland | et GemT, o‘(G)={sz(x)>xg.

By lemma 2.2 in[3], EOA(G): Ge'rl s a topol ogy for X which

we denote by Ty.

Definition 3.3. Let X be a set and let C={k‘* :aeLa-{ﬂs% be
a col lection of operators on P(X). Cis L-fuzzy topol ogy
produci ng (L-FTP) provided :

(a) for every 4¢ La—{ll , ko 1S a sem -closure operator,

(b) if ﬁ;!TC {11.& =I\Z/s:/3¢?} , and A€P(X), then -.
kqun=n@%(A>=@éT}.

(c) if A,BEP(X) and A<ko(B), then ky(A)<ky(B) for every
ae L2 {1}
Definition 3.4. Let C be an L-FI'P collection.

(a) For AeP(X), Gpis the L-fuzzy set defined by

GA(X) =/\g/g=x ké(A)l. (By conventionAg=1).
(b) £(C) i's the L-fuzzy topol ogy with basis {GA: AéP(X)}.



The « -closure operators generated by T(C) are the operators
in C.

The class of « -closure operators induced by an L-fuzzy
topological space was shown to be an L-FTP collection inl_-l-&].

W are ready now to prove our first lemma

Levma 3.5. Let C= {k,( 4 ¢ L2 -{1}} with 12 finite be a
family of closure operators such that if « $Athen TgcTy
(where T4 , L4 are the topologies with ki 1kgq @S closure
operators respectively.) VW have :
(Q) if «¢A awnel and A€P(X) then ky(A)cks(A),
(v) if g AT {1} =/\z/s :é@Tgand A€P(X), then
kd\(A)=ﬂ{k/S(A) :fgeT}
(e) if AB and Acke (B) then ka(A)Cky(B).
Proof. (a) Suppose x¢ ks(a). Lhen xeX-kg(A)=Us , an open set
in Ls. Since GcTy , Usy iIsopen in Ty and X-Us is a closed
set in & . Thus we have x¢ X-U424 and so x¢ k (4).
(b) Since U is finite,d\egls :fseT’S and the conclusion
follows from part (a).
(c) Let A,B in P(X) and ACk, (B). W have ky(AX k;(ko(B)).
Also ko(B)Cky(B)=? ky(ko(B))Cka (ke (B))= kg (B). Thus ka(A)Ckg(B).

As an immediate consequence of lemma 3.5 we have the following

theorem.

Theorem 3.6. Ifd\;iko\ 14 & L2- {1“ isafinite family of
closure operators generating topologies Ty such that if 444

then T4¢fs , we have thatd is an L-FPP family.



Definition 3.7. Let L be a lattice with La—zlg=idw°(h-“»°‘“}
and O=Awd<oCan | pfamily of topologiesJ‘Cis L-FTP iff
(1)d= {Wm‘}with aier?- {1}
(2) Wa,d Wayd +=D Way,

As a notational convention, C={k¢;& will denote the associated
family of closure operators.

Remark. Given an L-FTP family of topologies, the fuzzy
topology I'(C) will be used on X unless another topology is

explicitly mentioned.

We are now going to prove a computational lemma, which will

introduce a construction used throughout this paper.

Lemma 3.8. Let ‘K,be an L-FTP family of topologies. Then for any
A in P(X) we have :

Ga(x)=1 iff xeX-ku(A)

Galx)=tn i ff xeky (A)-K (A)

Gplx)=h Iff xekn (A)-kg (A)

Galx)=0 iff xekq(A)
Proof. Denote B=§o\i c—La-{l.g : xem;(A)} . W have : )
B=g or zo\nl or Z'a. ,d,,..} Or .44 OT Zdn_‘,d“,,,,, .o ,dnj or {0\1 yhas oo ,Am}
B=ff ¢ =) Gp(x)=1 ¢=> xfiy,(A) (=D xeX-k,(A)
B=fdnl()Cp(x) =0n (s> ke (A)-k,, (A)
B=idh-x.°\n-n.,....dm3 =D Gp(x)=dne$=d xekn, (A)-K, ., (4)
B={ & '---'Ml (= Gp(x)=h =0 ¢=> xeky, (4)



Theorem 3.9 Let dlbe an L-FTP fanmily of topol ogi es. Then

Y. € La-fﬂ Wy = Ia(where Wy , Tp; are the topol ogies of
Def.3.7 and Def.3.2 respectively).

Proof. By Theo. 2.4 in[3] we have for aceL?-f1] - Wi < i

So it is sufficient to show ;¢ W, « Let AeP(X). By lemma 3.8
a\g(G)=£x ; GA(x)>o(;l= X-kuo(A), therefore T, < W« and

Tac =W, for eacha;el?- {1& .

Using the definition of thesL-property in (6}:

Definition 3.10. Let aeL- {11 . (X,T) has the «-property provided,
for AeX, ca(A)=A if and only if thereis U =mwith

A={x= U(x)g.ﬂs.

Applying Theorem 2.4 in [31 we have the follow ng corollary:
Corol lary 3.11. Let Abe an L-F2P fanil y of topol ogies. Then
( C) has the &-property for all &ELa-élg .

W w || need several notions first introduced in [4]
Definition 3.12. Let O={iyer® {1}{ be an L-rrp col lection_
on P(X). fF(/C) denotes the set of fuzzy topologiesfor X

whi ch i nduce kqas «-cl osure operator wheneL®- {1S .

(FC) need not be a singleton or closed under finite

I ntersections but is closed under suprema. For further
details refer to [4}

Definition 3.13. (a) L denotes the collection of fuzzy sub-
sets of X which are constant maps fromX into L.
(b) T denotes the collection of fuzzy sub- -

sets of X which are either A,(,d) or amp fromXinto L- {oga
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We have for Teo}\zc) : sup{T,TJ IS in [_;(’C) (corollary 2.8 in [L}])
and sup h(C)= supZT(C),’P{S (theorem 2.9 in [4]) .

Proposition 3.14. Letc/t. =ZW,,,; s i L3 211} be an L-FTP family of
topologies. Then W= E,\;(G) : GeT(C)V‘I’C} .
Proof. Any basis element of T(C)VIe can be written as GpAb,
for G,eT(C) and beL (b also represents the constant mgp with .
value b) . Let F=z-(; € La-{llsuch that ou?/bg and | et NF= &y,
Applying lemma 3.8, we have :

GaAb(x)= b iff x X-k.s-,(A)

GAND(x) =aks., i TT xeks (A)-ksq(A)

GaAb(x)= 0 iff xeko(A)
Thus, for 1¢i€s-1 zx : GA’\b(X)>°(‘.l = X-kyq(A)eWx, and for s¢i
{x 1 GAAD(X)D4! } =g since d;b.

Remark. For L linearly ordered, sup §‘I‘(C),T¢1 Is the smallest.
(v C s
topology in the Lowen sense inﬁ(C)E&] . In this paper, this

topology will be called the Lowen minimum.

Corollary 3.15. Let R ve an L-FTP collection of topologies.

Then the Lowen minimum has thed -property for all oLGLa— 21} .

I n general, supTC) does not have the oJ-property fordin L2 51
It may in some cases. For example, if %; 1S discrete for all i

sup‘}(JC) does have the A-property for all q L2 -{1@ .

2

and La=z0,%.11 . & have :
Geopy = 3 <= xe[O,ﬂ

Example. Let X = R, Ti+= usual topology, I, = discrete topology

Geoy = 0 ¢=> xe(0,1)



Take HE T, such that H(x)=% on X- [2,3} and H(x)=1 on [2,3]
Then (x : G(o“)A,H(x))%- §=(2,3}(\X-[0.1] =3 which is not
open in T%.

Remark, G,=Gg does not imply A=% .

Example. X=R, Tg,:indiscrete topology, 1, =usual topology then

Geo=Goy + This fact, of course, stems from : A=B # a=B.
Ve will need the following fact in a later section:
Leyvma 3.16. [x : G(x))d;_,}: {x : G(x)),m'}

Lemma 3.17. Let the an L-FIP collection of topologies.
Then for T in 6}.(10) we have T(C)cT if L is linearly ordered.
Proof. This follows directly from Theorem 2.3 in ‘:41 .



CHAPTER IV

Hausdorff ands -Hausdorff properties

We will need the following notion first defined in [6]

Definition 4.1. (X,7) is« -Hausdorff ({*~Hausdorff) fordeL
if for each x,y € X such that x#y, there are u,ve? such that

u(x P& (u(x)>»«), v(y)«< (v(y)»«) and uAv=0.

Proposition 4.2. Let fbe an L-FTP family of topologies.
|f Ta, is Hausdorff then for any o in La-{lg. (C) is
4 -Hausdorff («{'-Hausdorff and also I-Hausdorff).
Proof. Let xfy. Since Tx, is Hausdorff, there are U(x),U(y)
in I such that xeU(x),yeU(y) and U(x)N U(y)=$. Since X-U(x)
and X-U(y) are closed in each I ,
Gxouix) (@)= 21 if ael(x)
0 if ae&X-U(x)
GX—U(y)(a)= 1 if aeU(y)
0 if aeX-U(y)
- = /\ -
We have Gy y(,)(x)=1, GX_U(y)(y) 1 and Gy_y(yy GX-U(yL,O’
therefore T(C) i s «-Hausdorff (« -Hausdorff)for any «id?- les
Proposition 4.3. |If T(C) isdi-Hausdorff forain La-éll then
Ty, I's Hausdorff. If T(C) iSa(T-Hausdorff for «;in L& {0,1{
then ;. | is Hausdorff.
Proof. Let % yobe in X. Since T(C) isS-~Hausdorff (o} -Hausdorff)
there are G,H in T(C) such that G(x,)>« , H(xe)7 % (G(x)7%

H(x, )»#) and GAH=0. Consider ixr :G(x))d;}and Zx:H(x))dLg.



()x:G(x)r4 t and {x:H(x)ng). Suppose z¢ x:G(x)y«cj(\{sz(x)Mij
(z2€)x:G(x)7ac {0 {x:sH(x)¥4y ). Then G(z)>ai and H(z) i .
Since « € L2 {1 , GNH(z )»%3 we have a contradiction with the fact,
that GAH=0. (G(z)»% , H(z)»a,, and therefore we have G(z)AH(z)»« ,
a contradiction with GAH=0). Since, clearly XOE{X:G(X)7O(C} .
Yo € X=H(x)>&} and both of these sets are open in T,  , 7(C)
having the Q(-property for all A, we have T,; is Hausdorff.

(x0€ {x:G(x)?mé% , ybegst(x)»o(iB and these sets are open in g,

by Lemma 3.16, hence ;. is Hausdorff).

Remark. This result depends in an essential way on the fact

that I(C) has the« -property for all « .

Ore can weaken the hypothesis of proposition 4.2 and prove

a slightly more general result.

Proposition 4.4. Let f(be an L-FTY family of topologies.

Let Tﬁ be Hausdorff.Then for d(eLa-{l§ with a¢e; , T(C) is
d(~Hausdorff (o(? ~-Hausdorff). _
Proof. Similar to 4.2.

Corollary 4.5. Let A € LB~ ii.g Then 7(C) IS di-Hausdorff iff Ty
i s Hausdorff. Let £, eL®- {Og Then T(C) 1S df-Hausdorff*iff T
I s Hausdorff.

and
Corollary 4.6. Proposition 4.2,}».4 are still true if T(C)

Is replaced by any T in[}‘l(c). Proposition 4.3 is still true
if Lislinearly ordered and 7(C) is replaced by any T in%)_

having the « - property.
Proof. A direct application of Lemma 3.17.
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CHAPTER V

Compactness and the different

notions of fuzzy compactness

*
lhe definitions of d-compactness (dZcompactness)

are due to Gantner and Steinlage\-}l}

Definition 5.1. Let (X,T) be an L-fuzzy space, and letacL.

A collection Uert will be called an «-shading (resp. £*-shading)
of X if, for each X in X, there existsaU in T with U(x)>%
(resp. U(x)»%) . A subcollectionvJ of and -shading (resp.
4*—shading) of X that is also and—fhading (resp.«‘—shading)

is called an 4 -subshading (resp. & -subshading) of % (X, 1)
will be calledd-compact (resp.o(tcompact) if each#-shading
(resp.,(tshading) ef X has afinite« -subshading (resp.

*
J-subshading). _

Proposition 5.2. Let the an L-FTP family of topologies.

Let aieL®- 211; Then Tg; 1S compact iff T(C) is 4;-compact.
Proof. To prove- sufficiency,let {UQ}, be an open covering in
T; « By Theorem 3.9, U,§=ix : G,;,(x))xl& for some Gg in T(C).
Obviously, the G4 constituteand;-shading of X, which is
reducible to a finite«;-subshading since 7(C) is«, -compact,
and thereforegu,gg9 is reducible to a finite subcovering.
For necessity, |let G“ln be an {;-shading of X. Consider

li X 3 G@(X)‘)Ml . Clearly, it is an open covering of X.



Since Ty, IS compact, it is reducible to a finite subcovering

and therefore zG/JS"s IS reducible to a finite 4. -subshading.

Corollary 5.3 T(C) is & -compact for all «¢ in La-{lg

, I S compact.

Remark 1. This proposition and its ensuing corollary depend

on T(C) having the £ -property.

Remark 2. A closely related functorial proof of Froposition

5.2 can be found in Theorem 3.1 of[é].

From now on we suppose(:ft , an L-FTP family of topologies,

given.

Proposition 5.4. (X,T(C)) isdf -compact iff (X,T(C)) is

% -compact for & in L2- {01.

Proof. To prove sufficiency, |let G be an#;,-shading of (C),
Then we have\,{ Ggu 4% and since T(C) isasff—compact, there exists
afinite subfamily d of ] such that {4 7«4 that is Yook -
Hence, )J IS reducible to afinite 0(7{—subshading.

For necessity, let zH,$S3 be an o{t-shading of T(C). ThengH,g%c,ol
implies \/H,S‘)q,,,hence {H;& is an «.shading of T(C). Since T(C)
is o(g._,—compact, there exists afinite subfamllyo{. such that

YH4§7/0LQ . Therefore, g Ai isafinite xh—subshadlng of T(C).

Remark 3. By Corollary 3.15 , Corollary 5.3 and proposition 5.4

are still true for the Lowen minimum.
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CHAPTER VI

Connectivity and4-connectivity

In this chapter | use Rodabaugh's definition of

A-connectivity from [’7}

Definition 6.1 Let (X,T) be a fuzzy topol ogical space.
(X,I) is&connected if there do not exist U,v in T —{O,l{
such that Uww>L’and UAV = 0 . (X,T) 1S {~disconnected

If there are U,vin T -{o,l& such that UVvv2K and UAV=0.

Proposition6.2. Let Xve an L-F1P fanil y of topol ogi es.

Then for «cin L® —zll , if T(C) is Q,~disconnected, then
Ta, is disconnected.

Proof. Suppose 1(C) i S oJ-disconnected. Therefore there
exist GHin ©(C) such that GVHY. and GA H=0. By theorem
3.9, the sets U = ZX : G(X))dlg , Vo= )x H(x)m} are opens
Cbvi ously, UUV=X. Suppose Z is in UNV. G(z)r«t and H(z)d«:
and since « ¢ 1?2 -{1( , H(z)AG(2)>4A which contradicts the
fact that ¢ AH=0. therefore UOv=g , which proves that_

(X, Txy) 1S disconnect ed.

Proposi tion 6. 3. Let&be an L-FTP fanil y of topol ogi es.
Then 1a,di sconnected i nplies I(C) not 1-connected.

Proof. Suppose Tk, is disconnected. 'Thereexist U,V in T
such that vuv=x, UNV=0. By theorem 3.9, U=£x : G(x))Ol
and v = %x: H(x))&l for sone GHin I(C). early GV H> and



GANH=0., Thus T(C) i s not 1-connected.

Remark 1 This proposition depends in an essential way

upon £{(C) having the &-property.

Proposition 6.4. Let ﬁ1=§jglj be an L-Fip famly of topologies
Wi th g, connected. If Ger(c) and =G, then G=Oor G=1.

Proof. Let G=G and G#0,1. {x:G(x))O} is openin Ty , which
implies {x:G(x)=Ol is closed in T . Since ¢=G, Gis open

and }x:é(x)=1} =§x=(}’(x)>dhl is open in , €1k . Hence,

x:G(x)=d§ is open in T, . Therefore, Ta, is disconnected.

Remark 2. These propositions are still true for any topol ogi es

havi ng the 4 -property in G%C), i ncl udi ng Lowen's m ni num



15

CHAPTER V | |

Continuity and L-fuzzy continuity

Definition 7.1. Let (X,¢),(Y,T) be two topological spaces.
A function F: (X,t)=(Y,™) is said to be L-fuzzy continuous

-t -\
if for any H inTF(H) is in ‘T (F(H)=HoF).

Theorem 7.2. Let Jt= Z(X,Q;{é )B ,(B=Z(Y.rﬂ;)1 be two L-FIP families
of topological spaces. Let c« ,k, be their « -closure operators
inX,Y, respectively, and T(C),T(D) the generated fuzzy
topologies.
Let £1(X,T)->(Y,M) . W have:
(1) 1f £:(X,T(C))=>(Y,T(D)) is L-fuzzy continuous then
(X, ) (Y,Mx) is continuous for all «; in La_{ll.
(2) The converse is true if f: (X,’C’;)——)(Y.IE;) i S a homeo-
morphism for all «;in L2- zll
Proof. (A)Since f is L-fuzzy continuous, we can use
Levmma 2.11 in [Lrlzlet (X,I) and (Y,T) be L-fuzzy topologies
and | et £:X—=>Y be L-fuzzy continuous. For «; in La-{ll,
let ca; and kg, be the&-closure operators in X,Y respectively.
Then for every A in P(X), f(c,(A))C kg (£(A)). Hence, f is
continuous at each level.
(2) It is sufficient to show that for H,, a basis element
of T(D), 1_‘|(HA) is an open set in T(C)., Fory inY and A

in P(Y) the general form of a basis element in T(D) is :
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Hy(y)=1 i ff yeY-kan(A)
Hy(y)=diiff yeky,(A)-ky,  (A)
Hy(y)=0 iff yek (4).
Now | et xeX. W have H,(£(x))=1 iff xeX-f {kan(4))
H, (£(x))=diiff xef” (kg (A))-F (ky (A))
H_(£(x))=0 iff xef™ (k. (4)).
Since f is a honeonorphi smfor each«;in 12-§1}, we have
f-‘(kM(A) )=cm_(f"'(A)), therefore HA(f(x))=Hf-‘(A)(x), whi ch

shows that f is L-fuzzy continuous.

Corol lary 7.3. Let &k =kx,%§.%=%¥,(\_\¢;)gbe two L-FTP famlies
of topol ogi cal spaces, we have :
f is an L-fuzzy honeonorphismiff for each 4. i n L2- {1_?]

f:(X ﬁ;)q(Y.ﬂ;) is a honmeonorphism

| n Pheorem 2. 12 in[kp}, It was shown that | evel continuity

was equival ent to fuzzy continuity if instead of T(c) and (D),
we take Sup(J(C)) and Sup(G}(JD)). W shall see in the foll ow ng
exanple that it is possible to find a snaller topology in f(c_)

such that this conclusion still holds.

Exanpl e. Let X=Y=R and | et L={o,%,1& .

3-level (X,Ta)=usual topology on R (Y,T%)=indiscrete
2
0- 1 evel (X, )=usual topology on & (Y, T )=usual topol ogy
on R
For A€eP(X) and B€P(Y) and BZ#, we have;
Ga(x)=1 iff x&X-—kg(A) Gy(y)=1 never ]
GA(x)z-;r never GB(x)z—EJ:- i ff xex_-go(B)

G,(x)=0 iff xéko(A)=k%(A) Gg(¥)=0 i ff yea (B)



Let f be any function from X into Y. Then f'l(GB)=GBof

will take only two values: 0,%. Hence, the inverse image
of Gy cannot be written as a supremum of characteristic
functions. I n other words, no mgp is fuzzy continuous from
T(C) into T(D). Suppose now, that f is continuous at each
level. V& claim that for any Bisvin P(Y), GB°f=Gf’tco(B))A%'

Ggof(x)=1 never

Ggof(x)-3 iff xeX-£(co(B))

Gpof(x)=0 iff xef (co(B))
Therefore, it is easy to see that GBszGf"(co(A))A%' Hence,
f is fuzzy continuous from (X,T(CVT,) into (Y, (D)) .
To conclude, let us show that T _VI(C) # Sup(‘F(/C). L et A=[0,1).
Define G(x) =1 iff xeX-A and G(x) = % iff xcA. Then GeTp .,
Suppose G isin TCVT(C), then zsz(x)=lg is open in Ip= Ig
because TCV‘I‘(C) has the# -property. To summarize, we have
exhibited a fuzzy topology different from Sup(c}(/C)) for
which level continuity is equivalent to fuzzy continuity.
Our next theorem will generalize this example. From now on,

we will denote Tc\/‘i‘(c) by T(K).

Theorem 7.4. Let ti,(B be two L-P1P families of topological
spaces as given in Theorem 7.2. Then continuity at each
level is equivalent to fuzzy continuity from (X,?(X)) into
(Y, 7(D)).

Proof. W only need to show sufficiency. Let f be continuous

at each level 4, and | et GA be in T(D). VW claim that GAof=H,-

where H = Gy () )VIRE (8D A oo} [Gf"(k.,(. (™Y S (igga))



Note t hat uf (Kay (4)) |s the characteristic function of
X-f (ky, (A)) because £ (kan(A)) is closed in each T« .
Moreover, for any r such that 1¢r¢n-1, an easy conputation

/\ L ]
shows t hat C% (Kan(A)) 4., takes only two val ues 4,,and 0
More precisely,

\ _ . -
Gf'(kih(A)ythKX)'“rnlff xeX-1 (ke (A))

G2 (kop (A) MArn(x)=0 iff xe€f (kg (A))
on X-f"(kep(A), G of(x)=H(x)=1. O £ (kunlA))-F (ke(A) )=

£ (Kup {A) ke (A)), Gyof(x)=#rqand for any jor,
£ (kay( A )2f" (kuy,, (A)), that is:

G- A ﬂ( )=O - -
£ (kg (8)) o X070 xef (K, (A)-f (ke,(A)))

O (e (A) Pty (X) =0

On £™(ke(A)), everything is o. In conclusion, H=t,of.
Level continuity is equivalent to fuzzy continuity using the

Lowen m ni numfor both domain and range,

Remark. We can slightly generalize this result by using a
countabl e chain for L% (rather than a finite chain) in the
definition of an L-FIP fam |y of topol ogical spaces, It is
easy to see that Lemm 3.8, ' Theorem3.9 are still true

and that Theorem 7.2, 7.4 still hold. -

Corollary 7.5. Let 4,5 be two L-FPP fanilies of topol ogical
spaces as given in Theorem 7.2 Let f: X—=Y, Let T\ ,T;be

L-fuzzy topol ogi es such that T(C)crer(k) and (D), «

If there is an4in L%fsuch that f: (X,7)~(Y, W is discontinuous,

then f(X,8)=(Y,n) is fuzzy discontinuous.

Proof. Suppose there is anuin L2-§1} such that f is dis-



continuous. By Theorem 7.4, f:(X,7(X))-(Y,T(D)) is fuzzy
di scontinuous. Therefore, f£:(X,D)->(Y, (D)) is fuzzy dis-

continuous and so fs(X,0)—=(Y,D) is fuzzy discontinuous.
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GHAPTER VI 1]

Suitability

First, recall from [7} the definitions of a
suitable space and of a fuzzy retract. For both (X,T) is

an L-fuzzy topological space.

Definition 8.1. If ACX, then A is non-trivial iff @ZAEX.
A is a suitable open set in (X,T) iff A is non-trivial and
M(A) is an L-fuzzy open set in (X,). (X,T) is suitable iff

(X,T) has a suitable open set.

Definition 8.2. Let ACX. A is an L-fuzzy retract of X in
(X,I) if there is a function r:(X,T)——ﬁ(A,TA) such that

r(x)=x for each x in A and r is fuzzy continuous.

Theorem 8.3. Let K be an L-FTP family of topological spaces.
Then we have: A is suitable open iff for each « in L2-{1{,
A i1s open in Uy.

Proof. Suppose A is suitable open in r(C). Let M(A)=¥GA;'
ngA-'(X)ﬂk =U§.X-c,¢“(A;)3 , which is open --
for each a: in L%- {lg

V¢ have A=g
inTa, , therefore open in i, ,
Now, for sufficiency, let A in L, , for each x;in La—gl‘.
Denote C=X-A, we have c,LJ-(C)=c,LL(C)=C, for each o4( in La-gl.s.
Therefore, we have:
Go(x)= 1 iff xeX-can(C) iff xeX-C.
GC(x)=o(¢ i ff xec,gi(c)-c,(i_'(c)=C-C=ﬂ

Go(x)= 0 iff xecy,(C)=C



Therefore, G, =4(X-C)=H(A) and A is a suitable open set.

Corollary 8.4. Given J‘L. an L-FTP family of topological spaces,

we have that the set of suitable open sets of 7(C) iIs equal
to I, -iﬂ,Xk.

Corollary 8.5. Let (X,T) be a topological space. V¢ can
associate to (X,T) a fuzzy topological space (X,T) in a
natural way: f is in?iff f=4(A) for A in . Let (X,T,)
be the fuzzy topological space associated with i, , the

coarsest topology ind&. Then T(C)D'CZ,,.

Remark 8.6. Corollary 8.5 gives us another proof of Proposition

4.2.

Corollary 8.7. Let |L|»3. Then sup(?J(C))=TCVT(C)=T(K) iff

I'x,, IS discrete.

Proof. For necessity, let Oy :{sz(x)nLl , and 01={x=(}(x)=1l-
for some chosen G in Tp. The 0x; are pairwise disjoint.
Denote H=V(4(04; )A«i). W have H(x)=di iff xelx; (4(0x;) is
in £(C) by Theorem 8.3), that is H=G and G is in T(X).

To prove sufficiency, let A be in P(X). Define G by G(x)=1

iff xeA, 4( #0 otherwise. ¢ isin T, and by Lanma 3.8 --

P
EX:G(X)’-lg is open in T, and hence A is open in Ty, -

Remark 8.8. The condition on the cardinality of L isS indis-
pensable i n the above corollary. If | L] =2, s AX)D and
I‘(C)=sup(6}\\(/C)) for any L-FIP family of topological spaces.



CHAPTER VI ||

Suitability

First, recall from [7.& the definitions of a
suitable space and of a fuzzy retract. For both (X,T) is

an L-fuzzy topological space.

Definition 8.1. If ACX, then A is non-trivial iff FZAEX.
A is a suitable open set in (X,T) iff A is non-trivial and
M(A) is an L-fuzzy open set in (X,T). (X,T) is suitable iff

(X,T) has a suitable open set.

Definition 8.2. Let ACX. A is an L-fuzzy retract of X in
(x,T) if there is a function r:(X,T)—-ﬁ(A,TA) such that

r(x)=x for each x in A and r is fuzzy continuous.

Pheorem 8.3. Let X be an L-FTP family of topological spaces.
Then we have: A is suitable open iff for each 4,/ i n La-Zlg.
A is open in Ix.
Proof. Suppose A is suitable openin £(C). Let M(A)=¥GA£.
W have A=§3) ngA"(x):ll =U§.X—c,¢“(A;)3 , Which is open --
in T, , therefore open in T;; , for eacha: in L& 5.1}5
Now, for sufficiency, let A in iy , for each«, in La-gll.
Denote C=X-A, we have cg;(C)=cy;(C)=C, for each o/ in La-glg.
'Therefore, we have:
Go(x)= L iff x€X-can(C) iff xeX-C.
Go(x)=d( iff xec 4i(C)-cy, (C)=C-C=g

Go(x)= 0 iff xecy,(C)=C
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Therefore, G=4(X-C)=m4(A) and A is a suitable open set.

Corollary 8.4. Gven J‘L, an L-FTP fam |y of topol ogi cal spaces,

we have that the set of suitable open sets of T(C) is equal
to Uy, -iﬁ,x&.

Corollary 85. Let (X,T) be a topol ogi cal space. V¢ can
associ ate to (X,T) a fuzzy topol ogi cal space (X,T7) in a
natural way: f is in?iff f=s¢(4) for Ain 2. Let (X,T,)
be the fuzzy topol ogi cal space associated with %, , the

coarsest topol ogy i n&., Then T(C)J(C:“.

Remark 8.6. Corollary 8.5 gives us anot her proof of Proposition
b2,

Corollary 8.7. Let |L|{»3. Then Sup(c}‘/(C))=TcVT(C)=T(K) i ff

L4y 1S discrete.

Proof. For necessity, let 04 ={x:G(x)=&L1 , and 01=[x=G(x)=1l‘
for sone chosen Gin 'I‘p. The 04; are pairwise disjoint.
Denot e H=V(4(0x; )A4:). V& have H(x)=di iff xel; (H4(0x¢) 18
in £(c) by Theorem8.3), that is H=Gand Gis in T(K),

To prove sufficiency, let Abe in P(X). Define G by G(x)=1

iff xeA, A(#0 otherwise. G is in ’Dp. and by Lemmma 3.8 __

zxsc(x)ql i's openin Tx, and hence Ais openin Iy,
Remark 8.8. The condition on the cardinality of L is indis-

.

pensabl e i n the above corollary. If |1l =2, 1_= w(x)% and
P(C)=sup(?~7C)) for any L-FrP fam |y of topol ogi Cal spaces.
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Let B<X and Jt:i(x,f,% )},)a family of topological spaces be
given. %=§(B,‘J},@ NB) 4
spaces, the generated fuzzy topology will be denoted by T(B,C).

Is also an L-FTP family of topological

By TB(C). we understand the fuzzy subspace topology induced

on T(C) by B,that is TB(C)={G\B:G€T(C?}.

Lemma 8.9. Let BCX be suitable closed and | etdbe an L-FTP
family of topological spaces. Then T(B,C)QTB(C)QL‘(B,K).
Proof. (1) T(B,C)&rg(C) (T(B,K)ET(K))

Denote by cy the closure operator of Jt and k, the closure
operator of (I))=E(B,"I:,{;(\ B)t . By definition of a subspace
topology, We have: for A€P(B), ki (A)=cy; (A)NB. Let ASB,

GAQT(B,C), HAET(C). For sets U,V,sS, SNU-V)=S0U -SNV. Then

Hy|g(x)=1 i ff x€X-Cup(ANB=B-ka\(A)

0 iffxec, (ANB=k,, (A).

Hence H =G, and I‘(B,C)_C,‘I‘B(C) (T(B,K)QTB(K)).

al B
(2) T5(C)eT(B,K) (T(K)€T(B,K)).
Let ACX, G,€1(C) and such that Jiel®-f1] , cx;(4)0BAF and

Cayoy (A)NB=g. V& have G| (x)=1 iff xeB-ky,(4)

=dv iff xekao(A)

. never -
=0

Claim: GA\ [V(GBnc“h(A)Adr-u )_]'BVAL

As in the proof of Pheorem 7.4, G takes only

BNcy, (A) e
two values @,,, and 0. More precisely,

GBAQAF(A)A“rf\‘B(x)=dT+\i1foe(X—c$h(Bﬁc*r(A)))AB

iff xeB-(cy, (B)Nca (A))NB

iff xeB-ka(A) (since B is

suitable closed)



A similar computation shows that GBnmh(A)A °‘H.\B(x)=0 i ff
xek,‘v(a). Hence, GA\B(x)=H(x) for xeB-kd-L(A). L et xek,‘i(A),
then for any ryi , GBI\c,\h(A)Ad"“" (x)=0 thus,H(x)=<.
Conclusion: H(x)=GAlB(x) on B and since Bhc,, (A)<B for any r,

H€T'(B,K).

Remark. If for A€P(X) and c.;(A)AB=g for each i, then HA\B
Is identically one. Let i:(B,T,0B)=>(X,Ty;) be the injection.

Then GA‘B=GAoi on B-ky, (A).
Corollary 8.10. T(B,K)=TB(K) for B suitable closed.

Theorem 8.11. Let BcX be suitable closed and ‘K:g(x,m; )13 ,
%zz(B'%AB)KD be two L-FIP families of tof):\logical hausdorff
spaces. Then we have:
avel r:i(X,T.;)->(B,5.,AB) is aretraction iff
r:(X,?(X))-(B,Ty(K)) is a fuzzy retraction.
Proof. This is a simple application of Theorem 7.4 and

Corollary 8.10.

Remark 8.12. Since every problem of extension can be reduced
to a problem of retraction (see Hu[l-_l for the ordinary case
for example, and Rodabaugh [7] for the fuzzy case) we have,

in fact, an extension property related to the Tietze extension

property.

Theorem 8.13. Let BSX.Jt={(X,‘I'M)}, be an L-FTP family of
topological spaces. If there exists a continuous map
r:(X,‘I‘,\h)—ﬁ(B,I“,{‘ﬁB) such that r(x)=x for x¢B then (B,'i‘B(K))

is a fuzzy retract of (X,7(K)).



Proof. Let r:(X,Ix,)—(B,T4;NB) be a continuous map such that
r(x)=x for xeB. Then for each AteLa-{li. r: (X,Ty; )—(B, T, NB)
Is aretraction, hence by Theorem 8. 11, (B.‘I‘B(K)) Is a fuzzy
retract of (X,T(K)).



CHAPTER IX

Kg as a Semi-closure Operator or_a Closure Operator

fora & L-1.2

T(C) generates A-closure operators ford in L-12.
I n Proposition 2.10 [11-]. Klein shows that for Ain L-1 with
44 1% and T in@v(c) with ¢, ke thea -closure operators
generated by T,T(C) respectively, we have for every A in
P(X) k«(A)Cc«(A). In this chapter, we will find conditions where

this inclusion becomes an equality.

Definition 9.1. In a partially ordered set (P, é). an element
y in P is said to cover an element X of Pif xXy and if

. 1Y
there does not exist any element zpin P such that x¢z and

Z24Y.

Lemma 9.2. For G in T(C), ¢ only takes values in L2.
Proof. 'Phis is clear for any basis element G,. For an
arbitrary sup of basis elements, the conclusion of the

lemma holds because of the finiteness of L2. -

Proposition 9.3. Given«ftan L-FTP family of topological spaces,
we have:
(1)¥4 in 1-1%, kx4 is a semi-closure operator
(ii) if 4covers 0, k4 IS a closure operator -
(1ii) W, =W, , where x;=V{¢36La- {lgsuch that /§>o¢5}

(; isin1? since L2 is finite)



Proof. (i) It is sufficient to show:¥ A,B in P(X),
ky (AUB)Sky (A)Uky(B) . Let x ¢ kg(A)Uky(B). Then there are
G,H in T(C) such that:

G(x)?/4 and GAY(A)=0

H(x)y4, and HAy(B)=0
Ve have G(x)=dl, H(x)=4j with & ,«;€L2-{1}. Without loss
of generality, we have G(x)AH(x)=dAi24 and GAHAY(A) =0,
GAHAMB)=0, which implies (GAHA4(A))V(GAHA4(B))=0. Hence,
(GAH)AY4(AVB) =0, so x¢ k,(AUB) and ks is a semi-closure
operator.
(ii) Let A be€P(X). It is sufficient to show that:

k,g(k,g(A))S—lsg(A).
L et xoex-ké (A). Then there exists G in T(C) such that
G(x, )74 and GAM(A)=0. Let us consider G/\q(ké(A)). For X
in X-k,g(A). we have G/\/.‘(k;b(A))(x)=O. For x in A, G(x)=0,
hence G/\ﬁ(k@(A))(x)=0. For x in k,s(A)-A, we have G(x)¢ 4 ,
that is G(x)¢ by Lemma 9.2 and 4e1-12. Since Kcovers 0,
G(x)=0. Hence, ¥ xeX, GM(k4(A))(x)=0. SO x,4 k4 (ku(A))
and 1\:/3 IS a closure operator.
(iii) Letq, =VZAJeLa- élg such thaté)xj} . By Lemma 9.2,
we have for any G in T(C),i x:G(x)?/g} =£st(x))ocL} , S0~
W,

L

=W/5 .



CHAPTER X

Normality

All the topological properties we have considered
so far transfer rather nicely to the fuzzy topology T(C)
generated by an L-FTP family of topological spaces. This
was due to the fact that T(C) had thee(-property. For
fuzzy normality, we do not have, so far, such a direct

correspondence.

Definition 10.1, (X,T) iIs pseudo-fuzzy normal iff for any
A,B closed in T such that AAB=0, there exist U,V in T

such that A<U, BSV and UAvV=0,

Theorem 10.2. Given an L-FTP family of topological spaces,
we have: T(C) is pseudo-normal iff Txs IS normal.

Proof. Let A,B be closed in T«, and such that ANB=g. W
have A(A), #4(B) in T(C) (cf. suitability) and4(A)A4B)=0.
Hence, there exist H,G in T(C) such that 4(A)¢H , 4(B)4G
and HAG =0. W have {x:H(x)=1§ , {sz~(x)=ll are in iy,
and {xu‘(A)=1§ C{x:H(x)=lI =U and unv=g,

{X:L‘(B)=1}C {x:G(x)=l}

\4

Therefore, Iy, IS normal.

For the converse, let FI,KIbe in T(C) and |l et FNK=0.
W have A= { x:F(x)P» 01 Is closed in Tg, ( x:F(x)=03 =
{x:F'(x)=llis open). B=E xsK(x)70} is closed in Ty,

ANB=g. Therefore, there are U,V in 'k, such that ACU,



Proof. (i)Ilt is sufficient to show:¥ A.B in P(X),
k¢ (AUB)Ck, (A)Ukg(B), Let x¢ kg(A)Uky(B). Then there are
G,H in T(C) such that:

G(x)7?/ and GAM(A)=0

H(x)y4, and HAy(B)=0
W have G(x)=de, H(x)=dy with A ,d, eL?- {ll Without loss
of generality, we have G(x)AH(x)=4)A4 and GAHAy(A)=0,
GAHAM(B)=0, which implies (GAHA#(A))Y(GAHA4(B))=0. Hence,
(GAH)AY4(AVB) =0, so x{ﬁ.ké(AUB) and kg is a semi-closure
operator.
(ii) Let A beéP(X). It is sufficient to show that:

kg (kg (A))SKk, (A).
Let x,€X-ky (A). Then there exists G in T(C) such that
G(x0 )74 and GAM(A)=0. Let us consider G/\q(ké(A)). For x
in X-k,g(A), we have G/\q(ké(A))(x)=0. For x in A, G(x)=0,
hence GAﬁ(k/s(A))(x)=0. For x in k4(A)-A, we have G(x)} & ,
that is G(x)¢by Lemma 9.2 and 4eL-L%. Since Kcovers 0,
G(x)=0. Hence, ¥ xeX, GM(kg(A))(x)=0. So x,4 X, (ky(A))
and ké Is a closure operator. R
(iii) Letq: =VZJ\36L3‘- f1} such that4>4} . By Lemmag.z,
we have for any G in T(C).E x:G(X)7/5} =Zx:G(x))o<L} , SO~

WJ' =W/S )

L
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CHAPTER X

Normality

A1l the topological properties we have considered
so far transfer rather nicely to the fuzzy topology T(C)
generated by an L-FTP family of topological spaces. This
was due to the fact that T(C) had the o -property. For
fuzzy normality, we do not have, so far, such a direct

correspondence.

Definition 10.1. (X,T) is pseudo-fuzzy normal iff for any
A,B closed in T such that ANAB=0, there exist U,V in {

such that A<U, BV and UAV=0,

Theorem 10.2. Given an L-FIP family of topological spaces,

we have: T(C) is pseudo-normal iff Txs IS normal.

Proof. Let A,B be closed in Tz, and such that AnNB=g. W\ -

have ~(A), &'(B) in T(C) (cf. suitability) and 4(A)A4B)=0.

Hence, there exist H,G in T(C) such that 4(A)¢H , 4(B)4G

and HNG =0. We have %x:H(x)=l§ , {x:G-(x)=ll are in Iwy,,

and {x:ﬁ(A)=l§ C{x:H(x)=lI =U and UnV=g.
{xey(®)= < fxia(x)=1]

L]

v

Therefore, T4, IS normal.

for the converse, |let FI,Klbe in T(C) and |l et FNK=0,
We have A= { x:F(x) 01 Is closed in Tg, (z x:F(x)=04Y =
{x:F,(x)=l3is open). B=Zx:K(x)70} is closed in L, «
ANB=g. 'Therefore, there are U,V in &, such that ACU,
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Bev and uNv=g. Consider 4(u), 4(V). They both are in T(C).
W have F$A1(U), since if x isinA, F(x)20 and 4(U)=1,
while if X isin X-A, F(x)=0. Similarly th‘(v). Clearly

,%(U)/h‘(v)-—-o. Therefore T(C) is pseudo-normal.

Definition 10.3. (Hutton) A fuzzy topological space is normal
if for every closed set K and open set U such that K¢U,

there exists a set vV such that : K$V&v<U,

Remark 10.4. This definition is more interesting than the
preceding one, since we can prove a fuzzy Urysohn's lemma

using it. See [2] .

Theorem 10.5. Let Jt be an L-FTP family of topological spaces,
let L={O=/~\QM<J~5 =ll and | et N(«; )=§X:N(x)>/4(£1 « Then We
have the following:

*[VF,G such that Fl.GeT(C) and F<¢G, d HeT(C) such that
F(oty )SH(g ).9?{(0(1 )éG(d;)] implies (X,T(C)) is fuzzy normal.
Proof. Suppose #* true. Let F,IG be i n T(C) such that F<G. i}
By hypothesis, there is an H in ©(C) such that:
{x:F(x)%(,Lg Q{X:H(X)=1§Q gx:ﬁ(x)ho(mgéf x:G(x)=lg.
W have FéHéng, that is (X, 7(C)) is fuzzy normal.
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APPENDIX
The following definitions can be found in [9].

Definition A.l1. The objects of RUZ are of the form (X,L,7),

where (X,T) is L-fts.

Definition 8.2. A morphism from (X,Ly%) to (X.]’i,’({) iIsa
pair (f,¢) satisfying the following conditions:

(i) £:X-X is a function

(ii) (tfl :I,— L, is a function preserving v ,n, '
(we call fb“ a lattice morphisms) and

(iii) v implies §ovofe% .
We only assume& Is arelation. W may speak of (f,ci)) as
being F-continuous. We say (f,tb) Is an (F-) homeomorphism
if f and Af‘are bijections and each of (f,cb) and (£, 4)")

are morphisms.

Proposition A.3. Let L,, L, be linearly ordered and such that
{ L :lLl\ . Let i‘l‘o\;}d.eh be an L-FiP family of topologies.
T, =T,
Aiela where i_f 4,
generates a fuzzy topology Ty hofeomorphic to the fuzzy topo-

Lhen the L-FIP family of topologieséT,g;E

logy I, gdenerated by ZT,LL‘S - (X,., L, )’_‘:(X,T,y,L,\).
Proof. (1) ,(ii) of Definition A.2 are trivially satisfied,

with f=Id, and cl) : In= L, by ép(¢£)=éé - Let Hy be in Ty,

X
then HA(x)=/\i4eL1 such that xek,g(A)l . W& have @ﬂ‘(HA(x))-:
Az (ﬁ)_' ()L, such that xe kg(A)g and since by hypothesis

kg (4) (A), Cb—‘(HA(X)):’\i"‘&L‘ such that xek«(A)]=G,(x)e

Hence (iii) is satisfied. The proof that (i;(‘ , i S a morphism



is similar.

As an application of this proposition, we are going
to construct a fuzzy topology with the unit interval as

the lattice. (FordéLl,d =1-4)

Let (X,T,L, ) be a fuzzy topological space generated by the
L-FTP family of topological spaces ?(X,Ta\i )&;%‘ and cf:L,~——‘>:[
be a lattice morphism defined by f(«:)=A . For {(a; )i (f(a\;;ﬂ).
put 'fé:ffnm =) Since o(;:(qn_“z), , Wwe have that:

G, )=F(1-0) =0 s 4p)hn-1+2= 4] =1-f( ;). (Recall that

L= %ok‘ =ogo\1...gmglg.)

¢ 9
Lemma A.4. l(X’T";)E/ger is an L-FIP family of topological spaces.
Proof. The family% =zc’§ 4 of closure operators satisfies

clearly the conditions of Definition 3.3.

Remark A.5. Denote by (X,T’.I) the fuzzy topological space
i !
generated by %(X'T/S)’,ES("?:T(C)). In (X,7,I) all fuzzy sets

are finite valued. -

Theorem A.6., Given a lattice isomorphism t§>=L‘~7 Ly defined
byli)(/\;)'-'/g;, there exists an isomorphism (iX.’_P) such that
the following diagram commutes:
o) G ® on )
(140%) i\‘/ A
(X,7, ,I) (%\)g'm (X,1 ,T)

proof. Let a=Y (b 1) -¥Y(&)) . For $(aey Ll aier),
‘f(o‘iﬂ ) - L((O(C) ~
define ! by l(;) = a(y-fx)) + Y(h(4)). Clearly lis a

monomorphism. Now let ieI. If g?\ﬁ/%;) for some/ €1y,




T(oﬁi). | f Y(éi)<%<\f(/3f+|) then %=T(W)) where

then§=
/"'\
\

" - $ed(ap)) + af(x). SO
cbntinuous, it preserves\ , A.

Let §(x)ey oz, then Plap o) ¥ <Flupsan).
a = W0, 141)) - V(& 140)) » B=Y(G(k, 54000,
Glan-i+1) = Cldn-i+2’
a = (1 -Y(ayq))) = (1Y) o b= 1 -4(§(4y)),
1-fleg ) - 1@y
a = WMD) =N@ED) b Y- Tl = (T -y
Plaseq) -G &y)
Hence, T( ) ) = 1'(1-y) = a(Tle;)-y) +1-t@ ;)
= l—a(X-‘f(Ai)) e ACICPIR
preserves the invol ution.

Now, —\T(X) = g()-t— a(%(4;)) -\)((cb(ot.l))) and

is abijection. Since !l is

Ther ef ore, 'ﬂ

Tmy) = 10-pramafing) -1%d &)
a

= 1- Ly*alplay)) - Y(§K; D).
a

The case where 5 =‘f(¢i) is simlar but sinpler. In conclusion.

“1Ti's an i sonor phi sm

/‘
Remark 4.7.1 by- constructionis not unique, that is, --

our diagramis not universal in the categorical sense.

Ihe interest of this constructionis that it allows us to
use Lowen's definition of fuzzy conpactness w t hout any

modi fi cati ons. Lﬂ
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Definition 4.8. (X,§) is fuzzy compact in the Lowen sense
ifffor each family 4AC$S such that >u>,ot and for eachge (0,4

there exists afinite subfaxnlly/s of/g such that Vu)ﬂ &,
$o

Definition A.9. (X,T,L;) is fuzzy compact in the Lowen

i
sense i ff (X,1,I) is fuzzy compact in the Lowen sense.

Proposition A.10. (X,T,L, ) is fuzzy compact i n the Lowen
sense iff YieL,, (X,7) isd -compact.

Proof. To show sufficiency, let 4l £Adiia »

case 1. A=A,. Let {uL be an f'-shading of X. Then \,3/% P
implies \/uomh for some finite subfamily 4. of 4.

L et 0(E<m , then Vu>/a( -&.

case 2. JOA %uzjo implies >;/0u>/d(in by the Remark A.5.
Let 0{£<4 then Xg»&a».)xf .

For necessity, let{ =& - 4i- /2 and{ g,; be an o{*—shadlng

of X. Then Vud4; implies there exists afinite subfamily

3 - /
4o Of fsuch that Vu > A~¢>di . By the Remark A.5, y@,m
%0

Nw et Ac<acqacyy, and yu),A then i n particular for _
2
¢ =A~4/2, there exists a finite subfamily 40f4 such that

>\/u7/$ ¢, that is \/u7/z<m or \/u>/oL .
%o
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