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ABSTRACT 
 
 

 As the populations and the economies of the world grow, the demand for 

electricity rises and necessitates an increase in the supply of electricity as the 

primary fuels that are used to generate electricity are finite and exhausting. 

Moreover, mounting concerns about carbon emissions and the current direction 

of environmental legislation are pushing for lower emissions and higher 

efficiencies of energy producing facilities. One approach to abate such dilemmas 

is to increase the efficiency of the modern steam cycle, which is used to generate 

most of the world’s electricity. Improving the components of the steam cycle, or 

the boiler component in particular, can affect the overall efficiency of the steam 

cycle significantly. An integral constituent of the boiler is the boiler tube. There 

are several types of boiler tubes, and the helically-finned tube is one type that 

has proven to increase the efficiency of the boiler. However, insight to the 

internal flow within the helically-finned tube is still developing and incomplete. 

The objective of this study was to computationally model the internal flow and 

measure the friction factor of a helically-finned tube for which experimental data 

was already published. Using three different modeling techniques, the flow was 

solved numerically with Fluent, a computational fluid dynamics software package. 

With respect to the experimental data, the Fluent solutions reflected percent 

errors ranging between 14% and 27%. Although the results are acceptable, 

suggestions for future work are included. 
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CHAPTER 1 
INTRODUCTION 

 
 

1.1      Background 

 Currently, most of the electricity generated in the United States is 

produced using coal, natural gas, or nuclear power. Published by the United 

States Energy Information Administration, statistics show that coal, natural gas, 

and nuclear power were used to produce more than 3,350 billion kilowatt-hours 

or 89 percent of the net electricity generated in the United States during the year 

2007. The Administration projects a 25% increase in the demand for electricity by 

the year 2030 in the United States (EIA). Consequently, the supply of electricity 

and the amount of fuel that is used to generate electricity must increase in order 

to satisfy the projected demand. However, coal, natural gas, and nuclear power 

are finite resources. As these resources become depleted, they become more 

precious, and the efficient use of such fuels becomes increasingly important. 

Moreover, mounting concerns about the adverse effects of green house gases, 

which are byproducts of burning fossil fuels, and the current direction of 

environmental legislation are pushing for lower emissions and greater efficiencies 

with respect to generating electricity. There are many factors that affect the 

efficient use of fuels with respect to generating electricity. One factor is the 

process of converting a fuel into electricity. By improving this process or parts of 
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this process, a fuel can be used more efficiently, which can help increase the 

supply of electricity and meet the rising demand.  

 Most electricity is created using steam and steam turbines. A simple 

steam cycle diagram illustrates the basic process that is most commonly used to 

convert the potential energy of coal, natural gas, or nuclear power into electricity. 

Illustrated as a schematic in Figure 1.1, the basic Rankine cycle is an ideal model 

of the steam cycle that is commonly used by steam power plants to generate 

electricity. Note that the schematic illustrated in Figure 1.1 is only a basic model. 

Several other components of an actual cycle are omitted for simplicity. Hence, 

Figure 1.1 does not represent a complete steam cycle that is used to generate 

electricity. It is noted that the Rankine cycle is discussed exclusively in terms of 

water. No other fluids are considered in conjunction with the Rankine cycle. 

 

 

 

 

 

 

 

 

 
 As illustrated in Figure 1.1, the Rankine cycle consists of four key 

components and four basic processes. Although there are complex 

thermodynamic phenomena occurring at every stage of the cycle, a general 

Figure 1.1. The Rankine Cycle [Çengel (2006)]. 
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understanding of all of the processes and the purpose of each component is 

rudimentary. 

 The component of the Rankine cycle that is associated with the first 

process is the pump; this process occurs from Stage 1 to Stage 2. During this 

process, the function of the pump is twofold in that it compresses the saturated 

liquid water to the operating pressure of the boiler, and it transports the saturated 

liquid water to the boiler, where the second process of the Rankine cycle begins. 

 Positioned between Stages 2 and 3, the boiler functions as a large heat 

exchanger. Although the function of the boiler is simple, the intricate design of 

the boiler is a major focus of ongoing research, as the performance of the boiler 

significantly affects the overall efficiency of the cycle. The boiler is discussed in 

greater detail in the next section. The basic function of the boiler is to transfer 

heat from combustion gases, nuclear reactors, or other heat-energy sources to 

the saturated liquid water that is coming from the pump. As the water absorbs the 

heat, the phase of the water changes from a saturated liquid to a superheated 

vapor, and the third process of the Rankine cycle begins. 

 After the water becomes a superheated vapor, it passes from the boiler to 

the turbine, which is located between Stages 3 and 4. As the vapor enters into 

the turbine, it begins to cool, expands, and causes the turbine blades and turbine 

shaft to rotate. An electric generator is connected to the shaft. As the turbine 

shaft rotates, the shaft that is connected to the electric generator rotates 

simultaneously, and the electric generator produces electricity. Well designed 

electric generators and turbines are critical for producing electricity efficiently. 
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However, current research and design of the turbine and the electric generator 

are not presented, as such topics are beyond the scope of this research.  

 After the steam exits the turbine, it enters the condenser, which is the final 

component of the basic Rankine cycle and located between Stages 4 and 1. The 

purpose of the condenser is to reject large amounts of heat from the steam to a 

heat sink and condense the steam into a saturated liquid at constant temperature 

and pressure. Finally, the saturated liquid water is fed back into the pump, and 

the cycle repeats. 

 The Rankine cycle is an essential part of the technology that is used to 

generate electricity. However, the Rankine cycle is an ideal model, and it does 

not reflect the actual thermodynamic processes that occur in a real steam cycle. 

For example, the Rankine cycle does not account for the loss of energy due to 

fluid friction or the effects of irreversible processes. Nonetheless, the Rankine 

cycle is useful, and it provides insight into an ideal model of the steam cycle. 

Although a perfect steam cycle does not exist, it can be enhanced and optimized 

through innovation and strategic design of key components. One of the key 

components of the steam cycle is the boiler, which is discussed in the next 

section. 

 
 
1.2      The Boiler and Helically-Finned Tubes 

 As briefly discussed earlier, the function of a boiler, or steam generator, is 

quite simple. A boiler transfers heat energy from a heat source to liquid water 

and induces a phase change as liquid water absorbs heat and becomes steam. 
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However, the intricate networks and designs of the components that comprise 

the modern boiler are not rudimentary.  

Today, there are many types of boilers that are available on the market. 

Boilers may differ by various characteristics such as size, steam capacity, fuel 

source, convection technology, and other distinctions. In Figure 1.2, a schematic 

of a 750-megawatt once-through coal-fired utility boiler is illustrated and detailed 

with some of the major components that comprise the unit. The terms that are 

used to describe the boiler in Figure 1.2 are clarified in subsequent paragraphs of 

this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2 750 MW Once-Through Coal-Fired Utility Boiler [Stultz (2005)]. 
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 Although there are many individual components that make up the boiler, 

only the boiler tube is discussed, since it is the primary focus of this research. 

Note that the boiler tubes are not labeled in Figure 1.2. Nevertheless, they are 

located throughout the furnace area. 

 With respect to steam generators, a boiler tube is a pipe through which 

water flows and facilitates heat transfer from a heat source to the internally 

flowing water, which ultimately changes into steam. The most effective way to 

convert liquid water into high-pressure steam, Stultz (2006) suggests, is to heat 

tubes that have a relatively small diameter and contain a continuous flow of 

water. Using this method, there are two basic types of boiling systems that are 

used to generate high-pressure steam: a steam drum and a once-through steam 

generator (OTSG). Both systems are illustrated in Figure 1.3. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.3 Boiling Systems [Stultz (2005)]. (a) Steam Drum, (b) Once-
Through Steam Generator (OTSG) 
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 In a steam drum boiling system, water is heated to its boiling point inside 

the tube and changes into a steam-water mixture as it approaches the steam 

drum. As the steam-water mixture enters the steam drum, the steam and the 

water begin to separate. The liquid portion of the mixture is recycled back into the 

heated tube, and the steam is directed out of the boiler system. With the 

exception of the drum portion of the steam drum system, the once-through steam 

generator operates in a similar fashion. 

 In a once-through boiling system, subcooled water is heated as it travels 

through the tube. The amount of heat that is directed toward the flowing water is 

carefully controlled such that the water flowing through the tube fully changes 

into steam before exiting the system. Since all of the water in the system is 

converted into steam, there is no need for a steam drum. However, there are 

several important factors to consider in order to ensure that all of the subcooled 

water is converted into steam in a once-through boiling system. Such factors are: 

pipe length, heat input, water flow rate, rate of heat transfer, and the pressure 

drop along the pipe. Arguably, this list is incomplete. Nevertheless, the rate of 

heat transfer and the pressure drop along the pipe are two of the most studied 

characteristics with respect to the boiler tube. 

 According to Newton’s Law of Cooling, the rate of convection heat transfer 

between a solid and a fluid is proportional to the temperature difference between 

the solid and the fluid by a factor of the product of the surface area through which 

convective heat transfer takes place and the convective heat transfer coefficient. 

Mathematically, Newton’s Law of Cooling states 
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     (1) 

 
 In conjunction with Equation (1), consider the boiler tubes that are 

illustrated in Figure 1.4 – the thickness and the diameter of both tubes are equal. 

Suppose that an identical fluid with the same temperature is moderately flowing 

through each tube, and the wall temperature of each tube is the same, but the 

wall temperatures differ from the temperature of the fluid. Equation (1) asserts 

that the rate of heat transfer occurring in Tube (b) is greater than the rate of heat 

transfer occurring in Tube (a). This is true for several reasons. The most 

apparent reason is that the area through which convective heat transfer takes 

place in Tube (b) is greater than the area in Tube (a), as a result of the presence 

of transverse fins in Tube (b). Furthermore, the conductive heat transfer 

coefficient associated with Tube (b) is higher than the coefficient associated with 

Tube (a) as a result of greater turbulence and better mixing within Tube (b).  

 

 

 

 

 

  

 

 

  

Figure 1.4 Tube Surface. (a) Smooth Tube, (b) Tube with Transverse 
Fins. 



 9 

The presence of fins in Tube (b) is called an enhancement. As the change 

in the surface geometry increases, compared to Tube (a), the rate of heat 

transfer increases, too. There are many kinds of tube enhancements, such as rib 

configurations, roughened surfaces, and corrugations. Some of the most 

common tube enhancements are presented by Webb (1982). Several 

configurations are illustrated in Figure 1.5.  

 

 

 

 

 

 

 

 

 

 
 

 
 In addition to increasing the rate of heat transfer, tube enhancements also 

increase the pressure drop along the pipe as a result of an increase in surface 

area, an increase in turbulence, and boundary layer disruptions. Being able to 

predict and knowing the pressure drop that occurs along an enhanced tube is 

often key. The design of steam generators is one particular area of research 

Figure 1.5 Enhanced Tube Configurations [Webb (1982)]. 1. Transverse 
Rib, 2. Helical Rib, 3. Turbo-Chil Rib, 4. Corrugated, 5. Sand-
Grain, 6. Three-Dimensional, 7. Axial-Fin, 8. Helical Fin.  
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where enhanced tubes are used to increase the rate of heat transfer. Knowing 

the pressure drop along such tubes is important for good design. 

 One common tube configuration that is often used in once-through steam 

generators is the helical fin. An example of a helically-finned tube is illustrated in 

Figure 1.5, Enhanced Tube Configuration number 2. There are six geometric 

parameters that define the configuration of the helically-finned tube. Each 

parameter is defined pictorially in Figure 1.6. The fin pitch, (p), is the axial 

distance along the pipe between the centers of two consecutive fins. The fin 

height, (e), is the distance between the inner diameter of the tube and the top of 

the fin. The helix angle, (α), is the angle that is formed between the fin and the 

axis of the tube. The included angle, (β), is the angle at which the sides of the fin 

meet. The diameter, (D), is the maximum internal diameter of the pipe, and the 

fin width, (t), is the distance between the two sides of the fin, measured at the 

vertical center of the fin. 

 

 

 

 

 

 

 

 

 

Figure 1.6  Geometric Variables of the Helical Fin [Zdaniuk (2006)]. 
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 Currently, no closed formula exists for predicting the pressure drop along 

a helically-finned tube. Only empirical correlations are available. Over the past 

few decades, several scientists have studied the complex flows that occur in 

helically-finned tubes and have tried to develop techniques for modeling the 

pressure drop in a concise fashion. Although progress has been made, no one 

has been completely successful. The primary reason for this is lack of 

experimental data. The purpose of this thesis is to develop and verify numerical 

simulation techniques that can be used to model a pressure drop along a 

helically-finned tube. This technique could be used to generate more data, form 

better correlations, and fashion a closed formula that accurately predicts the 

pressure drop along a helically-finned tube. 

 
 
1.3      Literature Review 

 The purpose of this section is to document several of the articles that were 

reviewed during the creation of this thesis. Although the primary topic of this 

thesis is pressure drop along helically-finned tubes, some of the information that 

is presented concerns heat transfer as well. Typically, scientists who study 

helically-finned tubes consider the effects of both pressure drop and heat 

transfer.  

 Li et al. (1982) conducted several experiments to better understand 

pressure drop and heat transfer properties of helically-finned tubes. Initially, Li et 

al. (1982) conducted qualitative flow visualization experiments where hydrogen 

bubbles were injected into a flow stream of water inside a helically-finned tube. 



 12 

The paths of the hydrogen bubbles were captured using a high-speed camera, 

and the photographs were analyzed in order to qualify the visual properties of the 

flow. During this experiment, the researchers considered four different tube 

samples with various geometric parameters. Of the samples, the number of 

starts was one or three, and the helix angles ranged from 38º to 80º. 

 Li et al. (1982) examined laminar and turbulent flow regimes for each of 

the tube samples. With respect to a laminar flow, it was reported that the 

hydrogen bubbles created parabolic patterns along the pipe. However, the 

parabolic paths did not exist in the turbulent flows due to the presence of flow 

separation. The research team also reported that the hydrogen bubbles inside 

the tubes with smaller helix angles did not follow the trend of the fins as closely 

as the bubbles inside the tubes with larger helix angles. 

 Li et al. (1982) also performed additional experiments in order to quantify 

the performance of a helically-finned tube. This study considered 20 helically-

finned brass tubes. The helix angles ranged from 41.4º to 81.8º, and the number 

of starts ranged from one to four. 

 In order to quantify the performance of the tubes, Li et al. (1982) reported 

the results of the experiments in terms of a roughness factor of momentum 

transfer, R, and heat transfer, G. For single start tubes, the following correlations 

were reported: 

 

 

R = 0.995
e
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G = 0.478
e
D
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90
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where the roughness Reynolds number, e+, was defined to be 
 
 

 

e+ =
e
D

Re
f
2

=
eu*

ν        (4) 
 
 

 Furthermore, Li et al. (1982) reported that the following equation 

represented the roughness function of momentum transfer for all of the tubes that 

were studied; i.e. tubes with one to four starts. 

 

 

R =
2
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2e
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 + 3.75        (5) 

 
 

 Combining Equations (2) and (5), Li et al. (1982) was able to develop the 

following correlation between the Fanning friction factor, the Reynolds number, 

and the geometric parameters of a helically-finned tube: 
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        (6) 

 
However, they developed the correlation using the data from the single start 

tubes, only. Thus, the correlation is only applicable for tubes with a single start, 

or 

 

Ns =1. 

 Belyakov et al. (1989) conducted a study and examined the hydraulic 

resistance, or pressure drop, of 13 helically-finned tubes. The tube samples 
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varied in terms of fin geometries, tube sizes, and fin types. The various fin types 

that were considered in the study are illustrated in Figure 1.7. Developing a 

model for the hydraulic resistance of the tubes, the researchers divided the 

vector of the mean flow velocity into two components. One component was the 

velocity vector that was parallel to the direction along the helical fins, and the 

other component was the velocity vector that was perpendicular to the parallel 

component. The principle of superposition was used to determine the effects of 

the hydraulic losses due to friction, the swirling of the flow (or vortex mixing), and 

flow separation about the fins. During this study, a correlation for each of the 

hydraulic losses was developed. 

 
 
 

 

 

 

 

 
 
 
 
For the frictional resistance factor, Belyakov et al. (1989) proposed the 

following equation: 

 

 

∆Pfriction = 2 f frictionρVparallel
2 Lequivalent

Dh

= 2 fρV 2 L
Dh

     (7) 

 
 

Figure 1.7  Fin Types Considered by Belyakov et al. (1989). 
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 While developing a correlation for the losses associated with the swirling 

flow, Belyakov et al. (1989) suggested that the liquid near the main boundary 

layer, which possesses a low velocity, enters the core of the flow and induces 

some retardation. Accounting for this effect in the momentum equation and 

carrying out calculations using the 1/7th power-law velocity profile, the 

researchers proposed the following equation in order to account for the hydraulic 

losses due to swirling flow. 

 

 

 

Hence, Belyakov et al. (1989) defined the overall resistance factor as: 

 

 

f = f friction + fv.m.      (9) 

 
Belyakov et al. (1989) suggested that the vortex losses associated with 

the perpendicular velocity component be incorporated. Hence, they developed 

the following equation to account for such losses: 

 

 

∆Pseperation = 2 fseperationρVperpendicular
2 L

D
= 2 f seperationρV 2 sin2 α( ) L

D
       (10) 

 
 

However, Belyakov et al. (1989) stated that “at present, [

 

fseperation  ] can be found 

only experimentally. It depends on form of the fins and their number.” As a result, 

Belyakov et al. (1989) proposed the following overall resistance factor: 

 

(8) 
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foverall = f friction + fv.m.( )cos3
4 α( )+ f seperation sin2 α( )

         =
0.316

Re4 + fv.m.

 
 
 

 
 
 cos3

4 α( )+ f seperation sin2 α( )

     (11) 

 

 During the experiment, Belyakov et al. (1989) correlated the overall 

resistance factor for the cases with Type I fins (reference Figure 1.7). Belyakov 

et al. (1989) proposed that the overall resistance coefficient for such tubes was: 

 

 

4 f = 0.115

D − 2e
psin α( )

 

 
 

 

 
 

2

3 log
psin α( )− t

e
 

 
 

 

 
 

 

 

 
 

 

 

 
 

2

log D
e

 
 
 

 
 
 

2    (12) 

 

 An experiment that was conducted by Webb et al. (2000) considered 

seven helically-finned tubes with 18 to 45 starts, helix angles between 25º and 

45º, rib heights between 0.33 mm and 0.55 mm, and a constant 

 

Di =15.54 mm. In 

this study, Webb et al. (2000) developed two correlations that related the friction 

factor to geometric variables and Reynolds numbers. One correlation was 

developed using linear multiple regression, and the other correlation was 

developed using the heat-momentum transfer analogy for rough surfaces, which 

was developed by Webb et al. (2000). The researchers reported that the average 

deviation of the correlation based on the heat-momentum transfer analogy for 

rough surfaces was higher than the average deviation of the multiple regression 

correlation for predicting the friction factor of the enhanced tubes. 
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With respect to the linear multiple regression correlation, Webb et al. 

(2000) reported the following equation: 

 

 

f = 0.108Re−0.283 Ns
0.221 e Di( )0.785

α 0.78            (13) 
 
 

Lastly, the researchers obtained the following correlation using the momentum 

transfer analogy for rough surfaces: 

 

 

2 f = 4.762 e +( )0.2138 Ns
−0.1096α −0.297 − 2.5ln 2e Di( )− 3.75     (14) 

 
 

 An experiment performed by Jensen and Vlakancic (1999) examined the 

hydraulic performance of 15 helically-finned tubes with the number of starts 

ranging from 8 to 54, the helix angles ranging from 0º to 45º, the fin-widths 

ranging from 0.62 mm to 1.84 mm, and the ratios of 

 

e D ranging from 0.62 to 

1.84. During this study, Jensen and Vlakancic (1999) identified two types of flows 

that occurred in the finned tubes. The first type was described as fluid flow that 

tended to follow the spaces in between the helical fins as the fluid traveled along 

the tube. Jensen and Vlakancic (1999) referred to this type of flow as swirl flow. 

Moreover, they reported that the first type of flow occurred in tubes with relatively 

small helix angles (

 

α ≤ 30º), large fins heights, and few starts. The second type 

of flow was described as an occurrence where the inter-fin regions exhibited 

enough resistance to the flow that the main portion of the flow was constrained to 

the center region of the tube and skipped over the fins. As a result, the inter-fin 

regions were susceptible to relaminareization. Having recognized the two types 

of flows, Jensen and Vlakancic (1999) developed a separate correlation for each 
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type. Thus, the appropriate correlation for each tube was dependent upon the 

type of flow that the helically-finned tube induced. 

 The friction factor correlation that Jensen and Vlakancic (1999) developed 

for the first type of flow was given as: 

 

 

f
f p

=
lcsw

D
 
 
 

 
 
 

−1.25 π D 2

4

π D 2

4 − Nset

 

 
 

 

 
       (15) 

 
where 

 

 

and, 

 

 

 
 

 In conjunction with Equation (15), Jensen and Vlakancic (1999) proposed 

the following correlations for helically-finned tubes that induced the second type 

of flow: 

 

 

lcsw

D
= 1−1.577p

modified

0.64 2e D( )0.53
π Ns − t D( )cos α( )[ ]0.28 

  
 
     for   e D ≤ 0.02

                                                                                                      Re ≥ 20,000     (18) 
 
 

 

lcsw

D
= 1− 0.994 p

modified

0.89 2e D( )0.44
π Ns − t D( )cos α( )[ ]0.41 

  
 
     for   0.02 ≤ e D ≤ 0.03

                                                                                                      Re ≥ 20,000     (19) 

 

(17) 

(16) 
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 Zdaniuk et al. (2008) conducted a study where the friction factors were 

experimentally determined for eight helically-finned tubes at Reynolds numbers 

ranging between 12,000 and 60,000. The tubes that were studied in the 

experiment had helix angles between 25º and 48º, fin height-to-diameter ratios 

between 0.0199 and 0.0327, and number of starts between 10 and 45. Zdaniuk 

et al. (2008) developed a power-law correlation for the Fanning friction factor 

using a least squares regression approach that was based on the experimental 

measurements of the friction factors of the eight helically-finned tubes. The 

researchers also investigated the relationship between varying the geometric 

parameters and the friction factor. 

 Zdaniuk et al. (2008) obtained the following correlation for the Fanning 

friction factor of the eight helically-finned tubes: 

 

 

f = 0.128Re−0.305 Ns
0.235 e /D( )0.319α 0.397

      (20) 

 
 With respect to the influence of the geometric parameters on the friction 

factor results, the researchers reported that the Fanning friction factor increased 

with increasing number of starts, helix angles, and fin height-to-diameter ratios, 

for the most part. They reported that one exception did occur where Tube A and 

Tube B had fin height-to-diameter ratios of 0.0243 and 0.0244, respectively, and 

the Fanning friction factor that was measured in Tube B was higher than the 

Fanning friction factor that was measured in Tube A. Zdaniuk et al. (2008) 

attributed this discrepancy to the high helix angles of both tubes and suggested 

that the results were a consequence of the development of a skimming flow. 
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1.4      Scope of Work 

 The primary goal of this thesis is to numerically model a fluid flow within a 

helically-finned tube and determine the fluid friction factor associated with the 

tube geometry and Reynolds number using a computational fluid dynamics 

(CFD) software and three distinct modeling techniques. In order to create an 

acceptable model, experimental data for a helically-finned tube of known 

geometric parameters and Reynolds numbers was obtained from an experiment 

that was performed at Mississippi State University and published by Zdaniuk et 

al. (2008). Zdaniuk et al. (2008) examined eight helically-finned tubes with 

various geometric parameters at various Reynolds numbers. However, only one 

tube configuration at seven Reynolds numbers was considered in this thesis. The 

tube that was chosen for simulation had the following geometric properties: helix 

angle of 25º, 10 starts, fin height of 0.38 mm, internal nominal diameter of 15.64 

mm, and fin pitch of 10.54 mm. The fin width was 0.48 mm at the fin base, and 

0.2 mm at the fin tip. The Reynolds numbers that were considered ranged 

between 12,000 and 56,000. After the helically-finned tube to be examined was 

chosen, along with the Reynolds numbers, three-dimensional models of the 

internal fluid within the pipe were created. 

 Models of the fluid were constructed using the mechanical computer aided 

design (CAD) software SolidWorks. Two distinct types of SolidWorks models of 

the fluid were created. However, the key geometric parameters of both models 

were equivalent. The first type of model is used in conjunction with the first and 

second modeling techniques, and the second type is used in conjunction with the 
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third modeling technique. After the models were created with SolidWorks, they 

were imported into a preprocessor program. 

 Fluent Gambit was the preprocessor software that was used to edit the 

geometries that were imported from SolidWorks and mesh the models of the 

fluid. Each of the two models was imported into Gambit and meshed separately. 

The model associated with the first modeling technique was meshed using a 

relatively coarse mesh. A coarse mesh was used because of the extensive 

length of the model, and because the computing time required to solve the model 

with a fine mesh was not justifiable. The models associated with the second and 

third modeling techniques were meshed using a relatively fine mesh. Fine mesh 

elements were used because of the relatively short length of the models. After 

the meshed models were created, they were imported into a CFD software for 

simulation. 

 Fluent, by Ansys, Inc., was the CFD software that was used to simulate 

the fluid flow within the helically-finned tube and determine the friction factor. 

With respect to the first modeling technique, the corresponding mesh was 

imported into Fluent, and the appropriate boundary conditions were applied to 

the mesh. In the first simulation, the velocity associated with the least Reynolds 

number was programmed into the model. The model was solved on a cluster 

using parallel processors. A journal file was created and used with Fluent in order 

to carry out text user interface commands in Fluent on the cluster. Lastly, the 

simulation was submitted to the cluster, and the simulation was solved. This 
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process was repeated for each of the seven Reynolds numbers that was 

associated with the data published by Zdaniuk et al. (2008). 

 A second modeling technique was employed in order to solve the same 

simulation that was previously described. The mesh associated with the second 

modeling technique was imported into Fluent, and the appropriate boundary 

conditions were programmed into the model. Again, this model was solved on a 

cluster, and a journal file was required. However, this particular modeling 

technique required a two-part journal file. The first part of the journal file was 

similar to that which was used in the first technique. The second part contained a 

series of repetitive commands. The journal file was created, and the simulation 

was submitted to the cluster and solved. This process was repeated for each of 

the seven Reynolds numbers. 

 Lastly, a third modeling technique was employed in order to solve the 

simulation for each of the seven Reynolds numbers previously mentioned. The 

mesh associated with this technique was imported into Fluent, and the 

appropriate boundary conditions were programmed into the model. A journal file, 

similar to the one used in the first technique, was created, and the simulation was 

submitted to the cluster and solved. Again, the process was repeated for each of 

the seven Reynolds numbers. 

 After the simulations for each of the seven different Reynolds numbers 

were solved, using the three distinct modeling techniques, each of the 21 solution 

files were examined using a postprocessor program, and the solution data was 

analyzed. The friction factor associated with each of the helically-finned tubes 
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was calculated using the data from each simulation. Finally, the experimentally 

determined friction factors were juxtaposed with the numerical friction factors. 

The results were documented. 
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CHAPTER 2 
EXPERIMENTAL DATA 

 
 

2.1      Experimental Tubes 

 The experimental data presented and used for comparison in this thesis 

was obtained from a laboratory experiment performed at Mississippi State 

University. The experiment was devised to measure the turbulent pressure drop 

and heat transfer performance in helically-finned tubes. The complete laboratory 

experiment and corresponding results were published by Zdaniuk et al. (2008). 

Experimental data for this thesis was not obtained directly by the author or 

Youngstown State University because replicating a similar experiment was 

neither financially possible nor practical. Nevertheless, the objective of this thesis 

was fulfilled. 

 The purpose of this chapter is to describe the experimental setup and the 

process that was used to collect the friction factor portion of the data, as 

described by Zdaniuk et al. (2008). The experiment examined eight helically-

finned tubes and one plain tube. These tubes were manufactured by Wieland-

Werke AG of Ulm, Germany. Each tube was 10 feet long and made of copper-

nickel. However, only 9 feet of the surface of the helically-finned tubes were 

finned. The remaining 1 foot section of each helically-finned tube was plain for 

installation purposes. The primary geometric parameters of each of the nine 

tubes are shown in Table 2.1. The axial bases of the fins measured 0.48 mm, 
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and the included angle, β, of fins measured 41°. It is noted that roughness-height 

of the internal surfaces of the helically-finned tubes was not provided by Zdaniuk 

et al. (2008) (or the manufacturer). See Figure 1.6 in Chapter 1 for an illustrative 

reference to the tube geometries. 

 
 
 

Tube 
Identification

Number of 
Starts Fin Height Helix Angle

Internal 
Nominal 
Diameter

- Ns e α D
( - ) ( - ) (mm) ( ° ) (mm)
1 10 0.380 25 15.64
2 30 0.375 25 15.61
3 30 0.380 48 15.62
4 45 0.380 25 15.57
5 45 0.310 35 15.6
6 45 0.380 35 15.57
7 45 0.510 35 15.59  

 
 
2.2   Experimental Setup 

 A schematic of the experimental setup that was used by Zdaniuk et al. 

(2008) to collect the experimental data is shown in Figure 2.8. The schematic 

illustrates a double-pipe counterflow heat exchanger. Although the thermal 

properties of the helically-finned tubes are beyond the scope of this thesis, an 

inclusive description of the experimental setup, as described by Zdaniuk et al. 

(2008), is presented for the purpose of completeness. 

 The experimental apparatus consisted of a hot water loop, a cold water 

supply, and several other components. The hot water loop included a storage 

tank, a 15 kW heating element, a 1-hp pump, a test tube, and two ball valves that 

Table 2.1 Tube Geometries by Zdaniuk et al. (2008) 
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were used to control the velocity of the water. The cold water was supplied by the 

city and entered the apparatus at approximately 20°C. There were two ball 

valves available in order to control the velocity of the cold water. Zdaniuk et al. 

(2008) reported that all of the tubes of the apparatus were insulated. 

 

 
 

 
 
 
 A detailed schematic of the test section was provided by Zdaniuk et al. 

(2008) and is illustrated in Figure 9. To measure the pressure drop along the test 

tubes, two pressure taps were installed before and after the test section. 

Sensotec differential pressure transducers (model TJE) were used to measure 

the pressure at each of the pressure taps. The manufacturer of the transducers 

reported an accuracy of 0.1%. In order to measure the inlet and exit 

temperatures of the hot and cold water, thermocouples were installed inside of 

the tees. The flow rate of the water inside the test tube was measured using an 

Omega FP-53000 flow meter, which had an accuracy of 0.2 ft/s. Similarly, the 

Figure 2.1. Schematic of Experimental Apparatus. [Zdaniuk et al. (2008)] 
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flow rate of the cold water was measured using a Hersey 1006 flow meter, which 

had an accuracy of 1.0%  

 

 

 

After the transducers, thermocouples, and flow meters were installed and 

calibrated, each of the measuring devices was connected to an SCXI data 

acquisition system from National Instruments. An interface program was created 

using LabVIEW 6.1 in order to facilitate hardware control and data collection. The 

reader is directed to Zdaniuk et al. (2008) for more detailed information regarding 

the setup of the experiment. 

 After the pressure drop data for each of test tubes was collected, the 

Fanning friction factor was calculated using the following formula: 

 

2VL
PDf
ρ
∆

=
     (21) 

 
where ΔP is the pressure drop between the pressure taps, D is the nominal 

inside diameter of the test tube, L is the distance between the pressure taps, ρ is 

Figure 2.2. Detailed Schematic of Test Section [Zdaniuk et al. (2008)]. 
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the density at the mean bulk temperature, and V is the average velocity based on 

the nominal diameter. 

 After completing the experiment, Zdaniuk et al. (2008) reported the 

following friction factor results for the various tube configurations at various 

Reynolds numbers: 

 

 

 
 
 
 Tube 1 was the tube configuration that was considered for this thesis. 

However, only seven of the corresponding Reynolds numbers were considered. 

The tube configuration and the Reynolds numbers that were considered are 

discussed in greater detail in later chapters. 

Figure 2.3. Experimental Results of Zdaniuk et al. (2008) 
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CHAPTER 3 
MATHEMATICAL MODEL OF FLUID FLOW 

 
 

 In order to study the fluid flow within a helically-finned tube, a 

mathematical model(s) is needed. The model that is used in a computational fluid 

dynamics (CFD) program is a set of governing equations that describe the 

physical phenomena within the fluid domain. Fluent was the CFD software that 

was used to simulate the turbulent fluid flow within a helically-finned tube, as part 

of this thesis. The purpose of this section is to introduce the basic governing 

equations that are used by Fluent to simulate fluid flow. 

 
 
3.1      Mathematical Model 

 The primary fundamental equations that are used to model the fluid flow 

within a helically-finned tube are the continuity equation, momentum equation, 

and energy equation. These equations are derived from physical laws of nature. 

However, these equations do not fully model the fluid flow as a result of the 

inherent complexities of turbulent flow, which were expected to occur within the 

finned tube. Therefore, the transport equations for the standard k-ε model for the 

turbulent kinetic energy and the rate of its dissipation are considered.  

In deriving the governing equations of the fluid motion within a helically-finned 

tube, the following assumptions were made: 
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1. The fluid is Newtonian 

2. The fluid is incompressible. 

3. Body forces are negligible. 

4. There is no viscous dissipation. 

5. The flow within the tube is turbulent. 

 
 
3.1.1   Continuity Equation 

 The law of conservation for fluid flow asserts that the mass within a control 

volume of fluid is always conserved. Hence, the continuity equation, in terms of 

fluid dynamics, is sometimes referred to as the conservation of mass equation. 

Since the mass of the control volume is conserved, the net quantity of matter 

within the control volume is constant at all times. This statement can be 

expressed mathematically by the following equation: 

 

 

where 

 

 

 

 
 

3.1.2   Momentum Equation 

 The law of conservation of momentum is a direct result of Newton’s 

second law of motion, which states that the net force on a particle, or an object, 

(22) 
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is equal to the time rate of change of its linear momentum. Applying this law to a 

fluid element in three-dimensional space, three momentum equations are 

formed, one equation for each of the three spatial coordinates. Hence, for the x-

coordinate, the law asserts that the rate of change of momentum in the x-

direction of the fluid element is equal to the total force on the element in the x-

direction and the rate of increase of the momentum in the x-direction due to 

sources. The law is applied to the remaining two spatial coordinates in a similar 

fashion. Expanding the surface forces and keeping the body forces as a single 

term, the mathematical form of the law of conservation of momentum for each of 

the three coordinates is given by the following set of differential equations: 

 

 

 

 

 

 

where 

 

 

 

 

 

 
 

(23a) 

(23b) 

(23c) 
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3.1.3   Navier-Stokes Equations 

The relationship between the viscous stress and the shear strain of a fluid 

is an important physical property of a fluid and is used extensively in the study of 

fluid dynamics. The fluid that is considered in this thesis is water, which is an 

isotropic Newtonian fluid. Hence, the viscous stress at any point within the fluid 

domain is directly proportional to the rate of shearing strain, or rate of angular 

deformation, at that point. In a three dimensional setting, there are nine viscous 

stress components to consider. Of the nine stress components, there are three 

normal stress components and six shear stress components. However, only 

three of the six shear components are independent. In Cartesian coordinates, the 

nine stresses may be expressed mathematically in terms of velocity gradients 

and fluid properties as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(24a) 

(24b) 

(24c) 

(24d) 

(24e) 

(24f) 
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where 

 

 

 
 By substituting the six stress equations into the three momentum 

equations, the Navier-Stokes equations are formed. Upon substitution and 

rearrangement of several of the terms, the Navier-stokes equations may be 

expressed as follows: 

 

 

 

 

 

 

 

 
By further expansion of each of the terms in each of the equations and 

implementation of the assumptions of the flow within a helically-finned tube, the 

Navier-Stokes equations are expressed in one of the most commonly known 

forms of the equations as follows: 

 

 

 

 

 

 

 

(25) 

(26) 

(27) 

(28a) 

(28b) 

(28c) 



34 
 

3.1.4   Transport Equation 

 Turbulent flows are characterized by chaotic and rapid fluctuations in flow 

field properties. Some of the properties that are highly affected by a turbulent 

flow regime include pressure, velocity, low momentum diffusion, high momentum 

convection, and energy. These properties, or quantities thereof, are sometimes 

referred to as transported quantities. As each of these properties is intimately 

related to one another, small fluctuations in any transported quantity induce small 

fluctuations upon other transported quantities. Typically, these fluctuations occur 

at high frequencies and relatively small quantities. The computing resources that 

would be required to handle such frequencies are superfluous in terms of 

practical engineering simulations. Hence, an ideal flow model is one that reduces 

computing loads in comparison to the exact model and maintains the integrity of 

the solution. Current methods remove the small scales by time-averaging, 

ensemble-averaging, or otherwise manipulating the governing equations of the 

physical phenomena. As a result, a modified set of equations are created, and 

solving the set of equations requires much less computer resources than solving 

the exact equations. However, the modified equations contain additional 

unknown variables. In order to determine these variables, turbulence models are 

necessary. 

Two-equation models are among the simplest of turbulence models for 

which the solution to two separate transport equations can be determined. There 

are several models available. However, the standard k-ε has become one of the 

most widely used models. The standard k-ε model is a semi-empirical model that 
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describes the turbulence of the kinetic energy (k) and its rate of dissipation (ε). 

The derivation of the k-ε model assumes that the fluid flow is fully turbulent, and 

the effects of the molecular viscosity are negligible. Thus, the k-ε model is only 

valid for fully turbulent flows.  

 The two transport equations for the standard k-ε model are listed below. 

The first equation is the turbulent kinetic energy equation (k), which is expressed 

as follows: 

 

 

 
The second equation is the dissipation equation (ε), which is expressed as 

follows: 

 

 

 
The turbulent viscosity, (μt), is evaluated using the following equation: 

 

 

 

The model-constants in each of the three equations above have the 

following default values in Fluent: 

 
 
 
 
 

(29) 

(30) 

(31) 
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These default values have been developed from studies of turbulent shear flow 

of water and air. These values are widely accepted among professional 

engineers for most applications. 
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CHAPTER 4 
FLUENT AND NUMERICAL MODELING 

 
 

 The systems of governing equations that describe the motion of the fluid 

flow within a helically-finned tube are mathematically complex, and no known 

method of solving them in closed-form exists. Nevertheless, the governing 

equations are still useful and applicable. Numerical techniques have been 

developed in order to approximate the solutions to such equations. These 

techniques have proven to be very effective. Fluent is a computational fluid 

dynamics (CFD) software that implements numerical methods to solve various 

types of fluid flow and heat transfer problems. Fluent was the CFD that was used 

in this thesis. However, solving such problems requires more than a numerical 

solver. There are a considerable number of necessary principles and advanced 

computer hardware that enable Fluent to solve physical problems properly and 

accurately. Several of the dominant principles and computing hardware that were 

used to simulate and study the fluid flow within a helically-finned tube are 

discussed in the following sections. 

 
 
4.1      Computational Fluid Dynamics 

 Ansys Fluent, or Fluent for short, is state-of-the-art CFD software that is 

primarily used to model fluid flow and heat transfer problems of complex 

geometries. For this thesis, only the fluid flow capabilities of Fluent were used. 
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The computer code that comprises Fluent software is written in C programming 

language and employs numerical algorithms that are based on the finite volume 

method of solving physical problems.  

 The finite volume method is a numerical technique that is used to 

represent and evaluate a system of partial differential equations in the form of 

algebraic equations. In terms of modeling the fluid flow within a finned tube, 

approximate solutions to the systems of governing equations are calculated at 

discrete points on a geometric mesh that represents the fluid of the physical 

problem. The meshed geometry of the fluid is a discrete representation of the 

geometry of the fluid domain within the tube. The concept of meshing is 

elaborated in later sections of this chapter. Together, the terms finite and volume 

refer to a small volume that surrounds each of the nodal points that comprise a 

mesh. Implementing the finite volume method to solve a problem entails several 

mathematical steps. First, the volume integrals that contain a divergence term in 

the partial differential equation are transformed into surface integrals. This 

transformation requires the use of Gauss' theorem, which relates the flux of 

vector field through a surface to the vector field inside a surface. Lastly, the 

surface integrals are evaluated as fluxes at the surfaces of each finite volume of 

the fluid domain. One of the advantages of the finite volume method is that the 

method is conserved. The flux entering the surface of a volume is equal to the 

flux leaving the surface of the adjacent volume. Consequently, the finite volume 

method is an ideal solution technique to be used by Fluent. As previously 

discussed, Fluent is based on the laws of conservation. 
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4.2      Methodology  

 In order to simulate the fluid flow within a helically-finned tube using 

Fluent, a specific order of steps was followed. The general procedure that was 

used in this thesis is similar to most types of CFD simulations. This procedure is 

outlined in the following sequence of steps: 

 

1. A geometric representation of the fluid domain within the helically-finned tube 

was created using a computer aided design software package (CAD). 

2. An appropriate modeling technique that would be advantageous to the 

solution process was chosen. However, in this thesis, three modeling 

techniques were considered and used to simulate the same physical problem.  

3. The geometric representation of the fluid domain was divided into discrete 

cells using techniques to mesh the geometry. 

4. The physical properties of the fluid and the boundary conditions were defined 

and programmed into the solver. 

5. Using the solver, the governing equations of the fluid flow were solved with an 

appropriate model of physical flow. 

 
 In order to complete the simulation process previously outlined, three 

distinct types of software were needed: a preprocessor, a solver, and a 

postprocessor. The preprocessors that were used to create the geometry and 

geometric mesh of the fluid domain within the tube were SolidWorks and Gambit, 

respectively. Fluent was the numerical solver that was used to define the 

physical model, apply boundary conditions, and numerically solve the governing 

equations. One of the features of Fluent is that the software contains a 
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postprocessor, which was used to analyze the solution data and visualize the 

results of the simulation. Regardless of the physical problem or modeling 

technique, the types of software previously mentioned are always required to 

build, solve, and analyze a simulation. 

 
 
4.3      Preprocessors and Modeling Techniques 

 As previously stated, the preprocessors that were used to create a 

geometric representation and a corresponding mesh of the fluid flow within a 

helically-finned tube were SolidWorks and Gambit, respectively. By using both 

software in tandem, a geometric representation of the fluid was created and 

divided into discrete cells using several meshing techniques. Since SolidWorks is 

so common, a discussion of the software is not presented. However, the 

functions and features of the less popular software Gambit are worth discussing. 

 Gambit is a geometric modeling and grid generation tool that is primarily 

designed to build and mesh physical models for Fluent, such that Fluent can 

analyze and solve the simulations. Although most physical models can be 

directly built in Gambit, some models are more easily created and manipulated 

using outside CAD programs such as SolidWorks, and Gambit supports the 

option of importing models from other CAD software. However, models do not 

always import into Gambit properly. Thus, Gambit offers a variety of options for 

geometry clean-up, or repair, and decomposition in order to reconstruct and 

rebuild the model. 
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 In addition to building the geometry of a model, Gambit offers a wide 

assortment of tools for meshing a model. A user can have Gambit automatically 

mesh surfaces and volumes of a model while having limited control of the 

meshing scheme through the use of sizing functions and boundary layer meshing 

options. Alternatively, a model can be meshed using more rudimentary meshing 

tools which allow for more control of the meshing scheme. Nevertheless, the 

appropriate meshing tool and meshing technique depend on the modeling 

technique that is used to model the physical problem.  

 In order to model the fluid flow within the helically-finned tube, three 

distinct modeling techniques were used. The different techniques were used for 

the following reasons: 
 

• To investigate the accuracy of each modeling technique 

• To investigate the effects of mesh density 

• To investigate the efficiency of the technique with respect to computing time 
 

The three modeling techniques that were used to model the fluid flow in a 

helically-finned tube were the long tube model, mapping model, and periodic 

model. The names of the modeling techniques are ambiguous and were 

arbitrarily chosen. However, a detailed description of each of the techniques is 

provided in the next three sections. 

 
4.3.1    Long Tube Model 

 The helically-finned tube that was investigated had the geometric 

parameters that are displayed in Table.4.1. 
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Fin Pitch Fin 
Height

Helix 
Angle

Included 
Angle

Internal 
Diameter

Fin Width 
at Tip

Fin Width 
at Base

Number 
of Starts

p e α β D ttip tbase Ns

(mm) (mm) ( ° ) ( ° ) (mm) (mm) (mm) -
10.54 0.38 25 41 15.64 0.2 0.48 10  

 
 
 In order to simulate the fluid flow within the tube, a 3-dimensional model of 

the fluid domain was created using SolidWorks. The actual tube was not 

incorporated into the model since it was not a necessary part of the simulation 

process. The model was created using the axial profiles of the fins. After the 

contours of the fin profiles were created along the axial direction of the tube, the 

'sweep' and 'helix' features of SolidWorks were used to create the 3-dimensional 

representation of the fluid domain. In order to keep the file size of the model 

manageable and reduce the amount of clean-up required after importing the 

model into Gambit, a fluid domain of only one 360° rotation of the fins, or 

105.4mm of pipe length, was created. The SolidWorks model of the fluid domain 

is illustrated in Figure 4.1. The model was purposely designed to consist of ten 

separate volumes and a hollow core along the axial direction in order to facilitate 

better control over the meshing scheme that was used to mesh the model. After 

the SolidWorks model was created, it was saved as a ‘parasolid’ file and 

imported into Gambit. 

 

 

 

Table 4.1 Helically-Finned Tube Parameters. 
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 After the model was successfully imported into Gambit, it was cleaned up 

in order to create a continuous fluid domain. First, all of the points, lines, and 

faces were connected using the 'connect' feature of Gambit. After verifying that 

the connections were successful, an eleventh volume was created out of the 

hollow core along the axial direction of the model. The Gambit model of the fluid 

Figure 4.1. SolidWorks Model of the Fluid Domain – Long Tube Model. 
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domain is illustrated in Figure 4.2. After the eleventh volume was created, the 

model was ready to be meshed. 

 

 

 

 

The meshing procedure was started at both ends of the model. Each 

group of symmetric edges was meshed identically with the same number of 

meshes and interval distances. After each of the edges was meshed, a boundary 

layer mesh was created around the immediate perimeter of each end in order to 

account for a boundary layer near the wall of the fluid model. A view of the 

boundary layer mesh is illustrated in Figure 4.3. After the boundary layer mesh 

was created around the entire perimeter, the faces that comprised the two ends 

were meshed using the ‘paving’ feature of Gambit. After each of the faces was 

meshed, each of the volumes was meshed using the ‘cooper’ feature. 

Figure 4.2. Gambit Model of the Fluid Domain – Long Tube Model. 
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 The final steps of creating the long tube model were to ‘copy-and-move’ 

the one-cycle mesh previously created in order to create a longer model and to 

assign boundaries to the model. Using the 'copy-and-move' feature of Gambit, 

the one-cycle mesh was copied and moved eleven times in a sequential fashion 

along the axial direction. In order to create one continuous model from the eleven 

copies, the copied adjacent points, edges, and faces were connected using the 

Figure 4.3. Boundary Layer Mesh – Long Tube Model. 

Figure 4.4. Volume Mesh of the Fluid Domain – Long Tube Model. 
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'connect' feature of Gambit. Subsequently, the total length of the model was 

1.1594 m. The entire model is illustrated in Figure 4.5. Finally, the circumferential 

faces of the model were defined as ‘walls’, the inlet and outlet of the model were 

labeled as a 'velocity-inlet' and 'exit', respectively, and the domain of the model 

was defined as ‘fluid’. Finally, the model was ready to be solved in Fluent using 

the long tube modeling technique. 

 

 

 

 

 

 

 

 
 The long tube modeling approach is a technique of modeling the fluid flow 

along a sufficient length of tube such that the flow becomes fully developed 

before the exit region of the flow model. This model assumes a uniform velocity 

flow at the inlet, and the flow develops fully along the length of the tube. As the 

flow becomes fully developed near the exit, a linear pressure drop can be 

measured. A corresponding friction factor can be calculated from the linear 

pressure drop.  

  
4.3.2    Mapping Model 

 The 3-dimensional model that was created for the mapping model was 

developed in a similar fashion as the long tube model. However, only one 

Figure 4.5. Volume Mesh of the Fluid Domain – Long Tube Model. 
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complete cycle of the rib pattern was necessary for this modeling technique. As 

outlined in the previous section, a 3-dimensional model of the fluid domain within 

the helically-finned tube was created in SolidWorks using the tube dimensions 

that are displayed in Table 4.1. Initially, the primary geometries of the model 

were created in SolidWorks, and the model was imported into Gambit. After the 

model was imported, it was cleaned-up and made into one continuous model. A 

boundary layer mesh was created about the immediate outer perimeter of the 

model. After creating the boundary layer mesh, the entire model was fully 

meshed, and the boundaries and the fluid domain were defined in Gambit. An 

illustration of the meshed model is shown in Figure 4.6. Finally, the model was 

ready to be solved in Fluent using the mapping modeling technique. 

 

 

 

 
The mapping modeling technique is a multi-step process of solving a 

series of models. Recall that the fluid mesh of this technique consists of only one 

rib-cycle. Hence, the mapping model was much smaller than the long tube model 

and less cumbersome, computationally. Initially, a uniform velocity flow was 

Figure 4.6. Volume Mesh of the Fluid Domain – Mapping Model 
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assumed at the inlet, and the flow developed slightly along the length of the 

model (one cycle). After the model was solved, a solution existed at the exit of 

the model, which consisted of the x-velocity, y-velocity, z-velocity, turbulence-

dissipation-rate, and turbulence-kinetic-energy. The software stored these values 

at each of the nodes of the faces that comprised the exit. The values were then 

saved in file format and mapped back to the inlet condition of the model by 

reintroducing the values as ‘velocity-inlet’ conditions. Hence, the solution at the 

exit of the original model became the initial condition of the successive model. 

The model was then solved again in Fluent. This procedure was repeated until 

the flow became fully developed. Once this process was completed, a linear 

pressure drop could be measured, and the friction factor was calculated.  

 
4.3.3    Periodic Model 

 The model of the fluid domain that was created for the ‘periodic model’ 

was done so in a similar fashion as the long tube model and the mapping model. 

For this modeling technique, only one complete cycle of the rib pattern needed to 

be constructed. The model of the fluid domain was created using the helically-

finned tube dimensions that are displayed in Table 4.1. The primary geometries 

of the model were created using SolidWorks, and the model was created from 

the axial profiles of the fins. After creating the contours of the fin profiles along 

the axial direction of the tube, the 'sweep' and 'helix’ features of SolidWorks were 

used to create the 3-dimensional representation of the fluid domain. Initially, 11 

independent volumes were created. However, the 11 volumes were merged into 

one single volume using the 'merge' feature of SolidWorks. Only one 360° 
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rotation of the fins, or 105.4mm of pipe length, of the fluid domain was created. 

The SolidWorks model of the fluid domain is illustrated in Figure 4.7. After 

creating the SolidWorks model, the model was imported into Gambit for meshing. 

 

 

 

 

 

 

 

 

 

After the model was imported into Gambit, it was cleaned-up and made 

continuous by connecting all of the adjacent points, lines, and faces using the 

‘connect’ feature of Gambit. Next, a boundary layer mesh was constructed along 

the immediate outer perimeter of the fluid domain. The boundary layer mesh is 

Figure 4.7. SolidWorks Model of the Fluid Domain – Periodic Model. 
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Figure 4.8. Boundary Layer and Volume Mesh of the Fluid Domain –                    
Periodic Model 

Figure 4.8. Boundary Layer and Volume Mesh of the Fluid Domain –                    
Periodic Model. 

illustrated in Figure 4.8. After the boundary layer mesh was created, the axial-

front and axial-back faces of the model were ‘hard-linked’ and meshed using the 

‘paving’ feature. The volume of the model was meshed using the ‘cooper’ feature 

of Gambit. The meshed model is illustrated in Figure 4.8. Finally, the 

circumferential faces of the model were defined as ‘walls’, the two faces 

perpendicular to the axial direction were defined as ‘periodic boundaries’, and the 

domain of the model was defined as ‘fluid’. Finally, the model was ready to be 

solved using the periodic modeling method in Fluent. 
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(32) 

(33) 

(34) 

 The periodic modeling technique is based on periodic boundary 

conditions, which are described as boundaries within a physical problem where 

the geometry and the flow pattern of a model behave in a periodically repeating 

fashion. The periodic boundary conditions are applicable when the fluid flows, 

which are across two planes that are opposite of one another, are identical. 

Periodic boundaries or planes are always coupled. Fluent treats the flow at one 

periodic boundary as though the other periodic boundary is adjacent to the first. 

Since the fluid flow within a helically-finned tube is expected to repeat in a 

periodic fashion along the axial length of the tube, the periodic boundary 

conditions seems to be an appropriate modeling technique. As Fluent solves a 

periodic model, the software calculates the pressure drop that occurs between 

the coupled boundaries from which the friction factor can be calculated. The 

mathematical justification for periodic boundary conditions is presented in the 

next section.  

 
 
4.4      Periodic Boundary Conditions 

The basic assumption of periodicity is that the velocity components of a 

flow repeat in space over some length, L. This assumption can be stated 

mathematically as follows:  
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Figure 4.9. Periodic Flow over a Tube Bank [Fluent Inc. (2006)]. 

(35a) 

(35b) 

 In order to illustrate the periodic properties of a flow, consider the 2-

dimensional tube bank problem that is illustrated in Figure 4.9 and the 

mathematical relationships that follow thereafter. 

 

 

 

 

However, the periodicity of the pressure for a viscous flow is different in the 

sense that the pressure drop is periodic between the periodic boundaries. 

Mathematically, the periodic pressure drop between the periodic boundaries can 

be written as follows: 

 

 
With respect to a pressure based solver, which is discussed in the next section, 

the local pressure gradient can be decomposed into two separate components. 

The first component is the gradient of the periodic component, , and second 

component is the gradient of the linearly-varying component, . Hence, the 

local pressure gradient can be written as: 
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In Equation (35b),  is the periodic pressure, which is pressure that remains 

after the linearly-varying pressure, , is subtracted from the local pressure. 

The linearly-varying component of the local pressure is the result of a force that 

acts on the fluid in the governing momentum equation. However, the value of  is 

not known beforehand. Thus, the value of  is iterated upon during the pressure 

correction step of the solving algorithm. The iteration continues until the 

intermediate mass flow rate of the iteration matches the mass flow rate that was 

defined by the model. Hence, the periodic model requires sub-iterations within 

the usual iterations that Fluent uses to solve a model.  

 

4.5      Pressure-Based Segregated Algorithm 

 There are two types of flow solvers that Fluent uses to numerically solve a 

model: a pressure-based solver and a density-based solver. Typically, the 

pressure-based solver is used to solve low-speed incompressible flows, and the 

density-base solver is used to solve high-speed compressible flows. The 

pressure-based solver was used to model the flow within a helically-finned tube, 

which is the focus of this thesis. 

 The pressure-based solver is based on an algorithm that numerically 

solves the governing equations of a flow in a segregated, sequential fashion, or, 

equivalently, each of the governing equations is solved separately, one after 

another. As noted in the previous chapter, the governing equations of a fluid flow 

are non-linear partial differential equations and coupled. Subsequently, the 

numerical solution to the governing equations, or the model, requires iterative 
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calculation loops. The iterative process that is performed with the pressure-based 

solver is outlined in Figure 4.9. Initially, ‘Update properties’ consists of the initial 

conditions of the model, after which it becomes the solution of the previous 

iteration. Next, the momentum equations are solved sequentially, using updated 

values, and the pressure correction equation is solved using the updated values 

of the pressure and face mass fluxes. Afterwards, the pressure correction is used 

to correct the velocity field, mass fluxes, and pressure. Next, the equations are 

solved for any additional scalars, such as turbulent quantities and energy. Finally, 

the convergence criteria of the solution are checked, and the iterative loop 

continues to cycle until the convergence criteria are satisfied. 

 

 

 

 
 

 

Figure 4.10. Pressure-Based Segregated Algorithm [Fluent Inc. (2006)]. 
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(36) 

(37) 

4.6      Discretization 

 As previously described in section 4.1, Fluent uses a finite control volume 

analysis to solve a model. This technique entails integrating each of the 

governing equations about each volume or volume-mesh and creating discrete 

equations that satisfy the laws of conservation. The original governing equations 

of the flow are thus transformed into a system of equations that can be solved 

with numerical methods. This process is referred to as discretizing the governing 

equations. This process is illustrated in Equation (36), which is the equation of 

the steady-state conservation of transport with respect to the scalar quantity  

over a control mesh volume Vm. 

 

 

 

Equation (36) can be discretized for any given volume-mesh in the following 

fashion: 

 

 

 

As a default setting, Fluent stores the discrete values of  at the centers of each 

volume mesh. However, the face values  are required in order to determine the 

convection terms in Equation (37). In order to determine the face values, an 

interpolation method is used. This computation interpolates using the values from 
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the centers of the volume meshes. This interpolation calculation is accomplished 

using an upwind scheme. 

 For the model of the flow within the helically-finned tube that is examined 

in this thesis, the second-order upwind scheme was used in Fluent. By selecting 

this numerical scheme, the values at the faces of the volume meshes are 

calculated with a multidimensional linear reconstruction approach where higher-

order accuracy is achieved at each face using a Taylor series expansion of the 

volume mesh-centered solution about the centroid of each mesh. 

 
4.7      Linearization 

 Part of the process of solving a model using a segregated solution method 

is making the discrete, non-linear governing equations of a flow linear. In doing 

so, a solvable system of equations for the dependent variables of each of the 

governing equations is created for every computational mesh of the model. Thus, 

each of the discrete equations is transformed into a linear equation implicitly with 

respect to the dependent variables in each one. In order to solve the new system 

of equations, a point implicit (Guass-Seidel) linear equation is used along with an 

algebraic multi-grid method to solve the system for the dependent variable in 

each computational mesh.  

 
4.8      Convergence Criteria 

 When trying to determine whether or not the solution of a model is 

complete, there are several solving factors that should be considered. Some 

examples include: flow development, overall balances, residual reports, and 
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force monitors. A residual report is one of the most referenced factors when 

determining the completeness of a solution. This is due to the inherent nature of 

the solution process that is used to solve CFD problems. 

 As discussed in previous sections, Fluent solves a model by solving a 

system of non-linear partial differential equations using iterative numerical 

techniques. During this process, an approximate solution is obtained at each 

iterative, computational step, and there is a corresponding error associated with 

each approximation. The error results from a small imbalance, or residual, in the 

governing equations. As the iterative process continues, the residuals tend to 

decrease and converge toward some relatively small number under normal 

circumstances. As  the residuals converge toward some relatively small number 

in a decreasing fashion, the corresponding error with respect to the previous 

iteration decreases as well. If the residuals no longer change with successive 

iteration, the solution is said to have absolutely converged. However, absolute 

convergence is not always necessary or practical. Often, a less stringent set of 

conditions is sufficient. Such conditions are referred to as convergence criteria, 

which are defined as a pre-set of conditions on the residuals that indicate a 

certain level of convergence has been obtained. 

Unfortunately, there is no definitive number that indicates absolute 

convergence or a good solution. Fluent uses the default value 10-3 for the 

convergence criteria of each governing equation except for the energy equation. 

The default value for the energy equation is set at 10-6. However, the 

convergence criteria were set to be at most 10-5 for each of the equations with 
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respect to the models that are considered in this thesis. In addition to 

convergence criteria, other factors were considered in determining the 

completeness of the solutions of the models. 

 
4.9      Parallel Processing in Fluent 

When solving a model with Fluent, a single processor or multiple 

processors may be used. On a single computer (one processor), the Fluent serial 

solver is responsible for managing file input and output, data storage, and flow 

field calculations. The serial solver manages such data using a single solver 

process. The serial architecture that Fluent uses is illustrated in Figure 4.11. 

 

 

 

 
Fluent also allows a user to solve a model using multiple processors. 

Solving a model with multiple processors is referred to as parallel processing. 

Parallel processing is a joint interaction between Fluent, a host processor, and a 

set of computer-node processors. Using a utility called a cortex to manage the 

user interface and basic graphical functions, Fluent interacts with the host 

processor and the collection of computer-nodes. The parallel architecture of 

Fluent is illustrated in Figure 4.12. 

Figure 4.11. Serial Fluent Architecture [Fluent Inc. (2006)]. 



59 
 

 

 

 

 

When a model is solved using parallel processors, Fluent divides the mesh and 

the corresponding data into multiple partitions. After the mesh is split up, Fluent 

assigns each partition to a different compute process, or node. Finally, Fluent 

solves each partition independently on each node and reassembles the solution 

after each partition has been solved. The process of partitioning is discussed in 

greater detail in Section 4.11.  

 
4.10  Linux Cluster 

 In order to perform the Fluent analysis of the models of the fluid flow within 

a helically-finned tube for this thesis, a Linux cluster computer system was used. 

The Linux cluster was provided by the Babcock & Wilcox Company (B&W). The 

Linux cluster was used for two primary reasons. First, a conventional laboratory 

Figure 4.12. Parallel Fluent Architecture [Fluent Inc. (2006)]. 
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computer did not have the capacity to handle the large data files of the models. 

Secondly, the cluster offered the use of parallel nodes. Solving the models on 

parallel processors greatly reduced the computing time. The Linux cluster 

provided by B&W has the following specifications: 

 
• 1 x File Server 

o 1 DualCore 2.6Hz CPU, 2GB RAM, 2 x 36GB SCSI 

o 1 x 4Gb Infiniband HCA, 2 x 4GB FC HBAs, 5.1TB SAN 

• Head Node 

o 1 DualCore 3.0GHz CPU, 16GB RAM,  2 x 36GB SCI 

o 1 x 4GB Infiniband HCA 

• 20 x Compute Nodes 

o Each with 2 DualCore 3.0GHz CPU, 16GB RAM 

o 1 x 80GB SATA, 1 x 4 GB Infiniband HCA 

• 4 x Compute Nodes 

o Each with 2 QuadCore 2.4 GHz CPUs, 16GB RAM 

o 1 x 80 GB Sata, 1 x 4GB Infiniband HCA 

 

The Fluent models for this thesis were solved using only two nodes in parallel on 

the group of 20-x-Compute-Nodes with a 2 DualCore, 3.0GHz processor, and 

16GB of RAM. Using two nodes, the computing time was reduced by half with 

respect to using only a single node. 

  
4.11    Grid Partitioning 

 Grid partitioning is a method of subdividing a mesh into groups of cells 

that can be solved simultaneously on separate processors. This feature was 

used to solve the helically-finned tube simulations for this thesis. The mesh of the 

fluid domain of the finned tube was partitioned into two groups and solved on 
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parallel processors so that the computing time associated with the simulation 

was reduced by half of the original computing time using only one processor. 

Fluent offers two types of partitioning options. The first option is an automatic 

partitioning algorithm that is used to read an un-partitioned grid into a parallel 

solver, whereas the second option is a manual partitioning technique that is read 

into a serial solver. The user manual of Fluent suggests using the automatic 

partitioning algorithm for large grids. Due to the size of the fluid mesh of the 

finned tube models, the grids of the fluid domain were partitioned using the 

automatic partitioning option and read into a parallel solver. 

The partitioning algorithm that Fluent uses for parallel solvers has three 

primary functions built into the algorithm. The first function is to create the 

partitions such that there are an equal number of cells in each partition. Creating 

an equal number of cells ensures that each processor is given an equal load of 

cells to solve, and the partitions are ready to communicate with one another at 

the end of the solving process at approximately the same time. The second and 

third functions of the algorithm are designed to minimize the number of partition 

interfaces and partition neighbors. By minimizing the number of partition 

interfaces, the time required by the computer to communicate information 

between the partitions is minimized, too. 

 
4.12    Journal Files 

In order to solve a Fluent model on the Linux cluster that was used for this 

thesis, a journal file was needed. A journal file is text file that contains a series of 

text user interface commands (TUI) that are read into Fluent and executed. The 
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journal files that were created for the Fluent models of this thesis were used to 

execute Fluent commands on the Linux cluster. Furthermore, the journal files 

were used to simplify repetitive modeling tasks that were required for the 

mapping modeling technique.  



63 
 

 
 
 
 

CHAPTER 5 
FLUENT SETUP 

 
 

 The primary data that were used to build Fluent models of a flow within a 

helically-finned tube for this thesis are presented at the end of Section 2.2, where 

the experimental friction results from Zdaniuk et al. (2008) are displayed. The 

tube configuration properties were taken from case Tube 1. The geometry of 

Tube 1 is presented in Chapter 4. Zdaniuk et al. (2008) considered 25 different 

flow cases for Tube 1, and 7 of the 25 cases were modeled with Fluent for this 

thesis. The models were built in Fluent using the experimental data that was 

reported. However, some information that was necessary to build the Fluent 

models was neither measured nor reported. Thus, several assumptions were 

imposed in order to build a complete model. The necessary assumptions are 

highlighted in the subsequent sections of this chapter. Using the three modeling 

techniques to model each of the 7 flow cases, 21 Fluent models were built. The 

data and Fluent settings that were used to model each flow case are presented 

in the following sections. 

 
 
5.1      Flow Data from Experiment and Assumptions 

 The experimental flow friction data from Zdaniuk et al. (2008) that was 

used to create the Fluent models were received directly from Gregory Zdaniuk, 

an author of the experiment, in the form of an Excel data file. The file contained 
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all of the recorded flow data (and results) that were obtained during the 

experiment. The Reynolds number of each flow case of the experiment is 

displayed in Table 5.1, along with the inlet water temperatures and the 

corresponding case identification numbers that were used by Zdaniuk et al. 

(2008). However, more information about the experimental setup was needed in 

order to successfully model the flows with Fluent.   

 

  

Case 
Number 

Zdaniuk et al. (2008) 
Identification  

Reynolds 
Number 

Inlet Water 
Temperature (  C ) 

1 Case 1 12,206 20 
2 Case 4 18,632 20 
3 Case 7  24,412 20 
4 Case 10 29,832 20 
5 Case 13 36,292 20 
6 Case 17 44,426 20 
7 Case 22 54,373 20 

 

 Most of the additional information that was needed to build the models 

was derived from the Reynolds numbers and the tube geometries. However, 

other pertinent information had to be assumed. Two vital pieces of information 

about the fluid flow that needed to be determined were the average velocities 

and the mass flow rates. These were determined using Equations (38) and (39), 

respectively. 

  

 

Table 5.1 Experimental Flow Data from Zdaniuk et al. (2008). 

(38) 
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With respect to , the hydraulic diameter was calculated using the inlet area 

and the wetted perimeter of the tube model. These measurements were obtained 

from the SolidWorks models using the 'Measure' feature of SolidWorks. Direct 

measurements of the inlet area or the wetted perimeter were not explicitly stated 

in Zdaniuk et al. (2008). Although the kinematic viscosity, , was not specified in 

the report of the experiment, the kinematic viscosity was assumed to be          

 m2/s, which is the normal kinematic viscosity of water at , 

the inlet temperature of the flow. Furthermore, the density of the water was 

assumed to be  kg/m3, which is the normal density of water at . 

Table 5.2 illustrates most of the necessary flow values that were used to build the 

Fluent models. 

 

 

Case 
Number 

Reynolds 
Number Velocity Mass Flow 

Rate 
Hydraulic 
Diameter Density Kinematic 

Viscosity 

- - ( m / s ) ( kg / s ) ( m ) ( kg / m3 )  ( m2 / s ) 
1 12205.6 0.8867 0.1695 0.0138 998.2 1.0048E-06 

2 18631.7 1.3535 0.2587 0.0138 998.2 1.0048E-06 

3 24412.3 1.7734 0.3389 0.0138 998.2 1.0048E-06 

4 29832.25 2.1671 0.4142 0.0138 998.2 1.0048E-06 

5 36292.4 2.6364 0.5039 0.0138 998.2 1.0048E-06 

6 44425.8 3.2272 0.6168 0.0138 998.2 1.0048E-06 

7 54372.53 3.9498 0.7549 0.0138 998.2 1.0048E-06 
 

  

(39) 

Table 5.2 Input Flow Data for Fluent Models. 
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 Another piece of information that was neither reported nor measured 

during the experiment was the roughness height of the inner walls of the 

helically-finned tubes. Nevertheless, Zdaniuk et al. (2008) reported that the tubes 

were manufactured using copper-nickel material, which has a common 

roughness height of  m (Fox). Hence, the roughness height 

 m was assumed in each of the numerical models. 

  

5.2   Fluent Settings 

 Using three different modeling techniques, there were three primary 

modeling settings for each of the 7 flow cases that were modeled for this thesis. 

As previously stated, the three modeling techniques include: a long tube model, a 

mapping model, and a periodic model. The basic Fluent settings that were used 

to implement each technique are outlined in the following sections. 

 
5.2.1   Fluent Settings - The Long Tube Model 

 In order to simulate the flow of each case using the long tube modeling 

technique, a similar set of Fluent settings was used for each case. The only 

variable settings were the inlet velocities and the number of iterations. 

Nevertheless, each model was iterated until the convergence criteria were 

satisfied. The following settings, along with the journal file that was used to 

execute the Fluent commands on the Linux cluster, comprised the long tube 

modeling technique. These setting were used to model each of the 7 cases that 

were considered in this thesis. 
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 Solver 
Type     Pressure-Based 

Velocity Formulation   Absolute 

Time     Steady 

 Model 
Viscous 

Model    k-epsilon (2 eqn) 

k-epsilon Model   Standard 

Near-Wall Treatment  Standard Wall Functions 

Model Constants              

                

 Materials 
water-liquid 

Material Type   Fluid 

Density (kg/m3)   998.2 

Viscosity (kg/m-s)   0.001003 

 Cell Zone Conditions 
Operating Conditions 

Operating Pressure (Pascal)  0 

Reference Pressure Location  (1.1593, 0, 0) 

 Boundary Conditions 
Inlet 

Velocity Specification Method Magnitude and Direction 

Reference Frame   Absolute 

Velocity Magnitude (m/s)  0.8866 

Component Flow Direction (1, 0, 0) 

Turbulent Intensity (%)  5 

Hydraulic Diameter (m)  0.013832 

Wall 

Wall Motion    Stationary Wall 

Shear Condition   No Slip 
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Roughness Height (m)  1.5e-06 

Roughness Constant  0.5 

 Solution Methods 
Scheme     Simple 

Momentum    Second Order Upwind 

Turbulent Kinetic Energy  Second Order Upwind 

Turbulent Dissipation Rate  Second Order Upwind 

 Monitors 
Residuals - Print    Residuals: 1e-05 

Run Calculation    1500 iterations 

 
 In order to solve the flow cases using the Linux cluster, the Fluent case-

and-data files and a journal file were submitted to the cluster in tandem. The 

journal file that was used to run the Fluent model on the Linux cluster is 

presented in Appendix A.1. 

 
5.2.2   Fluent Settings – The Mapping Model 

 The necessary settings, procedure, and journal file that comprised the 

mapping model technique differ from the long tube modeling technique. As stated 

in Section 4.11, the mapping technique relies on several Fluent runs. The outlet 

solution is repeatedly mapped to the inlet of a successive model, and Fluent 

solves a new model each time the mapping process occurs. Inherently, there are 

two primary settings that comprise this technique. First, the model is solved with 

a uniform velocity at the inlet of the model, and a solution is obtained at the exit. 

The secondary setting is a repetitive loop of mapping the exit-solution of the fore-

model to the inlet boundary condition of the successive model. The following 

settings are the primary settings of the mapping technique. 
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 Solver 
Type     Pressure-Based 

Velocity Formulation   Absolute 

Time     Steady 

 Model 
Viscous 

Model    k-epsilon (2 eqn) 

k-epsilon Model   Standard 

Near-Wall Treatment  Standard Wall Functions 

Model Constants              

                

 Materials 
water-liquid 

Material Type   Fluid 

Density (kg/m3)   998.2 

Viscosity (kg/m-s)   0.001003 

 Cell Zone Conditions 
Operating Conditions 

Operating Pressure (pascal)  0 

Reference Pressure Location  (0.1054, 0, 0) 

 Boundary Conditions 
Inlet 

Velocity Specification Method Magnitude and Direction 

Reference Frame   Absolute 

Velocity Magnitude (m/s)  0.8866 

Component Flow Direction (1, 0, 0) 

Turbulent Intensity (%)  5 

Hydraulic Diameter (m)  0.013832 

Wall 

Wall Motion    Stationary Wall 

Shear Condition   No Slip 
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Roughness Height (m)  1.5e-06 

Roughness Constant  0.5 

 Solution Methods 
Scheme     Simple 

Momentum    Second Order Upwind 

Turbulent Kinetic Energy  Second Order Upwind 

Turbulent Dissipation Rate  Second Order Upwind 

 Monitors 
Residuals - Print    Residuals: 1e-05 

 Run Calculation    900 

 
 The secondary settings of the mapping technique are slightly different 

from the primary settings. Namely, the inlet boundary conditions are different. 

The secondary settings are used repetitively until the flow becomes fully 

developed. The following settings are the secondary settings of the mapping 

technique. 

 

Solver 
Type     Pressure-Based 

Velocity Formulation   Absolute 

Time     Steady 

 Model 
Viscous 

Model    k-epsilon (2 eqn) 

k-epsilon Model   Standard 

Near-Wall Treatment  Standard Wall Functions 

Model Constants              
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Materials 
water-liquid 

Material Type   Fluid 

Density (kg/m3)   998.2 

Viscosity (kg/m-s)   0.001003 

 Cell Zone Conditions 
Operating Conditions 

Operating Pressure (pascal)  0 

Reference Pressure Location  (0.1054, 0, 0) 

 Boundary Conditions 
Inlet 

Velocity Specification Method Components 

Reference Frame   Absolute 

Coordinate System   Cartesian (X, Y, Z) 

X-Velocity (m/s)   outflow x 

Y-Velocity (m/s)   outflow y 

Z-Velocity (m/s)   outflow z 

Turbulent Intensity (%)  5 

Hydraulic Diameter (m)  0.013832 

Wall 

Wall Motion    Stationary Wall 

Shear Condition   No Slip 

Roughness Height (m)  1.5e-06 

Roughness Constant  0.5 

 Solution Methods 
Scheme     Simple 

Momentum    Second Order Upwind 

Turbulent Kinetic Energy  Second Order Upwind 

Turbulent Dissipation Rate  Second Order Upwind 

 Monitors 
Residuals - Print    Residuals: 1e-05 
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 Run Calculation    900 

 

In order to solve the flow cases using the Linux cluster, the Fluent case-

and-data files and a journal file were submitted to the cluster. The journal file that 

was used to run the models fully encompassed the primary settings, the 

secondary settings, and a repetitive solving procedure.  The journal file that was 

used to solve the models using the mapping technique on the Linux cluster is 

presented in Appendix A.2. 

 
5.2.3 Fluent Settings – The Periodic Model 

The following Fluent settings, along with a journal file, comprised the 

periodic modeling technique that was used to model each of the 7 flow cases. 

 
 Solver 

Type     Pressure-Based 

Velocity Formulation   Absolute 

Time     Steady 

 Model 
Viscous 

Model    k-epsilon (2 eqn) 

k-epsilon Model   Standard 

Near-Wall Treatment  Standard Wall Functions 

Model Constants              

                

 Materials 
water-liquid 

Material Type   Fluid 

Density (kg/m3)   998.2 
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Viscosity (kg/m-s)   0.001003 

 Cell Zone Conditions 
Operating Conditions 

Operating Pressure (Pascal)  0 

Reference Pressure Location  (0, 0, 0) 

 Boundary Conditions 
Periodic Conditions 

Periodic Type   Translational 

Type     Specify Mass Flow 

Mass Flow Rate (kg/s)  0.16946 

Flow Direction   (1, 0, 0) 

Relaxation Factor   0.5 

Number of Iterations  3 

Wall 

Wall Motion    Stationary Wall 

Shear Condition   No Slip 

Roughness Height (m)  1.5e-06 

Roughness Constant  0.5 

 Solution Methods 
Scheme     Simple 

Momentum    Second Order Upwind 

Turbulent Kinetic Energy  Second Order Upwind 

Turbulent Dissipation Rate  Second Order Upwind 

 Monitors 
Residuals - Print    Residuals: 1e-05 

 Run Calculation    6000 

 
The journal file that was used to run the periodic models on the Linux 

cluster is presented in Appendix A.3. 
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CHAPTER 6 
RESULTS AND DISCUSSION 

 
 

 From the discussions in the previous chapters, recall the two-part 

objective of this thesis. One part of the objective was to determine the 

performance of each of the three modeling techniques in terms of element 

efficiency and overall computing time that was required to complete each 

simulation. Two significant features of each of the three techniques were the 

number of mesh elements of each model and the modeling procedure of each 

technique. For example, the mapping modeling technique required approximately 

2.9 million elements and a lengthy loop in order to solve the simulation. Such 

features significantly affect the computing time and the data storage space that is 

required to solve a model. Certainly, the most efficient modeling technique is 

desirable. However, the most accurate model is desirable, too. 

 The other part of the objective of this thesis was to numerically simulate 

the experimental friction results from Zdaniuk et al. (2008), tube configuration 

Tube 1 with Fluent. Seven flow cases from the experiment were simulated using 

three distinct modeling techniques. The numerical friction factor of each model 

was calculated using the numerical pressure drop from Fluent. The results of this 

thesis are presented in the following sections, along with a brief discussion of 

recommendations and suggestions for future work. 
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6.1      Mesh Elements, Computing Time, and Iterations 

 The corresponding meshes associated with each of the three modeling 

techniques consisted of varying amounts of mesh elements. The long tube model 

mesh was inherently long in relation to the mapping model mesh and the periodic 

model mesh. Quantitatively, the long tube model mesh consisted of 

approximately 340% more mesh elements than the periodic model and 223% 

more mesh elements than the mapping model. A consequence of mesh size is 

that a large model with many elements is computationally more expensive with 

respect to computing memory than a small model that consists of few elements. 

The number of mesh elements that comprised the meshed model of each of the 

modeling techniques are displayed in Table 6.1. Clearly, the long tube model 

required more computing memory to solve the simulation than the mapping 

model or the periodic model. However, the computing time that is required to 

solve a model can be equally, if not more, important as the computing memory 

requirement.  

 

 

Case 
Number 

Number of Mesh Elements 
Long Tube Model Mapping Model Periodic Model 

1 

6,614,850 2,970,800 1,955,028 

2 
3 
4 
5 
6 
7 

 

Table 6.1 Number Mesh of Elements of each Modeling Technique. 
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 Two important aspects of solving models with Fluent are the amount of 

time that is required to solve a model and the number of iterations that are 

required (or satisfy the convergence criteria). The number of iterations and 

solving time associated with each of the modeling techniques were different. The 

reason for the different times and iterations was the combination of inherent 

Fluent-run procedures, the number of mesh elements, and the convergence 

criteria. The total solving time and the number of iterations associated with each 

of the Fluent models and modeling techniques are displayed in Table 6.2. 

Although the periodic models consisted of the least number of mesh elements, 

the periodic models generally required more iterations than the mapping models 

or the long tube models in order to simulate the flow. 

 

 

Case 
Number 

Running Time (Hours : Minutes) Iterations 
Long Tube 

Model 
Mapping 

Model 
Periodic 
Model 

Long Tube 
Model 

Mapping 
Model 

Periodic 
Model 

1 19:36 20:33 .26:09  1000 4781 6000 

2 19:21 20:15 .33:57  1000 4707 6000 

3 .27:17 20:39 .35:07  1500 4853 6000 

4 22:25 22:49 .27:54  1200 5180 5600 

5 23:32 22:32 .35:04  1200 5143 6000 

6 21:27 22:16 .34:15  1200 5137 6000 

7 21:01 26:33 .34:30  1200 6125 6000 
 

 
 Table 6.1 and Table 6.2 show that the periodic modeling technique 

required up to 42% more run time than the mapping models and up to 45% more 

run time than the long tube models. Still, the periodic models converged very 

poorly, but this is discussed in greater detail in the next section. Clearly, the long 

Table 6.2 Computing Time and Iterations. 
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tube modeling technique and the mapping modeling technique were temporally 

superior to the periodic modeling technique. 

As indicated by Tables 6.1 and 6.2, the solving times associated with the 

long tube models and the mapping models were comparable. However, the 

number of mesh elements that comprised the long tube models was much 

greater than the number of mesh elements that comprised the mapping models. 

Hence, solving the long tube models was computationally more expensive than 

solving than the mapping models. Theoretically, a slower and less expensive 

computer could be used to solve a flow model using the mapping modeling 

technique, whereas a faster more expensive computer would be required to 

solve a similar flow model using the long tube technique. However, the accuracy 

of the modeling technique was important, too. 

   

 6.2     Fluent Results 

 Recall from Section 4.8 that several solving factors of a solved Fluent 

model need to be examined or considered in order to determine whether a Fluent 

solution is complete.  However, there is no universal standard for determining a 

solution complete, and the factors that are examined are often preferential and 

ambiguous. Nevertheless, various aspects of the numerical solution of each 

model considered in this thesis were examined in order to determine the validity 

of the models. Primarily, the residual reports of each model and the developed 

velocity fields were examined. After determining that each model was indeed 

complete, the numerical friction factors were determined. 



78 
 

6.2.1   Convergence of the Long Tube Models 

 In order to determine that the solution of each of the long tube models was 

complete, four factors were examined: the residual report; the developing velocity 

field along the tubular model; the developing swirl number along the model; and 

the pressure drop along the model. Although seven long tube models were 

examined, all of the numerical solutions behaved in a similar fashion. Hence, 

only the solution factors of one model are presented. 

  The residual report is one of the most referenced solution factors in 

determining the completeness of a solution. The convergence of the solution of 

Case 5 is illustrated in Figure 6.1. At iteration number 1200, the residuals of the 

governing equations were at most 10-5. Hence, the convergence criteria of the 

solution were satisfied, and the convergence of the residuals of the solution was 

considered to be satisfactory. 

 

 

  

 

 

Figure 6.1. Residual Report of Case 5 – Long Tube Model. 
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 The velocity field along the center plane of the fluid models is another 

solution factor of the long tube models that was considered. As discussed in 

Section 5.2.1, the initial velocity at the inlet of the long tube models was constant 

and uniform. As a result, the flow was expected to develop as the distance from 

the inlet increased. Furthermore, the flow was expected to become fully 

developed toward the end portion of the model. At the diameter of the model, the 

contours of the velocity field near the inlet of the tube (Case 5) are illustrated in 

Figure 6.2, and the contours of the velocity field near the end of the model are 

illustrated in Figure 6.3. As the flow developed along the model from the inlet, the 

magnitude of the velocity became greatest near the center of the tube and 0 m/s 

at the wall of the tube, which was expected. Furthermore, the velocity contours 

became more stable, or developed, as the flow moved along the tube. As a result 

of these observations, the fluid flow appeared to be fully developed. However, 

the rotational aspect, or swirl, of the flow was investigated, too. 

 

 

 

 Figure 6.2. Velocity Contours at Inlet of Case 5 – Long Tube Model. 
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The developing swirl number along the tube model was another solution 

factor that was considered in each of the long tube models. Usually, the concept 

of swirl number is reserved for gas jet combustion nozzles. However, the 

mathematical definition of swirl number could be utilized to investigate the 

development of the swirling flow along the tube and aid in determining whether 

the flow near the exit was fully developed. The swirl number is defined as the 

ratio of the axial flux of angular momentum and the axial flux of the axial 

momentum. Mathematically, the swirl number can be defined as: 

 

 

 

where  is the tangential component of the axial velocity,  is the axial velocity, 

 is the radial distance from the center of the tube, and  is the average radius 

of the helically-finned tube. The integration feature of Fluent’s postprocessor was 

Figure 6.3. Velocity Contours near the Exit of Case 5 – Long Tube Model. 

(40) 
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used to calculate both of the integrals in Equation (40). Swirl numbers were 

calculated at 0.10 m intervals along the axial direction of the long tube models. 

Furthermore, the percent difference between each consecutive swirl number was 

calculated. The swirling flow was expected to develop along the tube and 

become stable near the end of the tube. The swirl number along the long tube 

model of Case 5 is illustrated by the graph in Figure 6.4., which indicates that the 

swirl number converged near the end of the tube, where the percent difference 

between consecutive swirl numbers became virtually 0. Along with the fully 

developed velocity profile that was discussed in the last section, the converging 

swirl numbers along the Case 5 model strongly suggested that flow is fully 

developed near the end of the model. This verification process was repeated for 

each of the long tube models. The results were similar for each case. 
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Figure 6.4. Swirl Development along Case 5 – Long Tube Model. 
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Finally, the linear behavior of the numerical pressure drop along the axial 

center line of the long tube models was investigated. The pressure drop along 

each of the tube models was expected to be unstable near the inlet of each 

model. Near the exit, the pressure drop was expected to have become stable 

and linear. The pressure drop along the axial center line of the numerical model 

of Case 5 is illustrated in Figure 6.5., which shows that the pressure drop did 

become linear near the exit. This linear pressure drop was used to calculate the 

friction factor of the numerical fluid flow models. This investigation was performed 

for each of the long tube models, and each of the models exhibited similar stable 

linear pressure drops near the exits of the models. 

     

 

 

 
 Each of the 7 long tube models were scrutinized in the same fashion as 

previously described. The residual report of each model, the developing velocity 

field, the developing swirl number, and the pressure drop along each model were 

examined in order to verify that each model was satisfactorily solved and 

Figure 6.5. Linear Pressure Drop along Case 5 – Long Tube Model. 
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complete. After examining the four solving factors of each case, all of the cases 

were determined to be acceptable models of the fluid flow within a helically-

finned tube, and the Fluent solutions were used to determine the corresponding 

friction factor associated with each of the flow cases. 

 
6.2.2   Convergence of the Mapping Models 

 In order to determine that the solution of each of the mapping models was 

complete, three solving factors were examined: the residual report, the velocity 

field along the tubular model, and the pressure drop along the model. Although 

seven mapping model flows were simulated, all of the solutions behaved 

similarly. Hence, only the solution factors of one of the cases are presented. 

 The residual report associated with Case 3 (mapping model) is illustrated 

in Figure 6.6. The cyclic and discontinuous graph lines of the residuals resulted 

from the looping process that was used to solve the sequence of models with 

Fluent. As presented in this figure, the residuals of the governing equations 

converged to at most 10-5 at the end of each cycle. Furthermore, the 

discontinuous spikes at the beginning of each successive cycle reduced in 

magnitude as Fluent resolved the model. The overall residuals appeared to 

stabilize as the solutions of the models were mapped and resolved. This 

suggests that the flow was becoming developed and repetitive. Each successive 

model became more similar to the fore-model, which was expected. Since the 

convergence criteria of the solution were satisfied, the convergence of residuals 

of the solution was considered to be satisfactory. 
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 The velocity field along the center planes of the mapping models was 

another solution factor that was considered. Only one rib-cycle of the helically-

finned tube was modeled with the mapping modeling technique. The fluid flow 

developed over the repetitious looping process of solving the model in a 

sequential fashion. Thus, flow was expected to be fully developed in the model of 

the last loop. At the diameter of the model, the contours of the velocity field of 

Case 3 are illustrated in Figure 6.7. As expected, the magnitude of the velocity 

was greatest near the center of the tube and 0 m/s at the wall of the tube.  

 

 

 

Figure 6.6. Residual Report of Case 3 – Mapping Model. 

 

Figure 6.7. Velocity Contours of Case 3 – Mapping Model. 
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Finally, the linear behavior of the pressure drop along the axial center line 

of each of the mapping models was investigated. The pressure drop along the 

numerical model in Case 3 is illustrated in Figure 6.8., which shows that the 

pressure drop is linear along the entire model. The linear pressure drop was 

used to calculate the friction factor associated with the numerical model. This 

type of investigation was performed for each of the mapping models. All of the 

models exhibited a similar linear pressure drop along the axial center line. 

 

 

 
 

 Each of the 7 mapping models was scrutinized in a similar fashion as 

previously outlined. The residual report of each model, the developing velocity 

field, and the pressure drop along each numerical model were examined in order 

to verify that the models were solved satisfactorily and completely. After each of 

the three solving factors had been examined, the simulations were all determined 

to be acceptable models of the fluid flow, and the numerical solutions were used 

to calculate the corresponding friction factor associated with each flow case. 

Figure 6.8. Linear Pressure Drop along Case 3 – Mapping Model. 

 



86 
 

6.2.3   Convergence of the Periodic Models 

 In order to determine that the solution of each of the periodic models was 

satisfactory, two solving factors were examined: the residual report, and the 

velocity field along the tubular model. Although seven periodic models were 

solved with Fluent, the solutions of each of the models behaved in a similar 

fashion with respect to the solving factors. Hence, only the solution factors of one 

case are presented. 

  The residual report of the periodic model of Case 2 is illustrated in Figure 

6.9. Although the periodic model was iterated 6000 times, some of the residual 

values did not reduce to less than 10-1. Moreover, the nearly flat shapes of the 

end-residual curves suggest that the convergence criteria would not have been 

satisfied for any reasonable or excessive number of iterations. Hence, the 

solution of the periodic model was suspect. Similar residual reports and 

convergence issues were observed for all of the periodic models. 

 

 

 Figure 6.9. Residual Report of Case 2 – Periodic Model. 
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 The velocity field along the center plane of the periodic models was 

another solution factor that was considered. Similar to the mapping models, the 

periodic models consisted of only one rib-cycle of the helically-finned tube. 

However, there were no repetitious loops involved with the solving process; refer 

to Sections 4.4 and 5.2.3. Nevertheless, the velocity contours along the center 

plane of the periodic models were expected to be stable and fully developed. The 

velocity contours of Case 2 are illustrated in Figure 6.10. As expected, the 

magnitude of the velocity is greatest near the center of the tube and 0 m/s at the 

wall of the tube. However, the velocity profile is misshapen. The lower velocity 

contours shift downward toward the center portion of the model and back upward 

toward the end of the model. These velocity contours, illustrated in Figure 6.10, 

were unexpected. Similar results were observed in all of the solutions of the 

periodic models. Hence, the corresponding solutions were suspect. 

 

 

 Figure 6.10. Velocity Contours of Case 2 – Periodic Model. 
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Each of the periodic models was scrutinized in a similar fashion as 

previously described. The residual report of each model and the velocity contours 

along the axial direction of each model were examined in order to determine the 

completeness of the Fluent results. After the solving factors had been examined, 

all of the solutions contained unsatisfactory results. The residuals of each model 

did not satisfy the convergence criteria, and the velocity contours of each model 

were inconsistent. Therefore, the Fluent solutions associated with the periodic 

models were suspect. Nevertheless, the numerical pressure drop along each of 

the periodic models was obtained, and the corresponding friction factors were 

calculated. 

 
6.2.4   Fluent Flow Friction Results 

 Using the Fluent solution of each flow case that was examined in this 

thesis, the corresponding friction factor was calculated using the pressure drop 

along the corresponding Fluent model. The friction factor was calculated three 

times for each case – one calculation for each case and each modeling 

technique. Thus, three friction factors were associated with each Fluent model. 

The friction factors were calculated using the common head loss equation, which 

is stated in Equation (41). The same equation was used by Zdaniuk et al. (2008) 

to calculate the experimental friction factors. 

 
 

 

 

(41) 
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where  is the pressure drop along the model,  is the nominal diameter of the 

helically-finned tube,  is the length over which  is measured,  is the density 

of water, and  is the average velocity of the flow within the tube. 

   The experimental friction data that was obtained by Zdaniuk et al. (2008), 

along with the corresponding velocities that were observed in the experiment, are 

listed in Table 6.3. The corresponding case identification names that were used 

by Zdaniuk et al. (2008) are displayed in Table 5.1. The velocities that were 

reported in Zdaniuk et al. (2008) were used in the Fluent flow models. Notice the 

relationship between the experimental friction factors and the corresponding 

velocities. As the velocities increased, the friction factors decreased. In order to 

determine the success of the Fluent models and the friction factors, the 

numerical data was compared to the experimental data. 

 

 

Case   
Number Friction Factor Velocity                 

(m/s)  
1 0.012370 0.886 
2 0.011399 1.353 
3 0.010508 1.773 
4 0.010084 2.167 
5 0.009598 2.636 
6 0.009061 3.227 
7 0.008505 3.949 

 

 Using the numerical solution data of each of the Fluent models in 

conjunction with Equation (41), the three friction factors of each of the flow cases 

Table 6.3 Experimental Flow Data from Zdaniuk et al. (2008). 
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were calculated. The resulting friction factors, along with the experimental friction 

factors, are presented in Table 6.4. 

 

 

Case 
Number 

Friction Factor From Fluent Model 
Experimental Friction Factor 

[Zdaniuk et al. (2008)] Long Tube 
Model 

Mapping 
Model 

Periodic 
Model 

1 0.01502 0.01566 0.01559 0.01237 
2 0.01341 0.01403 0.01400 0.01140 
3 0.01245 0.01303 0.01301 0.01051 
4 0.01171 0.01231 0.01230 0.01008 
5 0.01105 0.01161 0.01159 0.00960 
6 0.01038 0.01091 0.01090 0.00906 
7 0.00978 0.01021 0.01029 0.00851 

 
 

In order to better visualize the numerical data verses the experimental data, all 

four sets of data are juxtaposed in Figure 6.11. 
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Table 6.4 Numerical Friction Data and Experimental Friction Data. 

Figure 11 Experimental Flow Data from Zdaniuk et al. (2008). Figure 6.11. Numerical Friction Results vs. Experimental Friction Results. 
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 From Figure 6.11, there are clearly similarities and different between the 

data sets. One of the most conspicuous similarities is the downward trend of 

each data set. The friction factors, regardless of the modeling technique, exhibit 

the same downward trend as the velocities were increased. Another similarity 

among the data sets is the close agreement between the mapping modeling 

technique and the periodic modeling technique. From Figure 6.11, the numerical 

friction data from each of the Fluent modeling techniques appear to closely agree 

with one another. However, there are stark agreements and disagreements 

among the data sets, too. Namely, the numerical friction factors are greater than 

the experimental friction factors, and the Fluent data points are more closely in 

agreement with one another than the experimental data. In order to illustrate the 

deviations of the numerical friction factors relative to the experimental friction 

factors, the percent error was calculated using Equation (42).  

 
 

 

 

With respect to the corresponding experimental friction factor, the percent errors 

associated with all of the numerical friction results are displayed in Table 6.5. The 

percent error of the numerical friction results ranged from 14.6% to 26.6%. From 

Table 6.5, it is clear that the long tube model results more closely agreed with the 

experimental friction data than the mapping model results or periodic model 

results. Figure 6.12 shows the percent errors of the numerical friction results with 

respect to the modeling techniques. As illustrated by the Figure 6.12, the percent 

(42) 



92 
 

error of the numerical friction factors for all three techniques decreased, spiked, 

and gradually leveled off as the velocity in each consecutive case was increased. 

Table 6.3 displays the respective average velocity of each case. 

 
 
 

Percent Error 

Long Tube Model Mapping Periodic BC 

21.4% 26.6% 26.0% 
17.6% 23.1% 22.8% 
18.4% 24.0% 23.8% 
16.1% 22.0% 22.0% 
15.1% 21.0% 20.8% 
14.6% 20.4% 20.3% 
15.0% 20.0% 21.0% 
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Table 6.5 Percent Error of Fluent Friction relative to Experimental Friction. Table 6.5 Percent Error of Numerical Friction Factors. 

Figure 6.12. Percent Error with Respect to Modeling Techniques. 
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6.3 Recommendations and Future Work 

 The primary objective of this research was to successfully model the flow 

within a helically-finned tube, compare the simulation results to the experimental 

results, and investigate the performance of three distinct modeling techniques 

that were used to simulate the fluid flow. Although the objective was achieved 

and satisfactory results were obtained, the measure of success of this endeavor 

is arguably subjective. Nevertheless, there were several observations that 

presented during this thesis, and these observations are worth mentioning.

 As discussed in Chapter 5, some of the information regarding the 

experimental setup and data from Zdaniuk et al. (2008) was limited, as several 

key parameters were unknown. Specifically, the roughness height of the inner 

surface of the experimental tubes, the quality of the rib fins, and the accuracy of 

the rib measurements were not mentioned in the report. As communicated from 

Gregory Zdaniuk to the author of this thesis by email, such qualities were neither 

measured nor considered. As pointed out in several highlighted articles from 

Section 1.2, Literature Review, the intricate parameters of the tube and rib 

geometries greatly affect the friction performance of an enhanced tube. Thus, the 

discrepancies that were observed between the Fluent data and experimental 

data possibly resulted from the overlooked measurements or unknown qualities 

of the experimental tubes. Of course, the unknown information was left out of the 

Fluent models, but the effects of such were inherently, and unknowingly, 

incorporated in the experimental results. Hence, error was expected. One way to 

abate this problem is to personally perform the helically-finned tube experiment, 
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examine all of the pertinent features of the tubes, and incorporate all of the 

information in the analysis. 

 The use of the periodic model for the flow within the tubes that was 

considered in this thesis is another concern. As discussed in Section 4.4, the 

basic assumption of the periodic boundary conditions is that the fluid flow 

between the periodic boundaries repeats with respect to velocity and position. 

However, as Jensen and Vlakancic (1999) pointed out, the fluid within a helically 

finned tube does not always follow the helical pattern of the ribs exactly. The flow 

within helical tubes has been observed ‘jumping’ the ribs and swirling at a 

different helical period than that of the ribs. Jensen and Vlakancic (1999) 

reported that the degree to which a flow follows the pattern of the ribs is a 

function of helix angle, fin height, velocity, and rib number. As a result of 

considering only one rib cycle in the periodic models, the basic assumption of the 

model may not have been satisfied, as the helical period of the physical flow was 

different from the period of the helical ribs that lay between the periodic 

boundaries. One way to investigate the effectiveness of the periodic boundary 

conditions is to model a helically-finned tube within which the flow is known to 

strictly follow the periodic nature of the helical ribs. After obtaining a numerical 

solution, the residual report and the velocity contours should be scrutinized for 

evidence of the same inconsistencies that were observed in this thesis. Lastly, 

the numerical friction factor should be compared to existing experimental data. 

 An important concept that was overlooked and not incorporated into this 

thesis is grid convergence analysis. The purpose of this analysis is to determine 
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the minimum number of mesh elements that are required of a model in order to 

achieve satisfactory results, as opposed to using a superfluous amount of 

elements. Using more mesh elements than that which is necessary is 

computationally inefficient. For example, two models, M1 and M2, are identical in 

every way except for the number of mesh elements that comprise each model. 

M1 consists of 2 million elements and M2 consists of 1 million elements. It is 

possible that both models yield similar solutions, yet the M1 is significantly more 

expensive computationally. Clearly, M2 is the better model. With respect to this 

thesis, grid convergence was not incorporated into the construction of meshed 

models. However, there is the possibility that the numerical results of this thesis 

could have been obtained with leaner models. Consequently, the computing time 

and the required computing resources would have been reduced. 

 As for future work, there are many opportunities available. Some of the 

research that was presented in Section 1.2, Literature Review, suggests that the 

friction factor of a helically-finned tube is significantly influenced by several tube 

parameters. A helically-finned tube that is highly desirable is one that is 

optimized for high swirl flow and low friction. Such can be investigated with 

Fluent by considering various tube configurations and simulating the flows. The 

friction factor and swirl flow can be determined from the numerical data using the 

methods presented in this thesis.   

 Another possibility is to investigate the heat transfer characteristics of the 

helically finned tube as a function of tube parameters. Fluent is fully capable of 

coupling heat transfer and fluid flow. As discussed in Section 1.2, there is an 
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intimate relationship between the geometric parameters and the heat transfer 

performance of an enhanced tube. This relationship can be investigated by using 

Fluent to simulate the heat transfer characteristics of a tube. Currently, research 

concerning helically-finned tubes is directed toward the discovery of a closed 

model of the fluid flow, friction, and heat transfer performance of the tubes. 

Although this research successfully simulated the flow within a helically-

finned tube and corroborated the friction factors that were determined 

experimentally, there is still the possibility of improving the simulation process 

that was used, and multiple directions for further research exist.  
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A.1 Journal File for Long Tube Model 

file 
read-case-data 
/nm/users/mja/jls/thesis/multicycletube/1p5e6/multicycle1p5e6.0.cas 
yes 
q 
 
solve 
iterate 
1500 
q 
 
file 
write-case-data 
/nm/users/mja/jls/thesis/multicycletube/1p5e6/multicycle1p5e6.1.cas 
yes 
q 
 
q 
q 
 
exit 
yes 
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A.2 Journal File for Short Tube Mapping Method 

Run 1: 
 

file 
read-case-data 
/nm/users/mja/jls/thesis/1cyclemapping/C3/1CycMapC3.0.cas 
y 
q 
 
solve 
iterate 
600 
q 
 
file 
write-case-data 
/nm/users/mja/jls/thesis/1cyclemapping/C3/1CycMapC3.1.cas 
y 
 
q 
q 
 
exit 
yes 
 

Run 2: 
 

file 
read-case-data 
/nm/users/mja/jls/thesis/1cyclemapping/C1/1CycMapC1.1.cas 
q 
 
solve 
monitors 
residual 
check-convergence? 
n 
n 
n 
n 
n 
n 
q 
q 
q 
 
solve 
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iterate 
4 
q 
 
solve 
monitors 
residual 
check-convergence? 
y 
y 
y 
y 
y 
y 
q 
q 
q 
 
solve 
iterate 
650 
 
q 
 
file 
write-profile 
/nm/users/mja/jls/thesis/1cyclemapping/C1/outflow.prof 
y 

****   outflow 
 
x-velocity 
y-velocity 
z-velocity 
turb-diss-rate 
turb-kinetic-energy 
/ 
read-profile 
/nm/users/mja/jls/thesis/1cyclemapping/C1/outflow.prof 
q 
define 
boundary-conditions 
velocity-inlet 
inlet 
n 
y 
y 
y 
y 
y 
y 
y 
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y 
y 
y 
y 
y 
y 
y 
q 
q 
 
solve 
initialize 
compute-defaults 
velocity-inlet 
inlet 
q 
q 
q 
 
solve 
monitors 
residual 
check-convergence? 
n 
n 
n 
n 
n 
n 
q 
q 
q 
 
solve 
iterate 
3 
q 
 
solve 
monitors 
residual 
check-convergence? 
y 
y 
y 
y 
y 
y 
q 
q 
q 
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solve 
iterate 
650 
 
q 
 
file 
write-profile 
/nm/users/mja/jls/thesis/1cyclemapping/C1/outflow.prof 

****   y 
Note:  Here, the sequence of code between the ****'s repeats seven more times and 

continues with the following lines of code.  
q 
 
q 
q 
 
exit 
yes 
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A.3 Journal File for Short Tube Periodic Method 

file 
read-case-data 
/nm/users/mja/jls/thesis/1cycleperiodic/C5/1CycPerC5.cas 
y 
q 
 
solve 
iterate 
6000 
q 
 
file 
write-case-data 
/nm/users/mja/jls/thesis/1cycleperiodic/C5/1CycPerC5.1.cas 
y 
q 
 
q 
q 
 
exit 
yes 
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