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ABSTRACT

Pharmacokinetic and pharmacodynamic (PK/PD)-models describe and predict the

time course of drug effects resulting from a certain dosage administered to an organ-

ism. PK/PD models benefit all phases of preclinical and clinical drug development.

Their wider application in clinical therapy is to determine the specific dosage for a

patient. In this thesis, we review several PK/PD models and investigate the time-to-

peak, T , of the models. We state and prove a theorem about the uniqueness of T .

The theorem considers PK/PD modes which are linear and nonlinear in the response

variable. We show that if the forcing function and the response function satisfy some

conditions, then there exists only one peak in the response variable. We apply this

theorem to several PK/PD models which have a unique T and show that the con-

dition of the theorem were satisfied. The theorem is also used to investigate how T

changes with respect to drug dosage D for the turnover models considered.
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Chapter 1

Introduction

The health of living organisms changes frequently due to environmental, genetic,

dietary and various other reasons. These changes trigger responses from the organism

such as growth factors, concentration of hormones or any other biological responses.

The administration of drugs to living organisms has become an important part in

assisting living organisms to produce the necessary responses to the changes in its

environment. There are two different reactions which occur between an organism and

the concentration of drug which are defined in the next section.

The analysis throughout this paper focuses on administration of drugs into the blood

stream of an organism, however, it is valid for any application governed by a first order

ordinary differential equation with diminishing forcing and other mild restriction on

the form of the feedback.

1.1 Motivation for PK/PD Models

The effective use of drugs has been advanced by better understanding of the relation-

ship between the administered dose and the resulting biological responses or phar-

macological effects ; Krzyzanski (2000). The ability to produce a required response

of an administered drug is determined by its pharmacokinetic or pharmacodynamic
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properties.

Pharmacokinetics describes the time course of the concentration of a drug in a

body fluid, either in the plasma or blood, that results from a given dosage of a drug.

This is basically, how the body responds to a drug.

Pharmacodynamics also describes the intensity of a drug effect in relation to its

concentration in the fluid. In simple words, what the drug does to the body ; Meibohm

and Derendorf (1997).

So PK/PD models incorporate these two processes and tries to determine the effects

resulting from a drug administration over some time period.

1.2 PK/PD Models

We discuss several theoretical PK/PD models by Meibohm and Derendorf (1997),

Krzyzanski and Jusko (1998), Peletier et al. (2005) and Nguyen et al. (2009). These

are called the turnover models, and are discussed in chapter 2.

We also investigate other models by Theis et al. (2011) which use a simple reaction

model A → B that is regulated by a transient input that deactivates B over time by

degradation. This simple reaction is modified and extended to include other back-

reactions, and is discussed in chapter 2.

1.2.1 PK/PD Models and Time to Peak

Some specific outcomes have been associated with the maximal amplitude of a re-

sponse and the time (time-to-peak) for such a peak response, and there are many

studies which investigate this phenomenon. For example, Theis et al. (2011), Nguyen

et al. (2009) and Gabrielsson and Peletier (2014) have obtained some results in this

respect.

In chapter 2, we introduce and investigate several models by Theis giving some details
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of their solutions. We also discuss the dimensionless version of the turnover models

referenced in Nguyen et al. (2009) and find the general solution to the models.

In chapter 3, we state and prove a theorem which shows the existence of only one

maximum amplitude (time-to-peak) for a general PK/PD model under some required

conditions.

Analysis on time-to-peak is discussed in chapter 4 where the dependence of time-to-

peak on the drug dosage is investigated using a general linear PK/PD model.
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Chapter 2

Review of Selected Models

PK/PD models have been discussed by many researchers. The models discussed here

are typical PK/PD models with some variations. We will explain and review 3 of

the models stated by Theis et al. (2011) with results leading to our model which

is discussed in the following chapters. We will also formalize some of the results

discussed by Khavari (2011).

2.1 PK/PD Models by Theis

The six models discussed here are sometimes called reaction models, which will be

referred as RM-1 through RM-6. These models as proposed by Theis et al. (2011)

are first order ordinary differential equations describing how the response of a system

changes with time, when a drug has been administered into the system of an organism.

We let R(t) be the time dependent variable representing the response of a system.
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2.1.1 RM-1

RM-1 is the first order initial value problem,

dR(t)

dt
= af(t)− kR(t)

R(0) = 0. (2.1.1)

In this model, rate of change of the response R(t) depends on a forcing f(t) and the

parameter a, considered as the drug dosage, which is a constant in this model. So

af(t) is the rate at which the concentration of drug varies with time in the system.

We will require that f(t) diminishes as time elapses. This requirement is also realistic

since one will expect the concentration of a drug in a system to diminish with time.

The change in response at any time also depends on the response of the organism.

This phenomenon is explained by the term kR(t) where the negative sign indicates a

reduction in R(t) for positive rate constant k. The initial condition assumes there is

no response until the drug is administered to the body.

We can find the general solution for this model by using an integrating factor

μ(t) = e
∫ t
t0

kdτ
= ek(t−t0). (2.1.2)

The differential equation (2.1.1) becomes

d

dt
(R(t)μ(t)) = aμ(t)f(t), (2.1.3)

which can be integrated both sides from t0 to t, giving

R(t) =
1

μ(t)

(
R(t0) + a

∫ t

t0

f(τ)μ(τ)dτ

)
. (2.1.4)

Theis discusses two cases for the switching function, f(t), a discrete and continuous

5



form. For the discrete case, Theis lets f(t) =

⎧⎪⎨
⎪⎩

1 for t < 1

0 for t ≥ 1.
For t < 1

together with the initial condition t0 = 0, R(0) = 0 we have

R(t) =
a

k
(1− e−kt) for 0 ≤ t < 1. (2.1.5)

From (2.1.5) we get R(1) = a
k

(
1− e−k

)
. Since R is assumed to be continuous function

for all t, it is defined at t = 1. For t ≥ 1, we take t0 = 1 and μ(t) = ekt−k. Using the

above solution, (2.1.4) gives that

R(t) = R(1)ek(1−t) (2.1.6)

and R(t) =
a

k

(
e−k(t−1) − e−kt

)
for t ≥ 1. (2.1.7)

Thus R(t) =

⎧⎪⎨
⎪⎩

a
k
(1− e−kt) for 0 ≤ t < 1

a
k
(e−k(t−1) − e−kt) for t ≥ 1.

(2.1.8)

Figure 2.1 shows a plot of the solution using a = 0.5 and k = 3.

Figure 2.1: Discrete case of RM-1 for a = 1 and k = 1
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For the continuous case, Theis let f(t) = 1
1+t

. Using the general equation in (2.1.4)

we get that

R(t) =
a

ekt

(∫ t

0

ekτ

1 + τ
dτ

)
. (2.1.9)

Making a substitution for u = k(1 + τ) we have

R(t) = ae−k(t+1)

(∫ k(t+1)

k

eu

u
du

)
. (2.1.10)

The Exponential Integral is defined as Ei(x) =
∫ x

−∞
ey

y
dy and hence the explicit

solution can be written as

R(t) = ae−k(t+1)[Ei(kt+ k)− Ei(k)]. (2.1.11)

Figure 2.2 shows a plot of the solution using a = 1 and k = 1.

Figure 2.2: Continuous case of RM-1 for a = 1 and k = 1

Both solutions of RM-1, (2.1.8) and (2.1.11), explains that the response variable

7



diminishes as time becomes large. This result corresponds to the realistic situation

when the concentration of a drug diminishes.

2.1.2 RM-2

This model is a system of 2 first order linear differential equations, given by

dA(t)

dt
= −A(t)f(t) (2.1.12)

dR(t)

dt
= A(t)f(t)− kR(t) (2.1.13)

with initial condition A(0) = 0 (2.1.14)

R(0) = 0 (2.1.15)

In this model, the drug function is denoted A(t) and R(t) is the drug response variable.

The drug concentration, A(t)f(t), allows the dosage to change with respect to time.

Using the continuous function f(t) = 1
1+t

we can solve for A(t) and substitute it into

the equation for R(t). Solving for A(t) we have that,

∫ t

0

dA(t)

A(t)
= −

∫ t

0

1

1 + τ
dτ. (2.1.16)

By substituting u = (1 + τ) and integrating, we then have

ln
A(t)

A(0)
= − ln(1 + t) + ln(1) (2.1.17)

and

A(t) =
a

1 + t
. (2.1.18)
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Substituting this result into the differential equation for R(t) we have the first order

differential equation

dR(t)

dt
=

a

(1 + t)2
− kR(t) (2.1.19)

This equation is of the form (2.1.1) with same integrating factor as (2.1.2). Using the

derived solution in (2.1.4) we have that

R(t) = ae−kt

∫ t

0

eks

(1 + s)2
ds. (2.1.20)

By the method of integration by parts we let u = eks and dv = 1
(1+s)2

ds and have

R(t) = ae−kt

[ −ekt

(1 + t)2
+ 1 + k

∫ t

0

eks

1 + s
ds

]
. (2.1.21)

Using the substitution τ = k(1+ s) and the definition of the exponential integral, we

get

R(t) = a

[
e−kt − 1

1 + t
+

k

ek(1+t)
[Ei(k(1 + t))− Ei(k)]

]
. (2.1.22)

Figure 2.3 shows a plot of the solution using a = 1 and k = 1.

The result of this model also suggests that as time goes to infinity, the response

diminishes. This is a result one will expect in a real situation since after a drug has

been used by an organism, the response of the organism to the drug has to diminish

over time.

2.1.3 RM-3

The RM-3 model suggests a case where the drug function A(t) is regulated depending

on the response R(t). In this case, the changes in drug dosage(increase or decrease in

9



Figure 2.3: Solution for RM-2 using a = 1 and k = 1

dosage) depends on how the body’s response is, at a point in time. In other words, a

drug dosage is increased or decreased if the body’s response is effective or not. Model

RM-3 is described as follows;

dA(t)

dt
= kR(t)− A(t)f(t) (2.1.23)

dR(t)

dt
= A(t)f(t)− kR(t), (2.1.24)

with the initial conditions A(t) = a (2.1.25)

R(0) = 0. (2.1.26)

For this system, note that

dA(t)

dt
+

dR(t)

dt
= 0, (2.1.27)

which implies that A(t) +R(t) = Q (2.1.28)

10



where Q is a constant. Using the initial conditions we have, Q = a and thus

A(t) = a−R(t). (2.1.29)

Substituting this result into (2.1.24) we have

dR(t)

dt
= af(t)− (f(t) + k)R(t). (2.1.30)

Using f(t) = 1
1+t

we can solve this linear equation by finding the integrating factor

μ = e
∫ t
0(

1
1+t

+k)dt = (1 + t)ekt (2.1.31)

and R(t) =
a(1− e−kt)

k(1 + t)
. (2.1.32)

Substituting this result in (2.1.29) we have

A(t) = a+
a(e−kt − 1)

k(1 + t)
. (2.1.33)

Figure 2.4 shows a plot of the solution using a = 1 and k = 1.

The solution of RM-3 also diminishes as time goes to infinity. In addition to the

above models, the following three models are also given by Theis et al. (2011) but we

give no closed form solution.
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Figure 2.4: Solution of RM-3 using a = 1 and k = 1

2.1.4 RM-4, RM-5 and RM-6

RM-4 considers the case where the rate of proportion for R(t) can be regulated from

two different parameters k and q. It is a linear system given by;

dA(t)

dt
= kR(t)− A(t)f(t)

dR(t)

dt
= A(t)f(t)− (k + q)R(t)

RM-5 modifies the rate of proportion of the response variable by using the current

response R(t) with q. RM-5 is a nonlinear model given by

dA(t)

dt
= kR(t)− A(t)f(t)

dR(t)

dt
= A(t)f(t)− (k + q ·R(t))R(t)

12



RM-6 is a variation of RM-5 given by

dA(t)

dt
= kR(t)− A(t)f(t)

dR(t)

dt
= A(t)f(t)− (k ·R(t) + q)R(t).

In the next section, we review, four PK/PD models which have received considerable

analysis by others.

2.2 Turnover Models

The turnover models (TM) and are divided into two groups; inhibiting models

(TM-1,TM-2) and stimulating models (TM-3, TM-4). Original Models are

given by Krzyzanski and Jusko (1998) and Sharma and Jusko (1996). However, we

use the non-dimensionalized versions found in Nguyen et al. (2009).

2.2.1 Inhibiting and Stimulating Models

All the turnover models have this general equation.

d r(t)

dt
= F (t)−H(t)r(t) (2.2.1)

and r(0) = 1 (2.2.2)

Similar to the reactions models, r(t) is the response variable, F (t) is the gain term

and H(t)r(t) is the loss term. We define the function φ(t,D) which is used frequently

as;

φ(t,D) =
De−t

1 +De−t
=

D

D + et
(2.2.3)

13



whereD is a parameter indicating the magnitude of the initial drug dosage. So φ(t,D)

models the concentration of drug dosage. The first and second model describes inhi-

bition and has the following definition for F and H;

TM-1 F (t) = k (1− αφ(t,D)), H(t) = k

TM-2 F (t) = k, H(t) = k (1− αφ(t,D))

The third and fourth models describe stimulation;

TM-3 F (t) = k (1 + αφ(t,D)) , H(t) = k

TM-4 F (t) = k, H(t) = k (1 + αφ(t,D))

Now, note that if D = 0, the gain term (indicated by arrow in left part of Figure 2.5)

is k and the loss term (right part of Figure 2.5) is kR.

So when some dosage of drug is administered initially, TM-1 uses the concentration

φ(t,D) to reduce the proportion of gain or input k (Figure 2.5) which in turn affects

how R changes. TM-2 also uses φ(t,D) to reduce the proportion of loss (output) which

also affects how R changes. Hence TM-1 and TM-2 are called Inhibiting Models.

In a similar approach, TM-3 and TM-4 increase the proportion of the gain and loss

respectively. Hence TM-3 and TM-4 are called Stimulating Models.

Figure 2.5: Illustration of the four turnover models
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In all cases, k is a positive constant and α is a constant in the range, (0, 1].

We must make a substitution to shift the initial response value to 0. This substitution

is not only convenient for analysis but requires modification of the loss and gain terms.

Its significance will be discussed later in chapter 3 after proving The Peak Theorem.

In TM-1, we make the substitution r(t) = 1− αR(t). So for t = 0,

r(0) = 1− αR(0)

which implies that for t = 0, R(0) = 0.

Now, d r(t)
dt

= −αdR(t)
dt

, so using the above substitution,

−α
dR(t)

dt
= F (t)−H(t)(1− αR(t))

which implies that
dR(t)

dt
=

1

α
[H(t)− F (t)]−H(t)R(t).

Substituting the values of F and H for RM-1 above, we have

dR(t)

dt
=

1

α
[k − k(1− αφ)]− kR(t)

which then gives us
dR(t)

dt
= kφ(t,D)− kR(t)

For TM-1, the IVP we will later discuss is

dR(t)

dt
= f(t)− h(t)R(t)

R(0) = 0 (2.2.4)

where f(t) = kφ(t,D) and h(t) = k.

ForTM-2, we make the substitution r(t) = 1+αR(t). SoR(0) = 0 and d r(t)
dt

= αdR(t)
dt

.

15



Making the appropriate substitution, we get

α
dR(t)

dt
= F (t)−H(t)(1 + αR(t))

which implies that
dR(t)

dt
=

1

α
[F (t)−H(t)]−H(t)R(t).

and
dR(t)

dt
=

1

α
[k − k(1− αφ(t,D))]− k(1− αφ(t,D))R(t)

which then gives us
dR(t)

dt
= kφ(t,D)− k(1− αφ(t,D))R(t)

Hence the IVP for TM-2 is

dR(t)

dt
= f(t)− h(t)R(t)

with R(0) = 0 (2.2.5)

where f(t) = kφ(t,D) and h(t) = k(1− αφ(t,D)).

In TM-3, we will let R(t) = 1 + r(t) and have R(0) = 0 and d r(t)
dt

= dR(t)
dt

. With the

appropriate substitution we have

α
dR(t)

dt
= F (t)−H(t)(1 +R(t))

which implies that
dR(t)

dt
=

1

α
[k(1 + αφ(t,D))− k]− kR(t)

which then gives us
dR(t)

dt
= kφ(t,D)− kR(t)

Hence the IVP for TM-3 is

dR(t)

dt
= f(t)− h(t)R(t)

with R(0) = 0 (2.2.6)

where f(t) = kφ(t,D) and h(t) = k.
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Likewise, making a substitution for r(t) = 1−R(t), the IVP for TM-4 becomes

dR(t)

dt
= f(t)− h(t)R(t)

with R(0) = 0 (2.2.7)

where f(t) = kφ(t,D) and h(t) = k(1 + αφ(t,D)). Note that TM-1 and TM-3 are

equivalent in the transformed variables.

2.2.2 General Solution of the Turnover Models

The general solution for the turnover models is

R(t) = e−
∫ t
0 h(τ)dτ

[∫ t

0

(
f(τ)e

∫ τ
0 h(s)ds

)
dτ

]

We will attempt to find the explicit solution of each of the 4 models by writing them

in an integral form.

• General Solution for TM-1 and TM-3

TM-1 and TM-3 have the same equation under the new substitution hence same

general solution.

R(t) = e−
∫ t
0 kdτ

[∫ t

0

(
kφ(τ,D)e

∫ τ
0 kds

)
dτ

]

which then gives us R(t) = ke−kt

∫ t

0

φ(τ,D)ekτdτ

Figure 2.6 shows a plot of the solution using α = 0.5, k = 1 and D = 1.

• General Solution for TM-2

17



Figure 2.6: Solution of TM-1 and TM-3 using α = 0.5, k = 1, D = 1

In a similar way, the general solution of (2.2.5) is given as

R(t) = e−
∫ t
0 k(1−αφ(τ,D))dτ

[∫ t

0

kφ(τ,D)e
∫ τ
0 k(1−αφ(τ,D))dsdτ

]

and R(t) = ke−kt+αk
∫ t
0 φ(τ,D)dτ

[∫ t

0

φ(τ,D)ekτ−αk
∫ τ
0 φ(s,D)dsdτ

]
(2.2.8)

Figure 2.7 shows a plot of the solution using α = 0.5, k = 1 and D = 1.

• General solution for TM-4

By change of sign, the general solution of TM-4 follows from TM-2.

R(t) = ke−kt−αk
∫ t
0 φ(τ,D)dτ

[∫ t

0

φ(τ,D)ekτ+αk
∫ τ
0 φ(s,D)dsdτ

]
(2.2.9)

Figure 2.8 shows a plot of the solution using α = 0.5, k = 1 and D = 1.

Finding an explicit solution to PK/PD models is difficult and in most cases impossible

to find in closed-form.
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Figure 2.7: Solution of TM-2 using α = 0.5, k = 1, D = 1

Figure 2.8: Solution of TM-4 using α = 0.5, k = 1, D = 1
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Nonetheless, there are other ways to find the properties of R without finding its

explicit solution. In chapter 3, we will show the dynamics of the response R(t) as

time changes. We will also show the existence of a time T where maximum response

occurs.
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Chapter 3

The Time to Peak

The response variable R is maximum or minimum when dR(t)
dt

= 0. The time t = T

at which this maximum or minimum occurs is of interest since it is the time when a

drug concentration is at its highest or lowest value.

We will determine if there is more than one value of T where R takes on an extreme

value in any PK/PD model. We will also explore the dependence of T on drug dosage

D.

For all the models discussed, T is implicitly defined so it is difficult to analyze. In

this chapter, we state and prove the Peak Theorem which gives a general result on

the time to peak, T .

3.1 The Peak Theorem (Theorem P)

This insight and understanding of the Peak Theorem is due to Dr. David Pollack

of Youngstown State University. Theorem P was first stated and proved by Pollack

and Khavari (2011). In this section, we provide details and a concise proof of the

theorem.

The focus of this analysis is to provide results on T which is explicitly defined for all

the models discussed in chapter 2 and for any other model which satisfy the hypothesis
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of theorem P.

Consider the following IVP

d r(t)

dt
= c(t)[g(t)− p(r)] (3.1.1)

r(0) = 0 (3.1.2)

where c(t) is a differentiable function with 0 < b1 < c(t) < b2 and g(t) is a positive,

differentiable and diminishing function. That is, g(t) > 0, g′(t) < 0 and lim
t→∞

g(t) = 0.

The function p(r) is continuously differentiable in r and is strictly increasing with

p(0) = 0 and lim
r→∞

p(r) > g(0).

3.1.1 Theorem P (Peak Theorem). Let R(t) be a solution of the above IVP then

1. R(t) is defined for t ≥ 0 on [0,∞).

2. R(t) is bounded; i.e. ∃ M such that 0 ≤ R(t) < M where 0 < M < ∞.

3. R(t) has a unique maximum; i.e. ∃ a time T1 > 0 such that R(t) is strictly

increasing on [0, T1] and strictly decreasing on [T1,∞)

4. Response diminishes to zero i.e. lim
t→∞

R(t) = 0.

To prove this theorem, we first review the proof of the Intermediate Value Theorem

with a slight notification.

3.1.2 Theorem (Intermediate Value Theorem-Modified-[IVTM]). Let f : [a, b] →
R be a continuous function such that f(a) > 0 and f(b) ≤ 0. Then ∃ κ ∈ (a, b] such

that f(κ) = 0 and f(x) > 0 for a ≤ x < κ.

Proof. Define N = {x ∈ [a, b]| f(x) ≤ 0} and let κ = inf(N). We want to show that

f(κ) = 0.

Suppose that f(κ) > 0, then κ 	∈ N since f(x) ≤ 0 for all x ∈ N . This is a

contradiction. Hence f(κ) ≤ 0.
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Now suppose that f(κ) < 0. By continuity let ε > 0 then ∃ δ > 0 such that

|f(x)− f(κ)| < ε whenever |x− κ| < δ. Let f(κ) = −ε then

−ε < f(x)− f(κ) < ε

and 2f(κ) < f(x) < 0 ∀ x ∈ (κ− δ, κ+ δ).

This is a contradiction to the assumption that κ = inf(N) since f(x) < 0 for x ∈
(κ− δ, κ). Hence f(κ) ≥ 0.

This shows that f(κ) = 0 since f(κ) ≤ 0 and f(κ) ≥ 0.

3.1.3 Lemma. Given that f(κ) = 0 and f(x) > 0 for all a ≤ x < κ, then f ′(κ) ≤ 0.

Proof. By definition

f ′(κ) = lim
x→κ−

f(x)− f(κ)

x− κ

= lim
x→κ−

− f(x)

κ− x

and since − f(x)

κ− x
< 0, f ′(κ) ≤ 0. (3.1.3)

Thus, the proof.

Next, we prove theorem P. The proof will be done in sections using IVTM and Lemma

3.1.3.

Let R(t) be a solution of the IVP for theorem P.

I From the IVP, c(t), g(t) and p(r) are continuous and p(r)] is continuously dif-

ferentiable. By the existence and uniqueness theorem of initial value problems

Teschl (2012), the solution, R(t), exists and is unique. Hence, R(t) is defined.

II We now show that R′(0) > 0 and R(t) > 0 ∀ t ∈ (0,∞).
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Proof. If R(t) is a solution of the IVP (3.1.1), then

dR(0)

dt
= c(0)[g(0)− p(R(0))]

= c(0)[g(0)− p(0)]

= c(0)g(0)

> 0 since c(0) > 0, and g(0) > 0.

Having showed that R′(0) > 0, we now prove that R(t) > 0 ∀ t > 0. Note that

R′(t) is continuous since from the IVP c(t), g(t) and p(R(t)) are continuous. So

by definition, ∀ ε > 0, ∃ δ > 0, we have |R′(t)−R′(0)| < ε whenever 0 < t < δ.

Let ε = R′(0) since R′(0) > 0, then

|R′(t)−R′(0)| < R′(0)

0 < R′(t) < 2R′(0) ∀ t ∈ (0, δ).

Using the fact thatR(t) is continuous and differentiable in the interval 0 < t < δ,

by the Mean Value Theorem

R(t)−R(0)

t− 0
= R′(τ), for some 0 < τ < δ.

This gives, R(t) = tR′(τ) > 0

Now, using the fact that R(t) > 0 ∀ t ∈ (0, δ) we now prove that R(t) > 0 for

all t ∈ [0,∞).

Suppose R(t) 	> 0 for all t ∈ [0,∞) then R(t) ≤ 0 for some t ∈ [0,∞]. Let

a ∈ (0, δ) and δ < b < ∞ with R(b) ≤ 0. By the IVTM and lemma 3.1.3

∃ κ ∈ [a, b] such that R(κ) = 0, R′(κ) ≤ 0 and R(t) > 0 for a < t < κ.
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Calculating R′(κ),

R′(κ) = c(κ)[g(κ)− p(R(κ))]

= c(κ)g(κ) > 0

which is a contradiction to IVTM and the lemma that R′(κ) ≤ 0. Hence

assumption is false and so R(t) > 0 for all t ∈ (0,∞).

III We show that R(t) is bounded above, i.e. there exists an M > 0, such that

R(t) < M for all t ∈ [0,∞). We define M > 0 such that p(M) = g(0).

Proof. Let Φ(t) = M − R(t) then Φ(0) = M > 0. To show that R(t) < M

∀ t ∈ [0,∞) we must show that Φ(t) > 0, ∀ t ∈ [0,∞).

Assuming the contrary, then R(t) ≥ M which implies Φ(b) ≤ 0 for some b ∈
(0,∞).

Now, by the IVTM, let a = 0 which means Φ(a) > 0 and 0 < b < ∞, then

∃ κ ∈ (a, b] such that Φ(κ) = 0, Φ(t) > 0 for 0 < t < κ and Φ′(κ) ≤ 0.

Notice that Φ′(t) = −R′(t) and for Φ(κ) = 0 we have R(κ) = M . So the IVP

(3.1.1) at t = κ gives

Φ′(κ) = −{c(κ)[g(κ)− p(R(κ))]}

= −c(κ)[g(κ)− p(M)].

From our definition p(M) = g(0) which implies that

Φ′(κ) = c(κ)(g(0)− g(κ)).

Since g(0)− g(κ) > 0 and c(κ) > 0, we have Φ′(κ) > 0. This is a contradiction,
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so R(t) < M for all t ∈ [0,∞).

Since 0 < R(t) < M for all t in the domain of definition of R, it implies that the

solution exists on [0,∞) The next two proofs show that R(t) increases initially

to reach a maximum and then decreases to zero afterwards. Define the regions

A1 = {(t, r)|g(t)− p(r) > 0}

A2 = {(t, r)|g(t)− p(r) = 0}

and A3 = {(t, r)|g(t)− p(r) < 0}.

Note that, these are the only regions where the solution R(t) exists or is defined.

IV We show that R(t) is strictly increasing in the region A1 and leaves this region

at some time.

Proof. Given that g(t) − p(r) > 0 is in A1 and c(t) > 0, the solution R(t) is

always increasing in A1 since R′(t) > 0 in that region.

Now assume that the solution stays in A1 for all times, that is g(t) > p(R(t))

for all times. Choose t0 > 0 so that R(t0) > 0 then since R(t) is increasing

whenever t > t0, R(t) > R(t0) in A1.

Also, p(r) is strictly increasing and so p(R(t)) > p(R(t0)). Hence, by our

assumption g(t) > p(R(t)) > p(R(t0)) for all times t > t0.

This is a contradiction since lim
t→∞

g(t) = 0.

From I, II and III, we have shown that the solution R(t) is increasing in A1

and bounded above by some number M .

Since R(t) cannot stay in A1 at all times, there exists a time T where it leaves

A1; meaning when g(t)− p(R(t)) ≤ 0. But g(t)− p(R(t)) = 0 is when R′(t) = 0
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and so region A2 corresponds to the time T when the response R(t) is at its

maximum.

In the next proof we show that there is only one such T and whenever t > T , the

solution is decreasing i.e. R′(t) < 0 and stays in the region A3, never returning

to A1 or A2.

V Let T > 0 be the first time R(t) is in A2. We show that for all t > T , R(t) ∈ A3.

In other words, if T is the first time R(t) is in A2 then for t > T , R′(t) < 0.

Proof. Assume the contrary. Then ∃ t > T such that R′(t) ≥ 0.

Let t1 be the first time after T when R′(t) = 0. So R′(T ) = R′(t1) = 0 where

T < t1 < ∞, and R′(t) < 0 for T < t < t1. By differentiability of R′(t),

R′′(t1) = lim
t→t−1

R′(t)−R′(t1)
t− t1

= lim
t→t−1

R′(t)
t− t1

≥0 for R′(t) < 0 and t− t1 < 0. (3.1.4)

However, taking the derivative of r′(t) in (3.1.1) at t1, R
′′(t1), we have

R′′(t1) = c′(t1)[g(t1)− p(R(t1))] + c(t1)[g
′(t1)− p′(R(t1))R

′(t1)]

= c′(t1)[g(t1)− p(R(t1))] + c(t1)[g
′(t1)− p′(R(t1)) · 0]

= c′(t1)[g(t1)− p(R(t1))] + c(t1)g
′(t1).
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At t1, R
′(t1) = 0 which implies that c(t1)[g(t1)− p(R(t1))] = 0. Since c(t) > 0,

g(t1)− p(R(t1)) = 0. This gives us

R′′(t1) = c(t1)g
′(t1)

< 0 since c(t1) > 0 and g′(t1) < 0.

This is a contradiction to the previous result (3.1.4) that R′′(t) ≥ 0.

This result implies that there is only one T where R(t) is maximum. When

R(t) increases to maximum, it stays in the region A3 afterwards where R(t) is

strictly decreasing and never returns to A1 or A2. The next proof shows that

lim
t→∞

R(t) = 0.

VI Claim: lim
t→∞

R(t) = 0

Proof. Suppose not, then lim
t→∞

R(t) = α where α > 0. Note that R(t) is always

positive so α cannot go below zero.

Since R(t) is decreasing, R(t) ≥ α whenever t > T . By hypothesis, p(R(t)) is

a strictly increasing function, thus

p(R(t)) ≥ p(α)

or −p(R(t)) ≤ −p(α)

which implies that g(t)− p(R(t)) ≤ g(t)− p(α)

and c(t)[g(t)− p(R(t))] ≤ c(t)[g(t)− p(α)]

and so R′(t) ≤ c(t)[g(t)− p(α)]

Now, since g(t) → 0 as t → ∞, there exist a time t1 > T , where g(t) < 1
2
p(α)
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for all t > t1. This then implies that

R′(t) < c(t)

[
1

2
p(α)− p(α)

]

R′(t) < −1

2
c(t)p(α).

From the hypothesis, c(t) is bounded below by b1, hence

R′(t) < −1

2
b1p(α).

For any t > t1, by the mean value theorem, there exists τ ∈ (t1, t) such that

R′(τ) =
R(t)−R(t1)

t− t1
.

Since τ is a time after t1
R(t)−R(t1)

t− t1
< −1

2
b1p(α)

R(t) < R(t1)− 1

2
b1p(α)(t− t1).

Note that R(t1) is finite but as t gets large t− t1 → ∞. So there is some t after

T where R(t) < 0.

This is a contradiction to our earlier result that R(t) ≥ 0.

Hence, lim
t→∞

R(t) = 0.

This concludes the proof of theorem P.

3.2 Application of the Peak Theorem

In this section, we apply theorem P to the PK/PD models discussed in chapter 2, to

understand more about their time to peak.

29



3.2.1 Peak Theorem and Theis Models

We rewrite each of the models to obtain the form of the model used by the theorem.

1. For RM-1 in (2.1.1) we have the form

dR(t)

dt
= k

[a
k
f(t)−R(t)

]

In the notation used in theorem P,

c(t) = k,

g(t) =
a

k
f(t)

and p(R(t)) = R(t).

For the discrete case of RM-1, g(t) = 0 for t < 1 and g(t) = a
k
for t ≥ 1, which

doesn’t satisfy the properties of g(t) in theorem P, hence, the theorem cannot

be applied.

Nonetheless, it has a single peak at T = 1. Notice that for t < 1, R(t) is

increasing (2.1.7) and its maximum at t = 1 and for t ≥ 1, R(t) is decreasing

and its also maximum at t = 1.

The continuous case of RM-1 has

c(t) = k,

g(t) =
a

k(1 + t)

and p(R(t)) = R(t).

Note that c(t) = k which is a constant so it is continuous and bounded. More
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so, g(t) is a positive function and diminishing since

g′(t) = − a

b(1 + t)2
< 0

and lim
t→∞

g(t) = 0.

For p(R(t)), note that p(0) = R(0) = 0 and since R(t) is linear, it’s a strictly

increasing continuous function and there exist a time t where R(t) ≥ g(0).

Hence, by application, the solution of the continuous case of RM-1 by Theis has

only one peak.

2. From (2.1.19), RM-2 can be written as

dR(t)

dt
= k

[
a

k(1 + t)2
−R(t)

]

For this model, c(t) and p(R(t)) are same as RM-1 so the hypothesis of the

theorem is satisfied. Next, we have

g(t) =
a

k(1 + t)2
.

It’s easy to see that g(t) > 0 and lim
t→∞

g(t) = 0. Now,

g′(t) = − 2a

k(1 + t)3
< 0

and so g(t) is diminishing. As from RM-1, R(t) is linear there is a time where

R(t) ≥ g(0) = a
k
. Therefore, the second model by Theis also has a unique time

to peak.

31



3. The equation for RM-3, (2.1.30), can written as

dR(t)

dt
= (f(t) + k)

[
af(t)

f(t) + k
−R(t)

]
.

For f(t) = 1
1+t

, we see that

c(t) =
1

1 + t
+ k

and for 0 < t < ∞, c(t) is bounded below by k when t = ∞ and above by k+1

when t = 0; i.e.

k < c(t) < k + 1

with k > 0 which satisfies the properties of c(t) in theorem P.

Now,

g(t) =
af(t)

f(t) + k
=

a

1 + k(1 + t)
.

We see that g(t) > 0 for a > 0 and lim
t→∞

g(t) = 0. We also have

g′(t) = − ak

(kt+ k + 1)2
< 0.

In conclusion, RM-3 also satisfies the hypothesis of theorem P, hence the solution

has a unique maximum and diminishes to zero.

3.3 Peak Theorem and Turnover Models

In this section we apply the Peak Theorem to the turnover models also discussed in

chapter 2.
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1. The inhibiting model TM-1 stated in (2.2.4) can be rewritten as

dR(t)

dt
= k[φ(t,D)−R(t)]

with parameter D > 0 and k > 0. Here,

c(t) = k

which is bounded and p(R(t)) = R(t)

which is same in Theis’ models discussed in the previous section. For TM-1,

g(t) = φ(t,D) =
De−t

1 +De−t

defined in (2.2.3) and g(0) =
D

1 +D
.

For the limit, lim
t→∞

g(t) = lim
t→∞

D
et+D

= 0. We also have that

g′(t) = − Det

(D + et)2
< 0 for all t.

Hence, TM-1 satisfies the hypothesis of theorem P and so has one unique peak.

2. The second turnover model TM-2 (2.2.5) can be written as

dR(t)

dt
= (1− αφ(t,D))

[
φ(t,D)

1− αφ(t,D)
−R(t)

]
.
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In this case

c(t) = k(1− αφ(t,D))

and g(t) =
φ(t,D)

1− αφ(t,D)
.

Since c′(t) =
Det

(D + et)2
> 0,

c(t) is strictly increasing so as t → ∞, c(t) is bounded above by k, i.e. limt→∞ c(t) =

k(1 − α · 0) = k. For t = 0, c(0) = k(1 − α D
1+D

) and so it’s bounded below by

k
(
1− αD

1+D

)
.

Note that 0 < α < 1 and 0 < D
1+D

< 1 and so 1− αD
1+D

< 1. Thus, we’ve shown

that c(t) is bounded i.e.

0 < k

(
1− αD

1 +D

)
< c(t) < k.

For g(t) =
φ(t,D)

1− αφ(t,D)
=

D

et + (1− α)D
,

and since 0 < α < 1, g(t) > 0 for all t ≥ 0.

Note that g(0) = D
1+(1−α)D

> 0. Also, since et → ∞ as t → ∞, g(t) → 0 as

t → ∞. We also differentiate g(t) and we get

g′(t) = − Det

(D(1− α) + et)2
< 0.

Thus g(t) satisfies required conditions of theorem P. We see that p(R(t)) = R(t)

is linear so there exists a t where R(t) ≥ g(0), since g(0) < ∞. Hence, theorem

P can be applied to TM-2.

3. Since TM-3 is equivalent to TM-1, theorem P also applies to TM-3.
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4. The last turnover model, TM-4, (2.2.7) can also be written as

dR(t)

dt
= k(1 + αφ(t,D))

(
φ(t,D)

1 + αφ(t,D)
−R(t)

)
.

In this case c(t) = k(1 + αφ(t,D))

which is bounded below by k when t = ∞ and bounded above by k + αkD
1+D

.

Hence, properties of c(t) are satisfied for theorem P.

Also,

g(t) =
φ(t,D)

1 + αφ(t,D)
=

D

et + αD +D
> 0

for t ∈ [0,∞). We also have that g(0) = D
1+D+αD

which is positive and bounded.

Differentiating g(t), we get

g′(t) = − Det

(et + αD +D)2
< 0.

In conclusion, theorem P can be applied.

The solution of these models are always positive, each has one peak and the solution

goes to zero as time goes to infinity.

In the next chapter, we investigate how the time to peak T , depends on the drug

dosage D.
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Chapter 4

Dependence of T on D

In this chapter we consider a more general equation than discussed in chapter 2 and

chapter 3. All solutions that satisfy the conditions of the Peak Theorem, have only

one T . In this chapter we investigate the dependence of T on the drug dosage D. We

determine integral conditions for which T increases as D increases or vice-versa.

We consider the linear initial value problem

dR(t,D)

dt
= f(t,D)− h(t,D)R(t,D) (4.0.1)

R(0, D) = 0 (4.0.2)

where h(t,D) and f(t,D) are positive quantities. This equation includes all the linear

PK/PD models discussed in previous chapters.

We write the solution of this first order linear differential equation in an integral form.

Using the integrating factor

μ(t,D) = e
∫ t
0 h(τ,D)dτ , (4.0.3)

36



we find that

dR(t,D)

dt
μ(t,D)− h(t,D)R(t,D)μ(t,D) = μ(t,D)f(t,D) (4.0.4)

d

dt
(R(t,D)μ(t,D)) = μ(t,D)f(t,D). (4.0.5)

Now, integrating both sides,

R(τ,D)μ(τ,D)
∣∣∣t
0
=

∫ t

0

μ(τ,D)f(τ,D)dτ (4.0.6)

R(t,D)μ(t,D) = R(0, D) +

∫ t

0

μ(τ,D)f(τ,D)dτ (4.0.7)

R(t,D) =
1

μ(t,D)

(∫ t

0

μ(τ,D)f(τ,D)dτ

)
(4.0.8)

4.1 The General Model and the Peak Theorem

Rewriting (4.0.1) in the form of theorem P,

dR(t,D)

dt
= h(t,D)

[
f(t,D)

h(t,D)
−R(t,D)

]
. (4.1.1)

To satisfy the condition of theorem P, we take

c(t) = h(t,D)

and require h(t,D) to be bounded i.e. 0 < b1 < h(t,D) < b2 where b1, b2 ∈ (0,∞)

We take

g(t) =
f(t,D)

h(t,D)
.

We require f(t,D)
h(t,D)

> 0 at all times and f(0,D)
h(0,D)

< ∞ since g(0) is bounded above. By so

doing, we get that R(t) > f(0,D)
h(0,D)

at some R.
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Theorem P requires that g′(t) < 0, which requires
(

f(t,D)
h(t,D)

)′
< 0. Since

d

dt

(
f(t,D)

h(t,D)

)
=

h(t,D)f ′(t,D)− f(t,D)h′(t,D)

h2(t,D)
(4.1.2)

we require h(t,D)f ′(t,D)− f(t,D)h′(t,D) < 0. (4.1.3)

If both f(t,D) and h(t,D) are positive, we have the condition that

f ′(t,D)

f(t,D)
− h′(t,D)

h(t,D)
< 0. (4.1.4)

4.2 Time to Peak T and its Derivative TD

If the maximum response Rmax, occurs at t = T then dR
dt

= 0 and from (4.0.1) we get

−h(T,D)R(T,D) + f(T,D) = 0. (4.2.1)

It is worth noting that T is a function of the dosage D, that is T = T (D). From

(4.2.1), f , h and R are given functions hence they’re known quantities and T is de-

fined implicitly by this equation.

Our goal is to determine how T changes as D changes. We take partial derivatives of

(4.2.1) to obtain a relationship for TD

−R(T,D)(hT (T,D)TD + hD(T,D))− h(T,D)(RT (T,D)TD +RD(T,D))

+fT (T,D)TD + fD(T,D) = 0 (4.2.2)

where the subscripts T and D represent partial derivatives.
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Dropping all the (T,D) for convenience, we have that

−R · hT · TD −R · hD − h ·RT · TD − h ·RD + fT · TD + fD = 0 (4.2.3)

TD(fT −R · hT − h ·RT ) = (R · hD + h ·RD − fD). (4.2.4)

Now, (4.0.8) gives us a general solution for R(t,D). We take partial derivative of R

with respect to D

RD = −μD

μ2

(∫ T

0

(μ · f)dτ
)
+

1

μ

(∫ T

0

(μ · fD + f · μD)dτ

)
(4.2.5)

which then gives

RD = −μD

μ
R +

1

μ

(∫ T

0

(μ · fD + f · μD)dτ

)
. (4.2.6)

From (4.0.3), μD = μ
∫ t

0
hDdτ , substituting this result into equation (4.2.6),

RD = −R

∫ T

0

hDdτ +
1

μ

∫ T

0

(
μ · fD + μ · f

∫ τ

0

hDds

)
dτ (4.2.7)

= −R

∫ T

0

hDdτ +
1

μ

∫ T

0

μ

(
fD + f

∫ τ

0

hDds

)
dτ. (4.2.8)

Substituting RD in (4.2.8) into (4.2.4) we get

TD(fT −R · hT − h ·RT ) = R · hD − fD − h

[
R

∫ T

0

hDdτ − 1

μ

∫ T

0

μ

(
fD + f

∫ τ

0

hDds

)
dτ

]

(4.2.9)

Now

RT =
∂ R(T,D)

∂T
=

∂

∂T

[
1

μ(T,D)

(∫ T

0

μ(τ,D)f(τ,D)dτ

)]
.
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So

RT =
1

μ(T,D)

(∫ T

0

μ(τ,D)f(τ,D)dτ

)′
+

(
1

μ(T,D)

)′ (∫ T

0

μ(τ,D)f(τ,D)dτ

)

where the ′ denotes partial differentiation with respect to T. So we have

(∫ T

0

μ(τ,D)f(τ,D)dτ

)′
= μ(T,D)f(T,D).

Also,

(
1

μ(T,D)

)′
= −h(T,D)R(T,D) + f(T,D). (4.2.10)

Substituting (4.2.10) into (4.2.9), we have

TD(fT −R · hT − h · (−h ·R + f))

= R · hD − fD − h

[
R

∫ T

0

hDdτ − 1

μ

∫ T

0

μ

(
fD + f

∫ τ

0

hDds

)
dτ

]
(4.2.11)

The R in (4.2.11) is the solution when the reaction is at a maximum, hence, from

(4.2.1)

R(T,D) =
f(T,D)

h(T,D)
.

Making this substitution in (4.2.11) gives us

TD

(
fT − f · hT

h

)
= f · hD

h
− fD − f

∫ T

0

hDdτ +
h

μ

∫ T

0

μ

(
fD + f

∫ τ

0

hDds

)
dτ.

(4.2.12)

From this we investigate if T is increasing or decreasing with respect to D by com-
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paring the signs of the two expressions LHE - Left-Hand Expression,

f

(
fT
f

− hT

h

)
(4.2.13)

and RHE - Right-Hand Expression

f

(
hD

h
− fD

f

)
− f

∫ T

0

hDdτ +
h

μ

∫ T

0

μ

(
fD + f

∫ τ

0

hDds

)
dτ. (4.2.14)

We do so by using the properties of the functions involved i.e. f , h at T , which help

make useful conclusions about the time to peak T .

4.3 Investigating the Sign of TD

Since f > 0 and from (4.1.4) fT
f
− hT

h
< 0,

f

(
fT
f

− hT

h

)
< 0

and the sign of LHE is always negative.

To investigate the sign of the RHE, we will use the turnover models to help compare

the terms in the RHE.
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4.3.1 RHE for Turnover TM-1 and TM-3

Recall that

f(t,D) = k
D

et +D

and h = k.

Since hD = 0 =

∫ T

0

hDdτ,

we have RHE = −fD +
k

μ

∫ T

0

μfDτ. (4.3.1)

Since,

fD =
keT

(eT +D)2
(4.3.2)

and μ = e
∫ T
0 hdτ = ekT (4.3.3)

we have RHE =
−keT

(eT +D)2
+

k

ekT

∫ T

0

k
eτ(k+1)

(eτ +D)2
dτ. (4.3.4)

Multiplying by ekT

k
we get

ekT

k
RHE = − eT (k+1)

(eT +D)2
+ k

∫ T

0

eτ(k+1)

(eτ +D)2
dτ. (4.3.5)

ekT

k
RHE = − eTk

eT +D
· eT

eT +D
+ k

∫ T

0

eτ(k+1)

(eτ +D)2
dτ. (4.3.6)

From (4.2.1),

f(T,D) = h(T,D)R(T,D)

and from (4.0.8)

R(T,D) =
1

μ(T,D)

(∫ T

0

μ(τ,D)f(τ,D)dτ

)
.

42



Substituting R(T,D) into f(T,D), we have

f(T,D) =
h(T,D)

μ(T,D)

(∫ T

0

μ(τ,D)f(τ,D)dτ

)
. (4.3.7)

This implies that
D

eT +D
=

k

ekT

∫ T

0

Dekτ

eτ +D
dτ (4.3.8)

DekT

eT +D
=

∫ T

0

kDekτ

eτ +D
dτ. (4.3.9)

Now, substituting (4.3.9) into (4.3.6), we have

ekT

k
RHE =

eT

D(eT +D)
· −

∫ T

0

kDekτ

eτ +D
dτ + k

∫ T

0

eτ(k+1)

(eτ +D)2
dτ. (4.3.10)

=

∫ T

0

[
keτ(k+1)

(eτ +D)2
− keT ekτ

(eT +D)(eτ +D)

]
dτ (4.3.11)

= k

∫ T

0

ekτ

(eτ +D)

[
eτ

eτ +D
− eT

eT +D

]
dτ. (4.3.12)

Note that eτ

eτ+D
is an increasing function, i.e.

d

dτ

(
eτ

eτ +D

)
=

Deτ

(eτ +D)2
> 0 (4.3.13)

This shows that ekT

k
RHE < 0 and RHE< 0. So the sign of TD is positive (TD > 0)

hence, the time to peak is increases as dosage D increases.
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4.3.2 RHE for TM-2

Before considering this case we make some general modification by substituting (4.3.7)

into the first term of RHE (4.3.4). So we have,

f

(
hD

h
− fD

f

)
=

h

μ

(
hD

h
− fD

f

)∫ T

0

μfdτ

=
h(T,D)

μ(T,D)

∫ T

0

[
μ(τ,D)f(τ,D)

(
hD(T,D)

h(T,D)
− fD(T,D)

f(T,D)

)]
dτ.

(4.3.14)

For the second term in RHE (4.3.4) we have,

−f

∫ T

0

hDdτ = −
(
h

μ

∫ T

0

μfdτ

)
·
∫ T

0

hDdτ

=
h(T,D)

μ(T,D)

∫ T

0

[
μ(τ,D)f(τ,D)

(
−
∫ T

0

hD(s,D)ds

)]
dτ (4.3.15)

Substituting (4.3.14) and (4.3.15) into RHE (4.3.4), we have

RHE =
h(T,D)

μ(T,D)

∫ T

0

[
μ(τ,D)f(τ,D)

(
hD(T,D)

h(T,D)
− fD(T,D)

f(T,D)

)

+μ(τ,D)f(τ,D)

(
−
∫ T

0

hD(τ,D)dτ

)

+μ(τ,D)fD(τ,D) + μ(τ,D)f(τ,D)

∫ τ

0

hD(s,D)ds

]
dτ

(4.3.16)

which then becomes

RHE =
h(T,D)

μ(T,D)

∫ T

0

μ(τ,D)f(τ,D)

[(
hD(T,D)

h(T,D)
− fD(T,D)

f(T,D)

)

+
fD(τ,D)

f(τ,D)
+

∫ τ

0

hD(s,D)ds−
∫ T

0

hD(s,D)ds

]
dτ.
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and simplifies to

RHE =
h(T,D)

μ(T,D)

∫ T

0

μ(τ,D)f(τ,D)

[(
fD(τ,D)

f(τ,D)
− fD(T,D)

f(T,D)

)

+
hD(T,D)

h(T,D)
−

∫ T

τ

hD(s,D)ds

]
dτ. (4.3.17)

For TM-2,

f = k
D

et +D
and h = k

(
1− α

D

et +D

)
.

Then,

fD(τ,D)

f(τ,D)
− fD(T,D)

f(T,D)
=

1

D

(
eτ

eτ +D
− eT

eT +D

)
(4.3.18)

and

hD(T,D)

h(T,D)
= − αeT

(eT +D)(eT +D(1− α))
.

Also,

∫ T

τ

hD(s,D)ds =

∫ T

τ

− αkes

(es +D)2
ds

= −αk

∫ eT+D

eτ+D

du

u2

= αk

(
1

eT +D
− 1

eτ +D

)

Note that the sign of hD(T,D)
h(T,D)

is negative.

The remaining terms are,

fD(τ,D)

f(τ,D)
− fD(T,D)

f(T,D)
−

∫ T

τ

hD(s,D)ds =
1
D
[eτ (eT +D)− eT (eτ +D)]− αk(eτ − eT )

(eT +D)(eτ +D)

=
(eτ − eT )(1− αk)

(eT +D)(eτ +D)
.
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For 1−αk > 0 or k < 1
α
, RHE< 0 and hence TD is positive. In conclusion, T increases

as D increases whenever k < 1
α
.

4.3.3 RHE for TM-4

For TM-4,

f = k
D

et +D
and h = k

(
1 + α

D

et +D

)
.

Since f is same as that for TM-1 to TM-3, from 4.3.17 and 4.3.18 we have

fD(τ,D)

f(τ,D)
− fD(T,D)

f(T,D)
=

eτ − eT

(eτ +D)(eT +D)
< 0

Also,
hD(T,D)

h(T,D)
=

αeT

(eT +D)(eT +D(1 + α))
> 0

and

∫ T

τ

hD(s,D)ds =

∫ T

τ

αkes

(es +D)2
ds

= αk

(
1

eτ +D
− 1

eT +D

)

=
αk(eT − eτ )

(eτ +D)(eT +D)

> 0

Now
fD(τ,D)

f(τ,D)
− fD(T,D)

f(T,D)
+

hD(T,D)

h(T,D)
−

∫ T

τ

hD(s,D)ds

=
1

eT +D

[
eτ − eT

eτ +D
+

αeT

eT +D(1 + α)
− αk(eT − eτ )

eτ +D

]

=
(−1− αk)(eT − eτ )(eT +D(1 + α)) + αeT (eτ +D)

(eT +D)(eτ +D)(eT +D(1− α))

(4.3.19)

So if −1 − αk > 0 or 1 + αk < 0, then RHE is positive, which will imply that T is

decreasing as D increases. However, this assertion for T is false since 1+αk is strictly

positive.
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Chapter 5

Discussion, Conclusion and Future

Work

We begun by reviewing some of the models by Theis et al. (2011), Nguyen et al.

(2009), Sharma and Jusko (1996), Dayneka et al. (1993) and others; giving some

details of the models. We explained the models by giving the biological reasons for

the terms involved. The reaction models, RM-1 to RM-6, from Theis et al. (2011),

started with a simple PK/PD (first order linear differential equation) and increased

the complexity by including additional parameters and constraints to describe ob-

served dynamics in biological responses and data. We showed that there are several

common features of the turnover models, TM-1 to TM-4 which produce responses by

indirect mechanisms. The reaction models and turnover models helped our analysis

and discussions in this paper.

In chapter 3, we proved Peak Theorem (theorem P), which addresses the question of

whether a maximum response occurs after a drug is administered. The theorem con-

siders a general non-linear differential equation, of the form dr(t)
dt

= c(t)[g(t) − p(r)].

We proved that if c(t) is a positive, continuous and bounded function, g(t) is a pos-
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itive, continuous and diminishing function, and p(r) is strictly increasing continuous

function where p(r) > g(0) at some t, then the solution r is defined, bounded, has a

unique maximum at time T and diminishes to zero as t → ∞. We applied theorem

P to RM-1 to RM-3, and TM-1 to TM-4 and showed that each model satisfied the

conditions of theorem P and thus has a single time to peak.

The existence of a single time to peak (theorem P) led the analysis of chapter 4 where

we investigated how the time to peak depends on drug dosage. We used a general

linear differential equation (4.0.1) together with its general integral solution to derive

an expression for TD (changes in T with respect to changes in the drug dosage D)

(4.2.12). We found two expressions, LHE and RHE depending only on f and h, which

show that T increases withD when LHE and RHE have the same signs and vice-versa.

This result led us to find some information on how T varies with D for the turnover

models. First, we used the analysis in chapter 4 to show that the sign of LHE is

negative under the conditions of the Peak theorem. For TM-1 and TM-3, we showed

that T increases when D increases. For TM-2, we showed that for k < 1
α
, T increases

as D increases. However, Nguyen et al. (2009) showed that for k > 1
α
and α < 1

2
, T

increases with D. There still remain the range k > 1
α
where α > 1

2
to be investigated.

For future work, we can investigate TM-4 further by using a numerical approach to

determine how T changes with D. This would benefit from clinical trial data to es-

timate values of α, k and D. We can also investigate and obtain conditions for the

terms in RHE which will guarantee that T increases or decreases as D changes. We

can also analyze the general nonlinear model (3.1.1) to investigate how T changes

with D using a similar approach for the linear version in chapter 4.
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As mentioned earlier, the analysis in this paper focuses on administration of drugs

into the system of an organism, however, it is valid for any application governed by

a first order ordinary differential equation with diminishing forcing and other mild

restriction on the form of the feedback.

In conclusion, this thesis has many applications for many regulated feedback networks.
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Appendix - Matlab Codes

RM-1 Discrete Version

---------------------

a = 1;

k = 1;

t1 = linspace(0,1)’;

t2 = linspace(1,3)’;

X = [t1,t2];

Y = [a/k*(1-exp(-k*t1)),a/k*(exp(-k*(t2-1))-exp(-k*t2))];

figure

stairs(X,Y)

xlabel(’t’) % x-axis label

ylabel(’R(t)’) % y-axis label

RM-1 Continuous Version

-----------------------

a = 1;

k = 1;

t = linspace(0,1)’;

Y = (a*exp(-k*(t+1))).*(-expint(-k*t-k)+expint(-k));
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RM-2

----

a = 1;

k = 1;

t = linspace(0,1);

Y = a*(exp(-k*t)-(1./(1+t))+k*exp(-k*(1+t)).*(-expint(-k*t-k)+expint(-k)));

RM-3

----

a = 1;

k = 1;

t = linspace(0,20);

Y = a*(1-exp(-k*t))./(k*(1+t));

TM-1 and TM-3

-------------

d = 1;

k = 1;

Pe = @(tau,d,k) d*exp(-tau)./(1+d*exp(-tau)).*exp(k*tau);

Y = zeros(1001,1);

i=1;

for t=0:0.01:10

Y(i) = k*exp(-k*t)*integral(@(tau) Pe(tau,d,k),0,t);

i=i+1;

end

t = linspace(0,10,1001);
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figure

plot(t,Y)

xlabel(’t’)

ylabel(’R(t)’)

TM-2

----

d = 1;

k = 1;

a = 0.5;

P = @(tau,d) d*exp(-tau)./(1+d*exp(-tau));

Q = @(s,d) d*exp(-s)./(1+d*exp(-s));

Y = zeros(1001,1);

i=1;

for t=0:0.01:10

Y(i) = k*exp(-k*t+a*k.*integral(@(tau)P(tau,d),0,t))

.*integral(@(tau) P(tau,d).*exp(k*tau-a*k

.*integral(@(s)Q(s,d),0,0.01)),0,t);

i=i+1;

end

t = linspace(0,10,1001);

figure

plot(t,Y)

xlabel(’t’)

ylabel(’R(t)’)
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TM-4

-----

d = 1;

k = 1;

a = 0.5;

P = @(tau,d) d*exp(-tau)./(1+d*exp(-tau));

Q = @(s,d) d*exp(-s)./(1+d*exp(-s));

Y = zeros(1001,1);

i=1;

for t=0:0.01:10

Y(i) = k*exp(-k*t-a*k.*integral(@(tau)P(tau,d),0,t))

.*integral(@(tau) P(tau,d).*exp(k*tau+a*k

.*integral(@(s)Q(s,d),0,0.01)),0,t);

i=i+1;

end

t = linspace(0,10,1001);

figure

plot(t,Y)

xlabel(’t’)

ylabel(’R(t)’)
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