ANALYSIS AND DESIGN FOR TORSIONALLY
 IOADED COMBINATION SECTIONS

Submitted by:
Raymond G. Makara
in Partial Fulfillment for the uegree or:
Master of Science in Engineering
in the
Civil Engineering Program

YOUNGSTOWN STATE UNIVERSITY
June 1983

In this study, a procedure for the design and analysis of unsymmetrically loaded combination sections was accomplished; combination sections being defined here as wide-flange shapes that have a channe 1 section attached to the top flange.

The torsional ,method of analysis took into account that the entire combination section resists the vertical and lateral loads while current design practice usually considers the entire section to resist the vertical force and the top flange alone to resist the lateral force.

In order to conduct the torsion analysis of such combination sections, certain warping and torsional factors were evaluated. Once these elastic section properties were calculated, the torsional theory was first verified and then applied to a beam loaded by a two wheel crane. The torsional method was compared to the so-called conventional method of analysis with the result that the conventional method of analysis is perhaps not as conservative in some cases as originally thought.

Design aids for the torsional theory were developed in the format of design tables that list combination section properties for over 150 sections as well as-tables which list the maximum allowable length of a crane beam for a given vertical load, lateral load, crane wheelbase, and steel strength.

ACKNOWLEDGEMENTS

During the course of working on this thesis, much information and time was required. It would have been impossible for the author of this manuscript to do all the thinking. I would therefore like to thank my advisor, Dr. Jack D. Bakos for all of the help, technical input, and criticisms which aided the completion of this thesis. The author would also like to thank V. E. Shogren for all of his help, input, and use of technical literature. I would also like to thank my family for their understanding and encouragement in the pursuit of my education. To all of these people I am indebted.

This thesis is dedicated to my grandfather, John W. Susor Sr., who may not have understood a word of this thesis, but would have been proud of it.

TABLE OF CONTENTS

PAGE
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF SYMBOLS v-vi
LIST OF FIGURES vii
LIST OF TABLES viii
CHAPTER

1. INTRODUCTION $1-5$
2. BENDING AND TORSION THEORY OF COMBINATION SECTIONS $6-19$
3. APPLICATION OF THE TORSIONAL THEORY OF COMBINATION SECTIONS 20-78
4. DISCUSSIONS AND CONCIUSIONS 79-81
LIST OF REFERENCES 82
APPENDIX A 83-89

LIST OF SYMBOLS

SYMBOLS	DEFINITION	UNITS
A	$1 / \beta$	
A	Area of cross-section	in ${ }^{2}$
C_{w}	Warping constant for a cross-section	in ${ }^{6}$
B	$L / 2-S / 4$	feet*
e	Distance from top of combination section to shear center of top flange only	in.
E	Modulus of elasticity	ksi
E_{b}	Distance from shear center of a combination section to bottom flange	in.
E_{t}	Distance from shear center of a combination section to top flange	in.
f_{b}	Normal bending stress at a point	ksi
$f_{\text {bC }}$	Actual bending stress in compression	ksi
$\mathrm{f}_{\mathrm{b} T}$	Actual bending stress in tension	ksi
$\mathrm{f}_{\text {bw }}$	Normal warping stress at a point	ksi
F_{bC}	Allowable bending stress in compression	ksi
F_{bT}	Allowable bending stress in tension	ksi
G	Shear modulus of elasticity	ksi
I_{X}	Moment of inertia of section about X-axis	in 4
$I_{x y}$	Product of inertia	in ${ }^{4}$
I_{y}	Moment of inertia of a section about Y-axis	in ${ }^{4}$
$I_{\text {ycf }}$	Moment of inertia of top flange of a combination section about the Y-axis	in ${ }^{4}$
K	Torsional constant of a combination section	in ${ }^{4}$
L	Iength of a beam	feet
$L_{i j}$	Length of an element between points i and \bar{j}	in.

M_{X}	Bending moment about X-axis	kip-in
M_{y}	Bending moment about Y-axis	kip-in
P_{X}	Vertical wheel load	kips
P_{y}	Lateral wheel load	kips
q	Shear flow on a cross-section	kip/in
r_{T}	Radius of gyration comprising the compression flange plus one-third of the compression web area, taken about the Y-axis	in.
R	A constant involving sinh (see eq(3-6))	---
RH	Crane rail height	in.
S	Crane wheelbase	feet
T_{0}	Applied torque on a span	kip-in
$t_{i j}$	Thickness of an element between points i and j	in.
V	Shear stress on a beam web	ksi
$\mathrm{w}_{\text {oi }}$	Unit warping function	$i n^{2}$
$W_{n A}$	Normalized warping function at a point A on the top flange of a combination section	$i n^{2}$ -
$W_{n B}$	Normalized warping function at a point B on the bottom flange of a combination section	in ${ }^{2}$
β	A constant equal to $\left(\mathrm{GK} / \mathrm{EC}_{\mathrm{w}}\right)^{\frac{1}{2}}$	in ${ }^{1}$
λ	Ratio of $I_{\text {ycf }} / I_{y}$	---
ρ	Distance from shear center to an element	in.
$\theta^{\prime \prime}$	Second derivative of the angle of twist with respect to the distance along the beam	---
9	The angle of twist'of a torsionally loaded beam, at a point on the span	

LIST OF FIGURES

FIGURE PAGE
1-1 Typical Combination Section 3
1-2 Conventional Design Loading Procedure 3
1-3 Unsymmetrical and Torsional Loading of a Combination Section. 4
2-1 Combination Section Subjeot to Unsymmetrical Bending. 7
$2-2$ Beam Loading Diagram if $S \leqslant 0.586 \mathrm{~L}$. 8
2-3 Warping Normal Stress Distribution in a Wide- Flange Shape 9
2-4 Shear Flow in a Combination Section for the Determination of the Shear Center. 11
2-5 Initially Assumed Shear Flow in a Combination Section for the Determination of C_{w} and W_{n}. 15
2-6 Superposition of Two Tórques on' a Crane Beam. 17
3-1 Combination Seotion Pop' the Determination of E_{b} and O_{w} by the Simplified Method 26
3-2 Graph of βI and βS versus R for $S \leqslant 0.586 L \ldots$ 28
TABLE PAGE
2-1 Combination Section Warping Properties........ 13
3-1 Section Properties of Combination Sections.... 21-25
3-2 Comparison Between the Exact Method and the Approximate Method for C_{w} and $\mathrm{E}_{\mathrm{b}} \ldots \ldots .$. 26
3-3 Maximum Allowable Beam Lengths................ 35-70
3-4 Typical Difference in Maximum Allowable Beam Lengths for Varying Rail Heights.............. 72
3-5 Comparison of Allowable Beam Lengths Obtained by Calculation and by Interpolation of Table 3-3. 73

Chapter 1

INTRODUCTION

In many tndustrial buildings, overhead cranes are incorporated into the manufacturing and handling of goods and equipment. For example. cranes are used extensively in steel fabrication plants, in production or assembly lines, in mill operations, in mining and countless other operations. These cranes serve these operations by lifting and transporting loads from one location to another. For this process to be implemented, a suitable systen of crane beams and columns, called a crane runway, must be designed to handle all anticipated leads the crane nay ecnounter. The design of these crane beams is much more complicated than designing an ordinary steel beam. The design of these sophisticated systems witl be discussed in this paper.

In the design of crane beams, the structural engineer must take into account all of the loading conditions that could possibly be encountered. The major load on a crane beam is the direct, vertical force or wheel load. This is the largest force on a crane beam and is usually listed in catalogs provided by crane manufacturers. In addition, this wheel load must be given a percentage increase to account far any impact that could be produced when the crane load is raised and lowered and due to any subsequent movement of the load. This increase for impact is listed in section 1.3.3 of the design specifications of the American Institute of Steel Construction Manual of Steel Construction (1)* (herein referred to as "AISC Steel Code"). The next significant force on a crane beam is the lateral load that acts perpendicular to the beam

* Number in parentheses indicates reference cited.
span and is produced by the rocking movement of the crane trolley wheels. As outlined in section 1.3.4 of the AISC Steel Code (1) this force, which is assumed to act at the top of the crane rail, is specified as twenty percent of the lifted load plus the weight of the crane trolley. This force is divided equally between the two crane rails. The third force on the beam is the longitudinal force produced by the crane traveling along the crane rail. This force, which is resisted by the top flange of the beam, is usually not of much consequence and is often neglected. Lastly, the beam and rail weights must be considered.

Any type of beam must be designed to resist lateral torsional buckling. In addition, the lateral force on a crane beam is not contained in the plane of the minor or major axes and does not pass through the section's shear center and thus, these considerations are critical in the design. The AISC Steel Code specifies the maximum unbraced length that may be used,while still utilizing the full, permissible compressive bending stress. If this maximum length is exceeded, the allowable compressive stress must be reduced. This allowable compressive stress is directly controlled by the size or lateral stiffness of the compression flange. So, a beam with a larger top flange has more lateral stiffness and is permitted to have a longer unbraced length.

For most rolled beam shapes, the flanges are relatively narrow. Oftentimes, the size of the compression flange is increased to give the section a greater lateral stiffness. The most common procedure for reinforcing the top flange is by welding a channel section to that flange. This is called a built-up or a combination section and is shown in Figure (1-1).

Fig. 1-1: Typical Combination Section

Such a profile is often used for a crane runway beam.
In the past, built-up crane beams, which are unsymmetrically loaded have been designed using a simplified procedure. This procedure considered the vertical wheel load to be carried by the entire built-up section and the lateral force to be applied at the top of the channel and resisted by only the added channel and top flange. This simplification is shown in Figure (1-2). This procedure has been considered

Fig. 1-2, Conventional Design Loading Procedure conservative by most design engineers and thus not very precise since the lateral load is actually resisted by the entire cross section.

In order to obtain a more exact stress analysis of the unsymmetrically loaded section, a more rigorous procedure utilizing the equations for unsymmetrical bending of an elastic beam should be used. These
equations are presented in many advanced strength of materials (3, 5) and steel design books (7, 8), but the use of these equations alone is insufficient since such an application assumes that the beam is loaded through its shear center. The shear center is defined as the point on a beam cross-section through which a force must act so that all twisting effects are eliminated. For a typical rolled wide-flange shape, and any other doubly-symnetric section, the shear center and the centroid are coincident. For a built-up section this is not the case. Obviously, the forces on a crane beam do not act through the shear center (See Figure 1-3).

Fig. 1-3: Unsymmetrical and Torsional Loading of a Combination Section

Therefore, in addition to the unsymmetrical bending equations, a torsional analysis should be incorporated. The torsional analysis of wide-flanges, standard channels, and other individual shapes. have been compiled by many other sources $(2,3,4,5)$. The Bethlehem Steel Company publishes an excellent handbook (2) for torsion of common rolled shapes. The torsion analysis is also presented by other sources. But, no reference could be found that lists such torsional properties for the previously mentioned combination sections. The intent of this paper is to compile the various torsion and warping properties of combination sections and
and to apply them to the case of a torsionally, unsymmetrically loaded crane beam.

BENDING AND TORSION THEORY

OF COMBINATION SECTIONS:

As previously stated, the unsymmetrical bending equation (3.) will be used for the crane beam analysis. The modified equation for bending stress in an unsymmetrically loaded beam is given as

$$
\begin{equation*}
f_{b}=\frac{M_{x}(y-x \tan \alpha)}{I_{x}-I_{x y} \tan \alpha} \tag{2-1}
\end{equation*}
$$

where,

$$
\begin{equation*}
\tan \alpha=\frac{I_{x y}-I_{x} \cot \phi}{I_{y}-I_{x y} \cot \phi} \tag{2-2}
\end{equation*}
$$

and,

$$
\begin{aligned}
M_{X} & =\text { Bending moment about } X \text {-axis } \\
I_{X} & =\text { Moment of inertia about } X \text {-axis } \\
I_{y} & =\text { Moment of inertia about Y-axis } \\
I_{X x y} & =\text { Product of inertia } \\
x, y & =\text { Coordinates of a point under consi- } \\
& \text { deration, using positive axes as shown. } \\
& =\text { Angle between the plane of load, } P,
\end{aligned}
$$

Fig. 2-1: Combination Sectıon Subject to Unsymmetrical Bending.

In the case of a section that is symmetrical about one or both axes (see Fig. 2-1):

$$
I_{x y}=0
$$

so;

$$
\begin{equation*}
\tan \alpha=-\frac{I_{X}}{I_{y}} \cot \phi \tag{2-3}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{b}=\frac{M_{x}}{I_{x}}(y-x \tan \alpha) \tag{2-4}
\end{equation*}
$$

Substituting (2-3) into (2-4) yields:

$$
\begin{equation*}
f_{b}=\frac{M_{x} y}{I_{x}}+\frac{M_{x} x}{I_{y}} \cot \phi \tag{2-5}
\end{equation*}
$$

From Figure 2-1, it is seen that ϕ is related to the horizontal and vertical loads. More specifically,

$$
\begin{equation*}
\cot \phi=\frac{P_{Y}}{P_{x}} \tag{2-6}
\end{equation*}
$$

The maximum live bending moment, M_{x}, may be easily calculated using a table of beam formulas. For a two wheel crane beam, the exact point of maximum moment varies with the span and crane wheelbase. There are two different loading conditions in which the maximum live moment might occur.

Fig.. 2-2: Beam Loading Diagram if $S \leqslant 0.586 \mathrm{~L}$

First, if $S \leqslant 0.586$ L (see Fig. 2-2),

$$
\begin{equation*}
M_{x}=\frac{P_{x}}{2 L}\left(L-\frac{B}{2}\right)^{2} \tag{2-7}
\end{equation*}
$$

under load 1 at $B=L / 2-S / 4$.

But, if $S>0.586 \mathrm{~L}$, then

$$
\begin{equation*}
M_{x}=\frac{P_{x} L}{4} \tag{2-8}
\end{equation*}
$$

with one direct wheel load at the point $L / 2$ on the beam span.

Once the maximum live moment is calculated, EQ. (2-5) can be used to calculate the maximum live unsymmetrical bending stress due to beam action. This would, however, be an incomplete analysis since additional bending stress is caused by torsion on the section since the load does
not pass through the shear center. This additional stress is called the warping normal stress.

The warping normal stress is produced by the rotation of a beam about its shear center when a torque is applied. As this beam is twisted, cross-sections through the beam do not remain plane but warp out of plane. As the beam begins to warp, stresses normal to the cross-section develop (see Figure 2-3).

Fig. 2-3: Warping Normal Stress Distribution in a Wide-Flange Shape

$$
\begin{equation*}
f_{b w}=E W_{n} \theta^{\prime \prime} \tag{2-9}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
\mathrm{E}= & \text { Modulus of elasticity } \\
\mathrm{W}_{\mathrm{n}}= & \text { Normalized warping constant at a } \\
& \text { point on the cross-section }
\end{array}\right\}
$$

The value of $\theta^{\prime \prime}$ is a function of the torque on a beam, the beam length, and torsion and warping constants of the cross-section. Many
sources list equations used to evaluate $\boldsymbol{\theta}^{\prime \prime}$ for various loading conditions and cross-sections $(2,5)$ to evaluate $\boldsymbol{\theta}^{\prime \prime}$. The values for the torsion and warping constants are also needed. For wide flange shapes, these values are listed in Part 1 of the AISC Steel Manual, For combination sections, these constants are not, unfortunately, listed. The elastic properties for a limited number of combinations are listed. It will be necessary to develop expressions for these required constants.

The first parameter needed is the location of the shear center for the combination section. To locate it, the process outlined by Seely and Smith (3) will be used. Referring to Figure 2-4, a typical combination section is loaded through a point assumed to be the shear center. This force, $\boldsymbol{V}_{\mathrm{y}}$, will cause a shear flow on the cross-section to 'develop. This flow will produce forces F_{1}, F_{2}, F_{3}, and F_{4} '

$$
F_{1}=\int_{0}^{b_{1}} d s
$$

where, q_{1}, the shear flow is

$$
q_{1}=\frac{V x}{I_{y}} t_{1} s \quad d_{c} / 2
$$

substituting and solving;

$$
F_{1}=\frac{V_{x}}{4 I} t_{y} a_{c} b_{1}^{2}
$$

Likewise, F_{2} and F_{3} may be found to bet

$$
\begin{aligned}
& F_{2}=\frac{V_{x}}{2 I_{y}}\left(\frac{b_{1} t_{1} d_{c}^{2}}{2}+\frac{t_{2} d_{c}^{3}}{12}\right) \\
& F_{3}=\frac{V_{x}}{I_{y}}\left(t_{3} b_{3} / 3\right)
\end{aligned}
$$

Now, taking the summation of the moments about point A :

$$
V_{x} E_{b}=F_{1} d_{c}+2 F_{2} d_{t}+2 F_{3}\left(d_{T}-\frac{t_{2}}{2}-\frac{t_{3}}{2}\right)
$$

Fig. 2-4: Shear Flow in a Combination Section for the Determination of the Shear Center

Substituting for F_{1}, F_{2}, F_{3}, and solving yields:

$$
\begin{equation*}
E_{b}=\frac{1}{I_{y}}\left[b_{1} t_{1} d_{c}^{2}\left(\frac{b_{1}}{4}+\frac{d_{T}}{2}\right)+\frac{t_{2} d_{T} d_{c}^{3}}{12}+\frac{2}{3}\left(d_{T}-\frac{t_{2}}{2}-\frac{t_{3}}{2}\right) t_{3} b_{3}^{3}\right] \tag{2-10}
\end{equation*}
$$

Now, that the expression for the shear center has been found, the remaining torsional and warping properties must be determined. The general mathematical expressions for these torsional and warping properties can be found in many references (2, 4, 8). C. P. Heins(4) has developed a numerical evaluation for standard steel sections, such as wide-flange shapes and channels. By expanding this numerical procedure, the warping and torsional properties for a combination section can be evaluated. The normalized warping function, $W_{n i}$, at point \mathbf{i} on the cross section is given as:

$$
\begin{equation*}
w_{n i}=\frac{1}{2 A} \sum_{1}\left(w_{o i}+w_{o j}\right) t_{i j} L_{i j}-w_{o i} \tag{2-11}
\end{equation*}
$$

where, \quad woi $=$ unit warping function $=\rho_{0 i} L_{i j}$
$t_{i j}=$ thickness of an element between i and j
$L_{i j}=$ length of an element between i and j
A = total area $=\sum t_{i j}{ }^{L}{ }_{i j}$
$\rho_{0}=$ distance from shear center to elemeñt
The warping constant, § for the entire section is:

$$
\begin{equation*}
c_{w}=\frac{1}{3} \sum\left(w_{n i}^{2}+w_{n i} w_{n j}+w_{n j}^{2}\right) t_{i j} L_{i j} \tag{2-12}
\end{equation*}
$$

with the terms the same as for eq.(2-11).

The determination of both $W_{n i}$ and C_{W} is best achieved utilizing a tabular format. First, the combination section is considered to be
TABLE 2-1: Combination Section Warping Properties

a sequence of inter-connected rectangular plate elements with the ends and intersections of the plates numbered arbitrarily (See Figure 25).

A continuous flow is assumed across the section points 1-2-3-4-$5-6$, with the flow on the elements $7-2$ and $10-9-8-3$ assumed to act from the free edges to the intersections.

The first term to be calculated is $w_{0}=\rho_{0} L$. The values of ρ_{0} are given in Table 2-1 and the sign of p_{0} is determined by the rule that moving from point i to point \mathbf{j}, if the shear center is located to the left with respect to the flow, the value of ρ_{0} is positive. Thus, the values for w_{0} at the edges and intersections can be determined since ρ_{0} and $L_{i j}$ for each element can be easily tabulated. It is first assumed that point 1 has $w_{0}=0$ and, the summation of the results of PoL around the loop 1-2-3-4-5-6 yields the w_{0} at the respective points. Now, in order to calculate the w_{0} at point 7 and the w_{0} around the loop 10-$9-8-3$, the values of w_{0} at points 2 and 3 are used. These values are known since they were calculated in the previous loop. Since the flow is known to act from $7-2$ and from 10 to 9 to 8 to 3 , the w_{0} at the points $7,8,9$, and 10 can be found directly as shown in Table 2-1.

Now, the equation for W_{n} can now be evaluated since the w_{0} are known. In Table 2-1, the areas, $t_{i j} L_{i j}$, and the sum of the (W_{0} o $+W_{0 j}$) $t_{i j} L_{i j}$ are listed. The expression for $w_{n i}$ can now be evaluated as

$$
\begin{equation*}
W_{n i}=E_{b} b_{3}-\text { wo } \tag{2-13}
\end{equation*}
$$

Therefore, by using equation (2-13), the values of W_{n} at the points on the section can be determined and are listed in Table 2-1.

Now, with the values of W_{n} at the points on the cross-section known, the warping constant, C_{w}, can be determined. Using EQ (2-12), the expression for C_{W} is found to be:

Fig. 2-5: Initially Assumed Shear Flow in a Combination Section for the Determination of C_{w} and W_{n}

$$
\begin{align*}
c_{w}=\frac{2}{3}\{ & t_{3} b_{3}^{3} E_{b}^{2}+\left(t_{2}+t_{3}\right)\left(E_{t}-0.5 t_{3}\right)^{2} b_{3}^{3}+b_{2} t_{2}\left[3 b_{3}^{2}\left(E_{t}-0.5 t_{3}\right)^{2}\right. \\
& \left.+3 E_{t} b_{2} b_{3}\left(E_{t}-0.5 t_{3}\right)+\left(E_{t} b_{2}\right)^{2}\right]+b_{1} t_{1}\left[3 \left(E_{t} b_{4}-\right.\right. \\
& \left.\left.\left.0.5 b_{3} t_{3}\right)^{2}+b_{1} b_{4}\left(3 E_{t} b_{4}-3_{2}^{3} b_{3} t_{3}+b_{1} b_{4}\right)\right]\right\} \tag{2-14}
\end{align*}
$$

Another torsional property required is the term:

$$
\begin{equation*}
\beta=\sqrt{\frac{G K}{E C_{w}}} \tag{2-15}
\end{equation*}
$$

where: $\quad G=$ shear modulus of elasticity

$$
\begin{align*}
& \mathrm{E}=\text { modulus of elasticity } \\
& \mathrm{C}_{\mathrm{W}}=\text { warping constant } \\
& \mathrm{K}=\frac{1}{3} \sum\left(b_{i} t_{i}^{3}\right) \tag{2-16}
\end{align*}
$$

and t_{i} is always the smallest dimension and $b_{i} \gg t_{i}$.
Refering to figure(2-5), K may be expressed as follows:

$$
\begin{equation*}
k=\frac{1}{3}\left(2 b_{1} t_{1}^{3}+d_{c} t_{2}^{3}+4 b_{3} t_{3}^{3}+h t_{w}^{3}\right) \tag{2-17}
\end{equation*}
$$

Now, with the values of K and C_{W} found, they may be substituted into EQ (2-15) and a value for β can be evaluated. The value for $\mathcal{\beta}$ usually is much less than zero and does not lend itself suitable for compiling into a tabular form. Therefore, the reciprocal of β is often tabulated as is the case for wide-flange shapes listed in the AISC Steel Manual. It is given as:

$$
\begin{equation*}
A=\frac{1}{\beta}=\sqrt{\frac{E C_{w}}{G K}} \tag{2-18}
\end{equation*}
$$

Now, with the expression for the torsion and warping properties evaluated, the value of $\theta^{\prime \prime}$ may be determined as described before. For
the live load case of a two-wheel crane which was considered previously in an unsymmetrical banding mode, the expression for $\theta^{\prime \prime}$ for the two load cases $(S \leq 0.586 \mathrm{~L}$ and $\mathrm{S}>0.586 \mathrm{~L})$ will be evaluated.

Case 1: $S \leq 0.586 \mathrm{~L}$
For this case, two wheel loads are applied on the beam span. The two loads must be considered separately and the principle of superposition is used by taking the sum of the two values for $\theta^{\prime \prime}$ at a point. See Figure 2-6.

Fig. 2-6:.Superposition of Two Torques on a Crane Beam

From Roark and Young (5), the value of $\theta^{\prime \prime}$ ior a concentrated intermediate torque on any beam is given asr

$$
\begin{align*}
\theta^{\prime}=\theta_{A}^{\prime \prime} \cosh \beta x & +\theta_{A}^{\prime} \beta \sinh \beta x+\frac{T_{A}}{C_{W} E} \sinh \beta x \\
& +\frac{T_{0}}{C_{w} E \beta} \sinh \beta\langle x-b\rangle \tag{2-19}\\
T_{A} & =\text { reaction torque at end, } A \\
\theta_{A}^{\prime} & =\text { first derivative of } \theta \text { at left end } \\
\theta_{A}^{\prime \prime} & =\text { second derivative of } \theta \text { at left end } \\
T_{0} & =\text { applied torque on span. }
\end{align*}
$$

For a crane beam, the applied torque, To, is
defined as:

$$
\begin{aligned}
& T_{0}=P_{y}\left(E_{t}+R H\right) \\
P_{y}= & \text { lateral force at top of crane rail } \\
E_{t}= & \text { distance from shear center to the } \\
& \text { top of the section } \\
\mathrm{RH}^{\prime}= & \text { crane rail height. }
\end{aligned}
$$

It must be mentioned that the boundary conditions to be used in evaluating Θ^{n} are for a beam with ends that are resisted from rotating about the shear center but not resisted from warping out of ptane: This is consistent with actual design practice because the crane beam ends are bolted on the bottom flange to form a seat while the top flange is connected to a stationary object such as a building column to prevent rotation.

Now, referring again to Figure (2-6), two torques must be considered. First, $\theta^{\prime \prime}$ must be evaluated at $X=B$ for the torque applied at $X=B$. The boundary conditions for this case are given as:

$$
\begin{aligned}
& \theta_{A}^{\prime \prime}=0 \quad T_{A}=-T_{0}\left(1-\frac{B}{L}\right) \\
& \theta_{A}^{\prime} \equiv \frac{T_{0}}{C_{w} E \beta^{2}}\left(1-\frac{B}{L}-\frac{\sinh \beta(L-B)}{\sinh \beta L}\right)
\end{aligned}
$$

By applying these boundary conditions to EQ (2-19) and evaluating at the point $X=B$, yields:

$$
\begin{equation*}
\theta_{1}^{\prime \prime}=\frac{T_{0}}{C_{w} E \beta} \frac{\sinh \beta B \sinh \beta(L-B)}{\sinh \beta L} \tag{2-21}
\end{equation*}
$$

Next, the value for $\theta^{\prime \prime}$ at the point $X=B$ with T_{0} applied at the point $X=B+S$ must be evaluated. The boundary conditions for this
loading are given as:

$$
\begin{gathered}
\theta_{A}^{\prime \prime}=0 \quad T_{A}=-T_{0}\left(1-\frac{(3+S)}{L}\right) \\
\theta_{A}^{\prime}=\frac{T_{0}}{C_{w} E \beta^{2}}\left(1-\frac{(B+S)}{L}-\frac{\sinh f(L-B-S)}{\sinh \beta L}\right)
\end{gathered}
$$

Again, substituting these boundary conditions into eq. (2-19) and evaluating at $x=B$ yields.:

$$
\begin{equation*}
\theta_{2}^{\prime \prime}=\frac{T_{0}}{C_{w} E \beta} \frac{\sinh \beta B \sinh \beta(L-B-S)}{\sinh \beta L} \tag{2-22}
\end{equation*}
$$

Now, using the principle of superposition, it is possible to evaluate $\theta^{\prime \prime}$ at the point $x=B$, which $\dot{x} s$ the point of maximum moment. Therefore,

$$
\theta_{B}^{\prime \prime}=\theta_{1}^{\prime \prime}+\theta_{2}^{\prime \prime}
$$

or,

$$
\begin{equation*}
\theta_{B}^{\prime \prime}=\frac{T_{0}}{C_{w} E \beta} \frac{\sinh \beta B}{\sinh \beta L}(\sinh \beta(L-B)+\sinh \beta(L-B-S)) \tag{2-23}
\end{equation*}
$$

Case 2: $\quad S>0.586 \mathrm{~L}$
For this case, the maximum moment due to the wheel loads occurs with one wheel located at midspan. For a concentrated torque at the midspan of a beam with the same end condition as in Case 1, the formula for $\theta^{\prime \prime}$ has been evaluated by many sources. From Roark and Young ${ }^{`}(5)$, the equation for $\Theta^{\prime \prime}$ is given as:

$$
\begin{equation*}
\theta^{\prime \prime}=\frac{T_{0}}{2 C_{w} E \beta} \tanh \frac{\beta_{L}}{2} \tag{2-24}
\end{equation*}
$$

Now, with the expressions for $\theta^{\prime \prime}$ evaluated, and•the expressions for the. torsion and warping constants for any combination section, a crane beam can now be analyzed or designed easily and accurately.

APPLICATIONS OF THE TORSIONAL

THEORY OF COMBINATION SECTIONS

In order to analyze or design a torsionally loaded combination section as a crane beam, elastic section properties for the sections are required. As noted before, although the AISC Steel Manual lists some elastic section properties for some thirty different combination sections, no torsion or warping properties are given. Utilizing the equations developed for these properties as in Chapter 2, a computer program was developed to conveniently compute the elastic torsional, and warping properties for a large quantity of possible combination sections (See Appendix "A" for a listing). The output from this program was neatly arranged into a tabular form and is presented by Table 3-1.

In calculating the elastic section properties of the combination sections in Table 3-1, a check can be made for the values of E_{b} and . In a paper by Kitipornchai and Trahair (6) dealing with monosymmetric l-Beams, an approximate solution for these two properties was outlined. In this approach, the ratio of the moment of inertia for the top flange versus the moment of inertia of the entire section, bothabout the $Y-Y$ axis, is calculated (See Figure 3-1).

$$
\begin{equation*}
\lambda=\frac{I_{y c f}}{I_{y}} \tag{3-1}
\end{equation*}
$$

Also, the shear center location of the tō flange; e, is:

$$
\begin{equation*}
e=\frac{t_{1} b_{1}^{2} d_{c}^{2}}{4 I_{x}} \tag{3-2}
\end{equation*}
$$

The expressions for a and b are defined as:
$a=(1-\lambda) h$
${ }^{\prime} \mathrm{b}=\lambda \mathrm{h}$
TABLE $3-1$
Section properties of
combination sections

	${ }_{3}^{\frac{n}{z}}$	$\stackrel{\sim}{\sim}$	
	${ }_{3}^{4}$	$\stackrel{N}{\Xi}$	 $\underset{1}{\text { NーM }} \mathbf{1}$
	4	E	
	0^{3}	${ }_{\text {® }}^{\text {E }}$	
	\checkmark	$=$	
	m^{2}	£	
	SH^{H}	Ξ	$\dot{m} \dot{m} \dot{\mathrm{~s}} \dot{\mathrm{~m}} \dot{\mathrm{r}} \dot{\mathrm{G}} \dot{\mathrm{m}}$
	x^{-1}	Ξ	
		E	
		Ξ	
氐发		$\underset{\sim}{N}$	


```
TABLE 3-1 (cont.)
Section properties of
combination sections
```


Fig. 3-1: Combination Section for the Determination of E_{b} and C_{w} by the Simplified Method

But, $b=E_{0}$, the distance from the shear center to the bottom flange. Therefore;

$$
\begin{equation*}
E_{b}=\lambda n \tag{3-3}
\end{equation*}
$$

The expression for the warping constant is given as:

$$
\begin{equation*}
c_{w}=\lambda(1-\lambda) I_{y^{h}}^{2} \tag{3-4}
\end{equation*}
$$

By incorporating these solutions into the computer program for elastic section properties, a comparison of the different values for ε_{b} and c_{W} can be made. Although the values for the approximate solution are not included in the elastic section properties of Table 3-1, they were calculated and compared. The values for C_{W} and ε_{0} for thē two methods agreed quite well as is shown in TABLE 3-2.

SECTION	$\mathrm{E}_{0}(12 \mathrm{l}$)			$C_{w}(\mathrm{in}$ 6)		
	Eq(2-21)	Eq(3-3)	\% diff.	Eq (2-14)	Eq(3 -4)	\% diff.
W14X30-C10×15.3	12.81	12.92	0.83	1857.	1847.	0.52
W18x50-C12x20.7	16.39	16.49	0.62	6175.	6205.	0.49
W24×84-612x20.7	19.22	19.39	0.85	29809.	30594.	2.64
W30x116-C15×33.9	25.14	25.39	1.00	62722.	63912.	1.90
W36X150-C18×42.7	30.18	30.55	1.22	148221.	15128%.	2.06

TABIE 3-2: Comparison Between the Exact Method and the Approximate Method for C_{w} and E_{b}.

In the determination of the normal warping stress, the value of $\theta^{\prime \prime}$ is needed. The value of $\theta^{\prime \prime}$ for a given loading condition and beam span may be evaluated using formulas or design charts. Roark, and Young (5) give fommias for obtaining $\boldsymbol{\theta}^{\prime \prime}$ for a multitude of loading conditions. The Bethlehem Steel Corporatfon publishes a torsional design handbook (2) that contains design charts for a rapid determination of $\boldsymbol{\theta}^{\prime \prime}$ for a 1 imited quantity of load eases.

- For the loading condition consisting of two crane wheels on a simply supported beam span, the equations for $\theta^{\prime \prime}$ were given as $E Q$. (2-21) or EQ. (2-22). EQ (2-21) tan be rewritten as:

$$
\begin{equation*}
\theta^{\prime \prime}=\frac{T_{0}}{C_{w} E \beta} R \tag{3-5}
\end{equation*}
$$

where

$$
R=\frac{\sinh \beta B}{\sinh \beta L}(\sinh \beta(L-B)+\sinh f(L-B-S))(3-6)
$$

EQ. (2-21) is valid only if $S \leq 0.586 \mathrm{~L}$. The expression for R is cumbersome to handle and evaluate, but a very efficient design chart can be developed relating $\beta_{L}, \beta B_{1}, \theta^{\prime \prime}$. Calculating a large quantity of values for $\theta^{\prime \prime}$, a plot can then be made as shown as Figure 3-2. In order to use the chart, the value of $\beta \mathbf{L}$ for a given condition is located on the abscissa. Then, moving vertically until the correct curve for the value of $\mathrm{B}^{\text {is }}$ found. It is necessary to only move horizontally to the left and read the value for R on the ordinate. If the given value for $\boldsymbol{\beta}^{s}$ falls between two curves on the chart, 1 inear interpolation. may be used to yield a satisfactory value for R. If the wheelbase $s>0.586 \mathrm{~L}$ is encountered, the chart cannot be used. 'In this.instance,
PIGURE 3 -2: Graph of $\beta \mathrm{LL}$ and $\mathrm{\beta}^{\mathrm{S}}$ Versus R for $\mathrm{S} \leq 0.586 \mathrm{~L}$

however, the value of $\theta^{\prime \prime}$ as given by EQ. (2-22) can be easily-calculated. The following example showing the analysis of a crane beam will demonstrate the use of these tables and the torsion theory.

Examole 3.1 :

Given the beam section and load combination shown above, find the maximum live bending stresses using both the more exact torsion theory and the usually accepted conservative method.

Solution:

Since $S \leqslant 0.586 \mathrm{~L}$, eq(2-7) is used to evalute M_{x}. Thus,

$$
\dot{\mathrm{M}}_{\mathrm{x}}=1378.13 \mathrm{kip}-\mathrm{in} .
$$

Likewise, M_{y} is calculated as

$$
M_{y}=137.8 \text { kip-in }
$$

The allowable bending stresses may be evaluated . using the AISC Steel Manual (1) Specifications, Section 1.5.1.4.5. For this combination section, the allowable tensile bending stress is:

$$
\mathrm{F}_{\mathrm{bT}}=0.60 \mathrm{~F}_{\mathrm{y}}=22.0 \mathrm{ksi}
$$

The allowable compression stress can be evaluated using either Code eq(1.5-6a) or eq(1.5-6b), whichever applies.

Since

$$
I / r_{t}=\frac{20(12)}{3.67}=65.40
$$

it is seen that:

$$
\begin{aligned}
& \frac{102\left(10^{3}\right)}{F_{y}} \leqslant L / r_{t} \leqslant \frac{510\left(10^{3}\right)}{F_{y}} \\
& 53.2 \leqslant L / r_{t} \leqslant 119.2
\end{aligned}
$$

Therefore, Code eq(1.5-6a) is used to calculate the allowable compressive bending stress. Hence,

$$
\begin{aligned}
& F_{b c}=\left[\frac{2}{3}-\frac{F_{y}\left(L / r_{t}\right)^{2}}{1530(10)^{3}}\right] F_{y} \\
& F_{b C}=20.4 \mathrm{ksi}
\end{aligned}
$$

With the allowable stresses calculated, the actual bending stresses can now be evaluated. The stresses at points A and B will first be evaluated using the conservative method. For this method, the bending stress for the top (compression) flange is given by the equation:

$$
f_{b}=\frac{M_{x} c_{x}}{I_{x}}+\frac{M_{y} c_{y}}{I_{y c f}}
$$

where

$$
\begin{aligned}
I_{\text {ycf }}= & \text { moment of inertia of the top flange } \\
{ }^{c_{x}}{ }^{\prime} c_{y}= & \text { distance to point under consideration } \\
& \text { from the } X \text {-axis and } Y \text {-axis, respectively }
\end{aligned}
$$

For the combination section in this example, $I_{y c f}=149$ in. Now, evaluating the maximum compressive stress at point A_{1}

$$
\begin{aligned}
& f_{b A}=\frac{1378.13(6.76)}{1120.8}+\frac{137.8(6.0)}{149.0} \\
& f_{b A}=13.9 \mathrm{ksi}<F_{b c}=20.4 \mathrm{ksi} \theta_{. K}
\end{aligned}
$$

The tensile stress at point B is calculated as:

$$
f_{b B}=\frac{M_{x} c_{x}}{I_{x}}=\frac{1378.13(11.51)}{1120.8}
$$

$$
f_{b B}=14.15 \mathrm{ksi}<F_{b T}=22.0 \mathrm{ksi} \quad 0 . \mathrm{K}
$$

Next, the bending stresses will be calculated using the more exact torsion theory.. First, the unsymmetrical bending stresses will be calculated using eq(2-5). Thus,

$$
\begin{equation*}
f_{b}=\frac{M_{x} y}{I_{y}}+\frac{M_{x} x}{I_{y}} \cot \phi \tag{2-5}
\end{equation*}
$$

Calculating the compressive bending stress,

$$
\begin{aligned}
& f_{b c}=1378.13\left(\frac{6.76}{1120.8}\right)+\frac{6.00}{169.1}(0.10) \\
& f_{b C}=13.20 \mathrm{ksi}<F_{b c}=20.4 \mathrm{ksi}
\end{aligned}
$$

The tensile bending stress is now calculated as,

$$
\begin{aligned}
& f_{b T}=1378.13\left(\frac{11.51}{1120.8}\right)+\frac{3.75}{169.1}(0.10) \\
& f_{b T}=17.21 \mathrm{ksi} \quad<F_{b T}=22.0 \mathrm{ksi}
\end{aligned}
$$

Now, the warping normal stresses have to be calculated and added to the unsymmetrical bending stresses calculated above. The warping normal stress can be evaluated using eq(2-9):

$$
f_{b w}=E w_{n} \theta^{\prime \prime}
$$

where $\theta^{\prime \prime}$ is found using eq(3-5),

$$
\theta^{\prime \prime}=\frac{T_{0}}{C_{w} E \beta} R
$$

with

$$
\begin{aligned}
& T_{0}=P_{y}\left(E_{t}+R H\right) \\
& T_{0}=1.5(1.88+4.25) \\
& T_{0}=9.20 \mathrm{kip}-\mathrm{in} .
\end{aligned}
$$

So, the value of $\theta^{\prime \prime}$ is calculated as:

$$
\begin{aligned}
& \theta^{\prime \prime}=\frac{1}{\mathrm{E}} \frac{9.20(102.28)}{6175.2}(0.687) \\
& \theta^{\prime \prime}=0.10468 / \mathrm{E}
\end{aligned}
$$

So, the normal warping stress (compressive) at point A is:

$$
\begin{aligned}
& f_{\text {bWA }}=E W_{\text {nA }} \Theta^{\prime \prime} \\
& f_{\text {WA }}=7.30(0.10468) \\
& f_{\text {bwA }}=0.8 \mathrm{ksi}
\end{aligned}
$$

and, the normal warping stress (tension) at point B is:

$$
\begin{aligned}
& f_{\text {bwB }}=E W_{n B} \theta^{\prime \prime} \\
& f_{\text {bwB }}=61.42(0.10468) \\
& f_{\text {bwB }}=6.4 \mathrm{ksi}
\end{aligned}
$$

Now, adding the warping normal stresses to the unsymmetrical bending stresses at points A and B will give the total bending stresses for the torsion method. So,

$$
\begin{aligned}
& f_{\mathrm{bA}}=13.2+0.8 \\
& \mathrm{f}_{\mathrm{bA}}=14.0 \mathrm{ksi} \leqslant \mathrm{~F}_{\mathrm{bC}}=20.4 \quad \underline{0 . \mathrm{K}_{.}}
\end{aligned}
$$

and

$$
\begin{aligned}
& f_{\mathrm{bB}}=17.2+6.4 \\
& \mathrm{f}_{\mathrm{bB}}=23.6 \mathrm{ksi}>\mathrm{F}_{\mathrm{bT}}=22.0 \mathrm{ksi} \text { No Good }
\end{aligned}
$$

As shown, the allowable tension stress in the bottom flange is exceeded, so the torsion method of analysis indicates the beam is overstressed while the "conservative" method indicates it is not overstressed. Thus, it appears the "conservative" method may. not always be conservative.

In comparing the stresses calculated by the two methods, a very interesting item is observed. The torsion
method of analysis and the conventional method yielded almost equal values for the compressive bending stress; 13.9 ksi versus 14.0 ksi . But, the conventional method underestimated the tensile bending stress , grossly. The conventional method yielded a tensile bending stress of 14.2 ksi while the torsion analysis yielded a tensile bending stress of 23.6 ksi . So, it seems the conventional method is conservative only with respect to the compressive stress and is unconservative with respect to the tensile stress.

In the design of a crane beam, the process is not straight-forward due to the many unknown quantities encountered. Most often, the designer will know the required beam span and the capacity of the crane (along with all corresponding manufacturers' dimensions and wheel loads) that are to be employed. Therefore, a suitable combination section must be chosen. This usually requires a trial and error procedure, but the design can be considerably shortened if, for a given wheel loading condition and combination section, the maximum allowable span for the beam was known. By expanding the computer program used to calculate section properties for combination sections (see Appendix A), a set of tables has been constructed in which the maximum allowable lengths have been listed for a variety of wheel loads, lateral loads, and wheelbases. Also, tables are given for either 36: ksi or 50 ksi grade steel. These appear as Table 3-3. The combination sections listed in Table 3-3

SFCTIDN\|	WHEEL LOAD $P^{\text {(}}$ (kips)														
	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0
W12x 26-C.10×15.3	23.08	12.50	9.33	7.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W12X $26-\mathrm{C} 17 \times 20.7$	25.08	13.50	9.92	8.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W1\%X 30-C10×15.3	27.58	14.50	10.58	8.67	7.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W1\%X 30-C12 X20.7	30.42	15.83	11.42	9.33	8. 08	0.0 C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W16x 36-C 12×20.7	38.12	19.67	13.83	11.08	9.50	8.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W16x 36-C 15×33.9	44.25	22.42	15.58	12.33	10.42	9.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W1月X 50-C12 20.7	40.08	28.25	19.17	14.92	12.42	10.83	9.75	8.92	8.25	0.00	0.00	0.00	0.00	0.00	0.00
WInX 50-C15x33.9	53.00	32.67	22.08	17.00	14.08	12.17	10.83	9.83	9.08	0.00	0.00	0.00	0.00	0.00	0.00
W21×62-C12 20.7	42.17	33.50	24.33	18.57	15.33	13.25	11.75	10.67	9.83	9.17	8.58	8.17	0.00	0.00	0.00
W21×62-C15 33.9	55.58	43.50	28.83	21.83	17.83	15.33	13.50	12.17	11.17	10.33	9.67	9.17	0.00	0.00	0.00
W21×68-C17x29.7	42.42	33.83	26.67	20.25	16.58	14.25	12.58	11.33	10.42	9.67	9.08	8.58	8.17	0.00	0.00
W21 $\mathrm{W}^{\text {P }}$, 8-C15×33.9	55.75	44.42	31.58	23.83	19.33	16.50	14.50	13.00	11.92	11.00	10.25	9.67	9.17	0.00	0.00
W24×68-C 12×20.1	43.92	34.92	27.25	29.75	17.08	14.67	13.00	11.75	10.75	10.00	9.42	8.83	8.42	8.00	0.00
	57.58	45.52	32.92	24.83	20.17	17.25	15.17	13.67	12.42	11.50	10.75	10.08	9.58	9.08	0.00
W $3.4 \times 84-\mathrm{C} 17 \times 20.7$	44.83	35.75	3 C .83	25.50	20.58	17.50	15.33	13.75	12.50	11.58	10.83	10.17	9.58	9.17	8.75
W $24 \times 34-\mathrm{C} 15 \times 33.9$	58.08	46.33	40.17	30.58	24.58	2.0 .75	18.08	16.08	14.58	13.42	12.50	11.67	11.00	10.42	10.00
W27× 34-C12×20.7	46.50	37.07	32.07	25.58	2.C. 15	17.67	15.58	14.00	12.75	11.83	11.00	10.33	9.83	9.33	8. 52
W2.7X 84-C15 ${ }^{\text {W }} 33.9$	60.00	47.75	$41: 50$	31.08	25.78	21.17	18.50	16.58	15.00	13.83	12.83	12.00	11.33	10.75	10.25
W27Y 94-C12×20.7	47.33	37.59	32.75	28.75	23.17	19.58	17.08	15.33	13.92	12.83	11.92	11.17	10.58	10.08	9.58
W27X 44-C15×33-9	60.42	48.03	42.00	34.92	27.92	23.50	20.42	18.17	16.42	15.08	14.00	13.08	12.25	11.67	11.08
W30x 99-C15 1533.9	69.42	48.08	41.72	34.03	27.42	23.08	20.17	17.92	16.25	14.92	13.83	13.00	12.25	11.58	11.00
	72.17	57.4?	50.08	38.25	30.67	25.83	22.12	19.92	18.00	16.50	15.25	14.25	13.42	12.67	12.08
W30×116-C15×33.9	62.67	49.83	43.58	39.25	34.83	2.9 .0 C	24.92	22.00	19.83	18.08	16.67	15.50	14.58	13.75	13.C0
W30×116-C.18×42.7	74.33	59.17	51.75	46.58	39.25	32.67	28.08	24.67	22.17	20.17	18.58	17.25	16.17	15.17	14.42
W33×118-C15×33.9	64.67	51.42	45.00	40.58	35.42	29.58	25.58	22.58	20.33	18.58	17.17	16.00	15.00	14.17	13.42
W33x118-C10x42. 7	76.50	60.93	53.25	48.00	40.33	33.58	28.92	25.50	22.92	20.92	19.25	17.92	16.75	15.75	14.92
W33X141-C15×3T-9	66.17	52.50	45.9?	41.75	38. 33	35.33	30.75	27.00	24.08	21.92	20.08	18.58	17.42	16.33	15.42
W33×141-C10x42-7	77.42	61.58	53.83	48.92	44.83	40.75	34.75	30.50	27.17	24.58	22.58	20.83	19.50	18.25	17.25
W36, 150-C15×33.9	67.75	53.75	47.00	42.67	39.33	36.42	32.75	28.67	25.58	23.25	21.33	19.75	18.42	17.25	16.33
W $36 \times 150-\mathrm{C} 18 \times 42.7$	79.08	62.83	54.92	49.92	45.92	42.42	37.25	32.58	29.00	26.25	24.08	22.25	20.75	19.42	18.33

Note: Avalue of 0.00 indicates allowable web shear stress exceeded.
$0^{\circ} 0^{\circ}$ 응 0 $0^{\circ} 0^{\circ}$ 응 0
 ジ
 がす。 ： $\stackrel{\square}{2}$ デN ： n n

SFCTICA	WHEEL LOAD P^{\prime} (kips)														
	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0
W12x 26-C11)X15.3	24.17	13.12	10.17	8.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W12X $36-\mathrm{C} 12 \times 20.1$	26.17	14.42	10.75	9.00	0.00	0.0 C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14×30-C10x15.3	28.15	15.59	11.42	9.50	8.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14X 30-C12 220.7	31.50	16.87	12.33	10.17	8.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W16x 36-C1? 210.7	34.75	20.67	14.75	12.00	10.33	9.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
W16x 36-C15 33.7	45.42	33.50	16.53	13.25	11.25	10.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
W19x 50-CI? ${ }^{\text {W20. }} 1$	\% 0.12	29.42	20.17	15.83	13.33	11.75	10.58	9.75 10.75	9.08	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.10
W18x 50-C15x33.9	53.33	33.83	23.08	18.00	15.00	13.08	11.75	10.75 11.58	9.92 10.67	0.00 10.00	0.00 9.42	8.00	0.00 0.00	0.00	0.00
W>1x 6,2-C.12x?0.7	42.50	33.97	25.4?	19.67	15.33	14.17	12.67	11.58 13.08	10.67 12.00	10.00 11.17	9.42 10.50	8.92 9.92	0.00	0.00	0.00
4.1 $4 \times 6-C 15 \times 33.9$	55.92	44.58	29.97	22.92 21.25	18.83 17.58	16.25 15.17	14.42 13.50	13.08 12.25	12.00 11.33	11.17 10.50	10.5 9.92	9.42	9.0 C	0.00	0.00
W21x 68-C1? 20.7	42.93	34.17	2.7 .83 32.61	21.25 24.83	17.58 20.33	15.17 17.42		13.92	12.75	11.92	11.17	10.50	10.00	0.00	0.00
A $21 \times 68-C 15 \times 33.9$ $47688-C 12 \times 30.7$	56.08	44.75	32.61 28.33	24.83 21.75	20.33 18.00	17.42 15.58	15.42 13.83	13.92 12.58	11.67	10.83	10.25	9.67	9.25	8.83	0.00
W24X $68-\mathrm{C} 12 \times 20.7$ W3tX 68 - 15×33.9	44.25 57.97	35.37 46.25	28.33 34.00	21.75 25.83	18.00 21.17	15.58 18.17	13.83 16.08	12.58 14.50	11.67 13.33	12.42	11.58	10.92	10.42	9.92	0.00
	57.97 45.25	46.75 36.08	34.09 31.33	25.83 26.67	21.17 21.67	18.17 18.50	16.08 16.25	14.50 14.67	13.33 13.42	12.42	11.67	11.00	10.42	10.00	9.58
	45.25 58.50	36.08 46.67	31.33 40.58	31.75	25.67	21.75	19.00	17.08	15.50	14.33	13.33	12.58	11.92	11.33	10.83
	46.9 ?	37.33	32.42	26.58	21.75	18.67	16.50	14.92	13.67	12.67	11.83	11.17	10.67	10.17	9.75
W27×84-C15×33.3	60.33	43.17	41.92	32.17	26.08	22.17	19.50	17.50	15.92	14.75	13.75	12.92	12.25	11.58	11.C8
W27× 94-C12 2.0 .7	47.67	39.00	33.17	29.42	24.17	20.58	18.08	16.25	14.83	13.75	12.83	12.08	11.42	10.92	10.42
W27X 94-C15 ${ }^{\text {W }} 33.9$	60.75	48.42	42.42	36.00	29.00	24.50	21.42	19.08	17833	16.00	14.83	13.92	13.17	12.50	11.92
W30X 99-C15 33.9	60.75	49.42	42.33	35.17	28.42	24.08	21.08	18.92	17.17	15.83	14.75	13.83	13.08	12.42	11.83
W30X 99-C18×42.7	72. 50	51.75	50.42	39.33	31.75	26.83	23.42	20.92	19.00	17.42	16.17	15.17	14.33	13.58	12.92
W30x116-C15×33.9	63.00	50.17	43.92	39.75	36.00	30.08	26.00	23.08	20.83	19.00	17.58	16.42	15.42	14.58	13.92
W30×116-C18×42.1	74.6.7	59.50	52.17	47.00	40.42	33.75	29.08	25.75	23.17	21.17	19.50	18.17	17.08	16.08	15.25
W33×118-C.15 333.9	65.08	51.75	45.33	41.00	36.58	30.67	26.58	23.58	21.33	19.50	18.08	16.92	15.92	15.00	14.25
W $33 \times 118-\mathrm{C} 18 \times 42.7$	76.83	61.17	53.58	48.42	41.50	34.67	30.00	26.50	23.92	21.83	20.17	18.83	17.67	16.67	15.83
W $33 \times 141-\mathrm{C} 15 \times 33.9$	$6 \% .50$	52.92	46.25	42.08	38.75	35.83	31.83	28.00	25.17	22.92	21.08	19.58	18.33	17.25	16.33
W $33 \times 141-\mathrm{C} 18 \times 42.7$	77.75	61.92	54.17	49.25	45.25	41.75	35.92	31.50	28.25	25.67	23.58	21.83	20.42	19.25	18.17
W36.150-C15 33.9	68.08	54.08	47.33	43.08	39.75	36.92	33.83	29.75	26.67	24.25	22.25	20.67	19.33	18.25	17.25
W36×150-C18×12.7	19.42	63.17	55.25	50.25	46.42	42.92	38.33	33.67	30.08	27.33	25.08	23.25	21.67	20.42	19.25

SECTIDN	WHEEL LOAD $\mathrm{P}_{\mathbf{X}}$ (kips),														
	5.0	10.0	15,0	20.0	25.0	30.0	35:0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	. 75.0
W12X 26-C10x15.3	22.75	12.67	9.67	7.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H12X 26-C12×20.7	25.08	13.75	10,33	8.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14× 30-C10×15.3	26.8 ?	14.50	10,75	9.00	7.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14X 30-C12X20.7	30.00	15.92	11.75	9.67	8.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H16X 36-C12 20.7	37.92	19.42	13.92	11.33	9.75	8.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W16X 36-C.15×33.9	44.00	22.50	15,83	12.67	10.83	9.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W19x 50-C12 20.7	39.33	27.42	18.83	14.83	12.50	11.00	10.00	9.17	8.58	0.00	0.00	0.00	0.00	0.00	CO
W1AX 50-C15 33.9	52.25	32.25	21.92	17.08	14.25	12.42	11.17	10.25	9.50	0.00	0.00	0.00	0.00	0.00	C
W21×62-C12 23.7	41.25	32.75	23.42	18.08	15.08	13.17	11.83	10.75	10.00	9.33	8.83	8.42	0.00	0.00	0.00
W21X 62-C15 33.9	5\%.58	42.25	2E.17	21.50	17.75	15.33	13.58	12.33	11.42	10.58	10.00	9.50	0.00	0.00	0
H21X 68-C12×20.7	41.50	33.	25.59	19.58	16.17	14.00	12.50	11.42	10.58	9.83	9.33	8.83	8.42	0.00	0.00
W21x 68-C15 33.9	54.67	13.58	30.75	23.33	15.08	16.42	14.50	13.17	12.08	11.25	10.58	10.00	9.50	0.00	$0 . C 0$
H24X 68-C12 20.7	42.83	34.08	25.75	19.83	16.50	14.33	12.83	11.67	10.83	10.08	9.50	9.08	8.67	8.17	0.10
W24×68-C 15×33.9	56.42	45.00	31.67	24.08	15.75	17.0C	15.08	13.67	12.50	11.67	10.92	10.33	9.83	9.42	0.00
W24×84-C12 ${ }^{\text {W }}$ 20.7	43.75	34.92	3 c .00	24.17	19.75	16.92	14.92	13.50	12.42	11.50	10.83	10.25	9.75	9.25	8.52
W2.4×84-C15x33.9	56.83	45.33	39.17	29.42	23.83	20.25	17.75	15.52	14.50	13.42	12.50	11.83	11.17	10.67	10.17
W27X 84-C12 20.7	45.25	36.08	31.00	24.00	19.75	17.00	15.08	13.67	12.58	11.67	11.00	10.33	9.83	9.42	9.08
W27X 84-C15×33.9	58.58	46.6.7	39.50	29.58	24.c8	20.50	18.00	16.25	14.83	13.75	12.83	12.08	11.42	10.92	10.42
W27X 94-C12 20.7	46.00	35.67	31.75	26.83	21.83	18.67	15.42	14.83	13.58	12.58	11.75	11.08	10.58	10.08	9.67
W27X 94-C15×33.9	58.92	41.00	40.92	33.08	2t.67	22.58	19.75	17.67	16.08	14.83	13.83	13.00	12.25	11.67	11.17
W36X 99-C15 33.9	58.92	47.00	40.83	32.25	26.08	22.17	19.50	17.50	15.92	14.75	13.75	12.92	12.25	11.58	11.08
W39x 99-C18×12.7	70.50	56.17	48.83	36.67	29.50	25.00	21.83	19.50	17.75	16.33	15.17	14.25	13.50	12.75	12.17
W30) $116-\mathrm{C} 15 \times 33.9$	60.92	$43.51)$	42.50	38.08	32.67	27.33	23.67	21.08	19.00	17.50	16.17	15.17	14.25	13.50	12.83
W30×116-C18×42.7	72.42	57.67	50.50	45.17	37.33	31.17	26.92	23.83	21.42	19.58	18.17	16.92	15.92	15.00	14.25
W33×118-C15×33.9	62.75	49.9?	43.75	39.25	32.92	27.67	24.08	21.42	19.42	17.83	16.58	15.50	14.58	13.83	13.17
W $33 \times 118-\mathrm{C} 18 \times 42.7$	74.42	59.25	51:83	46.50	38.00	31.75	27.50	24.42	22.00	20.17	18.67	17.42	16.33	15.50	14.67
W $33 \times 141-\mathrm{C} 15 \times 33.9$	64.17	51.00	44.67	40.50	37.00	33.33	28.67	25.25	22.75	20.75	19.17	17.83	16.75	15.75	15.00
W $33 \times 141-\mathrm{C} 18 \times 12.7$	75.25	59.83	52.42	47.50	43.33	38.25	32.75	28.83	25.83	23.50	21.67	20.08	18.83	17.75	16.75
W36x150-C15 33.9	65.58	52.08	45.58	41.42	37.92	34.92	30.25	26.67	23.92	21.83	20.08	18.75	17.58	16.58	15.67
W $36 \times 150-\mathrm{C} 18 \times 42.7$	76.67	61.00	53.33	49.42	44.33	40.67	34.83	30.58	27.33	24.83	22.83	21.25	19.83	18.67	17.67

TABLE 3-SECTION	nt.)	Max P_{x}	mum	lowa	le b	$\mathrm{mm} 1$	gth	$=6^{\circ}-$				$=0 .$	x	$\mathrm{F}_{\mathbf{y}}=$	ksi
	WHEEL LOAD ${ }^{\text {P }}$ (kips)														
	Fb	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0
W17X 26-C.10x1'.3	25.17	14.33	10.72	8.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W12x 26-C12x20.7	27.25	15.33	11.58	7.42	0.00	0.00	0.00	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14× 30-C10×15.3	27.13?	16.42	12.33	10.33	8. 17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W1:x 31-r.12x20.7	32.67	17.75	13.17	11.00	9.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14x 36-c.12 200.7	39.08	21.67	15.67	12.83	$11 . C 8$	9.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W16X 36-C15x33.9	46.51	24.50	11.50	14.08	12.17	10.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W18x 50-C 12×20.7	40.75	30.50	21.17	16.75	14.25	12.58	11.42	10.50	9.50	0.00	0.00	0.00	0.00	0.00	0.00
W18x 50-C. 15×33.9	53.87	34.92	34.08	18.92	15.92	14.00	12.58	11.58	10.75	0.00	0.00	0.00	0.00	0.00	0.00
W21×62-C12 200.7	42.92	34.25	26.50	20.58	17.25	15.08	13.50	12.42	11.50	10.75	10.25	9.33	0.00	0.00	0.00
W $21 \times 62-C .15 \times 33.9$	56.25	45.00	31.00	23.92	19.83	17.17	15.33	13.92	12.92	12.00	11.33	10.75	0.00	0.00	0.60
W?1×68-C. 12×2.7	43.17	34.58	28.72	22.25	18.59	16.08	14.33	13.08	12.17	11.33	10.75	10.17	9.33	0.00	$0 . C 0$
W21×68-C15 63.3	56.42	45.17	33.83	25.92	21.33	18.42	16.33	14.83	13.67	12.75	12.00	11.33	10.83	0.00	0.00
W24x 68-C12 20.7	44.58	35.67	29.33	22.75	18.92	16.50	14.75	13.50	12.50	11.67	11.00	10.50	9.83	9.17	0.00
H34× 63-C15 33.3	58.25	46.58	35.09	26.92	22.17	19.08	17.00	15.42	14.17	13.25	12.42	11.75	11.25	10.75	0.00
W24x 84-C12x20.7	45.58	36.42	31.75	27.67	22.67	19.42	17.25	15.58	14.33	13.33	12.50	11.83	11.25	10.75	10.33
W24x 34-C15 33.9	58.83	47.00	41.00	32.83	26.67	22.75	20.00	18.00	16.42	15.25	14.25	13.42	12.75	12.17	11.67
W27x 34-C12 20.7	47.25	37.75	32.92	27.67	22.75	19.58	17.42	15.75	14.50	13.50	12.67	12.00	11.42	10.92	10.50
$W 27 \times 84-C 15 \times 37.9$	60.75	48.59	42.33	33.25	27.08	23.17	20.42	18.42	16.83	15.58	14.58	13.75	13.08	12.42	11.92
W27x 94-C. 12×20.7	48.00	38. 23	33.58	29.92	25.25	21.58	19.00	17.17	15.75	14.58	13.67	12.92	12.25	11.67	11.25
W27x 94-C15×33.7	61.11	48.83	42.75	37.17	30.08	25.50	22.33	20.08	18.25	16.92	15.75	14.83	14.00	13.33	12.75
W30× 99-C15 33.9	61.09	49.83	42.75	36.25	29.50	25.08	22.08	19.83	18.08	16.75	15.67	14.75	13.92	13.25	12.67
W30X $39-\mathrm{C} 18 \times 42.7$	72.83	58.08	50.93	40.50	32.75	27.83	24.33	21.83	19.92	18.33	17.08	16.08	15.17	14.42	13.75
W30) $116-\mathrm{C} 15 \times 33.9$	63.33	50.50	44.33	40.17	36.58	31.17	27.00	24.08	21.75	20.00	18.50	17.33	16.33	15.50	14.75
W30×116-C19 X4.2.7	75.00	59.83	52.50	47.42	41.50	34.83	30.17	26.15	24.17	22.08	20.50	19.08	18.00	17.00	16.17
W33×118-C15 33.7	65.4 ?	52.08	45.67	41.42	37.67	31.67	27.58	24.58	22.25	20.50	19.00	17.83	16.75	15.92	15.17
W33×118-C18×42.7	77.25	61.50	53.92	48.83	42.58	35.75	31.00	27.50	24.92	22.83	21.08	19.75	18.58	17.58	16.67
	66.92	53.25	46.6 .7	42.50	39.17	36.33	32.92	29.08	26.17	23.92	22.00	20.50	19.25	18.17	17.25
$\text { W } 33 \times 141-\mathrm{C} 18 \times 142.7$	78.17	62.25	54.50	49.67	45.75	42.25	31.00	32.58	29.25	26.67 25.25	24.58	22.83	21.33	20.17	19.08 18.17
$W 36 \times 150-C 15 \times 33.9$ $W 36 \times 150-C 18 \times 42.7$	68.42 79.75	54.50 8.30	41.67 55.58	43.42 50.67	40.17 46.83	37.37 43.42	34.83 39.50	30.75 34.75	27.67 31.17	25.25 28.33	23.25 26.08	21.67 24.17	20.33 22.67	19.17 21.33	$\begin{aligned} & 18.17 \\ & 20.17 \end{aligned}$

Note: A value of 0.00 indicates allowable web shear stress exceeded.
TABLE 3-3 (cont.): Maximum allowable beam lengths

TABLE 3-3 (cont.): Maximum allowable beam lengths

$$
\ddot{P}_{y}=0.08 P_{x} \quad F_{y}=36 \mathrm{ksi}
$$

SFC. TION,	, WHEEL LOAD P_{x} (kips)!														
	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	4.5 .0	50.0	55.0	60.0	65.0	70.0	15.0
W12X 26-C10X15.3	26.25	15.17	11.67	8.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W12X 26-C12×20.7	20.25	16.25	12.42	9.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H14X JQ-C10X15.3	30.83	17.31	13.17	10.42	C. 17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14X 30-C12 120.7	33.67	18.75	14.C0	11.67	9.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0. 60
W16Y 36-C12 120.7	33.42	22.67	16.58	13.67	11.92	9.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60
W16X 36-C15×33.9	47.58	25.50	18.42	15.00	12-92	11.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
W18x 50-C 12×20.7	41.00	31.58	22.17	1767	15.08	13.42	12.25	10.83	9.50	0.00	0.00	0.00	0.00	0.00	0.00
W19X 50-C15×33.9	54.00	36. 60	75.00	19.83	16.83	14.83	13.42	12.33	11.25	0.00	0.00	0.00	0.00	0.00	0.00
W21×62-C12×20.7	43.25	34.67	27.58	21.58	18.17	15.92	14.33	13.17	12.33	11.33	10.25	9-33	0.00	0.00	0.00
W21 $6.62-C 15 \times 33.9$	56.58	45.33	37.68	24.92	20.75	18.08	16.17	14.75	13.67	12.83	12.17	11.25	0.00	0.00	0.00
W21×68-C12 1×20.7	43.50	34.92	30.00	23.25	19.42	17.00	15.25	13-92	12.92	12-17	11-17	10.17	9.33	0.00	0.00
	56.75	45.50	34-83	26.92	22.33	19.33	17.25	15.67	14.50	13-58	12.75	12.17	11.33	0.00	0.00
H24X 68-C12×20.7	44.72	36.00	30.42	23.67	19.83	17.33	15.58	14.33	13.25	12-50	11.75	10.75	9.83	9.17	0.00
W3.4×68-C15×33.9	58.58	46.92	36.17	21.92	23.17	20.00	17.92	16. 25	15.00	14.08	13.25	12.58	12-00	11-17	0.00
h24x 84-C12×20.7	45.92	36.83	32.17	28.58	23.67	20.42	18.C8	16.42	15.17	14.17	13.33	12.67	12.08	11.25	10.50
W24×84-C15×31.9	59.17	47.31	41.42	33.92	27.67	23.75	20.92	18.92	17.33	16.08	15.08	14.25	13.50	12-92	12-42
W27X 84-C12×20.7	47.50	38.0月	33.33	28.67	23.75	20.50	18.33	16.67	15.33	14.33	13.50	12-83	12.25	11.58	10.83
W27X 84-615×33.9	61.08	48.83	42.75	34.33	28.08	24.17	21.33	19.33	17.75	16-50	15-42	14.58	13-92	13.25	12.75
W27X 94-C12 20.7	48.42	18.67	33.92	30.42	26.25	22.50	19.92	18.08	16.58	15.42	14.50	13.75	13.08	12-50	12.00
W27X 94-6.15×33.9	61.50	49.17	43-17	38.25	31.08	26.50	23.33	21.00	19.17	17-75	16.58	15-67	14-03	14.17	13-58
	61.50	49.17	4.3 .68	31.33	30.50	26.08	23.00	20.75	19.00	17-58	16.50	15-58	14-75	14-08	13-50
H30X 99-C18×42.7	73.17	59.50	51.25	41.50	33.83	28.83	25.33	22.75	20.75	19.25	18.00	16.92	16.00	15.25	14-58
W30X116-C15 X33.9	63.75	50.92	44.67	40.50	37.08	32.17	28.08	25.00	22.75	20.92	19.42	18-25	17-25	16.33	15.58
W30) $116-\mathrm{C} 18 \times 42.7$	75.42	60.17	52.83	47.83	42.67	35.92	31.17	27.75	25.08	23.08	21.42	20.00	18.83	17.92	17.C0
$43.3 \times 110-C 15 \times 33.9$	65.75	52.50	46.00	41.83	38.33	32.75	28.58	25.50	23.25	21.42	19.92	18.67	17-67	16.75	16.00
$433 \times 118-\mathrm{C18} \mathrm{\times 42.7}$	77.58	61.92	54. 25	49.25	43.67	36.75	32.00	28.50	25.83	23.75	22.00	20.67	19.42	18-42	17.58
W33×141-C15 33.9	67.25	53.54	47. 60	42.83	39.67	36.83	34.00	30.08	27.17	24.83	23.00	21.50	20.11	19.08	18-17
W33X141-C13×42.7	78.50	62.58	5\%.92	50.00	46.17	42.75	38.08	33.61	30.25	27.67	25.50	23-75	22.33	21-08	20.00
W36×150-C15 33.9	68.8.3	54.81	66.08	43.75	4 C .58	37.83	35.42	31.83	28.67	26.17	24.25	22.58	21.25	20.08	19.08
W36x150-C18×42.7	80.08	63.81	56.00	51.00	41.25	43.92	40.58	35.75	32.17	29.33	27-00	25.17	23-58	22-25	21.C8

Note: A value of 0.00^{\prime} indicates allowable web shear stress exceeded.

	WHEEL LOAD $\mathrm{F}_{\mathrm{x}}^{\prime}$ (kips)														
	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0
W1? $266-C-1515.3$	24.92	14.42	10.67	7.83	0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00	0
W1? 26 ¢ -1.2×20.7	27.17	15.54	12.00	8.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14× 3 O-C 10×15.3	29.08	16.33	12.42	9.42	7.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
W14×30-C12 20.7	32.25	17.83	13.42	10.75	8.42	0.0 C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W16x 36-C 12×20.7	38.58	21.42	15.75	13.00	10.92	9.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W16X $36-\mathrm{C} 5 \times 153.9$	46.25	24.58	17.67	14.42	12.50	10.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W19x5 0-C 2×20.7	40.08	29.58	2C. 75	16.67	14.25	12.67	11.33	9.83	8.67	0.00	0.00	0.00	0.00	0.00	0.00
419x 50-C15 33.9	52.92	34.50	24.00	18.92	16.08	14.17	12.83	11.83	10.42	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
W $21 \times 62-\mathrm{C} 12 \times 20.7$	42.07	33.58	25.50	20.00	16.92	14.92	13.50	12.42	11.33	10.17	9.17	8.42	0.00	0.00	0.00
W21x 62-C15 3.3 .9	55.25	44.17	30.33	23.50	15.58	17.08	15.33	14.08	13.08	12.25	11.33	10.33	0.00	0.00	$0 . C 0$
W21x 68-C.12 $\times 20.7$	42.25	33.83	27.67	21.58	18.08	15.83	14.25	13.08	12.17	11.08	10.00	9.17	8.42	0.00	0.00
$W 21 \times 68-\mathrm{C} 15 \times 33.9$	55.33	44.33	33.00	25.42	21.c8	18.25	16.33	14.92	13.75	12.92	12.17	11.33	10.42	0.00	0.00
W 24×68 - C. 12×20.7	43.50	34.83	27.83	21.83	18.33	16.08	14.50	13.33	12.42	11.58	10.42	9.58	8.75	8.17	0.00
$W 24 \times 68-C 15 \times 33.9$	57.08	45.67	33.83	26.08	21.67	18.83	16.83	15.33	14.25	13.33	12.58	11.92	11.00	10.17	0.00
d24× 84-C12 X20.7	44.42	35.58	3 C .92	26.25	21.67	18.75	16.75	15.25	14.08	13.17	12.42	11.75	10.83	10.00	25
W24X 84-C.15x33.9	57.50	46.08	40.03	31.67	25.83	22.17	19.58	17.75	16.33	15.17	14.25	13.50	12.83	12.25	1.67
W $27 \times$ Bi-C12×20.7	46.00	36.75	31.92	26.00	21.67	18.83	16.83	15.33	14.25	13.33	12.58	12.00	11.08	10.25	8
	59.75	47.42	41.25	31.75	26.C8	22.42	19.92	18.00	16.58	15.42	14.50	13.75	13.08	12.50	12.00
W27X 94-C12×20.7	46.75	37.33	37.58	29.00	23.83	20.58	18.25	16.58	15.33	14.25	13.42	12.75	12.17	11.50	10.t7
127X 94-C15×33.9	59.67	47.67	41.75	35.33	28.75	24.50	21.67	19.50	17.92	16.58	15.58	14.67	13.92	13.33	12.
W30x 99-C15 33.9	59.67	47.67	41.67	34.42	28.17	24.17	21.33	19.33	17.75	16.50	15.42	14.58	13.92	13.25	12
H30X 99-C18×42.7	71.25	56.92	49.67	39.83	31.58	27.00	23.75	21.42	19.58	18.08	16.92	16.00	15.17	14.42	13
W30×116-C15 33.9	61.67	47.25	43.17	38.92	34.92	29.50	25.75	23.00	20.92	19.33	18.00	16.92	16.00	15.25	14.
W3) ${ }^{\text {W }} 116-\mathrm{C} 18 \times 42.7$	73.17	$58.4 ?$	51.25	46.08	37.58	33.33	28.92	25.83	23.42	21.50	20.00	18.75	17.67	16.75	16.
W33×118-C15 153.9	63.50	50.67	44.42	40.17	35.08	29.75	26.08	23.33	21.25	19.67	18.33	17.25	16.33	15.50	14.
W3 $3 \times 118-\mathrm{C} 18 \times 42.7$	75.17	59.92	52.58	47.42	40.17	33.83	29.50	26.33	23.92	22.00	20.50	19.17	18.17	17.25	16
W33×141-C15 33.3	64.72	51.75	45.33	41.25	37.92	35.00	30.83	27.33	24.75	22.67	21.00	19.67	18.50	17.58	
W $33 \times 141-\mathrm{C} 13 \times 42.7$	75.92	60. 58	53.03	48.25	44.25	40.5c	35.00	30.92	27.83	25.50	23.58	22.00	20.67	19.50	
W36×150-C15×33.7	66.33	52.83	46.25	42.17	39.83	36.00	32.42	28.61	25.92	23.75	22.00	20.58	19.33	18.33	17.50
W36×150-C.18×42.7	77.42	61.67	54.08	49.25	45.25	41.83	37.00	32.67	29.42	26.83	24.83	23.08	21.75	20.50	19.50

SECTION	WHEEL LOAD P_{x} (kips)														
	5.1	10.0	15.7	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0
W12X $26-610 \times 15.3$	23.61	13.75	9.83	7.17	0.00	0.00	0.00	$0 . \mathrm{CO}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W12x 26-C12 20.7	26.17	15.00	11.25	8.17	0.00	0.00	9. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.0 C	0.00
W14X 3n-C10×15.3	27.42	15.42	11.83	8.67	6.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0 C	$0 . C 0$
W14X 30-C.12×20.7	30.83	17.00	12.83	9.92	7.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . \mathrm{C} 0$
W16x 36-C12 X 70.7	37.133	20.33	14.37	12.42	10.08	8.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H16X 36-C 15×33.9	41.92	73.67	17.00	13.83	12.00	9.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W19X 50-C.12 20.7	39.17	27.83	15.54	15.75	13.50	12.08	10.33	9.00	7.92	0.00	0.00	0.00	0.00	0.00	0.00
H19X 50-C15 33.9	51.92	33.08	27.92	18.08	15.33	13.58	12.33	11.00	9.67	0.00	0.00	0.00	0.00	0.00	0.00
w? $1 \times 62-\mathrm{C} 1.2 \times 20.7$	40.83	32.57	23.67	18.75	15.92	14.00	12.75	11.67	10.25	9.17	8.33	7.58	0.00	0.00	0.00
W71× 62-C15 3.3 .9	54.00	42.42	28.67	22.25	16.58	16.25	14.67	13.42	12.50	11.58	10.42	9.50	0.00	0.00	0.60
W21X 68-C12 20.7	41.08	32.83	25.75	20.08	16.92	14.83	13.42	12.33	11.25	10.00	9.08	8.25	7.58	0.00	0.00
W21. 6B-C. 15×33.9	54.08	43.25	31.25	24.00	19.92	17.33	15.50	14.17	13.17	12.33	11.42	10.42	9.58	0.00	0.00
W2\%X 6.8-C $12 \times 2.9 .7$	42.25	33.75	2.5 .67	20.25	17.08	15.08	13.67	12.58	11.58	10.42	9.42	8.58	7.92	7.33	0.00
	55.67	44.58	31.75	24.50	20.42	17.75	15.92	14.58	13.50	12.67	12.00	11.00	10.17	9.33	0.00
W24x84-C12×20.7	43.17	34.58	2.5. 75	24.25	20.08	17.42	15.58	14.25	13.25	12.42	11.58	10.58	9.67	9.00	8.33
W74X 84-C15 ${ }^{\text {W3 }} 3.9$	56.08	44.92	39.75	29.67	24.25	20.83	18.50	16.75	15.42	14.33	13.50	12.83	12.17	11.50	10.67
W2.7X 84-C12 20.7	44.58	35.67	3 C .67	23.83	19.92	17.42	15.67	14.33	13.33	12.50	11.75	10.75	9.92	9.17	8.50
W27X 3\%-C15 33.9	57.67	46.17	38.83	29.50	24.33	21.00	18.67	16.92	15.58	14.58	13.75	13.00	12.42	11.92	11.68
W27X 94-C12 20.7	45.25	36.17	31.4?	26.5 C	21.92	18.92	16.92	15.42	14.25	13.33	12.58	12.00	11.08	10.25	9.50
W27X 94~C15 ${ }^{\text {W }} 33.9$	58.00	46.33	47.33	32.75	26.75	22.92	20.25	18.25	16.83	15.58	14.67	13.83	13.17	12.58	12.17
W30X 99-C. 15×33.9	58.00	46.33	40.33	31.92	26.17	22.50	20.00	18.08	16.67	15.50	14.58	13.75	13.17	12.58	12.08
W39x 99-C18×42.7	69.4 ?	55.50	48.17	36.42	29.67	25.33	22.42	20.17	18.50	17.17	16.08	15.17	14.42	13.75	13.17
W30X116-C15 3 3.9	59.83	47.75	41.83	37.50	32.08	27.17	23.75	21.33	19.42	18.60	16.83	15.83	15.00	14.25	13.67
W30x116-C18×42.7	71.17	56.83	49.75	44.50	36.92	31.08	27.00	24.17	21.92	20.17	18.15	17.67	16.67	15.83	15.08
W33×118-C15 ${ }^{\text {W }} 33.9$	61.50	49.018	43.00	33.58	32.08	27.33	24.00	21.58	15.75	18.25	17.08	16.08	15.25	14.50	13.92
W33X118-C18X42.7	73.00	58.25	51.00	45.67	37.17	31.42	27.42	24.50	22.33	20.58	19.17	18.00 ,	17.00	16.17	15.50
W33×141-C15 ${ }^{\text {W }} 33.9$	62.87	50.08	43.92	39.75	36.33	32.5C	28.17	25.08	22.75	20.92	19.42	18.25	17.17	16.33	15.58
W $33 \times 141-\mathrm{C} 18 \times 42.7$	13.67	58.75	51.50	46.58	42.50	37.42	32.33	28.67	25.83	23.67	21.92	20.50	19.25	18.25	17.42
W $36 \times 150-\mathrm{C} 15 \times 33.9$	64.17		44.75	40.67	37.17	34.0 C	29.50	26.25	23.75	21.83	20.25	19.00	17.92	17.00	16.17
W36×150-C18×42.7	75.00	59.75	52.42	47.50	43.42	39.42	34.00	30.08	27.17	24.83	23.00	21.42	20.17	19.08	18.17

SECTION	WHEEL LOAD P_{x}（kips）														
	5.0	11.0	15.0	20．0	25.0	30.0	35.0	40.0	45.0	50.0	55．0	60.0	65.0	70.0	75．0
W1？${ }^{\text {W }}$ 26－C10X15．3	25.92	15.33	10.67	7.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W17X 26－C．12X20．7	2H． 17	16.42	12.00	8.75	C． 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 ．	$0 . \mathrm{CO}$
W14X 30－C10X15．3	30.08	17.17	12.92	4.42	7.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14x 30－C 12×20.7	33.25	19.75	14．25	10.75	8．42	0：00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\mathrm{H} 16 \times \quad 36-\mathrm{C} 12 \times 20.7$	38.92	22.42	16.58	13.83	10.92	9．0C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W16x 36－C 15×33.7	47.33	25.50	18.58	15.25	13.00	10.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W19X $50-\mathrm{C} 12 \times 20.7$	40．4？	30.67	21.75	17.50	15.08	13.42	11.33	9.83	8.67	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
WIAX 50－C15 33．9	53.25	35.58	24.92	19.93	16.92	15.00	13.67	11.83	10.42	0.00	0.00	0.00	0.00	0.00	0.60
W21× 62－C12 20.7	42.33	33.92	26.50	20.92	17.83	15.75	14.33	12.92	11.33	10.17	9.17	8.42	0.00	0.00	$0 . C 0$
$\text { W2.1× ヶว-C. } 15 \times 33.9$	55.58	44．58	31.33	24.50	20.50	18.00	16.17	14.92	13.83	12.58	11.33	10.33	0.00	0.00	0.60
W21x 6月－C12 20.7	42.58	34． 25	28.15	22.50	19.00	16.67	15.08	13.92	12.42	11.08	10.00	9.17	8.42	0.00	0.00
W21 6 6 9－C． 15×33.9	55.75	44.75	34.00	26.42	22.09	19.17	17.17	15.75	14．59	13.67	12.42	11.33	10.42	0.00	0.00
W24X 68－C 12×20.7	43.92	35.25	28.83	22.75	19.25	17.00	15.33	14.17	12.92	11.58	10.42	9.58	8.75	8.17	0.00
W24×69－C15 33.9	57.42	46.03	14.92	27．08	22.58	19.75	17.67	16.17	15.08	14.08	13.17	12.00	11.00	10.17	0.60
	44.83	35.92	31.33	27.33	22.67	19.67	17.58	16.08	14.92	14.00	12.92	11.75	10.83	10.00	9.25
H24× 94－C15×33．9	57.83	46.42	40.50	32.67	26.83	23.08	20.50	18.58	17.17	16.00	15.08	14.25	13.58	12.58	11.67
W2．7x 84－C 12×20.7	46.33	37.17	32.42	27.00	22.58	19.67	11.67	16.17	15.08	14.17	13.17	12.00	11.08	10.25	9.58
$W 27 \times 84-C 15 \times 33.9$	59.67	47.75	41.67	32.75	27．00	23.33	20.75	18.92	17.42	16.25	15.33	14.58	13.92	13.08	12.17
H27× 94－C12 20.7	47.07	31.75	33.08	29.50	24.83	21.50	19.17	17.42	16.17	15.08	14.25	13.50	12.42	11.50	10.67
W27×94－C15 153.7	60．07	48.00	42.08	36.42	29.75	25.50	22.58	20.42	18.75	17.42	16.42	15.50	14.75	14.17	13.58
H30X 99－C 15×33.9	60.00	48.00	42.08	35.50	29.17	25.08	22.25	20.17	18.58	17.33	16.25	15.42	14．67	14.08	13.42
$430 \times 99-C 18 \times 42.7$	71.58	57.25	50.08	39.92	32.58	27.92	24.67	22.25	20.42	19.00	17.83	16.83	16.00	15.25	14．67
W30×116－C15 153.9	62．00	49.59	43.58	37.42	35.92	30.50	26.67	23.92	21.83	20.17	18.83	17.75	16.83	16.08	15.33
W30x116－C18×42．7	73.50	58.75	51，58	46.58	40.67	34.33	30.00	26.75	24.33	22.42	20.92	19.58	18.50	17.67	16.83
W3 $3 \times 118-\mathrm{C} .15 \times 33.9$	63.87	51.00	44.83	40.58	36.17	30.75	27.00	24.25	22.17	20.50	19.17	18.08	17.17	16.33	15.67
W33x118－C18×イ2．7	75.50	60.33	52.92	47.83	41.25	34.92	30.50	27.33	24.83	22.92	21.33	20.08	19.00	18.08	17.25
W33×141－C15×33．9	65.25	52.08	45.67	41.67	38.33	35.50	31.83	28.33	25.67	23.58	21.92	20.58	19.42	18.42	17．58
W3 3×1＋1－C18×42．7	76． 33	50.92	53.47	48.67	44.67	41.25	36.00	31.92	28.83	26.42	24.50	22.92	21.58	20.42	19.42
$W 36 \times 150-C .15 \times 33.9$	66.67	53.17	16.67	42.50	39.25	36.50	33.42	29.75	26.92	24.67	22.92	21.50	20.25	19.25	18.33
W36，150－C18×42．7	77.75	62.00	54.42	47.58	45.67	42.33	38.08	33.67	30.42	27.83	25.75	24.08	22.58	21.42	20.33

$$
\begin{aligned}
& \overrightarrow{0} \\
& \text { n } \\
& 0 \\
& 0 \\
& \text { in } \\
& \text { an }
\end{aligned}
$$

SFC IICN	WHEEL LOAD P_{x} (kips)														
	5.0	11).0	15.0	20.0	25.0	30.7	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0
W17x 26-C10x15.3	24.67	1'.67	5.83	7.17	0.00	0.0C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W17x 20-C12x20. 7	27.17	15.83	11.25	8.17	0.00	0.00	0.00	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W1\%x 30-C10x15.3	28.50	16.33	11.83	8.67	7.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14x 30-C12 X20.7	31.92	17.92	13.57	9.92	7.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
:11.x 36-C12x20.7	38.17	21.25	15.83	12.83	10.08	8.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W16X 35-C15 33.9	46.00	24.61	17.92	14.67	12.17	9.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60
W18X 50-C12x20.7	39.50	28.83	20.50	15.58	14.33	12.25	10.33	9.00	7.92	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
W18X 50-C.15x33.9	52.25	34.17	23.92	19.00	16.25	14.42	12.75	11.00	9.67	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
W21X 62-C12×20.7	41.25	32.92	24.67	19.67	16.75	14.83	13.50	11.67	10.25	9.17	8.33	7.58	0.00	0.00	0.60
W21x 62-C15×33.9	54.33	43.50	29.75	23.25	19.50	17.17	15.50	14.25	13.00	11.58	10.42	9.50	0.00	0.00	0.00
W? $1 \times 68-\mathrm{C} 12 \times 29.7$	41.42	33.25	26.75	21.00	17.83	15.67	14.25	12.75	11.25	10.00	9.08	8.25	7.58	0.00	0.00
W2Ix 68-C15x33.9	54.59	43.67	32.25	25.00	20.92	19.25	16.33	15.00	13.92	12.67	11.42	10.42	9.58	0.00	0.00
W24×68-C12×20.7	42.67	34.17	26.67	21.17	18.00	15.92	14.50	13.17	11.58	10.42	9.42	8.58	7.92	7.33	0.00
W $34 \times 63-\mathrm{C} 15 \times 33.9$	55.00	44.9)	32.83	25.50	21.33	18.67	16.83	15.42	14.33	13.33	12.08	11.00	10.17	9.33	0.10
W24× 84-C12×2才. 7	43.50	34.92	30.17	25.25	21.00	18.33	16.50	15.08	14.00	12.83	11.58	10.58	9.67	9.00	8.33
W2 $4 \times 84-\mathrm{C} 15 \times 33.9$	56.42	45.25	39.17	30.75	25.25	21.75	19.33	17.58	16.25	15.17	14.33	13.58	12.50	11.50	10.67
	44.9 ?	36.00	31.17	24.93	20.83	18.33	16.50	15.17	14.17	13.00	11.75	10.75	9.92	9.17	. 50
: $27 \times 84-\mathrm{C} 15 \times 33.9$	58.00	46.50	39.52	30.58	25.25	21.92	19.50	17.83	16.50	15.42	14.50	13.83	12.83	11.92	11.08
1627x 94-C12X20. 7	45.67	36.58	31.83	27.50	22.83	19.83	17.83	16.25	15.08	14.17	13.25	12.08	11.08	10.25	9.50
W?7X 94-C15×33.9	58.33	46.75	40.75	33.83	27.75	23.83	21.17	19.17	17.67	16.50	15.50	14.67	14.00	13.25	12.33
W30x 99-6. 15×33.9	58.33	46.75	40.15	32.92	27.11	23.42	20.83	19.00	17.50	16.33	15.42	14.58	13.92	13.17	12.25
W30x 99-C18×42.7	69.83	55.83	48.58	37.50	30.67	26.33	23.33	21.08	19.42	18.00	16.92	16.00	15.25	14.58	14.00
130×116-C15×33.9	60.17	413.08	42.25	37.9 ?	33.17	28.17	24.75	22.25	20.33	18.83	17.67	16.67	15.83	15.08	14.50
W30x116-C18×4?.7	71.57	57.17	5C. 17	44.92	38.00	32.08	28.00	25.08	22.83	21.08	19.67	18.50	17.50	16.67	15.92
W33x118-C15×33.9	61.92	49.42	43.42	39.00	33.17	28.25	24.92	22.50	20.58	19.17	17.92	16.92	16.08	15.33	14.75
W33x118-C18×42.7	73.33	58.58	51.42	46.17	38.25	32.42	28.42	25.50	23.25	21.50	20.08	18.92	17.92	17.00	16.33
W33×14, 1-C 15×33.9	63.17	50.4?	44.25	40.17	36.75	33.50	29.17	26.08	23.67	21.83	20.33	19.08	18.08	17.17	16.42
W33×141-C18×42.1	74.08	59.17	511.92	47.08	43.00	38.50	33.33	29.67	26.83	24.58	22.83	21.42	20.17	19.17	18.25
W36×150-C15×33.9	64.50	51.4?	45.08	41.08	37.67	34.15	30.50	27.17	24.67	22.75	21.17	19.83	18.75	17.83	17.C8
W $36 \times 150-\mathrm{C} 18 \times 42.7$	75.23	40.17	52.75	47.92	43.9?	40.42	35.08	31.08	28.08	25.75	23.92	22.33	21.08	20.00	19.00

$S E C \text { IICA }$	N WHEEL LOAD P_{x} (kips)														
	5.0	i 19.0	15.0	20.0	25.0	30.0	35:0	T0.0	45.0	50.0	55,0	60.0	65.0	70.0	7.5 .0
W12x 26-C10x15.7	28.17	16.92	11.67	9.50	0.00	0.0 C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W1 ${ }^{\text {W }}$ 26-C12 20.7	30.17	17.92	12.92	9.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14 $30-C 10 \times 15.3$	31.92	19.08	14.25	10.42	8.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
W14X 30-C12 X 20.7	35.75	$? 0.50$	15.67	11.61	9.17	0.0 C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W $16 \times 36-\mathrm{C} 12 \times 20.7$	40.003	24.58	18.33	15.25	11.92	9.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H16x 36-C15×33.9	49.51	27.42	2C. 17	16.67	13.92	11.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
WIRX 50-C12 20.1	41.83	33.50	24.00	19.42	16.75	14.75	12.50	10.83	9.50	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
W $18 \times 50-\mathrm{C} 15 \times 33.9$	54.67	38.00	2.1.00	21.67	18.50	16.50	14.75	12.75	11.25	0.00	0.00	0.00	0.00	0.00	0.00
$421 \times 62-C 12 \times 20.7$	43.92	35.47.	29.59	23.42	19.92	17.67	16.00	14.33	12.67	11.33	10.25	9.33	0.00	0.00	0.00
$W 21 \times 62-C .15 \times 33.9$	57.25	46.08	34.09	26.83	22.58	19.83	17.92	16.42	15.33	13.67	12.33	11.25	0.00	0.00	0.00
W $21 \times 68-C 1 ? \times 20.7$	44.25	35.58	31.00	25.17	21.25	18.67	16.92	15.58	13.92	12.42	11.17	10.17	9.33	0.00	0.00
W21× 58 - 15×33.9	57.1?	46.17	36.92	28.92	24.17	21.08	19.00	17.33	16.17	15.00	13.58	12.33	11.33	0.00	0.00
W $214 \times 6 \mathrm{H}-\mathrm{C} 12 \times 20.7$	15.67	36.75	32.07	25.58	21.67	19.08	17.25	15.92	14.50	13.00	11.75	10.75	9.83	9.17	C. CO
W2.4 6 6-C 15×33.9	59.33	47.67	38.33	29.83	25.00	21.83	19.58	18.00	16.67	15.67	14.42	13.17	12.08	11.17	0.00
H74× 84-C12 20.7	46.67	37.50	33.07	29.58	25.58	22.25	19.92	18.17	16.83	15.75	14.58	13.25	12.17	11.25	10.50
W24X 34-C 15×33.9	59.83	48.08	42.25	35.92	29.67	25.58	22.75	20.67	19.08	17.75	16.75	15.92	15.00	13.92	12.92
W2.7x 84-C.12x?0.7	48.33	38.83	34.08	30.58	25.58	22.33	20.00	18.33	17.00	16.00	15.00	13.67	12.58	11.58	10.83
W2.7X 84-C.15x33.9	61.75	49.50	43.50	36.42	30.09	26.06	23.17	21.08	19.42	18.17	17.08	16.25	15.50	14.42	13.42
W2 1x 94-C12 270.7	49.08	37.47	34.67	31.33	28.17	24.42	21.75	19.83	18.33	17.08	16.17	15.33	14.08	13.00	12.08
W27X 94-C15 33.9	62.17	49.87	43.83	39.58	33.08	28.42	25.17	22.75	20.92	19.50	18.33	17.33	16.50	15.75	15.C8
W30x 99-C15 33.7	62.17	49.87	43.83	39.42	32.50	28.00	24.83	22.50	20.75	19.33	18.17	17.25	16.42	15.67	14.92
W71) ${ }^{\text {W9-C }} 19 \times 4$?. 1	73.83	59.17	52.00	43.67	35.83	30.75	27.17	24.58	22.58	21.00	19.67	18.58	17.67	16.92	16.25
W30×116-C15×3.3.?	6.4 .42	51.58	45.33	41.33	3E. 00	34.25	30.00	26.92	24.58	22.75	21.25	20.00	18.92	18.08	17. 25
W30×116-C18×42.7	76.08	60.97	53.50	49.67	44.58	37.92	33.17	29.67	27.00	24.92	23.17	21.83	20.58	19.58	18.75
W33×118-C15 33.9	66.50	53.17	46.75	42.58	39.25	34.75	30.50	27.42	25.08	23.17	21.67	20.42	19.33	18.42	17.67
W $33 \times 118-\mathrm{C} 18 \times 42.7$	79.25	62.58	55.00	50.08	45.83	38.83	34.00	30.42	27.67	25.58	23.83	22.42	21.17	20.17	19.25
W33×141-C15 1 ¢33.9	67.72	54.33	47.75	43.58	$4 \mathrm{C.42}$	37.75	35.33	32.08	29.08	26.75	24.83	23.25	22.00	20.83	19.92
W $33 \times 141-\mathrm{C} 18 \times 42.7$	79.17	63.33	55.58	50.75	4,7.00	4.3 .75	40.17	35.67	32.25	29.58	27.42	25.58	24.08	22.83	21.75
W $36 \times 150-\mathrm{C} 15 \times 33.9$	69.50	55.53	4\%. 75	44.50	41.42	38.75	36.42	33.83	30.67	28.08	26.08	24.42	23.00	21.83	20.83
W36×150-C.13042.7	80.83	6'4.50	56.6.7	51.67	48.00	4.4.83	42.00	37.83	34.17	31.25	28.92	27.00	25.42	24.08	22.83

SFCTION	WHEEL LOAD P_{x} (kips)														
	5.0	10.0	15.)	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0.	70.0	75.0
1:17×26-C10×15.3	26.93	15.17	10.67	8.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W13x $26-\mathrm{C} 12 \mathrm{X} 20.7$	29.17	17.25	12.07	8.75	0.00	0.00°	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14X 30-C10X15.1	31.17	18.09	12.92	9.42	8.00	0.0 C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W1\%x 30-C12x20.7	34.33	19.54	14.83	10.75	8.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W16x 36-C. 12×20.1	39.25	23.33	17.42	14.00	10.92	9.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0 C	0.60
W16. 36-C15 X 33.9	48.33	26.50	19.42	16.18	13.60	10.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60
W13X 50-C 12×20.7	40.75	31.67	22.67	18.42	15.92	13.42	11.33	9.83	8.67	0.00	0.00	0.00	0.00	0.00	0.00
WI9X 50-C15 33.9	53.58	36.59	25.92	20.75	17.75	15.83	13.67	11.83	10.42	0.00	0.00	0.00	0.00	0.00	0.00
W21x ヶว-C12 220.7	42.67	34.33	27.50	21.83	18.67	16.58	14.92	12.92	11.33	10.17	9.17	8.42	0.0 C	0.00	0.00
W $21 \times 62-\mathrm{C} 15 \times 33.9$	55.92	44.92	32.33	25.42	21.42	18.83	17.00	15.67	14.08	12.58	11.33	10.33	0.00	0.00	0.00
W21×68-C 12×20.7	42.72	34.58	29.75	23.42	15.83	17.50	15.92	14.17	12.42	11.08	10.00	9.17	8.42	0.00	0.60
W21X 6a-C 15×33.9	56.08	45.08	35.09	27.33	22.92	20.08	18.00	16.58	15.42	13.75	12.42	11.33	10.42	0.00	0.00
W $24 \times 683-\mathrm{C} 12 \times 20.7$	44.25	35.58	29.83	23.67	20.08	17.83	16.17	14.67	12.92	11.58	10.42	9.58	8.75	8.17	0.60
W2\%X 68-C15 $\mathrm{W}^{6} 3.9$	57.75	\%6.42	3t.00	28.08	23.50	20.58	18.58	17.00	15.83	14.58	13.17	12.00	11.00	10.17	0.00
$W 24 \times 84-C 12 \times 20.7$	45.17	36.33	31.75	28.33	23.58	20.58	18.50	16.92	15.75	14.33	12.72	11.75	10.83	10.00	9.25
W24x 34-C15 33.9	58.25	46.75	4 C .97	33.75	27.83	24.08	21.42	19.50	18.00	16.83	15.83	14.92	13.67	12.58	11.67
W27x 34-C12 120.7	46.67	37.50	32.83	28.00	23.50	20.58	18.50	17.00	15.83	14.58	13.17	12.00	11.08	10.25	9.58
W27X 84-C15×33.9	60.00	48.08	42.08	33.83	28.00	24.25	21.67	19.75	18.25	17.08	16.17	15.33	14.08	13.08	12.17
W27x 9\%-C12×29.7	47.42	38.03	33.42	30.00	25.75	22.42	20.00	18.33	17.00	15.92	14.83	13.50	12.42	11.50	10.67
H27X 9\%-C15×33.9	60.33	48.42	42.59	37.4?	30.75	26.50	23.50	21.33	19.58	18.33	17.25	16.33	15.58	14.58	13.58
W30X 99-C 15×33.9	60.33	48.42	42.50	36.50	30.08	26.00	23.17	21.68	19.42	18.17	17.08	16.25	15.50	14.42	13.42
W30X 99-C 18×42.7	71.72	57.58	50.50	41.00	33.58	28.92	25.58	23.17	21.33	19.83	18.67	17.67	16.83	16.08	15.42
W30XIL6-Ci5x33.9	62.33	49.42	43.92	39.83	36.42	31.50	27.67	24.92	22.75	21.08	19.75	18.58	17.67	16.92	16.17
W30x 116 -C19×42.7	73.83	59.08	51.92	47.00	41.75	35.42	30.92	27.75	25.25	23.33	21.75	20.50	19.42	18.50	17.67
W33x118-C15 3 3.9	64.25	51.42	45.17	41.00	37.17	31.75	27.92	25.17	23.08	21.42	20.08	18.92	18.00	17.17	16.50
W33x118-C18x42.7	75.83	60.67	53.25	48.25	42.33	35.92	31.50	28.25	25.75	23.83	22.25	20.92	19.83	18.92	18.08
W $23 \times 141-C 15 \times 33.9$	65.53	52.42	46.08	42.00	38.83	36.00	32.93	29.33	26.67	24.50	22.83	21.42	20.25	19.25	18.42
W3 3×1 ¢1-C18×42.7	76.67	61.25	53.83	49.08	45.17	41.83	37.08	32.92	29.83	27.42	25.42	23.83	22.42	21.33	20.33
$1436 \times 150-\mathrm{C} 13 \times 33.9$	67.00	53.50	47.00	42.92	35.75	36.72	34.42	30.67	27.83	25.67	23.83	22.33	21.17	20.08	19.17
W36, 150-C13×42.7	78.04	6?.4?	54.75	49.72	46.17	42.83	39.08	34.75	31.42	28.75	26.67	25.00	23.50	22.33	21.25

[^0]| | －${ }_{\text {in }}^{\sim}$ |

 |
| :---: | :---: | :---: |
| | $\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$ | 0000000000000mOONNLNNmNONmOONm

 |
| | \％ | OOOOOOOOOOOMONRONMmmNONMNルNぁNO

 |
| | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ |

 |
| | 0 in in | OOOOOOOOMNONGOLONMNMMNルNNGNOD
 |
| 20 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 5 \end{aligned}$ |

 |
| n^{x} | |

 －ーーーーーーーーーーーーN～NNN～NNN |
| 9 2 0 0 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 5 \end{aligned}$ |

 ェーーーーーーーーーールNーNNNNNNMNM |
| 备 | $\begin{aligned} & 0 \\ & \underset{\sim}{6} \end{aligned}$ |

 |
| | $\begin{aligned} & \text { C} \\ & \dot{0} \\ & m \end{aligned}$ |

 |
| | $\begin{gathered} 0 \\ \stackrel{\sim}{\sim} \\ \sim \end{gathered}$ | |
| | $\begin{aligned} & 0 \\ & \dot{0} \\ & i \end{aligned}$ |

 |
| | $\begin{gathered} 0 \\ 0 \end{gathered}$ |

 |
| | 0 |

 |
| | 0 |

 |
| | z | |

TABLE 3-3 (cont.): Maximum a				lengths							$\mathrm{P}_{\mathbf{y}}=0.08 \mathrm{P}_{\mathrm{x}}$			$\mathrm{F}_{\mathbf{y}}=50 \mathrm{ksi}$	
$\because 111$.	WHEEL LOAD P_{x} (kips)														
		11.1)	! '. ${ }^{\text {a }}$	').	2.3.0	3. ${ }^{\circ}$	35.1	40.1	45.0	50.17	55.0	69.0	65.0	70.0	75.0
W12x 26-C10x15.3	29.08	16.50	11.83	9.58	8.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W12X 26-C12 20.7	34.67	11.92	12.6 .1	10.25	2.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14x 30-C10×15.3	30.17	19.42	13.58	10.92	9.33	8.25	7.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$W 14 \times 30-C 12 \times 20.7$	36.92	21.33	14.83	11.83	10.00	8.83	8.00	0.00	0.00	0.00	0.00	0:00	0.00	0.00	0.00
W16X 36-C12 20.7	38.42	26.92	18.33	14.33	12.00	10.50	9.42	8.58	8.00	0.00	0.00	0.00	0.00	0.00	0.00
W16x 36-C15x33.9	50.83	30.83	20.92	16.17	13.42	11.58	10.33	9.42	8.75	0.00	0.00	0.00	0.00	0.00	0.00
W18x 50-C12 320.7	40.08	32.00	26.17	19.92	16.33	14.00	12.42	11.17	10.25	9.58	8.92	8.42	0.00	0.00	0.00
H18X 50-C15 33.9	53.00	42.33	30.33	22.92	18.67	15.92	14.00	12.58	11.50	10.67	9.92	9.33	0.00	0.0 C	0.00
W21x 62-C12x20.7	42.17	33.67	29.50	25.33	20.50	17.42	15.25	13.67	12.50	11.50	10.75	10.08	9.58	9.08	8.67
W21x 62-C15x33.9	55.58	44.33	38.83	30.00	24.17	20.33	17.15	15.83	14.33	13.25	12.25	11.50	10.83	10.25	9.83
$421 \times 68-\mathrm{C12} \mathrm{\times 2!} .7$	42.42	33.83	29.61	26.15	22.33	18.83	16.50	14.67	13.33	12.33	11.42	10.75	10.17	9.67	9.17
W?1x 60-C15x 33.9	55.75	44.42	39.00	32.92	26.33	22.17	19.25	17.08	15.42	14.17	13.17	12.25	11.58	10.92	10.42
W24X 68-C12×20.7	43.92	35.00	30.67	27.67	22.83	19.3?	16.92	15.17	13.75	12.61	11.83	11.08	10.50	9.92	9.50
W24×68-C15×33.9	57.58	45.92	40.25	34.25	27.42	23.08	20.08	17.83	16.17	14.83	13.75	12.83	12.08	11.42	10.92
W24X 84-C1) ${ }^{\text {W20.7 }}$	44.83	35.75	31.25	28.50	26.17	23.67	20.50	18.17	16.33	15.00	13.83	12.92	12.17	11.50	10.92
W74X 84-C15x33.9	58.08	46.33	40.58	36.92	34.00	28.33	24.42	21.50	19.33	17.58	16.25	15.08	14.17	13.33	12.67
H2TX 84-C12x>0.7	46.50	37.00	32.42	29.50	27.08	23.15	20.67	18.33	16.58	15.25	14.08	13.17	12.42	11.75	11.17
$\text { W27x } 44-C 15 \times 33.9$	60.00	47.75	41.83	38.08	34.58	28.83	24.92	22.00	19.83	18.08	16.67	15.50	14.58	13.75	13.00
$W 27 \times 94-C 12 \times 20.1$	47.33	37.58	32.92	30.00	27.67	25.75	23.00	20.33	18.33	16.75	15.42	14.42	13.50	12.75	12.C8
W27X 94-C.15x33.9	60.42	48.08	42.08	38.33	35.50	32.25	27.67	24.42	21.83	19.92	18.33	17.00	15.92	15.00	14.17
H30x 99-C15x33.9	60.42	48.08	42.08	38.33	35.50	31.58	27.11	24.00	21.58	19.67	18.08	16.83	15.75	14.83	14.c8
$W 30 \times 97-C 18 \times 42.7 ~$	12.17	51.42	50.25	45.75	42.33	35.42	30.42	25.83	24.00	21.83	20.08	18.67	17.42	16.42	15.50
W30×116-C15 33.9	62.67	49.83	43.58	39.67	36.92	34.58	32.58	30.17	26.92	24.33	22.25	20.58	19.17	17.92	16.92
W30x116-C18×42.7	74.33	59.17	51.75	47.08	43.83	41.08	38.58	34.00	30.25	27.33	24.92	23.00	21.42	20.00	18.83
W33×118-C15 33.9	64.67	51.42	45.09	40.92	38:00	35.75	37.67	30.75	27.50	24.92	22.83	21.08	19.67	18.50	17.42
W33x118-C19×42.7	76.50	60.83	53.25	48.42	45.00	42.25	39.83	35.00	31.17	28.17	25.75	23.75	22.17	20.75	19.58
W33×141-C15 33.9	66.17	52.50	45.92	41.75	38.83	36.58	34.67	32.92	31.33	29.83	27.25	25.08	23.25	21.75	20.42
W33×141-C18×42.7	17.42	61.50	53.83	49.00	45.50	42.83	40.58	38.58	36.67	33.83	30.75	28.25	26.17	24.42	22.52
H36 $12150-\mathrm{C} 15 \times 33.9$	67.75	53.75	47.00	42.67	39.67	37.33	35.50	33.83	32.25	30.75	28.92	26.58	24.67	23.08	21.67
W36x150-C18×42.7	79.08	62.83	54.92	49.92	46.42	43.67	41.50	39.50	37.58	35.92	32.92	30.17	28.0C	26.08	24.50

TABLE 3-3	ont.): Maximum al					lengths					$\mathrm{P}_{\mathbf{y}}{ }^{-}=0.10 \mathrm{P}_{\mathrm{x}}$			$\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$	
								AD	(k						
	$\cdots *$	11.	120	1.:	$\because 5.1$	300	35 。	¢ C. 3	4.0	50.	()	. 0	65		. 0
WI 2x $25-\mathrm{Cl} 0 \times 15.3$	2850	15.50	11.08	$9 . .0$	7.8)	0.00	0.00	0.00	0.00	0.00	0.00	0.80	$0: 00$	0.00	0.00
WI $2 \times 25-\mathrm{Cl} 2 \times 20.7$	3325	17.00	12.08	9.7	8. 4 ?	0. 00	0.00	0.00	0.00	0.00	0.00	$0 . .10$	0.00	0.00	0.00
W14X 3)-C10×15.3	2950	18.60	12. 75	10.2	8. 73	7.83	7 .08	0.00	0.00	0.00	0.00	$0 . .10$	O.cc	0.00	0.00
W14X 33-CL 2×20.7	3625	23.17	14. 00	$11 . .1$	9. 5)	8.42	7.67	0.00	0.00	0.00	0.00	$0 . .10$	0.00	0.0 C	0.00
$\text { WI } 6 \times \quad 36-\mathrm{Cl} 2 \times 20.7$	3758	25.25	17. 17	13.04	11.33	9.92	8.92	8.17	7.58	0.00	0.00	$0 . .10$	0.00	0.00	0.00
$\text { W1 } 6 \times 35-C .15 \times 33.9$	5000	29.58	15. 92	$15 . .3$	12.73	11.08	9.92	9.60	8.33	0.00	0.00	$0 . .10$	0.00	0.00	0.00
WI 8x $\quad 50-\mathrm{Cl} 2 \times 20.7$	3900	31.17	24. 33	18..4 4	15. 11	13.00	11.58	10.50	9.67	9.00	8.42	$8 . .10$	0 . 0 C	0.00	$0 . \mathrm{co}$
W1 0x 5)-Cl 5x 33.9	5192	41.50	23.83	$2.1 . .6$	17.61	15.00	13.25	11.92	10.92	10.08	9.42	$8 . .12$	0.00	0.00	$0 . \mathrm{CO}$
W2 1x 6?-C1 2×30.7	4092	32.67	23.50	23.. 2	18.83	16.00	14.08	12.67	11.58	10.75	10.00	$9 . .2$	8.92	8.50	8.17
W2 1x 62-C1 5k 33.9	5417	43.25	31.83	$23 .-1$	22.53	19.08	16.67	14.83	13.50	12.42	11.58	$10 . .13$	10.25	9.75	9.25
W? 1x 63-C1 2×20.7	4117	32.83	28. 75	25.0 .4	20.4?	17. 33	15.17	13.58	12.33	11.42	10.58	$10 . .10$	9.42	9.00	8.58
W2 1x $63-\mathrm{Cl} 51331.9$	5433	43.33	3 E .00	30.. 8	24.61	20.67	18.00	16.60	14.50	13.33	12.33	11.58	10.92	10.33	9.83
W? $4 \times 83-\mathrm{CL} 2 \times 20.7$	4250	33.83	29.67	$25 . .6$	20. 75	17.67	15.50	13.92	12.67	11.67	10.92	10.25	9.75	9.25	8.83
W24x 63-Cl 5833.9	56 c 0	44.67	35.11	$31 . .8$	2.5.5)	21.42	18.67	16.58	15.08	13.83	12.83	12.00	11.33	10.75	10.25
W? $4 \times 884-\mathrm{Cl} 2 \times 20.7$	4333	34.50	30. 25	$27 . .4$	25.0)	21.42	18.58	16.50	14.92	13.67	12.67	11.83	11.17	10.58	10.08
W? 4×8 8i-C15k 33.9	5650	\%5.00	37.42	$35 . .8$	31.5)	26.25	22.58	19.92	17.92	16.33	15.08	14.88	13.17	12.42	11.83
W2 7x Hi_{6}-C1 2820.7	4492	35.67	31.25	$28 . .3$	25.33	21.33	18.58	16.58	15.08	13.83	12.83	12... 10	11.33	10.75	10.25
$W ? 7 \times \quad \text { Bi }-C 15 \times 33.9$	5825	45.33	4). 58	36..9	31.61	26.42	22.83	20.25	18.25	16.67	15.42	$14 . .2$	13.50	12.75	12.c8
W2 7x $94-\mathrm{Cl} 2 \times 20.7$	4567	3 h .25	31.75	28.08	26.5)	23.83	20.67	18.33	16.50	15.17	14.00	13.08	12.33	11.67	$11 .{ }^{\text {c }}$
W2 7x Cl_{4}-C1 5k 33.9	5858	46.58	4). 83	$37 . .1$	34. 25	29.58	25.42	22.33	20.08	18.33	16.83	15.67	14.67	13.83	13. C8
W30x 97-C1 5k 33.9	5858	45.58	43.83	$37 . .1$	34. II	28.83	24.92	22.00	19.83	18.08	16.67	15.50	14.58	13.75	13.00
W3 0x 97-C18k ${ }^{\text {2 }}$ - 7	7017	55.83	4 C .92	44.05	39.53	32.92	28.25	24.92	22.33	20.33	18.75	17.42	16.25	15. 2 3	14.50
$\text { W3 } 0 \times 115-\mathrm{CL} 5 \times 33.9$	6058	48.17	42.08	$38 . .3$	35.53	33. 25	31.08	21.33	24.42	22.08	20.25	18.75	17.50	16.42	15.50
$\text { W30x } 115-\mathrm{Cl} 8 \times 42.7$	7208	57.33	50.17	$45 . .6$	42.4?	39.58	35.92	31.33	27.83	25.17	23.00	21.25	19.75	18.50	17.42
W3 3x 118 -C. 5×33.9	6242	49.58	43. 42	39.. 5	36. 61	34. 25	31.58	27.67	24.75	22.50	20.67	19.17	17.8?	16.83	15.63
W3 $3 \times 118-\mathrm{Cl} \mathrm{8} \mathrm{\times 42.1}$	7408	58.92	51.50	46.0 .8	43. 53	40.67	36.50	31.92	28.50	25.75	23.58	$21 . .13$	20.33	19.08	18.00
W73x141-C1 5×33.9	6383	50.67	46. 25	$40 . .2$	37.42	35. 17	33.17	31.42	29.75	26.83	24.50	22... 8	21.00	19.58	18.50
W3 $3 \times 141-\mathrm{C} 18 \times 42.7$	7492	59.50	52.00	$47 . .3$	44.01	41.33	39.00	36.83	34.25	30.83	28.00	$25 . .15$	23.92	22.33	21.00
$(136 \times(5)-(15 \times 33.9$	6525	51.75	45.17	41.0	$38=11$	35.92	34.00	32.25	$3 C .58$	28.33	25.83	$23 . .13$	22.08	20.67	19.50
W3 $6 \times 157-\mathrm{Cl} 9 \times 42.7$	7633	6).58	53.00	$48 . .1$	44.73	42.17	39.83	37.75	35.83	32.75	29.75	$27 . .13$	25.33	23.67	22.25

Note: A value of 0.00 indicates allowable web shear stress exceeded.

¿r TIC:.	WHEEL														
	¢.0	11.17	1*.1)	? 1.0	$\cdots{ }^{3}$.	1:). 0	15.0	40.7	45.0	$50.1)$	55.0	60.0	65.0	70.0	75.0
W12X 26-C10x15.3	29.42	17.50	12.67	10.42	9.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W12x 26-C.12×20.7	35.75	18.92	13.58	11.08	9.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14×30-C10×15.3	30.50	20.42	14.58	11.75	10.17	9.08	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60
W14X 30-C.12X20.7	37.25	22.42	15.83	12.67	10.83	9.67	0.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W16X 36-C 12×20.7	38.75	28.08	19.33	15.25	12.92	11.33	10.25	9.42	8.83	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
$116 \times 35-\mathrm{C} 15 \times 33.9$	51.17	31.92	21.92	17.08	14.33	12.50	11.25	10.25	9.50	0.00	0.00	0.00	0.00	0.0 C	0.00
W18x 50-C12 20.7	40.42	32.33	27.33	20.92	17.25	14.92	13.25	12.08	11.17	10.42	9.75	9.25	0.00	0.00	0.00
W19X 50-C15 X 3 3.9	53.33	42.67	31.42	24.00	19.67	16.83	14.92	13.50	12.42	11.50	10.75	10.17	0.00	0.00	0.60
W21x 62-C12x20. 7	42.59	34.00	29.83	26.42	21.58	18.42	16.25	14.58	13.42	12.42	11.58	11.00	10.42	9.92	9.50
$W 21 \times 62-C 15 \times 33.9$	55.92	44.67	39.25	31.17	25.17	21.42	18.75	16.75	15.33	14.08	13.17	12.33	11.67	11.17	10.t 7
W21x 68 - C 12×20.7	42.83	34.17	30.00	27.17	23.42	19.92	17.42	15.67	14.25	13.17	12.33	11.58	11.00	10.50	10.00
$W 21 \times 68-C 15 \times 33.9$	56.08	44.83	36.33	34.00	21.42	23.17	20.25	18.08	16.42	15.08	14.00	13.17	12.42	11.83	11.25
H24×68-C12 220.7	44.25	35.33	31.00	28.08	23.92	20.33	17.92	16.08	14.67	13.58	12.67	11.92	11.33	10.83	10.33
	57:92	46.25	40.58	35.42	28.50	24.00	21.08	18.83	17.08	15.75	14.67	13.75	13.00	12.33	11.75
W24X A4-C 12×20.7	45.25	36.68	31.67	28.83	26.58	24.67	21.50	19.17	17.33	15.92	14.75	13.83	13.08	12.42	11.83
W24X 84-C 15×33.9	58.50	46.67	40.92	37.33	34.42	29.42	25.42	22.58	20.33	18.58	17.17	16.08	15.08	14.25	13.58
W27X 84-C12X20.7	46.92	37.33	32.75	29.83	27.58	24.75	21.58	19.33	17.50	16.17	15.00	14.08	13.25	12.58	12.00
W27X $\mathrm{H}^{4} \mathrm{C}$ - 15×33.9	60.33	48.17	42.17	38.42	35.58	29.92	25.92	23.00	20.75	19.00	17.58	16.42	15.50	14.67	13.92
H27X 94-C12×20.7	47.67	38.00	33.25	30.33	28.08	26.17	24.00	21.33	19.25	17.67	16.42	15.33	14.42	13.67	13.00
W27X 94-C 15×33.9	60.75	48.42	42.50	38.67	35.92	33.42	28.75	25.42	22.83	20.83	19.25	17.92	16.83	15.92	15.C8
W30x 99-C 15×33.9	60.75	48.42	42.42	38.67	35.92	32.67	28.25	25.00	22.58	20.58	19.08	17.75	16.67	15.75	15.00
H30X 99-C. 1 Hx42.1	72.50	57.15	50.67	46.08	42.75	36.50	31.50	27.83	25.00	22.83	21.08	19.58	18.33	17.33	16.42
W30x116-C.15 33.9	63.00	50.17	43.92	40.00	37.25	35.0 C	33.00	31.25	27.92	25.33	23.25	21.58	20.08	18.92	17.92
+30×116-C18x42.7	74.67	59.50	52.17	47.50	44.17	41.50	39.08	35.08	31.33	28.33	26.00	24.00	22.42	21.00	19.83
W33×118-C15 153.9	65.08	51.75	45.33	41.25	38.42	36.17	34.08	31.83	28.50	25.92	23.83	22.08	20.67	19.42	18.33
W33x118-C18x42.7	76.83	61.17	53.58	48.75	45.33	42.67	40.25	36.08	32.17	29.17	26.75	24.75	23.08 .	21.67	20.50
W33 141 -C15 153.9	66.50	52.92	46.25	42.08	39.17	36.92	35.08	33.33	31.83	30.33	28.33	26.08	24.25	22.75	21.42
W33×141-C18×42.7	77.75	61.92	54.11	47.33	45.83	43.25	41.00	39.00	37.08	34.92	31.83	29.33	27.25	25.50	23.92
W36×150-C 15×33.9	68.08	54.08	47.33	43.08	40.00	37.75	35.83	34.25	32.67	31.25	29.92	27.67	25.67	24.08	22.67
W36×150-C14×42.7	79.42	63.17	55.25	50.25	46.75	44.08	41.83	39.92	38.08	36.33	34.00	31.25	29.00	27.08	25.50

[^1]
ت゙
g in ＂ $>$

$\stackrel{-1}{9}$		¢	
$\stackrel{11}{*}$		$\stackrel{0}{0}$	
		－	
$\begin{aligned} & a_{0}^{x} \\ & \stackrel{0}{0} \end{aligned}$		－	
		¢	
	\％	$?$	
	تِ a^{x}	$\stackrel{9}{6}$	
$\text { ש } \begin{gathered} \text { in } \\ \text { i1 } \end{gathered}$	Ọ	$\stackrel{-}{\square}$	
$\begin{aligned} & + \\ & \stackrel{+}{8} \\ & \Phi \end{aligned}$	気	\pm	
$\underset{\substack{\pi \\ 0}}{\boldsymbol{1}}$		$\stackrel{\square}{\square}$	
－10		\cdots	
$\begin{aligned} & 3 \\ & 0 \\ & \underset{-1}{3} \\ & \text { a } \end{aligned}$		－	
$\underset{\substack{\text { E }}}{\text { En }}$		\bigcirc	
\sum^{∞}		－	
$\begin{aligned} & \text { Z } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$⿳$	
$\begin{aligned} & \text { M } \\ & \text { m } \\ & \text { H } \\ & \text { m } \\ & \underset{H}{H} \end{aligned}$			

bLE 3－3（cont．）：Maximum al															
$\because 1711$	WHEEL LOAD P_{x}（kips）														
	＇ 5.7	11.0	1，．0）	，1． 1	くら．！	37.0	15．7	4 C .0	45.0	50.11	55.0	60.0	65.0	70.0	75.0
W12X 26－C10x15．3	28.33	15.58	11.42	9.42	8.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0 C	0.00
$W 12 x \quad 26-C 12 x ? 0.7$	33.17	17.25	12.4 .2	10.17	8． 83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
$\text { W } 14 \times 30-\mathrm{C} 10 \times 15.3$	29.25	17.92	12.83	10.50	9.08	7． 92	6.75	0.00	0.00	0.00	0.60	0.00	0.00	0.00	0.00
$\text { W14K 30-C } 12 \times 20.7$	35.92	20.08	14.25	11.50	9.92	8.83	7.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H16× 36-C1? X2.9.7	37.08	24.83	17.17	13.58	11.58	10.25	9.25	8.58	7.67	0.00	0.00	0.00	0.60	0.06	$0 . C 0$
$\mathrm{H} 16 \times 36-\mathrm{C} 15 \times 33.9$	49.50	29.58	20.08	15.67	13.08	11.50	10.33	9.50	8.83	0.00	0.00	0.00	0.00	$0.0 \mathrm{C}$	$0 . C 0$
W18X 50－C12 20.7	39.42	30.75	23.75	18.25	15.17	13.17	11.75	10.75	9.92	9.33	8.83	8.25	0.00	0.00	0.00
W18x 50－C15x33．9	51.25	41.00	28．50）	21.67	17.75	15.25	13.50	12.25	11.25	10.50	9.83	9.33	0.00	0.00	0.00
W21x62－C12x29．7	40.17	32.08	28.00	22.50	18.42	15.83	14.00	12.67	11.67	10.92	10.25	9.67	9.25	8.83	8.50
	53.33	42.5 B	36.92	27.58	22.25	18.92	16.58	14．92	13.67	12.67	11.83	11.17	10.58	10.08	9.67
W21x68－C12 220.7	40.42	32.25	28.25	24.50	19.92	17.00	15.00	13.50	12.42	11.50	10.75	10.17	9.67	9.25	8.92
W21x 68－C15 33.9	53.42	42.67	37.42	30.17	24．25	20.50	17.92	16.00	14.58	13.42	12.58	11.83	11.17	10.67	10.17
$W 24 \times 68-C 12 \times 20.7$	41.58	33.17	29.08	24.50	20.00	17.17	15.25	13.75	12.61	11.75	11.00	10.42	9.92	9.50	9．C 8
$W 24 \times 68-C 15 \times 33.9$	55.00	43.92	38.50	30．83	24.83	21.00	18.42	16.50	15.08	13.92	13.00	12.17	11.58	11.00	10.50
W24×84－C12 220.7	42.42	33.83	29．67	26.83	24.42	20.58	18.00	16.08	14.67	13.58	12.67	11.92	11.25	10.67	10.25
H24 $\times 84$－C15 $\times 33.9$	55.33	44.17	38.75	35.17	30.50	25.50	22.08	19.58	17.67	16.25	15.08	14.08	13.25	12.58	12.60
W $27 \times 84-C .12 \times 20.7$	43.83	34.92	30.54	27.67	24．08	20.42	18.00	16.17	14.75	13.67	12.75	12.00	11.33	10.83	10.33
W27X84－C15 $\mathrm{H}^{1} 33.9$	57.00	45．42	39.83	36.17	30.33	25.50	22.17	19.75	17.92	16.42	15.25	14.33	13.50	12.83	12.25
W27X 94－C 12×20.7	44.50	35.50	31.00	28． 25	25.83	22.67	19.75	17.67	16.08	14.83	13.75	12.92	12.25	11.67	11.68
W $77 \times 94-\mathrm{C} 15 \times 33.9$	57.33	45.67	40.00	36.42	33.50	28.33	24.50	21.67	19.58	17.92	16.58	15.50	14.58	13.83	13.17
W30x 99－C15 33.9	57.33	45.67	40.00	36.42	33.09	27.67	24.00	21.33	19.33	17.75	16.42	15.33	14.50	13.67	13．68
$1330 \times 99-18 \times 4 ? .7$	68.15	54.83	48.00	43.67	38.68	31.75	27.42	24.25	21.92	20.00	18.50	17.25	16.17	15.33	14.58
H30×116－C15 33.9	59.08	47.00	41.17	37.50	34.75	32.42	29.67	26.08	23.33	21.25	19.58	18.17	17.08	16.08	15.25
W30X116－C18×42．7	70.42	56.08	49.17	44.75	41.50	38.58	34.33	30.08	26.83	24.33	22.33	20.75	19.33	18.17	17.25
W33×118－C15 33.9	60.83	48.33	42.33	38.58	35．15	33.33	29.75	26.25	23.58	21.50	19.83	18.50	17.33	16.33	15．50
W33×118－C18×42．7	72.25	57.50	50.33	45.83	42.58	39.67	34.67	30.50	27.25	24.83	22.83	21.17	19.83	18.67	17.67
W33×141－C15 153.9	62.08	49.33	43.17	39.25	36.50	34.33	32.25	30.50	28.08	25.42	23.25	21.58	20.08	18.92	17．83
W33×141－C18×42．7	13.00	58.08	50.83	46.25	43.60	40.33	37.92	35.75	32.50	29.33	26.83	24.75	23.00	21.58	20.33
$W 36 \times 150-C .15 \times 33.9$	63.42	50.33	44.00	40.08	37.25	35.00	33.08	31.25	29.50	26.67	24.42	22.58	21.08	19.75	18.67
W36×150－C18×42．7	74．25	59.08	51.67	47.00	43.67	41.08	38.75	36.58	34.33	31.00	28.25	26.08	24.25	22.75	21.42

a

bLE 3－3（cont．）：Maximum al															
$\because 1711$	WHEEL LOAD P_{x}（kips）														
	＇ 5.7	11.0	1，．0）	，1． 1	くら．！	37.0	15．7	4 C .0	45.0	50.11	55.0	60.0	65.0	70.0	75.0
W12X 26－C10x15．3	28.33	15.58	11.42	9.42	8.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0 C	0.00
$W 12 x \quad 26-C 12 x ? 0.7$	33.17	17.25	12.4 .2	10.17	8． 83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
$\text { W } 14 \times 30-\mathrm{C} 10 \times 15.3$	29.25	17.92	12.83	10.50	9.08	7． 92	6.75	0.00	0.00	0.00	0.60	0.00	0.00	0.00	0.00
$\text { W14K 30-C } 12 \times 20.7$	35.92	20.08	14.25	11.50	9.92	8.83	7.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H16× 36-C1? X2.9.7	37.08	24.83	17.17	13.58	11.58	10.25	9.25	8.58	7.67	0.00	0.00	0.00	0.60	0.06	$0 . C 0$
$\mathrm{H} 16 \times 36-\mathrm{C} 15 \times 33.9$	49.50	29.58	20.08	15.67	13.08	11.50	10.33	9.50	8.83	0.00	0.00	0.00	0.00	$0.0 \mathrm{C}$	$0 . C 0$
W18X 50－C12 20.7	39.42	30.75	23.75	18.25	15.17	13.17	11.75	10.75	9.92	9.33	8.83	8.25	0.00	0.00	0.00
W18x 50－C15x33．9	51.25	41.00	28．50）	21.67	17.75	15.25	13.50	12.25	11.25	10.50	9.83	9.33	0.00	0.00	0.00
W21x62－C12x29．7	40.17	32.08	28.00	22.50	18.42	15.83	14.00	12.67	11.67	10.92	10.25	9.67	9.25	8.83	8.50
	53.33	42.5 B	36.92	27.58	22.25	18.92	16.58	14．92	13.67	12.67	11.83	11.17	10.58	10.08	9.67
W21x68－C12 220.7	40.42	32.25	28.25	24.50	19.92	17.00	15.00	13.50	12.42	11.50	10.75	10.17	9.67	9.25	8.92
W21x 68－C15 33.9	53.42	42.67	37.42	30.17	24．25	20.50	17.92	16.00	14.58	13.42	12.58	11.83	11.17	10.67	10.17
$W 24 \times 68-C 12 \times 20.7$	41.58	33.17	29.08	24.50	20.00	17.17	15.25	13.75	12.61	11.75	11.00	10.42	9.92	9.50	9．C 8
$W 24 \times 68-C 15 \times 33.9$	55.00	43.92	38.50	30．83	24.83	21.00	18.42	16.50	15.08	13.92	13.00	12.17	11.58	11.00	10.50
W24×84－C12 220.7	42.42	33.83	29．67	26.83	24.42	20.58	18.00	16.08	14.67	13.58	12.67	11.92	11.25	10.67	10.25
H24 $\times 84$－C15 $\times 33.9$	55.33	44.17	38.75	35.17	30.50	25.50	22.08	19.58	17.67	16.25	15.08	14.08	13.25	12.58	12.60
W $27 \times 84-C .12 \times 20.7$	43.83	34.92	30.54	27.67	24．08	20.42	18.00	16.17	14.75	13.67	12.75	12.00	11.33	10.83	10.33
W27X84－C15 $\mathrm{H}^{1} 33.9$	57.00	45．42	39.83	36.17	30.33	25.50	22.17	19.75	17.92	16.42	15.25	14.33	13.50	12.83	12.25
W27X 94－C 12×20.7	44.50	35.50	31.00	28． 25	25.83	22.67	19.75	17.67	16.08	14.83	13.75	12.92	12.25	11.67	11.68
W $77 \times 94-\mathrm{C} 15 \times 33.9$	57.33	45.67	40.00	36.42	33.50	28.33	24.50	21.67	19.58	17.92	16.58	15.50	14.58	13.83	13.17
W30x 99－C15 33.9	57.33	45.67	40.00	36.42	33.09	27.67	24.00	21.33	19.33	17.75	16.42	15.33	14.50	13.67	13．68
$1330 \times 99-18 \times 4 ? .7$	68.15	54.83	48.00	43.67	38.68	31.75	27.42	24.25	21.92	20.00	18.50	17.25	16.17	15.33	14.58
H30×116－C15 33.9	59.08	47.00	41.17	37.50	34.75	32.42	29.67	26.08	23.33	21.25	19.58	18.17	17.08	16.08	15.25
W30X116－C18×42．7	70.42	56.08	49.17	44.75	41.50	38.58	34.33	30.08	26.83	24.33	22.33	20.75	19.33	18.17	17.25
W33×118－C15 33.9	60.83	48.33	42.33	38.58	35．15	33.33	29.75	26.25	23.58	21.50	19.83	18.50	17.33	16.33	15．50
W33×118－C18×42．7	72.25	57.50	50.33	45.83	42.58	39.67	34.67	30.50	27.25	24.83	22.83	21.17	19.83	18.67	17.67
W33×141－C15 153.9	62.08	49.33	43.17	39.25	36.50	34.33	32.25	30.50	28.08	25.42	23.25	21.58	20.08	18.92	17．83
W33×141－C18×42．7	13.00	58.08	50.83	46.25	43.60	40.33	37.92	35.75	32.50	29.33	26.83	24.75	23.00	21.58	20.33
$W 36 \times 150-C .15 \times 33.9$	63.42	50.33	44.00	40.08	37.25	35.00	33.08	31.25	29.50	26.67	24.42	22.58	21.08	19.75	18.67
W36×150－C18×42．7	74．25	59.08	51.67	47.00	43.67	41.08	38.75	36.58	34.33	31.00	28.25	26.08	24.25	22.75	21.42

Note：A value of 0.00 indicates allowable web shear stress exceeded．

[^2]| TABLE 3-3 (cont.): Maximum al | | | | $\left\{^{x} \quad s=6^{\prime}-0 \quad\right\}^{x}$ | | | | | | | $\mathbf{P}_{\mathrm{y}}=0.08 \mathbf{P}_{\mathrm{x}}$ | | | $F_{y}=50 \mathrm{ksi}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3: 1114 | WHEEL LOAD P_{x} (kips) | | | | | | | | | | | | | | |
| | ${ }^{\text {r. }}$) | 11.) | 15.9 | ?.). 1 | ? 5 | 11).0 | 15.11 | 40.0 | 45.3 | 50.0 | 55.0 | 60.0 | 65.0 | 70.0 | 15.0 |
| W12X 26-C10x15.3 | 29.75 | 18.42 | 13.58 | 11.25 | 9.58 | 0.00 | 0.00 | 0:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| W12X 26-C12 20.7 | 36.17 | 19.83 | 14.50 | 11.92 | 10.42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | $0 . \mathrm{co}$ | 0.00 | 0.00 |
| W14× 30-C10×15.3 | 30.92 | 21.42 | 15.50 | 12.67 | 11.00 | 9.58 | 8.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 |
| $W 14 \times 30-C 12 \times 20.7$ | 37.58 | 23.42 | 16.75 | 13.58 | 11.67 | 10.50 | 9.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 |
| W16X 36-C12×20.7 | 39.08 | 29.08 | 20.33 | 16.17 | 13.75 | 12.17 | 11.08 | 10.25 | 9.08 | 0.00 | 0.00 | 0.00 | $0: 00$ | 0.00 | $0 . \mathrm{co}$ |
| W16X 36-C15 33.9 | 51.50 | 33.00 | 22.92 | 18.08 | 15.25 | 13.42 | 12.08 | 11.08 | 10.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| W18X 50-C12×2:). 7 | 40.75 | 32.67 | 28.42 | 21.92 | 18.25 | 15.83 | 14.17 | 12.92 | 12.00 | 11.17 | 10.58 | 9.92 | 0.00 | 0.00 | 0.00 |
| W18x 50-C 15×33.9 | 53.67 | 43.00 | 32.50 | 25.00 | 20.67 | 17.83 | 15.83 | 14.33 | 13.25 | 12.33 | 11.58 | 11.00 | 0.00 | 0.00 | $0 . \mathrm{co}$ |
| W21x 62-C12 20.7 | 42.92 | 34.33 | 30.17 | 21.25 | 22.58 | 19.33 | 17.17 | 15.50 | 14.25 | 13.25 | 12.50 | 11.83 | 11.25 | 10.75 | 10.33 |
| $W 21 \times 62-C 15 \times 33.9$ | 56.25 | 45.00 | 35.58 | 32.25 | 26.25 | 22.42 | 19.67 | 17.75 | 16.17 | 15.00 | 14.00 | 13.25 | 12.58 | 12.00 | 11.50 |
| W2IX6H-C12×20.7 | 43.17 | 34.58 | 30.42 | 27.58 | 24.42 | 20.83 | 18.42 | 16.58 | 15.17 | 14.08 | 13.17 | 12.42 | 11.83 | 11.33 | 10.83 |
| W21×68-C.15×33.9 | 55.42 | 45.17 | 35.67 | 35.17 | 28.50 | 24.17 | 21.17 | 19.00 | 17.33 | 16.00 | 14.92 | 14.00 | 13.33 | 12.67 | 12.68 |
| W $24 \times 68-\mathrm{C} 12 \times 20.7$ | 44.58 | 35.67 | 31.33 | 28.50 | 24.92 | 21.33 | 18.83 | 17.00 | 15.58 | 14.50 | 13.58 | 12.83 | 12.17 | 11.58 | 11.17 |
| W24X 6B-C. 15×33.9 | 58.25 | 46.58 | 40.92 | 36.50 | 29.58 | 25.08 | 22.00 | 19.75 | 18.00 | 16.67 | 15.50 | 14.58 | 13.83 | 13.17 | 12.58 |
| W24× $86-\mathrm{C} 12 \times 20.7$ | 45.58 | 36.42 | 32.00 | 29.17 | 27.00 | 25.08 | 22.50 | 20.08 | 18.25 | 16.83 | 15.67 | 14.75 | 13.92 | 13.25 | 12.67 |
| W24x 84-C15×33.9 | 58.83 | 47.00 | 41.25 | 37.67 | 34.83 | 30.50 | 26.50 | 23.58 | 21.33 | 19.58 | 18.17 | 16.92 | 16.00 | 15.17 | 14.42 |
| W27x $34-\mathrm{C} 12 \times 20.7$ | 47.25 | 37.75 | 33.08 | 30.25 | 28.00 | 25.83 | 22.58 | 20.25 | 18.42 | 17.00 | 15.92 | 14.92 | 14.17 | 13.42 | 12.83 |
| W27X H4-C15×33.9 | 60.75 | 48.50 | 42.58 | 38.83 | 36.00 | 31.00 | 26.92 | 24.00 | 21.75 | 20.00 | 18.50 | 17.32 | 16.33 | 15.50 | 14.75 |
| W27x 9\%-C12 20.7 | 48.00 | 38.33 | 33.67 | 30.67 | 28.50 | 26.67 | 25.00 | 22.33 | 20.25 | 18.58 | 17.25 | 16.17 | 15.33 | 14.50 | 13.83 |
| W2TX 94-C15×33.9 | 61.17 | 48.83 | 42.83 | 39.08 | 36.33 | 33.92 | 29.83 | 26.42 | 23.83 | 21.83 | 20.25 | 18.83 | 17.75 | 16.75 | 15.52 |
| W30X 99-C15×33.9 | 61.08 | 48.83 | 42.83 | 39.00 | 36.25 | 33.75 | 29.25 | 26.00 | 23.50 | 21.58 | 20.00 | 18.67 | 17.58 | 16.67 | 15.83 |
| $\text { w3 } 3 \times 99-6.18 \times 42.7$ | 72.83 | 58.08 | 51.00 | 46.50 | 43.17 | 37.5 E | 32.50 | 28.83 | 26.00 | 23.83 | 22.00 | 20.50 | 19.25 | 18.25 | 17.33 |
| $W 30 \times 116-C 15 \times 33.9$ | 63.33 | 50.50 | 44.33 | 40.42 | 37.58 | 35.42 | 33.50 | 31.67 | 29.00 | 26.33 | 24.25 | 22.50 | 21.08 | 19.83 | 18.83 |
| W30×116-C18×42.7 | 75.00 | 59.83 | 52.50 | 47.83 | 44.50 | 41.83 | 39.50 | 36.17 | 32.42 | 29.42 | 27.00 | 25.00 | 23.33 | 22.00 | 20.75 |
| W33x118-C15 33.9 | 65.42 | 52.08 | 45.67 | 41.58 | 38.75 | 36.50 | 34.50 | 32.75 | 29.50 | 26.92 | 24.75 | 23.00 | 21.58 | 20.33 | 19.25 |
| W33×118-C18×42.7 | 77.25 | 61.50 | 53.92 | 49.17 | 45.75 | 43.08 | 40.67 | 37.17 | 33.25 | 30.17 | 27.75 | 25.75 | 24.08. | 22.67 | 21.42 |
| H33 141 -C15 33.9 | 66.92 | 53.25 | 46.67 | 42.50 | 39.50 | 37.25 | 35.42 | 33.75 | 32.25 | 30.83 | 29.33 | 27.08 | 25.25 | 23.75 | 22.42 |
| W33 $3141-\mathrm{C} 18 \times 42.7$ | 78.17 | 62.25 | 54.50 | 49.57 | 46.17 | 43.58 | 41.42 | 39.42 | 37.58 | 35.92 | 32.92 | 30.33 | 28.25 | 26.50 | 24.92 |
| W36×150-C15 33.9 | 68.42 | 54.50 | 47.67 | 43.42 | 40.42 | 38.08 | 36.25 | 34.58 | 33.17 | 31.15 | 30.50 | 28.67 | 26.75 | 25.08 | 23.58 |
| W36 $\times 150-\mathrm{C18} \mathrm{\times 42.7}$ | 79.75 | 63.50 | 55.58 | 50.07 | 47.08 | 44.42 | 42.25 | 40.33 | 38.50 | 36.83 | 35.00 | 32.33 | 30.00 | 28.08 | 26.50 |

TABLE 3-3 (cont.) : Maximum allowable beam lengths

TABLE 3-3	(cont				LN	beal	$\begin{aligned} & \text { leng } \\ & \left\{\begin{array}{l} P_{x} \\ \text { (} \end{array}\right. \end{aligned}$	$S \equiv$		\int^{p}		$=0$		$\mathbf{y}=$	
	WHEEL LOAD P_{x} (kips)														
	'. 11	1.1.3	13.1	'). \therefore	2.5.)	17.!	35.0	4 C .0	\% 5.0	50.1	55.0	t0.0	65.0	10.0	75.0
W12X 26-C.10x15.3	2.9 .17	17.42	12.92	10.6,7	8.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
W12X 26-C12 20.7	35.58	19.00	13.92	11.42	9.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0 C	0.00
W14X 30-C10x15.3	30.17	20.08	14.58	11.92	10.42	8.67	7.42	0.00	0.00	0.00	0.00	0.00	0.00	0.0 C	0.00
W14X 30-C.L2x20.7	36.92	22.25	15.92	12.92	11.17	9.92	8.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . \mathrm{Co}$
W16X 36-C. 12×20.7	38.25	27.50	15.17	15.25	13.08	11.58	10.58	9.42	8.33	0.00	0.00	0.00	0.00	0.00	0.00
$W 16 \times 36-C 15 \times 33.9$	50.67	31.83	22.00	17.33	14.58	12.83	11.58	10.67	9.75	0.00	0.00	0.00	0.00	0.00	0.00
W18X 50-C12 ${ }^{\text {c }}$ W0.7	39.15	31.83	26.50	20.50	17.08	14.83	13.33	12.17	11.33	10.58	9.92	9.00	0.00	0.00	0.00
WIAX 50-C.15x17.9	52.58	42.17	31.00	23.83	19.67	16.92	15.08	13.67	12.67	11.83	11.08	10.58	0.00	0.00	0.00
W2IX 62-C12 20.7	41.67	33.33	29.25	25.33	20.83	17.92	15.92	14.42	13.33	12.42	11.67	11.08	10.58	10.08	9.33
W2IX 62-C15×33.9	54.92	43.92	38.58	30.42	24.75	21.08	18.58	16.75	15.33	14.17	13.33	12.58	11.92	11.42	10.92
H21×68-C12 X20.7	41.92	33.50	29.50	26.58	22.58	19.25	17.00	15.42	14.17	13.17	12.33	11.67	11.08	10.58	10.17
	55.00	44.00	38.67	33.17	26.83	22.75	20.00	17.92	16.33	15.08	14.08	13.33	12.58	12.00	11.50
$W 24 \times 68-C 12 \times 20.7$	43.17	34.58	30.33	27.42	22.75	19.58	17.33	15.67	14.42	13.42	12.58	11.92	11.33	10.83	10.42
$\mathrm{H} 24 \times 68-\mathrm{C} 15 \times 33.9$	56.75	45.33	39.83	34.08	27.58	23.42	20.58	18.50	16.92	15.67	14.58	13.75	13.08	12.42	11.92
	44.08	35.25	30.92	28.17	25.92	23.50	20.58	18.42	16.83	15.50	14.50	13.67	12.92	12.33	11.75
W24× 84-C15×33.9	57.17	45.67	40.08	36.58	33.67	28.42	24.67	21.92	19.92	18.25	17.00	15.92	15.00	14.25	13.58
W27x 44-C12 20.1	45.58	36.42	32.00	24.17	26.83	23.42	20.58	18.50	16.92	15.67	14.58	13.75	13.08	12.42	11.92
	58.92	47.08	41.25	37.67	33.92	28.58	24.92	22.17	20.17	18.58	17.25	16.17	15.25	14.50	13.83
W27x 9\%-C12×20.7	46.33	37.00	32.42	29.58	27.33	25.42	22.67	20.25	18.42	17.00	15.83	14.83	14.08	13.42	12.75
W27X 94-C15x33.9	59.25	47.33	41.50	37.83	35.08	31.15	21.50	24.42	22.08	20.25	18.75	17.50	16.50	15.67	14.92
$430 \times 99-C 15 \times 33.9$	59.25	47.33	41.50	37.83	35.00	31.00	26.92	24.00	21.75	20.00	18.50	17.33	16.33	15.50	14.75
W30x 99-C19x42.7	70.83	56.58	49.58	45.25	41.75	35.08	30.33	26.92	24.33	22.25	20.58	19.25	18.08	17.17	16.33
430×116-C15 33.7	61.25	48.83	42.83	39.00	36.33	34.08	32.08	29.50	26.50	24.08	22.25	20.67	19.42	18.25	17.33
H30×11b-C18x42.7	12.83	58.08	50.92	46.42	43.17	40.42	38.00	33.50	30.00	27.25	25.00	23.25	21.75	20.42	19.33
W33×118-C.15×33.9	63.17	50.33	44.08	41). 17	37.42	35.08	33.08	29.83	26.83	24.50	22.58	21.00	19.75	18.67	17.67
W33x118-C18×42.7	74.75	59.58	52.25	47.58	44.25	41.50	38.75	34.08	30.58	27.83	25.58	23.75	22.25	21.00	19.83
$W 33 \times 141-C 15 \times 33.9$	64.50	51.33	45.00	41.00	38.08	35.92	34.08	32.33	30.75	29.00	26.58	24.58	22.92	21.58	20.42
433 141 -C18×12.7	75.58	60.25	52.75	48.00	44.67	42.08	39.83	37.75	35.92	33.00	30.17	27.83	25.92	24.33	22.92
	65.92	52.42	45.92	41.03	38.92	36.67	34.83	33.08	31.58	30.17	27.92	25.83	24.08	22.67	21.42
W36×150-C18×47.7	77.00	61.33	53.67	48.92	45.50	42.83	40.67	38.67	36.75	34.92	31.92	29.50	27.42	25.67	24.25

[^3]

[^4]

TABLE 3-3 (cont.): Maximum allowable beam lengths

$$
\mathbf{p}_{\mathbf{y}}=0.10 \mathrm{P}_{\mathrm{x}} \quad \mathrm{~F}_{\mathrm{Y}}=50 \mathrm{ksi}
$$

S!1: 1%	WHEEL LOAD P_{x} (kips)														
	r. 19	11.1	15.0		75.1	71. 10	35.)	41). 1	45.0	50.0	54.0	60.0	65.0	70.0	75.0
W12x 2b-C10x15.3	29-58	18-33	13.15	11.17	8-75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W12X 26-C12 20.7	35.92	20.00	14.75	12-25	9-83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C 0$	0.00
W14X 30-C10×15.3	30.58	21-08	15.42,	12.75	10-58	8-67	7-42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . \mathrm{CO}$
W14X 3n-C12 20.1	37-25	13-25	16.83	13-75	12-00	9-92	8-42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
W16X 36-C12 20.7	38.58	28-58	20.17	16-11	13-92	12-42	10.83	9-42	8-33	0.00	0.00	0.00	0.00	0.00	0.00
W16X 36-C15×33.9	51-00	32-92	23.00	18.25	15-50	13-67	12-42	11-08	9-75	0.00	0.00	0.00	0.00	0.00	0.00
WIBY 50-CI2X20.7	40.08	32.25	27.58	21-50	18-00	15-75	14-17	13-00	12-08	11.00	9-92	9-00	0.00	0.00	0.00
W18X 50-C15x33.9	52-92	42-50	32-08	24.83	20.58	17.8?	16.00	14-58	13.50	12-58	11-92	10.83	0.00	0.0 C	$0 . C 0$
H21×62-C12×20.7	42-00	33.67	29.67	26-42	21-83	18.83	16.83	15.33	14-17	13-25	12.50	11.83	10.92	10.08	9-33
	55.25	44-25	39-00	31.50	25.75	22-08	19-50	17-61	16-17	15-08	14.17	13-42	12-75	12-17	11.50
W21x 6-B-C12 20.7	42-25	33-92	29-83	27.00	23-58	20.25	17-92	16-25	15-00	14.00	13-17	12-50	11.92	11.0 C	10.17
W $21 \times 68-C .15 \times 33.9$	55-33	44-42	39-00	34-25	27.92	23-75	20.92	18.83	17-25	16-00	15-00	14-17	13-42	12-83	12-33
424x 60-C 12×20.7	43-50	34-92	30.75	27-83	23.15	20.50	18.25	16-58	15-25	14-25	13-42	12-75	12-17	11-42	10.67
W $24 \times 6 \mathrm{H}-\mathrm{C} 15 \times 33.9$	57-08	45-75	40.17	35-17	28-67	24-42	21-58	19-42	17-83	16-50	15-50	14-58	13-83	13-25	12.75
W24X 84-C 12×27.7	44-42	35-59	31-33	28-58	2633	24.50	21-58	19-33	17-75	16-42	15-33	14-50	13-75	13-08	12-58
W2\% H^{84}-C15×33.9	57-50	46.08	40.50	36.92	34.08	29-50	25-67	22-92	20.83	19-17	17-83	16-75	15-83	15.00	14.42
H2.7× 84-CI2×20.7	46-00	36-15	32-33	29-50	27-25	24-33	21-50	19-42	17.75	16.50	15-50	14-58	13-92	13.25	12-75
H27× 84-C. 15×33.9	59-25	47-42	41-61	38-00	35-00	29-58	25-92	23-17	21-08	19-50	18-17	17-08	16.17	15-33	14.67
H27X 94-C 12×20.7	46-75	37-33	32-83	30.00	27-83	25-92	23.67	21-25	19-33	17-92	16-75	15.75	11-92	14-25	13.58
H27X 94-C 15×33.9	59.67	47-67	41-83	38-25	35.50	32-83	28-50	25-42	23-00	21-17	19-61	18-42	17-42	16-50	15.75
W30X 99-C 15×33.9	59-67	47.67	41-83	3月.17	35.42	32.02	27-92	24-92	22-67	20.92	19-42	18-25	17-25	16-42	15.67
W30X 99-C18×42.7	71-25	56-92	49-92	45.58	42-17	36.17	31-42	27-92	25-25	23-25	21-58	20.17	19-00	18-00	17.17
630×116-C15 33.9	61-67	49-25	43-17	34.4.	36-67	34-50	32-50	30.56	27.50	25-08	23-17	21-58	20. 33	19.17	18-25
W30×116-C18×42.1	13.17	58-42	51-25	46.75	43.50	40.83	38-42	34.58	31-00	28-25	26-00	24-17	22-67	21-33	20.25
W33 1118 -C15 153.9	63-50	50.67	44-42	40.50	31-75	35-50	33.50	30.83	27-83	25.42	23-50	22-00	20.67	19-50	18-58
W33*118-C18×42.7	75.17	59-92	52-58	41-92	44.58	41-92	39.50	35.17	31.58	28.83	26-58	24.75	23-17	21-92	20. 75
W $33 \times 141-\mathrm{C} 15 \times 33.9$	64-32	51-75	45-33	41.33	38-50	36.25	34.42	32:75	31.25	29-83	27-58	25-58	23-92	22.50	21-33
W33x141-C18×42.7	75-92	60. 58	53.08	48-42	45-00	42-50	40.25	38.25	36-42	34.08	31-17	28-92	26.92	25-33	23-92
W36×150-C 15×33.9	66-33	52-83	46.25	42-17	39-25	37-00	35.17	33-58	32-00	30.67	29-00	26.83	25-08	23-58	22-33
W36×150-C18×1.2.7	77-42	61-67	54.C8	49.25	45.83	43.25	41.08	39-08	31-25	35-58	33.00	30.50	28-42	26-67	25-17

Note: A value of 0.00 indicates allowable web shear strese exceeded.

$\mathbf{P}_{\mathbf{y}}=0.08 P_{X}$

, \%r1!	WHEEL LOAD P_{x} (kips)														
	「.n	11.1	1',.)	3). ${ }^{1}$	23.1)	\%.0	13.9	40.0	\% 5.7	50.0	55.0	60.0	65.0	70.0	75.0
H12×26-C10×15.3	30.50	20.33	15.25	12.17	9.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.0C	0.00	0.00
W12x 26-C.12×20.7	36.83	21.15	16.25	13.50	10.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0 C	0.60
W14×30-C10×15.3	31.58	23.42	17.25	14.25	11.67	9.58	8.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60
W14X 30-C12 120.1	38.25	25.33	18.58	15.25	13.08	10.75	9.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
H16X 36-C 12×20.7	39.75	31.17	22.25	18.00	15.50	13.83	11.83	10.25	9.08	0.00	0.00	0.00	0.00	0.00	0.00
W16X 36-C15×33.9	52.17	35.08	24.83	19.92	17.00	15.08	13.67	11.92	10.50	0.00	0.00	0.00	0.00	0.00	0.00
W18X 50-C12 X20.7	41.42	33.42	29.42	23.92	20.08	17.58	15.83	14.58	13.58	12.08	10.92	9.92	0.00	0.00	0.00
W18X 50-C15 33.9	54.33	43.67	34.58	27.00	22.50	19.67	17.58	16.08	14.92	14.00	12.92	11.75	0.00	0.00	0.00
W2IX 62-C12 20.7	43.58	35.08	30.92	28.17	24.50	21.25	18.92	17.25	16.00	14.92	14.08	13.25	12.17	11.25	10.42
W21X 62-C15 33.9	56.92	45.67	40.25	34.33	28.25	24.33	21.58	19.50	17.92	16.75	15.75	14.92	14.17	13.58	12.58
W21×68-C1) 220.7	43.83	35.25	31.08	28.42	26.17	22.83	20.25	18.33	16.92	15.75	14.83	14.08	13.33	12.25	11.42
H21x 68-C15 ${ }^{\text {c }} 33.9$	57.08	45.83	40.33	36.83	30.58	26.17	23.08	20.83	19.08	17.75	16.67	15.75	14.92	14.33	13.75
H24×68-C 12×20.7	45.33	36.42	32.08	29.33	26.92	23.17	20.67	18.75	17.33	16.17	15.25	14.42	13.75	12.83	12. 00
W26× 68-C.15×33.9	59.00	47.25	41.58	38.00	31.67	27.08	23.92	21.58	19.83	18.42	17.25	16.25	15.50	14.83	14.17
W24X 84-C12×20.7	46.33	37.17	32.75	29.92	27.83	26.08	24.50	22.00	20.08	18.67	17.42	16.42	15.58	14.92	14.25
W24×84-C15 33.9	59.50	47.67	42.00	38.33	35.67	32.58	28.50	25.50	23.17	21.42	19.92	18.75	17.75	16.83	16.C8
W27X 84-C12 ${ }^{1} 20.7$	48.00	38.42	33.83	30.92	28.83	26.92	24.50	22.08	20.25	18.83	17.58	16.67	15.83	15.08	14.50
	61.42	49.17	43.25	39.50	36.75	33.00	28.92	25.92	23.58	21.83	20.33	19.08	18.08	17.25	16.50
W27X 94-C12X20.7	48.75	39.08	34.33	31.42	29.25	27.50	25.92	24.25	22.08	20.42	19.08	17.92	17.00	16.17	15.50
W27x 94-C15×33.9	61.83	49.50	43.50	39.75	37.08	34.83	31.92	28.42	25.83	23.75	22.08	20.67	19.50	18.50	17.67
W30X 99-C15 33.9	61.93	49.50	43.50	39.75	37.00	34.75	31.25	27.92	25.42	23.42	21.83	20.50	19.33	18.42	17.58
W30X 99-C18x42.7	73.50	58.83	51.67	47.17	43.92	39.67	34.58	30.83	27.92	25.67	23.83	22.33	21.08	20.00	19.08
W30X116-C15 33.9	64.08	51.25	45.C0	41.08	38.33	36.17	34.33	32.58	31.08	28.33	26.17	24.42	22.92	21.67	20.58
W30×116-C18×42.7	75.75	60.58	53.17	48.50	45.17	42.67	40.33	38.33	34.42	31.42	29.00	26.92	25.25	23.83	22.58
H33X118-C15 33.9	66.08	52.83	46.42	42.33	39.42	37.25	35.33	33.67	31.58	28.83	26.67	24.92	23.42	22.17	$21 . C 8$
W33X118-C18×42.7	77.92	62.25	54.67	47.83	46.42	43.83	41.50	39.25	35.25	32.17	29.75	27.67	25.92	24.50	23.25
W33×141-C15×33.9	67.58	54.00	47.33	43.17	40.25	38.00	36.17	34.58	33.17	31.83	30.58	29.17	27.25	25.67	24.25
W $33 \times 141-\mathrm{C} 18 \times 42.7$	78.83	63.00	55.25	50.42	46.92	44.25	42.17	40.25	38.50	36.83	35.00	32.42	30.25	28.42	26.83
W $36 \times 150-\mathrm{C} 15 \times 33.9$	69.17	55.17	48.42	$4 \% .17$	41.08	38.75	36.92	35.42	34.00	32.67	31.42	30.33	28.67	27.00	25.50
W36)150-C18×42.7	80.50	64.25	56.31	51.33	47.83	45.08	42.92	41.08	39.42	37.75	36.33	34.33	32.08	30.08	28.42

\because ¢11	WHEEL							P_{x}（kips）							
	ヶ．）	1：．＇）	15．0	\therefore ？ 5	25.9	1）．7	15．11	40.13	45.0	50.9	55.0	60.0	65.0	70.0	75.0
H1？26－C10×15．3	29.92	19.25	14.59	11.17	8.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W12x 26－C12×20．7	36.33	20.92	15．5，8	12.58	9.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W14X 30－C 10×15.3	30.92	22.00	16.33	13.58	10.58	8.67	7.42	0.00	0.00	0.00	0.00	0.00	0.00	0.0 C	$0 . C 0$
W14X 30－C12 20.7	37.58	24.25	17.67	14．58	12.08	9.92	8.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60
W16X 36－C 12×20.1	38．97	29.58	21.08	17.08	14.75	12.83	10.83	9.42	8.33	0.00	0.00	0.00	0.00	0.00	0.00
W16x 36－C15×33．9	51.33	33.92	24.00	19.17	16.33	14.50	12.83	11.08	9.75	0.00	0.00	0.00	0.00	0.00	0.00
W18X 50－C12 X20．7	40.42	32.58	28.58	22.42	18．92	16.58	15.00	13.83	12.33	11.00	9.92	9.00	0.00	0.00	0.60
WIAX 50－C15 1533.9	53.25	42.83	33.17	25.83	21.50	18.75	16.83	15.42	14.33	13.25	11.92	10.83	0.00	0.00	0.00
W21x 6 ？－C12x20．7	42.33	34.08	30.00	27.17	22.75	19.75	17.67	16.17	15.00	14.08	13.00	11.83	10.92	10.08	9.33
w21x62－C15x33．9	55.58	44.67	39.33	32.50	26.75	23.00	20.42	18.50	17.08	15.92	15.00	14.17	13.50	12.42	11.58
W21×6A－C12X20．7	42.58	34．25	$3 \mathrm{C}$.	27.42	24.58	21.17	18.83	17.17	15.83	14.83	14.00	13.00	11.92	11.00	10.17
W 21×68－C15×33．9	55.75	44.75	39.47	35.33	28．92	24.75	21.83	19.75	18.17	16.83	15.83	15.00	14.25	13.67	12.67
W24×69－C 12×20.7	43.92	35.25	31.09	28.25	24.75	21.42	19.08	17.42	16.17	15.98	14.25	13.50	12.42	11.42	10.67
H24×68－C． 15×33.9	57.42	46.08	40.50	36.25	29.67	25.42	22.50	20.33	18.67	17.33	16.33	15.42	14.67	14.08	13.42
H24X 34－C12 129.7	44.83	35.92	31.67	28.92	26.83	25.00	22.50	20.33	18.58	17.25	16.17	15.33	14.58	13.92	13.17
W24×84－C 15×33.9	57.83	46.42	40.83	37.33	34.50	30.50	26.67	23.92	21.75	20.08	18.75	17.67	16.75	15.92	15．25
W27x 94－C12 20.7	46.33	37.17	32.67	29.92	27.67	25.33	22.42	20.25	18.67	17.33	16.33	15.42	14.67	14.08	13.42
W21X 84－C 15×33.9	59.67	47.15	42.00	38.33	35.58	30.58	26.83	24.08	22.00	20.33	19.00	17.92	17.00	16.17	15.50
W27x 94－C12 20.7	47.08	37.75	33.17	30.33	2 C .17	26.33	24.67	22.17	20.25	18.75	17.58	16.58	15.75	15.00	14.42
W71x 94－C15x33．9	60.00	48.00	42.25	38.58	35.92	33.50	29.58	26.42	24.00	22.08	20．58	19.33	18.25	17.33	16.58
W30x 94－C15 33.9	60．00．	48.00	42.25	38.58	35.83	33.08	28.92	25.92	23.58	21.83	20.33	19.08	18.08	17.25	16.50
W30x 99－C18×42．7	71.58	57.25	50.33	45.92	42.58	37.17	32.42	28.92	26.25	24.17	22.42	21.08	19.92	18.92	18.00
W30×116－C15 33.9	62.00	49.58	43.58	39.75	37.08	34.92	33.00	31.25	28.50	26.08	24．17	22.58	21.25	20.08	19.08
W30 115 －C18×42．7	73.50	58.75	51.58	41.08	43.83	41.25	38.92	35.67	32.08	29.25	27.00	25.17	23.5 E	22.25	21.17
H33x118－C15 33.9	63.83	51.00	44.83	40.92	38.08	35.92	33.92	31.83	28.75	26.42	24.50	22.92	21.58	20.42	19.42
W33X118－C1HX42．7	75.50	60.33	52.92	48.25	45.00	42.33	40.00	36.17	32.58	29.75	27.50	25.67	24.08	22.83	21.67
W33×141－C．15 $\times 33.9$	65.25	52.08	45.67	41.67	38.83	36.61	34.83	33.25	31.75	30.33	28.58	26.58	24.92	23.42	22.25
W33×141－C18×42．1	76.33	60.92	53.42	48.75	45.42	42.83	40.67	38.67	36.92	35.08	32.25	29.92	27.92	26.25	24.83
1136×150－C．15 133.9	66.67	53.17	46.67	42.50	39.58	37.42	35.58	34.00	32.50	31.17	29.83	27.83	26.08	24.58	23.25
W36×150－C19 ¢42．7	77.75	62.00	54.42	49.58	46.17	43.58	41.42	39.50	37.75	36.08	34.00	31.50	29.42	27.67	26．17

[^5]lengths
beam

ISH $0 S=$

こ1，110＊	WHEEL LOAD P_{x}（kips）														
	＇．${ }^{\prime}$	1い．	1；．	－1．？	25.1	1）．＇）	15.0	$4 \mathrm{C.0}$	45.0	$50.1)$	55.0	60．1）	65.0	70.0	75.0
W12X 26－C10X15．3	29.33	18.42	13.92	10.25	8.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C O$
H12X 26－C12x20．7	15.75	20.08	15.00	11.75	9.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . \mathrm{CO}$
H14X 30－C10X15．3	30.25	20．83	15.50	12.42	9.67	7.92	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
W14X 30－C12 20.7	36.92	23.17	16.92	14.00	11.17	9.17	7.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W16X 36－C17 20.7	38.17	28.08	2 C .00	16.25	14.08	11.83	10.00	8.67	7.67	0.00	0.00	0.00	0.00	0.00	0.00
W16X 36－C15×33．9	50.50	32.83	23．C8	18.42	15.75	14.00	12.08	10.42	9.17	0.90	0.00	0.00	0.00	0.00	0.00
H18x 50－C12 X20．7	39.50	31.83	26.92	21.17	17.83	15.75	14.25	12.83	11.25	10.00	9.08	8.25	0.00	0.0 C	0.60
	52.25	42.08	31.83	24.75	20.58	18.00	16.17	14.75	13.75	12.33	11.08	10.08	0.00	0.00	0.60
W21x 62－C12x20．7	41.25	33.17	29.17	25.58	21.25	18.58	16.67	15.25	14.17	13.08	11.75	10.75	9.83	9.08	8.50
W21x 62－C15 33.9	54.33	43.67	38.42	30.83	25.33	21.83	19.42	17.67	16.25	15.17	14.33	13.58	12.42	11.50	10．67
W21x 6\％－C．12x2i）．7	41.42	33.73	29.42	26.58	22.92	19.83	17.67	16.17	14.92	14.00	12.92	11.75	10.75	9.92	9.25
$\mathrm{W} 21 \times 68-\mathrm{C} 15 \times 33.9$	54.50	43.75	38.50	33.50	27.42	23.50	20.75	18.75	17.25	16.08	15.08	14.33	13.67	12.58	11.67
W24×6月－C 12×20.7	42.67	34.25	30.17	27.33	22.92	20.00	17.92	16.33	15.17	14.25	13.33	12.17	11.17	10.33	9.58
W2似68－C15×33．9	56.00	44.97	39.58	34.17	27.92	23.92	21.25	19.25	17.67	16.50	15.50	14.67	14.00	13.25	12.33
W24× 84－C 12×20.7	43.50	34.92	30.75	28.08	25.83	23.67	20.92	18.92	17.33	16.17	15.17	14.42	13.75	12.75	11.83
W24X 84－C 15×33.9	56.42	45.25	39.83	36.33	33.50	29.67	25.08	22.50	20.50	19.00	17.75	16.75	15.83	15.08	14.50
W27X 84－C12 220.7	44.92	36.00	31.67	28.92	26.67	23.33	20.75	18.83	17.33	16.17	15.25	14.50	13.83	12.92	12.00
W27X84－C15×33．9	58.00	46.50	40.83	37.33	33.58	20．58	25.08	22.58	20.67	19.17	17.92	16.92	16.08	15.33	14.67
H27X 94－C12 2 20．7	45.67	36.58	32.17	29.42	27.17	25.33	22.67	20.50	18.75	17.42	16.42	15.50	14.75	14.08	13.50
W27X 94－C 15×33.9	58.33	46.75	41.08	37.50	34.75	31.5 E	27.50	24.67	22.42	20.67	19.33	18.17	17.17	16.42	15.67
	58.33	46.75	41.05	37.50	34.75	30.75	27.00	24.17	22.08	20.42	19.08	18.00	17.08	16.25	15.58
W30X 99－C18×42．7	69.83	55.83	49.08	44.75	41.42	34.92	30.50	27.25	24.75	22.83	21.25	19.92	18.83	17.92	17.17
H30×116－C15 33.9	60.17	48.08	42.25	38.58	35.92	33.67	31.75	29.25	26.42	24.17	22.42	21.00	19.75	18.75	17.92
W30×116－C18×42．7	71.50	57.17	50． 17	45.83	42.67	39.92	37.50	33.33	30.00	27.42	25.33	23.58	22.17	21.00	19．92
H33 $4118-\mathrm{C} 15 \times 33.9$	61.92	49.42	43.42	39.58	36.92	34.67	32.67	29.25	26.50	24.42	22.67	21.25	20.00	19.00	18.17
W33×118－C18 ${ }^{4} 42.7$	73.33	58．58	51.42	46.92	43.67	40.92	38.00	33.58	30.33	27.75	25.67	24.00	22.58	21.33	20.33
	63.17	50.42	44.25	40.33	31.58	35.50	33.58	31.92	30.42	28.50	26.25	24.50	23.00	21.67	20.58
W33×141－C18×42．7	74．08	59.17	51.92	47.33	44.08	41.50	39.25	37.25	35.42	32.50	29.92	27.75	26.00	24.50	23.17
W36×150－C15 $\times 33.9$	64.50	51.42	45.68	41.17	38.33	36.17	34.33	32.67	31.08	29.75	27.42	25.50	23.92	22.58	21.42
W36×150－C18×42．7	75.33	60.17	52.75	4 8.08	44．75	42.25	40.00	38.00	36.17	34.17	31.33	29.08	27.25	25.58	24.25

TABLE							ength x	$=9^{\prime}$				$=0.0$		$\mathbf{F}_{\mathbf{y}}=$	ksi
	WHEEL LOAD $\mathrm{P}_{\mathrm{x}}(\mathrm{kips})$														
	`. 1	!':'	15.11	? 1.0	万, ${ }^{5}$	3). ${ }^{1}$	35.13	40.17	145.3	$50 .!$	55.0	60.0	65.0	70.0	75.0
W12x 26-C10x15.3	30.83	21.17	16.C8	12.17	9.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W12X 26-C12x20.7	37.25	22.67	17.08	13.50	10.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0.0 \mathrm{C}$	0.00
W14×30-C10×15.3	31.92	24.33	18.08	14.92	11.67	9.58	8.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
W14X 30-C 12×20.7	38.67	26.33	19.42	16.08	13.08	10.75	9.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
W16X 36-C12 20.7	40.08	32.17	23.17	18.83	16.25	14.00	11.83	10.25	9.08	0.00	0.00	0.00	0.00	0.00	0.00
H16X 36-C15 133.9	52.50	36.00	25.83	20.75	17.83	15.83	13.75	11.92	10.50	0.00	0.00	0.00	0.00	0.00	0.00
W18x 50-C12 20.7	41.83	33.75	29.83	24.83	21.00	18.50	16.67	15.42	13.58	12.08	10.92	9.92	0.00	0.00	0.00
$\text { W18x } 50-\mathrm{C} 15 \times 33.9$	54.67	44.08	35.58	27.92	23.42	20.50	18.42	16.92	15.75	14.33	12.92	11.75	0.00	0.00	0.00
$W 21 \times 62-C 12 \times 20.7$	43.92	35.42	31.25	28.58	25.42	22.17	19.83	18.08	16.75	15.75	14.50	13.25	12.17	11.25	10.42
$W 21 \times 62-C 15 \times 33.9$	57.25	46.08	40.58	35.33	29.25	25.25	22.42	20.42	18.83	17.58	16.50	15.67	14.67	13.58	12.58
W21x 68-C12 20.7	44.25	35.58	31.42	28.75	26.58	23.75	21.17	19.25	17.75	16.58	15.67	14.50	13.33	12.25	11.42
W21x 68-C15×33.9	57.42	46.17	40.67	37.17	31.58	27.17	24.00	21.75	20.00	18.58	17.50	16.58	15.75	14.92	13.83
W24×68-C12 200.7	45.67	36.75	32.42	29.67	27.50	24.08	21.50	19.58	18.17	17.00	16.00	15.17	13.92	12.83	12.00
W24x 68-C15x33.9	59.33	47.61	42.00	38.33	32.67	28.08	24.83	22.50	20.67	19.25	18.08	17.08	16.33	15.58	14.75
W24×84-C12 2.27 .7	46.67	37.50	33.08	30.25	28.25	26.50	25.00	22.92	21.00	19.50	18.25	17.25	16.42	15.75	14.92
	59.83	48.08	42.33	39.67	36.08	33.58	29.50	26.42	24.17	22.33	20.83	19.58	18.58	17.67	16.92
W27x 84-C 12×20.1	48.33	38.83	34.17	31.25	29.17	27.42	25.42	23.00	21.17	19.67	18.42	17.50	16.58	15.92	15.25
	61.75	49.50	43.58	39.83	37.17	34.00	29.92	26.83	24.50	22.67	21.17	20.00	18.92	18.08	17.25
W27x 94-C12 23.7	49.188	39.42	34.67	31.75	29.67	27.92	26.42	25.08	23.00	21.33	19.92	18.83	17.83	17.00	16.33
$H 27 \times 94-C 15 \times 33.9$	62.17	49.83	43.92	40.08	37.42	35.17	32.92	29.42	26.75	24.67	22.92	21.58	20.42	19.42	18.50
$\text { W30x 99-C } 15 \times 33.9$	62.17	49.83	43.83	40.09	37.42	35.17	32.25	28.92	26.33	24.33	22.67	21.33	20.17	19.25	18.42
W30x 97-CI3x42.7	73.83	59.17	52.00	47.50	44.25	40.75	35.58	31.75	28.92	26.58	24.75	23.25	21.92	20.83	19.92
W30×116-C15 153.9	64.42	51.58	45.33	41.42	38.67	36.50	34.67	33.08	31.58	29.33	27.17	25.33	23.83	22.58	21.50
W30x116-C18×42.7	76.08	60.92	53.50	48.83	45.58	43.00	40.75	38.75	35.50	32.42	29.92	27.92.	26.17	24.75	23.50
W33×119-C15 33.9	\$6. 50	53.17	46.75	42.67	39.75	37.58	35.75	34.08	32.50	29.83	27.67	25.83	24.33	23.08	21.92
W33×119-C19×42.1	78.25	62.58	55.00	50.17	46.75	44.17	41.92	39.92	36.25	33.17	30.67	28.58	26.92	25.42	24.17
W33×141-C 15×33.9	67.92	54.3)	47.75	43.58	40.58	38.33	36.50	35.00	33.58	32.25	31.08	29.92	28.17	26.58	25.17
W33×141-C18×42.7	79.17	63.33	55.58	50.75	47.25	44.58	42.50	40.67	38.92	37.33	35.83	33.42	31.25	29.33	27.83
W36x159-C 15×33.9	69.50	55.58	4H.75	44.50	41.50	39.17	31.33	35.75	34.42	33.08	31.92	30.75	29.67	27.92	26.42
W36×150-C18×42.7	80.93	64.58	56.67	51.67	48.17	45.50	43.33	41.50	39.83	38.25	36.75	35.42	33.00	31.08	29.33

[^6]TABLE 3-3 (cont.): Maximum allowable beam lengths

TABLE 3-3 $\because 11.1110$	cont			al $-P_{Y}$	beam lengths						$\mathrm{P}_{\mathbf{y}}=0.12 \mathrm{P}_{\mathrm{x}}$			$\mathrm{F}_{\mathbf{y}}=50 \mathrm{ksi}$	
	WHEEL LOAD Mi (kips)														
	5.11	1). 1	1'.0	(1).i)	? 5.1	?リ. 7	35.	\% 0.9	4	50.0	55.0	60.0	65.0	10.0	75.0
W12X 26-C10x15.3	29.75	19.25	14.25	10.25	8.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W12X 26-C12 20.7	36.09	21.00	15.83	11.75	9.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	30.58	21.75	16.33	12.42	9.67	8.00	8.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0C	$0 . \mathrm{CO}$
H14X 30-C12 20.7	37.33	24.08	17.83	14.42	11.17	9.17	8.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
H16x 36-C1) 420.1	38.50	29.08	20.92	17.08	14.50	11.83	10.00	8.67	8.00	0.00	0.00	0.00	0.00	0.0C	0.00
W16X 36-C15 133.9	50.83	33.92	24.08	19.33	16.58	14.33	12.08	10.42	9.17	0.00	0.00	0.00	0.00	0.00	$0 . C 0$
W19x 50-C12 200.7	39.83	32.17	27.92	22.08	18.75	16.58	14.92	12.83	11.25	10.00	9.08	8.25	0.00	0.00	0.60
$\text { W18x 50-C } 15 \times 33.9$	52.58	42.42	32.83	25.67	21.50	18.83	17.00	15.58	13.92	12.33	11.68	10.08	0.00	0.00	$0 . C 0$
$W 21 \times 62-C 12 \times 20.1$	41.58	33.50	29.58	25.58	22.25	19.42	17.50	16.08	14.67	13.08	11.75	10.75	9.83	9.08	8.50
$\mathrm{H} 21 \times 62-\mathrm{C} 15 \times 33.9$	54.75	44.00	38.83	31.92	26.33	22.75	20.33	18.50	17.08	16.00	14.92	13.58	12.42	11.50	10.67
W21X $68-\mathrm{C} 12 \times 20.1$	\%1.83	33.67	29.75	27.00	23.83	20.75	18.58	17.00	15.75	14.33	12.92	11.75	10.75	9.92	9.25
W21x 68-C15 3 3.9	54.83	44.08	38.83	34.58	28.42	24.42	21.67	19.67	18.08	16.92	15.92	14.92	13.67	12.58	11.67
W24X 68-C12 20.1	43.00	34.59	30.58	27.75	23.92	20.83	18.75	17.17	16.00	14.75	13.33	12.17	11.17	10.33	9.58
W24X 68-C15 33.9	56.42	45.33	39.92	35.17	2e.92	24.92	22.17	20.08	18.58	17.33	16.33	15.50	14.33	13.25	12.33
W74X 84-C 12×20.7	43.83	35.25	31.08	28.42	26.33	24.50	21.83	19.75	18.25	17.00	16.00	15.08	13.83	12.75	11.83
W24X 84-C 15×33.9	56.75	45.58	4 C .17	36.67	33.92	29.67	26.08	23.42	21.42	19.83	18.58	17.58	16.67	15.92	15.25
h27X 84-C12×20.7	45.25	36. 33	32.c8	29.33	27.08	24.25	21.67	19.67	18.25	17.00	16.08	15.25	14.00	12.92	12.00
H27X 84-C15 ${ }^{\text {H23.9 }}$	58.42	46.83	41.25	37.67	34.67	29.58	26.08	23.50	21.58	20.00	18.75	17.75	16.83	16.17	15.50
H27X $94-\mathrm{C} 12 \times 20.1$	46.00	36.92	32.50	29.75	27.67	25.83	23.67	21.33	19.67	18.33	17.25	16.33	15.5 E	14.50	13.50
$W 27 \times \quad 94-C 15 \times 33.9$	58.75	41.08	41.42	31.83	35.17	32.58	28.50	25.58	23.33	21.58	20.17	19.00	18.00	17.17	16.50
1430x 99-C 15×33.9	58.75	47.08	41.42	31.83	35.17	31.75	21.92	25.17	23.09	21.33	19.92	18.83	17.92	17.08	16.33
$\text { W } 30 \times 99-C 18 \times 42.7$	10.17	56.17	45.42	45.17	41.83	36.00	31.50	28.17	25.67	23.75	22.17	20.83	19.75	18.75	17.92
$1430 \times 116-C 15 \times 33.9$	60.50	48.50	42.58	38.92	16.33	34.17	32.17	30.25	27.33	25.17	23.33	21.92	20.67	19.67	18.75
W30x116-C18×42.7	71.83	57.50	50.58	46.17	43.00	40.33	38.00	34.33	31.00	28.33	26.25	24.50	23.08	21.83	20.83
H33x118-C15x33.9	62.25	49.83	43.75	40.00	37.25	35.08	33.08	30.25	21.50	25.33	23.58	22.08	20.92	19.92	19.00
$\text { W3 } 3 \times 118-C 18 \times 42.7$	73.67	58.92	51.75	41.25	44.00	41.33	39.00	34.67	31.33	28.67	26.58	24.92	23.50	22.25	21.17
$\text { H } 33 \times 141-C 15 \times 33.9$	63.58	50.83	44.58	40.75	38.00	35.83	34.00	32.33	30.83	29.50	27.25	25.42	23.92	22.58	21.50
$\text { W3 } 3 \times 141-\mathrm{C} 18 \times 42.7$	74.42	59.50	52.25	47.67	44.42	41.92	39.67	37.67	35.92	33.58	30.92	28.75	26.92	25.42	24.08
$H 36 \times 151)-C 15 \times 33.9$	64.83	51.93	45.59	41.50	38.67	36.50	34.75	33.08	31.58	30.25	28.42	26.50	24.83	23.50 26.58	22.33 25.17
W36×150-C19 ${ }^{4} 42.7$	75.75	60.50	53.08	48.42	45.08	42.58	40.42	38.50	36.67	35.00	32.42	30.08	28.17	26.58	25.17

Note: A value of 0.00 indicates allowable web shear stress exceeded.
are the same common sections listed in part one of the AISC Steel Manual,

To use the table as a design aid, it is first necessary to select the correct table. There are listings for wheelbases of $4^{\prime}-0,5^{\prime}-0,6^{\prime}-0,7^{\prime}-0,8^{\prime}-0$, and $9^{\prime}-0$. Also, the listings are repeated for varying lateral loads, P_{y}, which are expressed as functions of P_{X}, i.e. P_{Y} is either $0.08 P_{x}, 0.10 P_{x}$, or $0.12 P_{X}$. Thus, the designer must use the table with the wheelbase. lateral load, and grade of steel that corresponds to the design situation. Once the proper table is selected, the column for $P_{\text {, }}$ the direct wheel load, must 'be selected so that it again corresponds to the design situation, The values of P_{x} range from a minimum of 5 kips to a maximum of 75 kips, with intermediate values of P_{x} in multiples of 5 kips. With the correct value for P_{X} selected, the designer must find the length in this column that is closest to the actual length used. Obviously, the length selected cannot be less than the design length needed. The combination section that corresponds to this length should be used.

In constructing these design tables, some simplifying assumptions were made. The first assumption made was that a constant rail height. of five inches will 'be 'employed. The rail height has a direct effect on the torsional stresses since the torque increases or decreases with a change in wheel height. Crane rails are available in different sizes, with the heights varying from 3.5 in. to 6 in. The lengths in the tables, however, use only 5 in.
and differ by leas than 45% for other actual rail heights. In most cases the error ${ }^{-}$is about 2%, which is not too significant. This is demonstrated in Table 3-4.

$\mathrm{P}_{\mathrm{x}}=20 \mathrm{kips}$	$P_{y}=2$	ips	Wheel	=	
SECTION	$\begin{aligned} & \% \text { DIFF: } \\ & 4 \text { "to } 5 " \end{aligned}$	RAIL HEIGHT			\% DIFF.5"to 6"
		4.00"	5.00"	6.00"	
W12X50-C10X15.3	3.03\%	11.33	11.00	10.75	2.27\%
W18×50-C12X20.7	4.22\%	14.42	13.83	13.42	4.22\%
W24X84-C12X20.7	2.89\%	23.75	23.08	22.42	2.89\%
w30X99-C18X42.7	3.29\%	36.67	35.50	34.42	3.05\%

TABLE 3-4: Typical difference in maximum allowable longths for varying rail heights.

The use of $8 \%, 10 \%$, or 12% of the vertical load for the lateral load applied at the top of the rail was another simplification used. It is neither feasible nor design expedient to try to use anything more precise. The lateral loads on a crane beam seldom fall below 8% or exceed 12%. Therefore, if "the lateral load lies between two percentages given in the tables, linear interpolation can be used to derive the maximum allowable length. This interpolation yields a length that is almost precisely the correct value with an error far below 1\%. This is illustrated in Table 3-5 in which lengths .are compared from interpolation and by actual calculation for a lateral load not included in the desion table. The design tables can also be extended linearly past the 8% or' 1206 range and still yield very satisfactory results.

$\mathrm{P}_{\mathrm{x}}=25 \mathrm{kips}$	Wheelbase $=6^{1}-0$		Rail Height $=5.0^{\prime \prime}$	
SECNION	$p=0.09 p_{x}$		$P_{y}=0.11 P_{x}$	
	Interp,	Calc.	Interp.	Calc.
W21X62-c12X20.?	16.63	16.58	15.50	15.50
W27X84-C15X33.9	26.08	26.08	24.21	24.17
W36×150-c18×42.?	45.83	45.83	43.88	43.83

Table 3-5: Comparison of allowable lengths obtained by calculation and by in-tarpolation of Table 3-3.

Using a similar simplifying assumption for the crane wheelbases, linear interpolation may again be used for an actual wheelbase that lies between the ones listed. Wheelbase dimensions vary from one manufacturer to another and it is not possible to even attempt to list all the different possible spacings that can be encountered. But, the ranges presented should be suflicient to cover most design gituations that will occur" Linear interpolation between table8 can be used for a wheelbase not listed with a very insignificant error.

When using Table 3-38, if a length of 0.00 is listed, this signifies the shear stress in the beam web exceeds the allowable stress (as defined by AISC Section 1.5.1.2). In evaluating the actual Web shear stress in the beam, a value of' twice, the vertical live load was always used to calculate the shear stress. While this is not .correct.and is only approximate as shown by Fig. 3-4, the length of the beam in which shear controls is eo short that a beam of that length is not practical to use.

Figure 3-4, Approximation of web shear.

- In Table 3-3, the lengths listed are the maximum lengths that can be used for that particular combination section. Therefore, the actual bending stress in the beam would be approximately the same as the allowable bending stress as defined by AISC Section 1.5.1.4.5. The allowable tensile stress is given as $0.60 \mathrm{~F}_{\mathrm{Y}}$ and the allowable compreesion stress is given by either eq(1.5-6a) or eq(1.5-6b) depending on the value of I / r_{t} for the combination section being used. The lengths listed are thus the maximum lengths that may be used for a simply-supported span.
. The following examples will demonstrate the use of Table 3-3.

EXAMPLE 3-2:

GIVEN: The following crane load conditions,

, 4*:'
TO FIND: Using Table 3-3, find the lightest suitable combination section for both 36 ksi and 50 ksi grade steels.

SOLUTION: 36 ksi steel:
Using Table 3-3 on page 45 , and using the column for $g_{\mathrm{x}}=25$ kips:
Select either
W24X84-C15X33.9 Allowable length= 26.08'
or $\mathrm{W} 27 \mathrm{X84}-\mathrm{C} 15 \times 33.9$ Allowable length= 25.83'
While both sections are satisfactory and both have the same weight, it is advantageous to use the W27X84-C15X33.9. Since this section has a larger allowable length, it will have a lower bending stress. In addition, it will also deflect less..

Now, the stresses can be checked in the section using the torsional theory.

Tension stress:

$$
f_{\mathrm{bT}}=21.4 \mathrm{ksi} \quad \mathrm{~F}_{\mathrm{bT}}=22.0 \mathrm{ksi} \quad 0 . \mathrm{K} .
$$

Compression stress:

$$
f_{\mathrm{bc}}=12.8 \mathrm{ksi} \quad \mathrm{~F}_{\mathrm{bC}}=20.3 \mathrm{ksi} \quad 0 . \mathrm{K} .
$$

Thus, the section is adequate.

50 ksi steel:
Use Fable 3-3 on page63 ard the column for $P_{X}=25$ kips.

Select:
W21X62-C15X33.9 Allowable length $=25.75^{\prime}$
Acheck of the bending stress yields:
Tension stress:

$$
\mathbf{f}_{\mathrm{bT}}=29.5 \mathrm{ksi} \quad \mathrm{~F}_{\mathrm{bT}}=30.0 \mathrm{ksi} \quad \text { O.K. }
$$

Compression stress:

$$
f_{b c}=16.2 \mathrm{ksi} \quad F_{b c}=26.5 \mathrm{ksi} \quad \text { O.K. }
$$

Therefore, a W21X62-C15X33.9 section of 50 ksi
grade steel is adequate for the load condition.

EXAMPLE 3-3:

GIVEN: The following crane load conditions!

TO FIND: Using Table 3-3, find the lightest suitable combination section for 36 ksi grade steel.

SOLUTION: For this load condition

$$
\frac{\mathrm{P}_{\mathrm{y}}}{\mathrm{P}_{\mathrm{x}}}=0.09
$$

Therefore, it will be necessary to interpolate between the tables for $\bar{g}_{Y}=0.08 P_{X}$ and $P_{Y}=0.10 P_{x}$. Select:

$$
\text { W27X84-C15X33.9 Allowable length }=21.50 \text { ' }
$$

A check of the bending stresses yields:
Tension stress:

$$
f_{b T}=20.4 \mathrm{ksi} \quad F_{b T}=22.0 \mathrm{ksi} \quad \text { O.K. }
$$

Compression stress:

$$
\mathrm{f}_{\mathrm{bc}}=12.0 \mathrm{ksi} \quad \mathrm{~F}_{\mathrm{bC}}=22.0 \mathrm{ksi} \quad 0 . \mathrm{K}
$$

Thus, a W27X84-C15X33.9 section is adequate.

EXAMPLE 3-4:
GIVEN: The following crane load conditions:

TO FIND: Using Table 3-3, find the lightest suitable combination of 36 ksi steel.

SOLUTION:

$$
\frac{\mathrm{P}_{\mathrm{y}}}{\mathrm{P}_{\mathrm{x}}}=0.08
$$

For this load condition, the wheelbase is $6^{\prime}-6^{\prime \prime}$ " Therefore, it will be necessary to interpolate between the tables for $S=6^{\prime}-0$ and $S=7^{\prime}-0$. Select:

$$
\text { W21X62-c12X20.7 Allowable length }=27.04^{\circ}
$$

A check of the bending stresses for this selection using the torsional theory yields:

Tension stress:

$$
f_{b T}=20.1 \mathrm{ksi} \quad F_{b T}=22.0 \mathrm{ksi} \quad \text { O.K. }
$$

Compression stress:

$$
f_{b c}=13.2 \mathrm{ksi} \quad F_{b c}=18.1 \mathrm{ksi} \quad 0 . \mathrm{K}
$$

Thus, this section is adequate for the load condition given,

Chapter 4

DISCUSSIONS AND CONCLUSIONS

By making a comparison of the torsional theory of combination sections and the so-called "conservative" method, a very interesting point , "\$+ was observed. It appears the "conservative" method is not always conservative. This is dramatically shown in Example 3.1. In the conservative method, the top flange of the combination section is assumed to carry the entire lateral force while in the torsional theory, the entire cross-section resists the lateral load. Since the first method overestimates the compressive stress in the top flange, the method is considered to be conservative.

When a channel is mounted to the top flange of a wide-flange shape, which, in turn, is to be unsymmetrically loaded, three things are accomplished. First, the stresses in the top flange due to the vertical load are reduced since the neutral axis is shifted closer to the top. Second, the bending stress in the top flange due to the lateral load is also reduced since there is a greater section modulus in that direction. And third, the radius of gyration of the built-up top flange is increased and thus, the member is less likely to fail by lateral torsional buckling. Also, the AISC specifications address this by permitting a larger allowable compressive stress. The resulting builtup wide-flange shape is also more effective because the shear center is shifted toward the top flange, thereby making the torque on the section smaller so the warping stresses are, .inturn, lower.

While the addition of the channel is beneficial for the top flange, it is detrimental to the tension flange. Since the neutral axis is
shifted toward the top, the section modulus for the tension flange is reduced, often by a very significant amount. This will, in turn, yield a higher bending stress in the bottom flange. This fact was highly evident when Table 3-2 was initially developed. Obviously, the permissible length of a beam is at an optimum when the bending stress in either the compression or tension flange has reached its allowable stress. In the vast majority of the cases for sections listed in Table 3-2, the allowable tension stress in the bottom flange was reached before the allowable compressive stress in the top flange.

It should be noted that it is perhaps preferable that the tension flange reach its maximum allowable stress first. Since, if the compression flange controlled the design, the beam could eventually fail much more suddenly due to lateral-torsional buckling. Local buckling problems are also minimized. As with any. type of buckling failure, the failure is usually sudden and catastrophic as compared to a tension failure in which the steel would first begin to yield, going from an elastic state to a plastic state at a progressive rate. All engineers have seen stress-strain curve for a tensil specimen of steel. The steel must yield considerably before rupture will occur.

Although Table 3-2 is very useful in the design of crane beams, it is subject, to a few shortcomings. The first being that the maximum lengths listed in the table do not take into account the beam weight or the crane rail weight. This dead weight can be considered by merely increasing the value of P_{x} by a very small percentage, for example, an equivalent concentrated load procedure could be easily developed. In any case, the bending stresses arising from the beam dead weight in this instance will be very small considering the magnitudes of the live loads involved.

Another limitation of the tables is that the sections listed were not checked for compliance to Section 1.9 of the AISC Steel Code Specifications. This section deals with the width-to-thickness ratios of elements under compression. Usually, for hot-rolled shapes, this is not a controlling factor for the grades of steel considered.

Finally, the members in Table 3.2 are not loaded in such a way as to produce a fatigue failure. Obviously, for a beam that has a large number of loading cycles, Table 3-2 cannot be used and the design of the beam must be handled by a long-handled solution.

Even with these shortfalls, the design tables still provide a very useful aid for the design of crane beams. Table 3-1, the table of section properties, is extremely useful in that it provides properties for over 150 possible combination sections. Even though Table 3-2 has a maximum wheel load of 75 kips , it is still useful for the structural engineer who only occasionally designs beams for medium-sized cranes. Obviously, for a heavy duty crane, such as in a steel mill, a built- ${ }^{\text {- }}$ up plate girder will most likely be used. For occasional use, however, and especially for purposes of quickly estimating a crane runway, this design aid is extremely useful.

1. American Institute of Steel Construction, "Manual of Steel Construction", 8th Edition, (1980) 。
2. Heins, C. P. and Seaburg, P. A.,"Torsional Analysis of Rolled Steel Sections", Bethlehem Steel Corp. (1963).
3. Seely, F., Smith, J., et al, "Advanced Mechanics of Materials ${ }^{\mathrm{H}}$, John Wiley and Sons (1978).
4. Heins, O. P., "Bending and Torsional Design in Structural Members ${ }^{m}$, D.C. Heath and Co.(1975).
5. Roark, R. J. and Young, W,C., "Formulas for Stress and Strain , McGraw-Mil1 Book Co.(1975).
6. Kitipornchai. S. and Trahair, N.S.,"Buckling Properties of Monosymmetric I-Beams", Journal of the Structural Division, ASCE(May, 1980).
7. Salmon, Charles and Johnson, John E., "Steel Structures: Design and Behavior:, Harper and Row (1980).
8. Gelambos, T.V., "Structural Members and Frames" Prentice-Hall (1968).

This program has two main functions. First, for a given wide-flange shape and channel section, the program will calculate the elastic.,torsional, and warping properties for the resulting combination section. Second, for this combination section, the propgram will give the maximum allowable length of a crane beam for a given twowheel crane loading condition and grade of steel.using the torsional theory developed in Chapter 2.

INPUT

To use this program, the crane loading conditions and steel grade must first be entered. Using a format of (5F10.3), the first line contains:

$$
P_{x}, P_{y}, S, R H, F_{y}
$$

where

$$
\begin{aligned}
& P_{\mathrm{x}}=\text { Vertical wheel load(kips) } \\
& \mathrm{P}_{\mathrm{y}}=\text { Lateral wheel load (kips) } \\
& \mathrm{S}=\text { Crane wheelbase (in.) } \\
& \mathrm{RH}=\text { Crane rail Height (in) } \\
& \mathrm{Fy}=\text { Steel yield stress (ksi) } \\
& \text { Next, it is necessary to input the dimensions and }
\end{aligned}
$$ properties of the individual wide-flange shape and channel section, in that order. First for the wide-flange shape, using a format of (2I5,7F10.3), the dimensions and properties needed are entered in the following order:

HGTW, WTW , AWF , DW, BFW , TF , TW , IXWF , IYWF

where
HGTW = Nominal height of the wide-flange (in.)
WTW = Weight of the wide-flange (l.bs)
AWF = Area of the section (in ${ }^{2}$)
DW = Depth of the wide-flange (in.)
BFW = Flange width (in, $)$
$\mathrm{TF}=$ Flange thickness (in.)
TW = Web thickness (in.)
IXNF = Moment of inertia about X -axis (in ${ }^{4}$)
ITWT = Moment of inertia about Y-axis (in. 4
Next, for the channel, using a FOMAT of (I5,F5.1,
7F10.3) the dimensions and properties needed are entered in the following order:

HGTC , WTC , AG , BFC , TFC , TWC , IXC , IYC , XBAR
HGTC $=$ Nominal height of channel (in.)
WTC = Weight of the channel
AC = Area of channel (in.)
BFC = Channel flange width (in.)
TWC = Channel flange thickness (in.)
IXC = Moment of inertia about the X-axis (in ${ }^{4}$)
IYC = Moment of inertia about the Y-axis (in ${ }^{4}$)
XBAR $=$ Distance from neutral axis to the back of the channel,(in.)
This program is designed to handle any quantity of combination sections for the one set of given loading conditions that were entered on the first line. Therefore, it is only necessary to enter additional dimensions and properties of individual wide-flanges and channels, as before.

When the desired combination sections have been entered, the program is halted by the insertion of a blank card as input.

OUTPUT
 The first line of output gives:

 AREA, Y1, IX, IY, RT, EBwhere

$$
\begin{aligned}
& \text { AREA }\left.=\text { Asea of the combination section (in }{ }^{2}\right) \\
&=\text { Distance from the neutral axis to the } \\
& \text { bottom flange of combination section(in) } \\
& I X=\text { Moment of inertia about X-axis (in }{ }^{4} \text {) } \\
& I Y=\text { Moment of inertia about Y-axis (in }{ }^{4} \text {) } \\
& R T= \text { Radius of gyration of top flange (in) } \\
& E B=\begin{array}{l}
\text { Distance from shear center to the } \\
\text { bottom flange (in) }
\end{array}
\end{aligned}
$$

The seoond 2 ine of output gives:
K, A, CW, WNA, WNB
whrer

$$
\begin{aligned}
& \mathrm{K}=\text { Torsional constant }\left(\text { in }^{4}\right) \\
& \mathrm{A}=1 / \mathcal{Q}=\left(\mathrm{EC}_{\mathrm{W}} / \mathrm{GK}\right)^{\frac{1}{2}} \\
& \mathrm{CW}\left.=\text { Warping constant (in }{ }^{6}\right) \\
& \text { WNA }= \text { Normalized warping function at point } \\
&\text { on the top flange (in }) \\
& \text { WNB }=\text { Normalized warping function at point } \\
&\text { on the bottom flange (in } \left.{ }^{2}\right)
\end{aligned}
$$

The third line of output merely gives the loading conditions that were entered The last line of output prints the maximum allowable length for the combination section and indicates whether the tension flange or compression flange has the larger stress. The following example will illustrate the use of the program.

EXAMPLE:

GIVEN: $P_{x}=20.0, P_{y}=2.0, S=60.0 \mathrm{in}, \mathrm{RH}=4.0 \mathrm{in} .$, $F_{y}=36 \mathrm{ksi}$
FIND: Using tho program given, calculate the section properties for a combination section consisting of•a W18X50-C12X20.7 and calculate the maximum allowable length it may be used for the given loading conditions.

SOZUTION:
The individual section properties and loading conditions must be entered using the formats stated previously. So, the following is entered:


```
1JCH
    INTEGER NTH, RGTM, FCTC
    KEAL IXMF, IYMF, IXC, IYC, IX, IY,IYCF
    PEAL L, LFINAL, INCR, LA, LE, MY
C THIS FRCGQAN CALCGLATES SECTIGN PRCPERT!ES ANO TCRSICNAL
    PRCFEFTIESGCFGEMRINEEHICE-FLANGE ANG CRANAEL SECTICNS.
    FCREAT (EF 10.3)
    CCNTINuE
    REAC(S,LCO) HGTh,hTh, AWF, Ch, EFh, TF, Th, IXhF, IYhF
    {F(FGTh.&0.01 CE TC IOCC
```



```
    233 FCRNAT(IS,F5.1,7F1C.3)
        \DeltaYE\DeltaR=.5*\DeltaWF*C! + AC # (Ch +ThC-xEAR)
        AREA= ALF+AC
        Y1 = iYORR/AREA
        Y2 = Cin+linc-yl
```



```
        IY = [Y合F+ixC
        81=RFC-ThC/2.
        g.3=8F%/z
        C=+CTC
        CC=HC-IFC
        E2=.5*CC-23
        Tl=TFC
        T2=ThC
        T = T F
        CT=[n+(T2-T3)/2.
        ER=(E1#T)#CC##2#(81/4.+OT/2.)+12#CC**3*CT/12.+2./3.*T3*E3**3*(OT-
    T2/2.--13/2.1)/IY
    ET=C1-EE
    84=&3+E2
    AN=82**3*T3*E!**2-\cdots
    E=83**3*(T2+T3)*(ET-T3/2.) #*2
    C=3.*E3**2*(ET-T3/2.)**2+3.*ET*E2*E3*(ET-T3/2.)+(ET*E2)*#2
    C=3.*(ET*B4-03*T3/反..)**2+01*&4*(Z.*ET*&4-3./2.*&3*T3+e1*E4)
    Ch=2.13.*( }\DeltaN+E+02*T2*C+81*T1*0
```



```
    I=S6RT(2.力#CN/XK)
    L\wedgeA= & ? # (T3/2.-ET)-ET#E2
    hへe=\varepsilonを#&゙
    IYCF=IXC+TF*QFW**3/1z.
    RT=SGFT(IYCF/(\DeltaC+EF涪TF+Th*(Y2-ThC-TF)/3.))
    CCT=FY/& X
    CLO=Y1/[y+aFi**CCT/(2.*(Y)
    CLA=-Y2/IX-HC#COT/(2.*[Y)
    CLE=んN&#C/C%
    CLEFHAA*A/CW
            EETA=1./4
            FCLL=C.GO*FY
            FV=2.*F)/(0)w#Tk)
            FVALL=C.4C*FY
            TF(FV.GT.FVALLIGC TC 3000
            T=FY#(RF+ET)
            L=S
            INCR=12.C
            NA=0
            kK=C
            GC TV. 46C
    3.00
    JJ=C
```

```
    .10
    46C ELNTINLE
    IF(NN-1)422,423,423
    422 CL#CLE
    GC TC 421
    423 CL=CLA
    CL=CLA 
    922 IF(S-C.5E6*L)420,4&C,5<0
    42C Nx=Fx*((L-S/2.)*#2)/(2.*L
    e=1/2.-5/4.
    GL=SINP(EET\Delta*Q)/SINH(8ETA*L)
    G2=SINH(EETA*(L-E))+S|NH(8ETA*(L-E-S))
    6=61* 62
    FACT=ARS(MX*CL+C*CL*T)
    |r(a..EG.\\GOTE EGO
    EL=L
    GALL STREJS(EL,PT,FY,FALL)
    IF(KK.EG.I)CL PC SIL
    ec IC 80C
    520 NX=FX*L/4.
    &ACT=ACS(MX*CL + T*CL/2.#TANF(EETA*L/て.J)
    IFIMN.EG.OIGC TC PCC
    El-L
    CALL STRESS(EL,RT,FY,FALL)
    IF(KK.EG.1)CC TC SIE
    ECC If(FACP-FALL)43C,2CCC,440
    430 L=L+INCR
        GC TC 4EC
    440 L=L-INCR
    IF(INCR-1.0)2000.2CCC.45C
    45C INCR=1NCFi12. -..
    GC TC & 既
    2000 IF(\A-1) COC,GCl,GO1
    9C0--LE=L
    MA=1
    kk=1
    CC TC 4EC
    G11 IF(FACT-FALL)SC2,SC2,G13
    @!3 L= S
    kk=C
    INCR=12.C
    GC TC 4EC
    901 L L = L
    GC IC SC:
    SC2 LFINAL=LE/12.
        JJ=1
        CC-1C 4CC2
    9C3 LFIMAL=Lf/12.
        J.JW?
    4002 CCATIALE
    1C6 FCRMAT(215,7F10.3)
    *RITE(6,102)
    FCRNAT(4),' SECTICN',8X,'AREA',5X,'Y1',7X,'IX',5X,'[Y',5X,'RT',
    102 FCRNAT(4)
    WRITE(G,103)HGTh,hTh,FCTC,hTC,AREA,Y1,IX,IY,RT, EE
```



```
    1F7.2
114
    GRITE(S,104)
```



```
    LIn h<<lTE(%,10%)
```



```
    HRITE(G, IDS)HGTh, TH, HCTC, ,TC,XK,A,Ch,ANA,hNG
```



```
        AR[TE(6,13C)PX,PY,S,NH,F゙Y
        130 FCRNAT(1Hi)/2X,' PX=1,F5. 1, 4X,'PY=',FS. 2,4X,'巾HEELS\triangleSE=1,F5.1,4X,
        L*RAIL HE[SHT=',FE.3,4X,'FY=',FS.1/IFC)
    SC4 {F(JJ=1)SOQ.9CS.QC&
    SC5 WFITE(6,131)HCTh,h!'n,HCTC,NTC,LFINAL
```



```
        1. FT.',EX,'TENSICN STRESS CCNTRCLS'/LHL)
        GC TC }90
    GC8 WRITE{6,132)HCTW,WTh,HGTC,NTC,LFINAL
```



```
        &'FT.',EX,'CL%ORESSION STKESS CLSTRCLSI/IHI)
        CE IC %A.
```



```
        1 STEESS ExCEECEC'/1H1)
    SC7 CCNIINLE
        GC TC 2CC
    LCCECCNTINLE
        STCP
        ENC ..
        SLRRCLTIAE STVESSIEL,RT,FY,FALLI
        R=EL/&1
        XL1=S「RT(1C2OCO/FY|
        N2=SCRT(5LCUCO/FY)
        IF(F.GE.XLL)GC TE SIC
        FALL=C.EC#F%
        RETLRA
    5IC IF(R.CT.\L2)GC TC EZC
        F\DeltaLL=FY%(2./3.-FY*R**2/1530CCC)
        FETLPA
    520 FALL=17CCOC/R##2
    RETLPA
    ENC
                            ..- --...
    fENTRY
* 18x 5c-C12x20.7 2C.7c 11.51 1120.d 16c.1 3.e7 16.3C
```



```
    OX= 2G.C PY= 2.CO NHEELEASE= GO.C. RAIL HEICHT= 4.COC FY= ZE.C
4 U3X 5C-C12X2C.7 NAX[VLN SPAN= LJ.33 FT. TENSICN STRESS CCNTRCLS
```


[^0]: Note: A value of 0.00 indicates allowable web shear stress exceeded

[^1]: stress exceeded.

[^2]: Note: A value of 0.00 indicates allowable web shear stress exceeded.

[^3]: Note: A value of 0.00 indicates allowable web shear stress exceeded.

[^4]: stress exceeded.

 ## 4 0 0 0 0 0 0 0 3 0 -1 0 0 3 0 -1 -1 0

 ##

[^5]: exceeded．

[^6]: Notes A value of 0.00 indicates allowable web shear stress exceeded.

