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ABSTRACT

Transmission electron microscopy (TEM) has an ability to depict material
structures on nanoscales (~0.1 nm). High resolution TEM has found applications in a
wide range of domains such as the studies of biological tissues, reactive chemical
compounds and product defect inspection. For the past decade, Nano-research has
generated a large number of TEM images, each containing immense amount of
information that cannot be processed and interpreted manually. The combination of
image processing and big data mining becomes the only viable solution. This thesis
investigates the feasibility of using a Cascade AdaBoost algorithm to detect and count
nanoparticles automatically. Experiments with cube-shaped objects have yielded very
promising results with high detection rate (true positive rate) and low false alarm rate
(false positive rate). The impacts of labeling variation, sample size and feature size on the

detection accuracy were also discussed.
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1. INTRODUCTION

The transmission electron microscope (TEM) operates on the same basic principles
as the optical microscope but using electrons instead of photons as its light source. Because
electrons have much lower wavelengths, a TEM can achieve an image resolution that is
thousand times higher than that of an optical microscope. A typical TEM system consists of
three essential subsystems, namely an electron gun, image producing subsystem and image
recording subsystem. In a TEM, electromagnetic lenses replace optical lenses and images
are viewed on a screen rather than through an eyepiece. Transmission electron microscopy
illuminates a sample with electrons within a high vacuum to produce images and receives
the electrons that are transmitted through the sample. The image recording subsystem has a
fluorescent screen for viewing and focusing the object and a digital camera for permanent
recording. The advanced high-resolution TEM has an ability to capture atomic structure in
nanomaterials with a resolution as low as 0.10 nm and with sensitivity at the single-atom
level. In addition, an environmental TEM system is capable of characterizing a sample’s
morphologic, compositional, crystallographic, as well as its in situ reactive chemical
properties [1, 2].

Because of the aforementioned features, TEM’s has vast applications in many fields
such as forensic analysis, biological tissue engineering, pharmaceutical quality control, 3D
printing system, as well as the inspection of large scale integrated circuits and chips. This
thesis studies the TEM images of nanoparticles used as chemical catalysts in air quality

control, particularly the cube-shaped nanocrystals [3, 4].



1.1~ MOTIVATIONS OF USING ADABOOST ALGORITHM

Nano research using TEMs has generated a large quantity of images and each image
contains GB or TB digital information, leading to a typical situation of “big data” that
cannot be processed and analyzed by human experts or specialists. Further analysis of the
complex relationships among nanomaterial properties such as shape, size, effective surface
contact area, crystal forming temperature, growth rate and chemical reactivity demands
more sophisticated deep mining methods. Detecting and counting the number of particles in
a TEM image is the first and the most critical step of performing a deep mining task. The
presence of image noise and objects overlapping causes much challenges to the methods
that rely upon geometric and photometric cues. An ensemble learning algorithm (Cascade
AdaBoost) is chosen because its robustness and efficiency in handling difficult objects has

been demonstrated in many applications, especially in the area of face detection.

1.2 TECHNICAL CHALLENGES

The main challenges encountered in this project are summarized as follows:

(1) Many particles are severely overlapped i.e., the well-known occlusion problem
in computer vision and object detection research.

(2) Due to the large number of particles involved and the occlusion problem, class
labeling errors in extracting positive samples (ground truth) become an issue. In
other words, ambiguity in labeling accuracy must be taken into account.

(3) Computational cost is very high because a large number of features is needed to

train a Cascade AdaBoost classifier that can perform well in the testing phase.



1.3 CONTRIBUTIONS

The contribution of this study is four-fold: (i) This is the first investigation of using
an ensemble learning method to automatically detect cube-shaped nanoparticles in TEM
images; (ii) A baseline performance of two-class classification is established using an
extended set of Haar features; (iii) The potential impacts of multi-label-set, sample size and
feature size on the classifier’s performance are examined; (iv) The preliminary experiments

show that the proposed method is very promising in detecting cube-shaped objects.



2. METHODS

2.1 CASCADE ADABOOST ALGORITHM

Adaboost is considered as an ensemble learning method (meta-algorithm) that is
composed of many weak classifiers. Each classifier performs a simple task according to
one dimensionality of the input vector [5]. Having many weak classifiers, the detection rate
of an AdaBoost algorithm is improved but it also requires a long training time with a
potentially high false alarm rate. To deal with these issues, Viola and Jones [6] proposed a
Cascade-Adaboost approach as shown in figure 1. In a cascade architecture, Neg represents
the number of negative sub-windows (objects) rejected and Pos indicates the number of
positive sub-windows (objects) accepted. X is the input set, which includes both negative
and positive samples. During a training, if a sub-window is determined negative, it is
removed from the original training set, thus reducing the number of samples as the cascade

stage gradually increases [7, 8].

Neg Neg

Figure 1: Cascade AdaBoost classifier



Before the training of a cascade classifier, a few parameters need to be set: d as a
minimum detection rate, f as a maximum false alarm rate in each stage, and Fiurger as a
target false alarm rate. Given two sets of samples (P for positive and N for negative), a
training is done in two loops. Inside the inner loop, the target value will be checked each
time a weak classifier is added. The training is completed at the stage where the overall
target is reached. If the false alarm rate F; is below Fiuge, the training is terminated,
otherwise negative samples will be reset and false detections are put in set N. The external
loop is repeated to train the cascade classifier for the next stage until the overall false alarm

rate is below Frareer. Figure 2 illustrates the entire training procedure [9, 10].

e f maximum acceptable false alarm rate at a stage.
e d: minimum acceptable detection rate at a stage; Fiuge: Overall target false alarm rate.
e  P:positive sample set; N: negative sample set.
Ld F()=1;D()=1; i=0.
e while F; > Fuger
o i=i+1l;n=0,F=F_;
o while Fi>fx Fi g
o nm=ntl.
% use P and N to train a classifier with »; features
% check current classifier on validation set to determine F;and D;
% determine threshold for the ith classifier until the current cascade classifier
has a detection rate > (d x D;.;)
o NisNULL.
e if F;> Fuee then evaluate the current cascaded classifier on the set of negative samples and put
false detections into set V.

Figure 2: Cascade Adaboost training procedure.



2.2 FEATURE COMPUTATION
Integral image is an intermediate representation of an input image. It can be used to
compute rectangle features (Haar features) rapidly [6, 11]. The integral image at location
(x, v) represents the sum of the pixels above and to the left of (x, y) as shown in figure 3.

The integral image at location (X, y) can be represented mathematically as:

ix, )= Y i,y (1

2 <z y'<y
where ii(x, y) is the integral image and 7 (x ,y) is the original image. The integral image can
be computed in one pass over the original image using the following equations:
@, y) =s(x, y = 1) +i(x, y) 2
iix, y) = ii(x — 1, y) + s(x, ¥) 3)

where s(x, y) is the cumulative row sum with s(x, -7) =0 and ii(-1, y) = 0.

X,¥)

Figure 3: Integral image at point (x, )



Figure 4: Computing rectangle features using integral image.

Given the integral image representation of an image, the values of rectangular features
such as the regular and extended set of Haar features can be obtained in a constant time. As
shown in Figure 4, if the integral image values at four points are known, the integral sum
inside rectangle region of D can be computed using the following formula:

ii(4) + ii(1) — ii(2) — ii(3) (4)

2.3 OCCLUSION HANDLING

Various methods have been proposed to handle the occlusion problem, which is an
instance when a part of the object or the whole object is blocked by other objects [12, 13,
14]. The commonly used cubes include the shape prior, trajectory of a moving object and
color consistency or difference. However, the occlusion in TEM images is unique in the
sense that the objects are semi-transparent. In other words, the intensity values reveal the
degree of occlusion (layers of overlapping). Therefore, an implicit approach is adopted that
counts overlapped objects as a single one without a separate labeling. In the future work, a

more explicit counting method will be considered.



3.1 DATA SET

The TEM images used for the training and testing are of 20-50 nm scales (see Figures
5, 6, and 7). The image set and cube objects count information is summarized in Table 1.
All of the objects are classified into three basic categories: (i) the internal objects: fully
visible boundaries and not or slightly overlapped; (ii) the overlapped objects: fully visible
boundaries and largely overlapped (>20% area); (iii) the boundary objects: across the
image boundaries and fully or partially visible. Since the boundary objects were not
cropped and included in the positive training sample sets, they were not counted in the
detection rate calculations. In addition, since an implicit approach was used for the

occlusion handling, the fully overlapped objects (> 70% overlapping area) were counted as

one detection hit.

3. DATA PROCESSING

TABLE 1: IMAGE SET AND OBJECTS

Images Resolution | No. of objects | No. of internal objects No. of overlapped objects
cube a 1002 X 668 79 66 23
cube b 1002 X 668 72 53 9
cube ¢ 1002 X 668 235 191 67




3.2 SAMPLE PREPARATION

3.2.1 Positive Samples (Label Sets)

Multiple students have worked on a machine learning algorithm as a part of their class
projects or independent studies. They used the cube images to run and learn the algorithm.
They first cropped cubes from the TEM images and then used the cubes as input data for
their own project experiments. Cropping was done using a GIMP software which is a free
image editing tool available in both Linux and Windows environments. Before cropping, a
cube was rotated so that its boundary lines were aligned vertically or horizontally. The
cropped cubes were then saved in the standard jpg format. Cropping is a very simple task
that does not require a special training. This thesis utilizes those already cropped cubes as
positive samples (referred henceforth as “label sets” also) to train the Cascade AdaBoost
classifier. Table 2 and Figure 8 show the label sets. It should be noted that (i) a student
cropped cubes based on his or her own judgement and need and hence the object counts
could be different from the actual number of objects as shown in Table 1; (ii) this thesis
does not evaluate students’ cropping results and performances; (iii) this thesis only assesses
the detection accuracy of the Cascade AdaBoost method given different cropped cubes as

the positive samples (label sets).



Figure 7: A sample image (cube_c).
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TABLE 2: POSITIVE SAMPLES (LABEL SETS)

Label set Image No. of Cropped Objects
Label set 1 cube a 79

Label set 2 cube a 70

Label set 3 cube b 72

Label set 4 cube b 71

Label set 5 cube b 58

Label set 6 cube ¢ 235

Label set 7 cube a 60

Label set 8 cube ¢ 215

Label set 9 cube ¢ 71

Label Set 1 Label Set 4 Label Set 5§ Label Set 6

Label Set 3

Figure 8: Cropped cube samples of different label sets.
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3.2.2 Negative Samples

A total of 770 negative samples were generated by slicing a few random images of
various background scenes (including those of similar intensity distributions to that of
TEM images, see Figure 9). All negative samples are of the same size that is slightly
larger than that of positive samples. The diversity of the negative samples will help

reduce the false alarm rate and hence improve the robustness of the classifier when tested

with unseen images.

OLLEGE!
TDALI

Figure 9: A few negative samples used in the training.

12



4. EXPERIMENTS

Experiments were carried out using the OpenCV packages installed in a Linux
system. The training of a cascade classifier was performed in four steps: (1) Select all
images used in training; (2) Create positive training samples; (3) Merging individual

training files into a single one; (4) Train the cascade classifier.

(1) Select all images:
Two files are generated that lists positive and negative images, respectively.

A subset of negative samples can be selected depending on the test design.

find ./posImgDir -name "*.Jjpg" | sort -V -f > posImgList.txt
find ./negImgDir -name "*.jpg" | sort -V -f > allNegImgList.txt
f=======Select a subset from allNegImgList.txt==========
numNeg=222
k=0
while read varLine
do
echo "$varLine" >> negImgList.txt
((kt++))
if [ Sk -ge S$numNeg ]
then
break
fi

done < allNegImgList.txt

(2) Create positive training samples:

Positive samples were positioned vertically and horizontally during the
cropping process. However, the actual objects in the test image could be of any
rotation angle. Therefore, multiple positive samples of various degrees of rotation
must be generated. To do this, a rotation angle of 360 degrees around the z-axis was
specified. In addition, the total number of positive samples (actual positive samples

multiplied by a user selected number) and the window size (4, w) also need to be
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specified. For example, if a dataset has 120 positive images and each image can
generate § training samples of various rotation degrees, then a total of 120 * 8 = 960

training samples will be created.

perl ./bin/step2.pl\
posImgList.txt\
negImgList.txt\

vecSampleDir\

960\
"opencv_createsamples\
-bgcolor 0\
-bgthresh 0\

-maxxangle 0.005\
-maxyangle 0.005\
-maxzangle 3.141\

-maxidev 3\
-w 20\
-h 20"

(3) Merging individual training files into a single one:
All individual positive samples can be merged into a single file that has the

vector format defined in the OpenCV packages.

find ./vecSampleDir/posImgDir -name '*.vec' | sort -V -f >
./vecSampleDir/vecList.txt

./bin/mergevec ./vecSampleDir/vecList.txt
./vecSampleDir/allPositiveSamples.vec

(4) Train the cascade classifier:

During the training, several key parameters must be specified: number of
positive and negative samples used, number of stages, window size (4, w) which
should be the same as those in step (2), minimum hit rate, maximum false alarm
rate, and weight trim rate. It should be noted that the number of positive samples
should be 80-90% of number specified in step (2). The overall false alarm rate is

calculated as a product of maximum false alarm rate and number of cascade stages.
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opencv_traincascade -data trainedClassifier\
-vec ./vecSampleDir/allPositiveSamples.vec\
-bg negImgList.txt\
-numPos 770\
-numNeg 222\
-numStages 20\
-precalcValBufSize 512\
-precalcIdxBufSize 512\

-stageType BOOST\
-featureType HAAR\
-w 20\
-h 20\
bt GAB\
-minHitRate 0.996\
-maxFalseAlarmRate 0.500\
-weightTrimRate 0.950\
-maxDepth 1\
-maxWeakCount 100\
-mode ALL

15




5. RESULTS AND DISCUSSIONS

5.1 BASELINE PERFORMANCE ANALYSIS

5.1.1 Best Detection Rates

To assess the optimal capability of Cascade AdaBoost method, a comparative study
of two tests was conducted: (i) the first test used positive samples of cube a image (label
set 1) as the training set and cube b image as the test set; (ii) the second test used
positive sample of cube b (label set 4) as the training set and cube a image as the test
set. The same parameter values were used in two tests to ensure a fair compassion. The
results are given in Table 3 and shown in Figures 10 and 11. The first test gave a better
detection rate. There are two possible explanations: (a) cube a had more diverse objects
in terms of their shape, size, and overlapping degree, which provided a richer training
set; (b) The positive samples in label set 1 have tight background margins, which might
help the classifier select more discriminative features. Note that only the internal objects

are counted and overlapped objects are counted as one hit.

TABLE 3: BEST DETECTION RATE

Training sets Test sets Detection rate False alarm rate
cube_a (label set 1) cube b 94.34% 0%
cube b (label set 4) cube_a 87.88% 0%

16



Figure 11: Best detection result in cube_a using label set 4.

5.1.2 Impact of sample size

One of the common factors that could greatly affect the training quality of a cascade
classifier is the number of positive samples used. It is generally believed that a large
sample size will likely improve the classification performance, but at the cost of a much
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longer training time and hence the requirement of more computing resources. Table 4
lists the results of a series of tests that used the positive samples (label set 6) from cube ¢
image as the training set and cube b image as the test set. The detection rate, false alarm
rate and training time were plotted against the number of samples in Figures 12 and 13.
As expected, the training time grew rapidly (almost linearly) with the sample size. It
should be noted that the results were obtained using a much simplified test design such as
a smaller window size, a small number of stages and a low minimum hit rate. If normal
parameter values were used, the training time would be several orders of magnitude
longer (in the range of a few days to weeks). Another important observation is that the
detection rate only improved mildly with an increasing false alarm rate as the sample size
grew, suggesting that the performance gain from a larger sample size would likely reach
a plateau and the benefit would be negated by a higher false alarm rate and a longer

training time.

TABLE 4: IMPACT OF SAMPLE SIZE

tlj:i::ifn(;bg:tczli:[l):l_t) Test sets Detection rate | False alarm rate Training time
100 cube b 81.13% 0% 52 seconds
250 cube b 84.90% 0% 60 seconds
500 cube b 92.45% 0% 101 seconds
750 cube b 87.13% 0% 143 seconds
1000 cube b 90.57% 3.77% 178 seconds
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Detection rate and false alarm rate vs sample size
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Figure 12: Impact of sample size on detection rate and false alarm rate.
Training time vs sample size
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Figure 13: Impact of sample size on the training time.
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5.1.3 Impact of window size:

In many data mining projects, a common dilemma is that a small or moderate set of
positive samples is often accompanied with a high dimensional feature space, which
leads to the phenomenon of the curse of dimensionality. For example, a 20 by 20 sliding
window in the Cascade AdaBoost classifier can generate hundreds of thousands of Haar
features computed for all of the derived sub-windows. As a consequence, the feature size
poses a much more serious challenge to the design of a classification task than the sample
size. In fact, the Cascade AdaBoost algorithm can be viewed as a semi-feature selection
method that finds the most discriminative feature subset (weak classifiers) through a
sequence of weighted decision tree tests. To evaluate the impact of window size, i.e.,
feature size, on the classifier’s performance, four tests were conducted that used the same
training/test sets as in Section 5.1.2. The window sizes and test results are given in Table
5 and plotted in Figures 14 and 15. It is clear that the training time increases almost
exponentially as the window size grows, much faster than the rate in the tests with an
increasing sample size. At the same time, a 20% increase in detection rate was observed,

indicating that the feature size is a much more influential parameter.

TABLE 5: IMPACT OF WINDOW SIZE

Training set (cube_a) Test sets Detection rate Training time
h=10,w=10 cube b 56.60% 6 seconds
h=15w=15 cube b 67.92% 27 seconds
h=20,w=20 cube b 69.81% 79 seconds
h=25w=25 cube b 81.13% 161 seconds
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Detection Rate

Window size vs detection rate
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Figure 14: Impact of window size on detection rate.
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Figure 15: Impact of window size on training time.
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5.2 LABEL VARIATION ANALYSIS

5.2.1 Two-label-set comparison:

Since multiple label sets (cubes cropped by different labelers) are used, it is
inevitable that labeling errors will be introduced in the training set. Therefore, it is
essential to have a quantitative evaluation of the impact of label variation on the
classifier’s performance. Two evaluation tests were conducted, a two-label-set test and a
three-label-set test. To ensure a fair comparison, all tests used the same parameter values
(see box below). The two-label-set test used positive samples of cube a (label set 1 and
label set 2) as the training sets, and cube b image as the test set. The test results are given

in Table 6 and shown in Figures 16 and 17.

posImgList.txt\ -numPos 160\
negImgList.txt\ -numNeg 150\
vecSampleDir\ -numStages 20\
210\ -precalcValBufSize 512\

"opencv_ createsamples\ -precalcIdxBufSize 512\
-bgcolor 0\ -stageType BOOST\
-bgthresh 0\ -featureType HAAR\
-maxxangle 0.005\ -w 20\
-maxyangle 0.005\ -h 20\
-maxzangle 3.141\ -bt GAB\
-maxidev 3\ -minHitRate 0.996\
-w 20\ -maxFalseAlarmRate 0.500\
-h 20" -weightTrimRate 0.950\
-maxDepth 1\

-maxWeakCount 100\

-mode ALL

TABLE 6: TWO LABEL SET COMPARISON TEST

Training Set Test Set Detection Rate False Alarm Rate
cube a (label set 1) cube b 92.45% 1.88%
cube a (label set 2) cube b 84.90% 5.66%

22



Figure 17: Detection result of cube_b using the label set 2.
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The test of using positive samples of label set 1 showed a higher detection rate and
a lower false alarm rate than the test of using the positive samples of label set 2. A close
examination of the detection results (Figure 16 and Figure 17) indicates that the test of
label set 1 was able to detect objects of larger sizes while the test of using label set 2 had
a tendency of showing multiple hits on overlapped objects. Since two tests used exactly
the same parameter values in both training and testing phases, the performance
discrepancy is likely attributed to the ways of selecting and cropping positive samples. A
few representative positive samples from the two label sets are shown in Figure 18. It is
clear that the samples of label set 2 contain much larger margins (background areas)
surrounding a cube. The presence of background intensities could generate “noisy” and
“confusing” Haar features that weaken the discriminative power of the true cube
features. However, the exact mechanism by which the detection rate and false alarm rate

were affected by the margins is still not clear and more work is needed.

Label Set 1 Label Set 2

Figure 18: A few selected positive samples from two label sets.

The samples of label set 2 have much wider margins than that of label set 1.
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5.2.2 Three-label-set comparison:

To further assess the impact of multiple labeling sources on detection accuracy, a
three-label-set comparison test was conducted. In this test, positive samples of three label
sets (different from label set 1 and label set 2 in the two-label-set test) from cube b image
were used as the training set and cube a image was used as the test set. The same
parameter settings as in the two-label-set test were used except the numbers of positive
samples (see Table 7). The test results are given in Table 7 and the detected objects are
shown in Figures 19, 20, and 21.

The detection rate of using the data of label set 3 is comparable to that of using the
data of label set 1 and label set 2. But the results of using the data of label set 4 and label
set 5 are much less accurate. The low detection rate of label set 5 is likely caused by the
smaller set of positive samples used, as being observed in the impact test (Figure 12).
The samples of label set 4 had slightly larger cube margins which may explains the low
detection rate. Based on the two-label-set and three-label-set comparison tests, it seems
that the inclusion of background scene in the positive samples is a major factor affecting
the classifier’s performance. A more comprehensive evaluation study with more data

samples is needed to provide a statistically meaningful conclusion.

TABLE 7: THREE-LABEL-SET COMPARISON TEST

Training Sets Positive Samples Test Sets Detection Rate | False Alarm Rate
cube-b (label set 3) 70 cube_a 83.33% 0%
cube-b (label set 4) 70 cube_a 71.21% 0%
cube-b (label set 5) 58 cube_a 60.60% 0%
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Figure 21: Detection result of cube _a using the positive samples of label set 5.
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6. CONCLUSIONS

This thesis investigates the feasibility of using an ensemble learning algorithm to
automatically detect cube-shaped nanoparticles in TEM images, which has a significant
implication to scientific research in chemistry and material engineering. Preliminary
experiments using limited positive samples delivered promising results, with the best hit
rate of 94.34% being achieved. The primary findings are summarized below:

o The Cascade AdaBoost algorithm is effective in handling a large number of
objects at the presence of image noisy and severe occlusions.

e The classifier’s performance was affected by sample size and feature size. It
is expected that a large sample set will improve the detection rate while the
effect of feature size remains a complicated issue. How to select an optimal
feature subset outside of the cascade training process is an interesting topic.

e [t has been observed that a large detection rate variation exists with multiple
label sets. A more comprehensive evaluation study is needed to quantify the
impact of different label sources.

e Last but not least, the Cascade AdaBoost training is very expensive. Certain
tests were not carried out due to the lack of computing resources. There is a
strong need of a powerful computing infrastructure. One alternative solution

is to utilize a GPU based method or a cloud computing framework.
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