
The Elliptic Curve Group Over Finite

Fields: Applications in Cryptography

by

Jeremy W. Lester

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in the

Mathematics

Program

YOUNGSTOWN STATE UNIVERSITY

August, 2012

The Elliptic Curve Group Over Finite Fields: Applications in

Cryptography

Jeremy W. Lester

I hereby release this thesis to the public. I understand that this thesis will be made

available from the OhioLINK ETD Center and the Maag Library Circulation Desk

for public access. I also authorize the University or other individuals to make copies

of this thesis as needed for scholarly research.

Signature:

Jeremy W. Lester, Student Date

Approvals:

Dr. Jacek Fabrykowski, Thesis Advisor Date

Dr. Neil Flowers, Committee Member Date

Dr. Thomas Smotzer, Committee Member Date

Peter J. Kasvinsky, Dean of School of Graduate Studies & Research Date

c©

Jeremy W. Lester

2012

ABSTRACT

It is the intent of this thesis to study the mathematics, and applications behind

the elliptic curve group over Fp. Beginning with the definition of the ′+′ operation,

under which the points on the elliptic curves form an abelian group. Then moving

to a brief introduction to both public, and private key cryptography. This will lead

into an explanation of the discrete logarithm problem along with an implementation

using the elliptic curve group over Fp. This thesis will conclude with an exploration

Lenstra’s factoring algorithm using the elliptic curve group.

iv

I dedicate this paper to Brian Michael Irby, and the entire Irby family, without whom

none of this would be possible. Their altruistic gift that provided my life saving trans-

plant, is the reason I am here and I will be forever grateful.

A special thank you to my loving wife, your encouragement has helped me to realize

my potential, and reach higher than I imagined possible.

Thank you to my family for all of your love and sacrifice over the years which have

helped me to succeed, my brother’s dedication to work and family which has served as

an exceptional example for me over the years. Finally, for my mother’s faith in God

that has reminded me time and time again that we are not alone in our endeavors,

and that God is always faithful.

v

Contents

1 Introduction 1

2 The Elliptic Curve Group Over Finite Fields 1

2.1 The Elliptic Curve Group over R . 8

3 Applications of the Elliptic Curve Group 13

3.1 Cryptography . 13

3.2 Private Key Cryptography . 14

3.3 Public Key Cryptography . 15

4 The Discrete Logarithm Problem 16

4.1 The Diffie - Hellman Key Exchange 17

4.1.1 Diffie-Hellman Key Generation 17

4.1.2 Example: Diffie-Hellman Key Exchange 18

4.1.3 Elliptic Curve Key Exchange simulating Diffie-Hellman 18

4.2 ElGamal Cryptosystem . 20

4.2.1 ElGamal Key Generation . 20

4.2.2 The Elliptic Curve Cryptosystem Simulating ElGamal 21

5 Factorization 24

5.1 RSA . 24

5.1.1 RSA Example . 25

5.2 Lenstra’s Elliptic Curve Factoring Method 27

5.2.1 Example Lenstra’s Method . 29

vi

1 Introduction

With the world becoming ever more reliant on technology, the topic of cryptog-

raphy is becoming increasingly important. This paper provides a look at the ellip-

tic curve group (ECG) over finite prime fields, and the applications of this group in

cryptography. The ECG provides strong underlying security of the discrete logarithm

problem which is the basis of many modern cryptographic schemes. In the follow-

ing sections I will describe the ECG over finite prime fields, the discrete logarithm

problem, the elliptic curve cryptosystem, and finally elliptic curve factorization.

2 The Elliptic Curve Group Over Finite Fields

Let Fp be a finite, prime order field, such that the characteristic of Fp is not 2 or

3, and E(α,β) be an elliptic curve of the form y2 = x3 + αx + β ∈ Fp[x]. Also, the

discriminant ∆ = 4α3 + 27β3 is nonzero, this happens in the case of a repeated root.

We do not allow this since these curves are nonsingular. Now we define,

E(α,β)(Fp) = {(x, y) ∈ Fp × Fp | y2 = x3 + αx+ β (mod p) where α, β ∈ Fp}
⋃
{∞}

as the set of elliptic curves over Fp, together with ∞ the point at infinity. The point

at infinity∞ also denoted as (∞,∞), is said to exist at the top of the x− axis. This

point’s existence is necessary in the case of a vertical line, which is said to go through

this point. Adding together two points on E(α,β)(Fp), can be thought of as drawing

a straight line through the two points, this will be better illustrated in Section 2.1.

The line will intersect the curve at a third point called −R, this point is then reflected

about the x− axis to give us our sum, R, in the case of a vertical line, our sum is∞.

1

Definition 2.1. If P,Q ∈ E(α,β)(Fp) such that P = (x1, y1) and Q = (x2, y2), we

define P +Q = R as follows:

If P 6= Q, and P 6=∞ then,

m =
y2 − y1
x2 − x1

, and R = (x3, y3) = (m2 − x1 − x2,m(x1 − x3)− y1)

where, m represents the slope of the line between P and Q.

If P = Q, and and P 6=∞ then we can think of m as the slope of the tangent line,

m =
dy

dx
=

3x21 + α

2y1
and R = (x3, y3) = (m2 − 2x1,m(x1 − x3)− y1)

If Q =∞, then P +Q = P +∞ = P = (x1, y1).

Finally, if Q = −P , where P = (x1, y1) and −P = (x1,−y1) then,

P +Q = P + (−P) =∞ since,

m 6= y2 − y1
x2 − x1

is undefined and hence a vertical line, and R =∞.

Theorem 2.1. E(α,β)(Fp) together with the ”+” operation defined in Definition 2.1,

forms an abelian group provided ∆ = 4α3 + 27β3 6= 0. That is for all P , Q, and R

∈ E(α,β)(Fp), the following properties hold:

1) P +Q ∈ E(α,β)(Fp) (Closure)

2) (P +Q) +R = P + (Q+R) (Associativity)

3) There exists ∞ ∈ E(α,β)(Fp) such that P +∞ =∞+ P = P (Identity)

4) There exists −P ∈ E(α,β)(Fp) such that P + (−P) =∞ (Inverse)

2

5) P +Q = Q+ P (Commutativity)

Proof. (Closure) Let E(α,β)(Fp), be an elliptic curve over the field F, and let P

Q ∈ E(α,β)(Fp), the P + Q as so defined in Definition 2.1 is closed.

(Associativity) Let P,Q,R be points on an elliptic curve E. Define the lines

l1 = P,Q, l2 =∞, Q+R, l3 = R,P +Q

m1 = Q,R, m2 =∞, P +Q, m3 = P,Q+R

It can be easily veried that these line have the following intersections (where X is

unknown).

l1 l2 l3
m1 Q -(Q+R) R
m2 -(P+Q) ∞ P+Q
m3 P Q+R X

First we deal with some special cases:

(i) If P,Q or R is ∞ then association is trivial. For example, if P = ∞ then, as

required

(P +Q) +R = (Q) +R = Q+R

P + (Q+R) = (Q+R) = Q+R

(ii) If P +Q =∞ then

(P +Q) +R =∞+R = R

3

(iii) If Q+R =∞ then associativity holds similarly to above.

So now assume that P, Q, R,(P + Q),(Q + R) 6= ∞. We must now verify the

assumptions of Theorem A.9 for the remaining cases. Now, if two of the points

on a line are equal then by denition the line through them will be the tangent

line, and will intersect to order 2. If three of the points are equal then it implies

that all three are ∞. Earlier we saw that if the tangent line to the curve inter-

sects at ∞ then it will intersect to order 3, so this assumption is satised.

Suppose that li = 6mj for all i, j. Then the assumptions of Theorem A.9 [1,

p. 114] are all satised and so all the points in the table, including X lie on E.

Now l3 will have three points of intersection with E; R, (P +Q) and X. By the

denition of elliptic curve addition we have

X = −[(P +Q) +R]

Similarly m3 intersects E in three places; P, (Q+R) and X so

X = −[P + (Q+R)]

So we see that, (P +Q) +R = P + (Q+R) as desired.

Our final task will be to consider what happens if some line li equals some line

mj. First observe the following three results:

4

(i) If P,Q,R are collinear then

(P +Q) +R = (−R) +R =∞ and P + (Q+R) = P + (−P) =∞

So associativity holds.

(ii) If P,Q, and (Q+R) are collinear then,

P + (Q+R) = −Q.

Also, P +Q = −(Q+R)

so

(P +Q) +R = −(Q+R) +R = −Q

where the second equality is proved by Lemma 2 below.

(iii) If Q,R, (P +Q) are collinear then associativity holds as above.

Lemma 2.1. Let P1, P2 be points on an elliptic curve. Then

(P1 + P2)− P2 = P1 and − (P1 + P2) + P2 = −P1

Proof. The first equation is the reection of the second so we just prove the second.

The line, L, through P1 and P2 intersects the elliptic curve again at −(P1 + P2). So

to calculate −(P1 + P2) + P2 we would draw the line between them which is L. This

cuts again at P1 so its reection is −P1.

5

Now suppose li = mj for some i, j. We can assume the all the points of intersection

except ∞ and possibly X are finite. Consider the various cases

(i) l1 = m1: Then P,Q, and R are on the same line. This means they are collinear

and so associativity follows.

(ii) l1 = m2 : ∞, P +Q is a verticle line so PQ is too. Therefore P + Q = ∞, and

by the earlier argument associativity follows.

(iii) l2 = m1: In this case its Q+R =∞ so associativity holds similarly.

(iv) l1 = m3: Then P,Q and (Q+R) are collinear, so associativity holds.

(v) l3 = m1: Then Q,R and (P +Q) are collinear, so associativity holds.

(vi) l2 = m2: So we know that (P +Q), (Q+ R) and are on this line. So P +Q =

(Q+R). If P +Q = Q+R then by Lemma 2

P = (P +Q)−Q = (Q+R)−Q = R

Therefore

(P +Q) + R = R + (P +Q) = P + (P +Q) = P + (R +Q) = P + (Q+R) as

required. If P +Q = −(Q+R), then

(P +Q) +R = −(Q+R) +R = −Q

P + (Q+R) = P − (P +Q) = −Q

So associativity holds.

6

(vii)) l2 = m3: We have a line with P, (Q + R),∞ on it meaning P = −(Q + R).

Since Q,R and −(Q + R) are collinear by denition we have that Q and R are

on this line as well. So P,Q, and R are collinear and associativity holds.

(viii) l3 = m2: We have a line with R, (P + Q), and ∞ on it so associativity holds

similarly to the previous case.

(ix) l3 = m3: So P,R, (Q+R) and (P +Q) lie on the same line, but this line cannot

intersect in 4 points, so either P = R,P = P + Q or Q + R = P + Q (other

combinations would imply was on the line. If P = R then we are in the case

l2 = m2. If P = P +Q then

P − P = (P +Q)− P

∞ = Q

and so associativity follows. If Q + R = P + Q then similarly adding −Q,

gives P = R which we have already treated. So this completes the proof of

associativity for all possible cases. [1]

(Identity) Consider the point at infinity ∞. Then if P ∈ E(α,β)(Fp) we see that

P + ∞ = P = ∞ + P from Definition 2.1. Hence ∞ serves as the identity for

E(α,β)(Fp).

(Inverse) Let P ∈ E(α,β)(Fp) such that P = (x1, y1). Then consider the point

−P = (x1,−y1), where −y1 is the inverse of y1 ∈ Fp. Now −P is an element of

Fp, and P +−P =∞ as in Definition 2.1, hence the existence of the inverse.

7

(Commutativity) Commutativity follows immediately from Definition 2.1, since

m =
y2 − y1
x2 − x1

=
y1 − y2
x1 − x2

.

Which is the result of the commutativity of Fp.

2.1 The Elliptic Curve Group over R

The elliptic curve group over R is perhaps one of the more intuitive examples,

defined as

E(α,β)(R) = {(x, y) ∈ R× R | y2 = x3 + αx+ β where α, β ∈ R}
⋃
{∞}.

Then as long as ∆ = 4α3 + 27β3 6= 0, we see the following three curves:

Figure 1: y2 = x3 − x+ 4

8

Figure 2: y2 = x3 + x− .5

Figure 3: y2 = x3 − x− .1

9

In the case where ∆ = 4α3 + 27β3 = 0, we see in Figure 4 that the curve contains

a double root and hence is singular. We see also that this curve violates Definition

2.1, observe that if you draw a horizontal line along the x − axis you will see that

the line does not intersect the curve at a third point. It is this reason that we must

exclude these graphs from our definition.

Figure 4: y2 = x3 − 3
√

27x+ 2

10

Let us consider the following curve, it can be easily verified that the points

P = (−1.54, 1.38), and Q = (0.0, 2.0) lie on this curve. Then by the Definition 2.1,

since P 6= Q 6= ∞,m = .62/1.54 =∼ .4026, and R = (1.71,−2.69) as illustrated in

Figure 5.

Figure 5: y2 = x3 − x+ 4

Now consider the same curve as in the previous example, and let P = (−0.847, 2.06).

Now P +P = (−0.847, 2.06)+(−0.847, 2.06), with ′+′ as in Definition 2.1. Then m =

−0.7651 and −R = (1.77, 2.79) which implies R = (1.77,−2.79) which is illustrated

in Figure 6

11

Figure 6: y2 = x3 − x+ 4

For a final example on the same curve, consider P+−P again with ′+′ as in Definition

2.1. This time let P = (−0.77, 2.08), then by our definition of the inverse, −P is

reflected about the X − axis and we get −P = (−.077,−2.08). Now the slope for

P + −P is undefined since x2 − x1 = 0, hence we have a vertical line, which by

definition intersects ∞.

Figure 7: y2 = x3 − x+ 4

12

3 Applications of the Elliptic Curve Group

In the following section we will see some of the applications of the ECG as it

pertains to cryptography. As it turns out the ECG’s group structure is such that the

discrete logarithm problem is extremely hard given a large enough order. The fol-

lowing sections will describe current public and private cryptography schemes, which

will lead to how the ECG will apply in these situations.

3.1 Cryptography

From warfare to commerce, cryptography has played an important part in human

history. Julius Caesar famously encrypted his messages by shifting the letters of the

alphabet by three places. This method of shifting the letters of the alphabet is now

known as a ”Caesar Cipher”, and in general enciphering plaintext α in this manner

can be described as E(α) = α + k (mod n) where n is the number of characters

in the alphabet used, and k is the key. Similarly, deciphering E(α), is described as

D(E(α)) = E(α)− k (mod n).

The many advances in technology that have taken place in the years since have ren-

dered this, as well as many other algorithms useless in hiding information. Computers

that are capable of executing billions of operations per second can easily exhaust all

possible keys, otherwise known as a brute force attack, in mere milliseconds. This

same advance in computing power is also responsible for the need of new more pow-

erful cryptographic schemes. The more powerful computers become the more useful

they are for things like online banking, e-commerce, and sharing information. On

the other hand the more powerful computers become the harder it becomes to come

up with a secure algorithm. In the next few sections I will discuss some of these

13

algorithms as well as describe the role the elliptic curve group takes in these schemes.

3.2 Private Key Cryptography

Private key cryptography, is any cryptographic scheme in which the same key

which is used to encrypt and decrypt. This type of cryptography is also known as

symmetric key cryptography (SKC). The security of these algorithms rely on a secret

key that only the parties communicating know. Algorithms which rely on SKC,

tend to be extremely fast, compared to others. The most notable algorithm is the

Data Encryption Standard (DES), which uses a 56 bit key. However, with increasing

computational power, the 56 bit key size has since been deemed ineffective against a

brute force attack. Thus, Triple DES was introduced, which has a larger key size of

112 bits, providing enough security to protect against the brute force attack.

As with any cryptographic scheme, SKC has its benefits, as well as its drawbacks.

For example the problem of distributing the key to trusted parties, which could involve

another key and a separate scheme altogether. Also, since the same key is used for

both encrypting and decrypting, anyone who has access to the key, has access to the

plaintext. Consider the situation in which a bank would like to send an encrypted

message to an ATM with your account information. The bank uses SKC to encrypt the

message containing your account balance. If you were to somehow gain knowledge of

this key and intercept the message on the way to the ATM, you could, in fact, decrypt

the message, change the amount, re-encrypt the message and send it on its way. Then

upon receiving this message the ATM decides to let you withdraw the extra 10,000

dollars you so generously gave yourself. This process of intercepting, changing, and

passing on a message is known as a ”man in the middle” attack.

14

3.3 Public Key Cryptography

Public Key Cryptography, relies on both a pubic, and a private key for its security.

The public key is broadcast to the intended recipient unencrypted, as plaintext. This

means that anyone listening in on this transmission has access to the senders public

key. This may sound unintuitive since the whole point of cryptography is to hide

important information, not broadcast it, but the real security lies in the private key.

There are many algorithms to create such public/private key pairs but all of them

rely on some sort of ”trap door” function, that is relatively easy to compute one way,

and computationally infeasible to compute the inverse.

For example, Alice wants to send a message to Bob using a public key crypto-

system. She obtains Bob’s public key that is known to everyone, and encrypts her

message with it. She then sends this message to Bob, who is the only one who knows

how to decrypt it since he is the one who generated the key pair. In other words,

there are two keys, the one that encrypts the message and another key that decrypts

the message. This is why sending out the public key in no way endangers the message

from being decrypted.

These methods also have their drawbacks. Since everyone has access to Bob’s

public key, Bob can’t be sure that it is in fact Alice who is sending him this message.

Someone could very easily pretend to be Alice, use Bob’s public key, and send him a

message pretending to be Alice. This is called Masquerading, and it is the reason for

certificate authorities which assure you that the sender is in fact who they say they

are. Certificate authorities are however beyond the scope of this paper.

15

4 The Discrete Logarithm Problem

The security of elliptic curve cryptography lies in what’s called a ”trap door func-

tion”. A trap door function, is a function in which computations are easy one way,

where as computing the inverse operation is very hard. Hard enough that with current

computational power this problem, it would still take many years to solve. Consider

the following example:

Let G be a finite cyclic group, such that |G| = n. Let a be the generator of G,

then G = 〈a〉 = {a0, a1, a2, · · · , an−1}. Now to calculate any power of a by adding

the exponents mod n, i.e., a2 + a6 = a2+6(mod n). So as you can see calculating any

power of the generator is easy, and can be computed quickly. Finding the inverse, or

solving ax = ay(mod (n)), for x by computing loga(a
y) = x. This problem is called

the discrete logarithm problem.

Theorem 4.1. Let G be a group such that |G| = p for some prime p. Then G is a

cyclic group.

Proof. Since |G| ≥ 2 there exists x ∈ G such that x 6= 1, then 〈x〉 ≤ G. So by

LaGrange’s Theorem |〈x〉| divides p = |G|. Since p is prime we get that 〈x〉 = 1 or

p. If |〈x〉| = 1, then 〈x〉 = {1}, and so x = 1 a contradiction since x 6= 1. Thus

|〈x〉| = p = |G|. Now since 〈x〉 ≤ G we get 〈x〉 = G.

Consider the additive group (Z7,+) = {0, 1, 2, 3, 4, 5, 6}, then |Z7| = 7, hence Z7 is

cyclic by Theorem 4.1 and Z7 = 〈4〉. Now consider (3)4 = y (mod 7), it is easy to cal-

culate (3)4 = 12 ≡ 5 (mod 7) to find y. However computing the discrete logarithm of

this is not very easy, finding y ≡ (x)4 (mod 7) is difficult even for this trivial example.

This problem becomes difficult the larger as the modulus becomes sufficiently large.

16

At that point checking every power of the generator becomes infeasible. Also, we see

that 3 is not the only solution to this problem since (7)4 = 0 (mod 7) we can see that

(7n)4 = 0 (mod 7) for any integer n. Hence (3)4 + (7n)4 = 5 + (0)4 = 5 (mod 7),

and we have infinitely many solutions. It is this situation which makes the discrete

logarithm, a favorite among cryptographic schemes. In 1976 it was Whitfield Diffie

and Martin Hellman who first exploited this problem in what is now known as the

Diffie - Hellman key exchange algorithm described in Section 4.1. [4]

4.1 The Diffie - Hellman Key Exchange

The Diffie - Hellman key exchange algorithm is a public key algorithm which

directly exploits the discrete logarithm problem. In this protocol, as in the example

in the previous section, two numbers are chosen. The first number p, is a large prime

roughly 300 digits long, the second number g, is the generator of the group (Zp, ·)

which is guaranteed to be cyclic by Theorem 4.1. These numbers are public and are

agreed upon between the two parties communicating, Alice and Bob.

4.1.1 Diffie-Hellman Key Generation

Alice and Bob publicly agree upon p and g, and we assume that anyone listening

has access to this information. Then key generation is as follows:

(1) Alice picks a number a, where 1 < a < p−1 and then calculates Ak = ga (mod p),

and sends Ak to Bob.

(2) Bob also picks a number b, where 1 < b < p− 1 and calculates Bk = gb (mod p),

and sends Bk to Alice.

(3) Alice receives Bk from Bob and computes Ba
k (mod p) = Kab

17

(4) Bob receives Ak from Alice and computes Abk(mod p) = Kab

Now Kab is a symmetric key that both Alice and Bob can use to communicate with

each other via some symmetric key algorithm. Alice and Bob never send a or b

respectively, they are kept secret as their private keys. Then anyone wishing to

gain knowledge of their private keys would have to compute gx = Ak (mod p) and

gy = Bk (mod p) which is the discrete logarithm of x and y respectively.

4.1.2 Example: Diffie-Hellman Key Exchange

Alice and Bob choose p = 17, and g = 3, since 〈3〉 = Z17. Alice chooses a = 6,

and computes Ak = 36 (mod 17) = 15 and sends it to Bob. Bob then chooses b = 7,

and computes Bk = 37 (mod 17) = 11 and sends it to Alice. Alice then computes

116(mod 17) = 8 = Kab and Bob computes 157(mod 17) = 8 = Kab. Thus Alice and

Bob have exchanged a shared symmetric key Kab that they may use in any symmetric

key algorithm they choose.

The elliptic curve group is structured in such a way that the Diffie-Hellman algo-

rithm can be easily paralleled. In the next section we will simulate the Diffie-Hellman

key exchange using the elliptic curve group over Fp.

4.1.3 Elliptic Curve Key Exchange simulating Diffie-Hellman

Here we simulate the Diffie-Hellman key exchange using the elliptic curve group

over Fp. In this example Alice and Bob must first agree upon elliptic curve E, Fp,

and P ∈ E(α,β)(Fp). They must agree on P ∈ E(α,β)(Fp) such that 〈P 〉 has a large

enough order, so that the discrete logarithm of E(α,β)(Fp) is hard . In our case we will

choose P such that 〈P 〉 = E(α,β)(Fp).

18

Let E be the curve y2 = x3 + x + 1 ∈ Fp[x], Fp be Z13, and cyclic subgroup

〈(1, 4)〉. Then |E(Fp)| = 17 = |〈(1, 4)〉|, this fact is illustrated in Table ??. Alice

chooses a = 3 and computes Ak = 3 · (1, 4) = (0, 12) and sends Ak = (0, 12) to Bob.

Bob chooses b = 4 and computes Bk = 4 · (1, 4) = (11, 11) and sends Bk = (11, 11)

to Alice. Alice then computes B3
k = 3 · (11, 11) = (10, 7) = Kab and Bob computes

A4
k = 4 · (0, 12) = (10, 7) = Kab. Alice and Bob then choose an algorithm to use this

point to encrypt the message via some symmetric key algorithm. To discover either

Alice, or Bob’s private key, the party listening in would have to compute log(1,4)Ak or

log(1,4)Bk respectively. This is precisely the discrete logarithm problem in E(Fp).

Points in 〈(1, 4)〉

〈P 〉 nP (nP)−1

1 · (1, 4) (1, 4) (1, 9)
2 · (1, 4) (8, 12) (8, 1)
3 · (1, 4) (0, 12) (0, 1)
4 · (1, 4) (11, 11) (11, 3)
5 · (1, 4) (5, 1) (5, 12)
6 · (1, 4) (10, 6) (10, 7)
7 · (1, 4) (12, 8) (12, 5)
8 · (1, 4) (4, 2) (4, 11)
9 · (1, 4) (7, 0) (7, 0)
10 · (1, 4) (4, 11) (4, 2)
11 · (1, 4) (12, 5) (12, 8)
12 · (1, 4) (10, 7) (10, 6)
13 · (1, 4) (5, 12) (5, 1)
14 · (1, 4) (11, 2) (11, 11)
15 · (1, 4) (0, 1) (0, 12)
16 · (1, 4) (8, 1) (8, 12)
17 · (1, 4) (1, 9) (1, 4)

19

4.2 ElGamal Cryptosystem

The ElGamal cryptosystem, is based on the discrete logarithm problem and was

named after its inventor Taher ElGamal. As in Diffie-Hellman, ElGamal relies on

a very large prime p, and the primitive root α, of (F∗p, ·). In ElGamal however, to

compute the public key, an integer k is chosen and αk is computed and (p, α, αk) is

publicly announced. The next section describes in detail the ElGamal algorithm.

4.2.1 ElGamal Key Generation

In this public key algorithm we assume that anyone listening has access to this

information. Then key generation is as follows:

(1) Bob picks a large prime number p, and a primitive root α of (Fp, ·).

(2) Bob picks a random number k ∈ Z such that 2 ≤ k ≤ p − 2, and computes

αk (mod p).

(3) Bob sends (p, α, αk) to Alice as his public key and keeps k private.

(4) Alice receives Bob’s public key (p, α, αg).

(5) Alice picks a random number a ∈ Z such that 1 < a < p− 1.

(6) Alice computes αa (mod p), and mi · (αk)a ≡ mi · αak (mod p), where mi is l

characters long.

(7) Alice sends ciphertext ci = (αa (mod p),miα
ak (mod p)).

(8) Bob receives C from Alice and computes (αa)−k·mi·αak ≡ mi·αak−ka ≡ mi (mod p)

Then Bob’s public key is (p, α, αk), which can be used by Alice to encrypt her plaintext

message.

20

4.2.2 The Elliptic Curve Cryptosystem Simulating ElGamal

As an example Alice would like to send the message M = CIPHERTEXT

to Bob. First Alice and Bob must agree on agree on a mapping scheme to map

the character set, in this case the english alphabet, to the points on the elliptic

Plaintext Power Point

C = 3 3 · (1, 10) (82, 43) = m1

I = 8 8 · (1, 10) (36, 91) = m2

P = 15 15 · (1, 10) (19, 34) = m3

H = 7 7 · (1, 10) (38, 3) = m4

E = 4 4 · (1, 10) (30, 68) = m5

R = 18 18 · (1, 10) (95, 66) = m6

T = 19 19 · (1, 10) (80, 42) = m7

E = 4 4 · (1, 10) (30, 68) = m8

X = 23 23 · (1, 10) (18, 15) = m9

T = 19 19 · (1, 10) (80, 42) = m10

Figure 8: Message Encoding

curve. In our example we will map the

powers of the group generator mod 26,

so for example, if g were the generator of

our group, then g4 = E as well as g30.

Now Bob chooses p = 97, so Fp = Z97

and curve E = y2 = x3 + x + 1 then

|E(1,1)(Z97)| = 97.Then Bob chooses the

point (1, 10), since |〈(1, 10)〉| = 97. Fi-

nally Bob chooses k = 27 and computes

27 · (1, 10) = (84, 33). Bob sends his pub-

lic key (97, (1, 10), (84, 33)) to Alice. Alice

receives (97, (1, 10), (84, 33)) then splits

up her messages M = CIPHERTEXT

into individual points on the curve, as

shown in Figure 8. Now Alice chooses a = 3 since 1 < 3 < 95, then computes

21

3 · (1, 10) = (82, 43) and 3 · (84, 33) = (68, 67) then enciphers

c1 = (82, 43) + (68, 67) = (41, 53)

c2 = (36, 91) + (68, 67) = (81, 42)

c3 = (19, 34) + (68, 67) = (11, 81)

c4 = (38, 3) + (68, 67) = (20, 52)

c5 = (30, 68) + (68, 67) = (62, 73)

c6 = (95, 66) + (68, 67) = (36, 39)

c7 = (80, 42) + (68, 67) = (21, 12)

c8 = (30, 68) + (68, 67) = (62, 73)

c9 = (18, 15) + (68, 67) = (62, 2)

c10 = (80, 42) + (68, 67) = (21, 12)

and sends the tuples ((82, 43), ci) to Bob. Bob receives the tuples form Alice and

computes 27 · (82, 43) = (68, 67), and then (68, 67)−1 = (68, 30) and deciphers by

22

computing

m1 = (41, 53) + (68, 30) = (82, 43) = 3 · (1, 10) = C

m2 = (81, 42) + (68, 30) = (36, 91) = 8 · (1, 10) = I

m3 = (11, 81) + (68, 30) = (19, 34) = 15 · (1, 10) = P

m4 = (20, 52) + (68, 30) = (38, 3) = 7 · (1, 10) = H

m5 = (62, 73) + (68, 30) = (30, 68) = 4 · (1, 10) = E

m6 = (36, 39) + (68, 30) = (95, 66) = 18 · (1, 10) = R

m7 = (21, 12) + (68, 30) = (80, 42) = 19 · (1, 10) = T

m8 = (62, 73) + (68, 30) = (30, 68) = 4 · (1, 10) = E

m9 = (62, 2) + (68, 30) = (18, 15) = 23 · (1, 10) = X

m10 = (21, 12) + (68, 30) = (80, 42) = 19 · (1, 10) = T,

thus retrieving Alice’s original message M = CIPHERTEXT . This completes our

example of the elliptic curve cryptosystem simulating the ElGamal algorithm.

23

5 Factorization

The discrete logarithm is not the only problem used in cryptography, factorization

for example is also a very widely used. The problem of factoring a large number into

prime factors is also very difficult. It turns out that computers operating at billions

of operations per second could take billions of years to factor sufficiently large primes

(depending on the algorithm used). Perhaps the most notable cryptosystem that

relies on the factorization problem is the RSA cryptosystem.

5.1 RSA

The RSA algorithm was named after its inventors Ronald Rivest, Adi Shamir, and

Leonard Adleman. RSA uses the product of two large prime numbers, n = p ·q for its

security. The steps in the RSA algorithm for encrypting, and decrypting a message

M between Bob and Alice are as follows:

(1) Bob calculates n = p · q where p and q are two large prime numbers, and Euler’s

Totent Function ϕ(n) = (p− 1)(q − 1).

(2) Bob calculates l, the length of the message using the base b, to which the message

will be encoded as, bx < n < by. Then l = x or y.

(3) Bob then picks a number e which is relatively prime to ϕ(n).

(4) Finally, Bob picks a number d such that d ≡ e−1 (mod ϕ(n)).

(5) Bob sends Alics (n, e) as his public key, and keeps d and ϕ(n) private.

(6) Alice receives (n, e) and creates ciphertext C = M e (mod n), sends C to Bob.

24

(7) Bob receives C from Alice and computes M = Cd (mod n), to recover Alice’s

original message M .

5.1.1 RSA Example

As an example take M = CIPHERTEXT , we will choose p = 37 and q = 47,

then n = p · q = 37 · 47 = 1739, and ϕ(n) = (36 · 46) = 1656. In this example we will

convert the message to base 26, so to calculate l we see that 262 < 1739 < 263 and we

use l = 3. Then we choose e = 55 and check that gcd(1656, 55) = 1 so we may con-

tinue. Now to find d, we must solve ed ≡ 1(mod n) so we use the Euclidean algorithm

in reverse to solve ϕ·x+e·d = 1 and we see in fact that (−9)1656+(271)55 ≡ 1 (mod n)

thus d = 271. Now we convert M = CIPHERTEXT to base 26, l characters at

a time and pad the message with the letter A. Then CIPHERTEXTAA becomes

CIP - HER - TEX - TAA, and we enciphers as follows,

CIP = 2 · 262 + 8 · 26 + 15 ≡ 1575 (mod 1739)

HER = 7 · 262 + 4 · 26 + 17 ≡ 1375 (mod 1739)

TEX = 19 · 262 + 4 · 26 + 23 ≡ 798 (mod 1739)

TAA = 19 · 262 + 0 · 26 + 0 ≡ 261 (mod 1739)

25

Now we compute C = Md (mod n),

157555 ≡ 169 (mod 1739)

137555 ≡ 549 (mod 1739)

19855 ≡ 798 (mod 1739)

26155 ≡ 386 (mod 1739),

and convert this back to text as,

169 = 0 · 262 + 6 · 26 + 13 = AGN

549 = 0 · 262 + 21 · 26 + 3 = AVD

798 = 1 · 262 + 4 · 26 + 18 = BES

386 = 0 · 262 + 14 · 26 + 4 = AOE,

and we see that C = AGNAVDBESAOE. To decrypt, AGNAVDBESAOE be-

comes AGN -AVD-BES-AOE and decrypt as follows,

AGN = 0 · 262 + 6 · 26 + 13 ≡ 169 (mod 1739)

AVD = 0 · 262 + 21 · 26 + 3 ≡ 549 (mod 1739)

BES = 1 · 262 + 4 · 26 + 18 ≡ 798 (mod 1739)

AOE = 0 · 262 + 14 · 26 + 4 ≡ 386 (mod 1739),

26

then we compute M = Cd (mod n),

169271 ≡ 1575 (mod 1739)

549271 ≡ 1375 (mod 1739)

798271 ≡ 198 (mod 1739)

386271 ≡ 261 (mod 1739),

and convert this back to text as,

1575 = 2 · 262 + 8 · 26 + 15 = CIP

1375 = 7 · 262 + 4 · 26 + 17 = HER

198 = 19 · 262 + 4 · 26 + 23 = TEX

261 = 19 · 262 + 0 · 26 + 0 = TAA.

Hence we arrive at our or original message M = CIPHERTEXTAA.

To discover the plaintext message, the party listening is would have to factor

n, into p · q which, with sufficiently large p and q this is infeasible to do. There

are however, algorithms that cut down on factoring time, in the next section I will

describe Lenstra’s elliptic curve factoring method.

5.2 Lenstra’s Elliptic Curve Factoring Method

Definition 5.1. Suppose that P1, P2 are points on E(Q) where P1 + P2 6= ∞ adn

the denominators of P1, P2 are prime to n. Then P1 + P2 has coordinates having

denominators prime to n if and only if there does not exist a prime p | n such that

27

P1 + P2 =∞ (mod p) on the elliptic curve E(Z/nZ). [2, p.]

Lenstra’s method of factorization using elliptic curves, is a factoring algorithm

which has strong evidence of an expected running time of©(e
√

(2+ε)ln(p(ln(lnp)))ln(n)2).

Here p is the smallest prime factor of the number we are factoring n, and ε goes to

zero as p gets sufficiently large. In this algorithm we take the elliptic curve group

E(Z/nZ), which as you may notice is not over Fp. It is this situation which is exploited

from Definition 5.1 to find the prime factors of n. The algorithm for factoring using

Lenstra’s method is as follows:

(1) (Select an Elliptic Curve): Choose a random pair (E,P) where E = E(Z/nZ) is

an elliptic curve:

y2 = x3 + α x+ β and P is a point on E

Check that g = gcd(n, 4α3 + 27β2) = 1. If not, then we have split n if 1 < g < n,

and we may terminate the algotithm. Otherwise, we may select another (E,P)

pair.

(2) Select M ∈ N and bounds A,B ∈ N such that the canonical prime factorization

for M is M =
∏l

j=1 p
apj
j for small primes p1 < p2 < ... < pl ≤ B where apj =

bln(A)/ln(pj)c is the largest exponent such that pj ≤ A. Set j = k = 1.

(3) Use addition as described in Definition 2.1, to calculate pjP

(4) (Calculating the gcd):

• If pjP 6≡ ∞(mod n), then set P = pjP , and set k to k + 1

– (i) If k ≤ apj , then go to step 3.

28

– (ii) If k > apj , then reset j to j + 1, and reset k to k = 1, if j < l, then

go to setp 3. Otherwise go to step 5.

• If pjP ≡ ∞(mod n), then compute g = gcd(m2, n) where m2 is the denom-

inator of the slope calculation. If n > g, terminate the algorithm, since we

have split n. If g = n, go to step 5.

(5) (Selecting a new pair): Set r = r − 1. If r > 0, go to step (1). Otherwise,

terminate with ”failure”. [2]

5.2.1 Example Lenstra’s Method

Now we will attempt to split n = 38411, using Lenstra’s Method. First we choose

(E,P) = (y2 = x3 + 2x+ 9, (0, 3)) and we check thats

gcd(38411, 4 · 23 + 27 · 92) = gcd(38411, 2219) = 1

so we may continue. Now we choose our bounds, so let A = 3, and B = 4, then

M = 6 = 2 · 3 and our exponents are,

ap1 = bln(A)/ln(p1)c = bln(3)/ln(2)c = 1

ap2 = bln(A)/ln(p2)c = bln(3)/ln(3)c = 1.

Now we calculate p1P = 2(0, 3) ≡ (4268, 11378) 6≡ ∞ (mod n). Now we set P =

(4268, 11378), and compute p2P ≡ 3P ≡ (26652, 211) ≡ ∞ (mod n) so we must check

gcd(m2, n) = gcd(5609, 38411) = 71, thus we have split n = 71 · 541.

29

References

[1] England, Matthew. Elliptic Curve Cryptography. Diss. Heriot-Wall University,

Summer 2006. N.p.:n.p.n.d. Print.

[2] Forouzam, Behrouz A. Introcuction to Cryptography and Network Security.

Boston: McGraw-Hill Higher Education, 2008. Print

[3] Mollin, Richard A. An Introduction to Cryptography. Boca Raton: Chapman &

Hall/CRC, 2007. Print.

[4] ”3.6.1 What Is Diffie-Hellman?” RSA Laboratories. EMC Corporation, 2012.

Web. 11 Aug. 2012. ¡http://www.rsa.com/rsalabs/node.asp?id=2248¿.

[5] Washington, Lawrence C. Elliptic Curves: Number Theory adn Cryptography.

Boca Raton, FL: Chapman & Hall/CRC, 2008. Print.

30

	Introduction
	The Elliptic Curve Group Over Finite Fields
	The Elliptic Curve Group over R

	Applications of the Elliptic Curve Group
	Cryptography
	Private Key Cryptography
	Public Key Cryptography

	The Discrete Logarithm Problem
	The Diffie - Hellman Key Exchange
	Diffie-Hellman Key Generation
	Example: Diffie-Hellman Key Exchange
	Elliptic Curve Key Exchange simulating Diffie-Hellman

	ElGamal Cryptosystem
	ElGamal Key Generation
	The Elliptic Curve Cryptosystem Simulating ElGamal

	Factorization
	RSA
	RSA Example

	Lenstra's Elliptic Curve Factoring Method
	Example Lenstra's Method

		2012-09-14T11:18:51-0400
	ETD Program

