

A Portable and Improved Implementation of the

Diffie-Hellman Protocol for Wireless Sensor Networks

by

Naveed Shoaib

Submitted in Partial Fulfillment of the Requirements

for the degree of

Master of Science

in the

Mathematics

Program

YOUNGSTOWN STATE UNIVERSITY

August, 2009

A Portable and Improved Implementation of the

Diffie-Hellman Protocol for Wireless Sensor Networks

Naveed Shoaib

I hereby release this thesis to the public. I understand that this thesis will be made available from

the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also

authorize the University or other individuals to make copies of this thesis as needed for scholarly

research.

Signature:

 Naveed Shoaib, Student

Date

Approvals:

 Dr. Graciela Perera, Thesis Advisor Date

 Dr. John Sullins, Committee Member Date

 Dr. Jamal Tartir, Committee Member Date

 Peter J. Kasvinsky, Dean of School of Graduate Studies & Research Date

iii

ABSTRACT

Wireless sensor nodes generally face serious limitations in terms of computational

power, energy supply, and network bandwidth. One of the biggest challenges faced by

researches today is to provide effective and secure techniques for establishing

cryptographic keys between wireless sensor networks. Public-key algorithms (such as the

Diffie-Hellman key-exchange protocol) generally have high energy requirements because

they require computational expensive operations. So far, due to the limited computation

power of the wireless sensor devices, the Diffie-Hellman protocol is considered to be

beyond the capabilities of today‟s sensor networks. We analyzed existing methods of

implementing Diffie-Hellman and proposed a new improved method of implementing the

Diffie-Hellman key-exchange protocol for establishing secure keys between wireless

sensor nodes. We also provide an easy-to-use implementation of the Elliptic Curve

Diffie-Hellman key-exchange protocol for use in wireless sensor networks.

iv

ACKNOWLEDGEMENTS

First and foremost I offer my sincerest gratitude to my supervisor, Dr. Graciela

Perera, for her continuous encouragement, guidance and support during this work. I thank

my other committee members, Dr. John Sullins and Dr. Jamal Tartir, for their helpful

suggestions and comments.

I thank Dr. Neil Flowers for helping me understanding some of the underlying

mathematics behind elliptic curve cryptography. I also thank Tony Noe for providing me

with the safe primes list. Finally I thank my family and friends for supporting me

throughout the course of my studies.

v

Table of Contents

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

List of Figures ... viii

List of Tables .. ix

Chapter 1 Introduction... 1

1.1 Motivation ... 1

1.2 Contributions .. 2

1.3 Organization of this Thesis ... 3

Chapter 2 Background ... 5

2.1 Wireless Sensor Networks ... 5

2.1.1 Important Security Issues ... 6

2.1.2 Sun SPOT ... 8

2.2 Public-Key Cryptography ... 10

2.3 Diffie-Hellman Key Exchange .. 11

2.3.1 Security of Diffie-Hellman ... 12

2.4 Elliptic Curve Cryptography... 13

2.4.1 Mathematical Foundations of ECC .. 14

2.4.2 ECC Arithmetic .. 15

2.4.3 Properties of the Elliptic Curve .. 18

vi

2.4.4 Finding Points on the Elliptic Curve .. 19

2.4.5 Order of an Elliptic Curve .. 20

2.4.6 Scalar Point Multiplication ... 21

2.4.7 Elliptic Curve Discrete Logarithm Problem ... 21

2.4.8 ECC Domain Parameters ... 22

2.5 Elliptic Curve Diffie-Hellman (ECDH) .. 23

Chapter 3 Portable Diffie-Hellman ... 25

3.1 Analysis of the Diffie-Hellman Key-Exchange Protocol .. 25

3.1.1 Using Prime Order Groups ... 27

3.1.2 Using Subgroups of p* .. 28

3.2 Portable Diffie-Hellman (PDH) Key-Exchange Protocol 29

3.2.1 Detailed PDH ... 30

3.2.2 The PDH Protocol with Safe Primes .. 32

3.2.3 Security Analysis of the PDH Protocol .. 37

3.3 Implementation of the PDH Protocol ... 38

3.3.1 Simplified PDH (S-PDH) Java Library .. 39

3.4 Evaluation of S-PDH .. 42

3.4.1 Empirical Results .. 42

3.4.2 Analysis of Empirical Results ... 45

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography 47

4.1 The PDH-EC Protocol using Safe Primes .. 47

4.2 Implementation of the PDH-EC Protocol ... 51

vii

4.2.1 ExtendedEculideanAlgorithm Class ... 51

4.2.2 ModularArithmetic Class ... 52

4.2.3 ECPoint Class .. 53

4.2.4 ECC Class .. 53

4.2.5 SPDHEC Class .. 60

4.2.6 ExecutionTimer Class .. 60

4.2.7 SPDHECTest Class... 61

4.3 Evaluation & Analysis of Empirical Results of S-PDH-EC.................................... 61

Chapter 5 Conclusions and Future Work .. 64

5.1 Summary ... 64

5.2 Future Work .. 66

REFERENCES .. 67

viii

List of Figures

Figure 2.1: Wireless Sensor Network ... 6

Figure 2.2: Point Addition .. 16

Figure 2.3: Point Doubling ... 18

Figure 3.1: Node Registration and Counters (NRC) Table ... 34

Figure 3.2: PDH Protocol Steps .. 36

Figure 3.3: S-PDH Class Library .. 39

Figure 3.4: Square and Multiply Algorithm ... 41

Figure 3.5: Histogram of 1,000,000 Keys with Fixed (p, g) & Random (a, b) 43

Figure 3.6: Histogram of 1,000,000 Keys with Random (p, g, a, b) 44

Figure 4.1: PDH-EC Protocol Steps ... 50

Figure 4.2: S-PDH-EC Class Library ... 51

Figure 4.3: Algorithm for computing Modular Multiplicative Inverse 52

Figure 4.4: Algorithm for deciding Quadratic Residuosity modulo a prime 53

Figure 4.6: Algorithm for computing Square Roots modulo a safe prime 53

Figure 4.7: Algorithm for deciding Non-Singularity of an Elliptic Curve 54

Figure 4.8: Point Addition Algorithm ... 55

Figure 4.9: Point Doubling Algorithm .. 56

Figure 4.10: Double and Add Algorithm .. 56

Figure 4.11: Algorithm for finding all points on the Elliptic Curve 57

Figure 4.12: Algorithm for finding a Random Point on the Elliptic Curve 58

Figure 4.13: Algorithm for computing Order of an Elliptic Curve................................... 59

ix

List of Tables

Table 3.1: Execution Time for different number of Keys (Sample Size 50) 43

Table 3.2: Average Number of Keys Duplicated (Sample Size 50) 44

Table 4.1: Experimental Elliptic Curves of Prime Order ... 62

Table 4.2: Execution Time for different number of Keys (Sample Size 10) 63

Chapter 1 Introduction

1

Chapter 1

Introduction

In today‟s world, the number of users in the Internet grows fast. It is made of

billions of interconnected computers. However, the very nature of the network is

changing. New types of devices are connecting to the net every day. Wireless sensor

nodes can be imagined as small computers, extremely basic in terms of their interfaces

and their components. They are typically used for monitoring, tracking, and controlling in

information systems. Wireless sensor networks are, in general, more vulnerable to attacks

and unauthorized access than traditional (wired) networks. They are often deployed in

hostile environments where they can be easily captured, compromised, or manipulated by

an adversary. So effective protection mechanisms are required and security must be

provided at every aspect of the design of a wireless sensor network. In [1], Boyle and

Newe discuss popular and progressive security architectures available and used to-date in

wireless sensor networks. However, as demonstrated in [1] the situation is still uncertain.

There is still a lot of research going on to find out the best method of providing security

and authentication in wireless sensor networks.

1.1 Motivation

The problem of establishing secure keys across a traditional (wired) network has

been well-studied by researchers over several decades and they have proposed a variety

of key-exchange protocols. Why can‟t the same key-establishment protocols be used in

wireless sensor networks? The inherent properties of sensor networks render previous

Chapter 1 Introduction

2

protocols impractical. Therefore, the implementation of effective and secure techniques

for establishing cryptographic keys between wireless sensor nodes is a challenging task.

Most of the security protocols used in wireless sensor networks up-to-date rely on

symmetric key cryptography because public-key cryptosystems are considered inefficient

due to their high energy requirements. Active research on how to make public-key

cryptosystems efficient on low-end devices is still ongoing.

The Diffie-Hellman key-exchange protocol allows two parties that have no prior

knowledge of each other to jointly establish a shared secret key over an insecure

communications channel. The main advantage of using the Diffie-Hellman key-exchange

protocol is that a node can set up a secure key with any other node in the network. It

allows two entities to directly establish a key by exchanging messages over an insecure

communication channel.

1.2 Contributions

The contributions of this thesis are the development of an improved and portable

Diffie-Hellman key-exchange protocol for wireless sensor networks. The specific

contributions are:

 The design of a new method for establishing secure keys in wireless sensor

networks called the Portable Diffie-Hellman (PDH).

 The development and implementation of a class library showing the mathematical

concepts behind the PDH protocol and the secret key generation process. The

library is called Simplified PDH (S-PDH). It is developed in Java so that it can be

used on all platforms.

Chapter 1 Introduction

3

 The design of a new method for implementing the Elliptic-Curve Diffie-Hellman

key-exchange protocol. It is a variant of the PDH protocol called the Portable

Diffie-Hellman using Elliptic Curves (PDH-EC).

 The development and implementation of a simple class library showing the basic

functionality of an elliptic curve cryptosystem along with the process of secret

key generation behind the PDH-EC protocol. The library is called Simplified

PDH-EC (S-PDH-EC) and is also developed in Java.

 All libraries were developed for educational purposes so that students have a

practical tool to experiment and learn the mathematics behind the Diffie-Hellman

and the Elliptic curve Diffie-Hellman key-exchange protocols. The libraries

support the use of small primes so that anyone can get the basic understanding of

the protocols. The S-PDH-EC library can be particularly helpful for someone who

is new to elliptic curve cryptography.

1.3 Organization of this Thesis

The remainder of this thesis is organized as follows:

 Chapter 2 provides the background information about wireless sensor networks

and important security issues involving wireless sensor networks, public-key

cryptography, and the Diffie-Hellman key-exchange protocol, elliptic curve

cryptography, and the Elliptic Curve Diffie-Hellman key-exchange protocol.

 Chapter 3 provides an analysis and overview of the existing methods of

implementing the Diffie-Hellman key-exchange protocol. Afterwards, the design,

implementation and evaluation of the Portable Diffie-Hellman (PDH) protocol are

described. The implementation is done using the Java programming language.

Chapter 1 Introduction

4

 Chapter 4 presents the design, implementation and evaluation of the Portable

Diffie-Hellman using Elliptic Curves (PDH-EC) protocol.

 Chapter 5 describes the summary of our work, conclusions and future work.

Chapter 2 Background

5

Chapter 2

Background

This chapter provides a general description of wireless sensor networks and the

security aspects regarding distributed key-exchange in wireless sensor networks. In

particular, we discuss the Sun SPOTS; wireless computing devices used to study the

portability of the Diffie-Hellman key-exchange protocol. We also discuss the basic

concepts behind public-key cryptography, the Diffie-Hellman key-exchange, elliptic

curve cryptography and the elliptic curve Diffie-Hellman key-exchange protocol.

2.1 Wireless Sensor Networks

A wireless sensor network (WSN) consists of a number of independent nodes that

communicate with each other wirelessly over limited frequency and bandwidth. The

nodes are equipped with limited capabilities of sensing, computation and communication.

Wireless sensor nodes are densely deployed and coordinate with each other to produce

high-quality information about the sensing environment. The exact location of a

particular sensor is unknown. It means that sensor network protocols and algorithms must

provide self-organizing capabilities [2].

Figure 2.1 shows a typical wireless sensor network in which the sensor nodes are

scattered in a sensor field. Each node has the capability of collecting data and routing it

back to the base station. The base station is like a gateway to the wireless sensor network.

It connects the complete wireless network with the task manager node via the Internet or

satellite. The sensor nodes are also capable of sending information to other sensor nodes

in the sensor field.

Chapter 2 Background

6

Task Manager

Node

Base Station

(Gateway to Sensor Nodes)

Sensor Field

Sensor Nodes

Internet and

Satellite

Figure 2.1: Wireless Sensor Network

There are many different applications of wireless sensor networks but typically involve

some kind of monitoring, tracking, and controlling. The two most important security-

oriented applications of wireless sensor networks include their use in military and

medical solutions. For example, in military situations, sensor networks can be used in

surveillance missions and can be used to detect moving enemy targets. Most applications

of wireless sensor networks require protection against eavesdropping, tampering of data

and devices, denial-of-service attacks, secure routing and node capture [1].

2.1.1 Important Security Issues

Key management and distribution are two essential security services that must be

provided for a secure wireless sensor network. The establishment of a shared secret key

between a pair of wireless sensor nodes is the basis for other security services such as

Chapter 2 Background

7

symmetric or private-key encryption [3]. There are many key establishment techniques

designed by researchers to address the tradeoff between limited memory and security [4-

5]. However, which scheme is the most effective is still debatable. The most common

approach for key establishment is a network-wide key shared by all nodes or a set of keys

that use random-key pre-distribution protocols [3]. These protocols are easy to implement

and entail little overhead since no complex key agreement has to be performed. However,

most protocols based on pre-deployed keys have disadvantages regarding scalability and

vulnerability to node capture [6].

Another approach towards a secure wireless network is bootstrapping keys using a trusted

base station. In this approach each node shares only a single key with the base station and

set up keys with other nodes through the base station. However, if the base station fails,

then the wireless sensor nodes are not able to establish any keys [3].

Public-key cryptography can solve the problem of key distribution since the

communicating nodes do not need to secretly share a key in advance of their

communication. It allows two nodes to communicate secretly even if all communication

between them is monitored. However, pubic-key cryptography is so far considered to be

beyond the capabilities of today‟s wireless sensor networks. The high energy

requirements of public key-exchange protocols make them infeasible for use in wireless

sensor networks. Active research on how to make public-key cryptography more efficient

for wireless sensor networks is still ongoing [3].

In [5], Xiao et al. determined that no key distribution technique is ideal to all the

scenarios where sensor networks are used. A wireless sensor network used in a battlefield

Chapter 2 Background

8

requires more security than others. Therefore, the key distribution and management

techniques employed must depend upon the requirements of target applications and

resources of each individual sensor network.

Authentication against eavesdropping, injection and modification of packets is another

important aspect of security in wireless sensor networks. The trend has moved from pre-

deployed keying mechanisms to elliptic curve cryptography (ECC) algorithms for

performing authentication in wireless sensor networks [1].

Another security issue in wireless sensor networks is how to protect the node from

physical capturing and cloning. Physical security is often taken for granted in traditional

computing. However, wireless sensor nodes may be placed in hostile environments where

they can be easily accessible to attackers. Becher et al. [7] and Xing et al. [8] discuss

effective detection mechanisms against node capturing and cloning.

Now, because wireless sensor nodes differ in hardware and software, we will describe in

the next section a wireless computing device called Sun SPOT which was used in our

study of the portability of the Diffie-Hellman key-exchange protocol.

2.1.2 Sun SPOT

Sun SPOT (Sun Small Programmable Object Technology) [9] developed by Sun

Microsystems is a battery powered, wireless computing device for use in sensor

networks. It is an experimental technology used to study and develop prototype systems

based on wireless communication. A detailed description of the hardware and software

specifications is explained below. According to [9] the Sun SPOT has the following

hardware properties:

Chapter 2 Background

9

Processing Capabilities

 180 MHz 32 bit ARM920T core - 512K RAM - 4M Flash.

 2.4 GHz IEEE 802.15.4 radio with integrated antenna.

 AT91 timer chip.

 USB interface.

Demo Sensor Board

 8 tri-color LEDs.

 2G/6G 3-axis accelerometer.

 Light and temperature sensors.

 6 analog inputs.

 2 push buttons.

 5 general purpose I/O pins and 4 high current output pins.

Battery

 3.7V rechargeable 750 mAh lithium-ion battery.

 30 uA deep sleep mode.

 Automatic battery management provided by the software.

Radio Communication

 The devices communicate using the IEEE 802.15.4 standard including the base-

station approach to sensor networking.

The Sun SPOT uses a small J2ME-level VM called Squawk [9] which runs directly on

the processor without an OS. The development tools are:

 Standard Java IDEs (e.g. NetBeans) can be used to create SunSPOT applications.

Chapter 2 Background

10

 “SPOTWorld” is an application that can be used for management, programming,

debugging and deployment of applications on the Sun SPOT.

The next section provides a discussion on public-key cryptography.

2.2 Public-Key Cryptography

Symmetric-key cryptography requires the sender and receiver to share a common

secret key. One of main drawbacks of symmetric-key cryptography is how the sender and

receiver exchange the secret key in the first place. The secret key cannot simply be sent

over an insecure communication channel where the key can be compromised. The

authors of [10] and [11] discuss several different approaches to secret-key distribution.

Key distribution centers and protocols such as Kerberos are very popular and can be used

to solve the issue of secret-key distribution. However, when we talk about the Internet

and wireless networks, the protocols used in these networks lack a secure channel to

exchange secret keys. Therefore, the problem of key distribution is a current area of

research. Nevertheless, until 1976, it was believed that encryption simply cannot be done

without first sharing a secret key. In 1976, Diffie and Hellman [12] proposed a new type

of cryptography known as asymmetric or public-key cryptography. Public-key

cryptography uses two keys instead of one; one of these keys is used by the sender of the

message for encryption, called the public key, and the other one is used by the receiver of

the message for decryption, called the private key.

Public-key cryptography uses mathematical functions for encryption and decryption. The

main idea is to use a trapdoor one-way function that is easy to compute in one direction,

yet believed to be difficult to compute in the opposite direction (finding its inverse)

Chapter 2 Background

11

without special information, called the "trapdoor". In mathematical terms, if f is a

trapdoor function, there exists some secret information y, such that given f(x) and y it is

easy to compute x [10]. An example of a trapdoor one-way function is the factorization of

a product of two large primes. The multiplication of two large prime numbers is easy;

however, factoring the resulting product is very difficult. Therefore, many of the public-

key cryptosystem base their security on the difficulty of solving mathematical problems

such as the integer factorization problem, finite field discrete logarithm problem and the

elliptic curve discrete logarithm problem (explained in later sections). All of these

problems are believed to be both secure and practical after years of intensive studying.

One of the most important aspects of public-key algorithms such as the Diffie-Hellman

key-exchange protocol is that it solves the problem of key management and distribution.

A key-exchange protocol allows key distribution to be done over an insecure channel

since the communicating parties do not need to secretly share a key in advance of their

communication. In the next section we describe the Diffie-Hellman key-exchange

protocol and some of the underlying mathematics behind it.

2.3 Diffie-Hellman Key Exchange

The Diffie-Hellman key-exchange protocol uses the multiplicative group of

integers modulo p, <p*, >, where p is a large prime number on the order of 300

decimal digits (1024 bits). We represent this group by G = <p*, >. Before discussing

the protocol, we first describe the important properties of the group. This group G

consists of all integers from 1 to p – 1 where p is a prime. Following are some important

properties of G:

Chapter 2 Background

12

 The order of the group is given by, |G| = p – 1.

 Every member of the group has an additive and a multiplicative inverse.

 The group is abelian i.e., for all a, b G, ab mod p = ba mod p.

 The group is cyclic i.e., there exists an element g G such that:

The group and the generator do not need to be confidential. They can be sent over an

insecure communication channel such as the Internet. So p and g are public. The

following interchange of messages between Alice and Bob demonstrates the Diffie-

Hellman key-exchange protocol:

1. Alice and Bob publicly agree on a cyclic group G, its generator g and a prime p.

2. Alice and Bob each secretly choose large random numbers a and b, such that

1,0 pba .

3. Alice calculates RA = g
a
 mod p, while Bob calculates RB = g

b
 mod p.

4. Alice sends RA to Bob and Bob sends RB to Alice.

5. Alice calculates K = (RB)
a

 mod p while Bob calculates K = (RA)
b

 mod p.

6. Both get the same value for the key i.e.

K = (g
a
 mod p)

b
 mod p = (g

b
 mod p)

a
 mod p = g

ab
 mod p

K = g
ab

 mod p is called the Diffie-Hellman secret key.

2.3.1 Security of Diffie-Hellman

The security of the Diffie-Hellman key-exchange protocol relies on the presumed

hardness of the discrete logarithm problem (DLP) in a group of large order, i.e.,

computing the Diffie-Hellman secret key is considered computationally impossible given

Gggggg G },...,,,{ 1||210

Chapter 2 Background

13

the public parameters. At the end of the protocol, the values g
a
 and g

b
 have become

public while the value of g
ab

 remains private. Thus, the Diffie-Hellman Problem (DHP) is

to compute g
ab

 from the given values of g
a
 and g

b
. This is widely believed to be difficult

as long as the discrete logarithm problem has not been solved in G [10].

One of shortcomings of the Diffie-Hellman key-exchange protocol is the Man-in-the-

Middle attack. In this kind of attack an eavesdropper intercepts all messages between

Alice and Bob and makes independent connections with them. The eavesdropper can then

replay messages between Alice and Bob, making them believe that they are talking

directly to each other over a private connection when in fact the entire conversation is

controlled by the eavesdropper. To thwart this kind of an attack, the Station-to-Station

key agreement protocol can be used. The protocol is based on Diffie-Hellman and

provides authentication. It uses digital signatures with public key certificates to establish

a secure session key between Alice and Bob [10]. To provide authentication, a variant of

the Diffie-Hellman protocol called HMQV [13] can also be used.

A more recent method used in public-key cryptography to generate keys is to use elliptic

curves and is described in the next section.

2.4 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is an approach to public-key cryptography

based on the algebraic structure of elliptic curves over finite fields. In 1985, Neal Koblitz

[14] and Victor S. Miller [15] independently proposed the use of elliptic curves in

cryptography. ECC is emerging as an attractive public-key cryptosystem for wireless

sensor networks. It provides an alternative to established public-key systems such as the

Chapter 2 Background

14

DSA (Digital Signature Algorithm) and RSA (Rivest-Shamir-Adleman) algorithms. In

recent years, ECC has gained a lot of attention. The main reason for the attractiveness of

ECC is the fact that there is no sub-exponential algorithm known to solve the discrete

logarithm problem on a properly chosen elliptic curve [16]. This means that significantly

smaller parameters can be used in ECC (with the same level of security) than in other

competitive systems [17]. This makes ECC ideal for wireless sensor networks which are

typically limited in terms of their CPU power, memory and network connectivity.

2.4.1 Mathematical Foundations of ECC

Much of the following discussion in this section is based on material presented in

Lawrence C. Washington‟s book “Elliptic Curves, Number Theory and Cryptography”

[18].

The mathematical operations of ECC are defined over a special class of elliptic curve of

the form:

pBAxxy mod 32
 (2.1)

Where A, B p are constants satisfying the condition: 0274 23 BA mod p. This

condition ensures that the equation, 03 BAxx mod p has no repeated roots

(nonsingular). The modulo p is a prime with p > 3. The theory can be adopted to deal

with the case of p = 2 or 3. However, the discussion presented here deals only with the

field of characteristics not equal to 2 or 3.

Let Ep(A, B) denote the set of points P = (x, y) that satisfy equation (2.1), i.e.

Ep(A, B) = {(x, y) | (x, y) p and BAxxy 32
 mod p}

Chapter 2 Background

15

We define the set E(p) as follows:

E(p) = Ep(A, B)  {O}

The elements of the set E(p) are called the points on the elliptic curve E defined by

equation (2.1) together with an extra point O which is called the point at infinity. The

specific properties of a nonsingular elliptic curve allows us to define a binary operation,

called “addition” (denoted by „+‟), on the points of E(p). The operation is the addition of

two points on the curve to get another point on the curve.

R = P + Q where P = (x1, y1), Q = (x2, y2) and R = (x3, y3).

The point O is defined as an (additive) identity i.e., for all P E(p), P + O = O + P = P.

It can be shown that every line intersecting the curve E intersects the curve in exactly

three points, where:

1. a point P is counted twice if the line is tangent to the curve at P, and

2. the point at infinity is also counted (when the line is vertical).

2.4.2 ECC Arithmetic

The rules for negation, addition and point doubling are described below. However, to

conceptualize the basic arithmetic behind E(p) we will first give a graphical explanation

of elliptic curves over the reals i.e. the equation BAxxy 32
 mod p without

reduction modulo p. This is because; in modular arithmetic the points on the curve do not

make nice graphs. Nevertheless, the concept remains the same.

Negation

A negative of a point is the reflection of that point with respect to x-axis. Given a point P,

its negation –P is the point for which P + (–P) = O. The line connecting the two points

Chapter 2 Background

16

intersects the curve at O. We can think of the “point at infinity” O as sitting at the top of

the y-axis and lying on every vertical line. As shown in Figure 2.2 (b), –P is simply the

reflection of P in the x-axis, that is, if P = (x1, y1) then –P = (x1, –y1).

Point Addition

For an elliptic curve E, take two arbitrary points P, Q O. Point addition is the process

of adding these points to obtain another point R on the same elliptic curve. If Q –P, as

in Figure 2.2 (a), then the line drawn through the points P and Q will intersect the elliptic

curve at exactly one more point, –R. If P = Q, then draw the line tangent to E at P (see

point doubling). Graphically, P + Q can be found by reflecting the point –R with respect

to the x-axis.

P

Q

P  Q

2 0 2 4

4

2

0

2

4

P

Q  P

2 0 2 4

4

2

0

2

4

(a) (b)

P + (–P) = O

Where O is the

point at infinity
–R

R =

Figure 2.2: Point Addition

In E(p), we use the same addition operation but the calculations are done modulo p. So

let P = (x1, y1) and Q = (x2, y2) be two points in E(p) with P, Q O. We first consider

the case where P and Q have different x and y coordinates (x1 x2 and y1 y2). Then

Chapter 2 Background

17

the coordinates of the point R, x3 and y3 can be found by first finding the slope of the line

m, through P and Q, and then calculating the values of x3 and y3 as shown below:

12

12

xx

yy
m mod p

21

2

3 xxmx mod p

1313)(yxxmy mod p

Our assumption, that 21 xx means that 021 xx mod p. This implies that the

inverse of x2 – x1 modulo p exists. However, if Q = –P (x1 = x2 and y1 = –y2), as shown in

Figure 2.2 (b), then the two points are additive inverses of each other. As already

mentioned, then P + (–P) = O.

Point Doubling

For an elliptic curve E, take an arbitrary point P O. Point doubling is the process of

adding the point P to itself to obtain another point R on the same elliptic curve. If the y-

coordinate of point P is not zero as in Figure 2.3 (a), then the tangent line drawn at P will

intersect the elliptic curve at exactly one more point, –R. Graphically, 2P can be found by

reflecting the point –R with respect to the x-axis.

Chapter 2 Background

18

(a) (b)

P  Q
2P

2 0 2 4

4

2

0

2

4

 2 0 2 4

4

2

0

2

4

 2P = P + P

y1 = 0

2P = O

Where O is the

point at infinity

R =

P

–R

Figure 2.3: Point Doubling

Consider a point P = (x1, y1) be in E(p) with P O. We first consider the case where the

y-coordinate of P is not zero (y1 0). In this case, the slope of the line and the

coordinates of the point R, x3 and y3 can be found as shown below:

1

2

1

2

3

y

Ax
m mod p

1

2

3 2xmx mod p

1313)(yxxmy mod p

If the y-coordinate of the point P is zero as shown in Figure 2.3 (b), then the tangent at

this point intersects the curve at O, So, 2P = O.

2.4.3 Properties of the Elliptic Curve

It is shown in [18] that the sets of points E(p) along with the addition rule defined above

form an abelian group:

Chapter 2 Background

19

 Closure: Adding two points on the curve creates another point on the curve.

 Associatively:)()(RQPRQP .

 Commutatively: PQQP .

 Identity: The “point at infinity” O is the additive identity. In other words

POOPP .

 Inverse: Every point on the curve has an inverse. The inverse of a point is its

reflection with respect to x-axis. In other words, the point),(11 yxP and

),(11 yxQ are inverses of each other, which means that OQP . Note that

the identity element is the inverse of itself.

2.4.4 Finding Points on the Elliptic Curve

Recall from above that Ep(A, B) denote the set of points P = (x, y) that satisfy equation

(2.1), i.e. Ep(A, B) = {(x, y) | (x, y) p and BAxxy 32
 mod p}.

It is shown in [18] that there can only be finitely many points that can satisfy the above

equation. Therefore, the points on the curve E(p) form a finite abelian group. To

generate a point on the elliptic curve we choose an x p and check to see if there is a

corresponding y satisfying the elliptic curve equation. Let BAxxxf 3)(and

consider the curve)(2 xfy mod p. This means that we have to evaluate whether)(xf

is a quadratic residue modulo p.

An element z p* is a quadratic residue modulo p if it is congruent to a perfect square

(mod p), i.e., if there exists a y p* such that zy2
 mod p. Modulo an odd prime

number p there are (p + 1)/2 quadratic residues (including 0) and (p − 1)/2 quadratic non-

Chapter 2 Background

20

residues. In this case, it is customary to consider 0 as a special case and work within the

multiplicative group of nonzero elements p*.

Now depending on whether)(xf is a quadratic residue or not modulo p, we can have the

following cases:

)(xf is a quadratic residue, then there are two points on the curve),(yx .

)(xf is a non-quadratic residue, then there is no point on the curve.

)(xf = 0 mod p, then there is a single point on the curve (x, 0).

This allows us to determine the points on the curve.

2.4.5 Order of an Elliptic Curve

The order of an elliptic curve is defined as the number of points on the curve and is

denoted by |E(p)|. The simplest way of finding out the number of points on the curve is

to use the following equation, the proof of which can be found in [18].

|E(p)|
px p

BAxx
p

2

1

Where
p

BAxx2

 can be evaluated by using “Legendre” symbol. Given an odd

prime p and an integer a, then the Legendre symbol is defined as follows:

p

a
+1 if a is a quadratic residue modulo p.

–1 if a is a quadratic non-residue modulo p.

 0 if p divdes a.

The above method is considered insufficient when p is extremely large. So a different

point counting algorithm, such as the Schoof's algorithm or Schoof-Elkies-Atkin

algorithm [19-20] must be used.

Chapter 2 Background

21

2.4.6 Scalar Point Multiplication

Scalar point multiplication is the core of elliptic curve arithmetic. It is the most essential

part of a secure elliptic curve cryptosystem. For an elliptic curve E, take an arbitrary

point P O. Scalar multiplication is the process of adding the point P to itself k times to

obtain another point Q on the same elliptic curve.

Q = kP = P + P + … + P

k

Where k < |E(p)| is a scalar. Scalar multiplication of a point on E can be performed

through a combination of point additions and point doublings, e.g. 11P = 2((2(2P)) + P)

+ P.

The above method is called the ―double and add‖ algorithm for scalar point

multiplication. However, there are a number of other efficient algorithms also available

for scalar point multiplications [21].

2.4.7 Elliptic Curve Discrete Logarithm Problem

Much of today‟s ECC is based on the elliptic curve discrete logarithm problem (ECDLP).

Recall from the last section that scalar multiplication is the core of elliptic curve

arithmetic. When the elliptic curve group is described using additive notation, the elliptic

curve discrete logarithm problem is defined as follows:

“Given the points kP and Q in the group, find the value of k such that kP = Q”.

The problem is considered computationally difficult unless the curve is “weak”. Several

classes of curves are weak and must be avoided e.g. example, if |E(p)| = p, then the

Chapter 2 Background

22

curve is vulnerable to attack [22-23]. It is because of these issues that point-counting on

elliptic curves is such a hot topic in ECC.

2.4.8 ECC Domain Parameters

To use ECC all parties involved in the communication must agree on all the elements

defining the elliptic curve E i.e., the domain parameters of the scheme. The domain

parameters for the elliptic curve E(p) are p, A, B, G, n and h. Following is a brief

description of each:

 p is a prime such that p > 3.

 A and B are the parameters defining the elliptic curve equation.

 G is the called the base point or the generator point. Each curve has a specially

designated point, G, chosen such that a large fraction of the elliptic curve points

are multiples of it. We call <G> the cyclic subgroup generated by G. Scalar point

multiplication can be used for finding the multiples of G. The scalar for point

multiplication is chosen such that it is a number between 0 and n – 1.

 n is the order of G, i.e. the smallest non-negative integer n such that nG = O.

 h is called the cofactor where
n

E
h

p |)(|
. Since n is the size of the cyclic

subgroup generated by G, it follows from Lagrange‟s theorem that the order of the

subgroup must divide the order of the group. So h is an integer. For cryptography

applications h must be small)4(h .

Chapter 2 Background

23

2.5 Elliptic Curve Diffie-Hellman (ECDH)

The Elliptic Curve Diffie-Hellman key-agreement protocol is a variant of the

Diffie-Hellman protocol using elliptic curve cryptography. It allows two parties, each

having an elliptic curve public-private key pair, to establish a shared secret over an

insecure communication channel. Suppose Alice wants to establish a secret key with Bob.

The following interchange between Alice and Bob demonstrates the Elliptic Curve

Diffie-Hellman key-exchange protocol:

1. Alice and Bob publicly agree on an elliptic curve E(p) and all the domain

parameters, i.e., (p, A, B, G, n, h).

2. Alice and Bob each secretly choose large random integers, a and b, such that

.,0 nba

3. Using elliptic curve scalar point multiplication, Alice calculates GA = aG while

Bob calculates GB = bG on E.

4. Alice sends GA to Bob and Bob sends GB to Alice.

5. Alice calculates aGB = abG while Bob calculates bGA = baG.

6. Both get the same value for the key.

7. Alice and Bob use some publicly agreed on method to extract a secret key from

abG. For example, they could use the x-coordinate of this point as the secret key.

 The ECDH protocol is secure because no one can derive the private key of the other

unless one can solve the Elliptic Curve Discrete Logarithm Problem. However, the

protocol does not provide authentication. If authentication is required then protocols such

as ECMQV can be used.

Chapter 2 Background

24

In the next chapter we provide our analysis of the Diffie-Hellman key-exchange protocol

and then describe the new improved and portable Diffie-Hellman key-exchange protocol

for use in wireless sensor networks.

Chapter 3 Portable Diffie-Hellman

25

Chapter 3

Portable Diffie-Hellman

In this chapter we first provide our analysis of the Diffie-Hellman key-exchange

protocol and develop an improved key-exchange protocol for wireless sensor networks

called Portable Diffie-Hellman (PDH). Afterwards we give a detailed description of the

PDH protocol. Then we describe and discuss the implementation of a Simplified PDH (S-

PDH) library designed to show the mathematical concepts and the key generation process

behind the PDH protocol. The last section presents the evaluation of the S-PDH library.

3.1 Analysis of the Diffie-Hellman Key-Exchange Protocol

We begin our analysis by looking at the public parameters of the Diffie-Hellman

key-exchange protocol (i.e., the prime number p and the generator g). To make Diffie-

Hellman secure from the discrete logarithm attack, the following are recommended:

 p must be more than 300 decimal digits (1024 bits).

 p must be chosen such that p – 1 has at least one large prime factor of more than

60 decimal digits.

 g must be chosen from the group <p*, >.

 a and b must be more than 100 decimal digits.

All of the above recommendations mean that the Diffie-Hellman key-exchange protocol

has an expensive computational cost specifically in computing the public parameters p

and g. During our investigation of the practical implementations of the Diffie-Hellman

key-exchange protocol, we encountered that the parties involved in the communication

publicly agree on the public parameters. Several standard bodies such as the National

Chapter 3 Portable Diffie-Hellman

26

Institute of Standards and Technology (NIST) calculate these parameters in advance and

later publish them for use in cryptographic applications. So most of the time the same

parameters are used over and over again.

However, using prime numbers on the order of 300 decimal digits is not convenient for

all practical implementations, due to the fact that embedded systems (such as the wireless

sensor networks) have low computing power. Finding a generator g for such groups is

also computationally very expensive. The high energy requirements from computational

expensive operations have raised serious concerns about the protocol‟s feasibility in

wireless sensor networks.

In particular, Diffie-Hellman key-exchange protocol is characterized by high energy

consumption for calculating cryptographic primitives, but relatively low communication

energy cost. Therefore, to make the protocol feasible for wireless sensor networks,

especially Sun SPOTS, we have to reduce the computational costs of the protocol,

without jeopardizing the security of the protocol.

The main difficultly in implementing the Diffie-Hellman key-exchange protocol in

wireless sensor networks is to tie the underlying mathematics behind it with its practical

use. The implementer must understand the exact mathematical concepts on which the

protocol is based. That may not often be the case if the implementer is just replying on

pre-generated public parameters without having a full understanding of the mathematical

concepts.

So we reviewed the relationship between the practical implementation and mathematical

foundations on which the Diffie-Hellman key-exchange protocol was based upon. We

Chapter 3 Portable Diffie-Hellman

27

also provided a simple practical implementation of the Diffie-Hellman key-exchange

protocol that shows the basic principles of the protocol.

Next we look at the mathematical foundations of the public parameters of the Diffie-

Hellman key-exchange protocol.

3.1.1 Using Prime Order Groups

The theory discussed here is inspired from the ideas presented in Jonathan Katz‟s and

Yehuda Lindell‟s book “Introduction to Modern Cryptography” [11]. The theory leads us

to the development of an improved and Portable Diffie-Hellman key-exchange protocol

for use in wireless sensor networks. We start our discussion with an important concept

from group theory:

“If G is a group of prime order, then G is cyclic. Furthermore all elements of G except the

identity are generators of G”

Consider the group (p, +) which contains all integers from 0 to p – 1. The group has

prime order. All elements except 0 (identity) are generators of the group.

For cryptographic applications, there is a general preference for using certain cyclic

groups of prime order. The main reasons behind this are:

 The discrete logarithm and the Diffie-Hellman problems are believed to be the

hardest in certain cyclic groups of prime order e.g. (p*,). Note that the additive

group of integers modulo p (p, +) is a cyclic group of prime order, however, the

group is not used for the Diffie-Hellman key-exchange protocol because the

Diffie-Hellman problem is believed to be easy in this group. That‟s why we only

Chapter 3 Portable Diffie-Hellman

28

use the multiplicative group of integers modulo p (p*,) for the Diffie-Hellman

key-exchange protocol.

 Finding a generator for a cyclic group of prime order is trivial.

 In a cyclic group of prime order, testing whether a given element is a generator is

also trivial. So for a given group G of prime order, we can use as many generators

as we want.

Now the group (p*,) is cyclic. However for p > 3 prime, the group does not have

prime order. So finding generators for such groups may take longer than groups of prime

order and as discussed there is a preference of using groups of prime order. Also, the

Diffie-Hellman problem is simply not hard in groups that do not have prime order. The

solution to this problem is to work in subgroups of p*.

3.1.2 Using Subgroups of p*

As discussed in chapter 2, an element z p* is a quadratic residue modulo p if it is

congruent to a perfect square modulo p (i.e., if there exists a y p* such that zy2
 mod

p). It can be proved that the set of quadratic residues modulo p forms a subgroup of p*.

Moreover, modulo an odd prime number p, half of the elements of p* are quadratic

residues. Excluding 0 (which is considered as a special case), the order of the subgroup of

quadratic resides modulo p is (p – 1)/2 = q. We want q to be a prime number. For that we

first introduce the concept of safe primes.

A safe prime p is a prime number of the form p = 2q + 1, where q is also a prime. The

first ten safe primes are 5, 7, 11, 23, 47, 59, 83, 107, 167, 179 & 227. These primes are

called safe because of their relationship to strong primes. A prime number p is a strong

Chapter 3 Portable Diffie-Hellman

29

prime if p + 1 and p − 1 both have large prime factors. For the Diffie-Hellman key-

exchange protocol it is desirable to use strong primes.

Now if p is a strong prime of the form p = 2q + 1 where q is also prime, then the

subgroup of quadratic residues has exactly (p – 1)/2 = q (prime) elements. Now since the

order of the subgroup q is a prime, the subgroup is cyclic and furthermore all elements

(except the identity) are generators.

From the above discussion a generator g of the cyclic subgroup of quadratic residues can

easily be found by picking an arbitrary x p* such that x 1 mod p and setting g = x
2

mod p.

In the next section, we describe the Portable Diffie-Hellman (PDH) key-exchange

protocol for wireless sensor networks.

3.2 Portable Diffie-Hellman (PDH) Key-Exchange Protocol

Following is a brief description of the Portable Diffie-Hellman (PDH) protocol:

 The general idea behind our protocol is to use a file containing a large number of

safe primes. This file will be downloaded on the wireless sensor nodes using a

secure link (USB cable) at the time of node deployment or from a secure desktop.

The file is secret and will not be publicized. This means that the prime number

used by Alice to generate her public-key will not be sent over the insecure

communication channel.

Chapter 3 Portable Diffie-Hellman

30

 Instead, counters will be used at both ends. Initially, at the time of node

deployment, the counters will be set to a predetermined number. All nodes will

have the same value for the counter.

 In order for the communication to happen, Alice will pick a prime using the value

of the counter from the large safe prime file. Then, she will randomly generate a

value for the generator g of the group. She will then calculate her public key and

send it to Bob along with the value of g.

 On receiving Alice‟s public key and the value of g, Bob will generate his public

key by picking the same prime (using the value of the counter) and the generator

g. Bob will then send his public key to Alice. Both parties can now calculate the

Diffie-Hellman secret key.

 At the end of the communication, the value of the counter will be incremented so

that every time a new prime can be used. Alice and Bob will destroy their private

keys after they have calculated the session key.

Next we look at the detailed description of the PDH protocol and prove its security in the

presence of an eavesdropping adversary.

3.2.1 Detailed PDH

The design of PDH is based on the following definition of security. A key-exchange

protocol is secure if the secret key generated by Alice and Bob is completely unknown to

an eavesdropping adversary. Moreover, an adversary should not be able to generate all

possible secret keys given the public parameters of the protocol. The secret key will only

Chapter 3 Portable Diffie-Hellman

31

be used within a private-key encryption scheme. Furthermore, the assumptions of our

work are:

 Two wireless sensor nodes execute the protocol in order to establish a secure key.

We refer to these nodes as Alice and Bob.

 The deployment of the protocol is over Sun SPOTS which have limited resources.

As a consequence the base station will not provide authentication of the wireless

sensor nodes. This assumption is made because protocols which provides

authentication using digital signature schemes cannot be implemented due to the

limited resources of the wireless sensor networks.

 At the time of deployment, each node will have a large file containing safe

primes. The protocol assumes that the wireless sensor nodes will only be able to

establish the same secret key using these primes.

 The protocol assumes that the wireless sensor network is protected against node

capture and node cloning attacks. Effective detection mechanisms as discussed in

[7-8] are available. Node capturing requires absence of a node from the network

for a substantial amount of time (minimum five minutes). The protocol assumes

that mechanisms for revocation of a node (which was absent for too long from the

network) by its neighbors is present in the wireless sensor network [7].

Furthermore, in order to detect clone attackers in real-time, fingerprint

verification schemes are present locally (via neighboring nodes) or globally (via

the base station) [8].

We now present the details of the Portable Diffie-Hellman (PDH) key-exchange protocol

for wireless sensor networks.

Chapter 3 Portable Diffie-Hellman

32

3.2.2 The PDH Protocol with Safe Primes

The main goal of a key-exchange protocol is to establish a secure key between the two

communicating parties. The secret key is also called a session key as it is only used for a

particular session. The session key is used to encrypt data using a private-key encryption

scheme. As already mentioned, we assume that there is no central authority available that

can provide authentication of public keys. So in PDH, a session key will only be created

when a wireless sensor node wants to send data to another node. This means that if Alice

wants to send secret data to Bob, she will start the key-exchange protocol and vice versa.

Also if Alice and Bob want to send secret data to each other simultaneously, they will

generate two different session keys. To send secret data, Alice will use the session key

created when she initiated the key-exchange protocol while Bob will use the session key

created when he initiated the key-exchange protocol.

The main purpose for having a secret large file containing safe primes is to randomize the

process of key exchange as much as possible. This will also help in reducing the

computational costs of the Diffie-Hellman key-exchange protocol.

The prime used by Alice to generate her public-key will not be sent over the insecure

communication channel. The question is then, how does Bob know which prime number

Alice has used? Each node is the wireless sensor network will have two counters set to a

predestined value. These counters will allow nodes to determine which safe prime to use.

The integrity of the protocol depends on keeping these counters secure.

Initially all the nodes will have the same value of the counters. The first counter is called

the initiate counter (IC). This counter will be used by the wireless sensor node who wants

Chapter 3 Portable Diffie-Hellman

33

to initiate the key-exchange protocol. The second counter is called the receive counter

(RC). This counter will be used by the wireless sensor node who will receive the first

message in the key-exchange protocol. In other words, this means that if Alice wants to

send secret data to Bob she will use the value of IC while Bob will use the value of RC to

figure out which safe prime to use.

Figure 3.1 shows the working of counters. Each node in the wireless sensor network

maintains a table called Node Registration and Counters (NRC). There table has three

columns i.e., Node ID, IC and RC. Initially IC and RC counters are set to a

predetermined value, for example, 1000. If Alice initiates a key exchange with Bob, she

will first have to register Bob. After the registration, both counters are automatically set

to 1000. This means that Alice will use the first prime in the safe prime file. Similarly,

when Bob receives the first key exchange message, he will first have to register Alice.

The counters are set to 1000 which allows Bob to figure out which safe prime Alice has

used. After the key exchange has occurred, Alice will increment her IC while Bob will

increment his RC. The main reason for using two counters is to avoid problems of

asynchronous communications. Figure 3.1 shows that Alice has initiated the key-

exchange protocol four times while Bob has initiated the key-exchange protocol two

times.

Now let us suppose that a third wireless sensor node, Carol wants to communicate with

Alice. As Alice is a new node with which Carol wants to communicate, she will first

register Alice. When Alice receives the first message, she will add a new entry for Carol

in the node registration table. After the key exchange, Carol will increment her IC while

Chapter 3 Portable Diffie-Hellman

34

Alice will increment her RC. Note that the counters will only be incremented when a key

exchange has completely occurred and acknowledgements have been received.

Node ID IC RC

Bob 1004 1002

Alive

Node ID IC RC

Alice 1001 1000

Carol

Node ID IC RC

Alice 1002 1004

Bob

Carol 1000 1001

Figure 3.1: Node Registration and Counters (NRC) Table

The description of the PDH assumes that Alice will initiate the protocol. So Alice

generates the parameters (p, G, q, g). Following is a brief description about the

parameters:

 p is a safe prime of the form p = 2q + 1, where q is also prime.

 G is the cyclic group p*.

 q is order of the subgroup of quadratic residues i.e. q = (p – 1)/2.

 g is the generator of the subgroup of quadratic residues. g is found by picking an

arbitrary x p* such that x 1 mod p and setting g = x
2
 mod p.

Figure 3.2 shows the process of key exchange between Alice and Bob. The steps

illustrated in Figure 3.2 are described below:

Chapter 3 Portable Diffie-Hellman

35

1. Alice picks a safe prime p from the “Safe Prime File” using the current value of

IC. She then generates the parameters (G, q, g).

2. Alice chooses a large random number a q and calculates RA = g
a
 mod p.

3. Alice sends (g, RA) to Bob.

4. On receiving (g, RA), Bob picks the same safe prime p (as Alice) from the “Safe

Prime File” using the current value of RC. He then generates (G, q).

5. Bob chooses a large random number b q and calculates RB = g
b
 mod p.

6. Bob sends RB to Alice and calculates K = (RA)
b

 mod p.

7. Alice receives RB and calculates K = (RB)
a

 mod p.

8. Alice increments IC by one while Bob increments RC by one when

acknowledgement from Alice is received.

9. Both parties have the same value for the key that is:

K = (g
a
 mod p)

b
 mod p = (g

b
 mod p)

a
 mod p = g

ab
 mod p

K = g
ab

 mod p is called the Potable Diffie-Hellman secret key.

Chapter 3 Portable Diffie-Hellman

36

Safe

Prime

File

RA = ga mod p

1

3

2

7

6

5

4

RB = gb mod p

Alice Bob

Safe

Prime

File

K = (RA)b
 mod p

K = (RB)a
 mod p

K = g
ab

 mod p

(g, RA)

(RB)

NRC Table

Current IC

NRC Table

Current RC

NRC Table

Increment IC

NRC Table

Increment RC
8

PDH

Secret key

9

Figure 3.2: PDH Protocol Steps

Chapter 3 Portable Diffie-Hellman

37

3.2.3 Security Analysis of the PDH Protocol

The following discussion provides important security issues of the PDH protocol:

 A first look at PDH clearly indicates that it is not vulnerable to the discrete

logarithm and the man-in-the-middle attacks because the value of p is not public.

 An eavesdropper cannot inject false messages into the network unless he knows

the exact prime Alice and Bob are using. So the whole security of PDH relies on

keeping the safe prime file and the counters secret. If extra security is required,

then the safe prime file can be encrypted. The file can also be changed (if

possible) using a secure link over a period of time.

 The PDH does not provide complete authentication of wireless sensor nodes. The

only authentication provided is that parties involved in the communication have

assurance that the secret key can only be computed using the safe prime file. So if

an attacker tries to establish his own key with Alice, they both will end up with

different session keys. Also, if an attacker tries to establish his own key with

Alice, she will not be sending any secure data to the attacker because the PDH

requires the initiator of the key exchange to send the encrypted data. The receiver

in the key exchange will only use the session key for decryption of the secret data.

If the decrypted data doesn‟t make any sense, then Alice can identify the node as

an intruder and reject any other messages coming from him.

 There is still a possibility of the Denial of Service (DoS) attack from which the

wireless sensor network should be protected against. In [24], Wood and Stankovic

provide effective techniques that can be adopted.

Chapter 3 Portable Diffie-Hellman

38

 One of the main aspects of PDH is to add as much randomness as possible into

the Diffie-Hellman key-exchange protocol. That is why the generator g is always

selected at random. This adds to the security of the PDH because every time a

different p and g is used. An eavesdropper will not be able to figure out which

group Alice and Bob are working in.

 Another, important aspect in the security of PDH is how PDH can compute

faster? As p is private, an eavesdropper cannot determine the value of p, thus

making the discrete logarithm and the Diffie-Hellman problems even more had.

Now an attacker must find the value of p before launching the discrete logarithm

attack. Therefore, we can significantly reduce the size of p from 1024 bits. This

will allow us to do faster computations in wireless sensor nodes. We believe that

this is the only method by which public-key algorithms such as the Diffie-

Hellman key-exchange protocol can actually be implemented on devices having

low computing power. In order to make public key-exchange protocols faster, we

have to hide certain public parameters so that they are not known to an adversary

in advance.

3.3 Implementation of the PDH Protocol

We provide an easy-to-use implementation of the concepts behind the PDH

protocol. The implementation is done in Java so that it can be used on all platforms. We

call the library Simplified PDH (S-PDH). S-PDH is an educational tool designed to help

students learn the mathematical concepts and secret key generation of the PDH protocol

with smaller safe primes (9 decimal digits). The implementation should only be used for

educational purposes as the source code provided does not include the communication

Chapter 3 Portable Diffie-Hellman

39

over the wireless sensor network. So no counters are used because our primary focus was

to show the mathematical concepts and generation of secret keys. It is much easier to test

the source code if implemented stand alone. Furthermore, the results will not vary our

implementation if a layer of the communication library is added.

The implementation is done keeping in mind the current Java class library‟s available for

Sun SPOTS. The “BigInteger” class used to generate large numbers is not supported by

Sun SPOTS, so that is why the implementation only generates keys of 9 decimal digits.

In the next section we take a look at the implementation of S-PDH.

3.3.1 Simplified PDH (S-PDH) Java Library

Simplified-PDH (S-PDH) is as easy-to-use library developed in Java for use with Sun

SPOTS. Figure 3.3 shows the classes of the S-PDH library:

S-PDH

SPDHTest

ExecutionTimer

SPDH

Figure 3.3: S-PDH Class Library

The S-PDH library has three main classes.

1. SPDH Class

The SPDH class provides the functionality of the PDH key-exchange protocol. A brief

explanation of some of the important class methods is given below:

Chapter 3 Portable Diffie-Hellman

40

 SPDH initializes a newly created object to the default values. It also creates an

array called primesArray containing all safe primes by calling the

getPrimesFromFile method.

 getPrimesFromFile method reads all primes from the text file “safe_primes.txt”

and puts them in the primesArray. The file contains 100,000 safe primes.

 getRandomPrime method returns a random safe prime from the primesArray.

 getOrderOfSubgroup method returns the order of the cyclic subgroup of quadratic

residues modulo p.

 getRandomGenerator method returns a random generator for the cyclic subgroup

of quadratic residues modulo p. It picks and arbitrary x p* such that x 1

mod p and returns g = x
2
 mod p.

 getPrivateKey method returns a random integer less than the order of the cyclic

subgroup of quadratic residues modulo p.

 getPublicKey method returns the public key i.e., the value g
privateKey

 mod p.

 getPDHSecretKey method returns the secret PDH key. The function works by

getting a random prime, calculating the order of the subgroup, generating a

random generator, computing private and public keys of Alice and Bob and then

finally calculating the PDH secret key.

 power method returns the value of b
e
 mod p by reducing modulo p repeatedly

throughout the process of computing the result. However, the function is really

slow and should not be used for big integer values.

 fast_exponentiation method returns the value of b
e
 mod p by using the square

and multiply algorithm. The algorithm drastically reduces both the number of

Chapter 3 Portable Diffie-Hellman

41

operations and the memory required to perform modular exponentiation. In [25],

Vasyltsov et al. investigated the performance of modern exponentiation

algorithms. Figure 3.4 shows the square and multiply algorithm.

 Input: integer base b, integer exponent e, prime p

Output: b
e
 mod p

//convert the exponent e to binary and store the bits in an array x

x[1, n] convert_to_binary(e) //n is the number of bits in x

result 1;

for (i n down to 1) { //the bits are read from right to left

if (i
th

 bit of x = 1) result (result b) mod p

else garbageVariable (result b) mod p //to avoid timing attacks

b b
2
 mod p

}

return result

Figure 3.4: Square and Multiply Algorithm

2. ExecutionTimer Class

The ExecutionTimer is a utility class used to calculate the time taken to generate different

secret keys.

3. SPDHTest Class

The SPDHTest class has a main function that can be used to test the S-PDH. It also

calculates the time taken to generate secret keys by using the ExecutionTimer class.

Chapter 3 Portable Diffie-Hellman

42

The steps to test the SPDH class are:

1. Create an object of SPDH class.

2. Use the method getPDHSecretKey to compute the secret key between Alice and

Bob. The method returns the secret PDH key.

3. To display the protocol parameters use the methods getPrime, getGenerator,

getOrderOfSubgroup, getPrivateKeyAlice, getPrivateKeyBob, getPublicKeyAlice,

getPublicKeyBob. The methods return the corresponding field value.

4. To calculate the execution time of the protocol, create an object of the

ExecutionTimer class and use the start and end methods. This is an optional step

that can be added to calculate generation of multiple keys. A loop can be used if

multiple key generation is required.

3.4 Evaluation of S-PDH

In this section we present the results and analysis of the results obtained from the

evaluation of the S-PDH tool.

3.4.1 Empirical Results

1. The Simplified PDH (S-PDH) tool uses safe primes up to 9 decimal digits.

Therefore, the S-PDH can only produce keys up to 9 decimal digits.

2. Table 3.1 shows the average execution time for different number of keys

generated using S-PDH. The tests were conducted using a Compaq laptop having

a Intel(R) Core(TM)2 CPU T5600 @ 183 GHz processor and 1.50 GB of RAM.

Chapter 3 Portable Diffie-Hellman

43

Table 3.1: Execution Time for different number of Keys (Sample Size 50)

No. of Keys Time (nanoseconds) Time (seconds)

10,000 216,313,805 0.21

100,000 2,066,806,536 2.06

1,000,000 20,412,772,573 20.41

3. The histogram in Figure 3.5 shows the distribution of keys generated when the

parameters (safe prime p and generator g) are fixed and the private keys of Alice

and Bob (a and b respectively) are selected randomly. The histogram is

symmetric indicating that all keys are evenly distributed. The test was run for

10,000, 100,000 and 1,000,000 keys. However, the distribution of keys remains

the same. So we only present the histogram for 1,000,000 keys.

 <
 1

x1
08

1x
10

8
-

2x
10

8 –
1

2x
10

8
-

3x
10

8 –
1

3x
10

8
-

4x
10

8 –
1

4x
10

8
-

5x
10

8 –
1

5x
10

8
-

6x
10

8 –
1

6x
10

8
-

7x
10

8 –
1

7x
10

8
-

8x
10

8 –
1

8x
10

8
-

9x
10

8 –
1

>
 9

x1
08

p = 999999503 g = 913137792

N
u

m
b

er
 o

f
K

ey
s

Key Bins

Figure 3.5: Histogram of 1,000,000 Keys with Fixed (p, g) & Random (a, b)

4. The histogram is Figure 3.6 shows the distribution of keys generated when the

parameters (p, g, a, b) are selected randomly. The histogram is slightly skewed to

the right. Again as in Figure 3.5, the distribution of keys remains the same for a

Chapter 3 Portable Diffie-Hellman

44

run for 10,000, 100,000 and 1,000,000 keys. So we only present the histogram for

1,000,000 keys.

 <
 1

x1
08

1x
10

8
-

2x
10

8 –
1

2x
10

8
-

3x
10

8 –
1

3x
10

8
-

4x
10

8 –
1

4x
10

8
-

5x
10

8 –
1

5x
10

8
-

6x
10

8 –
1

6x
10

8
-

7x
10

8 –
1

7x
10

8
-

8x
10

8 –
1

8x
10

8
-

9x
10

8 –
1

>
 9

x1
08

N
u

m
b

er
 o

f
K

ey
s

Key Bins

Figure 3.6: Histogram of 1,000,000 Keys with Random (p, g, a, b)

5. Table 3.2 shows the difference between the average number of keys duplicated

when the parameters (p and g) were fixed and when the parameters (p and g) were

selected randomly. The private keys (a and b) are random in both cases. The

sample size for the experiment was 50.

Table 3.2: Average Number of Keys Duplicated (Sample Size 50)

No. of Keys
Fixed p, g Random p, g

2 times 3 times 2 times 3 times

10,000 0.04 (1/25) 0 0 0

100,000 10 0 5 0

1,000,000 1000 1 550 0.2 (1/5)

Chapter 3 Portable Diffie-Hellman

45

3.4.2 Analysis of Empirical Results

S-PDH can be used as an educational tool to teach students about the mathematical

concepts of the Diffie-Hellman and the Portable Diffie-Hellman key-exchange protocols.

The above results show interesting properties of how the different parameters effect the

generation of keys.

1. Table 3.1 shows that the S-PDH can generate keys very quickly. Thus, the

implementation can be extended easily to bigger prime numbers.

2. The histogram shown in Figure 3.5 is symmetric. This histogram shows that when

the value of the safe prime p and the generator g were fixed to 999999503 and

913137792 respectively, the keys were evenly distributed. This means the keys

cannot be predicated because all keys are probably.

3. In contrast the histogram shown in Figure 3.6 is slightly skewed to the right. The

main reason for this is that p is selected randomly from a given range of safe

primes (526671599 - 999999503). The keys are still fairly evenly distributed

indicating that an adversary will not be able to predict the value of the key.

4. Table 3.2 shows that the number of duplicate keys when p and g were fixed is

almost twice compared to when they were selected randomly. This shows that

randomizing p and g decreases the number of duplicate keys. Duplicate keys can

be a problem if we are using smaller primes. So it is better to select a different

prime every time. However, the duplications will get fewer as the size of the

primes increase.

In general because of the results obtained from S-PDH, we can state that the PDH

protocol can generate secure and fast keys using the Diffie-Hellman key-exchange

Chapter 3 Portable Diffie-Hellman

46

protocol. Thus, the PDH protocol gives us a new direction in which public key-exchange

protocols can be implemented in wireless sensor networks. The S-PDH results are

promising; however, its use may be limited by the size of the safe primes used. In the

next chapter, we present an initial study and implementation of the PDH protocol using

elliptic curves.

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

47

Chapter 4

Portable Diffie-Hellman using Elliptic Curve Cryptography

In this chapter we first explain the Portable Diffie-Hellman (PDH) protocol using

elliptic curves (PDH-EC). Afterwards, we discuss the implementation of a Simplified

PDH-EC (S-PDH-EC) library designed to show the mathematical concepts and the key

generation process behind the PDH-EC protocol. The library is in its initial stage of

development. However, it can be used for educational purposes especially for teaching

students the mathematics of elliptic curve cryptography.

4.1 The PDH-EC Protocol using Safe Primes

The PDH-EC protocol is a variant of the Portable Diffie-Hellman (PDH) protocol

presented in Chapter 3. Again we consider a setting in which two wireless sensor nodes

execute the protocol in order to generate a shared secret key. For the PDH protocol we

considered a file containing a large number of safe primes. In contrast, the PDH-EC

protocol uses a secret file containing a large number of elliptic curve domain parameters.

These elliptic curves are randomly generated using safe primes. We refer to this file as

“EC Secret Parameters File”. The file contains the following parameters of E(p):

 The safe prime p 7 of the form p = 2q + 1, where q is also prime.

 The parameters A and B defining the elliptic curve equation

. mod 32 pBAxxy

 The order of the elliptic curve |E(p)| i.e., the number of points on the elliptic

curve including the point at infinity. For the protocol we consider that the order of

all elliptic curves must be a prime number.

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

48

The rest of the setting remains the same as the PDH protocol. Following is a brief

description about the main aspects of the protocol:

 The initiate counter (IC) and receive counter (RC) are used by both nodes

involved in the communication.

 In order for the communication to happen, Alice will pick an elliptic curve from

the EC Secret Parameters File using the current value of IC. Then, she will

randomly generate the base point G on the elliptic curve. Since, the order of

elliptic curve is prime, every point except the point at infinity is a generator. She

will then calculate her public key and send it to Bob along with the base point G.

 On receiving Alice‟s public key and the base point G, Bob will generate his

public key by picking the same elliptic curve (as Alice) using the current value of

the RC and the generator G. Bob will then send his public key to Alice. Both

parties can now calculate the Diffie-Hellman secret key. They can use either the x

or y coordinate of the key for the communication. In our setting, we assume that

both parties will use the y-coordinate as their secret key.

 At the end of the communication, the value of the IC and RC will be incremented

so that the every time a new elliptic curve can be used. Alice and Bob will destroy

their private keys after they have calculated the session key. Note that the

counters will only be incremented when a key exchange has completely occurred

and acknowledgements have been received. The complete working of counters IC

and RC is explained in Chapter 3.

The description of the PDH-EC, assumes that Alice will initiate the protocol. So Alice

generates the elliptic curve domain parameters (p, A, B, G, n and h). p, A and B are picked

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

49

from the EC Secret Parameters File. The order n of the generator G is equal to the order

of the elliptic curve i.e. n = |E(p)|. The cofactor h = |E(p)| / n, since n = |E(p)|, h is

always equal to 1.

Figure 4.1 shows the process of key exchange between Alice and Bob. The steps

illustrated in Figure 4.1 are described below:

1. Alice generates an elliptic curve E(p) from the “EC Secret Parameters File”

using the current value of IC. She then generates the base point G.

2. Alice chooses a large random number a such that .0 na Using elliptic curve

scalar point multiplication, Alice calculates GA = aG on E.

3. Alice sends (G, GA) to Bob.

4. On receiving (G, GA), Bob generates the same elliptic curve E(p) (as Alice) from

the “EC Secret Parameters File” using the current value of RC.

5. Bob chooses a large random number b such that .0 nb Using elliptic curve

scalar point multiplication, Bob calculates GB = bG on E.

6. Bob sends GB to Alice and calculates K = bGA.

7. Alice receives GB and calculates K = aGB.

8. Alice increments IC while Bob increments RC by one when acknowledgement

from Alice is received.

9. Both get the same point K for the key i.e.

K = aGB = bGA = abG.

10. Alice and Bob use the y-coordinate of the point K as their secret key.

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

50

EC Secret

Parameters File

GA = aG

1

3

2

8

7

6

5

4

GB = bG

Alice Bob

EC Secret

Parameters File

K = bGA

K = aGB

K = abG

(G, GA)

(GB)

PDH

Secret key

NRC Table

Current IC

NRC Table

Current RC

NRC Table

Increment IC

NRC Table

Increment RC

9

10

Use the y-coordinate of K as the secret key

Figure 4.1: PDH-EC Protocol Steps

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

51

4.2 Implementation of the PDH-EC Protocol

We provide an easy-to-use implementation of the concepts behind the PDH-EC

protocol. The implementation as in S-PDH is in Java so that it can be used on all

platforms. We call the library Simplified PDH-EC (S-PDH-EC). S-PDH-EC is an

educational tool designed to help students learn the mathematical concepts of elliptic

curve cryptography (ECC) and the key generation process of the PDH-EC protocol. The

library uses smaller safe primes (up to 7 decimal digits). The library is still under

development. So it only uses basic algorithms for scalar multiplication and computing the

order of an elliptic curve. Figure 4.2 shows the classes of the S-PDH-EC library. The S-

PDH-EC library has seven main classes which are described in the following sections.

S-PDH-EC

SPDHECTest

ExecutionTimer

SPDHEC ECC

ECPoint

ModularArithmetic

ExtentedEuclidean

Algorithm

Figure 4.2: S-PDH-EC Class Library

4.2.1 ExtendedEculideanAlgorithm Class

The class implements the extended Euclidean algorithm. The algorithm calculates the

greatest common divisor (GCD) of two integers a and b. It also finds integers S and T

such that aS + bT = gcd(a, b).

The extended Euclidean algorithm is particularly useful for calculating modular

multiplicative inverses in p, since each member of p (except 0) has a multiplicative

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

52

inverse. This means that given an integer a p such that 0a , the gcd(a, p) = 1 and the

multiplicative inverse of a is the value of S after being mapped to p.

4.2.2 ModularArithmetic Class

The class provides the basic functionality for modular arithmetic. Some of the important

class methods are given below:

 Mod method returns the value of a mod p.

 fast_exponentiation method returns the value of b
e
 mod p by using the square and

multiply algorithm (Figure 3.4).

 MultiplicativeInverse method returns the modular multiplicative inverse of an

integer in p. Figure 4.3 shows the algorithm for computing modular

multiplicative inverses.

 Input: Modulas n; element a n

Output: [a
–1

 mod n] (if it exists)

 (d, S, T) ExtendedEuclideanAlgorithm.getGCD(a, n) //note that aS + nT = GCD(a, n)

if (1d) return “a is not invertible modulo n”

else return [S mod n]

Figure 4.3: Algorithm for computing Modular Multiplicative Inverse

 isQuadraticResidue method returns true if an integer x is a quadratic residue

modulo p in p*. In the equation zy2
 mod p, z is called a quadratic residue (QR)

if the equation has two solutions; z is called a quadratic non-residue (QNR) if the

equation has no solutions. Figure 4.4 shows the algorithm for deciding quadratic

residuosity modulo a prime.

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

53

 Input: A prime p; element x p*

Output: Whether x is a quadratic residue or quadratic non-residue

 b fast_exponentiation(x, (p – 1)/2, p)

if (b = 1) return “Quadratic Residue”

else return “Quadratic Non-Residue”

Figure 4.4: Algorithm for deciding Quadratic Residuosity modulo a prime

 ModularSquareRoot method returns the square root modulo a safe prime of the

form 4mod3p . Figure 4.6 shows the algorithm for computing squaring roots

modulo a safe prime greater than 5.

 Input: A safe prime p of the form 3p mod p; quadratic residue a p*

Output: A square root of a i.e. pax

p

mod4

1

x fast_exponentiation(a, (p + 1)/4, p)

return x

Figure 4.6: Algorithm for computing Square Roots modulo a safe prime

4.2.3 ECPoint Class

The class is used to represent a point (x, y) on the elliptic curve.

4.2.4 ECC Class

ECC is the main class that provides the functionality required for elliptic curve

cryptography. Some of the important class methods are given below:

 ECC initiates a newly created object. The ECC class has three constructors i.e.

1. If the constructor is called without any arguments, then it initiates a newly

created object to the default field values.

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

54

2. If the constructor is called by passing the elliptic curve parameters A, B and

safePrime, then it constructs a new ECC object so that it represents the

specified elliptic curve parameters. However, if the elliptic curve is singular or

the order of elliptic curve is not prime, then the constructor prints an error

message and returns without initiating the field values.

3. If the constructor is called by passing the elliptic curve parameters A, B,

safePrime and primeOrder, then it constructs a new ECC object so that it

represents an elliptic curve of prime order.

 generateRandomEC method generates a random elliptic curve of prime order. The

function takes a lot of time to generate a curve. So it should only be used to

generate new elliptic curves.

 isECNonSingular method returns true if the elliptic curve is non-singular. Figure

4.7 shows the algorithm for deciding non-singularity of an elliptic curve.

Input: A safe prime p 7; an elliptic curve pBAxxy mod 32

Output: Whether an elliptic curve is singular or non-singular

result [4A
3
 + 27B

2
 mod p]

if (result = 0) return “Singular”

else return “Non-Singular”

Figure 4.7: Algorithm for deciding Non-Singularity of an Elliptic Curve

 IsEqual method returns true if two points on the elliptic curve have the same x

and y coordinates i.e. x1 = x2 and y1 = y2.

 IsAdditiveInverse method returns true if two points on the elliptic curve are

additive inverses of each other i.e. x1 = x2 and y1 = –y2.

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

55

 ECPointAddition method returns the result of adding two points on the elliptic

curve. Figure 4.8 shows the algorithm for point addition.

 Input: A safe prime p 7; two points P1 = (x1, y1) and P2 = (x2, y2) on the elliptic curve

pBAxxy mod 32 with P1, P2 O (point at infinity)

Output: P1 + P2 = P3 = (x3, y3)

if (2121 & yyxx) return [P1 + P2 = O] //additive inverse i.e. P1 = –P2

if (P1 = P2 & y2 = 0) return [P1 + P2 = 2P1 = O] //point doubling

if (P1 = P2 & y2 0) { //point doubling

 m] mod)3[(2
1 pAx [MultiplicativeInverse(2 y1, p) mod p] mod p

 x3 [m
2
 – 2x1 mod p]

y3] mod)([131 pyxxm

 return [P3 = (x3, y3)]

}

if (x1 x2) { //point addition

 m] mod)[(12 pyy [MultiplicativeInverse 12(xx , p) mod p] mod p

 x3] mod [21
2 pxxm

y3] mod)([131 pyxxm

 return [P3 = (x3, y3)]

}

Figure 4.8: Point Addition Algorithm

 ECPointDoubling method returns the result of doubling a point on an elliptic

curve. Figure 4.9 shows the algorithm for point doubling.

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

56

Input: A safe prime p 7; a point P = (x1, y1) on the elliptic curve pBAxxy mod 32

with P O (point at infinity)

Output: P + P = P3 = (x3, y3)

if (y2 = 0) return [P + P = 2P = O]

else {

 m] mod)3[(2
1 pAx [MultiplicativeInverse(2 y1, p) mod p] mod p

 x3 [m
2
 – 2x1 mod p]

y3] mod)([131 pyxxm

 return [P3 = (x3, y3)]

}

Figure 4.9: Point Doubling Algorithm

 ECDoubleAndAdd method returns the result of multiplying a point on the elliptic

curve with a scalar. Figure 4.10 shows the double and add algorithm for scalar

multiplication.

Input: A safe prime p 7; a point P = (x1, y1) on the elliptic curve pBAxxy mod 32

with P O (point at infinity); a scalar a

Output: Q = aP

//convert the scalar a to binary and store the bits in an array x

x[1, n] convert_to_binary(a) //n is the number of bits in x

Q P

for (i 2 to n) {

 Q PointDoubling(Q)

if (i
th

 bit of x = 1) Q PointAddition(Q, P)

}

return Q

Figure 4.10: Double and Add Algorithm

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

57

 GenerateAllECPoints method generates all points on the elliptic curve and prints

them on the screen. Figure 4.11 shows the algorithm for generating all points on

the elliptic curve.

Input: A safe prime p 7; an elliptic curve pBAxxy mod 32

Output: Print all points on the elliptic curve

P = (x1, y1), Q = (x2, y2)

x 0

while (x < p) {

w] mod [3 pBAxx

if (w = 0) {

print “P = (x, 0)”

x x + 1

continue

 }

if (isQuadraticResidue(w, p)) {

sqrt ModularSquareRoot(w, p)

 x1 x

y1 sqrt

x2 x

y2 [–1 sqrt + p]

print “P = (x1, y1) & Q = (x2, y2)”

x x + 1

}

}

Figure 4.11: Algorithm for finding all points on the Elliptic Curve

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

58

 GenerateRandomECPoint method returns a random point on the elliptic curve.

The function can be used to get a generator of the elliptic curve. Figure 4.12

shows the algorithm for finding a random point on an elliptic curve.

Input: A safe prime 7p ; an elliptic curve pBAxxy mod 32

Output: a random point P = (x1, y1) on the elliptic curve

while (true) {

 x Random(0, p) //randomly pick an integer x such that px0

w] mod [3 pBAxx

if (w = 0) {

 x1 x

y1 w

break

 }

if (isQuadraticResidue(w, p)) {

sqrt ModularSquareRoot(w, p)

 x1 x

r Random(0, 2) //randomly pick an integer r such that 20 r

if (r = 0) y1 sqrt

else y1 [–1 sqrt + p]

break

}

}

return [P = (x1, y1)]

Figure 4.12: Algorithm for finding a Random Point on the Elliptic Curve

 isPrime method returns true if the given number is prime.

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

59

 getECOrder method returns the total number of points on an elliptic curve

including the point at infinity. Figure 4.13 shows the algorithm for computing the

order of an elliptic curve. The algorithm takes a lot of time and should only be

used with smaller safe primes. Otherwise, it would be impossible to find the order

of the elliptic curve.

Input: A safe prime p 7; an elliptic curve pBAxxy mod 32

Output: number of points on the elliptic curve including the point at infinity

ecOrder p + 1

x 0

while (x < p) {

 w] mod [3 pBAxx

 if (w = 0) {

 ecOrder ecOrder + 0

x x + 1

continue

 }

if (isQuadraticResidue(w, p)) ecOrder ecOrder + 1

 else ecOrder ecOrder – 1

 x x + 1

}

return ecOrder

Figure 4.13: Algorithm for computing Order of an Elliptic Curve

 getECOrderOfElement method returns the order of an element. For elliptic curves

having prime order, the order of an element is always equal to the order of the

elliptic curve.

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

60

4.2.5 SPDHEC Class

The SPDHEC class provides the functionality of the PDH-EC protocol. A brief

explanation of some of the important class methods is given below:

 SPDHEC initializes a newly created object to the default values. It also creates an

array called ecParameterArray containing parameters for all elliptic curves by

calling the getECFromFile method.

 getECFromFile method reads parameters for all elliptic curves from the text file

“ec_parameters.txt” and puts them in the ecParameterArray. The file contains

parameters for 10 elliptic curves.

 getRandomEC method randomly selects an elliptic curve from the

ecParameterArray.

 getRandomGenerator method returns a random generator G for the elliptic curve

by calling the generateRandomECPoint method of the ECC class.

 getPrivateKey method returns a random integer less than the order of the elliptic

curve.

 getPublicKey method returns the public key for Alice and Bob.

 getPDHECSecretKey method returns the secret PDH-EC key. The function works

by picking a random elliptic curve, generating a random generator for the elliptic

curve, computing the private and public keys of Alice and Bob and then finally

calculating the PDH-EC secret key.

4.2.6 ExecutionTimer Class

The ExecutionTimer is a utility class used to calculate the time taken to generate different

secret keys.

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

61

4.2.7 SPDHECTest Class

The SPDHECTest class has a main method that can be used to test the S-PDH-EC. It also

calculates the time taken to generate secret keys by using the ExecutionTimer class.

The steps to test the SPDHEC class are:

1. Create an object of SPDHEC class.

2. Use the method getPDHECSecretKey to compute the secret key between Alice

and Bob. The method returns the secret PDH-EC key.

3. To display the protocol parameters use the methods getA, getB, getPrime,

getGenerator, getPrivateKeyAlice, getPrivateKeyBob, getPublicKeyAlice,

getPublicKeyBob. The methods return the corresponding field value.

4. To calculate the execution time of the protocol, create an object of the

ExecutionTimer class and use the start and end methods. This is an optional step

that can be added to calculate generation of multiple keys. A loop can be used if

multiple key generation is required.

4.3 Evaluation & Analysis of Empirical Results of S-PDH-EC

In this section we present the results obtained from the evaluation of the S-PDH-EC tool.

1. The Simplified PDH-EC (S-PDH-EC) tool uses safe primes up to 7 decimal

digits. Therefore, the S-PDH can only produce keys up to 7 decimal digits.

2. Table 4.1 shows the elliptic curves on which the S-PDH-EC protocol was tested.

These are experimental curves of prime order generated to test the performance of

the S-PDH-EC. These curves can also be used for educational purposes.

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

62

Table 4.1: Experimental Elliptic Curves of Prime Order

No. Elliptic Curves E(p) Prime Order

1 1432 xxy mod 7 5

2 1832 xxy mod 11 17

3 432 xxy mod 23 29

4 481332 xxy mod 47 53

5 286632 xxy mod 83 97

6 90928994027932 xxy mod 38603 38449

7 391232 xxy mod 811379 812101

8 24100139031032 xxy mod 280703 281423

9 26183678325632 xxy mod 1173539 1171463

10 22113983010032 xxy mod 3318167 3320477

11 76844268173232 xxy mod 5394539 5397697

12 30625832 xxy mod 5847239 5845403

13 26362043377832 xxy mod 6348383 6348977

14 8830619133005332 xxy mod 8793839 8795089

15 2491395495954932 xxy mod 9999047 10000721

3. Table 4.2 shows the average execution time for different number of keys

generated using curve number 15 in Table 4.1. The tests were conducted using a

Compaq laptop having a Intel(R) Core(TM)2 CPU T5600 @ 183 GHz processor

and 1.50 GB of RAM.

Chapter 4 Portable Diffie-Hellman using Elliptic Curve Cryptography

63

Table 4.2: Execution Time for different number of Keys (Sample Size 10)

No. of Keys Time (nanoseconds) Time (seconds)

10,000 2,473,430,841 2.47

100,000 24,628,840,816 24.62

1,000,000 245,552,982,013 245.55

The execution time for S-PDH-EC is 10 times slower than the S-PDH protocol. The main

reason for this is that S-PDH-EC is in its initial development stage. So we have

implemented the basic algorithms especially for point counting. Further enhancements in

the algorithms will significantly increase the computation cost of the S-PDH-EC tool.

In the next chapter we present the summary of our research and conclusions. We also

discuss the future work planned for the S-PDH and S-PDH-EC protocols.

Chapter 5 Conclusions and Future Work

64

Chapter 5

Conclusions and Future Work

5.1 Summary

This thesis investigated the mathematical foundations of the Diffie-Hellman key-

exchange protocol and the elliptic curve cryptography for the purpose of understanding

the practical problems of implementing the theoretical concepts in wireless sensor

networks. The main results are as follows:

1. Designed a new improved protocol for establishing secure keys in wireless sensor

networks called the Portable Diffie-Hellman (PDH). The protocol is not

vulnerable to the discrete logarithm and the man-in-the-middle attacks.

2. Developed a portable implementation of the PDH protocol called Simplified PDH

(S-PDH) in Java. The evaluation of the protocol showed that S-PDH has an even

distribution of keys so that an adversary cannot predict the value of keys.

Furthermore, there were no duplicates for 10,000 keys.

3. Designed a variant of the PDH protocol called the Portable Diffie-Hellman using

Elliptic Curves (PDH-EC).

4. Developed a portable implementation of the PDH-EC protocol called Simplified

PDH-EC (S-PDH-EC) in Java. The performance evaluation of the key generation

computation of PDH-EC compared to S-PDH is 10 times slower. So further

enhancements in the algorithms are required.

5. S-PDH and S-PDH-EC are also educational tools designed to help students

understand and experiment how the mathematical properties of the public and

private parameters affect the key generation process in the Diffie-Hellman key-

Chapter 5 Conclusions and Future Work

65

exchange protocol and elliptic curve cryptography. Furthermore, the tools can be

used to understand how to implement the theoretical aspects of the Diffie-

Hellman key-exchange protocol. The tools can also be used to understand the

secret key generation process of the PDH and the PDH-EC protocols.

In general the PDH protocol introduces a new concept in which public key-exchange

protocols can be used in wireless sensor networks. The idea of implementing public-key

algorithms by hiding particular public parameters (such as the prime number) is probably

the only way in which public-key encryption can be used in today‟s wireless sensor

networks. The PDH protocol shows that:

 The randomization of the public parameters gives a new method of establishing

secure keys in wireless sensor networks. S-PDH was used to test the

randomization and the results show that the ideas presented in the PDH protocol

can actually be implemented for a wireless sensor network that uses Sun SPOTS.

 The selection of the safe prime p (from a secret file containing a large number of

safe primes) and the randomization of g can significantly reduce the size of p

from the current standard of 1024 bits (or 300 decimal digits) in the Diffie-

Hellman key-exchange protocol. Thus, reducing the computation cost of the

protocol and making it feasible for use in wireless sensor networks.

 It can solve the problem of key distribution and management in wireless sensor

networks as long as the network has a reasonable protection against physical

capturing of nodes. Even if a single node in the wireless sensor network is

compromised, the rest of the nodes can still establish secure keys for a certain

amount of time depending on the time it will take to decrypt the primes file.

Chapter 5 Conclusions and Future Work

66

5.2 Future Work

Our future work contains:

 Deployment of the PDH and the PDH-EC protocols on the Sun SPOTS.

 Design and implement a set of attacks against PDH and the PDH-EC protocols.

 Calculating the computation cost of the PDH and PDH-EC protocols after

deployment on the Sun SPOTS.

 Testing the key generation process between multiple Sun SPOT nodes and test its

use in a multicast implementation.

 Implementation of faster algorithms (for point counting and calculating order of

the elliptic curves) for the S-PDH-EC protocol.

 Develop animation tools that model the key generation process in PDH and the

PDH-EC protocols.

References

67

REFERENCES

[1] D. Boyle and T. Newe, "Security Protocols for Use with Wireless Sensor

Networks: A Survey of Security Architectures," in Proceedings of the Third

International Conference on Wireless and Mobile Communications (ICWMC '07),

Guadeloupe, French Caribbean, 2007, p. 54.

[2] L. F. Akyildiz, et al. (2002, Aug.) A Survey on Sensor Networks. IEEE

Communications Magazine. 102-114. Available: http://dl.comsoc.org/comsocdl/

[3] A. Perrig, et al. (2004, June) Security in wireless sensor networks.

Communications of the ACM [Online]. 53-57. Available:

http://cacm.acm.org/magazines/2004/6

[4] J. Großschädl, et al., "The energy cost of cryptographic key establishment in

wireless sensor networks," in Proceedings of the 2nd ACM symposium on

Information, computer and communications security, Singapore, 2007, pp. 380-

382.

[5] Y. Xiao, et al., "A Survey of Key Management Schemes in Wireless Sensor

Networks," Computer Communications: Special Issue on Security on Wireless Ad

Hoc and Sensor Networks, vol. 30, pp. 2314-2341, Sept. 2007.

[6] W. Du, et al., "A pairwise key predistribution scheme for wireless sensor

networks," ACM Transactions on Information and System Security (TISSEC), vol.

8, pp. 228-258, May 2005.

[7] A. Becher, et al., "Tampering with Motes: Real-World Physical Attacks on

Wireless Sensor Networks," in Proceeding of the 3rd International Conference on

Security in Pervasive Computing (SPC), York, UK, 2006, pp. 104-118.

http://dl.comsoc.org/comsocdl/
http://cacm.acm.org/magazines/2004/6

References

68

[8] K. Xing, et al., "Real-time Detection of Clone Attacks in Wireless Sensor

Networks," in Proceedings of the 28th IEEE International Conference on

Distributed Computing Systems (ICDCS '08), Beijing, China, 2008, pp. 3-10.

[9] R. B. Smith, "SPOTWorld and the Sun SPOT," in Proceedings of the 6th

international conference on Information processing in sensor networks (IPSN

'07), Cambridge, Massachusetts, 2007, pp. 565-566.

[10] B. A. Forouzan, Cryptography and Network Security, International ed.: McGraw

Hill, 2008.

[11] J. Katz and Y. Lindell, Introduction to Modern Cryptography: Chapman and

Hall/CRC, 2008.

[12] W. Diffie and M. E. Hellman, "New Directions in Cryptography," IEEE

Transactions on Information Theory, vol. 22, pp. 644- 654, Nov. 1976.

[13] H. Krawczyk, "HMQV: A High-Performance Secure Diffie-Hellman Protocol," in

Advances in Cryptology—Proceedings of CRYPT0 2005, Santa Barbara,

California, 2005, pp. 546-566.

[14] N. Koblitz, "Elliptic Curve Cryptosystems," Mathematics of Computation, vol.

48, pp. 203-209, 1987.

[15] V. S. Miller, "Use of Elliptic Curve in Cryptography," in Advances in

Cryptology—Proceedings of CRYPT0 '85, Santa Barbara, California, 1985, pp.

417-426.

[16] J. López and R. Dahab, "An Overview of Elliptic Curve Cryptography," Relatório

Técnico IC-00-10, 2000.

References

69

[17] K. Lauter. (2004, Feb) The Advantages of Elliptic Curve Cryptography for

Wireless Security. IEEE Wireless Communications Mag. 62-67.

[18] L. C. Washington, Elliptic Curves, Number Theory and Cryptography: Chapman

and Hall/CRC, 2003.

[19] R. Schoof, "Elliptic curves over finite fields and the computation of square roots

mod p," Mathematics of Computation, vol. 44, pp. 483-494, 1985.

[20] I. Blake, et al., "Schoof's Algorithm and Extensions," in Elliptic Curves in

Cryptography. vol. 265, ed Cambridge: University Press, 2000, pp. 109-147.

[21] N. Zhang, et al., "Efficient elliptic curve scalar multiplication algorithms resistant

to power analysis," Information Sciences: an International Journal, vol. 177, pp.

2119-2129, 2007.

[22] T. Satoh and K. Araki, "Fermat quotients and the polynomial time discrete log

algorithm for anomalous elliptic curves," Comm. Math. Univ. Sancti Pauli, vol.

47, pp. 81-92, 1998.

[23] N. P. Smart, "The discrete logarithm problem on elliptic curves of trace one,"

Journal of Cryptology, vol. 12, 1999.

[24] A. D. Wood and J. A. Stankovic. (2002, Oct.) Denial of Service in Sensor

Networks. Computer Magazine. 54-62. Available:

http://www2.computer.org/portal/web/csdl/doi/10.1109/MC.2002.1039518

[25] I. Vasyltsov, et al., "Investigation of modern exponentiation algorithms," in

Modern Problems of Radio Engineering, Telecommunications and Computer

science—Proceedings of the International Conference, 2004, pp. 291-293.

http://www2.computer.org/portal/web/csdl/doi/10.1109/MC.2002.1039518

		2009-09-15T16:42:29-0400
	ETD Program

