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ABSTRACT

In 1904, George Burnside [2] proved that any group G with |G| = p%¢® where p
and ¢ are primes and a and b are positive integers is solvable. Burnside accomplished
this through the use of character theory, i.e., the interaction between a group and a
vector space.

Since then, group theorists began to try to prove this theorem without the use of
character theory. They wanted a proof that relied only on group theoretical principles.
This was finally achieved in 1972 by Helmut Bender [1].

However, in 1970, David M. Goldschmidt [3] supplied a group theoretic proof of
Burnside’s Theorem but only when the order of the group, GG, was odd. Then in 1972,
Hiroshi Matsuyama [4] supplied a group theoretic proof of Burnside’s Theorem when
the order of the group, GG, was even. Ironically, Bender’'s and Matsuyama’s results
occurred independently and simultaneously. Therefore, both papers were published
even though Bender’s proof was more general.

The goal of this paper is to present the background knowledge and the more

general proof of Burnside’s Theorem.

v



I would like to thank my friends and family for their support. I would especially like
to thank my advisor, Dr. Flowers, for all his insight and for inspiring me to learn

about group theory.



Contents

1 Preliminaries

2 Solvable Groups

3 Nilpotent Groups

4 Groups Acting on Groups

5 Burnsides p®¢® Theorem

vi

12

23

33

47



1 Preliminaries

In this section, we will introduce some background concepts and ideas. These
ideas will build up the tools needed for the proof of Burnside’s Theorem. We begin

by introducing the idea of a group.

Definition 1.1. A group is a nonempty set G along with a binary operation x such

that
1. (closure): axbe G forall a,b e G;
2. (associativity): (a*b)xc=ax* (bx*c) for all a,b,c € G;
3. (identity): there ezists e € G such that exa =axe = a for all a € G;
4. (inverse): for all a € G there exists b € G such that a xb=bx*a = e.

Definition 1.2. Let (G, *) be a group. A subset H C G is called a subgroup of G

if (H,%) is a group. We write H < G.

Theorem 1.1 (Subgroup Test). Let G be a group and ) # H C G. Then H < G if
and only if ab=' € H for all a,b € H.

Definition 1.3. Let G be group, a € G, and H < G. Then the following are subgroups
of G:

1. Z(G) ={9g € G| gr==xg forallx € G}. We call this the center of G.
2. (a) ={a" | n € Z}. We call this the cyclic subgroup generated by a.
3. Cgla) ={g € G| ag = ga}. We call this the centralizer of a.

4. Ng(H)={g9€ G| gHg' € H}. We call this the normalizer of H.

1



Definition 1.4. Let G be a group, H < G and g € GG. The left coset of H in G
containing g is

gH ={gh | h € H}.

Theorem 1.2. Let G be a group, H < G, and a,b € G. Then aH = bH if and only
ifbla € H.

Definition 1.5. Let G| and G4 be groups and ¢ : Gy — G5. Then ¢ is a homomor-
phism f
¢(ab) = ¢p(a)p(b)  for all a,b € G.

If, in addition, ¢ is 1-1 and onto, we call ¢ an isomorphism and we write G = Gs.

Theorem 1.3. Let Gy, Gy be groups and ¢ : Gu — G be a homomorphism. Define
the kernel of ¢ by

kern ¢ ={g € G1 | ¢(g9) = 1}.
Then kern ¢ < Gy.

Definition 1.6. Let G be a group and H < G. Then H is a normal subgroup of
G if ghg~t € H for all g € G and for allh € H. We write H < G.

Theorem 1.4. Let G be a group and H I G. Define

G
E:{QHMGG}-

Then % 15 a group under the operation

aHbH = abH for all aH,bH € %



We call % the quotient group.

Lemma 1.1. Let G be a group. Then {(1;} = G.

Proof. Define ¢ : G — {1} by ¢(g) = g{1} for all ¢ € G. We want to show that ¢ is

a homomorphism. Let a,b € G. Then

é(ab) = ab{1}
— a{1}b{1}
— 6(a)o(b).

Thus, ¢ is a homomorphism. We want to show that ¢ is onto. Let g{1} € {1} Then
g € G and ¢(g) = g{1}. Thus, ¢ is onto. We want to show that ¢ is 1-1. Suppose
a,b € G such that ¢(a) = ¢(b). Then a{l} = b{1} or b~'a € {1}. So b~ la =1 or

a =b. Thus, ¢ is 1-1. Therefore, ¢ is an isomorphism and so % = G.

Lemma 1.2. Let G be a group and H < G such that ‘|1§[|| = 2 then H < G.

Proof. Let g € G and h € H. We want to show that ghg~* € H. If g € H then
ghg™ € H since H < G. If g ¢ H then gH # 1H. Then since 16 _ o we get
G =1H UgH. Now ghg™! € G and so ghg™! € 1H or ghg™! € gH. If ghg™t € gH
then there exists h; € H such that ghg™* = ghy. Then hg~' = h; or g =h;'h € H,
which contradicts g € H. Therefore ghg™! € 1H = H and so H < G.

O

Theorem 1.5 (1% Isomorphism Theorem). Let Gy, Gy be groups and ¢ : G1 — Gy

be a homomorphism. Then

w



Proof. Let K = kern ¢. Define 6 : G — 6(G1) by 6(aK) = d(a) for all aK € 1.

We want to show that 6 is a homomorphism. Let aK,bK € % Then

0(aKbK) = 6(abK)
= ¢(ab)
= ¢(a)d(b)
= 0(aK)0(bK)

and so 6 is a homomorphism. We want to show that 6 is 1-1. Let a K, bK € % such
that 0(aK) = 0(bK). Then ¢(a) = ¢(b) or ¢(b)*¢p(a) = 1. Thus, ¢p(b~')p(a) = 1 or
¢(b~ta) = 1. Hence b~'a € kern ¢ = K. Thus, aK = bK and so 6 is 1-1. We want to
show that 0 is onto. Let ¢(x) € ¢(G1) where z € G;. Then 2K € % and 0(zK) =

¢(x). Hence, 0 is onto and so 6 is an isomorphism. Therefore, k;e%; 3 = o(Gh).

]

Theorem 1.6 (2"¢ Isomorphism Theorem). Let G be a group, N <G, and H < G.
Then

HN _ H

N HNN’

Proof. Define ¢ : H — H_]\Z[V by ¢(h) = hN for all h € H. We want to show that ¢ is

a homomorphism. Let a,b € H. Then

¢(ab) = abN
= aNDN

= ¢(a)o(b)



and so ¢ is a homomorphism. We want to show that ¢ is onto. Let hnN &€ H_]\]f\f

Then

é(h) = hN

=hnN as (hn)'th=n"'teN
and so ¢ is onto. We claim that the kern ¢ = H N N. Now,
hekerng < ¢(h)=IN<hN=IN=1'he Noehec Nshec HNN.

Thus, kern ¢ = H N N. By Theorem 1.5, %naﬁ = §(H). Thus, i+ = ¢(H)

and, since ¢ is onto, we get Hﬁ]\f = HNN.

]

Theorem 1.7 (3" Isomorphism Theorem). Let G be a group, N G, H <G such

that N < H. Then
GIN G
H/N H

Proof. Define ¢ : % — % by ¢(gN) = gH for all gN € % We want to show that ¢

is well-defined. Let alN,bDN € % such that aN = DN. Then a = al € aN = DN and

so there exists n € N such that ¢ = bn. Then

¢(aN) =aH
=bnH
=bH

= ¢(bN)



and so ¢ is well-defined. We want to show that ¢ is a homomorphism. Let alN,bN €

%. Then

¢(aNbN) = ¢(abN)

=abH

=aHOH

= ¢(aN)¢(bN)
and so ¢ is a homomorphism. We want to show that ¢ is onto. Let gH € % Then
gN € ]C\Y} and ¢(gN) = gH. Thus, ¢ is onto. We claim that the kern ¢ = %-. Then,

H
gN € kern ¢ < ¢(gN)=1H < gH =1H < g€ H < gN € —.

N
G/N o G/N .
Thus, kern ¢ = % By Theorem 1.5, k‘er/—nqb = ¢(G/N) or —HfN = ¢(G/N) and,
since ¢ is onto, we get gé% o~ %

]

Theorem 1.8. Let G be a group and N < G. Define ¢ : G — G by ¢(g) = gN for

all g € G. We call ¢ the natural map. The following are true:
1. ¢ is a homomorphism
2. kerngp=N

5. If H < G, then ¢(H) = L&

4 IfH<G, then ¢~ (H—]\J,V> — HN

G then L = KwhereN<K<G

5. L< %, N



Proof. For (1), let a,b € G. Then

o(ab) = abN
= aNDN

= d(a)p(b).

Thus, ¢ is a homomorphism. For (2), let n € kern ¢. Then,

nekerngs dn)=IN&nN=IN<1'ne NeneN.

Thus, kern ¢ = N. For (3), ¢(H) € HN. Let h € H,n € N, and ¢(h) € ¢(H).

N
Then

o(h) = hN
= hIN
HN
—
Hence, ¢(H) € HN . Next, ZN < ¢(H). Let inN € LN Then
N N N
é(h) = hN

=hnN as h 'hn € N.

Hence, hnN € ¢(H) and so HN ¢ ¢(H). Therefore, ¢(H) = HN

N N

For (4),



HN C ¢! (M) Let hn € HN. Then

N
¢(hn) = hn N
HN
N
Thus, hn € ¢! (H—]\jfv> and HN C ¢! ( ) Next, we want to show that
ot (%) C HN. Letg€¢_1< N) hen ¢(g %or gN € % Thus,

there exists h € H and n € N such that gN = hnN. Then g = g1 € gN = hnN and
so there exists n; € N such that ¢ = hnn; € HN. Thus, ¢! (HNN) C HN and so
¢! (%) — HN. For (5), we know ¢~(L) < G. If n € N then ¢(n) = IN € L
and so n € ¢ *(L). Thus N < ¢~*(L). We claim that % = L. Let gN € L.

-1 -1
Then ¢(g) € L and so g € ¢~'(L). Hence, gN € d)T(L) and so L < ¢T<L) Let

1
zN € ¢ (L> Then z € ¢~'(L) and so ¢(x) € L. But ¢(x) = zN and so zN € L.

N
1 —1
Thus, ¢ ]\gL) < Landso L = ¢T(L>

Theorem 1.9. Let G be any group and S C G. Define

(S)y = {s1sh? - 8% | s, € S,n; €Z, foralll <i<k,keZ}.

Then (S) < G and is called the subgroup generated by S.

Proof. Let s € S. Then s = s' € (S) and so (S) # 0. Let

ny n2 mi,,mo n
s1tsy? sk gt € (S)



where s; € S and r; € S for all 4 and n; € Z and m; € Z for all ¢ and k,l € Z". Then

ny _n2 Nk mi..m2 m\—1 __ _n1 _n2 ne —my —Mi—1 —m
I s (& R D B R PR T S o

€ (9).

Hence (S) < G by the Subgroup Test.

Definition 1.7. Let G be a group, a,b € G, H < G, and K < G. Then
1. [a,b] = aba='b™' is called the commutator of a and b

2. [H,K] = ({[h,k] | h € Handk € K}) is called the commutator subgroup

generated by H and K
3. G'"= ({{[a,b] | a,b € G}) is called the commutator subgroup of G
Lemma 1.3. Let G be a group, N G, H < G, and a,b € G. Then
1. [a,b] = 1 if and only if ab = ba

2. G'4qG

G
3.G

1s abelian

4. % is abelian if and only if G' < N

5. If G < H then HLG

Proof. For (1),

[a,b] =1 < aba™'b™! =1 < ab = ba.



k
For (2), let z € G’ and g € G. Then, = [][a;, b;] and so

i=1

=1
k

= [[lgaig™", gbig™]
=1

edqd’

and so G' < G. For (3), let aG',bG" € % Then,

[aG',bG'] = [a, b]G’

=1G" as 17 a,b] = [a,b] € G

Therefore, % is abelian. For (4),

% is abelian < [aN,bN] = 1N for alla,b € G

& [a,b)N = 1N < [a,b] € N & G' < N sinceN < G.

For (5), let g € G and h € H. Then [h™',g] € G' < H and so [h™!,g] € H. Let
[k~ g] = hy where hy € H. Then h-'g(h™')"'g! = hy. Thus, hlghg™ = Iy

implying ghg~' = hhy € H. Therefore, H < G.

10



Definition 1.8. Let G be a group and p a prime. Then G is called a p-group if

|G| = p" for some r € ZT U{0}.
Lemma 1.4. Let G be a group and H < G. Then Z(H) < G.

Theorem 1.10 (Cauchy’s Theorem for Abelian Groups). Let G' be abelian and p be

a prime such that p | |G|. Then G has an element of order p.

Definition 1.9. The group consisting of the set S, of all permutations on A =
{1,2,...,n}, under the operation of permutation multiplication is called the sym-

metric group of degree n.

Definition 1.10. Let G be a group and S # {} be a set. Then G acts on S if there

exists a homomorphism ¢ : G — Sym(S).

Definition 1.11. Let G be a group, S be a set, and a € S. The orbit of S con-
taining a is

Ga={ga | g€ G}.

Definition 1.12. A group G acts transitively on a set S, if there is only one orbit;

i.e., S =Ga for all a € S; i.e., for all c,d € S there exists g € G such that cg = d.

Definition 1.13. Let G be a group, p be a prime, and n € Z+*U{0} such that p™ | |G|
but p" ' f |G|. Then

1. |G|, = p™ is called the p™ part of G.
2. A subgroup H < G is called a sylow p-subgroup if |[H| = |G|,.

3. Syl,(G) is the set of all sylow p-subgroups of G.

11



Theorem 1.11 (Sylow’s Theorem). Let G be a group, p be any prime, H < G be a

p-group, and n, = |Syl,(G)|. Then

1. Syly(G) # {}

2. There exists P € Syl,(G) such that H < P. Moreover, G acts transitively on

Syl,(G) by conjugation

3. ny, | |G| and n, = 1(mod p).

2 Solvable Groups

We next need to introduce what it means for a group to be solvable and will

discover some important properties about solvability.

Definition 2.1. A group G is solvable if there exists a subnormal series
G=G G >GEGE--->G,=1

such that GGi is abelian for all 0 <i <n —1.
it+1

Example 2.1. S5 is a solvable group.

Proof. Consider the subnormal series

Sy > Az > 1.
S, 193] _ 6 Sz rvrp : A | As|
N ‘3:—::2 3 7, is abelian. Next, |43 | = — 3 and
SO {Af}f = Zs is abelian. Therefore S3 is solvable.
(]

12



Lemma 2.1. Let G be an abelian group. Then G is solvable.

Proof. Consider the subnormal series

Then by Lemma 1.1 we know {—Cf} = (. Since G is abelian, % is abelian and so GG

is solvable.

]

Example 2.2. The abelian groups Z,, and Z, X Zy X - -+ X Z. are solvable groups by

Lemma 2.1.
Lemma 2.2. Let G be solvable and H < G. Then H is solvable.

Proof. Since G is solvable we know there exists a subnormal series

G=G>G >G> -

v
P!
S
I
—_

G’l . . . .
such that G is abelian. Consider the series

We want to show that H N G4y < HNG;. Let x € HN G4 and g € HN G;. Then
grg~t € Gipy since x € Giyq and G <G, Also, grg™' € H since g € Hand z € H.

Thus, grg~* € HNG,yq. Hence HN Gy <HNG,; for all 0 < i < n — 1. Therefore,

13



H=H>HNG >HNGy>---> HNG, =1 is a subnormal series. Now

HNG; HNG,;
HNGi1 HNG NG
HNG,;)G,; .
= w by 2" Isomorphism Theorem
Giy1
Gi
< .
Gita

Since Gciil is abelian we get %& is abelian for all 0 < ¢ < n — 1. Thus H is

solvable.

Lemma 2.3. Let G be solvable and N < G. Then % 18 solvable.

Proof. Since G is solvable we know there exists a subnormal series
G=G,G >G> ---BG, =1

such that GGLl is abelian for all 0 <7 <n — 1. Taking the image of this series under
it

the natural map we get

1N _ GaN

2
e

= 1N.

v
v

=|&
o

2l
v
v

14



GigN _ G;N

We claim that N < N Let g;x1ni N € GN

and ginoN € N Then

Gig N
N

(ginaN) (gis1maiN)(ginaN) ™' = (ginaN)(gir1maN)(ny g ' N)
= ginagiyinang ‘g 'N
= gin2g; ' 9igi119; giming ‘g 'N

= ginag; ' Gigiv19; "N since gininy 'g; ' € N

GiaiN - -
S +Tl since g;nag; le Giy1 and g;gi119; ‘e N
Thus,
G _Go GlNDGQND---DG"N:IN
N N—™ N — N — - N

is a subnormal series. Then

G;N/N _ G;N

GiiN/N ~ G N
- GG N
B Gip N
~ G;
T GrNGia N
~ Gi/Gis
- GiNGiaN/Giga

by 3" Isomorphism Theorem

by 2"¢ Isomorphism Theorem

by 37 Isomorphism Theorem

G:N/N

Since quotients of abelian groups are abelian, we get G NN is abelian for all

0 <i < n —1. Therefore, % is solvable.

Theorem 2.1. Let G be a p-group. Then G is solvable.

Proof. Use induction on |G|. If |G| = 1 then G = {1} is abelian and therefore

solvable. Assume the theorem holds for all p-groups of order less than |G|. Without

15



loss of generality, G # 1. Since G is a p-group we know Z(G) # 1. Then —Z(GG)‘ =
|G| G

q . ) } )
—— < |G| and =2~ is a p-group. Thus is solvable by induction and so
Ziay) < |Gl and Zgy s o peroup Z(G) y

there exists a subnormal series

¢ G G G,
2@ - 26 2z 2 Bz ~ 29

such that % is abelian for all 0 < ¢ < n — 1. Taking the pre-image of this

series under the natural map we get

Then Gciil = Gcif /ZZ(?YC% is abelian by the 3"¢ Isomorphism Theorem and % =

Z(G) which is abelian. Therefore, G is solvable and every p-group is solvable by

induction.

Definition 2.2. Let G be a group. Define the derived series of G by

GO =qg,cM = (G(O))’ =G ,G% = (G(l))' el

and inductively define
G — (G(nfl)y_

By Lemma 1.3 we have a subnormal series

G=GUp>aV >G> >...

16



Theorem 2.2. Let G be a group. Then G is solvable if and only if there existsn € Z+

such that G™ = 1.

Proof. (<=) Suppose there exists n € Z* such that G™ = 1. Consider the derived

series

Then G%i)l) = (g((;)> - is abelian by Lemma 1.3 for all 0 <4 <n — 1. Therefore, G is

solvable. (=) Suppose G is solvable. Then there exists a subnormal series

G=G,>G >G> ---DG, =1

such that GGil is abelian. We claim that G < G;. Use induction on i. If i = 0 then
i+

GO =G < G = Gy. Suppose G < G;. We want to show G < G;,1. Now

G(i-H) _ (G(z))/

< (G;)" by induction hypothesis

i

< Gy since is abelian and by Lemma 1.3

i+1

Thus, the claim holds. Hence G < @G, =1and so G™ = 1.
O

Theorem 2.3. Let G be a group and H <G such that H and % are solvable. Then

G 15 solvable.

Proof. Since H and % are solvable then there exist m,n € Z* such that ™ = 1 and

(n) n n
(%) = 1H. Then G([}H = 1H by the claim in Lemma 2.3. Let ahH € G(]}H

where a € G™ and h € H. Then ahH = 1H and so, by Theorem 1.2, 1 'ah = ah € H

17



and so there exists h; € H such that ah = hy or a = hyh™' € H. Thus, G < H.
Now by the claim in Lemma 2.3 we get G"*™) = (GM)m) < H™) = 1 Thus,
G(+tm) = 1 and so G is solvable.

]

Definition 2.3. Let G be a group and ¢ : G — G be a map. Then ¢ is an automor-

phism if ¢ is 1-1, onto, and a homomorphism. Let

Aut(G) = {¢ | ¢ is an automorphism}.

Definition 2.4. Let G be a group and H < GG. Then H is a characteristic sub-

group of G if p(H) < H for all ¢ € Aut(G). We write H char G.

Lemma 2.4. Let G be a group, H < G, and K < G such that H char K and K char
G. Then H char G.

Proof. Let ¢ € Aut(G). Since K char G we know ¢(K) < K. If x,y € K such that
¢(z) = ¢(y) then since ¢ is 1-1 we get © = y. Thus, |¢p(K)| = |K| and so ¢(K) = K.
But then ¢|x € Aut(K) since H char K we get ¢|x(H) < H and so ¢(H) < H. Thus,
H char G.

0

Lemma 2.5. Let G be a group, H < G, and K < G such that H char K and K JG.
Then H<G.

Proof. Let g € G and h € H. We want to show that ghg™' € H. Define ¢, : K — K

by ¢4(k) = gkg™" for all k € K. First, we need to show that ¢, is a homomorphism.

18



Let z,y € K. Then,

Pg(zy) = gryg™"
=gzg 'gyg”"

= ¢g(x)¢g(y)-

Next, we need to show that ¢, is 1-1. If ¢,(z) = ¢,(y) then grg~" = gyg~' implying
x = y. Finally, we need to show that ¢, is onto. Let x € K. Since K <G we know

g7twg = (g7 )a(g™") " € K and ¢4(g~'zg) = g(g~'wg)g™" = x. Thus, ¢y € Aut(K).
Since H char K we get ¢,(h) € H or grg~* € H. Therefore, H < G.

Lemma 2.6. Z(G) char G.

Proof. Let ¢ € Aut(G), z € Z(G), and g € G. We want to show that ¢(z) € Z(G).

Since ¢ € Aut(G) there exists g; € G such that ¢(g1) = g. Now,

P(2)g = (2)9(g1)
= ¢(291) since ¢ € Aut(G)
= ¢(g12) since z € Z(G)
= ¢(91)0(2)
= 99(2).

Thus, ¢(z) € Z(G) and so Z(G) char G.

19



Definition 2.5. A group G is characteristically simple if {1} and G are its only

characteristic subgroups.

Definition 2.6. Let G be a group and {H;}_, be a collection of subgroups of G. We
say G = Hy X Hy x -+ x H, if
1. G=1]] H;
i=1
2. HHNJ[H;=1 forall1 <i<n
J#1
3. H; <G foralll <i<n

Theorem 2.4. Let G be a characteristically simple group. Then G = G; X Gy X - -+ X

G, where G;s are simple isomorphic groups.

Proof. Let 1 # G4 QG such that |G| is minimal and H = [] G; such that

=1
1. GZ%’Glforangzﬁn
2. G;<dGforalll <i<n
JFi

4. n is maximal

Clearly, H < G since G; < G for all 1 < i < n. If H is not a characteristic subgroup
of G then there exists ¢ € Aut(G) and 1 < i < n such that ¢(G;) £ H. Since
G; G and ¢ € Aut(G) we know ¢(G;) I G. Also ¢(G;) = G; = Gy and so
#(G;) =2 Gy. Now HNP(G;) <G and H N ¢(G;) < ¢(G;). Thus, |H N @(G;)| <
lo(G;)| = |Gi| = |G1|. Hence, H N ¢(G;) = 1 by the minimality of |G;|. But then
o(Gy) N ﬁlGi = ¢(G;) N H = 1. Therefore, the subgroups {G1,Gs, -+ ,G,, d(G;)}

20



satisfy (1), (2), and (3), a contradiction, since n is maximal. Therefore, H char G.
Since G is characteristically simple we get G = H = ﬁ G, = Gy x Gy X --- x Gy
where G;’s are isomorphic groups. Suppose N < G; forl::)me 1<i<n. Ifj#iand
r € Gy and y € G then, zyz~ly™' € G, NG, < G N ﬁ G; = 1. Hence xy = yx.
Now let g192--- g, € G where g; € G; forall 1 <i < n aiﬁ n € N. Then,

91927 gun(giga - Gn) = g1go - gangy gt g1

= ging; '

€ N since N <G;.

Thus, N <G. But, |[N| < |G;| = |G;]. Hence, N =1 or N = G; by the minimality of
|G1|. Therefore, each G; is simple for all 1 <i <n.

]

Definition 2.7. Let G be a group and N < G. Then N is a minimal normal

subgroup of G if
1. NJIG
2. If there exists a L < N such that L ]G then L =1 or L = N.

Definition 2.8. A group G is called an elementary abelian p-group if G =

Loy X Ly X -+ X Ly, where p is a prime.

Theorem 2.5. Let G be a group and N be a minimal normal subgroup of G. Then
N s an elementary abelian p-group for some prime p or N = Ny X Ny X -+ X N,

where N;s are nonabelian simple isomorphic groups.

21



Proof. 1f K char N, then by Lemma 2.5, since N G we get K JIG. But then, K =1
or K = N since N is a minimal normal subgroup. Hence, N is characteristically
simple. Then, by Theorem 2.4, N = N; x Ny x --- x N, where N;’s are simple

isomorphic groups.

Case 1 N, is nonabelian for all 0 <7 <n. Then N = N; Xx Ny x --- x N,, and N;s are

nonabelian simple isomorphic groups.

Case 2 N;s are abelian for all 0 < i < n. Then N; is simple and abelian for all
0 < i < n. Then the only subgroups of N; are {1} and N; for all 0 < i < n.
If N; is not a p-group then there exists a prime ¢ such that ¢ | |NV;| and g # p.
By Sylow’s Theorem there exists ) € Syl,(N;). Then Q < N; and @ # 1 and
Q) # N;. Thus, N; is a p-group for some prime p. Let |V;| = p™. If n > 1 then
by Cauchy’s Theorem for Abelian Groups, there exists 1 # x € N; such that
xP = 1. Then, (z) < N; and |[(x)| = p < |N;|. Therefore, (z) # 1 and (x) # N;.
Hence, n = 1 and |N;| = p. Now we know that N; is cyclic and so N; = Z,,.

Thus, N = Z, X Z, X - -+ X Z, is an elementary abelian p-group.

Therefore, N is an elementary abelian p-group for some prime p or N = Ny x N; X

-+ X N, where N,;’s are nonabelian simple isomorphic groups.

]

Theorem 2.6. Let G be solvable and N be a minimal normal subgroup of G. Then

N is an elementary abelian p-group for some prime p.

Proof. By Theorem 2.5, N is an elementary abelian p-group for some prime p or
N = Ny x Ny x -+ x N, such that N;s are simple nonabelian isomorphic groups.

Hence N; is simple. Then the only subnormal series /Ny has is N; > 1 by simplicity.
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But, N o N is nonabelian. Therefore, N; is not solvable. But, N; < G and G is

{1 -

solvable, a contradiction. Thus, N is an elementary abelian p-group for some p.

3 Nilpotent Groups

We now introduce the idea of nilpotent groups. This allows us to explore
important properties of nilpotent groups and will let us build the structures of these

groups.

Definition 3.1. Let G is a group. Define the upper central series of G by

Z5(G) G Z3(G) G
Z(G) = 1.21(G) = 2(6). 3 5 = (Zl(G)> Z@) (ZQ(G>>

and inductively define

7,(G) G
m =7 (m) fOT’ alln € Z+.

Lemma 3.1. Let G be a group. Then Z;(G) <G for all i and Z;(G) < Z;11(G) for

all 7.

Proof. Use induction on i. If i = 0, then Zy(G) = {1} < G. Assume Z,(G) < G.

Zni1(G . .
Then #é)) =7 (Zn((;G)) < Zn%G) and so taking pre-images we get Z,,11(G) <G.
Hence, Z;(G) < Z;11(G) for all i.

]

Definition 3.2. A group G is nilpotent if there exists n € Z*T U {0} such that
G = Z,(G).
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Definition 3.3. Let G be a group. Define the lower central series of G by
KolG) = G, Ki(G) = [Ko(G), G] = [G, 6] = &, Ka(G) = [\ (G), G, -

and inductively define

K(G) = [Kn1, Gl

Lemma 3.2. Let G be group. Then K;(G) <G for all i and K;11(G) < K;(G) for

all 1.

Proof. Use induction on 4. If i = 0 then Ky(G) = G <G. Suppose K;(G) <G. Then,
since G < G we get Ki11(G) = [K;(G),G] < G as conjugation is a homomorphism.
Next, we know that K;(G) < G. Thus, K;11(G) = [K;(G), G| < K;(G) for all 1.

[

Theorem 3.1. Let G be a group. Then G is nilpotent if and only if there exists
n € Z*U{0} such that K,,(G) = 1.

Proof. (=) Let G be nilpotent. Then there exists n € Z*U{0} such that Z,(G) = G.
We claim that K;(G) < Z,,—;(G) for all i. Use induction on i. If i = 0 then Ky(G) =
G<G=2,G) = Z,-o(G). Suppose K;(G) < Z,,_;(G). Then,

Ki+1(G) = [Ki(G)7 G]

< [Zn_z(G>, G] since KZ(G) < Zn_l(G)

A G
S Zn-in1(G) since s = 2 (Zn—l(G)>

= Zn—(i+1)(G).

Thus, the claim hold by induction. But then, K, (G) = Z,_,(G) = Zy(G) = 1 and
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so K,(G) = 1. (<) Suppose there exists a n € Z* U {0} such that K,(G) = 1. We
claim that K,,_;(G) < Z;(G) for all 7. Use induction on ¢. If ¢ =0 then Z,(G) =1 >

1= Kn(G) = Kn_Q(G) Suppose Kn—z(G) S ZZ(G) NOW, [Kn—i—la G] = Kn_z<G) S

Kni1(G)Zi(G Zit1
Ao < 2550 = Fidy

Kn—i—l(G) S Kn—z—l(G)Zz(G) S Zz—l—l(G) or Kn—(z—i—l)(G) S Zz—l—l(G) ThUS, the claim

Z;(G). Hence, Taking pre-images we get
holds. But then, Z,(G) > K,_,(G) = K¢(G) = G and so Z,(G) = G and so G is
nilpotent.

]

)

Lemma 3.3. Let G be a group, N<G, and H < G such that N < H. If

=2
2Q

<7
if and only if |G, H] < N.

N
hANgN(hN)"Y(gN)™! = N < hNgNh~lg~! = N & hgh~'¢g"'N = N < [h,g] = N

Proof. % < Z<Q> < [AN,gN] = N for all h € H and for all ¢ € G. Then

< |[h,gl e N < [G,H| < N.

Theorem 3.2. Let G be nilpotent. Then Z(G) # 1.

Proof. Suppose Z(G) = 1. Since G is nilpotent there exists n € ZT U {0} such that

Zn(G) = G. Notice Z,(G) = Z(G) = 1. Suppose Z;(G) = 1. Then

Zin(@) _, (g) _z ({_(f}) ~ Z(G) = 1.

ZZ%(G%?)‘ o % — 1 and 50 |Zia(G)] = |Z(G)|. But, Z(G) <

Zi+1(G) and so Z;1(G) = Z;(G) = 1. Thus, by induction Z;(G) = 1 for all i. But

Then,

then we get G = Z,(G) = 1, a contradiction. Therefore, Z(G) # 1.
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Theorem 3.3. Let G be nilpotent and 1 # H < G. Then H N Z(G) # 1.

Proof. Since G is nilpotent there exists n € Z* such that Z,(G) = G. Define

HO = H,H1 = [H(],G] = [H,G]

and inductively define

Hn - [Hn—b G]

Since H QG we get H = Hy > Hy > Hy > ---. We claim that H; < Z,,_;(G) for all
i. ifi=0then Hy=H < G = Z,(G) = Z,,_o(G). Assume H; < Z, ;(G). Then,

H:Z, i 1(G) - Zn_i(@) _ Z( G ) .
Zn-i-1(G) T Znia(G) Zn-i-1(G)

By Lemma 3.3, [H; Z,,_;_1(G),G] < [Z,—i—1(G)]. Hence, [H;, G| < [H; Z,,—i—1(G),G] <

Zn—i-1(G). Thus, Hiyy = [H;, G| < Z—i-1(G) = Zy—(i11)(G). Therefore, the claim

holds by induction. But then H,, = [H,,_1,G] < Z,,_,(G) = Zy(G) = 1 and so H,, = 1.

Let 0 < k < n be minimal such that Hy = 1. Then Hy_; # 1 and 1 = Hy, = [Hy_1,G]|

and so 1 # H,1 < HN Z(G).

Theorem 3.4. Let G be nilpotent and H < G. Then H < Ng(H).

Proof. Since G is nilpotent there exists n € Z* such that Z,,(G) = G. Let i be minimal

)
such that Z;(G) £ H. Then Z;_(G) < H. Also, [H, Zi(G)] < [G, Z/(G)] < Zi_1(G)

since Z?_ZS?C)?) =7 (%(GO Thus, [H, Z;(G)] < H. Hence, Z;(G) < No(H) \ H
and so H < Ng(H).

O

26



Definition 3.4. Let G be a group and M < G. Then M is a maximal subgroup if

1. M#G

2. whenever there exists H < G such that M < H < G then H =M or H=G
Theorem 3.5. Let G be nilpotent and M be a mazimal subgroup of G. Then M <G.

Proof. Since M is a maximal subgroup of G we know M < G. By Theorem 3.4,
M < Ng(M) < G. Hence G = Ng(M) by the maximality of M. Therefore, M < G.
O

Lemma 3.4. Let G be a group, P € Syl,(G), and N < G. Then PN N € Syl,(N).

Lemma 3.5 (Frattini Argument). Let G be a group, N <G, P € Syl,(G). Then,
G = No(PNN)N.

Proof. Clearly, No(P N N)N C G since G is a group. Let g € G. Since N <G and
P € Syl,(G) by Lemma 3.4 PN N € Syl,(N). Since N <G and PN N < N we get
g 'PNNg < g 'Ng=N. Now, |[go" (PN N)g| =|PNN|and so go'(PNN)g €
Syl,(N). By Sylow’s Theorem there exists n € N such that ng~*(PNN)gn~! = PNN.
Hence ng™! € Ng(PNN) and so there exists # € Ng(PNN) such that ng~! = z. But
then g = 27'n € Ng(PN N)N. Thus, G C Ng(PNN)N. Hence G = Ng(PN N)N.

[

Lemma 3.6. Let G be nilpotent and P € Syl,(G) then P <G.

Proof. Suppose P is not normal in G. Then Ng(P) < G. Hence, there exists a
maximal subgroup M of G such that Ng(P) < M. Since G is nilpotent, by Theorem

3.5, M <G. Now, P < Ng(P) <M and so P < M. By Lemma 3.5,

G = Ne(PNM)M = Ng(P)M = M.
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Thus, G = M, a contradiction, since M is maximal. Hence, P < G.

O

Lemma 3.7. Let G be a group, H I G, K I G such that H and K are nilpotent.
Then HK 1 G and HK s nilpotent.

Proof. Use induction on |G|. Since H <G and K 4G clearly HK < G. If HK < G
then H Q< HK and K < HK. Also, H and K are nilpotent. Thus, by induction
HK is nilpotent. We may assume G = HK. Since H is nilpotent by Theorem 3.2,
Z(H)#1. Let N =[Z(H), K].

Case 1 If N =1. Then [Z(H),K] = 1. But also [H, Z(H)] = 1. Hence, [G,Z(H)] =1
since G = HK. Thus 1 # Z(H) < Z(G). Thus, G s a group and ‘L =

¢ (G) (G)Z(G)

G : . HZ G

@ZTCLC)H since Z(G) # 1. Since, H <G and K QG we get 70 < 7@
G

and Z(C) < ZG) Then,

HZG) . H
Z(G) ~ HNZ(G)
KZ(G) . K
Z(G) ~ KnZ(G)

by 2"? Isomorphism Theorem

by 2"¢ Isomorphism Theorem

and HZZ((GC);) is nilpotent by induction hypothesis.
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Case 2 If N # 1. Since K <G we know N < K. Also, since H <G by Lemma 1.4
Z(H) < G. Therefore, since K <G we get N = [Z(H),G] <G. Hence N < K.
Since N # 1 and K is nilpotent we get 1 # NN Z(K). Now Z(H) < G implies
N < Z(H). Thus, we get 1 # NN Z(K) < Z(H)N Z(K). Since G = HK we
have Z(H) N Z(K) < Z(G). Thus, Z(G) # 1 and we get HK is nilpotent by

Case 1.
O

Lemma 3.8. Let G be a group and N <G such that N < Z;(G) for alli € Z*. Then

Z; (%) = % for alli.

Theorem 3.6. Let G be nilpotent and N < G. Then % is nilpotent.

Proof. Since G is nilpotent there exists n € Z*U{0} such that Z,(G) = G. We claim

Zi(G)N

that N

< Z (%) for all 2. Use induction on 7. If 7 = 0 then

Zz—i—l

Assume the claim holds. Since Z ( G ) by Lemma 3.3, [G, Z;11(G)] <

Zi(G)
6. 2 (GIN o Z{CN, Slnce N 4G we get [G, Zin(G)N =

|:Q Z+1 :|
N~ '

ZZ(G) Then
(G, Z;:1(G)N]. But, [G Zip (GIN }



Therefore, [%, < Z (%) Then by Lemma 3.8,

Zir(G/N)N

— N G/N
ZGN) =7 (sz/N))

or

Zii(G/N)N
TN Zun(G/N)
Zi(G/N) = Zi(G/N)

and taking pre-images we get < Z;y1(G/N). Thus the claims holds

by induction. Then Zn (%) < Zn(ﬁﬂv = G]\]/.V = % Theref()re7 Zn <%) = %

Zi1(G/N)N
A —

Q . .
Hence, N s nilpotent.

]

Theorem 3.7. Let G be nilpotent. Then G = [[ P where the product runs over all
P e Syl,(G) and p | |G|.

Proof. By Lemma 3.6 P < G for all P € Syl,(G). Therefore, [[P < G where

P e Syl,(G) and p | |G|. Since PN [] @ = 1 for all P when ¢ # p where Q € Syl,(G)
P#Q
we get |[[[P| =1]|P| = |G|. Thus, G =]]P.

]

Definition 3.5. Let G be a group. Define the fitting group F(G) = [[ N and N
NG

nilpotent. Then F(QG) is the unique mazimal normal nilpotent subgroup of G.

Definition 3.6. Let G be a group and p be a prime. Define O,(G) by O,(G) = [] P
PG

and P is a p-group. Then O,(G) is the unique mazimal normal p-subgroup of G.

Definition 3.7. Let G be a group and p be a prime. Define Oy(G) = [] @ and Q
Q4G

is a p'-subgroup. Then Oy (G) is the unique mazimal normal p'-subgroup of G.
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Theorem 3.8. Let G be a group. Then F(G) =[] O,(G) where p | |G|.

Proof. Asp | |G|and O,(G) is a p-group, we know O,(G) is nilpotent. Since O,(G)<4G
we get O,(G) < F(G). By Sylow’s Theorem there exists P € Syl,(F(G)) such that
O,(G) < P. By Lemma 3.6 we know P <4 G. Hence since P is a p-group we get
P < 0,(G). Thus, O,(G) = P € Syl,(F(G)). Since F(G) is nilpotent, by Theorem
3.7, F(G) = I P =11 0,(G).

Lemma 3.9. Let G be a group and H < G. Then Co(H) < G.

Lemma 3.10. Let G be a group, H < G, K < G, and L < G such that [H, K] = 1.
Then [H,KL] = [H, L.

Lemma 3.11. Let G be a group, H < G, K < G, and L < G such that K < H.
Then HNWKL = K(HNL).

Theorem 3.9. Let G be solvable. Then Co(F(G)) < F(G).

Proof. Let F'= F(G) and C' = Cg(F). Suppose C' £ F. By Lemma 3.9, since F'<IG

we know C'IG. Then, C—FE < % Also, since C' £ F we know % # 1F. Then there

exists 1 # % < C—FE such that % is a minimal normal subgroup of % Since G is
G

solvable we know A is solvable. Hence by Theorem 2.6, % is an elementary abelian
/

p-group. Hence, (%) = T/ =1 and so N' < F. Since % < C—FE we get N < CF.

But then, N = NNCF = F(NNC). We claim that ;(N) < K;_;(F) for all i > 1.

Use induction on i. If i = 1 then, K;j(N) = [N,N] = N' < F = Ky(F). Assume
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K;(N) < K;_1(F) for all i > 1. Then

Kip1(N) = [K(N), N]
< [Kia(F), N]
— [K;\(F), F(N A C)]
— [K,_1(F),F] by Lemma 3.10

= K;(F)

Thus, the claim holds. Since F' = F(G) in nilpotent there exists n € Z* U {0} such
that K, (F) = 1. Then K,11(N) < K,(F) =1 and so K,1(N) = 1. Thus N is
nilpotent. Since % < % we have N < G. Thus, N < F. But then, % =1, a
contradiction. Therefore, Cq(F(G)) < F(G).

Lemma 3.12. Let G be a group and P € Syl,(F(G)). Then P <G.

Proof. Let g € G. Since P < F(G) we get gPg~! < gF(G)g~!. Since F(G) < G,
gF(GQ)g7! < F(G) and so gPg~! < F(G). Now F(G) is nilpotent implies P < F(G).
Thus by Sylow’s Theorem,

|F(G)] |F(G)]

ny = — —1.

| Nre(P)] - [F(G)]

Also |gPg '] = |P| and so gPg~ ' € Syl,(F(G)). Since n, = 1 we get P = gPg~!
and so P <.
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Theorem 3.10. Let G be a group, P < G be a p-group, and N <G be a p'-group.

Then
Ng(P)

p = Now (%)
Ne(P)

Proof. Let xN € GT where x € Ng(P). Then

PN\ _ z(PN)x™!
N({— )2z 'IN="r—""_

xPx 'eNz™!

N

PN
-~ since © € Ng(P) and N <G

Hence, xtN € Ng/n (%) and so w < Ng/n (%) Let N € Ng/n (%)

-1
Then N (M) 2N = £ and so as before we get zPx _ PN Taking pre-

N N N N
images we get Pz~ = PN. Since N is a p-group we get P,xPz~' € Syl,(PN). By

Sylow’s Theorem there exists n € N such that nzPr~'n~! = P or nzP(nx)™! = P

Thus, nz € Ng(P). But then N = nzN € &]\J;)N Thus, Ne/x (%) :
w. Therefore, Lj\]fj)N = Na/n (%)

U

4 Groups Acting on Groups

We know look at how groups act on groups and will prove important Theorems

about co-prime actions.

Definition 4.1. Let G and H be groups. Then G acts on H if there exists a homo-
morphism ¢ such that ¢ : G — Aut(H).

33



Theorem 4.1. Let G and H be p-groups such that G acts on H. Then there exists
1 # h € H such that G = G,.

Proof. Since G acts on H we know G acts on S = H \ {1}. Since H is a p-group and
p f/1 we know p f|S|. Since G is a p-group by the Fixed Point Theorem there exists
s € S such that G = G. But then, 1 #s € H.

O

Theorem 4.2. Let G be a group, A < G, B< G, and C < G such that [A, B,C] =1
and [B,C,A] = 1. Then [C, A, B] = 1.

Proof. Let a € A, b € B, and ¢ € C. Notice
bla™' b, c b tefb ™t c,a e tale a, b e = 1

Now, [a=!,b,c™'] = 1 and so bla™',b,c7'|b~! = 1 since [A, B,C] = 1. Similarly,
c[b™t, ;a7 et = 1since [B,C, A] = 1. Thus, a[c™},a,b7a™! = landso [c™},a, 07} =
1. Therefore, [C, A, B] = 1.

O

Theorem 4.3. Let A < Aut(P) be a p'-group and P be a p-group such that there

exists a subnormal series

PEPDERE.--->F =1

such that P; is A-invariant and A acts trivially on PPil foralll <i<n-—1. Then
it

A acts trivially on P.
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Proof. Use induction on |P|. Since |P| < |P| we get A acts trivially on P;. If A does
not act trivially on P there exists ¢ € A and z € P such that ¢(x) # x. Since A acts
trivially on % we get ¢(xPy) = xP; or ¢(x)Py = xP;. Hence, there exists a y € Py

such that ¢(z) = zy. Then,

Since A acts trivially on P, we get 2 = ¢//(z) = 27/?l. But then, y/*! = 1 and so
lyl | |¢|. Since P is a p-group and A is a p’-group we get ged(|y|, |¢|) = 1. Thus,
lyl = 1 and so y = 1. But then ¢(x) = x1 = x, a contradiction. Therefore, A acts
trivially on P.

O

Theorem 4.4. Suppose A x B acts on P such that A is a p'-group and B and P are

p-groups. If A acts trivially on Cp(B) then A acts trivially on P.

Proof. Let Cp(B) < @ < P where @ is a maximal A x B-invariant subgroup of P
such that A acts trivially on Q. If @ < P. Now by Theorem 3.4, @ < Np(Q) = R
and Q < R. Since P and @ are A x B-invariant we know R is A x B-invariant. Thus,

A X B acts on g and so B acts on g Let 1Q # % < g be a minimal A x B-

invariant subgroup of g Now, B acts on % and they are both p-groups. Therefore,
by Theorem 4.1, 1 # Cg/g(B) < % Since % is A x B-invariant we get Cg/o(B)

is A x B-invariant. By the minimality of % = Cg/o(B). But then, [S,B] < Q.
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Now, [S,B,A] < [Q,A] = 1 since A acts trivially on @. Hence, [S,B,A] = 1
Also, [B,A] = 1 implies [B,A,S] = 1. By Theorem 4.2, [A,S,B] = 1. Thus,

[A,S] < Cp(B ) < ). Now we have a subnormal series S <@ <1 and A acts trivially

on S and on {1} Since A is a p/-group and S is a p-group by Theorem 4.3, A acts

tr1v1ally on S. Now, () < S since % # 1@ and S is A x B-invariant, this contradicts

the maximality of (). Hence, P = ) and A acts trivially on P.

Definition 4.2. Let G be a group, A < Aut(G), g € G, and é € A. Then
1. [g,0] = g *o(g) is the commutator of g and ¢
2. [G. Al = ({lg, 0] | g € G forall p € A})
5. Cq(A)={g€ G| o(g) =g forallp € A}.

Theorem 4.5. Let A < Aut(P) be a p'-group and P be an abelian p-group. Then
P =Cp(A) x [P, A].

Proof. Let |A| = n and writing P additively define 6 = % > ¢. Then @ : P — P is
peA
a homomorphism since P is abelian. We want to show the following,

1. 0, =0 for all ¢, € A
2. 02 =0

3. 0(P) = Cp(A)

4. [P Al ={-z+0(x)|z€ P}

5. P =0(P) x B where B = [P, A

36



For (1), let z € P. Then

00n(X) = 3 66u(a)

PpcA

1
— Z ¢(x) since P is abelian
n peEA

= 0(z).

For (2), let « € P. Then,

For (3), let O(z) € (P) and ¢ € A. Then ¢f(x) = 0(x). Hence, 8(x) € Cp(A) and so
O(P) < Cp(A). Let z € Cp(A). Then,

o) == 3 ola)

PcA

:%Zx

PcA
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Hence, z € §(P) and so Cp(A) < §(P). Thus, ¢(P) = Cp(A). For (4), let x € P.
Then,

—— —x 4+ 60(xz) since P is abelian

€ [P, A] since —z +6(z) € [P, A] for all x € P and ¢ € A.

Hence, {—x + 0(z) | z € P} C [P, A]. Let x € P and ¢ € A. Then,

[z, 0] = —x + ¢(x)
= —x+ ¢(.I') +0
= —x+¢(x)+0(x+ —¢(x)) by (1)

e {zx+6(z) |z e P}

Hence, [P, A] C {—x+ 6(z) | x € P} since {—x + 0(x) | z € P} is closed. Therefore,
[P,A] = {—x+0(z) | = € P}. For (5), let x € P. Then, z = 0(z)+x+—0(x) € 0(P)B.

Thus, P = §(P)B. Suppose, there exists u € ¢(P) N B. Then, there exists x,y € P
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such that u = 0(z) and u = —y + 0(y). Then,

Hence, §(B)N B =0and so P =0(P)B = Cp(A)[P, A] = Cp(A) x [P, Al.
[

Lemma 4.1. Let G be a group and A < Aut(G). Then [G,A] < G and [G, 4] is

A-invariant.

Lemma 4.2. Let G be a group, A < Aut(G), and N QG be A-invariant. Then A

acts on % by ¢(gN) = ¢(g)N for all gN € % and for all ¢ € A.

Theorem 4.6. Let A < Aut(P) be a p'-group and P be a p-group. Then
P =Cp(A)[P, A].

Proof. Let H = [P, A].
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Case 1 H < Z(P). Let ¢ € A. Define oy : P — [P, ¢] by ap = [z, ¢] for all x € P. If

x,y € P then

ag(zy) = [zy, ]
= (zy) "' $(xy)
=y T o) d(y)
— 2 9(x)y (y) since 27! € ¢(x) < Z(P)
= [z, ][y, ¢]

= ag(r)ag(y)-

Hence, ay is a homomorphism. Now, Kern oy = Cp(¢) and ay is onto. By

Theorem 1.5, %W = a4(P). Thus, %@ = [P, ¢| since ay is onto. Since

[P,¢]| < H < Z(P) we get is abelian. Hence, by Lemma 1.3, P’ <

_P
Cp(0)
Cp(¢). Therefore, P" < Cp(A). Now A acts on +5; which is an abelian p-group.
P, AP
Then, £ = Cpyp(4) [ 5, 4] = Oy PP Lot & = Cpyp(A). Then,
/
% = % Lié ;1/]13 and taking pre-images we get P = C[P, A|P' or P = C[P, A].
Now, [P',C]| = P’ since % = Cp/p/(A). Hence, we have a subnormal series

ioliae)

C>Pr>1
.. C P’ . : / :
and A acts trivially on Vi and T Since A is a p'-group and C' is a p-group

by Theorem 4.3, A acts trivially on C. Thus, P = C[P,A] < Cp(A)[P,A] < P
and so P = Cp(A)[P, A].

Case 2 H £ Z(P). Use induction on |P|. Since P is nilpotent and H = [P, A] < P
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by Theorem 3.3, 1 # H 1 Z(P). Now, K = HN Z(P) 9 P and so £ is a

p-group. Also, K is A-invariant and so A acts on % Also, ‘%’ < |P| and so

. . P AK
by induction % = Cp/(A) [%,A] = CP/K(A>%- Let % = Cp/x(A).
Then, % = % [P’é]K and taking pre-images we get P = C[P, A|K = C[P, A].

If P=C then - = % = Cp/k(A). Hence, [%,A] = K and so [P, A] < K.
<

K
But then H = [P, A] < K < Z(P), a contradiction. Therefore, P # C. Thus,
C < P and so |C| < |P|. Hence, by induction C' = C¢(A)[C, A]. But then,

P = Co(A)[C, AP, A] < Cp(A)[P, A] < P and so P = Cp(A).
O

Theorem 4.7. Let A < Aut(P) be a p'-group, P be a p-group, and N I P be A-

invariant. Then Cp/n(A) = w.

Proof. Let ¢cN € w and ¢ € A. Then, ¢(cN) = ¢(c)N = cN since ¢ €
Cp(A). Thus, M < Cp/n(A). Let % = Cp/n(A). Then, N < C < P and
C is A-invariant. Also [C, A] € N. Hence, by Theorem 4.6, C' = Cp(A)[C, A] <
Cp(A)N. Therefore, by taking pre-images we get Cp/n(A) = % < M. Hence,
Crya(4) = C2LDN.

]

Definition 4.3. Let G be a group then O, (G) = [[ N where N is a p'-group and
NaG

is the largest normal p'-subgroup of G.

Theorem 4.8. Let G be solvable and P < G be a p-subgroup. Then, Oy (Ng(P)) <
0,(Q).

Proof. Let A= Oy (Ng(P)) and B = Oy (G).

41



Case 1 Oy (G) = 1. We want to show that A = 1. Suppose, A # 1. Then, A I Ng(P)
and P<INg(P). Hence, AP<ANg(P). Since A is a p’-group and P is a p-group we
get |JANP| = 1. Since AINg(P) and P<INg(P) we get [A, P] = 1. Since BIG
we get A x P acts on B by conjugation. Now, Cg(P) < Ng(P) and A< Ng(P).
Since B 4G we get [A,Cp(P)] < AN B = 1. Thus, A acts trivially on Cg(P).
By Theorem 4.4, A acts trivially on B. But then, A < Cg(B) and so Cg(B)

is not a p-group. Since B < G we know Cg(B) < G. Then CG<B) g

Ce(B)B
B

If = 1 we get Cg(B) < B. But then, since B is a p-group we get

Cs(B) is a p-group, a contradiction. Thus, 1 # @ < % Hence, there

exists 1 7£ N < CGBS ) such that % is a minimal subgroup of % Since G is
solvable by Theorem 2.3, % is solvable. By Theorem 2.6, % is an elementary

g-group. Suppose p = ¢. Since % < % we get N I G. Also, |N| = %

|B| = ‘%‘ |B| is a power of P and so N is a p-group. Hence, N < B = O,(G)

and we get % = 1, a contradiction. Therefore, p # ¢. Let @ € Syl,(N).

_ UB
B
(B

and

Then, Q?B € Syl, (%) Since % is a p-group we get B = Taking

pre-images we get N = (QB. Since % < %ﬁ) we get N < Cg(B). Hence,

QCu(B) _ C(B)B C -
Q < N < Cg(B)B and so CGG((B)) < CC';(E(B)) - But, G(( )) Bﬂgc( B)

QCq(B) QCa(B) Q
Ca(B) Ca(B) QN Ca(B)

a g-group. Thus, QC'L(%’B;) =1 and so Q@ < Cg(B). Since N = QB we get
G

@ < N. Therefore, ) is the only Sylow ¢-subgroup of N by Sylow’s Theorem.

is a p-group. Thus, is

is a p-group. But,

Now, since N <G we get () < G. Since p # g we know @ is a p'-group and so

Q <0y(G)=1andso N =QB = B and we get g g = 1, a contradiction.

Thus, A=1

) % is solvable and %I(G) < G

Case 2 Oy (G) # 1. Then <
P’ Op

(G) is a p-group.
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Finally, Oy ( > = 1 by Case 1 we get O,y <Nc/op/(c> <—PO”'(G) ) =1.

Then, Oy Ne PO)SPI(G) = 1 by Lemma 3.10. But, Op/(ngi)(;)Op’(G) <
Op Na(P)Oy(G) and so Op(Ne(P))Oy(G) _ 1 which implies O, (Ng(P)) <
' Oy Op(G) P

0, (G).
O]

Definition 4.4. Let G be a group. Define the Franttini Subgroup by ®(G) = (M

where M is a mazimal subgroup of G.

Theorem 4.9. Let P be a p-group. Then D ) 15 an elementary abelian p-group.

T O(P
In particular, if ®(P) =1 then P is an elementary p-group.

Proof. Let M be a maximal subgroup of P and let x € P. Since P is nilpotent we

get M < P by Theorem 3.5. Since M is maximal we know {1} and % are the only

subgroups of % Thus, % = 7, is abelian. Thus, P’ < M. Also, (zM)? = 2P M =

LM since 47 2 7, Thus, a7 € M but then, P’ < &(P) and 7 € ®(P) for all x € P
which implies all the elements have order p or 1. By the Fundamental Theorem of

Finite Abelian Groups we get q)@,) = Zyp X Ly X -+ X Ly, is an elementary abelian

: : ~ P ~ P .
-group. In particular, if $(P) =1 then P =2 5 = is an elementary p-group.
p-group. In p (P) {7~ 3(P) y p-group

]

Definition 4.5. A group A acts regularly on a group G if Co(a) = 1 for all 1 #

o€ A.

Theorem 4.10. Suppose an elementary p-group A acts reqularly on a q-group V.
Then A = Z,.
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Proof. Use contradiction. Suppose A = Z,, x Z,. Then all elements of A have order
pH

P. Hence, H = |J A; such that |A;| = p for all i and A;NA; =1 for all i # j. Let
i=1

l#veVandl #ay € A Then ao( [ av) = [] apav = ][] av since as a runs

acA acA acA
over A so does apa and V' is abelian. Since A acts regular on V' we get [[av = 1.

Similarly, [] a;v = 1. Hence,
a;EA;

p+1

1:HHa,-v

i=1 a;,€A;

=P H av since V is abelian

a€A
=P1

=P,

Hence, v? = 1 and so |v| = p since v # 1. But then, p = |v| | |V/| which implies p | ¢°,
a contradiction. Thus, A = Z,.

]

Theorem 4.11. Let G = BV be a group such that B I G is a p-group and V is an

elementary abelian q-group. Then

Vv
B = (CalU) | U < Vi =)
Proof. Use induction on |G|. Let A = (Cp(U) | U <V, Ig{ =¢q). If A < B then

since B is nilpotent we get A < Np(A). Since V' < Ng(B) and V is abelian we know
V < Ng(A). Hence, V < Np(Ng(A)) and so VNg(A) < G. If VNg(A) < G then

by induction we get Np(A) = (Cnyay(U) | U <V, { ‘| q) < A, a contradiction.
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Hence, G = VNg(A) and so A < G. Thus, 7{ %KAA is a group. If A # 1,

then ‘%’ < |G| and 173[ < % is a p-group and _A_ is an elementary g-group. Hence,

by induction % = <C’B/A(%) ] 7U( < T VA |‘|/Uf’1| = ¢q). Since A < B we know
% # 1A. Hence, there exists 7U[ < _A_ such that % = ¢ and C’B/A(%) # 1A.

Let Uy € Syl,(U). Then %A € Squ(%). Since ;U[ is a g-group we get 7U[ = %A

Hence, CB/A(%l(—él) # 1A. Since Uy and %ﬁé act on % in the same way we get

Cp(Uy) # 1 by Theorem 4.7 the g-group U, acts on the p-group % and we get

1 # Cpya(Up) = %{M. Hence, Cp(Up) £ A. Now,
vl
U]
_va
|UoA|
VA
[UoAl
[VI|UoAl
VN UA
|UoAl
V]
VN U0A|'

Hence, % = q. Now, VNUA < UyA and V N UyA is a g-group. Since
0

Us € Syl,(UpA) by Sylow’s Theorem there exists a € A such that VNUyA < alpa™*
Then VN UA < V NalUpa™t. But VNalUpa™' < VNUyA and so V N UyA =
VNaUya™!. Hence, % = g and so Cg(VNalUpa™') < A. Now, C(Uy) £ A,
a contradiction. Hence, A = 1. As, ®(B) < B and B 4G, we get ®(B) < G. Then
¢(B)V < BV = G. Hence, |®(B)| < |G| and so, by induction, ®(B) = (Copy(U) |
U<V, iU{ =¢q) < A= 1. Thus, ®(B) = 1 which implies by Theorem 4.9 B is
an elementary abelian p-group. Let 1 # b € B and (b%) = (gbg™' | g € G). Then
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(b%) <G and so V acts on (b%) by conjugation. Now, since G = BV and B is abelian
we get (b%) = (bY). Moreover, since V is abelian, C’L(b) acts on (") regularly
1%

V

b jugation. Then, by Th 4.10 & Z, and =q. N
y conjugation en, by Theorem ¥em0) and so |C’ <>] q. Now,

1#be Cp(Cy(b)) < A=1,a contradiction. Thus, B=A = (Cp(U) |U <V, ’V|>

Theorem 4.12. Let G = AB where A is a p-group and B is a g-group. Further
suppose there exists 1 # Ay QA and 1 # By < B such that (AJ°) is a p-group. Then

G is not simple.

Proof. Let (AOB°> < Py < @G such that F, is maximal with respect to F, being a
p-group, Py generated by conjugates of Ay, and By < Ng(Fp). By Sylow’s Theorem
there exists P € Syl,(G) such that Py < P. We want to show that Fy < P. Suppose
not. Then, Np(Fy) < P. Since P is nilpotent we get Np(Fy) < Np(Np(F)). Let
x € Np(Np(Py)) \ Np(FPy). Then zPyx~! # Py and so xPyz~' £ PBy. Hence, there
exists g € G such that zgAg(zg)™ £ gAog™ < Py. Let H = (Py(zgAo(zg)~t)P0).
Then Py < H. Also, H is generated by conjugates of Ay and since By < Ng(Fp)
we know By < Np(H). Now, gApg™' < Py < Np(R) and so zgAg(zg)™' <
Np(Fy) since z € Np(Np(Fy)). Thus, (zgAg(zg)~ )P0 < Ng(P). Therefore, H =
(P, (xgAo(zg)~1)P) = Py{(xgAs(xg)~1)P0). Now, since Ag < A and By < B and
G = AB we get {(xgAg(zg)~")P0) < (AF) since g = ba and b € B and a € A. But
since (A°) is a p-group we get (AJ°)? is a p-group. Therefore, ((zgAo(zg)~1)P0) is a
p-group. Since Py is a p-group we get H = Py{(xgAo(zg)~1)P°) is a p-group, a con-
tradiction to the maximality of Fy. So, Py < P. Now since G = AB and P € Syl,(G)
we get G = PB so then since By < B, By < Np(F), and P < Ng(Fy) we get
1# By < () bONg(P)b™t = ) gNa(Py)g ' <G. It () gNa(Po)g™* # G we get G

beB geG geG
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is not simple. If G = () gNg(Py)g~! then G = Ng(F). But then 1 # By < G and
geG

Py = G since P, is a p-group. Hence, G is not simple.

Definition 4.6. Let G be a group and p be a prime. Define
N(G)=(xeG|aP=1).
Definition 4.7. Let G be group and P < G be a p-group. Define
J(P) = (A| A< Pis abelian and |A| is mazimal).

Then J(P) is called the Thompson Subgroup.

Theorem 4.13 (Baer). Let G be a group and H < G such that (H,gHg™') is a

p-group for all g € G. Then H < O,(G).

Theorem 4.14. Let G be a group and x € Oy(G) such that x* = 1. Then there exists
y € G such that |y| is odd and zyz™' =y~

Theorem 4.15. Let G be a group such that |G| = pq® for odd primes p and q and
P e Syl,(G) such that Ce(21(Z(P))) = P. Then J(P) <G.

Definition 4.8. Let G be a group and H < G. Then H is a p-central subgroup
of G is there exists P € Syl,(G) such that H < Z(P). We write H p-central < G.

5 Burnsides p%¢” Theorem

We now have all the group theoretical tools needed to begin our proof of

Burnside’s Theorem.
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Theorem 5.1 (Burnside’s Theorem). Let G' be a group such that |G| = p®q®. Then

G is solvable.

Proof. Assume the theorem is false and let G be a minimal counterexample. We to

prove the following about G,

1. G is simple.
Assume not. There exists 1 # N <G and N # G. Then % is a group such
that ‘%‘ < |G| and N is a group such that |N| < |G| and they are both pg
groups. Hence, by the minimality of G we get % and N are solvable and so by

Theorem 2.3, (G is solvable, a contradiction. Thus, G is simple.

2. If M is a maximal subgroup of G then F'(M) is a p or ¢ group.
Suppose p | |[F(M)| and ¢ | |F(M)|. Let Z = Z,Z, where Z, = Q1(Z(0,(M)))
and Z, = 0 (Z(0,(M))). Then Z, < M and so M < Ng(Z,) < G. By the
maximality of M we get M = Ng(Z,) or G = Ng(Z,). If G = Ng(Z,) then
we get Z, < G, a contradiction since G is simple. Therefore, M = Ng(Z,) and
similarly M = Ng(Z,). We claim that M is the unique maximal subgroup of G
such that Z < M. Suppose Z < H and H is a maximal subgroup of G. Then

O,(M)NH < MnNH is a g-group. But then,

O,(M)NH < O,(M N H)
= Op(Ne(Z,) N H)
= 0,(Nu(Z,))

< Op(H).
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Similarly, using M = Mq(Z,) we get O,(M) N H < O,(H). Hence,

F(M)nH = 0,(M)O,(M) N H
= (0p(M) N H)(Og(M) N H)
< Op(H)O4(H)

— F(H).

Thus, F(M) N H < F(H). Now, Z = Z,Z, < F(M)N H < F(H). Hence,
by Sylow’s Theorem Z, < O,(H) and Z, < O, H). Now, [Z,,O,(H)|] <
[O,(H),04(H)] < O,(H)NOy(H) =1 and so [Z,,0,(H)] = 1. Thus, O,(H) <
Ce(Z,) < Ng(Z,) = M. Similarly, O,(H) < M and so F(M) = O,(H)O,(H) <
M. Since Z, < O,(H) and Z, < O,(H) we get p | |[F(H)| and ¢ | |F(H)|.
Similarly, since H is maximal subgroup, using Z; = Q,(Z(0O,(H))) and Z; =
0 (Z(04(H))) we get F(M)NM < F(M) and F(M) < H. But then F(M) =
FIM)NH < F(H)=F(H)NM < F(M). Thus, F(M) = F(H). Now since M
and H are maximal and G is simple we get M = Ng(F(M)) = Ng(F(H)) = H.
We claim M does not contain a Sylow p-subgroup of G. Let M, € Syl,(M).
If M, € Syl,(G) then by Sylow’s Theorem there exists G, € Syl,(G) such
that Oy(M) < G,. Then G = M,G,. Now since O,(M) < M we get 1 #
O,M) < N 2Guz™t = () 2Gxz~t < G. Thus, 1 # () 2Ga~ ! < G but

TEM, zeG zelG
N 2G,2~' < G, < G, a contradiction since G is simple. Hence, M does

el

not contain a Sylow p-subgroup of G and similarly M does not contain a Sy-
low g-subgroup of G. Let M, € Syl,(M). Then there exists G, € Syl,(G)
such that M, < G,. Since G is nilpotent, by Theorem 3.4, M, < Ng, (M,).

Let z € Ng,(M,) \ M,. Since Z, I M is a p-group by Sylow’s Theorem
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Z, < M,. Hence, Z, < M, = aM,x~' < xMaz~". Now since Z, I M we get
xZ,x~t QaeMa~t. Since Z(0,(M)) is abelian we know Z, = Q1(Z(0,(M))) is

an elementary abelian p-group. From the action of Z, and xZ,z~", by Theorem

4.11, we get xZgz™! = (Chz,.1(U) | U < Z, ||?]|| =p). Let U < Z, such that
|’?]’| = p. Since Z is abelian we get Z, < Cg(U) < G. By the uniqueness of M

we have C(U) < M. Thus, since M C,z,,—1(U) < Ca(U) we get xZyaz™" < M.
But then Z, < x Mz, Hence, 7 = Znlq < x 'Mzx. Again by the unique-
ness of M we get M = z7'Mz. Hence, x € Ng(M). But since M is maximal
and G is simple we have M = Ng(M). Thus, x € M and so z € M N G,.
Now by Sylow’s Theorem there exists m € M such that G, " M < mM,m™".
Hence we get M, < G, N M < mMpm_l. and so M, = G, N M. Thus we
get v € G,N M = M, a contradiction. Hence, Z, = Z, and {1} is the only
subgroup of Z, with index p thus Z, is cyclic. Similarly, Z, = Z, is cyclic.
Since Z, < Mz~ and qux*1 A zMz~! we know H = prZq:E*1 is a sub-
group. Without loss of generality, p > ¢. Then n, = 1 and n, = 1. Hence,
Z,< H and xZ,~' < H. But then [Z,,2Z,27' < Z,NxZ,a~t = 1. Thus,
vzt < Cq(Z,) < Ng(Z,) = M and so x € M,. Also, Z, < M, < M
so xZr ' = aZxwZamt < M or Z = 7'Mz and M = 7 'Mz. Thus,

x € Ng(M) = M, a contradiction.

. Let M be a maximal subgroup of G then M cannot contain a p-central subgroup
of G and a g-central subgroup of G.

By (2) we may assume F'(M) is a p-group. By Sylow’s Theorem there exists
M, € Syl,(M) such that F'(M) < M, and there exists G, € Syl,(G) such that
M, < G,. Thus, F(M) < Gp. If Co(F(M)) £ M then M < (Cq(F(M)), M) <
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G. Hence, by the maximality of M we get G = (Ce(F(M)), M). But then
F(M)<(Ce(F(M)), M) = G, a contradiction since G is simple. Thus, C(F(M)) <
M and so Cg(F(M)) = Cy(F(M)). Now, Z(G,) < Ca(F(M)) = Cy(F(M)) <
F(M) by Theorem 3.9 since M is solvable. Hence, Z(G,) < M and Z(G)) is a
p-central subgroup of G. Suppose H < M such that H is a g-central subgroup
of G. Then there exists G, € Syl,(G) such that H < Z(G,). Then G = G,G,,,
Z(Gp) <G, HLG,, and (Z(G,)") < (F(M)") < F(M) since F(M) <A M and
F(M) is a p-group. Hence (Z(G,)) is a p-group. But then by Theorem 4.12

we get GG is not simple, a contradiction.

. A p-central subgroup of GG cannot normalize a g-subgroup of G.

Suppose H is a p-central subgroup of G and () < G is a ¢-group such that
H < Ng(Q). By Sylow’s Theorem, there exists G, € Syl,(G) such that @ <
G, Since Ng(Q) < G there exists a maximal subgroup M of G such that
No(Q) < M. Now Z(G,) < Ca(Q) < Ne(Q) < M. Also, H < Ne(Q) < M.
But Z(G,) is a g-central subgroup of G and H is a p-central subgroup of G,
which contradicts (3). Thus, a p-central subgroup of G cannot normalize a

g-subgroup of G.

. |G| is odd.

Suppose not. Then, 2 | |G| and so by Sylow’s Theorem there exists Gy €
Syly(G). Then by Theorem 3.2, Z(Gy) # 1. Hence, by Theorem 1.10, there
exists 1 # x € Z(Gq) such that 22 = 1. Since G is simple we get Oy(G) = 1.
Hence = € Oy(G). By Theorem 4.14, there exists y € G such that xyz—' = y~!
and |y| is odd. Hence, we get (x) < Ng((y)). But (z) is a 2-central subgroup

of G and (y) is a ¢-group, which contradicts (4). Therefore, |G| is odd.
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6. Let M be a maximal subgroup of G such that F'(M) is a p-group and M, €
Syl,(M) such that F'(M) < M,. Then J(M,) <M and M, € Syl,(G).
We want to show that J(M,) < M. By Theorem 4.15 it is enough to show
Cu(S1(Z(My))) = M,. Since Q1(Z(M,)) < Z(M,) we get M,, < Crr(S1(Z(M,))).
Let G, € Syl,(G) such that M, < G,. Then F(M) < M, < G,. Thus,

Thus, Z(G,) < M, and so Z(G,) < Z(M,). Hence, Q,(Z(G,)) < 0 (Z(M,))
and so Cy(21(Z(M,))) < Ce(1(Z(Gy))). But, by (4) Ca(h(Z(G,))) has
no ¢-subgroups and so Cg(§21(Z(Gp))) is a p-group. Hence, Cp(21(Z(M,)))
is a p-group. But M, < Cy (4 (Z(M,))) and M, € Syl,(M). Hence, M, =
Cr(21(Z(M,))) and so Theorem 4.15 J(M,) < M. If M, < G, then since G,, is
nilpotent, by Theorem 3.4, M, < Ng,(M,) = H. Now, M,<{H. If H < M then
H < G,NM. But G,NM = M, and so we get H < M, a contradiction. Thus,
H £ M. Buthen M < (M,H) < G and so G = (M, H) by the maximality of
M. Now, J(M,) <M. also M,<H we get J(M,)<H. Hence, J(M,)<(M, H),

a contradiction, since G is simple. Thus, M, = G, € Syl,(G).
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Let

C, = {M | M is a maximal subgroup of G and F(M) is a p-group}

and

Cy = {M | M is a maximal subgroup of G and F'(M) is a g-group}

Let My, My € C, and P, € Syl,(M,) and P, € Syl,(Ms). By (6) Pi, P € Syl,(G).
By Sylow’s Theorem there exists g € G such that gPg~* = P,. If gM,g~! # M, then
My < {(gMyg~', My) < G. Hence we get G = (gM,g~', My) since M, is maximal.
By (6) we know J(P,) = J(gPig™') < (gMyg~ ', My) = G, a contradiction since G
is simple. Thus, gM;g~' = M, and so G acts transitively on C), by conjugation.
Similarly, G acts transitively on Cj, by conjugation. Let M;, My € C, such that
| MM Ms|, is maximal. If [MyNM,|, # 1 then let P € Syl,(MiNM,). If P € Syl,(M;)
then, by (6), we get P € Syl,(G). Hence, since P < M, we get P € Syl,(Ms). Now,
by (6), we get J(P) < (M, My) = G, a contradiction since G is simple. Hence,
P & Syl,(M;) and similarly P & Syl,(M,). Therefore, P < Ny, (P) < Ng(P) and
P < Ny, (P) < Ng(P). Since Ng(P) < G, there exists a maximal subgroup R of
G such that Ng(P) < R. If F(R) is a g-group let G, € Syl,(G) such that P < G,,.
Then, Z(G,) < Cs(P) < Ng(P) < R and F(R) < R. Hence Z(G,) < Ng(F(R)),

but Z(G,) is a p-central subgroup of G and F(R) is a g-group, a contradiction of (4).
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Thus, F(R) is a p-group and R € C,. Now

M, A Rl, > [M; N N(P)l,
= [N, (P)],
> |P|

= | My N My,

Hence, by the maximality of |[M; N Ms|, we get R = M;. Also, similarly R = M.
Thus, M; = R = M,, a contradiction since M; and M, are distinct. Therefore,
|My N Ms|, = 1 and similarly |H; N Hy|, = 1 for all Hy, Hy € C,. Suppose p* > ¢°.
Let My, My € C), be distinct and P, € Syl,(M;) and P, € Syl,(Ms). Then PN Py <

M, N My is a p-group and |M; N Ms|, = 1. Hence | Py N P,| = 1. But then we get

p"¢" = |G]

> |P P
_ |BIP
[P Pyl
_ Pt
1

=P

> ptq”

a contradiction. Similarly, we get a contradiction if ¢ > p®. Therefore, G is solvable.
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