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ABSTRACT

A friendly partition of a graph is a partition of the vertices into two sets so that

every vertex has at least as many neighbors (adjacent vertices) in its own set as in

the other set. An unfriendly partition of a graph is a partition of the vertices into

two sets so that every vertex has at least as many neighbors in the other set as in

its own set. In this paper we extend these concepts to k−partitions of vertices. We

define and explore friendly and unfriendly edge partitions and extend these concepts

to k−partitions of edges. In extending these concepts to the edges of a graph, we

will show that one type of a friendly vertex partition of a Km,n graph can be used

to produce a friendly edge partition. We will also look at partitions that are both

friendly and unfriendly (dual). We will investigate these properties for several types

of graphs (star, tree, Kn, Cn, Km,n).
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1 Introduction

A friendly partition of a graph is a partition of the vertices into two sets so that every

vertex has at least as many neighbors (adjacent vertices) in its own set as in the other

set. An unfriendly partition of a graph is a partition of the vertices into two sets so

that every vertex has at least as many neighbors in the other set as in its own set.

Friendly partitions are also known as satisfactory [3, 4, 6], internal [2], and strong

defensive alliance [9]. Unfriendly partitions are also known as co-satisfactory [4] and

external [2]. A special case of unfriendly partitions is when the vertices have more

neighbors in the other set, then it is strictly unfriendly and the partition is an alliance

free partition [9]. Others have explored the complexity of finding a partition from a

given graph [3, 4, 6, 9].

A graph G is an ordered pair (V,E), where V is a set of vertices and E is a set

of edges. In this paper a graph is undirected and contains no loops or parallel edges.

Other notation is taken from [7], and/or will be defined within this paper.

2 Kn and Km,n partitions

In this section we will be considering complete graphs. The first type are Kn, where

each vertex is adjacent to every other vertex. For the graph denoted Km,n, it is

called a complete bipartite graph, and the m vertices are only adjacent to all of the

n vertices, but not to any of the other m vertices. A special type of a Km,n graph is

a star graph; this is where m = 1. For a multipartite graph, Km1,m2,···mj
, the vertices

are only adjacent to vertices of the other sets.

Notation: In a Km,n graph, m ≤ n, let M = {mi}mi=1 be the set of vertices that
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correspond to the first subscript, and let N = {ni}ni=1 be the set of vertices that

correspond to the second subscript. For the general case: Let Mi = {mil}kil=1 be the

set of vertices that correspond to the ith subscript, Km1,m2,··· ,mk
, where mi ≤ mi+1

1 ≤ i < k.

The partition of a graph is where the vertices or edges are distributed amoung k

pairwise disjoint sets. The standard partition of a complete bipartite graph is where

all of the m vertices are in one set of the partition and the n vertices are in the other

set.

2.1 Definitions

Definition 1 (Neighbors).

Adjacent vertices are neighbors.

Definition 2 (Self-neighbor).

For a given vertex in a given partition, a self-neighbor is any other vertex in the same

set of the partition that is a neighbor to the given vertex. The number of self-neighbors

of a vertex v is denoted by ns(v) = a.

Definition 3 (Other-neighbor).

For a given vertex in a given partition, an other-neighbor is a vertex in any other set

of the partition that is a neighbor to the given vertex. The number of other-neighbors

of a vertex v in a particular set is denoted by noi(v) = a, for i = 1 to one less than

the number of sets in the partition. If the partition consists of only two sets, then it

is denoted by no(v) = a.

Definition 4 (Friendly vertex).

For a given vertex in a given partition, the vertex is friendly if it has at least as many
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neighbors in its own set as it has in any other set of the partition. Thus the number of

self-neighbors is greater than or equal to the number of other-neighbors for each other

set in the partition. A partition is friendly if and only if all the vertices are friendly.

Definition 5 (Unfriendly vertex).

For a given vertex in a given partition, the vertex is unfriendly if it has at most as

many neighbors in its own set as it has in any other set of the partition. Thus the

number of self-neighbors is less than or equal to the number of other-neighbors for

each other set in the partition. A partition is unfriendly if and only if all the vertices

are unfriendly.

Definition 6 (Dual vertex).

For a given vertex in a given partition, a dual vertex has the same number of self-

neighbors as other-neighbors for each other set in the partition, thus it is both friendly

and unfriendly. A partition is dual if and only if all the vertices are dual.

Definition 7 (Standard partition).

For a Km,n graph, a standard partition is formed by placing the m vertices in one

set and the n vertices in the other set. This can be extended to graphs of the form

Km1,m2,··· ,mk
, where mi ≤ mi+1 for 1 ≤ i < k, where there are k sets of vertices, and

the ith set contains the mi vertices.

Definition 8 (Singleton).

In a given partition, a set with one and only one vertex is called a singleton. This

vertex is always unfriendly, since it has no self-neighbors.

Definition 9 (Singleton partition).

This is a partition with only singletons. This partition is always unfriendly.
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Definition 10 (Ginsu partition).

For the graph Km1,m2,··· ,mk
, where mi ≤ mi+1 for 1 ≤ i < k, and 1 �= d | mi, for all

i ≤ k, this partition consists of the d sets that have
mi

d
vertices from each of the Mi

sets where 1 ≤ i ≤ k.

2.2 Partitions of Kn

In this section we will first show that a Kn graph has no friendly partitions and then

proceed to show the conditions under which a Kn graph has an unfriendly partition

and the number of such partitions.

Theorem 11. A Kn graph has no friendly 2-partition.

Proof. Let P = {S1, S2} be a friendly partition of a Kn graph. Then for every vertex

of Kn, ns(v) ≥ no(v). Let m be the cardinality of the smaller set, then m ≤
⌊
n

2

⌋
, and

S1 = {vi}mi=1, S2 = V \ S1. Note that |S2| = n −m. Now for v ∈ S1, ns(v) = m − 1

and no(v) = n−m, thus

m− 1 ≥ n−m

2m ≥ n+ 1

This is a contradiction, since m ≤
⌊
n

2

⌋
. Hence P is not friendly.

Therefore a Kn graph has no friendly 2−partitions.

Theorem 12. A Kn graph has no friendly k−partition.

Proof. Let P = {Si}ki=1 be a friendly partition of a Kn graph. Then for every vertex

of Kn, ns(v) ≥ nol(v). Let m = min{|Si|}ki=1. Without loss of generality we may
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assume m = |S1| and |Si| ≥ m for 2 ≤ i ≤ k. Let v ∈ S1. Then ns(v) = m − 1 and

noi(v) ≥ m. Since P is friendly, then m− 1 ≥ m, which is a contradiction. Hence P

is not friendly.

Therefore a Kn graph has no friendly k−partitions.

In the chart below, each set represents a partition of the indicated complete graph.

Each number is the cardinality of the set of vertices in the partition. Note that the

order of the cardinalities does not matter, {2, 2, 1} ≈ {2, 1, 2}. So I have chosen

to display the cardinalities in descending order. Note that the cardinalities in a

partition always sum to n, and that for any two cardinalities in a partition, ci and cj,

|ci − cj| ≤ 1.

2 sets 3 sets 4 sets 5 sets 6 sets 7 sets

K2 {1, 1}
K3 {2, 1} {1, 1, 1}
K4 {2, 2} {2, 1, 1} {1, 1, 1, 1}
K5 {3, 2} {2, 2, 1} {2, 1, 1, 1} {1, 1, 1, 1, 1}
K6 {3, 3} {2, 2, 2} {2, 2, 1, 1} {2, 1, 1, 1, 1} {1, 1, 1, 1, 1, 1}
K7 {4, 3} {3, 2, 2} {2, 2, 2, 1} {2, 2, 1, 1, 1} {2, 1, 1, 1, 1, 1} {1, 1, 1, 1, 1, 1, 1}

Lemma 13. A partition of a Kn graph, into m sets of vertices, 2 ≤ m ≤ n, is

unfriendly if and only if the cardinalities of any 2 of the sets differ by at most 1.
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Proof. (⇒) We need to show that |ci − cj| ≤ 1.

Let Kn be partitioned into m sets of vertices, 2 ≤ m ≤ n, such that the partition is

unfriendly. Since the partition is unfriendly, then for all v ∈ V (Kn), ns(v) ≤ noi(v)

for i = 1, 2, · · · ,m− 1. By way of a contradiction, assume that there exists 2 sets of

the partition whose cardinalities differ by at least 2. Let the sets be S1 and S2 with

j = |S1|, j + 2 ≤ |S2|. Then for all v ∈ S2, ns(v) ≥ j + 1 and no1(v) = j, and since

ns(v) > no1(v), then v is not an unfriendly vertex, which is a contradiction. Thus

this partition must be such that the cardinalities of any two sets of vertices differ by

at most 1. �

(⇐) We need to show that the partition is unfriendly.

Let Kn be partitioned into m sets of vertices, 2 ≤ m ≤ n, such that the cardinality

of any two sets of vertices differs by at most 1. Let q be the cardinality of the smaller

sets, r be the number of sets with a cardinality of q + 1.

Case 1: r = 0

Now if r = 0, then |Si| = q, for all i, so for v ∈ Si, ns(v) = q − 1 and noj(v) = q, for

all j �= i. Thus ns(v) < noj(v), for all j implies that v is an unfriendly vertex.

Case 2: r ≥ 1

Let |Sj| = q+1, 1 ≤ j ≤ r, and |Si| = q, r+1 ≤ i ≤ m. Then for v ∈ Si, r+1 ≤ i ≤ m,

we have ns(v) = q − 1 and nod(v) = q + 1 or nod(v) = q. Thus ns(v) ≤ nod(v), which

implies that v is an unfriendly vertex. Now for u ∈ Sj, 1 ≤ j ≤ r, ns(u) = q and

nod(u) = q or nod(u) = q + 1. Thus ns(u) ≤ nod(u), which implies u is an unfriendly

vertex.
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Now since the choices of v and u were arbitrary in both cases above, the partition

is unfriendly. �

Therefore any partition of aKn graph, into 2 ≤ m ≤ n sets of vertices is unfriendly

if and only if the cardinalities of any 2 sets of vertices differ by at most 1.

Theorem 14. The number of unfriendly partitions of a Kn graph is n− 1.

Proof. Let the number of sets in an unfriendly partition of a Kn graph be m, 2 ≤
m ≤ n. From lemma 13 we know the cardinalities of these m sets differ by at most

1, thus the cardinalities are either q or q + 1. Let m1 be the number of sets with

cardinality of q and m2 be the number of sets with cardinality q + 1.

Then

n = m1q +m2(q + 1) = (m1 +m2)q +m2.

Note that 0 ≤ m1 +m2 ≤ n, so by the Division Algorthim we know that m2 and q

are unique. So for each m there exist unique qm and rm such that n = mqm + rm.

Since there are n− 1 unique values for m, then there are n− 1 unfriendly partitions

of Kn.

2.3 Star K1,n graphs

Now we will consider the partitions of the star K1,n graphs. These graphs can not

have a friendly partition because to be friendly each vertex has to have at least the
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same number of neighbors in its own set as in each of the other sets of the partition.

This implies that the lone M vertex is in all sets, which is a contradiction. Thus there

are no friendly star partitions. So we will explore some of the conditions that provide

for unfriendly partitions.

Lemma 15. For a vertex v of a given graph, if ns(v) = 0, then v is unfriendly.

Proof. Let v be a vertex of a graph such that ns(v) = 0. Thus ns(v) ≤ noi(v), for all

i, and hence v is unfriendly.

Theorem 16. A partition of a star graph is unfriendly if and only if the center vertex

is a singleton.

Proof. (⇒) We need to show that |S1| = 1.

Let P be an unfriendly partition of a K1,n graph, into k sets, and let S1 be the set con-

taining the center vertex, C. Since the graph is unfriendly, then for all v ∈ V (K1,n),

ns(v) ≤ noi(v), for all i ≤ k − 1. By way of a contradiction, assume that |S1| > 1,

and let u ∈ S1, u �= C. Now since u ∈ S1, ns(u) = 1 and noj(u) = 0, for all j ≤ k− 1.

Thus u is friendly and not unfriendly which is a contradiction, because the partition

is unfriendly. Hence |S1| = 1. �

(⇐) We need to show that the partition is unfriendly.

Let P be a partition of a K1,n graph, into k sets, and let S1 = {C} where C is the

center vertex. Then |S1| = 1, and ns(C) = 0, then by lemma 15 C is unfriendly. Now

for all v ∈ V (K1,n), ns(v) = 0. Then by lemma 15, v is unfriendly.
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Hence since the choice of v was arbitrary, P is an unfriendly partition of K1,n.

�

Therefore a partition of a star graph is unfriendly if and only if the set containing

the center vertex has cardinality 1.

Theorem 17. If G is a star graph, then there are p(n) unfriendly partitions of G,

where p(n) is the number of unrestricted partitions of n. This is the number of ways

to distribute n things into k boxes.[1]

Proof. Let G be a K1,n graph, with center vertex C, and P = {Si}k+1
i=1 be a partition

of K1,n, where 1 ≤ k ≤ n. By theorem 16, if P is unfriendly, then the set containing

the center vertex has cardinality 1. Suppose S1 = {C}. Now the remaining n vertices

can be distributed among the other k sets. This is equivalent to distributing n ones

among k boxes, which is equivalent to an unrestricted partition of n, denoted p(n)

[1]. Hence a star graph has p(n) unfriendly partitions.

2.4 Partitions of Km,n

In this section we will explore the conditions under which a Km,n graph has a friendly

and / or an unfriendly partition. We will also show that some of these concepts can be

extended to Km1,m2,··· ,mn graphs. We will also develop the concept of a dual partition,

that is, a partition that is both friendly and unfriendly.

Theorem 18. The standard partition of the graph Km1,m2,··· ,mk
, where mi ≤ mi+1 for

1 ≤ i < k, is unfriendly.

Proof. Let the partition be the sets Mi, 1 ≤ i ≤ k. Then for mij ∈ Mi, mij has no
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neighbors in Mi so ns(mij) = 0; thus by lemma 15 mij is unfriendly. Since the choice

of mij was arbitrary, this partition is unfriendly.

Theorem 19. The ginsu partition of a Km,n graph, such that gcd(m,n) �= 1 is dual.

Proof. Let Km,n be a graph such that gcd(m,n) �= 1. Then for all d ∈ N such that

d | m and d | n, let d be the number of sets in the partition, and let each set have
m

d

elements from M , and
n

d
elements from N . Now for each mi ∈ M , ns(mi) =

n

d
and

noi(mi) =
n

d
in each of the other 1 ≤ i ≤ d − 1 sets. Thus each mi is a dual vertex.

Now for each ni ∈ N ns(ni) =
m

d
and noj(ni) =

m

d
in each of the other 1 ≤ i ≤ d− 1

sets. Thus each ni is a dual vertex, and hence the partition is dual.

Theorem 20. The ginsu partition of a Km1,m2,··· ,mk
graph, such that gcd(m1,m2, · · · ,mk) �=

1 is dual.

Proof. Let Km1,m2,··· ,mk
be a graph such that gcd(m1,m2, · · · ,mk) �= 1. Then for all

d ∈ N such that d | mi, i = 1, 2, · · · k, let d be the number of sets in the partition.

Then each set has
mi

d
elements from each of the Mi, 1 ≤ i ≤ k sets. For each

mij ∈ Mi, ns(mij) =
mi

d
and noi(mij) =

mi

d
in each of the other 1 ≤ i ≤ d − 1 sets.

Thus mij is a dual vertex, and since the choice of mij was arbitrary, the partition is

dual.

Lemma 21. A Km,n graph has a friendly partition into 2 sets, if and only if both m

and n are even.

Proof. (⇒) We need to show that both m and n are even.

Let P = {S1, S2} be a friendly partition of Km,n. Since P is friendly, then for all

v ∈ V (Km,n), ns(v) ≥ no(v). Then mi ∈ Sj ∩M , j = 1, 2, implies deg(mi) = |N |
and ni ∈ Sj ∩ N , j = 1, 2, implies deg(ni) = |M |. Suppose that 2 � |M |. Then
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|S1∩M | �= |S2∩M |. We may assume that |S1∩M | > |S2∩M |, which implies S1 has

at least 1 more vertex fromM than S2. This implies that for u ∈ S2∩N , ns(u) < no(u)

which is a contradiction because the partition is friendly. Hence 2 | |M |. Similarly

2 | |N |. Thus gcd(m,n) ≥ 2 �= 1. �

(⇐) We need to show that the partition is friendly.

Let P = {S1, S2} be the Ginsu partition of Km,n with k parts where gcd(m,n) > 1.

Now by theorem 19, P is dual which implies that P is friendly. �

Therefore, a Km,n graph has a friendly partition of 2 sets, if and only if both m

and n are even.

Lemma 22. A Km,n graph has a friendly partition into k sets, if and only if k | m
and k | n.

Proof. (⇒) We need to show that k | m and k | n.
Let P = {S1, S2, · · · , Sk} be a friendly partition of Km,n. Since P is friendly, then

for all v ∈ V (Km,n), ns(v) ≥ no(v). Then mi ∈ Sj ∩ M , j = 1, 2, · · · , k, implies

deg(mi) = |N | and ni ∈ Sj ∩N , j = 1, 2, · · · , k, implies deg(ni) = |M |. Suppose that
k � |M |, then there exist α, β, such that |Sα ∩M | �= |Sβ ∩M |. We may assume that

|Sα ∩M | > |Sβ ∩M |, which implies Sα has at least 1 more vertex from M than Sβ.

This implies that for u ∈ Sβ ∩ N , ns(u) < no(u), which is a contradiction because

the partition is friendly. Hence k | |M |. Similarly k | |N |. Thus gcd(m,n) ≥ k �= 1.

�
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(⇐) We need to show that the partition is friendly.

Let P = {S1, S2, · · · , Sk} be the Ginsu partition ofKm,nwith k parts where gcd(m,n) >

1. Now by theorem 19, P is dual which implies that P is friendly. �

Therefore, a Km,n graph has a friendly partition of k sets, if and only if k | m and

k | n.

Corollary 23. The only dual partitions of a Km,n graph are the Ginsu partitions.

2.5 Partition diagram

Example 24. For the graph K2,2:

Let M = {A,B} and N = {C,D}. There are three non isomorphic partitions into

two sets of this graph:

For the P3 partition, create a singleton set by picking one vertex from the set

M ∪ N , and placing the remaining vertices in the other partition. Without loss of

generality let the singleton vertex be m1. Since there are no other vertices in its

partition, it has zero self-neighbors, and it has n other-neighbors. Now consider the

remain vertices of the M set of vertices. Since 0 < n, this is an unfriendly vertex and

not a friendly vertex. For the other set of the partition, the other mi, 2 ≤ i ≤ m,
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vertices all have n self-neighbors and zero other-neighbors, thus these vertices have

more self-neighbors than other-neighbors which would make them friendly vertices.

Hence this partition is neither, since not all vertices are of the same type, friendly or

unfriendly.

This Venn diagram represents the friendly (on the left side) and unfriendly (on

the right side) partitions. The area in the middle represents the partitions that are

both friendly and unfriendly (dual). If the partition is not friendly, then it might be

unfriendly, but it also might be neither friendly nor unfriendly. Therefore you can’t

show that a partition is unfriendly by showing that it is not friendly.

An example of each type of partition follows: A Ginsu partition of a Km,n graph

is dual. We will show that the 2-partition of a C5 graph, with 2 adjacent vertices in

13



one set and the other 3 vertices in the other set, is friendly and not unfriendly. A

2-partition of a Kn graph where the cardinality of the two sets differ by at most 1 is

unfriendly and not friendly. A partition of K2,2 where one vertex is a singleton and

the other three vertices are in the other set is none of the above types.

3 Cn partitions

In this section we will consider cycle graphs of n vertices, denoted Cn. This is a graph

where each vertex has 2 adjacent edges, and the edges form a closed path.

We will now explore the conditions under which a Cn graph has friendly and / or

unfriendly partitions.

Theorem 25. A partition of Cn, n ≥ 4 is friendly if and only if for all v ∈ V (Cn),

ns(v) > 0.

Proof. (⇒) We need to show that ns(v) > 0.

Let P be a friendly partition of the graph Cn, into k sets. Since P is friendly, then for

all v ∈ V (Cn), ns(v) ≥ noi(v), for all i ≤ k−1. Since the graph is a cycle, deg(v) = 2,

for all v ∈ V (Cn). Thus

2 = ns(v) +
k−1∑
i=1

noi(v) ≤ kns(v).

Which implies that ns(v) > 0, for all v ∈ V (Cn). �

(⇐) We need to show that the partion is friendly.

Let P be a partition of the graph Cn into k sets, where for all v ∈ V (Cn), ns(v) ≥ 1.

Since deg(v) = 2, for all v ∈ V (Cn), and ns(v) ≥ 1, then noi(v) ≤ 1, for all i ≤ k− 1.

14



Thus noi(v) ≤ 1 ≤ ns(v). Thus v is friendly, and since the choice of v was arbitrary,

the partition P is friendly. �

Theorem 26. A partition of Cn, n ≥ 3 into 2 sets is unfriendly if and only if for all

v ∈ V (Cn), ns(v) < deg(v) = 2.

Proof. (⇒) We need to show that for all v ∈ V (Cn), ns(v) < deg(v) = 2.

Let P be an unfriendly partition of the graph Cn into 2 sets. Since the partition is

unfriendly, then ns(v) ≤ no(v), for all v ∈ V (Cn). Since the graph is a cycle, then

deg(v) = 2, for all v ∈ V (Cn). Now

2 = deg(v) = ns(v) + no(v) ≥ 2ns(v).

Which implies that ns(v) ≤ 1. Thus no set of the partition can have a vertex with

ns(v) = 2, and since the choice of v was arbitrary, we have for all v ∈ V (Cn),

ns(v) < deg(v) = 2. �

(⇐) We need to show that the partition is unfriendly

Let P be a partition of the graph Cn, n ≥ 2, into 2 sets such that for all v ∈ V (Cn),

ns(v) < deg(v) = 2. Thus for all v ∈ V (Cn), ns(v) = 0, 1. If ns(v) = 0, then

ns(v) ≤ no(v) = 2. If ns(v) = 1, then ns(v) ≤ no(v) = 1. Thus ns(v) ≤ no(v). Hence

v is unfriendly and since the choice of v was arbitrary, the partition is unfriendly.

�
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4 Tree partitions

In this section we will consider tree graphs of n vertices, denoted Tn. This is a graph

where for any two vertices, it is possible to find a path between them, and the graph

contains no cycles.

For trees, I will consider the center as the root of the tree. If the diameter of

the tree is even, then there is only one root, denoted v0,1. If the diameter of the tree

is odd, then there are two roots, denoted v0,1 and v0,2. This is called a double root tree.

4.1 Definitions

Definition 27. (Level)

For a given vertex v in a given tree, the distance from v to the root is its level. The

root is on level 0. The level is the first subscript of the vertex.

Definition 28. (Height)

For a given tree T , where diam(T ) = 2k + r, r ∈ {0, 1}, let the height of T is k,

denoted ht(T ) = k.

Example 29. Both trees shown have height 3.
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Definition 30. (Level partition) For a given tree, the vertices in a level partition are

grouped into sets based on their distance from the root(s). The number of sets in this

partition is equal to the height of the tree plus one. The sets listed below are the sets

for the level partitions of the above single and double root trees.

Single root sets Double root sets

S0 = {V0,1} S0 = {V0,1, V0,2}
S1 = {V1,1, V1,2, V1,3} S1 = {V1,1, V1,2, V1,3, V1,4}
S2 = {V2,1, V2,2, V2,3, V2,4, V2,5} S2 = {V2,1, V2,2, V2,3, V2,4, V2,5}
S3 = {V3,1, V3,2, V3,3} S3 = {V3,1, V3,2, V3,3}

Definition 31. (Pruned partition) For a given tree, this is the partition that consists

of the sets created by deleting the edges v0,xv1,j, for all x ∈ {1, 2} and for all j, and

placing each of the subtrees, whose roots are the v1,j vertices, into sets, and placing

the root(s) into one of the sets that contains a level 1 vertex that the root is adjacent

to. The sets listed below are the sets for the pruned partitions of the above single and

double root trees. The sets are shown without the roots.

Single root sets Double root sets

S1 = {V1,1, V2,1, V2,2, V3,1, V3,2} S1 = {V1,1, V2,1, V2,2, V3,1, V3,2}
S2 = {V1,2, V2,3} S2 = {V1,2}
S3 = {V1,3, V2,4, V2,5, V3,3} S3 = {V1,3, V2,3}

S4 = {V1,4, V2,4, V2,5, V3,3}
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4.2 Single root trees

Theorem 32. A level partition of a single root tree is unfriendly.

Proof. A single root in a level partition has ns(v0,1) = 0. Let T be a tree of height

h. Now noi(v0,1) = deg(v0,1) for some i ≤ h, and nok(v0,1) = 0 for all k �= i. Thus

v0,1 is unfriendly. Let vi,j ∈ V (T ), i ≥ 1, such that vi,j is a vertex from the ith level.

It is sufficient to show that ns(v) = 0, because noi(v) ≥ 0. Since each set of the

partition is the ith level, then ns(vi,j) = 0, for all vi,j ∈ V (T ). Thus this partition is

unfriendly.

Theorem 33. A pruned partition of a single root tree T is friendly, if and only if

there is at most 1 level one leaf, and the root is placed in this set.

Proof. (⇐) We need to show that the partition is friendly.

Let P = {S1, S2, · · · , Sk}, be a pruned partition of the graph T , with deg(v1,i) ≥ 1

where v0,1 and v1,i are in the same set, and for all j �= i, deg(v1,j) ≥ 2. Since each

Si of a pruned partition is a nontrival tree, then every vertex has at least one self

neighbor. The only vertices that have other neighbors are the root and the level 1

vertices. The root has exactly one other neighbor in each of the other sets of the

partition and one self neighbor, thus the root is friendly. Since the level one vertices

are connected to the root and all level one vertices have degree greater than or equal

to 1, then all level one vertices are friendly. All the other vertices (level 2 and greater)

have 0 other neighbors, thus they are friendly. Hence P is friendly. �

(⇒) Let P = {Si}αi=1 be a friendly pruned partition of the tree T , and let v0,1 and

v1,i be in the same set, where deg(vi) ≥ 1. Since P is friendly, then for all v ∈ V (T ),
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ns(v) ≥ nok(v), for all k. Now suppose there exists j �= i, such that deg(v1,j) = 1, then

v1,j is only adjacent to v0,1. Since j �= i, v0,1 is not in the same set of the partition as

v1,j. Then ns(v1,j) = 0; thus v1,j is not friendly which is a contradiction because v1,j

is friendly. Hence deg(vi,j) ≥ 2.

Hence the friendliness of a pruned partition of T implies that deg(v1,i) ≥ 1 where

v0,1 and v1,i are in the same set, and for all j �= i, deg(v1,j) ≥ 2. �

Therefore, a pruned partition is friendly, if and only if deg(v1,i) ≥ 1 where v0,1 and

v1,i are in the same set, and for all j �= i, deg(v1,j) ≥ 2.

4.3 Double root trees

The following theorem extends theorem 33 to a double root tree. The proof uses

similar techniques and is omitted.

Theorem 34. A pruned partition of a double root tree T is friendly, if and only if

there are at most 2 level 1 vertices that are leaves, these level one leaves (if any) are

placed with roots, and all other level 1 vertices have degree greater than 1.
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5 Friendly and unfriendly edge partitions

In this section we will extend the ideas of friendly and unfriendly partitions to the

edges of a graph. First we extend the basic definitions from the vertex partitions.

We then look at the conditions for a Cn graph to have friendly and / or unfriendly

edge partitions. We then define new types of partitions called constant partitions. In

working with these edge partitions I placed an artificial construct on the vertices of

the graph, and some interesting patterns emerged: star polygons and star figures. [10]

Definition 35 (Neighbors).

Adjacent edges are neighbors.

Definition 36 (Self-neighbor).

For a given edge in a given partition, a self-neighbor is any other edge in the same set

that is a neighbor to the given edge; i.e. the two edges share a vertex. The number of

self-neighbors of an edge is denoted by ns(uv).

Definition 37 (Other-neighbor).

For a given edge in a given partition, an other-neighbor is an edge in any other set

that is a neighbor to the given edge. The number of other-neighbors of an edge in

a particular set is denoted by noi(uv), for i = 1 to one less than the number of sets

in the partition. If the partition consists of only two sets, then it is denoted by no(uv).

Definition 38 (Friendly edge).
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For a given edge in a given partition, the edge is friendly if it has at least as many

neighbors in its own set as it has in any other set of the partition. Thus the number of

self-neighbors is greater than or equal to the number of other-neighbors for each other

set in the partition. A partition is friendly if and only if all the edges are friendly.

Definition 39 (Unfriendly edge).

For a given edge in a given partition, the edge is unfriendly if it has at most as many

neighbors in its own set as it has in any other set of the partition. Thus the number

of self-neighbors is less than or equal to the number of other-neighbors for each other

set in the partition. A partition is unfriendly if and only if all the edges are unfriendly.

Definition 40 (Dual edge).

For a given edge in a given partition, a dual edge has the same number of self-neighbors

as other-neighbors for each other set in the partition; thus it is both friendly and

unfriendly. A partition is dual if and only if all the edges are dual.

5.1 Cn edge partitions

In this section we will consider the properties that make an edge partition of a Cn

graph friendly and / or unfriendly. We will show that friendly edge partitions require

continuous paths, while an unfriendly partition is composed of isolated edges. We

will also see why only C4n graphs have dual edge partitions.

21



Example 41.

For this C6 graph, two edge partitions are listed below, one friendly and one unfriendly.

P1 = {{ab, bc, cd}, {de, ef, fa}}, friendly

P2 = {{ab, cd, ef}, {bc, de, fa}}, unfriendly

Theorem 42. An edge partition of 2 sets of Cn is friendly, if and only if each set of

the partition consists of a union of paths where each path has length at least two.

Proof. (⇒) We need to show that the partition consists of the union of paths.

Let P = {S1, S2} be a friendly edge partition of Cn. Since P is friendly, then for all

e ∈ E(Cn), ns(e) ≥ no(e). Now the degree of every vertex of Cn is 2, so if no(e) = 2,

then ns(e) = 0, which implies that e is not friendly which is a contradiction. Thus

no(e) ≤ 1, and so ns(e) ≥ 1. So each edge in a set of the partition has an adjacent

edge in the set. Thus e is part of a path whose length is at least 2. Since the choice

of Si was arbitrary, both sets consist of a union of paths where each path has length

at least two. �

(⇐) We need to show that the partition is friendly.

Let P = {S1, S2} be an edge partition of Cn, such that each set of the partition

22



consists of a union of paths where each path has length at least two. Let e ∈ Si,

since e is in a path whose length is greater than 1, then ns(e) ≥ 1, which implies that

no(e) ≤ 1. Thus e is friendly. Since the choice of e was arbitrary, then P is friendly.

�

Therefore an edge partition of 2 sets of Cn is friendly, if and only if each set of the

partition consists of a union of paths where each path has length at least two.

The following theorem extends theorem 42 to a partition of k sets. The proof uses

similar techniques and is omitted.

Theorem 43. An edge partition of Cn into k sets is friendly, if and only if each set

of the partition consists of a union of paths where each path has length at least two.

Theorem 44. An edge partition, P = {S1, S2}, of Cn is unfriendly, if and only if for

all e ∈ E(Cn), ns(e) ≤ 1.

Proof. (⇒) We need to show that for all e ∈ E(Cn), ns(e) ≤ 1.

Let P = {S1, S2} be a unfriendly edge partition of Cn. Since the partition is un-

friendly, then for all e ∈ E(Cn), ns(e) ≤ no(e). Now since ns(e) + no(e) = 2, then

no(e) = 2− ns(e). If ns(e) = 2, then no(e) = 0, and ns(e) > no(e) which is a contra-

diction, because the partition is unfriendly. Thus ns(e) �= 2. So ns(e) ≤ 1. Hence for

all e ∈ E(Cn), ns(e) ≤ 1. �
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(⇐) We need to show that the partition is unfriendly.

Let P = {S1, S2} be a partition of Cn such that for all e ∈ E(Cn), ns(e) ≤ 1. Now for

e ∈ E(Cn), ns(e) + no(e) = 2. Since ns(e) ≤ 1, then 1 ≤ no(e). Thus ns(e) ≤ no(e).

Since the choice of e was arbitrary, P is unfriendly. �

Therefore an edge partition of 2 sets of Cn is unfriendly, if and only if for all

e ∈ E(Cn), ns(e) ≤ 1.

Theorem 45. An edge partition of Cn is dual, if and only if

(1) it consists of exactly 2 sets, and

(2) for all e ∈ Si, i = 1, 2, ns(e) = 1.

Proof. (⇒) We need to show conditions (1) and (2).

(1)

Without loss of generality we may assume that the number of sets in the partition is

k ≥ 2. If k = 1 then it is just the set E(Cn). We need to show that k ≤ 2. By way of

contradiction, assume that k > 2. Since the partition is dual, then ns(e) = noj(e), for

all j. Thus for e ∈ E(Cn), ns(e) +
∑k−1

j=1 noj(e) = 2, which implies there exists m < k

such that nom(e) = 0. This is a contradiction, because the partition is dual. Hence

k = 2. �

(2)

Let P = {S1, S2} be a dual edge partition of Cn. Since P is dual, then for all

e ∈ E(Cn), ns(e) = no(e). Since ns(e) + no(e) = 2, then ns(e) + ns(e) = 2 which

24



implies ns(e) = 1. Thus for all e ∈ E(Cn), ns(e) = 1. �

(⇐) We need to show that the partition is dual.

Let P = {S1, S2} be an edge partition of Cn such that for all e ∈ Si, i = 1, 2,

ns(e) = 1. Since ns(e) = 1, then no(e) = 1, for all e. Thus ns(e) = no(e), for all e

and so the edge partition is dual. �

Hence an edge partition of Cn is dual, if and only if (1) it consists of exactly 2

sets, and (2) for all e ∈ Si, i = 1, 2, ns(e) = 1.

Corollary 46. A Cn graph has a dual edge partition, if and only if 4 | n.

Proof. Pick a vertex and label it v1, proceeding in a clockwise direction label the

remaining vertices v2, v3, · · · , vn.
(⇒) We need to show that 4 | n.
Let P be a dual edge partition of Cn. Since P is a dual edge partition, P = {S1, S2}
and for all e ∈ E(Cn), ns(e) = 1 = no(e). Thus each set of the partition consists of

only edges that are adjacent to one and only one other edge. Thus the sets consist of

paths of length 2, whose vertices are either v4k+1, v4k+2, and v4k+3; or v4k−1, v4k, and

v4k+1. Thus 2 | |Si| = n

2
, i = 1, 2. Hence 4 | n.

(⇐) We need to show that the partition is a dual edge partition.

Let S1 = {v1v2, v2v3, v5v6, v6v7, · · · , vn−3vn−2, vn−2vn−1, }, and S2 = {v3v4, v4v5, v7v8, v8v9, · · · , vn−1vn

By construction, for all e ∈ E(Cn), ns(e) = 1 and the partition consists of exactly 2

sets. Hence the edge partition is dual.
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Therefore a Cn graph has a dual edge partition, if and only if 4 | n.

5.2 Description of constant partition ideas to be presented.

We are going to look at edge partitions where the number of self-neighbors is the same

for all e ∈ E(G), and the number of other-neighbors is the same for all e ∈ E(G),

i.e. for all e ∈ E(G), then ns(e) = c1 and noi(e) = c2 where c1 and c2 are constants.

We call such partitions constant partitions. There are several types of constant edge

partitions: Homogeneous, Star, Combined, and Set. The homogeneous type produces

Hamitonian cycles under certain conditions, otherwise multiple cycles are generated.

These sets when combined with a fixed sequencial vertex labeling produce star poly-

gons from the Hamiltonian cycles and star figures are produced by the multiple cycles.

I define a measure called the “hop length” that is applied to a sequencial vertex

labeling, that gives a measure of “distance” between two given vertices. The hop

length of an edge is the length of the path between the two vertices by going along

the perimeter of the graph, when the vertices are placed sequencially around a circle.

This perimeter distance is key to creating the star polygons/figures.

We will also see how to take a vertex Ginsu partition and create a friendly con-

stant edge partition. To make the process cleaner, I defined the operation “vertex

cross product.” This operation takes two sets of disjoint vertices and creates a set of

edges. These edges are incident to a vertex from each set, and each vertex from one
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set is paired with every vertex of the other set.

There is also a way to combine the homogeneous sets to form either a set constant

partition or a combined constant partition. The combined constant partition is a

constant edge partition; while the set constant partition is only constant within each

set. That is, in a set constant partition, the number of self or other neighbors differs

from set to set, and the partition is neither friendly nor unfriendly.

Definition 47. (l(e) or Hop Length)

For a Kn graph, label the vertices v0, v1, · · · , vn−1. Consider a drawing of the graph

where the vertices are placed sequencially around the perimeter of a circle. Then the

function l(e), where e = vivl, is the length of the trail vivi+1 · · · vl, then

l(e) = l(vivl) = (l − i) mod n.

Definition 48 (Constant edge partition).

For a given graph G, this is an edge partition, where for all ei, ej ∈ E(G), ns(ei) =

ns(ej) and nok(ei) = nok(ej), such that i �= j. There are several types of constant edge

partitions.

Definition 49 (Homogeneous Constant partition).

This is a constant edge partition where each set of the partition consists of n edges.

Also each vertex is incident to two different edges of the set, and for all ek, ej ∈ Si,

l(ek) = l(ej). This is the partition P = {Si}(n−1)/2
i=1 , where |Si| = n = |V (G)|, for all i.
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Definition 50 (Star Constant partition).

This is a constant edge partition where one set of the partition consist of all the

edges incident to a given vertex, v. Now the remaining sets of the partition form a

homogeneous constant partition of Kn−1. This is the partition P = {Si}n/2i=1, where

|Si| = n− 1, for all i.

Definition 51. (Combined constant partition)

For a homogeneous constant partition P = {Si}ki=1 where k is composite, a combined

constant partition can be formed. Since k is composite, there exists d, such that d | k,
k =

n− 1

2
and d ≤ n− 1

4
, then the combined constant partition is PC = {Sh}dh=1,

where each Sh is the union of
k

d
sets of the Si ∈ P , and |Sh| = kn/d, for all h.

Definition 52. (Star Polygon/figure)[10]

A Star Polygon/figure is a set of n vertices evenly spaced around the circumference

of a circle, and drawing the following edges:

nin(i+d)( mod n), n(i+d)( mod n)n(i+2d)( mod n), · · · ,

n(i+(n−2)d)( mod n)n(i+(n−1)d)( mod n).

Denoted as

{
n

d

}
. If d | n, 1 ≤ d ≤ n

2
, then once the path is closed, start over at the

next isolated vertex and repeat until all the vertices have been included. This results in

a star figure, since d | n; otherwise it results in a star polygon. A star figure consist
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of
n

d
component cycles.

The above star polygon is a

{
5

2

}
The above star figure is a

{
6

2

}

For P = {Si}ki=1, a homogeneous constant partition of Kn, then each Si describes

a star polygon

{
n

d

}
, where d = l(e), e ∈ Si.

Pick a vertex and label it v0, proceeding clockwise label the next vertex v1, continue

in this fashion until all the vertices are labeled. Let P = {Si}ki=1, be a homogeneous

constant partition of Kn, where for each pair of edges em, ej ∈ Si, l(em) = i = l(ej).

Note that each edge is incident to vertices that are i apart. Now by the definition

of a star polygon, the edges of the set Si form the star polygon

{
n

i

}
. Hence for

P = {Si}ki=1, a homogeneous constant partition of Kn, each Si, i > 1 is a star poly-

gon

{
n

d

}
, where d = l(e), e ∈ Si.

Definition 53. (vertex cross product)

Let A = {ai}ki=1 and B = {bj}lj=1 be two disjoint sets of vertices of a graph. Then the

vertex cross product of A and B, denoted A×B, is the set of edges where each vertex
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of A is joined to every vertex of B by an edge. Thus

A× B = {a1b1, a2b1, · · · , akb1, a1b2, a2b2, · · · , akb2, · · · a1bl, a2bl, · · · , akbl, }.

Definition 54. (partition cross product)

Let A = {ai}ki=1 and B = {bj}lj=1 be two disjoint sets of vertices of a graph. Then

the partition cross product of A and B, where A is partitioned into d sets of k/d ver-

tices each is the vertex cross product between each set of the partition of A and all of B.

Example 55. Let A = {a1, a2, a3, a4, a5, a6} and B = {b1, b2, b3, b4, b5, b6}, where A

is partitioned as:

{{a1, a2}, {a3, a4}, {a5, a6}},

then the partition cross product is:

[
a1 a2

]
×

[
b1 b2 b3 b4 b5 b6

]
,

⎡
⎢⎢⎢⎢⎣
a1 a2

a3 a4

a5 a6

⎤
⎥⎥⎥⎥⎦×

[
b1 b2 b3 b4 b5 b6

]
=

[
a3 a4

]
×

[
b1 b2 b3 b4 b5 b6

]
,

[
a5 a6

]
×

[
b1 b2 b3 b4 b5 b6

]

Example 56. (combined constant partitions)

The homogeneous constant partition of K9 is:

{ S1 = {ab, bc, cd, de, ef, fg, gh, hi, ai}, S2 = {ac, bd, ce, df, eg, fh, gi, ah, bi},
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S3 = {ad, be, cf, dg, eh, fi, ag, bh, ci}, S4 = {ae, bf, cg, dh, ei, af, bg, ch, di} }

The hop length in each set of the partition is a constant, thus:

ab, bc ∈ S1 l(ab) = l(bc) = 1, ac, bd ∈ S2 l(ac) = l(bd) = 2

ad, be ∈ S3 l(ab) = l(bc) = 3, ae, bf ∈ S4 l(ac) = l(bd) = 4.

There are three different combined constant partitions of K9, they are:

P1 = {S1 ∪ S2, S3 ∪ S4}

P2 = {S1 ∪ S3, S2 ∪ S4}

P3 = {S1 ∪ S4, S2 ∪ S3}

For K13 there are 25 different combined constant partitions; fifteen of these com-

bine two Si’s and ten combine three Si’s.

The next example is a more general case of the previous example, and the next

theorem shows what conditions are needed to create a Homogeneous constant parti-

tion.

Example 57. (set constant partitions)

If the sets of the K9 partition are combined thusly,

P = {S1 ∪ S2 ∪ S3, S4}
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then the edges in the larger set are all friendly, while the single set S4, is unfriendly.

For edges ei and ej, i �= j, from the same set of the partition, then ns(ei) = ns(ej)

and no(ei) = no(ej). However for ei and ej not from the same set of the partition,

then ns(ei) �= ns(ej) and no(ei) �= no(ej).

5.3 Constant partitions

Theorem 58. For any homogeneous constant partition, of Kn, such that n = 4k+1,

k ≥ 2, there exists a combined constant partition P = {Ci}ji=1, such that |Ci| = dn,

for all i, where d | n− 1

2
and j =

n− 1

2d
.

Proof. Let N = {1, 2, 3, · · · , n− 1

2
} and since n = 4k + 1, then 2 | n− 1

2
. Let d = 2.

Now choose i1, i2 ∈ N , such that i1 �= i2. Now let C1 = Si1 ∪ Si2 . Now choose

i3, i4 ∈ N \{i1, i2}, such that i3 �= i4 and let C2 = Si3 ∪Si4 . Continuing in this fashion

we construct the set PC = {Cj}(n−1)/4
j=1 . Now for all j, |Cj| = 2n, and so by definition,

PC is a combined constant partition.

Similarly for d > 2, when d | n− 1

2
, d of the Si sets may be combined to form a

combined constant partition.

Hence for any homogeneous constant partition, of Kn, such that n = 4k+1, k ≥ 2,

there exists a combined constant partition P = {Ci}ji=1, such that |Ci| = dn, for all

i, where d | n− 1

2
and j =

n− 1

2d
.

Example 59. Complete graphs, with n ≥ 4, have a Constant Partition. For K2n

it is a star constant partition, and for K2n−1 it is a homogeneous constant partition
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involving Hamiltonian cycles. In 1890, Walecki proved that every K2n−1, or K2n −
I, where I is a 1−factor, can be decomposed into Hamiltonian cycles [5, 8]. The

partitions for K4, K5, and K6 are shown below:

K4 : {{ab, ac, ad}, {bc, bd, cd}}
K5 : {{ab, bc, cd, de, ae}, {ac, ad, bd, be, ce}}
K6 : {{ab, bc, cd, de, ae}, {ac, ad, bd, be, ce}, {af, bf, cf, df, ef}}

Example 60. Here are some examples of homogeneous constant partitions (n odd)

and the cycles they contain. Note: that all of the cycles listed below are Hamiltonian

cycles, except the third one from K9, it contains 3 cycles.

K5 { {ab, bc, cd, de, ae}, 1 cycle: abcdea

{ac, bd, ce, ae, be} } 1 cycle: acebda

K7 { {ab, bc, cd, de, ef, fg, ag}, 1 cycle: abcdefga

{ac, bd, ce, df, eg, af, bg}, 1 cycle: acegbdfa

{ad, be, cf, dg, ae, bf, cg} } 1 cycle: adgcfbea

K9 { {ab, bc, cd, de, ef, fg, gh, hi, ai}, 1 cycle: abcdefghia

{ac, bd, ce, df, eg, fh, gi, ah, bi}, 1 cycle: acegibdfha

{ad, be, cf, dg, eh, fi, ag, bh, ci}, 3 cycles: adga, behb, cfic

{ae, bf, cg, dh, ei, af, bg, ch, di} } 1 cycle: aeidhcgbfa

Theorem 61. For a given Ginsu vertex partition of a Km,n graph where n ≥ m ≥ 2,

a friendly constant edge partition can be found.
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Proof. Let P = {Si}di=1 be a Ginsu vertex partition of Km,n, such that d | m and

d | n, then there exists km, kn ∈ N such that dkm = m and dkn = n. Choose either

the m or n vertices of S1. Without loss of generality we may choose m. Let the set

M1 = {mi}kmi=1, let M2 = {mi}2kmi=km+1, continue in this fashion until M \⋃d
i=1Mi = ∅.

Now let Q = {Ri}di=1, where Ri = Mi ×N , 1 ≤ i ≤ d. Now Q is an edge partition of

Km,n, since Ri ∩Rj = ∅, for all i �= j, and every edge is included.

We need to show that the partition is a friendly partition.

Let e ∈ E(Km,n), then ns(e) = n + km − 2 and noj(e) = km. Since n ≥ 2, then

km ≤ n + km − 2, and so e is friendly, and since the choice of e was arbitrary, the

partition is friendly.

We need to show that the partition is a constant partition.

Let ei, ej ∈ E(Km,n), i �= j. By the last part, ns(ei) = n + km − 2 = ns(ej) and

nol(ei) = km = nol(ej). Since the choices of ei and ej were arbitrary, Q is a constant

partition.

Therefore, from a given Ginsu vertex partition of a Km,n, m ≤ n graph, a friendly

constant edge partition can be found.

Example 62. The Ginsu vertex partition of K2,4 is {{m1, n1, n2}, {m2, n3, n4}}, the
following friendly constant edge partitions can be made:

P1 = {{m1,m2} × {n1, n2}, {m1,m2} × {n3, n4}} is dual thus friendly, and
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P2 = {{m1} × {n1, n2, n3, n4}, {m2} × {n1, n2, n3, n4}} is friendly, but not dual.

For a given Ginsu partition of a Km,n graph, where d | gcd(m,n), where dkm =

m and dkn = n, then at least two friendly edge partitions can be created. Let

P = {S1, S2, · · · , Sd}, where Sj = {mi}jkmi=(j−1)km+1 × {ni}|N |
i=1, or Sj = {ml}|M |

l=1 ×
{ni}jkni=(j−1)kn+1 1 ≤ j ≤ d.

Theorem 63. A Kn, n ≥ 4 graph has a homogeneous constant partition if and only

if n is odd.

Proof. (⇒) We need to show that n is odd.

Let P = {S1, S2, · · · , Sk} be a homogeneous constant partition of a Kn graph. Now

each |Si| = n, i = 1, 2, · · · , k. So the number of edges in the graph is kn =
n(n− 1)

2
,

which implies that 2k + 1 = n. Hence n is odd. �

(⇐) We need to show that the partition is a homogeneous constant partition.

Pick a vertex and label it v0, proceeding clockwise label the next vertex v1, continue

in this fashion until all the vertices are labeled. Let P = {Si}ki=1, k =
n− 1

2
, and

Si = {vjv(j+i) mod n | 0 ≤ j ≤ n}}. Now by construction for all v ∈ V (Kn), v is

incident to two different edges, and for all ea, eb ∈ Si, l(ea) = l(eb), and |Si| = n, for

all i. Hence by definition, P is a homogeneous constant partition. �

Theorem 64. A Kn, n ≥ 4 graph has a star constant partition if and only if n is

even.

Proof. (⇒) We need to show that n is even.

Let P = {Si}ki=1 be a star constant partition of a Kn graph. Now each |Si| = n− 1,
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for all i. So the number of edges in the graph is k(n− 1) =
n(n− 1)

2
, which implies

that 2k = n. Hence n is even. �

(⇐) We need to show that the partition is a star constant partition.

Let P = {Si}ki=1, where S1 = {vivj | for all j �= i, i fixed}, and {Sl}n/2l=2, such that

{Sl}n/2l=2 forms a homogeneous constant partition of Kn−1. Then |S1| = n − 1 = |Sl|,
for all l ≥ 2. Hence P is a star constant partition. �

Theorem 65. For a constant partition of a graph Kn, n ≥ 4, ns(e) +
∑k

j=1 noj(e) =

2(n− 2), for all e ∈ E(Kn).

Proof. In a Kn graph, every vertex has n− 1 edges incident to it. So given an edge,

there are n− 2 edges incident to each end vertex of the edge. Thus the total number

of neighbors to an edge is 2(n− 2).

Theorem 66. A K2,n, n ≥ 2 has a dual edge partition.

Proof. Consider K2,n, n ≥ 2. Let P = {Si}ni=1, where Si = {m1ni,m2ni}ni=1. Thus

for e ∈ Si, 1 ≤ i ≤ n, ns(e) = 1 = nol(e), 1 ≤ l < n. Hence P is dual. �

Conjecture 67. A Km,n, 1 < m ≤ n has a dual edge partition if and only if m = 2.
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