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ABSTRACT 

Wireless sensor nodes generally face serious limitations in terms of computational 

power, energy supply, and network bandwidth. One of the biggest challenges faced by 

researches today is to provide effective and secure techniques for establishing 

cryptographic keys between wireless sensor networks. Public-key algorithms (such as the 

Diffie-Hellman key-exchange protocol) generally have high energy requirements because 

they require computational expensive operations. So far, due to the limited computation 

power of the wireless sensor devices, the Diffie-Hellman protocol is considered to be 

beyond the capabilities of today‟s sensor networks. We analyzed existing methods of 

implementing Diffie-Hellman and proposed a new improved method of implementing the 

Diffie-Hellman key-exchange protocol for establishing secure keys between wireless 

sensor nodes. We also provide an easy-to-use implementation of the Elliptic Curve 

Diffie-Hellman key-exchange protocol for use in wireless sensor networks. 



 

iv 

ACKNOWLEDGEMENTS 

First and foremost I offer my sincerest gratitude to my supervisor, Dr. Graciela 

Perera, for her continuous encouragement, guidance and support during this work. I thank 

my other committee members, Dr. John Sullins and Dr. Jamal Tartir, for their helpful 

suggestions and comments. 

I thank Dr. Neil Flowers for helping me understanding some of the underlying 

mathematics behind elliptic curve cryptography. I also thank Tony Noe for providing me 

with the safe primes list. Finally I thank my family and friends for supporting me 

throughout the course of my studies. 



 

v 

Table of Contents 

ABSTRACT ...................................................................................................................... iii 

ACKNOWLEDGEMENTS ............................................................................................ iv 

List of Figures ................................................................................................................. viii 

List of Tables .................................................................................................................... ix 

Chapter 1 Introduction..................................................................................................... 1 

1.1 Motivation ................................................................................................................. 1 

1.2 Contributions ............................................................................................................ 2 

1.3 Organization of this Thesis ....................................................................................... 3 

Chapter 2 Background ..................................................................................................... 5 

2.1 Wireless Sensor Networks ......................................................................................... 5 

2.1.1 Important Security Issues ............................................................................................... 6 

2.1.2 Sun SPOT ....................................................................................................................... 8 

2.2 Public-Key Cryptography ....................................................................................... 10 

2.3 Diffie-Hellman Key Exchange ................................................................................ 11 

2.3.1 Security of Diffie-Hellman ........................................................................................... 12 

2.4 Elliptic Curve Cryptography................................................................................... 13 

2.4.1 Mathematical Foundations of ECC .............................................................................. 14 

2.4.2 ECC Arithmetic ............................................................................................................ 15 

2.4.3 Properties of the Elliptic Curve .................................................................................... 18 



 

vi 

2.4.4 Finding Points on the Elliptic Curve ............................................................................ 19 

2.4.5 Order of an Elliptic Curve ............................................................................................ 20 

2.4.6 Scalar Point Multiplication ........................................................................................... 21 

2.4.7 Elliptic Curve Discrete Logarithm Problem ................................................................. 21 

2.4.8 ECC Domain Parameters ............................................................................................. 22 

2.5 Elliptic Curve Diffie-Hellman (ECDH) .................................................................. 23 

Chapter 3 Portable Diffie-Hellman ............................................................................... 25 

3.1 Analysis of the Diffie-Hellman Key-Exchange Protocol ........................................ 25 

3.1.1 Using Prime Order Groups ........................................................................................... 27 

3.1.2 Using Subgroups of p* ................................................................................................ 28 

3.2 Portable Diffie-Hellman (PDH) Key-Exchange Protocol ...................................... 29 

3.2.1 Detailed PDH ............................................................................................................... 30 

3.2.2 The PDH Protocol with Safe Primes ............................................................................ 32 

3.2.3 Security Analysis of the PDH Protocol ........................................................................ 37 

3.3 Implementation of the PDH Protocol ..................................................................... 38 

3.3.1 Simplified PDH (S-PDH) Java Library ........................................................................ 39 

3.4 Evaluation of S-PDH .............................................................................................. 42 

3.4.1 Empirical Results .................................................................................................................... 42 

3.4.2 Analysis of Empirical Results ............................................................................................... 45 

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography .................. 47 

4.1 The PDH-EC Protocol using Safe Primes .............................................................. 47 

4.2 Implementation of the PDH-EC Protocol ............................................................... 51 



 

vii 

4.2.1 ExtendedEculideanAlgorithm Class ..................................................................................... 51 

4.2.2 ModularArithmetic Class ....................................................................................................... 52 

4.2.3 ECPoint Class .......................................................................................................................... 53 

4.2.4 ECC Class ................................................................................................................................ 53 

4.2.5 SPDHEC Class ........................................................................................................................ 60 

4.2.6 ExecutionTimer Class ............................................................................................................ 60 

4.2.7 SPDHECTest Class................................................................................................................. 61 

4.3 Evaluation & Analysis of Empirical Results of S-PDH-EC.................................... 61 

Chapter 5 Conclusions and Future Work .................................................................... 64 

5.1 Summary ................................................................................................................. 64 

5.2 Future Work ............................................................................................................ 66 

REFERENCES ................................................................................................................ 67 

 



 

viii 

List of Figures 

Figure 2.1: Wireless Sensor Network ................................................................................. 6 

Figure 2.2: Point Addition ................................................................................................ 16 

Figure 2.3: Point Doubling ............................................................................................... 18 

Figure 3.1: Node Registration and Counters (NRC) Table ............................................... 34 

Figure 3.2: PDH Protocol Steps ........................................................................................ 36 

Figure 3.3: S-PDH Class Library ...................................................................................... 39 

Figure 3.4: Square and Multiply Algorithm ..................................................................... 41 

Figure 3.5: Histogram of 1,000,000 Keys with Fixed (p, g) & Random (a, b) ................ 43 

Figure 3.6: Histogram of 1,000,000 Keys with Random (p, g, a, b) ................................ 44 

Figure 4.1: PDH-EC Protocol Steps ................................................................................. 50 

Figure 4.2: S-PDH-EC Class Library ............................................................................... 51 

Figure 4.3: Algorithm for computing Modular Multiplicative Inverse ............................ 52 

Figure 4.4: Algorithm for deciding Quadratic Residuosity modulo a prime .................... 53 

Figure 4.6: Algorithm for computing Square Roots modulo a safe prime ....................... 53 

Figure 4.7: Algorithm for deciding Non-Singularity of an Elliptic Curve ....................... 54 

Figure 4.8: Point Addition Algorithm ............................................................................... 55 

Figure 4.9: Point Doubling Algorithm .............................................................................. 56 

Figure 4.10: Double and Add Algorithm .......................................................................... 56 

Figure 4.11: Algorithm for finding all points on the Elliptic Curve ................................. 57 

Figure 4.12: Algorithm for finding a Random Point on the Elliptic Curve ...................... 58 

Figure 4.13: Algorithm for computing Order of an Elliptic Curve................................... 59 



 

ix 

List of Tables 

Table 3.1: Execution Time for different number of Keys (Sample Size 50) .................... 43 

Table 3.2: Average Number of Keys Duplicated (Sample Size 50) ................................. 44 

Table 4.1: Experimental Elliptic Curves of Prime Order ................................................. 62 

Table 4.2: Execution Time for different number of Keys (Sample Size 10) .................... 63 

 



Chapter 1 Introduction 

1 

Chapter 1  

Introduction 

In today‟s world, the number of users in the Internet grows fast. It is made of 

billions of interconnected computers. However, the very nature of the network is 

changing. New types of devices are connecting to the net every day. Wireless sensor 

nodes can be imagined as small computers, extremely basic in terms of their interfaces 

and their components. They are typically used for monitoring, tracking, and controlling in 

information systems. Wireless sensor networks are, in general, more vulnerable to attacks 

and unauthorized access than traditional (wired) networks. They are often deployed in 

hostile environments where they can be easily captured, compromised, or manipulated by 

an adversary. So effective protection mechanisms are required and security must be 

provided at every aspect of the design of a wireless sensor network. In [1], Boyle and 

Newe discuss popular and progressive security architectures available and used to-date in 

wireless sensor networks. However, as demonstrated in [1] the situation is still uncertain. 

There is still a lot of research going on to find out the best method of providing security 

and authentication in wireless sensor networks.  

1.1 Motivation 

The problem of establishing secure keys across a traditional (wired) network has 

been well-studied by researchers over several decades and they have proposed a variety 

of key-exchange protocols. Why can‟t the same key-establishment protocols be used in 

wireless sensor networks? The inherent properties of sensor networks render previous 
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protocols impractical. Therefore, the implementation of effective and secure techniques 

for establishing cryptographic keys between wireless sensor nodes is a challenging task. 

Most of the security protocols used in wireless sensor networks up-to-date rely on 

symmetric key cryptography because public-key cryptosystems are considered inefficient 

due to their high energy requirements. Active research on how to make public-key 

cryptosystems efficient on low-end devices is still ongoing.  

The Diffie-Hellman key-exchange protocol allows two parties that have no prior 

knowledge of each other to jointly establish a shared secret key over an insecure 

communications channel. The main advantage of using the Diffie-Hellman key-exchange 

protocol is that a node can set up a secure key with any other node in the network. It 

allows two entities to directly establish a key by exchanging messages over an insecure 

communication channel. 

1.2 Contributions 

The contributions of this thesis are the development of an improved and portable 

Diffie-Hellman key-exchange protocol for wireless sensor networks. The specific 

contributions are: 

 The design of a new method for establishing secure keys in wireless sensor 

networks called the Portable Diffie-Hellman (PDH).  

 The development and implementation of a class library showing the mathematical 

concepts behind the PDH protocol and the secret key generation process. The 

library is called Simplified PDH (S-PDH). It is developed in Java so that it can be 

used on all platforms. 
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 The design of a new method for implementing the Elliptic-Curve Diffie-Hellman 

key-exchange protocol. It is a variant of the PDH protocol called the Portable 

Diffie-Hellman using Elliptic Curves (PDH-EC). 

 The development and implementation of a simple class library showing the basic 

functionality of an elliptic curve cryptosystem along with the process of secret 

key generation behind the PDH-EC protocol. The library is called Simplified 

PDH-EC (S-PDH-EC) and is also developed in Java. 

 All libraries were developed for educational purposes so that students have a 

practical tool to experiment and learn the mathematics behind the Diffie-Hellman 

and the Elliptic curve Diffie-Hellman key-exchange protocols. The libraries 

support the use of small primes so that anyone can get the basic understanding of 

the protocols. The S-PDH-EC library can be particularly helpful for someone who 

is new to elliptic curve cryptography. 

1.3 Organization of this Thesis 

The remainder of this thesis is organized as follows: 

 Chapter 2 provides the background information about wireless sensor networks 

and important security issues involving wireless sensor networks, public-key 

cryptography, and the Diffie-Hellman key-exchange protocol, elliptic curve 

cryptography, and the Elliptic Curve Diffie-Hellman key-exchange protocol.  

 Chapter 3 provides an analysis and overview of the existing methods of 

implementing the Diffie-Hellman key-exchange protocol. Afterwards, the design, 

implementation and evaluation of the Portable Diffie-Hellman (PDH) protocol are 

described. The implementation is done using the Java programming language.  
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 Chapter 4 presents the design, implementation and evaluation of the Portable 

Diffie-Hellman using Elliptic Curves (PDH-EC) protocol. 

 Chapter 5 describes the summary of our work, conclusions and future work. 
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Chapter 2  

Background 

This chapter provides a general description of wireless sensor networks and the 

security aspects regarding distributed key-exchange in wireless sensor networks. In 

particular, we discuss the Sun SPOTS; wireless computing devices used to study the 

portability of the Diffie-Hellman key-exchange protocol. We also discuss the basic 

concepts behind public-key cryptography, the Diffie-Hellman key-exchange, elliptic 

curve cryptography and the elliptic curve Diffie-Hellman key-exchange protocol. 

2.1 Wireless Sensor Networks 

A wireless sensor network (WSN) consists of a number of independent nodes that 

communicate with each other wirelessly over limited frequency and bandwidth. The 

nodes are equipped with limited capabilities of sensing, computation and communication. 

Wireless sensor nodes are densely deployed and coordinate with each other to produce 

high-quality information about the sensing environment. The exact location of a 

particular sensor is unknown. It means that sensor network protocols and algorithms must 

provide self-organizing capabilities [2]. 

Figure 2.1 shows a typical wireless sensor network in which the sensor nodes are 

scattered in a sensor field. Each node has the capability of collecting data and routing it 

back to the base station. The base station is like a gateway to the wireless sensor network. 

It connects the complete wireless network with the task manager node via the Internet or 

satellite. The sensor nodes are also capable of sending information to other sensor nodes 

in the sensor field. 
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Figure 2.1: Wireless Sensor Network 

There are many different applications of wireless sensor networks but typically involve 

some kind of monitoring, tracking, and controlling. The two most important security-

oriented applications of wireless sensor networks include their use in military and 

medical solutions. For example, in military situations, sensor networks can be used in 

surveillance missions and can be used to detect moving enemy targets. Most applications 

of wireless sensor networks require protection against eavesdropping, tampering of data 

and devices, denial-of-service attacks, secure routing and node capture [1]. 

2.1.1 Important Security Issues 

Key management and distribution are two essential security services that must be 

provided for a secure wireless sensor network. The establishment of a shared secret key 

between a pair of wireless sensor nodes is the basis for other security services such as 
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symmetric or private-key encryption [3]. There are many key establishment techniques 

designed by researchers to address the tradeoff between limited memory and security [4-

5]. However, which scheme is the most effective is still debatable. The most common 

approach for key establishment is a network-wide key shared by all nodes or a set of keys 

that use random-key pre-distribution protocols [3]. These protocols are easy to implement 

and entail little overhead since no complex key agreement has to be performed. However, 

most protocols based on pre-deployed keys have disadvantages regarding scalability and 

vulnerability to node capture [6]. 

Another approach towards a secure wireless network is bootstrapping keys using a trusted 

base station. In this approach each node shares only a single key with the base station and 

set up keys with other nodes through the base station. However, if the base station fails, 

then the wireless sensor nodes are not able to establish any keys [3]. 

Public-key cryptography can solve the problem of key distribution since the 

communicating nodes do not need to secretly share a key in advance of their 

communication. It allows two nodes to communicate secretly even if all communication 

between them is monitored. However, pubic-key cryptography is so far considered to be 

beyond the capabilities of today‟s wireless sensor networks. The high energy 

requirements of public key-exchange protocols make them infeasible for use in wireless 

sensor networks. Active research on how to make public-key cryptography more efficient 

for wireless sensor networks is still ongoing [3].  

In [5], Xiao et al. determined that no key distribution technique is ideal to all the 

scenarios where sensor networks are used. A wireless sensor network used in a battlefield 
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requires more security than others. Therefore, the key distribution and management 

techniques employed must depend upon the requirements of target applications and 

resources of each individual sensor network.  

Authentication against eavesdropping, injection and modification of packets is another 

important aspect of security in wireless sensor networks. The trend has moved from pre-

deployed keying mechanisms to elliptic curve cryptography (ECC) algorithms for 

performing authentication in wireless sensor networks [1]. 

Another security issue in wireless sensor networks is how to protect the node from 

physical capturing and cloning. Physical security is often taken for granted in traditional 

computing. However, wireless sensor nodes may be placed in hostile environments where 

they can be easily accessible to attackers. Becher et al. [7] and Xing et al. [8] discuss 

effective detection mechanisms against node capturing and cloning.  

Now, because wireless sensor nodes differ in hardware and software, we will describe in 

the next section a wireless computing device called Sun SPOT which was used in our 

study of the portability of the Diffie-Hellman key-exchange protocol. 

2.1.2 Sun SPOT 

Sun SPOT (Sun Small Programmable Object Technology) [9] developed by Sun 

Microsystems is a battery powered, wireless computing device for use in sensor 

networks. It is an experimental technology used to study and develop prototype systems 

based on wireless communication. A detailed description of the hardware and software 

specifications is explained below. According to [9] the Sun SPOT has the following 

hardware properties:  
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Processing Capabilities 

 180 MHz 32 bit ARM920T core - 512K RAM - 4M Flash. 

 2.4 GHz IEEE 802.15.4 radio with integrated antenna. 

 AT91 timer chip. 

 USB interface. 

Demo Sensor Board 

 8 tri-color LEDs. 

 2G/6G 3-axis accelerometer. 

 Light and temperature sensors. 

 6 analog inputs. 

 2 push buttons. 

 5 general purpose I/O pins and 4 high current output pins. 

Battery 

 3.7V rechargeable 750 mAh lithium-ion battery. 

 30 uA deep sleep mode. 

 Automatic battery management provided by the software. 

Radio Communication 

 The devices communicate using the IEEE 802.15.4 standard including the base-

station approach to sensor networking. 

The Sun SPOT uses a small J2ME-level VM called Squawk [9] which runs directly on 

the processor without an OS. The development tools are: 

 Standard Java IDEs (e.g. NetBeans) can be used to create SunSPOT applications. 
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 “SPOTWorld” is an application that can be used for management, programming, 

debugging and deployment of applications on the Sun SPOT. 

The next section provides a discussion on public-key cryptography. 

2.2 Public-Key Cryptography 

Symmetric-key cryptography requires the sender and receiver to share a common 

secret key. One of main drawbacks of symmetric-key cryptography is how the sender and 

receiver exchange the secret key in the first place. The secret key cannot simply be sent 

over an insecure communication channel where the key can be compromised. The 

authors of [10] and [11] discuss several different approaches to secret-key distribution. 

Key distribution centers and protocols such as Kerberos are very popular and can be used 

to solve the issue of secret-key distribution. However, when we talk about the Internet 

and wireless networks, the protocols used in these networks lack a secure channel to 

exchange secret keys. Therefore, the problem of key distribution is a current area of 

research. Nevertheless, until 1976, it was believed that encryption simply cannot be done 

without first sharing a secret key. In 1976, Diffie and Hellman [12] proposed a new type 

of cryptography known as asymmetric or public-key cryptography. Public-key 

cryptography uses two keys instead of one; one of these keys is used by the sender of the 

message for encryption, called the public key, and the other one is used by the receiver of 

the message for decryption, called the private key.  

Public-key cryptography uses mathematical functions for encryption and decryption. The 

main idea is to use a trapdoor one-way function that is easy to compute in one direction, 

yet believed to be difficult to compute in the opposite direction (finding its inverse) 



Chapter 2 Background 

11 

without special information, called the "trapdoor". In mathematical terms, if f is a 

trapdoor function, there exists some secret information y, such that given f(x) and y it is 

easy to compute x [10]. An example of a trapdoor one-way function is the factorization of 

a product of two large primes. The multiplication of two large prime numbers is easy; 

however, factoring the resulting product is very difficult. Therefore, many of the public-

key cryptosystem base their security on the difficulty of solving mathematical problems 

such as the integer factorization problem, finite field discrete logarithm problem and the 

elliptic curve discrete logarithm problem (explained in later sections). All of these 

problems are believed to be both secure and practical after years of intensive studying. 

One of the most important aspects of public-key algorithms such as the Diffie-Hellman 

key-exchange protocol is that it solves the problem of key management and distribution. 

A key-exchange protocol allows key distribution to be done over an insecure channel 

since the communicating parties do not need to secretly share a key in advance of their 

communication. In the next section we describe the Diffie-Hellman key-exchange 

protocol and some of the underlying mathematics behind it.  

2.3 Diffie-Hellman Key Exchange 

The Diffie-Hellman key-exchange protocol uses the multiplicative group of 

integers modulo p, <p*, >, where p is a large prime number on the order of 300 

decimal digits (1024 bits). We represent this group by G = <p*, >. Before discussing 

the protocol, we first describe the important properties of the group. This group G 

consists of all integers from 1 to p – 1 where p is a prime. Following are some important 

properties of G: 
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 The order of the group is given by, |G| = p – 1. 

 Every member of the group has an additive and a multiplicative inverse. 

 The group is abelian i.e., for all a, b  G, ab mod p = ba mod p. 

 The group is cyclic i.e., there exists an element g  G such that: 

 

The group and the generator do not need to be confidential. They can be sent over an 

insecure communication channel such as the Internet. So p and g are public. The 

following interchange of messages between Alice and Bob demonstrates the Diffie-

Hellman key-exchange protocol: 

1. Alice and Bob publicly agree on a cyclic group G, its generator g and a prime p.  

2. Alice and Bob each secretly choose large random numbers a and b, such that

1,0 pba .  

3. Alice calculates RA = g
a
 mod p, while Bob calculates RB = g

b
 mod p. 

4. Alice sends RA to Bob and Bob sends RB to Alice. 

5. Alice calculates K = (RB)
a

 mod p while Bob calculates K = (RA)
b

 mod p. 

6. Both get the same value for the key i.e. 

K = (g
a
 mod p)

b
 mod p = (g

b
 mod p)

a
 mod p = g

ab
 mod p 

K = g
ab

 mod p is called the Diffie-Hellman secret key.  

2.3.1 Security of Diffie-Hellman 

The security of the Diffie-Hellman key-exchange protocol relies on the presumed 

hardness of the discrete logarithm problem (DLP) in a group of large order, i.e., 

computing the Diffie-Hellman secret key is considered computationally impossible given 

Gggggg G },...,,,{ 1||210
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the public parameters. At the end of the protocol, the values g
a
 and g

b
 have become 

public while the value of g
ab

 remains private. Thus, the Diffie-Hellman Problem (DHP) is 

to compute g
ab

 from the given values of g
a
 and g

b
. This is widely believed to be difficult 

as long as the discrete logarithm problem has not been solved in G [10].  

One of shortcomings of the Diffie-Hellman key-exchange protocol is the Man-in-the-

Middle attack. In this kind of attack an eavesdropper intercepts all messages between 

Alice and Bob and makes independent connections with them. The eavesdropper can then 

replay messages between Alice and Bob, making them believe that they are talking 

directly to each other over a private connection when in fact the entire conversation is 

controlled by the eavesdropper. To thwart this kind of an attack, the Station-to-Station 

key agreement protocol can be used. The protocol is based on Diffie-Hellman and 

provides authentication. It uses digital signatures with public key certificates to establish 

a secure session key between Alice and Bob [10]. To provide authentication, a variant of 

the Diffie-Hellman protocol called HMQV [13] can also be used. 

A more recent method used in public-key cryptography to generate keys is to use elliptic 

curves and is described in the next section. 

2.4 Elliptic Curve Cryptography 

Elliptic curve cryptography (ECC) is an approach to public-key cryptography 

based on the algebraic structure of elliptic curves over finite fields. In 1985, Neal Koblitz 

[14] and Victor S. Miller [15] independently proposed the use of elliptic curves in 

cryptography. ECC is emerging as an attractive public-key cryptosystem for wireless 

sensor networks. It provides an alternative to established public-key systems such as the 
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DSA (Digital Signature Algorithm) and RSA (Rivest-Shamir-Adleman) algorithms. In 

recent years, ECC has gained a lot of attention. The main reason for the attractiveness of 

ECC is the fact that there is no sub-exponential algorithm known to solve the discrete 

logarithm problem on a properly chosen elliptic curve [16]. This means that significantly 

smaller parameters can be used in ECC (with the same level of security) than in other 

competitive systems [17]. This makes ECC ideal for wireless sensor networks which are 

typically limited in terms of their CPU power, memory and network connectivity. 

2.4.1 Mathematical Foundations of ECC 

Much of the following discussion in this section is based on material presented in 

Lawrence C. Washington‟s book “Elliptic Curves, Number Theory and Cryptography” 

[18]. 

The mathematical operations of ECC are defined over a special class of elliptic curve of 

the form: 

pBAxxy  mod 32
  (2.1) 

Where A, B  p are constants satisfying the condition: 0274 23 BA  mod p. This 

condition ensures that the equation, 03 BAxx  mod p has no repeated roots 

(nonsingular). The modulo p is a prime with p > 3. The theory can be adopted to deal 

with the case of p = 2 or 3. However, the discussion presented here deals only with the 

field of characteristics not equal to 2 or 3.  

Let Ep(A, B) denote the set of points P = (x, y) that satisfy equation (2.1), i.e. 

Ep(A, B) = {(x, y) | (x, y) p and BAxxy 32
 mod p} 
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We define the set E(p) as follows: 

E(p) = Ep(A, B)  {O} 

The elements of the set E(p) are called the points on the elliptic curve E defined by 

equation (2.1) together with an extra point O which is called the point at infinity. The 

specific properties of a nonsingular elliptic curve allows us to define a binary operation, 

called “addition” (denoted by „+‟), on the points of E(p). The operation is the addition of 

two points on the curve to get another point on the curve. 

R = P + Q where P = (x1, y1), Q = (x2, y2) and R = (x3, y3).  

The point O is defined as an (additive) identity i.e., for all P  E(p), P + O = O + P = P. 

It can be shown that every line intersecting the curve E intersects the curve in exactly 

three points, where: 

1. a point P is counted twice if the line is tangent to the curve at P, and 

2. the point at infinity is also counted (when the line is vertical). 

2.4.2 ECC Arithmetic 

The rules for negation, addition and point doubling are described below. However, to 

conceptualize the basic arithmetic behind E(p) we will first give a graphical explanation 

of elliptic curves over the reals i.e. the equation BAxxy 32
 mod p without 

reduction modulo p. This is because; in modular arithmetic the points on the curve do not 

make nice graphs. Nevertheless, the concept remains the same. 

Negation 

A negative of a point is the reflection of that point with respect to x-axis. Given a point P, 

its negation –P is the point for which P + (–P) = O. The line connecting the two points 
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intersects the curve at O. We can think of the “point at infinity” O as sitting at the top of 

the y-axis and lying on every vertical line. As shown in Figure 2.2 (b), –P is simply the 

reflection of P in the x-axis, that is, if P = (x1, y1) then –P = (x1, –y1). 

Point Addition 

For an elliptic curve E, take two arbitrary points P, Q  O. Point addition is the process 

of adding these points to obtain another point R on the same elliptic curve. If Q –P, as 

in Figure 2.2 (a), then the line drawn through the points P and Q will intersect the elliptic 

curve at exactly one more point, –R. If P = Q, then draw the line tangent to E at P (see 

point doubling). Graphically, P + Q can be found by reflecting the point –R with respect 

to the x-axis. 

P

Q

P  Q

2 0 2 4

4

2

0

2

4

 

P

Q  P

2 0 2 4

4

2

0

2

4

 
(a) (b)

P + (–P) = O

Where O is the 

point at infinity
–R

R =

 

Figure 2.2: Point Addition 

In E(p), we use the same addition operation but the calculations are done modulo p. So 

let P = (x1, y1) and Q = (x2, y2) be two points in E(p) with P, Q  O. We first consider 

the case where P and Q have different x and y coordinates (x1  x2 and y1  y2). Then 
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the coordinates of the point R, x3 and y3 can be found by first finding the slope of the line 

m, through P and Q, and then calculating the values of x3 and y3 as shown below: 

12

12

xx

yy
m  mod p 

21

2

3 xxmx  mod p 

1313 )( yxxmy  mod p 

Our assumption, that 21 xx  means that 021 xx  mod p. This implies that the 

inverse of x2 – x1 modulo p exists. However, if Q = –P (x1 = x2 and y1 = –y2), as shown in 

Figure 2.2 (b), then the two points are additive inverses of each other. As already 

mentioned, then P + (–P) = O. 

Point Doubling 

For an elliptic curve E, take an arbitrary point P  O. Point doubling is the process of 

adding the point P to itself to obtain another point R on the same elliptic curve. If the y-

coordinate of point P is not zero as in Figure 2.3 (a), then the tangent line drawn at P will 

intersect the elliptic curve at exactly one more point, –R. Graphically, 2P can be found by 

reflecting the point –R with respect to the x-axis. 
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(a) (b)

P  Q
2P

2 0 2 4

4

2

0

2

4

 2 0 2 4

4

2

0

2

4

 

 2P = P + P 

y1 = 0

2P = O

Where O is the 

point at infinity

R =

P

–R

 

Figure 2.3: Point Doubling 

Consider a point P = (x1, y1) be in E(p) with P  O. We first consider the case where the 

y-coordinate of P is not zero (y1  0). In this case, the slope of the line and the 

coordinates of the point R, x3 and y3 can be found as shown below: 

1

2

1

2

3

y

Ax
m  mod p 

1

2

3 2xmx  mod p 

1313 )( yxxmy  mod p 

If the y-coordinate of the point P is zero as shown in Figure 2.3 (b), then the tangent at 

this point intersects the curve at O, So, 2P = O. 

2.4.3 Properties of the Elliptic Curve 

It is shown in [18] that the sets of points E(p) along with the addition rule defined above 

form an abelian group: 
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 Closure: Adding two points on the curve creates another point on the curve. 

 Associatively: )()( RQPRQP . 

 Commutatively: PQQP . 

 Identity: The “point at infinity” O is the additive identity. In other words 

POOPP . 

 Inverse: Every point on the curve has an inverse. The inverse of a point is its 

reflection with respect to x-axis. In other words, the point ),( 11 yxP and 

),( 11 yxQ  are inverses of each other, which means that OQP . Note that 

the identity element is the inverse of itself. 

2.4.4 Finding Points on the Elliptic Curve 

Recall from above that Ep(A, B) denote the set of points P = (x, y) that satisfy equation 

(2.1), i.e. Ep(A, B) = {(x, y) | (x, y) p and BAxxy 32
 mod p}. 

It is shown in [18] that there can only be finitely many points that can satisfy the above 

equation. Therefore, the points on the curve E(p) form a finite abelian group. To 

generate a point on the elliptic curve we choose an x p and check to see if there is a 

corresponding y satisfying the elliptic curve equation. Let BAxxxf 3)(  and 

consider the curve )(2 xfy  mod p. This means that we have to evaluate whether )(xf  

is a quadratic residue modulo p.  

An element z p* is a quadratic residue modulo p if it is congruent to a perfect square 

(mod p), i.e., if there exists a y p* such that zy2
 mod p. Modulo an odd prime 

number p there are (p + 1)/2 quadratic residues (including 0) and (p − 1)/2 quadratic non-
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residues. In this case, it is customary to consider 0 as a special case and work within the 

multiplicative group of nonzero elements p*. 

Now depending on whether )(xf  is a quadratic residue or not modulo p, we can have the 

following cases: 

 )(xf is a quadratic residue, then there are two points on the curve ),( yx . 

 )(xf is a non-quadratic residue, then there is no point on the curve. 

 )(xf = 0 mod p, then there is a single point on the curve (x, 0). 

This allows us to determine the points on the curve. 

2.4.5 Order of an Elliptic Curve 

The order of an elliptic curve is defined as the number of points on the curve and is 

denoted by |E(p)|. The simplest way of finding out the number of points on the curve is 

to use the following equation, the proof of which can be found in [18].  

|E(p)| 
px p

BAxx
p

2

1  

Where 
p

BAxx2

 can be evaluated by using “Legendre” symbol. Given an odd 

prime p and an integer a, then the Legendre symbol is defined as follows: 

p

a
+1 if a is a quadratic residue modulo p.

–1 if a is a quadratic non-residue modulo p.

 0 if p divdes a.

The above method is considered insufficient when p is extremely large. So a different 

point counting algorithm, such as the Schoof's algorithm or Schoof-Elkies-Atkin 

algorithm [19-20] must be used. 
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2.4.6 Scalar Point Multiplication 

Scalar point multiplication is the core of elliptic curve arithmetic. It is the most essential 

part of a secure elliptic curve cryptosystem. For an elliptic curve E, take an arbitrary 

point P  O. Scalar multiplication is the process of adding the point P to itself k times to 

obtain another point Q on the same elliptic curve. 

Q = kP = P + P + … + P

k
 

Where k < |E(p)| is a scalar. Scalar multiplication of a point on E can be performed 

through a combination of point additions and point doublings, e.g. 11P = 2((2(2P)) + P) 

+ P. 

The above method is called the ―double and add‖ algorithm for scalar point 

multiplication. However, there are a number of other efficient algorithms also available 

for scalar point multiplications [21]. 

2.4.7 Elliptic Curve Discrete Logarithm Problem 

Much of today‟s ECC is based on the elliptic curve discrete logarithm problem (ECDLP). 

Recall from the last section that scalar multiplication is the core of elliptic curve 

arithmetic. When the elliptic curve group is described using additive notation, the elliptic 

curve discrete logarithm problem is defined as follows: 

“Given the points kP and Q in the group, find the value of k such that kP = Q”. 

The problem is considered computationally difficult unless the curve is “weak”. Several 

classes of curves are weak and must be avoided e.g. example, if |E(p)| = p, then the 
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curve is vulnerable to attack [22-23]. It is because of these issues that point-counting on 

elliptic curves is such a hot topic in ECC. 

2.4.8 ECC Domain Parameters 

To use ECC all parties involved in the communication must agree on all the elements 

defining the elliptic curve E i.e., the domain parameters of the scheme. The domain 

parameters for the elliptic curve E(p) are p, A, B, G, n and h. Following is a brief 

description of each: 

 p is a prime such that p > 3. 

 A and B are the parameters defining the elliptic curve equation.  

 G is the called the base point or the generator point. Each curve has a specially 

designated point, G, chosen such that a large fraction of the elliptic curve points 

are multiples of it. We call <G> the cyclic subgroup generated by G. Scalar point 

multiplication can be used for finding the multiples of G. The scalar for point 

multiplication is chosen such that it is a number between 0 and n – 1. 

 n is the order of G, i.e. the smallest non-negative integer n such that nG = O. 

 h is called the cofactor where 
n

E
h

p |)(|
. Since n is the size of the cyclic 

subgroup generated by G, it follows from Lagrange‟s theorem that the order of the 

subgroup must divide the order of the group. So h is an integer. For cryptography 

applications h must be small )4(h . 



Chapter 2 Background 

23 

2.5 Elliptic Curve Diffie-Hellman (ECDH) 

The Elliptic Curve Diffie-Hellman key-agreement protocol is a variant of the 

Diffie-Hellman protocol using elliptic curve cryptography. It allows two parties, each 

having an elliptic curve public-private key pair, to establish a shared secret over an 

insecure communication channel. Suppose Alice wants to establish a secret key with Bob. 

The following interchange between Alice and Bob demonstrates the Elliptic Curve 

Diffie-Hellman key-exchange protocol: 

1. Alice and Bob publicly agree on an elliptic curve E(p) and all the domain 

parameters, i.e., (p, A, B, G, n, h). 

2. Alice and Bob each secretly choose large random integers, a and b, such that 

.,0 nba  

3. Using elliptic curve scalar point multiplication, Alice calculates GA = aG while 

Bob calculates GB = bG on E.  

4. Alice sends GA to Bob and Bob sends GB to Alice. 

5. Alice calculates aGB = abG while Bob calculates bGA = baG. 

6. Both get the same value for the key.  

7. Alice and Bob use some publicly agreed on method to extract a secret key from 

abG. For example, they could use the x-coordinate of this point as the secret key. 

 The ECDH protocol is secure because no one can derive the private key of the other 

unless one can solve the Elliptic Curve Discrete Logarithm Problem. However, the 

protocol does not provide authentication. If authentication is required then protocols such 

as ECMQV can be used. 
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In the next chapter we provide our analysis of the Diffie-Hellman key-exchange protocol 

and then describe the new improved and portable Diffie-Hellman key-exchange protocol 

for use in wireless sensor networks. 
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Chapter 3  

Portable Diffie-Hellman 

In this chapter we first provide our analysis of the Diffie-Hellman key-exchange 

protocol and develop an improved key-exchange protocol for wireless sensor networks 

called Portable Diffie-Hellman (PDH). Afterwards we give a detailed description of the 

PDH protocol. Then we describe and discuss the implementation of a Simplified PDH (S-

PDH) library designed to show the mathematical concepts and the key generation process 

behind the PDH protocol. The last section presents the evaluation of the S-PDH library. 

3.1 Analysis of the Diffie-Hellman Key-Exchange Protocol 

We begin our analysis by looking at the public parameters of the Diffie-Hellman 

key-exchange protocol (i.e., the prime number p and the generator g). To make Diffie-

Hellman secure from the discrete logarithm attack, the following are recommended: 

 p must be more than 300 decimal digits (1024 bits). 

 p must be chosen such that p – 1 has at least one large prime factor of more than 

60 decimal digits. 

 g must be chosen from the group <p*, >. 

 a and b must be more than 100 decimal digits. 

All of the above recommendations mean that the Diffie-Hellman key-exchange protocol 

has an expensive computational cost specifically in computing the public parameters p 

and g. During our investigation of the practical implementations of the Diffie-Hellman 

key-exchange protocol, we encountered that the parties involved in the communication 

publicly agree on the public parameters. Several standard bodies such as the National 
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Institute of Standards and Technology (NIST) calculate these parameters in advance and 

later publish them for use in cryptographic applications. So most of the time the same 

parameters are used over and over again. 

However, using prime numbers on the order of 300 decimal digits is not convenient for 

all practical implementations, due to the fact that embedded systems (such as the wireless 

sensor networks) have low computing power. Finding a generator g for such groups is 

also computationally very expensive. The high energy requirements from computational 

expensive operations have raised serious concerns about the protocol‟s feasibility in 

wireless sensor networks. 

In particular, Diffie-Hellman key-exchange protocol is characterized by high energy 

consumption for calculating cryptographic primitives, but relatively low communication 

energy cost. Therefore, to make the protocol feasible for wireless sensor networks, 

especially Sun SPOTS, we have to reduce the computational costs of the protocol, 

without jeopardizing the security of the protocol.  

The main difficultly in implementing the Diffie-Hellman key-exchange protocol in 

wireless sensor networks is to tie the underlying mathematics behind it with its practical 

use. The implementer must understand the exact mathematical concepts on which the 

protocol is based. That may not often be the case if the implementer is just replying on 

pre-generated public parameters without having a full understanding of the mathematical 

concepts. 

So we reviewed the relationship between the practical implementation and mathematical 

foundations on which the Diffie-Hellman key-exchange protocol was based upon. We 
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also provided a simple practical implementation of the Diffie-Hellman key-exchange 

protocol that shows the basic principles of the protocol. 

Next we look at the mathematical foundations of the public parameters of the Diffie-

Hellman key-exchange protocol. 

3.1.1 Using Prime Order Groups 

The theory discussed here is inspired from the ideas presented in Jonathan Katz‟s and 

Yehuda Lindell‟s book “Introduction to Modern Cryptography” [11]. The theory leads us 

to the development of an improved and Portable Diffie-Hellman key-exchange protocol 

for use in wireless sensor networks. We start our discussion with an important concept 

from group theory: 

“If G is a group of prime order, then G is cyclic. Furthermore all elements of G except the 

identity are generators of G” 

Consider the group (p, +) which contains all integers from 0 to p – 1. The group has 

prime order. All elements except 0 (identity) are generators of the group.  

For cryptographic applications, there is a general preference for using certain cyclic 

groups of prime order. The main reasons behind this are:  

 The discrete logarithm and the Diffie-Hellman problems are believed to be the 

hardest in certain cyclic groups of prime order e.g. (p*, ). Note that the additive 

group of integers modulo p (p, +) is a cyclic group of prime order, however, the 

group is not used for the Diffie-Hellman key-exchange protocol because the 

Diffie-Hellman problem is believed to be easy in this group. That‟s why we only 
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use the multiplicative group of integers modulo p (p*, ) for the Diffie-Hellman 

key-exchange protocol.  

 Finding a generator for a cyclic group of prime order is trivial. 

 In a cyclic group of prime order, testing whether a given element is a generator is 

also trivial. So for a given group G of prime order, we can use as many generators 

as we want. 

Now the group (p*, ) is cyclic. However for p > 3 prime, the group does not have 

prime order. So finding generators for such groups may take longer than groups of prime 

order and as discussed there is a preference of using groups of prime order. Also, the 

Diffie-Hellman problem is simply not hard in groups that do not have prime order. The 

solution to this problem is to work in subgroups of p*.  

3.1.2 Using Subgroups of p* 

As discussed in chapter 2, an element z p* is a quadratic residue modulo p if it is 

congruent to a perfect square modulo p (i.e., if there exists a y p* such that zy2
 mod 

p). It can be proved that the set of quadratic residues modulo p forms a subgroup of p*. 

Moreover, modulo an odd prime number p, half of the elements of p* are quadratic 

residues. Excluding 0 (which is considered as a special case), the order of the subgroup of 

quadratic resides modulo p is (p – 1)/2 = q. We want q to be a prime number. For that we 

first introduce the concept of safe primes. 

A safe prime p is a prime number of the form p = 2q + 1, where q is also a prime. The 

first ten safe primes are 5, 7, 11, 23, 47, 59, 83, 107, 167, 179 & 227. These primes are 

called safe because of their relationship to strong primes. A prime number p is a strong 
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prime if p + 1 and p − 1 both have large prime factors. For the Diffie-Hellman key-

exchange protocol it is desirable to use strong primes. 

Now if p is a strong prime of the form p = 2q + 1 where q is also prime, then the 

subgroup of quadratic residues has exactly (p – 1)/2 = q (prime) elements. Now since the 

order of the subgroup q is a prime, the subgroup is cyclic and furthermore all elements 

(except the identity) are generators. 

From the above discussion a generator g of the cyclic subgroup of quadratic residues can 

easily be found by picking an arbitrary x p* such that x 1 mod p and setting g = x
2
 

mod p. 

In the next section, we describe the Portable Diffie-Hellman (PDH) key-exchange 

protocol for wireless sensor networks. 

3.2 Portable Diffie-Hellman (PDH) Key-Exchange Protocol 

Following is a brief description of the Portable Diffie-Hellman (PDH) protocol:  

 The general idea behind our protocol is to use a file containing a large number of 

safe primes. This file will be downloaded on the wireless sensor nodes using a 

secure link (USB cable) at the time of node deployment or from a secure desktop. 

The file is secret and will not be publicized. This means that the prime number 

used by Alice to generate her public-key will not be sent over the insecure 

communication channel.  
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 Instead, counters will be used at both ends. Initially, at the time of node 

deployment, the counters will be set to a predetermined number. All nodes will 

have the same value for the counter.  

 In order for the communication to happen, Alice will pick a prime using the value 

of the counter from the large safe prime file. Then, she will randomly generate a 

value for the generator g of the group. She will then calculate her public key and 

send it to Bob along with the value of g.  

 On receiving Alice‟s public key and the value of g, Bob will generate his public 

key by picking the same prime (using the value of the counter) and the generator 

g. Bob will then send his public key to Alice. Both parties can now calculate the 

Diffie-Hellman secret key.  

 At the end of the communication, the value of the counter will be incremented so 

that every time a new prime can be used. Alice and Bob will destroy their private 

keys after they have calculated the session key. 

Next we look at the detailed description of the PDH protocol and prove its security in the 

presence of an eavesdropping adversary. 

3.2.1 Detailed PDH 

The design of PDH is based on the following definition of security. A key-exchange 

protocol is secure if the secret key generated by Alice and Bob is completely unknown to 

an eavesdropping adversary. Moreover, an adversary should not be able to generate all 

possible secret keys given the public parameters of the protocol. The secret key will only 
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be used within a private-key encryption scheme. Furthermore, the assumptions of our 

work are:  

 Two wireless sensor nodes execute the protocol in order to establish a secure key. 

We refer to these nodes as Alice and Bob. 

 The deployment of the protocol is over Sun SPOTS which have limited resources. 

As a consequence the base station will not provide authentication of the wireless 

sensor nodes. This assumption is made because protocols which provides 

authentication using digital signature schemes cannot be implemented due to the 

limited resources of the wireless sensor networks. 

 At the time of deployment, each node will have a large file containing safe 

primes. The protocol assumes that the wireless sensor nodes will only be able to 

establish the same secret key using these primes. 

 The protocol assumes that the wireless sensor network is protected against node 

capture and node cloning attacks. Effective detection mechanisms as discussed in 

[7-8] are available. Node capturing requires absence of a node from the network 

for a substantial amount of time (minimum five minutes). The protocol assumes 

that mechanisms for revocation of a node (which was absent for too long from the 

network) by its neighbors is present in the wireless sensor network [7]. 

Furthermore, in order to detect clone attackers in real-time, fingerprint 

verification schemes are present locally (via neighboring nodes) or globally (via 

the base station) [8].  

We now present the details of the Portable Diffie-Hellman (PDH) key-exchange protocol 

for wireless sensor networks. 
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3.2.2 The PDH Protocol with Safe Primes 

The main goal of a key-exchange protocol is to establish a secure key between the two 

communicating parties. The secret key is also called a session key as it is only used for a 

particular session. The session key is used to encrypt data using a private-key encryption 

scheme. As already mentioned, we assume that there is no central authority available that 

can provide authentication of public keys. So in PDH, a session key will only be created 

when a wireless sensor node wants to send data to another node. This means that if Alice 

wants to send secret data to Bob, she will start the key-exchange protocol and vice versa. 

Also if Alice and Bob want to send secret data to each other simultaneously, they will 

generate two different session keys. To send secret data, Alice will use the session key 

created when she initiated the key-exchange protocol while Bob will use the session key 

created when he initiated the key-exchange protocol. 

The main purpose for having a secret large file containing safe primes is to randomize the 

process of key exchange as much as possible. This will also help in reducing the 

computational costs of the Diffie-Hellman key-exchange protocol. 

The prime used by Alice to generate her public-key will not be sent over the insecure 

communication channel. The question is then, how does Bob know which prime number 

Alice has used? Each node is the wireless sensor network will have two counters set to a 

predestined value. These counters will allow nodes to determine which safe prime to use. 

The integrity of the protocol depends on keeping these counters secure.  

Initially all the nodes will have the same value of the counters. The first counter is called 

the initiate counter (IC). This counter will be used by the wireless sensor node who wants 
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to initiate the key-exchange protocol. The second counter is called the receive counter 

(RC). This counter will be used by the wireless sensor node who will receive the first 

message in the key-exchange protocol. In other words, this means that if Alice wants to 

send secret data to Bob she will use the value of IC while Bob will use the value of RC to 

figure out which safe prime to use.  

Figure 3.1 shows the working of counters. Each node in the wireless sensor network 

maintains a table called Node Registration and Counters (NRC). There table has three 

columns i.e., Node ID, IC and RC. Initially IC and RC counters are set to a 

predetermined value, for example, 1000. If Alice initiates a key exchange with Bob, she 

will first have to register Bob. After the registration, both counters are automatically set 

to 1000. This means that Alice will use the first prime in the safe prime file. Similarly, 

when Bob receives the first key exchange message, he will first have to register Alice. 

The counters are set to 1000 which allows Bob to figure out which safe prime Alice has 

used. After the key exchange has occurred, Alice will increment her IC while Bob will 

increment his RC. The main reason for using two counters is to avoid problems of 

asynchronous communications. Figure 3.1 shows that Alice has initiated the key-

exchange protocol four times while Bob has initiated the key-exchange protocol two 

times.  

Now let us suppose that a third wireless sensor node, Carol wants to communicate with 

Alice. As Alice is a new node with which Carol wants to communicate, she will first 

register Alice. When Alice receives the first message, she will add a new entry for Carol 

in the node registration table. After the key exchange, Carol will increment her IC while 



Chapter 3 Portable Diffie-Hellman 

34 

Alice will increment her RC. Note that the counters will only be incremented when a key 

exchange has completely occurred and acknowledgements have been received. 

Node ID IC RC

Bob 1004 1002

Alive

Node ID IC RC

Alice 1001 1000

Carol

Node ID IC RC

Alice 1002 1004

Bob

Carol 1000 1001

 

Figure 3.1: Node Registration and Counters (NRC) Table 

The description of the PDH assumes that Alice will initiate the protocol. So Alice 

generates the parameters (p, G, q, g). Following is a brief description about the 

parameters: 

 p is a safe prime of the form p = 2q + 1, where q is also prime. 

 G is the cyclic group p*. 

 q is order of the subgroup of quadratic residues i.e. q = (p – 1)/2. 

 g is the generator of the subgroup of quadratic residues. g is found by picking an 

arbitrary x p* such that x 1 mod p and setting g = x
2
 mod p. 

Figure 3.2 shows the process of key exchange between Alice and Bob. The steps 

illustrated in Figure 3.2 are described below: 
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1. Alice picks a safe prime p from the “Safe Prime File” using the current value of 

IC. She then generates the parameters (G, q, g). 

2. Alice chooses a large random number a q and calculates RA = g
a
 mod p. 

3. Alice sends (g, RA) to Bob. 

4. On receiving (g, RA), Bob picks the same safe prime p (as Alice) from the “Safe 

Prime File” using the current value of RC. He then generates (G, q). 

5. Bob chooses a large random number b q and calculates RB = g
b
 mod p. 

6. Bob sends RB to Alice and calculates K = (RA)
b

 mod p. 

7. Alice receives RB and calculates K = (RB)
a

 mod p. 

8. Alice increments IC by one while Bob increments RC by one when 

acknowledgement from Alice is received. 

9. Both parties have the same value for the key that is: 

K = (g
a
 mod p)

b
 mod p = (g

b
 mod p)

a
 mod p = g

ab
 mod p 

K = g
ab

 mod p is called the Potable Diffie-Hellman secret key. 
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Figure 3.2: PDH Protocol Steps 
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3.2.3 Security Analysis of the PDH Protocol 

The following discussion provides important security issues of the PDH protocol: 

 A first look at PDH clearly indicates that it is not vulnerable to the discrete 

logarithm and the man-in-the-middle attacks because the value of p is not public.  

 An eavesdropper cannot inject false messages into the network unless he knows 

the exact prime Alice and Bob are using. So the whole security of PDH relies on 

keeping the safe prime file and the counters secret. If extra security is required, 

then the safe prime file can be encrypted. The file can also be changed (if 

possible) using a secure link over a period of time. 

 The PDH does not provide complete authentication of wireless sensor nodes. The 

only authentication provided is that parties involved in the communication have 

assurance that the secret key can only be computed using the safe prime file. So if 

an attacker tries to establish his own key with Alice, they both will end up with 

different session keys. Also, if an attacker tries to establish his own key with 

Alice, she will not be sending any secure data to the attacker because the PDH 

requires the initiator of the key exchange to send the encrypted data. The receiver 

in the key exchange will only use the session key for decryption of the secret data. 

If the decrypted data doesn‟t make any sense, then Alice can identify the node as 

an intruder and reject any other messages coming from him.  

 There is still a possibility of the Denial of Service (DoS) attack from which the 

wireless sensor network should be protected against. In [24], Wood and Stankovic 

provide effective techniques that can be adopted. 
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 One of the main aspects of PDH is to add as much randomness as possible into 

the Diffie-Hellman key-exchange protocol. That is why the generator g is always 

selected at random. This adds to the security of the PDH because every time a 

different p and g is used. An eavesdropper will not be able to figure out which 

group Alice and Bob are working in. 

 Another, important aspect in the security of PDH is how PDH can compute 

faster? As p is private, an eavesdropper cannot determine the value of p, thus 

making the discrete logarithm and the Diffie-Hellman problems even more had. 

Now an attacker must find the value of p before launching the discrete logarithm 

attack. Therefore, we can significantly reduce the size of p from 1024 bits. This 

will allow us to do faster computations in wireless sensor nodes. We believe that 

this is the only method by which public-key algorithms such as the Diffie-

Hellman key-exchange protocol can actually be implemented on devices having 

low computing power. In order to make public key-exchange protocols faster, we 

have to hide certain public parameters so that they are not known to an adversary 

in advance. 

3.3 Implementation of the PDH Protocol 

We provide an easy-to-use implementation of the concepts behind the PDH 

protocol. The implementation is done in Java so that it can be used on all platforms. We 

call the library Simplified PDH (S-PDH). S-PDH is an educational tool designed to help 

students learn the mathematical concepts and secret key generation of the PDH protocol 

with smaller safe primes (9 decimal digits). The implementation should only be used for 

educational purposes as the source code provided does not include the communication 
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over the wireless sensor network. So no counters are used because our primary focus was 

to show the mathematical concepts and generation of secret keys. It is much easier to test 

the source code if implemented stand alone. Furthermore, the results will not vary our 

implementation if a layer of the communication library is added. 

The implementation is done keeping in mind the current Java class library‟s available for 

Sun SPOTS. The “BigInteger” class used to generate large numbers is not supported by 

Sun SPOTS, so that is why the implementation only generates keys of 9 decimal digits. 

In the next section we take a look at the implementation of S-PDH. 

3.3.1 Simplified PDH (S-PDH) Java Library 

Simplified-PDH (S-PDH) is as easy-to-use library developed in Java for use with Sun 

SPOTS. Figure 3.3 shows the classes of the S-PDH library: 

S-PDH

SPDHTest

ExecutionTimer

SPDH

 

Figure 3.3: S-PDH Class Library 

The S-PDH library has three main classes. 

1. SPDH Class 

The SPDH class provides the functionality of the PDH key-exchange protocol. A brief 

explanation of some of the important class methods is given below: 
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 SPDH initializes a newly created object to the default values. It also creates an 

array called primesArray containing all safe primes by calling the 

getPrimesFromFile method. 

 getPrimesFromFile method reads all primes from the text file “safe_primes.txt” 

and puts them in the primesArray. The file contains 100,000 safe primes. 

 getRandomPrime method returns a random safe prime from the primesArray. 

 getOrderOfSubgroup method returns the order of the cyclic subgroup of quadratic 

residues modulo p. 

 getRandomGenerator method returns a random generator for the cyclic subgroup 

of quadratic residues modulo p. It picks and arbitrary x p* such that x 1 

mod p and returns g = x
2
 mod p. 

 getPrivateKey method returns a random integer less than the order of the cyclic 

subgroup of quadratic residues modulo p. 

 getPublicKey method returns the public key i.e., the value g
privateKey

 mod p. 

 getPDHSecretKey method returns the secret PDH key. The function works by 

getting a random prime, calculating the order of the subgroup, generating a 

random generator, computing private and public keys of Alice and Bob and then 

finally calculating the PDH secret key. 

 power method returns the value of b
e
 mod p by reducing modulo p repeatedly 

throughout the process of computing the result. However, the function is really 

slow and should not be used for big integer values. 

 fast_exponentiation method returns the value of b
e
 mod p by using the square 

and multiply algorithm. The algorithm drastically reduces both the number of 
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operations and the memory required to perform modular exponentiation. In [25], 

Vasyltsov et al. investigated the performance of modern exponentiation 

algorithms. Figure 3.4 shows the square and multiply algorithm. 

 Input: integer base b, integer exponent e, prime p 

Output: b
e
 mod p 

//convert the exponent e to binary and store the bits in an array x 

x[1, n]  convert_to_binary(e)                      //n is the number of bits in x 

result  1; 

for (i  n down to 1) {                         //the bits are read from right to left 

if (i
th

 bit of x = 1) result  (result  b) mod p 

else garbageVariable  (result  b) mod p              //to avoid timing attacks 

b  b
2
 mod p 

} 

return result 
 

Figure 3.4: Square and Multiply Algorithm 

2. ExecutionTimer Class 

The ExecutionTimer is a utility class used to calculate the time taken to generate different 

secret keys. 

3. SPDHTest Class 

The SPDHTest class has a main function that can be used to test the S-PDH. It also 

calculates the time taken to generate secret keys by using the ExecutionTimer class. 
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The steps to test the SPDH class are:  

1. Create an object of SPDH class. 

2. Use the method getPDHSecretKey to compute the secret key between Alice and 

Bob. The method returns the secret PDH key.  

3. To display the protocol parameters use the methods getPrime, getGenerator, 

getOrderOfSubgroup, getPrivateKeyAlice, getPrivateKeyBob, getPublicKeyAlice, 

getPublicKeyBob. The methods return the corresponding field value. 

4. To calculate the execution time of the protocol, create an object of the 

ExecutionTimer class and use the start and end methods. This is an optional step 

that can be added to calculate generation of multiple keys. A loop can be used if 

multiple key generation is required. 

3.4 Evaluation of S-PDH 

In this section we present the results and analysis of the results obtained from the 

evaluation of the S-PDH tool. 

3.4.1 Empirical Results 

1. The Simplified PDH (S-PDH) tool uses safe primes up to 9 decimal digits. 

Therefore, the S-PDH can only produce keys up to 9 decimal digits. 

2. Table 3.1 shows the average execution time for different number of keys 

generated using S-PDH. The tests were conducted using a Compaq laptop having 

a Intel(R) Core(TM)2 CPU T5600 @ 183 GHz processor and 1.50 GB of RAM.  



Chapter 3 Portable Diffie-Hellman 

43 

Table 3.1: Execution Time for different number of Keys (Sample Size 50) 

No. of Keys Time (nanoseconds) Time (seconds) 

10,000 216,313,805 0.21 

100,000 2,066,806,536 2.06 

1,000,000 20,412,772,573 20.41 

 

3. The histogram in Figure 3.5 shows the distribution of keys generated when the 

parameters (safe prime p and generator g) are fixed and the private keys of Alice 

and Bob (a and b respectively) are selected randomly. The histogram is 

symmetric indicating that all keys are evenly distributed. The test was run for 

10,000, 100,000 and 1,000,000 keys. However, the distribution of keys remains 

the same. So we only present the histogram for 1,000,000 keys. 
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Figure 3.5: Histogram of 1,000,000 Keys with Fixed (p, g) & Random (a, b) 

4. The histogram is Figure 3.6 shows the distribution of keys generated when the 

parameters (p, g, a, b) are selected randomly. The histogram is slightly skewed to 

the right. Again as in Figure 3.5, the distribution of keys remains the same for a 
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run for 10,000, 100,000 and 1,000,000 keys. So we only present the histogram for 

1,000,000 keys. 
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Figure 3.6: Histogram of 1,000,000 Keys with Random (p, g, a, b) 

5. Table 3.2 shows the difference between the average number of keys duplicated 

when the parameters (p and g) were fixed and when the parameters (p and g) were 

selected randomly. The private keys (a and b) are random in both cases. The 

sample size for the experiment was 50. 

Table 3.2: Average Number of Keys Duplicated (Sample Size 50) 

No. of Keys 
Fixed p, g Random p, g 

2 times 3 times 2 times 3 times 

10,000 0.04 (1/25) 0 0 0 

100,000 10 0 5 0 

1,000,000 1000 1 550 0.2 (1/5) 
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3.4.2 Analysis of Empirical Results 

S-PDH can be used as an educational tool to teach students about the mathematical 

concepts of the Diffie-Hellman and the Portable Diffie-Hellman key-exchange protocols. 

The above results show interesting properties of how the different parameters effect the 

generation of keys.  

1. Table 3.1 shows that the S-PDH can generate keys very quickly. Thus, the 

implementation can be extended easily to bigger prime numbers. 

2. The histogram shown in Figure 3.5 is symmetric. This histogram shows that when 

the value of the safe prime p and the generator g were fixed to 999999503 and 

913137792 respectively, the keys were evenly distributed. This means the keys 

cannot be predicated because all keys are probably.  

3. In contrast the histogram shown in Figure 3.6 is slightly skewed to the right. The 

main reason for this is that p is selected randomly from a given range of safe 

primes (526671599 - 999999503). The keys are still fairly evenly distributed 

indicating that an adversary will not be able to predict the value of the key. 

4. Table 3.2 shows that the number of duplicate keys when p and g were fixed is 

almost twice compared to when they were selected randomly. This shows that 

randomizing p and g decreases the number of duplicate keys. Duplicate keys can 

be a problem if we are using smaller primes. So it is better to select a different 

prime every time. However, the duplications will get fewer as the size of the 

primes increase. 

In general because of the results obtained from S-PDH, we can state that the PDH 

protocol can generate secure and fast keys using the Diffie-Hellman key-exchange 
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protocol. Thus, the PDH protocol gives us a new direction in which public key-exchange 

protocols can be implemented in wireless sensor networks. The S-PDH results are 

promising; however, its use may be limited by the size of the safe primes used. In the 

next chapter, we present an initial study and implementation of the PDH protocol using 

elliptic curves. 
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Chapter 4  

Portable Diffie-Hellman using Elliptic Curve Cryptography 

In this chapter we first explain the Portable Diffie-Hellman (PDH) protocol using 

elliptic curves (PDH-EC). Afterwards, we discuss the implementation of a Simplified 

PDH-EC (S-PDH-EC) library designed to show the mathematical concepts and the key 

generation process behind the PDH-EC protocol. The library is in its initial stage of 

development. However, it can be used for educational purposes especially for teaching 

students the mathematics of elliptic curve cryptography. 

4.1 The PDH-EC Protocol using Safe Primes 

The PDH-EC protocol is a variant of the Portable Diffie-Hellman (PDH) protocol 

presented in Chapter 3. Again we consider a setting in which two wireless sensor nodes 

execute the protocol in order to generate a shared secret key. For the PDH protocol we 

considered a file containing a large number of safe primes. In contrast, the PDH-EC 

protocol uses a secret file containing a large number of elliptic curve domain parameters. 

These elliptic curves are randomly generated using safe primes. We refer to this file as 

“EC Secret Parameters File”. The file contains the following parameters of E(p): 

 The safe prime p 7 of the form p = 2q + 1, where q is also prime. 

 The parameters A and B defining the elliptic curve equation 

. mod 32 pBAxxy  

 The order of the elliptic curve |E(p)| i.e., the number of points on the elliptic 

curve including the point at infinity. For the protocol we consider that the order of 

all elliptic curves must be a prime number. 
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The rest of the setting remains the same as the PDH protocol. Following is a brief 

description about the main aspects of the protocol:  

 The initiate counter (IC) and receive counter (RC) are used by both nodes 

involved in the communication.  

 In order for the communication to happen, Alice will pick an elliptic curve from 

the EC Secret Parameters File using the current value of IC. Then, she will 

randomly generate the base point G on the elliptic curve. Since, the order of 

elliptic curve is prime, every point except the point at infinity is a generator. She 

will then calculate her public key and send it to Bob along with the base point G. 

 On receiving Alice‟s public key and the base point G, Bob will generate his 

public key by picking the same elliptic curve (as Alice) using the current value of 

the RC and the generator G. Bob will then send his public key to Alice. Both 

parties can now calculate the Diffie-Hellman secret key. They can use either the x 

or y coordinate of the key for the communication. In our setting, we assume that 

both parties will use the y-coordinate as their secret key. 

 At the end of the communication, the value of the IC and RC will be incremented 

so that the every time a new elliptic curve can be used. Alice and Bob will destroy 

their private keys after they have calculated the session key. Note that the 

counters will only be incremented when a key exchange has completely occurred 

and acknowledgements have been received. The complete working of counters IC 

and RC is explained in Chapter 3. 

The description of the PDH-EC, assumes that Alice will initiate the protocol. So Alice 

generates the elliptic curve domain parameters (p, A, B, G, n and h). p, A and B are picked 
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from the EC Secret Parameters File. The order n of the generator G is equal to the order 

of the elliptic curve i.e. n = |E(p)|. The cofactor h = |E(p)| / n, since n = |E(p)|, h is 

always equal to 1.  

Figure 4.1 shows the process of key exchange between Alice and Bob. The steps 

illustrated in Figure 4.1 are described below: 

1. Alice generates an elliptic curve E(p) from the “EC Secret Parameters File” 

using the current value of IC. She then generates the base point G. 

2. Alice chooses a large random number a such that .0 na  Using elliptic curve 

scalar point multiplication, Alice calculates GA = aG on E. 

3. Alice sends (G, GA) to Bob. 

4. On receiving (G, GA), Bob generates the same elliptic curve E(p) (as Alice) from 

the “EC Secret Parameters File” using the current value of RC.  

5. Bob chooses a large random number b such that .0 nb  Using elliptic curve 

scalar point multiplication, Bob calculates GB = bG on E.  

6. Bob sends GB to Alice and calculates K = bGA. 

7. Alice receives GB and calculates K = aGB. 

8. Alice increments IC while Bob increments RC by one when acknowledgement 

from Alice is received. 

9. Both get the same point K for the key i.e. 

K = aGB = bGA = abG. 

10. Alice and Bob use the y-coordinate of the point K as their secret key. 
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Figure 4.1: PDH-EC Protocol Steps 
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4.2 Implementation of the PDH-EC Protocol 

We provide an easy-to-use implementation of the concepts behind the PDH-EC 

protocol. The implementation as in S-PDH is in Java so that it can be used on all 

platforms. We call the library Simplified PDH-EC (S-PDH-EC). S-PDH-EC is an 

educational tool designed to help students learn the mathematical concepts of elliptic 

curve cryptography (ECC) and the key generation process of the PDH-EC protocol. The 

library uses smaller safe primes (up to 7 decimal digits). The library is still under 

development. So it only uses basic algorithms for scalar multiplication and computing the 

order of an elliptic curve. Figure 4.2 shows the classes of the S-PDH-EC library. The S-

PDH-EC library has seven main classes which are described in the following sections. 

S-PDH-EC

SPDHECTest

ExecutionTimer

SPDHEC ECC

ECPoint

ModularArithmetic

ExtentedEuclidean

Algorithm

 

Figure 4.2: S-PDH-EC Class Library 

4.2.1 ExtendedEculideanAlgorithm Class 

The class implements the extended Euclidean algorithm. The algorithm calculates the 

greatest common divisor (GCD) of two integers a and b. It also finds integers S and T 

such that aS + bT = gcd(a, b).  

The extended Euclidean algorithm is particularly useful for calculating modular 

multiplicative inverses in p, since each member of p (except 0) has a multiplicative 
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inverse. This means that given an integer a p such that 0a , the gcd(a, p) = 1 and the 

multiplicative inverse of a is the value of S after being mapped to p. 

4.2.2 ModularArithmetic Class 

The class provides the basic functionality for modular arithmetic. Some of the important 

class methods are given below: 

 Mod method returns the value of a mod p. 

 fast_exponentiation method returns the value of b
e
 mod p by using the square and 

multiply algorithm (Figure 3.4). 

 MultiplicativeInverse method returns the modular multiplicative inverse of an 

integer in p. Figure 4.3 shows the algorithm for computing modular 

multiplicative inverses. 

 Input: Modulas n; element a n 

Output: [a
–1

 mod n] (if it exists) 

 (d, S, T)  ExtendedEuclideanAlgorithm.getGCD(a, n)     //note that aS + nT = GCD(a, n) 

if ( 1d ) return “a is not invertible modulo n” 

else return [S mod n] 

 

Figure 4.3: Algorithm for computing Modular Multiplicative Inverse 

 isQuadraticResidue method returns true if an integer x is a quadratic residue 

modulo p in p*. In the equation zy2
 mod p, z is called a quadratic residue (QR) 

if the equation has two solutions; z is called a quadratic non-residue (QNR) if the 

equation has no solutions. Figure 4.4 shows the algorithm for deciding quadratic 

residuosity modulo a prime. 
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 Input: A prime p; element x p* 

Output: Whether x is a quadratic residue or quadratic non-residue 

 b  fast_exponentiation(x, (p – 1)/2, p) 

if (b = 1) return “Quadratic Residue” 

else return “Quadratic Non-Residue” 

 

Figure 4.4: Algorithm for deciding Quadratic Residuosity modulo a prime 

 ModularSquareRoot method returns the square root modulo a safe prime of the 

form 4mod3p . Figure 4.6 shows the algorithm for computing squaring roots 

modulo a safe prime greater than 5. 

 Input: A safe prime p of the form 3p  mod p; quadratic residue a p* 

Output: A square root of a i.e. pax

p

mod4

1

 

x  fast_exponentiation(a, (p + 1)/4, p) 

return x 
 

Figure 4.6: Algorithm for computing Square Roots modulo a safe prime 

4.2.3 ECPoint Class 

The class is used to represent a point (x, y) on the elliptic curve. 

4.2.4 ECC Class 

ECC is the main class that provides the functionality required for elliptic curve 

cryptography. Some of the important class methods are given below: 

 ECC initiates a newly created object. The ECC class has three constructors i.e. 

1. If the constructor is called without any arguments, then it initiates a newly 

created object to the default field values.  
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2. If the constructor is called by passing the elliptic curve parameters A, B and 

safePrime, then it constructs a new ECC object so that it represents the 

specified elliptic curve parameters. However, if the elliptic curve is singular or 

the order of elliptic curve is not prime, then the constructor prints an error 

message and returns without initiating the field values. 

3.  If the constructor is called by passing the elliptic curve parameters A, B, 

safePrime and primeOrder, then it constructs a new ECC object so that it 

represents an elliptic curve of prime order.  

 generateRandomEC method generates a random elliptic curve of prime order. The 

function takes a lot of time to generate a curve. So it should only be used to 

generate new elliptic curves. 

 isECNonSingular method returns true if the elliptic curve is non-singular. Figure 

4.7 shows the algorithm for deciding non-singularity of an elliptic curve. 

 
Input: A safe prime p  7; an elliptic curve pBAxxy  mod 32   

Output: Whether an elliptic curve is singular or non-singular 

result  [4A
3
 + 27B

2
 mod p] 

if (result = 0) return “Singular” 

else return “Non-Singular” 
 

Figure 4.7: Algorithm for deciding Non-Singularity of an Elliptic Curve 

 IsEqual method returns true if two points on the elliptic curve have the same x 

and y coordinates i.e. x1 = x2 and y1 = y2. 

 IsAdditiveInverse method returns true if two points on the elliptic curve are 

additive inverses of each other i.e. x1 = x2 and y1 = –y2. 
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 ECPointAddition method returns the result of adding two points on the elliptic 

curve. Figure 4.8 shows the algorithm for point addition. 

 Input: A safe prime p  7; two points P1 = (x1, y1) and P2 = (x2, y2) on the elliptic curve 

pBAxxy  mod 32  with P1, P2 O (point at infinity) 

Output: P1 + P2 = P3 = (x3, y3) 

if ( 2121  & yyxx ) return [P1 + P2 = O]                //additive inverse i.e. P1 = –P2 

if (P1 = P2 & y2 = 0) return [P1 + P2 = 2P1 = O]                        //point doubling 

if (P1 = P2 & y2  0) {             //point doubling 

 m  ] mod )3[( 2
1 pAx   [MultiplicativeInverse(2 y1, p) mod p] mod p 

 x3  [m
2
 – 2x1 mod p] 

y3  ] mod )([ 131 pyxxm  

 return [P3 = (x3, y3)] 

} 

if (x1  x2) {               //point addition 

 m  ] mod )[( 12 pyy   [MultiplicativeInverse 12( xx , p) mod p] mod p 

 x3  ] mod [ 21
2 pxxm  

y3  ] mod )([ 131 pyxxm  

 return [P3 = (x3, y3)] 

} 

 

Figure 4.8: Point Addition Algorithm 

 ECPointDoubling method returns the result of doubling a point on an elliptic 

curve. Figure 4.9 shows the algorithm for point doubling. 
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Input: A safe prime p  7; a point P = (x1, y1) on the elliptic curve pBAxxy  mod 32  

with P O (point at infinity) 

Output: P + P = P3 = (x3, y3) 

if (y2 = 0) return [P + P = 2P = O] 

else { 

 m  ] mod )3[( 2
1 pAx   [MultiplicativeInverse(2 y1, p) mod p] mod p 

 x3  [m
2
 – 2x1 mod p] 

y3  ] mod )([ 131 pyxxm  

 return [P3 = (x3, y3)] 

} 
 

Figure 4.9: Point Doubling Algorithm 

 ECDoubleAndAdd method returns the result of multiplying a point on the elliptic 

curve with a scalar. Figure 4.10 shows the double and add algorithm for scalar 

multiplication. 

 
Input: A safe prime p  7; a point P = (x1, y1) on the elliptic curve pBAxxy  mod 32  

with P O (point at infinity); a scalar a 

Output: Q = aP 

//convert the scalar a to binary and store the bits in an array x 

x[1, n]  convert_to_binary(a)                      //n is the number of bits in x 

Q  P 

for (i  2 to n) { 

 Q  PointDoubling(Q) 

if (i
th

 bit of x = 1) Q  PointAddition(Q, P) 

} 

return Q 

 

Figure 4.10: Double and Add Algorithm 
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 GenerateAllECPoints method generates all points on the elliptic curve and prints 

them on the screen. Figure 4.11 shows the algorithm for generating all points on 

the elliptic curve. 

 
Input: A safe prime p  7; an elliptic curve pBAxxy  mod 32  

Output: Print all points on the elliptic curve  

P = (x1, y1), Q = (x2, y2) 

x  0 

while (x < p) { 

w  ] mod [ 3 pBAxx  

if (w = 0) { 

print “P = (x, 0)” 

x  x + 1 

continue 

 } 

if (isQuadraticResidue(w, p)) { 

sqrt  ModularSquareRoot(w, p) 

  x1  x 

y1  sqrt 

x2  x 

y2 [–1  sqrt + p] 

print “P = (x1, y1) & Q = (x2, y2)” 

x  x + 1 

} 

} 

 

Figure 4.11: Algorithm for finding all points on the Elliptic Curve 
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 GenerateRandomECPoint method returns a random point on the elliptic curve. 

The function can be used to get a generator of the elliptic curve. Figure 4.12 

shows the algorithm for finding a random point on an elliptic curve. 

 
Input: A safe prime 7p ; an elliptic curve pBAxxy  mod 32  

Output: a random point P = (x1, y1) on the elliptic curve 

while (true) { 

 x  Random(0, p)              //randomly pick an integer x such that px0  

w  ] mod [ 3 pBAxx  

if (w = 0) { 

  x1  x 

y1  w 

break 

 } 

if (isQuadraticResidue(w, p)) { 

sqrt  ModularSquareRoot(w, p) 

  x1  x 

r  Random(0, 2)           //randomly pick an integer r such that 20 r  

if (r = 0) y1  sqrt 

else y1 [–1  sqrt + p] 

break 

} 

} 

return [P = (x1, y1)] 
 

Figure 4.12: Algorithm for finding a Random Point on the Elliptic Curve 

 isPrime method returns true if the given number is prime. 
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 getECOrder method returns the total number of points on an elliptic curve 

including the point at infinity. Figure 4.13 shows the algorithm for computing the 

order of an elliptic curve. The algorithm takes a lot of time and should only be 

used with smaller safe primes. Otherwise, it would be impossible to find the order 

of the elliptic curve. 

 
Input: A safe prime p  7; an elliptic curve pBAxxy  mod 32   

Output: number of points on the elliptic curve including the point at infinity  

ecOrder  p + 1 

x  0 

while (x < p) { 

 w  ] mod [ 3 pBAxx  

 if (w = 0) { 

  ecOrder  ecOrder + 0 

x  x + 1 

continue 

 } 

if (isQuadraticResidue(w, p)) ecOrder  ecOrder + 1 

 else ecOrder  ecOrder – 1 

 x  x + 1 

} 

return ecOrder 

 

Figure 4.13: Algorithm for computing Order of an Elliptic Curve 

 getECOrderOfElement method returns the order of an element. For elliptic curves 

having prime order, the order of an element is always equal to the order of the 

elliptic curve. 
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4.2.5 SPDHEC Class 

The SPDHEC class provides the functionality of the PDH-EC protocol. A brief 

explanation of some of the important class methods is given below: 

 SPDHEC initializes a newly created object to the default values. It also creates an 

array called ecParameterArray containing parameters for all elliptic curves by 

calling the getECFromFile method. 

 getECFromFile method reads parameters for all elliptic curves from the text file 

“ec_parameters.txt” and puts them in the ecParameterArray. The file contains 

parameters for 10 elliptic curves. 

 getRandomEC method randomly selects an elliptic curve from the 

ecParameterArray. 

 getRandomGenerator method returns a random generator G for the elliptic curve 

by calling the generateRandomECPoint method of the ECC class. 

 getPrivateKey method returns a random integer less than the order of the elliptic 

curve. 

 getPublicKey method returns the public key for Alice and Bob. 

 getPDHECSecretKey method returns the secret PDH-EC key. The function works 

by picking a random elliptic curve, generating a random generator for the elliptic 

curve, computing the private and public keys of Alice and Bob and then finally 

calculating the PDH-EC secret key. 

4.2.6 ExecutionTimer Class 

The ExecutionTimer is a utility class used to calculate the time taken to generate different 

secret keys. 
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4.2.7 SPDHECTest Class 

The SPDHECTest class has a main method that can be used to test the S-PDH-EC. It also 

calculates the time taken to generate secret keys by using the ExecutionTimer class. 

The steps to test the SPDHEC class are:  

1. Create an object of SPDHEC class. 

2. Use the method getPDHECSecretKey to compute the secret key between Alice 

and Bob. The method returns the secret PDH-EC key.  

3. To display the protocol parameters use the methods getA, getB, getPrime, 

getGenerator, getPrivateKeyAlice, getPrivateKeyBob, getPublicKeyAlice, 

getPublicKeyBob. The methods return the corresponding field value. 

4. To calculate the execution time of the protocol, create an object of the 

ExecutionTimer class and use the start and end methods. This is an optional step 

that can be added to calculate generation of multiple keys. A loop can be used if 

multiple key generation is required. 

4.3 Evaluation & Analysis of Empirical Results of S-PDH-EC 

In this section we present the results obtained from the evaluation of the S-PDH-EC tool. 

1. The Simplified PDH-EC (S-PDH-EC) tool uses safe primes up to 7 decimal 

digits. Therefore, the S-PDH can only produce keys up to 7 decimal digits. 

2. Table 4.1 shows the elliptic curves on which the S-PDH-EC protocol was tested. 

These are experimental curves of prime order generated to test the performance of 

the S-PDH-EC. These curves can also be used for educational purposes. 
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Table 4.1: Experimental Elliptic Curves of Prime Order 

No. Elliptic Curves E(p) Prime Order 

1 1432 xxy  mod 7 5 

2 1832 xxy  mod 11 17 

3 432 xxy  mod 23 29 

4 481332 xxy  mod 47 53 

5 286632 xxy  mod 83 97 

6 90928994027932 xxy  mod 38603 38449 

7 391232 xxy  mod 811379 812101 

8 24100139031032 xxy  mod 280703 281423 

9 26183678325632 xxy  mod 1173539 1171463 

10 22113983010032 xxy  mod 3318167 3320477 

11 76844268173232 xxy  mod 5394539 5397697 

12 30625832 xxy  mod 5847239 5845403 

13 26362043377832 xxy  mod 6348383 6348977 

14 8830619133005332 xxy  mod 8793839 8795089 

15 2491395495954932 xxy  mod 9999047 10000721 

 

 

3. Table 4.2 shows the average execution time for different number of keys 

generated using curve number 15 in Table 4.1. The tests were conducted using a 

Compaq laptop having a Intel(R) Core(TM)2 CPU T5600 @ 183 GHz processor 

and 1.50 GB of RAM.  
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Table 4.2: Execution Time for different number of Keys (Sample Size 10) 

No. of Keys Time (nanoseconds) Time (seconds) 

10,000 2,473,430,841 2.47 

100,000 24,628,840,816 24.62 

1,000,000 245,552,982,013 245.55 

 

The execution time for S-PDH-EC is 10 times slower than the S-PDH protocol. The main 

reason for this is that S-PDH-EC is in its initial development stage. So we have 

implemented the basic algorithms especially for point counting. Further enhancements in 

the algorithms will significantly increase the computation cost of the S-PDH-EC tool. 

In the next chapter we present the summary of our research and conclusions. We also 

discuss the future work planned for the S-PDH and S-PDH-EC protocols.
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Chapter 5  

Conclusions and Future Work 

5.1 Summary 

This thesis investigated the mathematical foundations of the Diffie-Hellman key-

exchange protocol and the elliptic curve cryptography for the purpose of understanding 

the practical problems of implementing the theoretical concepts in wireless sensor 

networks. The main results are as follows: 

1. Designed a new improved protocol for establishing secure keys in wireless sensor 

networks called the Portable Diffie-Hellman (PDH). The protocol is not 

vulnerable to the discrete logarithm and the man-in-the-middle attacks.  

2. Developed a portable implementation of the PDH protocol called Simplified PDH 

(S-PDH) in Java. The evaluation of the protocol showed that S-PDH has an even 

distribution of keys so that an adversary cannot predict the value of keys. 

Furthermore, there were no duplicates for 10,000 keys.  

3. Designed a variant of the PDH protocol called the Portable Diffie-Hellman using 

Elliptic Curves (PDH-EC). 

4. Developed a portable implementation of the PDH-EC protocol called Simplified 

PDH-EC (S-PDH-EC) in Java. The performance evaluation of the key generation 

computation of PDH-EC compared to S-PDH is 10 times slower. So further 

enhancements in the algorithms are required. 

5. S-PDH and S-PDH-EC are also educational tools designed to help students 

understand and experiment how the mathematical properties of the public and 

private parameters affect the key generation process in the Diffie-Hellman key-
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exchange protocol and elliptic curve cryptography. Furthermore, the tools can be 

used to understand how to implement the theoretical aspects of the Diffie-

Hellman key-exchange protocol. The tools can also be used to understand the 

secret key generation process of the PDH and the PDH-EC protocols. 

In general the PDH protocol introduces a new concept in which public key-exchange 

protocols can be used in wireless sensor networks. The idea of implementing public-key 

algorithms by hiding particular public parameters (such as the prime number) is probably 

the only way in which public-key encryption can be used in today‟s wireless sensor 

networks. The PDH protocol shows that: 

 The randomization of the public parameters gives a new method of establishing 

secure keys in wireless sensor networks. S-PDH was used to test the 

randomization and the results show that the ideas presented in the PDH protocol 

can actually be implemented for a wireless sensor network that uses Sun SPOTS. 

 The selection of the safe prime p (from a secret file containing a large number of 

safe primes) and the randomization of g can significantly reduce the size of p 

from the current standard of 1024 bits (or 300 decimal digits) in the Diffie-

Hellman key-exchange protocol. Thus, reducing the computation cost of the 

protocol and making it feasible for use in wireless sensor networks. 

 It can solve the problem of key distribution and management in wireless sensor 

networks as long as the network has a reasonable protection against physical 

capturing of nodes. Even if a single node in the wireless sensor network is 

compromised, the rest of the nodes can still establish secure keys for a certain 

amount of time depending on the time it will take to decrypt the primes file. 
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5.2 Future Work 

Our future work contains: 

 Deployment of the PDH and the PDH-EC protocols on the Sun SPOTS. 

 Design and implement a set of attacks against PDH and the PDH-EC protocols. 

 Calculating the computation cost of the PDH and PDH-EC protocols after 

deployment on the Sun SPOTS. 

 Testing the key generation process between multiple Sun SPOT nodes and test its 

use in a multicast implementation. 

 Implementation of faster algorithms (for point counting and calculating order of 

the elliptic curves) for the S-PDH-EC protocol. 

 Develop animation tools that model the key generation process in PDH and the 

PDH-EC protocols. 
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