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ABSTRACT

The subject of Lie groups is one that slips by many a mathematician. Many claim
that the topic is not accessible to undergraduate research. The book Lie Groups by Har-
riet Pollatsek came out a few years ago, and it was meant to be a new way to be intro-
duced to the topic. However, the book does not quite get far enough to give a formal
definition of a Lie group. The goal of this project is to “bridge the gap.” The objective
of this thesis is to include all the introductory material required to get to where the
definition of a Lie group is no longer something so complicated. We will illustrate the
major concepts by examples.

Many matrix groups are Lie groups. Matrix groups are well-known, and they are
an ideal place to start learning about what a Lie group can do. We then look at tangent
spaces of the matrix groups, or the Lie algebra that is associated with each Lie group.
After some motivation behind Lie algebras, we finally get to the feature presentation:
a group and a differentiable manifold, put together into one super structure known as
a Lie group.
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0 Preliminaries

Definition 0.1. A set G along along with a binary operation (written in multiplicative
form) is called a group if the following conditions are satisfied:

1. Closure: ab ∈ G for all a, b ∈ G.

2. Associativity: (ab)c = a(bc) for all a, b, c ∈ G.

3. Identity: there exists an element e ∈ G such that ae = ea = a for all a ∈ G.

4. Inverse: for all a ∈ G there exists a b ∈ G such that ab = e = ba.

Definition 0.2. A mapping φ of a group G into a group G′ (φ : G → G′) is called a
homomorphism if it preserves the group operation. Symbolically,

φ(ab) = φ(a)φ(b)

for all a, b ∈ G.

Definition 0.3. The set of all n by n matrices with real-valued entries (which is a vec-
tor space over R under matrix addition and scalar multiplication) is denoted M(n,R).

Definition 0.4. The general linear group is the group of all invertible, n by n matrices
with real entries under the group operation matrix multiplication. It is denoted

GL(n,R) = {A ∈ M(n,R) : detA �= 0}.

Definition 0.5. “The general linear group” also describes the set of all invertible linear
transformations from R

n to R
n and is denoted

GL(Rn) = {T : Rn → R
n : T is linear and invertible}.

Take special note of the fact that the general linear group of matrices and the general
linear group of transformations are essentially “the same.” That is, the groups are
isomorphic, which we will define later.

Definition 0.6. The special linear group is the group of all n by n matrices with deter-
minant 1, denoted

SL(n,R) = {A ∈ M(n,R) : detA = 1}.
Definition 0.7. The orthogonal group of n by n matrices (in the Euclidean case) is

O(n,R) = {A ∈ M(n,R) : AAT = In}.

Definition 0.8. The special orthogonal group of n by n matrices is

SO(n,R) = {A ∈ O(n,R) : detA = 1}.

A few other comments worthy of note:

1. ≤ will be used as a subgroup symbol.

2. In will be used to denote the n by n identity matrix.

3. 0n will be used to denote the n by n zero matrix.
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1 Tangent Spaces

We will start by taking a look at some tangent spaces of matrix groups with the op-
eration matrix multiplication. Note that we must have invertible matrices since every
element in a group must have an inverse. We will start by letting G ≤ GL(n,R). Also
let γ : R → G be a differentiable function with γ(t) = (aij(t)). (For each i and j,
aij : R → R is differentiable.) Note also that differentiation of a matrix-valued function
is done component-wise, so γ′(t) = (a′ij(t)).

Definition 1.1. A function f is smooth if f is infinitely differentiable.

Definition 1.2. We define the tangent space at the identity of G to be the set of matrices
having the form γ′(0) for a function γ : R → G such that γ(0) = In.
We use the notation L(G) = {γ′(0)|γ : R → G, γ(0) = In, γ smooth}.

Proposition 1.3. The product rule holds for derivatives of matrix-valued functions in
the cases of n× n matrices.

The proof follows directly from the use of the product rule of real-valued functions.

Proposition 1.4. The tangent space L(G) for any matrix group G ≤ GL(n,R) is a vector
space.

Proof. Since by its definition, L(G) ⊆ M(n,R) and M(n,R) is itself a vector space, we
need only show that L(G) is nonempty (i), closed under scalar multiplication (ii), and
closed under matrix addition (iii).

(i) Let γ(t) = In, so γ(0) = In as well. Then γ′(t) = 0 ∀ t ∈ R and γ′(0) = 0n.
Therefore 0n ∈ L(G).

(ii) Let A ∈ L(G) and c ∈ R. We want to show cA ∈ L(G). Since A ∈ L(G), there
exists α : R → G smooth and passing through the identity such that α′(0) = A.
Let γ : R → G be defined by γ(t) = α(ct) for all t ∈ R. Then clearly γ is smooth
and γ(0) = α(c0) = α(0) = In, which implies γ′(0) ∈ L(G). Finally, γ′(t) = cα′(ct)
implies γ′(0) = cα′(0) = cA. Thus cA ∈ L(G).

(iii) Let A, B ∈ L(G). Then there exists α, β : R → G smooth and passing through the
identity such that α′(0) = A and β′(0) = B. Let γ : R → G be defined by

γ(t) = α(t)β(t) for all t ∈ R.

Then because α and β are smooth, γ is smooth (product rule for derivatives), and
γ(0) = α(0)β(0) = In · In = In, which implies γ′(0) ∈ L(G). Finally,

γ′(t) = α′(t)β(t) + α(t)β′(t)

implies

γ′(0) = α′(0)β(0) + α(0)β′(0)
= A · In + In ·B
= A+B.

Thus A+B ∈ L(G).
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Hence we have L(G) is a subspace of M(n,R).

Now we will determine the tangent spaces of a few particular matrix groups.

Example 1.5. First, suppose G = GL(2,R). We will determine L(G).

Let γ1(t) =
[
et 0
0 1

]
, γ2(t) =

[
1 t
0 1

]
,γ3(t) =

[
1 0
t 1

]
, γ4(t) =

[
1 0
0 et

]
.

Then γ′1(t) =
[
et 0
0 0

]
, γ′2(t) =

[
0 1
0 0

]
,γ′3(t) =

[
0 0
1 0

]
, γ′4(t) =

[
0 0
0 et

]
,

and γ′1(0) =
[
1 0
0 0

]
, γ′2(0) =

[
0 1
0 0

]
,γ′3(0) =

[
0 0
1 0

]
, γ′4(0) =

[
0 0
0 1

]
.

Notice γi is smooth and γi(0) =

[
1 0
0 1

]
for each i = 1, 2, 3, 4. Also,

{γ′1(0), γ′2(0), γ′3(0), γ′4(0)} = {
[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
}

is the standard basis for the vector space M(2,R). Since L(G) is a vector space, and
the basis of M(2,R) is contained in it, all linear combinations must also be in it. Thus
M(2,R) ⊆ L(G). By definition L(G) ⊆ M(2,R), which gives subset inclusion in both
directions. Therefore the tangent space at the identity of the general linear group of 2
by 2 matrices is all 2 by 2 matrices: L(G) = M(2,R).

Example 1.6. Now suppose G = SL(2,R), and we will again determine L(G).

Suppose γ(t) =

[
γ11(t) γ12(t)
γ21(t) γ22(t)

]
gives a smooth curve in G passing through the iden-

tity. So, γ11(0) = γ22(0) = 1 and γ12(0) = γ21(0) = 0. Since det(γ(t)) = 1,

γ11(t)γ22(t)− γ12(t)γ21(t) = 1.

Differentiating both sides with respect to t, we get

γ′11(t)γ22(t) + γ11(t)γ
′
22(t)− γ′12(t)γ21(t)− γ12(t)γ

′
21(t) = 0.

And evaluating at t = 0,

γ′11(0)γ22(0) + γ11(0)γ
′
22(0)− γ′12(0)γ21(0)− γ12(0)γ

′
21(0) = 0

γ′11(0) · 1 + 1 · γ′22(0)− γ′12(0) · 0− 0 · γ′21(0) = 0

γ′11(0) + γ′22(0) = 0.

Therefore γ′(0) has the form
[
a b
c −a

]
where a, b, c ∈ R, and

L(G) ⊆ W =

{[
a b
c −a

]
: a, b, c ∈ R

}
= {A ∈ M(2,R) : trA = 0}.

Next we need to show W is a subspace of M(2,R). It should be clear that W �= ∅. Let

α1, α2 ∈ R and let
[
a1 b1
c1 −a1

]
,
[
a2 b2
c2 −a2

]
∈ W , so that we can show closure under
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scalar multiplication and vector addition in one step. Then

α1

[
a1 b1
c1 −a1

]
+ α2

[
a2 b2
c2 −a2

]
=

[
α1a1 + α2a2 α1b1 + α2b2
α1c1 + α2c2 −(α1a1 + α2a2)

]
∈ W.

Therefore W is a subspace. Now, we simply need to show the basis of W ,

B =

{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
,

is contained in L(G) to complete the proof that L(G) = W .

Let γ1(t) =
[
et 0
0 e−t

]
, γ2(t) =

[
1 t
0 1

]
, γ3(t) =

[
1 0
t 1

]
.

So γ′1(0) =
[
1 0
0 −1

]
, γ′2(0) =

[
0 1
0 0

]
, γ′3(0) =

[
0 0
1 0

]
.

Therefore W ⊆ L(G) and L(G) = W .

Example 1.7. For another example, we will determine L(G) for G = O(2,R).
First recall that O(n,R) = {M ∈ M(n,R) : MTM = In}. Let γ(t) be a smooth curve in

G passing through the identity where γ′(0) =
[
a b
c d

]
. Then

γ(t)Tγ(t) = I2.

Differentiating both sides, we have

γ′(t)Tγ(t) + γ(t)Tγ′(t) = 02.

And letting t = 0 yields
γ′(0)T = −γ′(0),

or [
a c
b d

]
=

[
−a −b
−c −d

]
.

Hence γ′(0) has the form
[

0 x
−x 0

]
where x ∈ R, and L(G) ⊆ W =

{[
0 x
−x 0

]
: x ∈ R

}
.

Using the same method as before, let γ(t) =
[

cos(t) sin(t)
− sin(t) cos(t)

]
. Then γ is smooth and

γ(0) = I2. Then γ′(0) =
[

0 1
−1 0

]
,
[

0 1
−1 0

]
∈ L(G), so W ⊆ L(G), and L(G) = W .

Definition 1.8. Let G1 ≤ GL(n,R) and G2 ≤ GL(m,R), and assume F : G1 → G2 is a
group homomorphism. Then we can think of F as a function F : Rn2 → R

m2
. Then F

is called a Lie group homomorphism if F is smooth.

Definition 1.9. A Lie group homomorphism F is called a Lie group isomorphism
when F is one-to-one and onto.

Example 1.10. Define F : GL(n,R) → R
∗, where R

∗ is the group of reals without zero
under multiplication, by F (A) = det(A) for all A ∈ GL(n,R). Then F is a Lie group
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homomorphism and onto, but it is not an isomorphism since it is not one-to-one.
Letting A,B ∈ GL(n,R) we have F (AB) = det(AB) = det(A) det(B) = F (A)F (B),
which tells us F is a homomorphism.
We will not go into all the detail of why the determinant is smooth, but I will give some
justification. Letting Sn be the set of all permutations of 1, 2, . . . , n, we can define the
determinant of X ∈ GL(n,R) as follows:

det(X) =
∑
π∈Sn

(±1)x1π(1)x2π(2) · · ·xnπ(n)

where the sign is positive when π is an even permutation and odd when π is an odd
permutation. The important thing to gather from this “version” of the determinant is
that the formula is linear with respect to each variable xij . Since linear functions are
smooth, and this is a linear function in each of n2 variables, the determinant map (F in
this case) is smooth and thus a Lie group homomorphism.
To see that F is onto, let x ∈ R

∗. Then choose A to be the matrix A = (aij) where aij = 0
when i �= j, a11 = x, and aii = 1 for 2 ≤ i ≤ n. Then F (A) = det(A) = x, which means
F is onto.

To see that F is not one-to-one, consider the case when n = 2, and let A =

[
1 0
0 1

]

and B =

[
−1 0
0 −1

]
. Then

F (A) = det(A) =

∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1,

and F (B) = det(B) =

∣∣∣∣ −1 0
0 −1

∣∣∣∣ = 1,

but A �= B. Therefore F is not one-to-one.

Let G1 ≤ GL(n,R), G2 ≤ GL(m,R), and assume F : G1 → G2 is a Lie group
homomorphism. Now suppose A1 ∈ L(G1). Then there exists a smooth function α1 :

R → G1 such that α1(0) = In and α′
1(0) = A1. Then let α2 : R → G2 be defined by

α2(t) = F (α1(t)).

Definition 1.11. The differential of F at the identity is dF : L(G1) → L(G2) with
dF (A1) = α′

2(0).

Proposition 1.12. If F : G1 → G2 is a Lie group homomorphism with G1 ≤ GL(n,R)
and G2 ≤ GL(m,R), then the differential dF : L(G1) → L(G2) is a linear transforma-
tion.

Proof. Let A1, B1 ∈ L(G1). Then there exists α1 and β1 smooth and passing through
the identity such that A1 = α′

1(0) and B1 = β′
1(0).

Now let

γ1(t) = α1(t)β1(t),

α2(t) = F (α1(t)),

β2(t) = F (β1(t)),

and γ2(t) = F (γ1(t)).
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Keep in mind we already know from (1.4) that γ1(0) = In and γ′1(0) = α′
1(0) + β′

1(0).
Now, we will show γ2(t) ∈ G2:
First of all,

γ2(t) = F (γ1(t)) = F (α1(t)β1(t)) = F (α1(t))F (β1(t)) = α2(t)β2(t).

Since G2 is a group and γ2(t) is the product of two elements of the group, it is contained
in G2 by closure.
Also, γ2 passes through the identity:

γ2(0) = F (γ1(0)) = F (In) = Im.

We made use of the well-known fact that a group homomorphism takes the identity in
the domain to the identity in the range. (This is also easy to prove.)
Next, we show that γ′2(0) = α′

2(0) + β′
2(0):

γ′2(t) = [α2(t)β2(t)]
′ = α′

2(t)β2(t) + α2(t)β
′
2(t).

So when we substitute 0 in for t,

γ′2(0) = α′
2(0)β2(0) + α2(0)β

′
2(0)

= α′
2(0)F (β1(0)) + F (α1(0))β

′
2(0)

= α′
2(0) · F (In) + F (In) · β′

2(0)

= α′
2(0) · Im + Im · β′

2(0)

= α′
2(0) + β′

2(0).

Finally, we get around to showing dF is linear:

dF (A1) + dF (B1) = α′
2(0) + β′

2(0)

= γ′2(0)
= dF (γ′1(0))
= dF (α′

1(0) + β′
1(0))

= dF (A1 +B1).

Now let c ∈ R, γ1(t) = α1(ct), and γ2(t) = F (γ1(t)).

dF (cA1) = dF (cα′
1(0))

= dF (γ′1(0))
= γ′2(0)
= cα′

2(0)

= cdF (α′
1(0))

= cdF (A1).

Example 1.13. Let F : GL(2,R) → R
∗ be given by F (X) = det(X). We use the notation

X = (xij) so that det(X) = x11x22 − x12x21. We will show the differential dF at the
identity takes X to tr(X) ∈ R.
Let A ∈ M(2,R), the tangent space of GL(2,R). Then there exists α : R → GL(2,R)
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such that α is smooth, α(0) = I2, and A = α′(0). Now let β(t) = F (α(t)), so dF (A) =
dF (α′(0)) = β′(0). We have

β(t) = α11(t)α22(t)− α12(t)α21(t)

β′(t) = α′
11(t)α22(t) + α11(t)α

′
22(t)− α′

12(t)α21(t)− α12(t)α
′
21(t)

Hence

dF (A) = β′(0) = α′
11(0)α22(0) + α11(0)α

′
22(0)− α′

12(0)α21(0)− α12(0)α
′
21(0)

= α′
11(0) · 1 + 1 · α′

22(0)− α′
12(0) · 0− 0 · α′

21(0)

= α′
11(0) + α′

22(0)

= tr(A).

2 The Exponential Map

Definition 2.1. Let G be a group. Then a function γ : R → G is called a one-parameter
subgroup of G if γ is a continuous group homomorphism.

Proposition 2.2. Every one-parameter subgroup γ : R → G where G ≤ GL(n,R)
satisfies γ(0) = In.

Proof. Let γ be a one-parameter subgroup.
Then since γ(0) = γ(0 + 0) = γ(0) · γ(0),

γ(0) = γ(0) · γ(0)
γ(0)−1 · γ(0) = γ(0)−1 · γ(0) · γ(0)

In = In · γ(0)
In = γ(0).

Lemma 2.3. If γ : R → R is continuous, γ(0) = 1, and γ(t) �= 0 for all t ∈ R, then
γ(1) > 0.

Proof. Let γ(1) = b and suppose b < 0. Since b < 0 < 1 and γ(1) = b < 0 < γ(0), by the
Intermediate Value Theorem from calculus there exists t ∈ R such that γ(t) = 0. This is
a contradiction, thus b > 0.

In the following lemma and theorem, we treat GL(1,R) as if it were R
∗, the group of

non-zero reals under multiplication. It is easy to see that the two groups are isomorphic
to one another.

Lemma 2.4. If γ : R → GL(1,R) is a one-parameter subgroup, or continuous group
homomorphism, with γ(1) = b > 0, then γ(t) = bt for all t ∈ R.

Proof. In order to prove this for all real t, we will show it in six steps:

(i) For all positive integers n, γ(nt) = (γ(t))n:
We will use induction. If n = 1, γ(1t) = γ(t) = (γ(t))1.
Now suppose γ(nt) = (γ(t))n for some n.
Then γ((n+ 1)t) = γ(nt+ t) = γ(nt)γ(t) = (γ(t))nγ(t) = (γ(t))n+1.
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(ii) For all positive integers n, γ(n) = bn:
Just use (i): γ(n) = γ(n1) = (γ(1))n = bn.

(iii) For all negative integers −m, γ(−m) = b−m:
Since γ(0) = 1, 1 = γ(m−m) = γ(m)γ(−m) = bmγ(−m).
Then 1 = bmγ(−m) implies b−m = γ(−m).

(iv) For all positive integers k, γ(1/k) = b1/k:
First, b = γ(1) = γ(k(1/k)) = (γ(1/k))k.
Then raising each side of the equation to the power of 1/k, we get b1/k = γ(1/k).

(v) For all rational numbers n/k, γ(n/k) = bn/k:
γ(n/k) = (γ(1/k))n = (b1/k)n = bn/k.

(vi) For all real numbers t, γ(t) = bt:
Let t ∈ R. Then we know that t is the limit of a sequence of rational numbers:
Say t = limn→∞ tn where tn is rational for all n. Since both γ and exponential
functions are continuous, we can conclude

γ(t) = γ( lim
n→∞ tn) = lim

n→∞ γ(tn) = lim
n→∞ btn = blimn→∞ tn = bt.

Theorem 2.5. If γ : R → GL(1,R) is a one-parameter subgroup (or continuous group
homomorphism), then γ(t) = eat for a = γ′(0).

Proof. We know γ(0) = 1, and we will let γ(1) = b. We have also proven then that
γ(t) = bt for all t ∈ R. So let a = ln(b). Then

γ(t) = bt = (eln(b))t = (ea)t = eat.

Also, γ′(t) = aeat implies γ′(0) = a.

Theorem 2.6. Let G ≤ GL(n,R). If γ : R → G is a one-parameter subgroup of G, then
γ(t) = etA for A = γ′(0).

The proof of this theorem is an extension of 2.3, 2.4, and 2.5, but involves more
in-depth work in matrix-valued functions which we will not get into here.

Next we will learn a very special theorem for matrices, which becomes very useful
in discovering tangent spaces of groups of matrices. However, we must first mention
a couple of lemmas used in the proof. Proofs of the lemmas are relatively simple and
thus left to the reader.

Lemma 2.7. The determinant of an upper triangular matrix is the product of the entries
along the main diagonal.

Lemma 2.8. For an upper triangular matrix A with main diagonal entries a11, a22, . . . , ann,
eA has main diagonal entries ea11 , ea22 , . . . , eann .

Making use of the prior two lemmas, we are now able to prove the next theorem.

Theorem 2.9. Let A ∈ M(n,R). Then det(eA) = etr(A).
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Proof. For A ∈ M(n,R), we know there exists an invertible n by n matrix P such that
A = PUP−1 where U is (at least) an upper triangular matrix. So,

det(eA) = det(ePUP−1
)

= det(PeUP−1)

= det(P ) det(eU ) det(P−1)

= det(P ) det(eU )1/det(P )

= det(eU )

= eu11eu22 · · · eunn

= eu11+u22+···+unn

= etr(U)

= etr(P
−1AP )

= etr(P (P−1A))

= etr(A).

Now we can make special use of the exponential map in determining tangent spaces
of our matrix groups. We’ll take a look at a more general case of something we’ve
already done. (1.6)

Example 2.10. We will calculate L(G) for G = SL(n,R).
We have already seen that when γ : R → SL(n,R) is smooth and passes through the
identity then tr(γ′(0)) = 0 (1.6). Therefore L(G) ⊆ W = {B ∈ M(n,R) : tr(B) = 0}.
We only have to show W ⊆ L(G).
To do this, we will first show W is a vector space. Since by definition W ⊆ M(n,R) we
need only show W is a subspace. Clearly, 0n ∈ W , so W is nonempty.
Now let A,B ∈ W and x, y ∈ R. Then

tr(xA+ yB) = xa11 + yb11 + · · ·+ xann + ybnn

= xa11 + · · ·+ xann + yb11 + · · ·+ ybnn

= x(a11 + · · ·+ ann) + y(b11 + · · ·+ bnn

= x tr(A) + y tr(B)

= x · 0 + y · 0
= 0.

Therefore W is a subspace of M(n,R).
Now let B ∈ W . Then if we can show etB ∈ G we can say W ⊂ L(G). In other words,
we have only to show det(etB) = 1:

det(etB) = etr(tB) = e0 = 1.

Hence etB ∈ G for all B ∈ W . Thus W ⊆ L(G).
Finally, since we have subset inclusion both ways, L(G) = W .

Here’s one more example of determining a tangent space by making use of the

xiv



exponential map. Again, we look at a more general case of an example (1.7) done
previously.

Example 2.11. We will calculate L(G) for G = O(n,R).
We have already seen that when γ : R → O(n,R) is smooth and passes through the
identity then by (1.7) γ′(0) + γ′(0)T = 0n. Therefore L(G) ⊆ W = {B ∈ M(n,R) :
B +BT = 0n}. We only have to show W ⊆ L(G).
To do this, we will first show W is a vector space. Since by definition W ⊆ M(n,R) we
need only show W is a subspace. Clearly, 0n ∈ W , so W is nonempty.
Now let A,B ∈ W and x, y ∈ R. Then

(xA+ yB) + (xA+ yB)T = xA+ yB + xAT + yBT

= x(A+AT ) + y(B +BT )

= x · 0n + y · 0n
= 0n.

Therefore W is a subspace of M(n,R).
Now let B ∈ W . Then if we can show etB ∈ G we can say W ⊂ L(G). In other words,
we have only to show (etB)T etB = In:

(etB)T etB = etB
T
etB = et(B+BT ) = e0n = In.

Hence etB ∈ G for all B ∈ W . Thus W ⊆ L(G).
Finally, since we have subset inclusion both ways, L(G) = W .

So we have at least a couple of methods with which we can determine the tangent
spaces of multiplicative matrix groups. In the next section, we’ll take a closer look at
the structure such spaces have.

3 Lie Algebras

The multiplicative matrix groups are great examples of Lie groups (The suspense of
waiting for that definition must be killing you.) However, there is another structure
very closely tied to every Lie group. Each Lie group has an associated Lie algebra.
While looking at the tangent spaces of each matrix group in the previous sections, we
were in fact looking at the Lie algebra associated with each of the matrix groups as Lie
groups. Now we’ll take a look at what it means to be a Lie algebra.

Definition 3.1. Let L be a vector space over R. Then L is called a Lie algebra if it has a
bracket operation satisfying the following properties for all x, y, z ∈ L and all c ∈ R:

(1) [x, y] ∈ L (closure)

(2) [x, y] = −[y, x] (anti-symmetric)

(3)
[x, y + z] = [x, y] + [x, z]
[x+ y, z] = [x, z] + [y, z]
[cx, y] = c[x, y] = [x, cy]

⎫⎬
⎭ (bilinear)
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(4) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity)

We call [ , ] a Lie bracket.

Proposition 3.2. Let L be a Lie algebra. Then for all v ∈ L, [v, v] = 0 and [v, 0] = 0.

Proof. Let v ∈ L. Then [v, v] = −[v, v] implies 2[v, v] = 0 and [v, v] = 0.
Also, since [v, 0] = [v, 0 + 0] = [v, 0] + [v, 0],

[v, 0] = [v, 0] + [v, 0]

[v, 0]− [v, 0] = [v, 0] + [v, 0]− [v, 0]

0 = [v, 0].

Now we’ll see an example of a Lie algebra. In this example, we will have to make
use of a well-known identity for vectors: for all x, y, z ∈ R

3, x×(y×z) = (x·z)y−(x·y)z.

Example 3.3. R
3 is a Lie algebra with the bracket being the cross product.

Since we already know R
3 is a vector space and the cross product of two vectors is a

vector, we need only show the cross product is anti-symmetric, bilinear, and satisfies
the Jacobi identity.

To see antisymmetric: let v, w ∈ R
3 with v =

⎡
⎣ v1

v2
v3

⎤
⎦ and w =

⎡
⎣ w1

w2

w3

⎤
⎦.

Then v × w =

⎡
⎣ v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

⎤
⎦ = −

⎡
⎣ w2v3 − w3v2

w3v1 − w1v3
w1v2 − w2v1

⎤
⎦ = −(w × v).

To see bilinear: let u, v, w ∈ R
3.

Then u× (v + w) =

⎡
⎣ u2(v3 + w3)− u3(v2 + w2)

u3(v1 + w1)− u1(v3 + w3)
u1(v2 + w2)− u2(v1 + w1)

⎤
⎦

=

⎡
⎣ u2v3 − u3v2

u3v1 − u1v3
u1v2 − u2v1

⎤
⎦+

⎡
⎣ u2w3 − u3w2

u3w1 − u1w3

u1w2 − u2w1

⎤
⎦

= (u× v) + (u× w).

Similarly, (u+ v)×w = (u×w) + (v ×w) and cu× v = c(u× v) = u× cv for all c ∈ R.
Finally, to see it satisfies the Jacobi identity:

u× (v × w) + v × (w × u) + w × (u× v)

= (u · w)v − (u · v)w + (v · u)w − (v · w)u+ (w · v)u− (w · u)v

= (u · w)v + (v · u)w + (w · v)u− (u · v)w − (v · w)u− (w · u)v

= 0.

Therefore the cross product is a Lie bracket and R
3 is a Lie algebra.

Next, we will begin to relate our new knowledge of Lie algebras back to our matrix
groups and corresponding tangent spaces.

xvi



Definition 3.4. For all matrices A,B ∈ M(n,R) define the matrix bracket by [A,B] =
AB −BA.

The question here is obvious. Is the matrix bracket a Lie bracket? And of course the
answer is yes.

Proposition 3.5. The matrix bracket is a Lie bracket.

Proof. Closure: let A,B ∈ M(n,R). Then [A,B] = AB − BA ∈ M(n,R). Anti-
Symmetric: let A,B ∈ M(n,R). Then

[A,B] = AB −BA = −(BA−AB) = −[B,A].

Bilinear: let A,B,C ∈ M(n,R). Then

[A,B + C] = A(B + C)− (B + C)A = AB +AC −BA− CA

= AB −BA+AC − CA

= [A,B] + [A,C].

Similarly, [A+B,C] = [A,C] + [B,C]. If c ∈ R, then

[cA,B] = (cA)B −B(cA) = A(cB)− (cB)A = [A, cB]

= c(AB −BA) = c[A,B].

Jacobi: let A,B,C ∈ M(n,R). Then

[A, [B,C]] + [B, [C,A]] + [C, [A,B]]

= A[B,C]− [B,C]A+B[C,A]− [C,A]B + C[A,B]− [A,B]C

= A(BC − CB)− (BC − CB)A+B(CA−AC)− (CA−AC)B + C(AB −BA)− (AB −BA)C

= ABC −ACB −BCA+ CBA+BCA−BAC − CAB +ACB + CAB − CBA−ABC +BAC

= 0.

Therefore the matrix bracket is a Lie bracket.

Notice that this means that when G = GL(n,R), L(G) = M(n,R) is a Lie algebra
with the Lie bracket. Notice also that in Definition 3.4 above, when AB = BA, [A,B] =

AB −BA = AB −AB = 0. This motivates the next definition.

Definition 3.6. A Lie algebra L is called abelian if [v, w] = 0 for all v, w ∈ L.

Proposition 3.7. For any two n by n matrices A and B, tr([A,B]) = 0.

Proof. The proof makes use of the well-known property of matrices that tr(XY ) =
tr(Y X) for all X,Y ∈ M(n,R):

tr([A,B]) = tr(AB −BA)

= tr(AB)− tr(BA)

= tr(AB)− tr(AB)

= 0.
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Now that we know the matrix bracket is a Lie bracket, we will show some of the
tangent spaces of our matrix groups are also Lie algebras. As a matter of fact, all of
these tangent spaces are Lie algebras, but we will only show it for a couple of the
examples. Since we have already shown the matrix bracket is anti-symmetric, bilinear,
and satisfies the Jacobi identity, all that is left in the next couple of examples is to show
the closure under the matrix bracket for these particular tangent spaces.

Example 3.8. We have already seen that when G = SL(n,R), L(G) = {B ∈ M(n,R) :
tr(B) = 0} (1.6). To see that L(G) is a Lie algebra in this case, all that remains to be
shown is closure under the matrix bracket.
Let A,B ∈ L(G). Then tr([A,B]) = 0 by (3.7). Therefore [A,B] ∈ L(G), and L(G) is a
Lie algebra.

Example 3.9. We have seen that when G = O(n,R), L(G) = {B ∈ M(n,R) : BT +B =
0n} (1.7). Alternatively (and useful in this case), L(G) = {B ∈ M(n,R) : BT = −B}.
Now to see that L(G) is a Lie algebra in this case, once again the only thing left to show
is closure under the matrix bracket.
Let A,B ∈ L(G). Then

([A,B])T + [A,B] = (AB −BA)T + (AB −BA)

= (AB)T − (BA)T +AB −BA

= BTAT −ATBT +AB −BA

= (−B)(−A)− (−A)(−B) +AB −BA

= BA−AB +AB −BA

= 0.

Therefore [A,B] ∈ L(G), and L(G) is a Lie algebra.

Definition 3.10. Let L1 and L2 be Lie algebras. Then a linear transformation T : L1 →
L2 is called a Lie algebra homomorphism if it preserves the bracket.

T ([v, w]) = [Tv, Tw] for all v, w ∈ L1.

.

Definition 3.11. A Lie algebra homomorphism which is invertible is called a Lie alge-
bra isomorphism.

An example of a Lie algebra isomorphism will be found very early on in the next
section (4.2).

4 Adjoints

In this section, we explore the origin of the matrix bracket (3.4). It starts with the “big
A” Adjoint. From the “big A” Adjoint, we define the “small a” adjoint. Then we will
show that the “small a” adjoint agrees with the matrix bracket in the case of Lie algebras
of matrices.
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Definition 4.1. Fix n ∈ N and a matrix M ∈ GL(n,R). Define Ad(M) : M(n,R) →
M(n,R) by

Ad(M)(X) = MXM−1

for X ∈ M(n,R). The mapping Ad : GL(n,R) → GL(Rn2
) taking the matrix M to the

function Ad(M) is called the Adjoint, or “big A” Adjoint, map.

Proposition 4.2. Ad(M) is a Lie algebra isomorphism.

Proof. Ad(M) is linear: Let x, y ∈ R and A,B ∈ M(n,R). Then

Ad(M)(xA+ yB) = M(xA+ yB)M−1

= M(xA)M−1 +M(yB)M−1

= xMAM−1 + yMBM−1

= xAd(M)(A) + yAd(M)(B).

Ad(M) preserves the bracket: Let A,B ∈ M(n,R). Then

Ad(M)([A,B]) = M([A,B])M−1

= M(AB −BA)M−1

= MABM−1 −MBAM−1

= MAM−1MBM−1 −MBM−1MAM−1

= Ad(M)(A)Ad(M)(B)−Ad(M)(B)Ad(M)(A)

= [Ad(M)(A),Ad(M)(B)].

Ad(M) is invertible: Let A ∈ M(n,R). Then

Ad(M−1)(Ad(M)(A)) = M−1(Ad(M)(A))M

= M−1MAM−1M

= A.

Likewise,

Ad(M)(Ad(M−1)(A)) = M(Ad(M−1)(A))M−1

= MM−1AMM−1

= A.

Therefore Ad(M) is linear, bracket preserving, and invertible. Hence Ad(M) is a Lie
algebra isomorphism.

Proposition 4.3. Ad : GL(n,R) → GL(Rn2
) is a group homomorphism.

Proof. Fix M1,M2 ∈ GL(n,R) and let X ∈ M(n,R). Then

Ad(M1M2)(X) = M1M2X(M1M2)
−1

= M1M2XM−1
2 M−1

1

= M1Ad(M2)(X)M−1
1

= Ad(M1)(Ad(M2)(X))

= (Ad(M1) ◦Ad(M2))(X).

xix



We will assume further that Ad is even a Lie group homomorphism. This leads us
to being able to define the “small a” adjoint.

Definition 4.4. The “small a” adjoint, is defined as the differential of Ad, so

ad : L(G1) → L(G2)

where in this case

G1 = GL(n,R), G2 = GL(Rn2
),L(G1) = M(n,R), and L(G2) = M(n2,R)

where elements of M(n2,R) are interpreted as linear transformations from R
n2

to R
n2

,
or even more to our purposes as linear transformations from M(n,R) to M(n,R).

Now we will prove that in the case of matrix groups, the “small a” adjoint map is
actually a very familiar map.

Proposition 4.5. For a fixed A ∈ M(n,R), ad(A)(B) = [A,B] for all B ∈ M(n,R).

Proof. Using the notation from the definition above (4.4), since A ∈ L(G1) = M(n,R),
we know γ1(t) = etA is smooth and in G1 = GL(n,R) and γ′1(0) = A. Let γ2(t) =
Ad(γ1(t)). Then by the definition of differential (1.11) ad(A) = γ′2(0).
Now for any B ∈ M(n,R),

γ2(t)(B) = Ad(γ1(t))(B)

= γ1(t)Bγ1(t)
−1.

Now differentiate both sides of the equation:

γ′2(t)(B) = γ′1(t)Bγ1(t)
−1 + γ1(t)B(γ1(t)

−1)′

= γ′1(t)Bγ1(t)
−1 − γ1(t)Bγ1(t)

−2γ′1(t).

Finally, we let t = 0, so that

ad(A)(B) = γ′2(0)(B)

= γ′1(0)Bγ1(0)
−1 − γ1(0)Bγ1(0)

−2γ′1(0)
= A ·B · In − In ·B · In ·A
= AB −BA

= [A,B].

5 A Lie Group (Finally)

Unfortunately, there are several more definitions we need to get through before we
get to the definition of a Lie group. Each definition builds from the last, so with each
definition the complexity of such a structure becomes more and more involved. And
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of course, the Lie group is the most complicated of them all. Although on paper this
section may seem short, this is the longest of them all. The formal definition of a Lie
group relies on background knowledge of several areas in mathematics. This is why
relatively few mathematicians even know exactly what a Lie group is. But as promised,
we will press on and find an answer.

Definition 5.1. A topology T on a set X is a collection of subsets of X such that ∅ ∈ T ,
X ∈ T , and T is closed under finite intersections and arbitrary unions. A set X together
with a topology T on X , is called a topological space.

Additionally, sets in T are referred to as the open sets. I will also refer to an open
set which contains a point x as an open neighborhood of x.

Definition 5.2. A Hausdorff space is a topological space which satisfies one additional
axiom: for all x, y ∈ X with x �= y, there exists Ux, Uy ∈ T such that x ∈ Ux, y ∈ Uy,
and Ux ∩ Uy = ∅.

Definition 5.3. A homeomorphism (not homomorphism) is a one-to-one, onto, and
continuous function which also has a continuous inverse.

Definition 5.4. A manifold M of dimension n is a Hausdorff space which satisfies the
following two properties:

1. For all x ∈ M there exist an open neighborhood of x, call it U , and map φ : U →
R
n such that φ is a homeomorphism.

2. M has a countable base of open sets.

Definition 5.5. The pairs U, φ and V, ψ where U and V are open neighborhoods, and
φ and ψ are homeomorphisms from U and V , respectively, to R

n, are called C∞-
compatible if when U ∩ V �= ∅, the functions φ ◦ ψ−1 : ψ(U ∩ V ) → R

n and ψ ◦ φ−1 :
φ(U ∩ V ) → R

n are C∞, or infinitely differentiable.

Note that in the case where U ∩ V = ∅, we don’t need to worry about the corre-
sponding maps. Also take note that the domain of these functions is always a subspace
of Rn, and therefore differentiation is meant in the usual sense.

Definition 5.6. A differentiable or C∞ manifold M is a manifold of dimension n along
with a family U = {Uα, φα} of neighborhoods paired with an associated homeomor-
phism such that:

1. ∪Uα = M ,

2. for any α and β the pairs Uα, φα and Uβ , φβ are C∞-compatible, and

3. any pair V, ψ which is C∞-compatible with every Uα, φα ∈ U must also be in U .

The third condition for a differentiable manifold makes proving something is one
quite challenging. Thankfully, in differential geometry there is a very powerful theo-
rem to help.
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Theorem 5.7. Let M be a Hausdorff space which has a countable basis of open sets. If
there is a covering of open sets such that for each open set there is a homeomorphism
mapping it into R

n, then there is a unique C∞ structure on M which contains these
C∞-compatible pairs.

Example 5.8. The unit circle in the complex plane, S1 = {eiθ : θ ∈ R}, is a differentiable
manifold.

The Hausdorff space on S1 is relatively simple. Take the usual topology on the
complex plane and intersect all the open sets with S1. This gives the topology on S1.
Notice another way of doing this is by taking usual open sets from R and taking θ over
that range. This creates the same topology. We will think of it in these terms as it will
become more convenient soon. To make use of Theorem 5.7, we will simply come up
with an open cover along with corresponding homeomorphisms for each. For our open
sets, let

U = {eiθ : θ ∈ (0, 2π)}

and
V = {eiθ : θ ∈ (−π, π)}.

Notice U is the entire circle except for the point 1, and V is the entire circle except for
the point −1. So, U and V cover S1. Now we need homeomorphisms, φ : U → R and
ψ : V → R, such that U, φ and V, ψ are C∞-compatible. Let

φ(θ) = tan(
1

2
(θ − π)) and ψ(θ) = tan(

1

2
θ).

Notice that on the given domains, U and V , φ and ψ are one-to-one, onto, and contin-
uous. Their inverses,

φ−1(θ) = 2 tan−1(θ) + π and ψ−1(θ) = 2 tan−1(θ),

are also continuous. Thus φ and ψ are homeomorphisms.
Now all that remains to be shown is that the mappings

φ ◦ ψ−1 : ψ(U ∩ V ) → R and ψ ◦ φ−1 : φ(U ∩ V ) → R,

are C∞, or infinitely differentiable on their domains. In both cases, the domain is
(−∞, 0) ∪ (0,∞). Now,

(φ ◦ ψ−1)(θ) = tan(tan−1(θ)− π

2
) = −θ

and
(ψ ◦ φ−1)(θ) = tan(tan−1(θ) +

π

2
) = −θ,

both of which are well-defined and differentiable everywhere but at 0. However, this
is not a problem since 0 is also the only real number not in the domain of each function.
Therefore S1 is in fact a differentiable manifold.

Definition 5.9. A Lie group is a group G which is also a differentiable manifold such
that the group operation and inversion are differentiable. Symbolically,

(x, y) �→ xy and x �→ x−1

are differentiable. It suffices to assume that (x, y) �→ xy−1 is differentiable. In fact, it
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even suffices to assume that only the group operation ((x, y) �→ xy) is differentiable.

Example 5.10. Let’s show that R
n is a Lie group. First of all, it is clear that it is a

group under addition. It should also be clear at this point that Rn is a differentiable
manifold since for any open set in R

n the identity map will suffice as a homeomorphism
from the set into Rn. We need only show that addition in R

n is differentiable. Let
f : Rn × R

n → R
n be the addition map. So for all (x, y) ∈ R

n × R
n, f((x, y)) = x + y.

So if x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), then f((x, y)) = x+ y = (x1 + y1, x2 +
y2, . . . , xn + yn). Each component of the resulting vector is differentiable with respect
to any of the xi’s or yi’s, so the entire function is itself differentiable. Thus R

n is a Lie
group.

Now, in a final attempt at connecting our formal definition of a Lie group back to
our work with subgroups of GL(n,R), let’s take a look at two last examples.

Example 5.11. Look again at the unit circle, S1 = {eiθ : θ ∈ R}. S1 is a Lie group.
First of all, let’s see why S1 is a group:

• Closure: for all eiα, eiβ ∈ S1, we have eiαeiβ = ei(α+β) ∈ S1.

• Associativity: for all eiα, eiβ , eiγ ∈ S1, we have eiα(eiβeiγ) = eiαei(β+γ) = ei(α+(β+γ)) =
ei((α+β)+γ) = ei(α+β)eiγ = (eiαeiβ)eiγ .

• Identity: ei·0 = 1, so 1 is the identity.

• Inverse: for all eiα ∈ S1, there is ei(−α) ∈ S1 and eiαei(−α) = ei(α−α) = e0 = 1.

We’ve already seen S1 is a differentiable manifold (5.8). All that is left is to see why
S1 is a Lie group. We only have left to show that the group operation (multiplication
in this case) is differentiable. So, let x = eiα and y = eiβ , then eiαeiβ = ei(α+β) ∈ S1.
Using a map similar to those in (5.8), we can see that the map φ(θ) = tan(12(θ− α− β))
is infinitely differentiable in R.

Example 5.12. Now let’s finally tie some pieces together by showing that SO(2,R), the 2
by 2 special orthogonal group (0.8), is a Lie group. We will be taking a slightly different
approach this time. Since we already know S1 is a Lie group from the previous example
(5.11), we will simply construct a Lie group isomorphism (1.9) between the two groups,
which means the two have the same Lie group structure.
Define F : SO(2,R) → S1 = {eiθ : θ ∈ R} by

F

([
cos θ − sin θ
sin θ cos θ

])
= eiθ.

Then F is a homomorphism:

F

([
cosα − sinα
sinα cosα

] [
cosβ − sinβ
sinβ cosβ

])
= F

([
cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

])

= ei(α+β)

= eiαeiβ

= F

([
cosα − sinα
sinα cosα

])
F

([
cosβ − sinβ
sinβ cosβ

])
.
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Since the exponential function is smooth, it is clear that F is smooth. Thus F is a Lie
group homomorphism by (1.8).
Now F is one-to-one:

if F
([

cosα − sinα
sinα cosα

])
= F

([
cosβ − sinβ
sinβ cosβ

])
,

then eiα = eiβ

and α = β + 2kπ,

which implies
[
cosα − sinα
sinα cosα

]
=

[
cosβ − sinβ
sinβ cosβ

]

since the sine and cosine functions have a period of 2π.
Also F is onto: let eiα ∈ S1. Then

F

([
cosα − sinα
sinα cosα

])
= eiα.

So F is a Lie group homomorphism, one-to-one, and onto. Hence by (1.9), F is a Lie
group ismomorphism. Therefore SO(2,R) and S1 are both Lie groups.
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