

PROBABILISTIC SMART TERRAIN

ALGORITHM

By

Mohd Faseeh

Submitted in the partial fulfillment of the Requirement

for the degree of

Master of Computing and Information Systems

YOUNGSTOWN STATE UNIVERSITY

May 2016

iii

Abstract

Smart Terrain is an algorithm that is used to find the object that meets the needs transmit

signal to the non-player character with those needs influencing the character to move

towards those objects. We describe how the probabilistic reasoning can be implemented

on it deploying the object that it may meet a need with a given probability. The expected

distance can be measured in terms of probability and distance that meet the needs,

allowing the non-player character to follow the route in the game.

This algorithm can be used to manage a character’s need to direct them which objective

has a priority or which objectives are profitable to them. With a smart terrain, this

algorithm defines how to find the goal in terms of probability and distance. This

algorithm defines how the character is behaving as Human for making decisions.

We implement the algorithm as a Unity 3D Game using Waypoint and Navigation Mesh

where the objective is to find and collect some valuable objects and stay away from the

guards guarding the objects, while navigating in a maze like game world. The algorithm

finds a path based on the concept of adjacent routes in the game such that it makes it

difficult for the player to stay away from the guards. The player on the other hand is

controlled by the user. The algorithm searches for possible paths and then makes a

decision based on the calculations on probabilities and distances as discussed in detail in

the paper.

Several features other than path finding such as ray casting and navigation mesh are also

implemented to make the game feel life like. The guards behave intelligently and the

iv

algorithm changes the probabilities of player being in a particular area of the game world

with time. This makes the game even tough to win.

v

Acknowledgement

I am deeply grateful to my advisor Dr. John Sullins for giving me the confidence to

explore my research interest and the guidance to avoid getting lost in my exploration. Dr.

Sullins is a fabulous advisor with sharp mind, perspective and very helpful. I have been

amazingly fortunate to have an advisor who gave me the freedom to explore on my own

and at the same time the guidance to recover when my steps faltered. His patience and

support helped me overcome my crisis situations and finish this research.

My committee member, Dr. Alina Lazar, has been always there to listen and give advice.

I am deeply grateful to her for the long discussion that helped me sort out the technical

details of my work. I am thankful to her for holding me to a high research standard and

strict validation for each research results and thus teaching me how to do research,

My other committee member, Dr. Abdu Arslanyilmaz, he is one of the best teacher that I

have had in my life. He sets high standards for his students and he encourages and guides

them to meet those standards. He introduced me to the Unity programming which

inspired me to work on my research. I am indebted to him for his continuous

encouragement and guidance.

Most importantly, none of this would have been possible without the love and patience of

my family. My immediate family, to whom this research is dedicated to, has been a

constant source of love, concern, support and strength all these years. My best friend who

has given the strength whenever I lost the confidence. I am grateful to have such a friend

in my life.

vi

Finally, I appreciate the financial support from the Department of Computer Science and

the STEM College at YSU. I am grateful to them for supporting me during my graduate

studies.

vii

Table of Content

List of Tables………………………………………………………………ix

List of Figures………………………………………………………….…..x

SECTION 1:

Introduction………………………………………………………….……1

1.1 Motivation…………………………………………………………………………1

1.2 Contribution……………………………………………………………………….1

1.3 Organization……………………………………………………………………….3

SECTION 2:

Background………………………………………….…………….………4

2.1 Smart Terrain………………………………………………………………………4

2.2 Probabilistic Smart Terrain………………………………………………………..4

2.2.1 Assumptions…………………………………………………………………..5

2.2.2 Plausible decision making with multiple objects……………………………..6

2.3 Previous Algorithm……………………………………………………………….7

2.3.1 Modified Algorithm…………………………………………………………..8

2.4 Waypoints………………………………………………………………………...8

2.5 Unity 3D………………………………………………………………………….9

SECTION 3: Implementation of the Algorithm……………………….11

viii

3.1 Defining the problem…………………………………………………………….11

3.2 Representing the game with probabilities and waypoints…………………….....11

3.3 Implementing the world in Unity………………………………………………..13

3.4 Nav Mesh……………………………………………………………………….16

3.5 Ray Cast and Player Pursuit…………………………………………………….20

3.6 Collision detection and Treasure collection…………………………………….20

SECTION 4: Probabilistic Smart Terrain……………………….…….22

4.1 Route Creation…………………………………………………...........................23

4.2 Route Evaluation…………………………………………………………………25

4.3 Sample Run………………………………………………………………………26

4.4 Modified probabilities over time…………………………………………………27

SECTION 5: Future Work……………………………………………...29

REFERENCE……………………………………………………….…....31

APPENDIX…………………………………………………………….…32

ix

List of Table:

Score Board…………………………………………………………………………12

Defining Probabilities………………………………………………………………13

x

List of Figures

Figure 1: Character moving towards the room having high probability………….…...6

Figure 2: Character plausible decision for moving towards high probability…….…...7

Figure 3: Waypoints inside the rooms…………………………………………….…...9

Figure 4: View of a 3D game………………….……………………………………...14

Figure 5: Smart Terrain Game………………………………………………………..15

Figure 6: Implementation of Nav mesh agent………………………………………...16

Figure 7: View of a game in top level in XZ plane……………………………….......17

Figure 8: Animation State Machine…………………………………………………..18

Figure 9: Adjacent rooms……………………………………………………………..22

Figure 10: Chosen route………………………………………………………………27

1

SECTION 1: INTRODUCTION

1.1 Motivation

Many computer games involve a player exploring a level while avoiding guards of some

sort, where the guards are controlled by the gaming artificial intelligence. This can be a

difficult problem, as it is easy for such guards to either appear too “smart” by using an

algorithm such as A* to move directly towards the player (whose location they should not

know), or too “stupid” by simply following a predictable predefined patrol. A third

approach is to introduce probabilities, influencing the guard to move to rooms where the

player is considered most likely to be.

Previous research[1] has introduced probabilities into non-player character navigation.

However, it has been limited to moving between individual tiles on a level, rather than

considering paths between rooms as a whole. Evaluation of the algorithm has also been

limited, as no actual interactive game has been created to allow actual players to evaluate

the apparent intelligence of non-player characters controlled by the probabilistic

algorithms. This thesis is meant to address these issues.

1.2 Contributions

The main contributions of this thesis are:

1. Providing an interactive testbed for probabilistic game algorithms.

The only way to reliably test any algorithm related to gaming is have actual typical

players play the game. These players would evaluate the apparent intelligence of the

non-player characters such as the guards, and make suggestions for improving their

performance.

2

We have implemented an interactive game (with 8 rooms and two guards), where the

goal of the player is to collect “treasures” while avoiding guards. The game is

implemented in Unity, taking advantage of its abilities to automatically navigate

between waypoints when moving between rooms, and to detect and move towards the

player if they are visible to the guard.

Researchers may plug in their own gaming AI to control the behavior of the guards in

terms of rooms to move to next. This would allow researchers to focus on the gaming

AI and have it evaluated by players without having to worry about these

implementation details.

2. Exploring a probabilistic algorithm based on routes between rooms as a whole.

Previous work has focused on deciding which individual tile on a level to move to

next, using map flooding to avoid walls, and must be rerun each time the non-player

character moves to a new tile.

This work takes advantage of the ability of Unity to automatically navigate from one

waypoint to another while avoiding walls, without having to consider low-level

constructs such as tile. Rather than thinking one small tile at a time, we propose an

algorithm that plans an entire route through the level in advance. This route operates

in terms of paths between waypoints set in adjacent rooms, letting Unity handle the

details of creating and following that path. The route is also dynamic, in the sense that

3

it can be interrupted if the player becomes visible to the guard, and can also be

affected by learned information about rooms already explored.

1.3 Organization

This thesis is organized as follows. The next section gives background on previous work

in probabilistic smart terrain, as well as gaming concepts such as waypoints, navigational

meshes, and ray casting. Section 3 describes the testbed game level used in this work, and

the components of Unity used to implement it as an interactive game that would be

interesting to players. Section 4 describes the modified probabilistic smart terrain

algorithm based on waypoints and routes rather than tiles. Section 5 describes future

directions for this work.

4

SECTION 2: BACKGROUND

2.1 Smart Terrain:

Smart Terrain is a useful algorithm for moving an object in a tiled world. It has been used

in a number of games as the Sims due to its efficiency and ease of implementation. The

idea of Smart Terrain can be summarized as below:[1]

 A character may have one or more need such as hunger, energy, and fun.

 Objects in the character meet those needs such as Refrigerator meets the hunger

needs and Bed meets the energy need.

The character is influenced to move towards those objects by “signals” sent by those

objects which have the following properties:[2]

 It has a finite (and possibly fairly small) range. That is, a character should not be

influenced by objects implausibly far away.

 The “strength” of the broadcast signal decreases with distance, allowing closer

objects a greater degree of influence.

 The signal moves around rather than through obstacles. That is, the strength of the

signal is proportional to the time it would take the character to reach the object

(presuming the character must move around obstacles as well).

2.2 Probabilistic Smart Terrain:

Probabilistic reasoning can be added to the smart terrain algorithm, enabling an object to

broadcast that it may meet a need with a given probability instead of it meets the need

with probability of 1. This causes a character to monitor those rooms which have high

probability of a character’s need.

5

These probabilities are used to find the expected distance of an object that meets a need

allowing nonplayer characters to make plausible decisions about which direction to move

towards in an uncertain environment.[1]

2.2.1 Assumptions:

There are some assumptions about the probabilities in this paper:

 There will not be any specific algorithm to create these probabilities-; that is, they

have been created by the designer or are based on some logical calculation and

concept. They are programmer defined numbers.

 There is only one single need that the character is trying to meet such as hunger

and only objects related to that such as refrigerator are broadcasting

 There is assumption of conditional independence, which means that whether or

not an object meets the need does not actually depend on any other object in that

area.

 Once the character has reached the object and discovered that whether it does or

does not meet the need, those probabilities will be changed to either 1 or 0.

6

Figure 1: Character moving towards the room having high probability

2.2.2 Plausible decision making with multiple objects:

This becomes quite interesting when there are multiple objects and the character needs to

determine which move is the best for meeting the need[3]. In this case, the character will

move towards the closest object with the highest probability of meeting the need.

However, there will be many cases in which there is not a clear best solution.

For example, consider a scenario of a hunger needs in a house with two refrigerators R1

& R2. The character with a hunger need is 8 tiles away from R1 with the chance of 70%

probability of containing food and 6 tiles from R2 which has 60% chance of food. It’s not

obvious that whether the character should move towards R1 or R2. The character should

behave in a plausible manner from the point of view of the player.1 If they do not make

7

plausible move then the game will be a failure in terms of the view of a player. So which

path should be taken by character?

Figure 2: Character plausible decision for moving towards high probability

2.3 Previous Algorithm:

This algorithm was accomplished with a simple version of “Map Flooding” often used

for influence maps in which the signal strength decreases by some value (such as 1) for

every non-wall tile between the object and the character. Given this influence map, a

character may reach the object by simply moving in the direction of the highest signal

value.

In order to determine which of the four surrounding tiles to move to, a measure was

based on an estimate the expected distance from each tile to some other object that meets

8

the need that allows comparison between them used to ultimately determine the “best” to

move to in terms of distances and probabilities.[1]

2.3.1 Modified Algorithm:

The algorithm proposed in this thesis is based upon marker/waypoints within rooms as a

whole, rather than individual tiles that a room is composed of. Each marker (visible in

our world) gives us the exact position of the room’s geometrical center in the XZ plane.

In addition, we create an entire world “route” through all of the rooms in advance

(avoiding cycles), rather than rerunning the algorithm at each new tile. This greatly

increases the efficiency of the algorithm.

2.4 Waypoints:

Waypoints are referred as an intermediate point on a route or line of travel or as a

stopping place on a journey, and are a way to represent a character’s world as a simple

graph. Such graphs are usually designed to allow a character to traverse their world by

moving from one waypoint to another on the graph.[4]

 Waypoints are an in-built feature in Unity game programming. Waypoints are used to

define the location of each room, as well as for determining distance between rooms.[5]

9

Figure 3: Waypoints inside the rooms

2.5 Unity 3D:

Unity is a cross platform game engine developed by Unity Technologies used to develop

video games for PCs, consoles mobile devices and websites. First announced only for OS

X at Apple’s Worldwide Developers Conference in 2005, it has since been extended to

target more than fifteen platforms. It is the default software development kit (SDK) for

the Wii U. Five major versions of Unity have been released. At the 2006 WWDC trade

show, Apple Inc named Unity as the runner up for its Best Use of Mac OS X Graphics

category.

Unity is a cross platform game engine used to develop games for PCs, mobiles and

websites. The game is designed in Unity 5.3.4 version. Unity has built-in features for

defining and navigating between waypoints. In particular, there is a path finding script

10

called Navigation Component which is used to find the best available path, avoiding the

walls and obstacles.[6]

11

SECTION 3: UNITY IMPLEMENTATION OF THE GAME

This section describes the implementation of the game in Unity 3D, in order to make it

possible for actual player to play the game and evaluate the effectiveness of the gaming

artificial intelligence. While this game system was used to implement the waypoint-based

probabilistic smart terrain algorithm described in the next section, it could also be easily

adapted to test any other waypoint-based gaming AI algorithms by modifying those

sections of codes.

3.1 Defining the Game:

This research was inspired by a possible game scenario described by Dr. Sullins, a more

complex version of a scenario used in his previous work. It was also used as a testbed for

the algorithm described in the next section.[1]

The game world consists of eight rooms (as shown in the above figure). Several of the

rooms contain “treasure”, in the form of jewelry with different values. The goal of the

Player is to steal as much jewelry as possible without being caught by the either of the

two “Guards”. There is an exit door on the left-top corner of the house. This door is used

when the player steals all the jewelry and want to win the game. The goal of the Guards

(implemented as a Gaming AI) is to present the player with as difficult challenge as

possible, by searching for the player and attempting to catch the player if they are found.

3.2 Representing the Game with Probabilities & Waypoints:

 We have assigned each of the eight rooms a particular probability, representing an

estimate of the chance of the player moving into that room. We have also placed

waypoints in all eight rooms to define a distance between each room (part of the

12

probabilistic smart terrain). We have also assigned four treasures in the form of jewelry

in four different rooms. We define the value of each treasure in Table 1.

Jewelry Points

Silver 175

Diamond 100

Statue 200

Gold 150

Table 1: Score Board

The chances of finding a player are defined to be the highest in the rooms nearest the exit

door or rooms with treasure (the more expensive the treasure the higher the probability).

In general, these probabilities are defined arbitrarily by the game designer and may be

“tweaked” during game testing to create better game play (very commonly done with the

parameter of gaming AI algorithms).

Rooms Probabilities

Room 1 0.2

Room 2 0.4

Room 3 0.2

Room 4 0.2

Room 5 0.4

Room 6 0.2

13

Room 7 0.6

Room 8 0.5

Table 2: Defining Probabilities

Once the guard is in eye contact with the player, he will chase the player to their last

position. If the guard catches the player, the game will be over and the Player loses, but

the player is able to steal all the jewelry and exit through the door without being caught,

the Player wins. Once the guard reaches the room, that room’s probability will become

zero and if the player is not there then the probability of that room will increase slowly as

the guard moves away from the room (described in more details in the next section).

The player can take any path they want using the arrow keys to move, in order to collect

all the valuable treasures and then exit the game without being captured by the guards.

The guard uses algorithm described in the next section to make an informed decision

about the order of rooms to explore. These decisions are meant to find the player in

minimum time before he collects all the items and exits the game.

3.3 Implementing the world in Unity:

Unity is capable of handling 2D and 3D worlds very well. We are using the Unity 5.1

version, the latest release available during the time of the work. For this game, we have

used the 3D world model. Although the game looks 2D to the player or any viewer, the

game world is completely modeled in 3D. The projection is arranged top-down such that

the world appears 2D to the viewer or player, as shown in Fig 7. This helps in evaluating

the path finding algorithm and also better gameplay, as it gives the entire view of the

game world to the player, including the location of each guard. The player then decides

14

where to move from their current location in the world in order to gain treasure while

avoiding the guards.

The world consists of a floor which has a grid-like layout drawn on it. The floor lies in

the XZ plane of the 3D coordinate system used by Unity. The walls in the game world are

also in the XZ plane but since they have height, which is required to create the effect of

rooms and separation of areas, the walls also extend to the third axis, the Y-axis. The

walls are high enough (that is, extended into the Y-Axis far enough) to prevent the player

and guards to cross them during the normal game course. The camera is fixed and placed

at the top of the level while the level ground lies in the XZ plane, thereby making the

users feel as if it is 2D game. The walls force the player and the guards to follow certain

paths.

Figure 4: View of a 3D Game

15

This layout enables us to use the built-in unity features related to path-finding using

Navigation agents and navigation meshes. The 3d mesh/cube that the floor comprises of

is converted into a navigable mesh in which players and guards can move freely, except

for the walls. Each object has a 3D physics model applied to it for collision detection,

gravity etc.

The navigable mesh is the region in which player and guards can move freely. This

requires that the areas which the walls need to be excluded from the navigable mesh.

Once we define the navigable mesh, we can then use the path finding scripts using the

navigation agent and move within the mesh automatically finding the path between two

coordinates (or Transform Vectors) in the mesh.

Figure 5 shows the navigable mesh.

Figure 5: Smart terrain Game

The region shown in the blue is the navigable area i.e. the area in which players and

guards are allows to navigate freely. The region marked in the white is the region is non-

16

navigable and the player as well as guards cannot navigate to these regions of the mesh.

This gives us the effect of rooms and walls.

3.4 NavMesh Agent:

The NavMeshAgent components help to create characters which avoid each other while

moving towards their goal. Agents reason about the game world using the NavMesh to

reach specific waypoints while avoiding obstacle such as walls. Path finding and spatial

reasoning are handled using the scripting API of the NavMesh Agent.[7]

Figure 6: Implementation of Nav Mesh Agent

17

Figure 7: View of a game from the top level in XZ plane

The player object is a 2D sprite and is defined in the XZ plane. It is only visible from a

distance in the Y-axis, perpendicular to the XZ plane in which our game world lives.

The player sprite is an animated sprite. It is a state machine where each state defined an

animated state of the player sprite. The states are,

 Standing

 Walking Left

 Walking Right

 Walking Up

 Walking Down

The states change based on the user input. We keep the track of the states using a state

parameter called direction. The state is changed based on the value of the direction

18

parameter. If the value of the direction parameter is 0, it means that the state of the player

object sprite should be “standing”. If the direction parameter changes to 1, 2, 3 or 4, it

means that the state will be changed to Walking Left, Walking Right, Walking Up and

Walking Down. The states keep changing continuously to simulate an estimation of

“walking”.

When the user is not pressing any key on the keyboard, the direction parameter is set to 0

which means the state of the sprite will be Standing, hence the standing animation. If the

user presses the UP key on the keyboard, the direction parameter changes to 1, which

changes the state from Standing to Walking Up. As soon as user leaves the key, the

direction parameter changes back to 0 and the state hence changes to Standing. This

keeps on happening for UP, LEFT, RIGHT and DOWN keys on the keyboard. Unity

continuously monitors the presses and releases of these four keys and changes the

direction parameter, which in turn changes the state. Below is the implemented state

machine. The state in the orange is the Standing State.

Figure 8: Animation State Machine

19

Each animation state consists of four frames.

1. Standing Frame

2. Walking Down Animation Frames

3. Walking Up Animation Frames

4. Walking Left Animation Frames

5. Walking Right Animation Frames

20

These animations execute based on the state of the sprite. The user presses different

arrow keys, moving the player in XZ plane and also enabling different animation states

on the player sprites. This gives a feel as the player is actually walking in the game

world.

3.5 Ray casting and Player pursuit:

If while navigating on to a waypoint, the guard spots the player, it starts following the

player with 2X speed. This gives a more dynamic and exciting gaming experience. It

feels as if on spotting the player, the guards start running towards the player.

A Ray cast processing algorithm is used by Unity to make sure that the guards and player

are in a straight line with no obstacles in between. A Ray cast is like a beam of light that

is emitted from an object in a straight line in any required direction to detect position of

other objects. This is a common way of creating effects of shooting objects in shooter

games.

If there is no wall between them, the guards “see” the player and start running towards

him for as long as they are in a straight line. If a wall comes in between, the guards lose

the player and start following its original route again. The only way to trick the guards is

not to come in a straight line with them, and if that happens, then the player needs to

break the “line of sight” as soon as possible.

3.6 Collision Detection and Treasure Collection:

If the player moves to the exit, the game is complete and the player is declared as having

WON. If the Guards catch the player before collecting all the items and exiting, the

player is declared as having LOST. We have used collision detection to make sure that

21

the player has taken the treasure item. When the player collides with the item, we check

for the item that the player has collided and once we find out the collider (we use the

name), we can them remove it from the game world and increase the points of the player

which are displayed on the top. Each item has its own defined points which are also

totally defined in the algorithm. We can change the values which can increase of the

decrease the importance of that item in the game world. However, this will not have any

effect on the game algorithm and the AI as long as the probabilities of the rooms stay the

same.

22

SECTION 4: PROBABILISTIC SMART TERRAIN ALGORITHM

The purpose of the algorithm is to find an efficient route through all of the rooms, in

order to most quickly reach rooms that are most likely to contain the player based on the

distances to the rooms and probabilities the player is in each room. These routes consist

of paths between adjacent rooms (as the guard can only move between rooms that are

connected), and do not contain the same path twice.

Figure 9: Adjacent routes

Once a room is reached, the algorithm is able to know whether the player is in the room.

If the player is visible to the guard (that is there is no wall between the player and the

guards based on the concept of Ray Cast), the Unity scripting moves the guard directly

towards the player, interrupting its traversal of the route. Otherwise, the algorithm

continues from that room to the next room in the route.

23

4.1 Route creation:

The algorithm starts by defining rooms and paths as data structures. We define a Path

class and also a Room class (see the appendix for the code for these classes). The Path

class has properties that define a unique path in space between two adjacent rooms. It has

a source room and a destination room, the length of the path and a Boolean value to

indicate whether the path has been taken previously by our NPC or not. Similarly, the

Room class also has properties that identify a room, such as Room Number and other

properties that indicate whether the room has already been navigated to or not.

We define the possible paths as the objects of class Path and all the rooms as objects of

class Room. A route is a list of Path objects. So if a path exists from Room1 to Room8

via some other rooms, the Route can store all the Paths in order and define a unique route

from Room1 to Room8. We add new routes to a list of routes also; this keeps on

happening throughout the course of the algorithm. Redundant, duplicate and incomplete

routes are removed from the list of routes and new routes are added to the list.

 Redundant routes are the routes that are already covered in other routes (that is the

route that are subset of other route).

 Incomplete routes are the route that do not start from the source room which is

room 1 or routes that do not cover all the rooms such routes are deleted from list

of routes.

 Duplicate routes are the routes that make cycle or that concludes deadlock

situation.

24

We start by defining one route for each room as a source. Each of these initial routes has

only one Path. So in our case, for 8 rooms, we have 20 total initial routes containing paths

between adjacent rooms, each containing a unique Path as defined during the start of the

algorithm. We traverse through the list of routes over and over again, and pick up one

route at a time we use loop to check all routes one by one starting from first route until

the last route and for each route we execute the following.

For each route we select, we look at all other routes and try to joins chains. We do that by

matching the source room number of each route’s First Path to the destination room

number of the selected route’s last Path. If they match, we add a new Route to the list by

joining the two Routes. This happens for every Route in the list until we visit all the

rooms that is If a route does not contains all the rooms- by the end of the algorithm it is

discarded. We also make sure that we do not create any cycles. We ensure this by

checking the destinations of all the Paths in the Route. If any Path in the Route has a

destination equal to any of the source of any other path in the route, then we drop that

Route altogether.

Finally, we filter the Routes in the list. We drop all the Routes that do not traverse

through all the rooms. Then we filter by checking the Routes’ source. If the source is not

the current room, we drop it from consideration.

It is possible that this may result in an exponential number of routes in the worst case.

However, we argue that this is not a major consideration since most levels in actual

games:

 Contain a limited number of rooms in each.

25

 Have relatively few routes available in order to constrain the choices of the player

and present more of a challenge.

We are willing to accept this possible cost in order to increase our chances of finding a

good route. In practice, this algorithm performs quickly in the testbed in 0.07 seconds.

4.2 Route Evaluation:

Once a list of legal routes has been created, a second algorithm is then used to estimate

which remaining route is best, based on a metric that uses length of the paths in each

room Route and the Probabilities that are stored in the Room class. All the Routes are

subjected to this calculation and the one with the lowest result is selected. This gives a

sequence of rooms to visit with the high the likelihood that we will find the player

quickly.

The metric is calculated as a summation of products of distance and probabilities.

 Decision Metric = ∑ (())
 * +

{1-P (i)} = Probability of not having a Player in ith room.

d {i, (i-1)} = Distance between Room i and (i-1)

We select the route with the minimum value of this metric. The metric is designed to

favor routes that have the following characteristic:

26

 Lower total route distance, in terms of distance d {i, i-1} between adjacent

rooms in the route.

 Routes that explore higher probability rooms early. This is the effect of

dividing the probability of not finding the player at step i by i-1.

We take this list of Rooms and the navigation component to navigate the guards from one

Room to the first room in the route we have chosen. Once, the next room to move to has

been chosen, we use the built in navigation features in Unity to move to a waypoint set in

that room. The process begins again from this point.

4.3 Sample Run:

As an example, we show the result of running the algorithm in our testbed level.

Specifically, we assume that the guard is in room 1 (at the upper left) and wishes to find a

good route based on the probabilities and distance between rooms given previously.

The best route chosen by the metrics explores rooms in the order

1  2  4  5  6  3  7  8

as shown in figure 10 below.

27

Figure 10: Chosen route

We argue that this is a plausibly good combination of probabilities and distances. The

route explores two rooms with treasure early, but uses the “short cut” through rooms 5

and 6 to create a route with a relatively short overall distance.

4.4 Modified probabilities over time:

The guards navigate from one Room to another and reach the last room in the path and

hence, and complete the route taken and visiting all the rooms. The algorithm then

recalculates the paths again and finds the good path again based on the probabilities

which have now changed depending on time. When a guard visits a room, if a player is

not in the room its current probability is set to 0.

However, there is always a possibility that the player may still visit the room in the

future, so its probability should increase again as the guard starts visiting other rooms.

28

Specifically, the probabilities increase by 1% of its original value every 5 seconds until it

eventually returns to its original value. If a guard traverses its entire route without

catching the player, another route is then generated by using those probabilities. Since

most of the probabilities will be different from the calculation of the initial route (as not

all the probabilities will have returned to their original values yet), it is very likely a

different route will be chosen. This is important, as following the same patrol every time

would make the guard appear less intelligent. These parameters are totally configurable

and changing these values (the time span of 5 seconds and factor of 1%) may result in

different outcomes, so finding the best values would also be part of the game testing

process.

29

SECTION 5: FUTURE WORK

There are number of different direction that this research could take, given more time:

1. Let actual players evaluates the game algorithms:

Unfortunately time did not permit this game to be used by actual players, in order

for them to evaluate the apparent intelligence of the guards. However, since this

algorithm has been implemented in a playable Unity game, it would be easy to do

this in the future. It would also be easy for future research to implement their own

gaming AI as part of this system, and then allow players to evaluate it as well.

2. Test the algorithm on different level configurations:

As of now, the algorithm considers only the 8 rooms and the predefined paths

between these rooms to find out a good route. It can be improved to work

efficiently with more rooms and more paths. This would be helped by having the

program read this information from files rather than having it be “hardwired”, as

it presently is, or by having the game automatically generate levels.

3. Test the algorithm in other scenarios:

There are currently two guards and exactly four treasures with the probabilities

given above. We can further test the system with different numbers off guards and

treasures, or with different probabilities associated with those treasures.

4. Creating more cooperation between guards when determining the paths.

Currently, each guard determines its route independently. Major improvement

would be to implement cooperation between guards, so as to avoid checking for

30

rooms that are have been recently checked by other guards. That would increase

apparent intelligence of the guard.

5. Increase the difficulty of the game with time.

We can improve the algorithm to increase the difficulty of the game and making

guards better at guarding as the player progresses. More intelligent guards will

become highly protective of collectibles as the player progresses through the

level. This can be done by increasing the probabilities associated with the treasure

rooms over time. We can also slow down the speed of the player in the game to so

that it would be hard for the player to collect the item or we can increase the

speed of the guard while monitoring the rooms and when the guard and player are

in the same straight line, we can increase the speed of the guard unto 4 times its

original speed to catch the player.

31

REFERENCES

[1] J. R. Sullins, “Probabilistic smart terrain,” Int. J. Artif. Intell. Tools, vol. 19, no. 04,
pp. 531–550, Aug. 2010.

[2] P. Doyle, “Virtual intelligence from artificial reality: Building stupid agents in smart
environments,” in Proceedings of the AAAI’99 Spring Symposium on Artificial
Intelligence and Computer Games, 1999.

[3] “probability - Average Distance Between Random Points on a Line - Mathematics
Stack Exchange.” [Online]. Available:
http://math.stackexchange.com/questions/195245/average-distance-between-random-
points-on-a-line. [Accessed: 19-Apr-2016].

[4] “Artificial Intelligence for Games (The Morgan Kaufmann Series in Interactive 3D
Technology).” [Online]. Available: http://dl.acm.org/citation.cfm?id=1199865.
[Accessed: 20-Apr-2016].

[5] “Waypoint,” Wikipedia, the free encyclopedia. 13-Mar-2016.
[6] “Unity (game engine),” Wikipedia, the free encyclopedia. 18-Apr-2016.
[7] P. Tozour and I. S. Austin, “Building a near-optimal navigation mesh,” AI Game

Program. Wisdom, vol. 1, pp. 298–304, 2002.

32

Appendix: Code

Implementing the Player:

Public class PlayerControl: MonoBehaviour {

void Update () {

 if (Input.GetKey (KeyCode.LeftArrow)) {

 float x = gameObject.transform.position.x;

 float y = gameObject.transform.position.y;

 float z = gameObject.transform.position.z;

 x = x - stepSizeH;

 gameObject.transform.position = new

Vector3(x,y,z);

 GetComponent<Animator>().SetInteger("direction", 3);

 }

 else if (Input.GetKey (KeyCode.RightArrow)) {

 float x = gameObject.transform.position.x;

 float y = gameObject.transform.position.y;

 float z = gameObject.transform.position.z;

 x = x + stepSizeH;

 gameObject.transform.position = new

Vector3(x,y,z);

 GetComponent<Animator>().SetInteger("direction", 1);

 }

 else if (Input.GetKey (KeyCode.UpArrow)) {

 float x = gameObject.transform.position.x;

 float y = gameObject.transform.position.y;

 float z = gameObject.transform.position.z;

 z = z + stepSizeV;

 gameObject.transform.position = new

Vector3(x,y,z);

 GetComponent<Animator>().SetInteger("direction", 0);

 }

 else if (Input.GetKey (KeyCode.DownArrow)) {

 float x = gameObject.transform.position.x;

 float y = gameObject.transform.position.y;

 float z = gameObject.transform.position.z;

 z = z - stepSizeV;

 gameObject.transform.position = new

Vector3(x,y,z);

 GetComponent<Animator>().SetInteger("direction", 2);

33

 }

 else

 GetComponent<Animator>().SetInteger("direction", 4);

 }

For Collision:

void OnCollisionEnter (Collision col)

 {

 if (col.gameObject.name == "Jewels") {

 col.gameObject.SetActive(false);

 Debug.Log ("COLLIDED with " +

col.gameObject.name);

 points += 100;

 scoreText.text = "Score : " +

points.ToString() +" Points";

 jewel = true;

 }

 if (col.gameObject.name == "Gold") {

 col.gameObject.SetActive(false);

 Debug.Log ("COLLIDED with " +

col.gameObject.name);

 points += 150;

 scoreText.text = "Score : " +

points.ToString() +" Points";

 gold = true;

 }

 if (col.gameObject.name == "Silver") {

 col.gameObject.SetActive(false);

 Debug.Log ("COLLIDED with " +

col.gameObject.name);

 points += 175;

 scoreText.text = "Score : " +

points.ToString() +" Points";

 silver = true;

 }

 if (col.gameObject.name == "Statue") {

 col.gameObject.SetActive(false);

 Debug.Log ("COLLIDED with " +

col.gameObject.name);

 points += 200;

34

 scoreText.text = "Score : " +

points.ToString() +" Points";

 statue = true;

 }

 if (col.gameObject.name == "Exit" && (gold &&

silver && statue && jewel)) {

 //col.gameObject.SetActive(false);

 Debug.Log ("COLLIDED with " +

col.gameObject.name);

 scoreText.text = "YOU WON!!!";

 scoreText.fontSize = 24;

 scoreText.color = new Color(255f, 0f,0f);

 scoreText.transform.position = new

Vector2(scoreText.transform.position.x, 20f);

 Time.timeScale = 0;

 }

 if (col.gameObject.name == "Enemy" ||

col.gameObject.name == "Enemy2") {

 Debug.Log ("COLLIDED with " +

col.gameObject.name);

 scoreText.text = "YOU LOST! GAME OVER!";

 scoreText.fontSize = 24;

 scoreText.color = new Color(255f, 0f,0f);

 scoreText.transform.position = new

Vector2(scoreText.transform.position.x, 20f);

 Time.timeScale = 0;

 }

}}

For Path finding (Smart Terrain Algorithm)

public class zombie : MonoBehaviour {

 class Room {

 public int RoomNumber;

 public float RoomProbability;

 public bool Visited;

 public Room(){

 }

 public Room(int RN, float RP)

 {

 RoomNumber = RN;

35

 RoomProbability = RP;

 Visited = false;

 }

 }

 public struct Path

 {

 public int source_room_number;

 public int destin_room_number;

 public bool path_taken;

 public int length;

 }

 public Transform[] wayPoints;

 public Transform victim;

 private Vector3 victimsLastPosition;

 public NavMeshAgent navComponent;

 int index;

 int indicator = 1;

 float lastRecordedTime;

 private NavMeshPath meshPath;

 //Creating a Dictionary to store Room Numbers (int)

with their respective probabilities (float)

 private List<Room> rooms = new List<Room>();

 private List<Room> SortedRooms = new List<Room> ();

 void Start () {

 navComponent = GetComponent<NavMeshAgent> ();

 index = 0;

 lastRecordedTime = 0;

 meshPath = new NavMeshPath ();

 List<Path> paths = new List<Path>();

 List<List<Path>> routes = new List<List<Path>>();

 Path one = new Path(); one.source_room_number =

1; one.destin_room_number = 2; one.path_taken = false;

one.length = 3;

 Path two = new Path(); two.source_room_number =

2; two.destin_room_number = 1; two.path_taken = false;

two.length = 3;

 Path three = new Path(); three.source_room_number

= 2; three.destin_room_number = 4; three.path_taken =

false; three.length = 4;

36

 Path four = new Path(); four.source_room_number =

4; four.destin_room_number = 2; four.path_taken = false;

four.length = 4;

 Path five = new Path(); five.source_room_number =

4; five.destin_room_number = 8; five.path_taken = false;

five.length = 5;

 Path six = new Path(); six.source_room_number =

8; six.destin_room_number = 4; six.path_taken = false;

six.length = 5;

 Path seven = new Path(); seven.source_room_number

= 8; seven.destin_room_number = 7; seven.path_taken =

false; seven.length = 3;

 Path eight = new Path(); eight.source_room_number

= 7; eight.destin_room_number = 8; eight.path_taken =

false; eight.length = 3;

 Path nine = new Path(); nine.source_room_number =

7; nine.destin_room_number = 3; nine.path_taken = false;

nine.length = 5;

 Path ten = new Path(); ten.source_room_number =

3; ten.destin_room_number = 7; ten.path_taken = false;

ten.length = 5;

 Path eleven = new Path();

eleven.source_room_number = 3; eleven.destin_room_number =

1; eleven.path_taken = false; eleven.length = 4;

 Path twelve = new Path();

twelve.source_room_number = 1; twelve.destin_room_number =

3; twelve.path_taken = false; twelve.length = 4;

 Path thirteen = new Path();

thirteen.source_room_number = 3;

thirteen.destin_room_number = 5; thirteen.path_taken =

false; thirteen.length = 3;

 Path fourteen = new Path();

fourteen.source_room_number = 5;

fourteen.destin_room_number = 3; fourteen.path_taken =

false; fourteen.length = 3;

 Path fifteen = new Path();

fifteen.source_room_number = 3; fifteen.destin_room_number

= 6; fifteen.path_taken = false; fifteen.length = 3;

 Path sixteen = new Path();

sixteen.source_room_number = 6; sixteen.destin_room_number

= 3; sixteen.path_taken = false; sixteen.length = 3;

 Path seventeen = new Path();

seventeen.source_room_number = 5;

seventeen.destin_room_number = 6; seventeen.path_taken =

false; seventeen.length = 3;

 Path eighteen = new Path();

eighteen.source_room_number = 6;

37

eighteen.destin_room_number = 5; eighteen.path_taken =

false; eighteen.length = 3;

 Path nineteen = new Path();

nineteen.source_room_number = 5;

nineteen.destin_room_number = 4; nineteen.path_taken =

false; nineteen.length = 3;

 Path twenty = new Path();

twenty.source_room_number = 4; twenty.destin_room_number =

5; twenty.path_taken = false; twenty.length = 3;

 paths.Add(one);

 paths.Add(two);

 paths.Add(three);

 paths.Add(four);

 paths.Add(five);

 paths.Add(six);

 paths.Add(seven);

 paths.Add(eight);

 paths.Add(nine);

 paths.Add(ten);

 paths.Add(eleven);

 paths.Add(twelve);

 paths.Add(thirteen);

 paths.Add(fourteen);

 paths.Add(fifteen);

 paths.Add(sixteen);

 paths.Add(seventeen);

 paths.Add(eighteen);

 paths.Add(nineteen);

 paths.Add(twenty);

 Room R1 = new Room(); R1.RoomNumber = 1;

R1.Visited = false; R1.RoomProbability = 0.2f;

 Room R2 = new Room(); R2.RoomNumber = 2;

R2.Visited = false; R2.RoomProbability = 0.4f;

 Room R3 = new Room(); R3.RoomNumber = 3;

R3.Visited = false; R3.RoomProbability = 0.2f;

 Room R4 = new Room(); R4.RoomNumber = 4;

R4.Visited = false; R4.RoomProbability = 0.2f;

 Room R5 = new Room(); R5.RoomNumber = 5;

R5.Visited = false; R5.RoomProbability = 0.4f;

 Room R6 = new Room(); R6.RoomNumber = 6;

R6.Visited = false; R6.RoomProbability = 0.2f;

 Room R7 = new Room(); R7.RoomNumber = 7;

R7.Visited = false; R7.RoomProbability = 0.6f;

 Room R8 = new Room(); R8.RoomNumber = 8;

R8.Visited = false; R8.RoomProbability = 0.5f;

38

 rooms.Add(R1);

 rooms.Add(R2);

 rooms.Add(R3);

 rooms.Add(R4);

 rooms.Add(R5);

 rooms.Add(R6);

 rooms.Add(R7);

 rooms.Add(R8);

Path that Leads to Cycle:

//identify the paths that can lead to cycles

 List<int> indicesToRemove = new

List<int>();

 if (nextPossibleRoutes == null)

 continue;

 foreach (Path nextRoute in

nextPossibleRoutes)

 {

 foreach (Path p in

currentRoute)

 {

 if (p.source_room_number

== nextRoute.destin_room_number)

 {

 indicesToRemove.Add(nextPossibleRoutes.IndexOf(nextRou

te));

 }

 }

 }

 }

Remove the Path that leads to cycle:

//remove the paths that are leading to cycles
 for (int q = indicesToRemove.Count

- 1; q >= 0; q--)

 {

 nextPossibleRoutes.RemoveAt(indicesToRemove[q]);

39

Calculating Path that traverses all the rooms:

//calculate only for a path that traverses all rooms
 List<Path> backupRoute = new List<Path>(routes[i]);

//creating new routes with next possible routes and adding

them to routes

foreach (Path p in nextPossibleRoutes)

{

List<Path> newRoute = new List<Path>(backupRoute);

newRoute.Add(p);

routes.Add(newRoute);

}

//remove original route

//routes.Remove(routes[i]);

}

iter--;

}

//Console.WriteLine("======================================

=====");

routes = routes.Distinct().ToList();

int minMatricIndex = -1;

//creaing a new list of just the perfect paths

List<List<Path>> ChosenPaths = new List<List<Path>> ();

for (int i = 0; i < routes.Count; i++) {

if (routes [i] [0].source_room_number != 1)

continue;

if (rooms.Count - 1 == routes [i].Count) {

ChosenPaths.Add(routes[i]);

}

}

//calculating a metric *ignore the typo in the variable

name

double minMetric = 100;

for (int i = 0; i < ChosenPaths.Count; i++)

{

//calculate only for a path that traverses all rooms

double metric = 0;

for (int j = 0; j < ChosenPaths[i].Count; j++)

{

40

metric += ChosenPaths[i][j].length * (1 -

rooms[ChosenPaths[i][j].source_room_number -

1].RoomProbability);

Debug.Log (rooms[ChosenPaths[i][j].source_room_number -

1].RoomNumber + "=>");

}

if(minMetric > metric)

{

minMetric = metric; minMatricIndex = i;

}

Debug.Log (metric);

}

Debug.Log ("Choosing path” + minMatricIndex + " out of

total " + ChosenPaths.Count+" with metric " + minMetric);

Debug.Log ("Length of the chosen path is” + ChosenPaths

[minMatricIndex].Count);

for (int iterator = 0; iterator <

ChosenPaths[minMatricIndex].Count; iterator++) {

Room R = new

Room(ChosenPaths[minMatricIndex][iterator].source_room_numb

er,

rooms[ChosenPaths[minMatricIndex][iterator].source_room_num

ber - 1].RoomProbability);

SortedRooms.Add (R);

Debug.Log ("Added Room " + R.RoomNumber.ToString());

if(iterator == ChosenPaths[minMatricIndex].Count - 1)

{

Room R_LAST = new

Room(ChosenPaths[minMatricIndex][iterator].destin_room_numb

er,

rooms[ChosenPaths[minMatricIndex][iterator].destin_room_num

ber - 1].RoomProbability);

SortedRooms.Add (R_LAST);

Debug.Log ("Added Room " + R_LAST.RoomNumber.ToString());

}

}

}

For chasing the player:

public class EnemyController : MonoBehaviour {

 public GameObject target;

41

 Vector3 enemyPosition;

 Vector3 newPositionEnemy;

 float savedtime;

 // Use this for initialization

 void Start () {

 target = GameObject.Find ("Player");

 enemyPosition = transform.position;

 savedtime = Time.time;

 }

 // Update is called once per frame

 void Update () {

 Vector3 targetPosition =

target.transform.position;//Vector2.Lerp(transform.position

, new Vector2(target.transform.position.x,

target.transform.position.y), .01f);

 enemyPosition = transform.position;

 Vector3 right = new Vector3 (enemyPosition.x +

1.5f, enemyPosition.y, enemyPosition.z);

 Vector3 left = new Vector3 (enemyPosition.x -

1.5f, enemyPosition.y, enemyPosition.z);

 Vector3 up = new Vector3 (enemyPosition.x,

enemyPosition.y, enemyPosition.z + 0.75f);

 Vector3 down = new Vector3 (enemyPosition.x,

enemyPosition.y, enemyPosition.z - 0.75f);

 if (Time.time - savedtime > 1f) {

 savedtime = Time.time;

 if (Mathf.Abs (targetPosition.x -

enemyPosition.x) > Mathf.Abs (targetPosition.z -

enemyPosition.z)) {

 if (targetPosition.x >

enemyPosition.x)//move right

 transform.position = right;

 else if (targetPosition.x <

enemyPosition.x)//move left

 transform.position = left;

 } else {

42

 if (targetPosition.z >

enemyPosition.z)//move up

 transform.position = up;

 else if (targetPosition.z <

enemyPosition.z)//move down

 transform.position = down;

 }

 }

 }

}

Updating Probability every 5 seconds:

Updating Probabilities every 5 seconds

 if (Time.time - lastRecordedTime > 5.0f) {

 foreach (Room room in SortedRooms) {

 if(room.RoomProbability < 1.0f)

 switch(room.RoomNumber){

 case 1: room.RoomProbability +=

0.02f; break;

 case 2: room.RoomProbability +=

0.04f; break;

 case 3: room.RoomProbability +=

0.02f; break;

 case 4: room.RoomProbability +=

0.02f; break;

 case 5: room.RoomProbability +=

0.04f; break;

 case 6: room.RoomProbability +=

0.02f; break;

 case 7: room.RoomProbability +=

0.06f; break;

 case 8: room.RoomProbability +=

0.05f; break;

 }

 }

 lastRecordedTime = Time.time;

 }

 if (/*Time.time - lastRecordedTime > 20f ||*/

Vector3.Distance(navComponent.transform.position,

43

wayPoints[SortedRooms[index].RoomNumber - 1].position) <

1f) {

 SortedRooms[index].Visited = true;

 index = (index + 1) % wayPoints.Length;

 SortedRooms[index].RoomProbability = 0.00f;

 Debug.Log("Current Target is Room Number "+

(SortedRooms[index].RoomNumber - 1));

 }

 RaycastHit hit;

 if(Physics.Raycast(navComponent.transform.position,

(victim.transform.position -

navComponent.transform.position), out hit, 50f))

 {

 if(hit.collider.name == "Player" ||

hit.collider.name == "Quad")

 {

 indicator = 0;

 navComponent.speed = 2f;

 navComponent.SetDestination(victim.transform.position)

;

 victimsLastPosition =

victim.transform.position;

 NavMesh.CalculatePath(navComponent.transform.position,

victimsLastPosition, NavMesh.AllAreas, meshPath);

 for (int i = 0; i <

meshPath.corners.Length-1; i++)

 Debug.DrawLine(meshPath.corners[i],

meshPath.corners[i+1], Color.red);

 }

 else

 {

 if(indicator == 0){

 navComponent.SetDestination(victimsLastPosition);

 navComponent.speed = 2f;

44

 if(Vector3.Distance(victimsLastPosition,

navComponent.transform.position) < 1.0f)

 indicator = 1;

 }

 else

 {

 navComponent.SetDestination(wayPoints[SortedRooms[inde

x].RoomNumber - 1].position);

 navComponent.speed = 1f;

 }

 NavMesh.CalculatePath(navComponent.transform.position,

navComponent.destination, NavMesh.AllAreas, meshPath);

 for (int i = 0; i <

meshPath.corners.Length-1; i++)

 Debug.DrawLine(meshPath.corners[i],

meshPath.corners[i+1], Color.red);

 }

 }

 }

 public static List<Path> getNextRouteCandidates(Path

path, List<Path> paths)

 {

 List<Path> nextRouteCandidates = new

List<Path>();

 nextRouteCandidates = paths.FindAll(r =>

r.source_room_number == path.destin_room_number);

 if (nextRouteCandidates.Count == 0)

 return null;

 return nextRouteCandidates;

 }

}

	Probabilistic Smart Terrain Algorithm
	Table of Content
	Research_Paper

		2016-05-20T13:50:57-0400
	College of Graduate Studies

