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ABSTRACT

The research presented is focused on the development of algorithms targeted towards

analyzing data in the form of categorical time series or sequences. The wide availabil-

ity of mobile devices and sensors connected to the Internet, makes it easier to collect

datasets to model long-term user behavior. Nevertheless, performing fundamental

analytical operations, such as clustering for grouping these data based on similarity

patterns, has proved challenging due to the categorical nature of the data, the multi-

ple variables to consider and their corruption by missing values. The classical metric

type similarity distances have to be replaced with "edit" type distances, such as Op-

timal Matching. We developed this approach with the aim of studying the effect of

similarity measure choice on clustering and dimensionality reduction methods applied

to long-term life cycle trajectories. The discovered patterns can help providing better

decision making and public policy design.
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1 Introduction

1.1 Motivation and Overview

Constant advancement in fields of science and technology is resulting in larger col-

lection of data than ever before. This led to the formation of immense datasets in

science, government and many other industries, which should be analyzed, processed

and sorted to extract useful information out of it. In recent years, interest in the

study of large multi-dimensional datasets is growing significantly. Given a very large

dataset consisting of high dimensional elements, how could one be able to analyze

or extract patterns the data and come up with useful information and results. To

perform this task, clustering of this huge data can be used. Clustering techniques

are useful in grouping the closely related (similar) data points. In today’s world, the

large amount of information available has an enormous potential. Hence, it becomes

more and more complicate to perform clustering on these data.

Clustering of these data is helpful because the output data objects in each cluster

exhibit high degree of similarity between them and the similarity between clusters is

reduced. For example, if we search for some query on the internet, there are hundreds

of pages displayed. If we can apply clustering for all these pages and divide them

into different clusters based on their similarities, then the end user will be displayed

with only a few pages which are similar with the query posted. Clustering of data

is helpful for many fields including classification of web documents, news articles,

financial market, social sciences, health sciences etc.

The data which is used for clustering should have some set of rules otherwise we

may have to face issues. There are some challenges to perform clustering and one of

8



such is a missing data problem. The Swiss Household Panel conducted a Biographical

Survey on individual and collected a data frame. This data frame is formatted with

2000 rows, 16 state variables, 1 id variable and 7 covariates and 2 weights variables. In

2007, Muller et al constructed a data named biofam from this data, which contained

sequences of family states in columns 10 to 15. Distribution and sequential analysis

was carried out on all these sequences.

Panel Study of Income Dynamics (PSID) collected data from individuals from

1968 through 2015, which contained over 17,000 records. In this survey, age is one of

the key variables concentrated throughout. Variable age is found to be missing and

has some noise throughout. Because of this missing data, data were preprocessed,

and screening was done to make the data into the required format. After this process,

the experimental data was brought down to 1034 individual records (considered as

sequences) having individuals between ages 20 and 60. Experiments are conducted

between these age groups, so the individuals who are older than 20 years during 1968

(when the survey was started) have missed the latter part of the survey which is

called as alignment missing. From 1997, instead of conducting the survey every year,

it was conducted in alternate years. Because of this missing survey every year, I have

observed some Short survey gaps in the latter part of the sequences.

The distances between all these sequences are calculated and a data frame is

formed known as the distance matrix. Hierarchical clustering techniques are used to

cluster the sequences in distance matrix. To measure the dissimilarities between the

sequences an edit type distance known as Optimal Matching (OM) is used. Optimal

Matching (OM) is one of the methods in dissimilarity measures which shows the

distances between objects or sequences as the minimum work which is calculated

9



in the form of edit operations, required for changing two sequences to make them

identical.

The research is done on high-dimensional datasets. But, practically it is not pos-

sible to plot the results in more than two or three dimensions. t-Distributed Stochastic

Neighbor Embedding (t-SNE) is an algorithm which is used for dimensionality reduc-

tion, which is non-linear and used for experimenting on high-dimensional data and

reducing it to low dimensions, which are easily understood by human observation. In

the experiments, I have used t-SNE dimensionality reduction algorithm to handle the

large multi-dimensional datasets and created the required results from it.

The Research Questions I would like to answer is:

Research Questions: Can we identify and extract representative sequences from

categorical sequence datasets using clustering and dimensionality reduction tech-

niques? What are the best similarity distances and dimensionality reduction methods

to visualize the data in a meaningful way?

To answer these questions, I have taken four different datasets and conducted

experiments. The datasets are as from different surveys as follows: a study conducted

by McVicar and Anyadike-Danes on transition from school to work (mvad), family life

states from the Swiss Household Panel Biographical Survey (biofam), and a survey

conducted by Panel Study of Income Dynamics (PSID) (totalFUSmall) datasets.

First I have loaded the datasets into RStudio along with TraMineR package

and observed the Individual sequences information. After this, I have used Parti-

tioning Algorithmic technique (PAM) for clustering the datasets using the distance

measures of Optimal Matching (OM), Localized Optimal Matching (OMloc), Number

of Matching Subsequences (NMS) and Time Warp Edit Distance (TWED). Observ-

10



ing on the results of PAM, I have calculated peak values among ASWw, HG, PBC,

HC for all distance measures and took the corresponding number of clusters as the

Optimum number of clusters for that dataset. Later, using the optimum number

of clusters, I have used Partitioning Algorithmic technique (PAM) for clustering the

datasets in the second iteration using the same distance measures. From the output

of second iteration of PAM, I have observed the individual clusters in all datasets. At

last, I have plotted the results from the second iteration of PAM, using Dimensional-

ity reduction techniques of Multi-dimensional Scaling (MDS), Principal Component

Analysis (PCA), Rt-SNE (t-Distributed Stochastic Neighbor Embedding).

1.2 Organization

This thesis is organized as follows. The next chapter explains the structure and

description of datasets that were used previously by researchers and all the datasets

used in my thesis. Chapter 3 presents different similarity measures used in clustering

techniques, which is followed by the description of clustering algorithmic techniques

in Chapter 4. Chapter 5 briefs about the dimensionality reduction techniques helpful

for carrying cluster analysis. Chapter 6 describes the experiments carried out and

presents the results. Chapter 7 concludes the thesis.
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2 Description of Datasets

2.1 Family Life States from the Swiss Household Panel Bio-

graphical Survey

The Swiss Household Panel (SHP) is a study having a importance in the Swiss social

survey landscape. Since 1999 SHP started collection of data from an individual house-

holds, that is useful for mid-term to long-term longitudinal study of various types of

topics. In 1999, SHP conducted a study with around 5,074 individual households.

During this study, most of the questions that were asked were manual. After that, in

2004 58 percent of the initial study sample were interviewed for the sixth time. [13]

The SHP survey is conducted annually from September to February by the in-

stitute M.I.S. Trend in Lausanne and Bern. The languages of interviews are (Swiss)

German, French, and Italian. Computer-assisted telephone interviewing (CATI) is

used as the primary mode of interview. The reason CATI was used as the method of

survey was due to cost and quality considerations and national restrictions in Switzer-

land (Scherpenzeel 2000). The SHP team maintained close contacts between M.I.S

during the interviews such that they can monitor the survey progress. There is no

direct incentive for the interviewers till now and they were paid an hourly basis salary

then.

The household questionnaire contains questions about the composition of the

household, the standard of living, financial status, accommodation and information

about the family. The average length of the interview for the household questionnaire

is about 12 minutes. The individual questionnaire is carried out by every member in

the house aged 14 or older. The individual questionnaire contains questions about the

12



household and the family, health and quality of life, social origin (asked at first inter-

view only), employment, education, income, integration, participation, and networks,

leisure and media, politics and values, and psychological scales. [13]

Format and Details: Muller et al (2007) constructed the biofam dataset based on

the biological survey conducted by SHP. This data frame consists of 2000 rows, 1 id,

16 state variables, 7 covariates and 2 weights. In the columns from 10 to 25 sequences

of family states of the age between 15 and 30 are formatted along with a series of

covariates[17].

Variables in biofam dataset are listed below

Variable Label

idhous household number

sex sex of the individual

birthy year of birth of the individual

nat.1.02 first nationality of the individual

plingu02 language of the interview

p02r01 Religion of the individual

p02r04 Individual’s Frequency of Participation in religious activities

cspfaj Swiss socio-professional category: Father’s job

cspmoj Swiss socio-professional category: Mother’s job

a15 status of the formation at age 15

.. status of the formation

a30 status of the formation at age 30

Table 1: Variables in biofam dataset

13



The combination of five basic states like Living with parents (Parent), Left home

(Left), Married (Marr), Having Children (Child), Divorced are defined with states

numbered from to 7 as follows:

State Label

0 Parent

1 Left

2 Married

3 Left+Marr

4 Child

5 Left+Child

6 Left+Marr+Child

7 Divorced

Table 2: States in biofam dataset

Distribution and Sequence plots: seqdplot() function is used to show the

graphical representation of different states in a dataset at each point of time. First,

we define a vector named biofam.lables. Using this vector the seven states shown

above are plotted. xtstep sets up the x-axis distance for the plot.

14



Figure 1: Sequential distribution plot in biofam dataset

Figure 2: Individual Sequence distribution plot in biofam dataset
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2.2 Transition from School to Work

This dataset is collected from the study conducted by McVicar and Anyadike-Danes

on transition from school to work. In 1999, there was a survey conducted with

interviews face-to-face among a sample of 980 individuals who have completed their

compulsory education. For every individual, their monthly activity (e.g. at school, at

further education college (FE), in training, employment status) was collected for next

2 years. After the sweep in 1999 June, this monthly activity and background data

were updated by adding higher education (HE) and the age groups from 16-22 are

considered. This changed the sample data size to 712. Appropriate weights adjust for

response bias. The final data format of this data-frame contains 712 rows, 72 state

variables(individual time series sequences of monthly labor activities of 72 months),

1 id variable and 13 covariates. [11]

The data set contains the following sample weights (weight), ids and the following

binary covariates:

16



Variable Label
id unique individual identifier
weight sample weights
male binary dummy for gender, 1=male
catholic binary dummy for community, 1=Catholic
Belfast binary dummies for location of school, one of five Education and

Library Board areas in Northern Ireland
N.Eastern binary dummies for location of school, one of five Education and

Library Board areas in Northern Ireland
Southern binary dummies for location of school, one of five Education and

Library Board areas in Northern Ireland
S.Eastern binary dummies for location of school, one of five Education and

Library Board areas in Northern Ireland
Western binary dummies for location of school, one of five Education and

Library Board areas in Northern Ireland
Grammar binary dummy indicating type of secondary education, 1=grammar

school
funemp binary dummy indicating father employment status at time of sur-

vey, 1=father unemployed
gcse5eq binary dummy indicating qualifications gained by the end of com-

pulsory education, 1=5+ GCSEs at grades A-C, or equivalent
fmpr binary dummy indicating SOC code of father?s current or most re-

cent job,1=SOC1 (professional, managerial or related)
livboth binary dummy indicating living arrangements at time of first sweep

of survey (June 1995), 1=living with both parents
jul93 Monthly Activity Variables are coded 1-6, 1=school, 2=FE, 3=em-

ployment, 4=training, 5=joblessness, 6=HE
.. Monthly Activity Variables are coded 1-6, 1=school, 2=FE, 3=em-

ployment, 4=training, 5=joblessness, 6=HE
jun99 Monthly Activity Variables are coded 1-6, 1=school, 2=FE, 3=em-

ployment, 4=training, 5=joblessness, 6=HE

Table 3: Variables in mvad dataset
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State Label

EM employment

FE further education

HE higher education

JL joblessness

SC school

TR training

Table 4: States in mvad dataset

Distribution and Sequence plots:

seqdplot() function is used to show the graphical representation of different states

in a dataset at each point of time. First, we define a vector named mvad.lables. Using

this vector the six states shown above are plotted. xtstep sets up the x-axis distance

for the plot.
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Figure 3: Sequential distribution plot by age in mvad dataset

Figure 4: Individual Sequence distribution plot in mvad dataset
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2.3 Number of Family Members from Panel Study of Income

Dynamics

Panel Study of Income Dynamics (PSID) is the world’s largest household panel sur-

vey, conducted a survey from 1968 through 2015 and collected information about

employment, number of children, total family members etc. Initially, the dataset

was about 18,000 records of individual people. Among all the variables age is con-

centrated throughout the survey. From 1997, the survey was conducted in alternate

years which resulted in missing data of the age variable. because of the human error

and the month in which survey was conducted age is vulnerable to noise.

Many pre-processing steps were done such that the data was brought into the

required structure suitable for experiments. After this step, the data was brought

to 1034 individuals between the age of 20 and 60. As the sequences were aligned

according to age, concentration was made on the individuals whose age is from 20 to

60 years. During 1968, individuals who are above 20 years of age have missed the

latter part of the survey which is called as alignment missing. From 1997, instead of

conducting the survey every year, it was conducted in alternate years and it is known

as short survey gaps [8].

So, the actual dataset totalFUSmall was divided into two sets with missing and

no missing termed as totalFUSmall with no missing values and totalFUSmall with

missing values respectively.

The variables and States in this dataset are as follows:
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Variable Label

Interview number 68 interview number of individual

Sequence number 68 sequence number of individual

20 age of individuals

21 age of individuals

.. ..

59 age of individuals

60 age of individuals

Table 5: Variables in totalFUSmall dataset

State Label

1 total number of family members is 1

2 total number of family members is 2

3 total number of family members is 3

4 total number of family members is 4

5 total number of family members is 6

>=6 total number of family members is 6 or more

missing missing data

Table 6: States in totalFUSmall dataset
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Figure 5: State distribution plot with no missing values in totalFUSmall dataset

Figure 6: Individual Sequence distribution plot with no missing values in totalFUS-
mall dataset
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Figure 7: State distribution plot with missing values in totalFUSmall dataset

Figure 8: Individual Sequence distribution plot with missing values in totalFUSmall
dataset

23



3 Similarity Measures

In the similarity measures section, I have divided the section into two subsections, in

which I will discuss different edit methods namely Optimal Matching (OM), Localized

Optimal Matching (OMloc).

3.1 Optimal Matching (OM) and Localized Optimal Matching

(OMloc)

Optimal Matching (OM): Optimal Matching (OM) is one of the families of mea-

sures to calculate the similarity between sequences derived from the distance. It was

initially proposed in Information Theory and Computer Science by Vladimir Leven-

shtein (1965) and known as sequential analysis in social sciences field. Later in 1983

OM was developed by Kruskal. Technically, OM shows the distances between objects

or sequences as the minimum work which is calculated in the form of edit operations,

required for changing two sequences to make them identical. [1]

Consider a set which performs three operations to transform the sequences: O

= i, d, s where i denotes inserting one state into a sequence, d denotes deleting a

state from a sequence and s denotes substituting one state by replacing with another

state in a sequence. For each operation, there is a specific cost assigned and the sum

of all these specific costs are calculated together to get the cost required for a single

operation. Hence, the distance between two sequences is defined as the minimum

amount of cost that is required for transforming one sequence into another sequence.
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Therefore, the output resulting matrix is a symmetric matrix containing pairwise

distances which is useful for future statistical analysis[8, 9].

Localized Optimal Matching (OMloc): Hollister(2009) proposed an extension

for the OM measure, having the target to make the insert-delete(indel) costs to rely

on the two states that are adjacent. There is a concept that, if a state is inserted

or deleted, then we will only observe the change only in the length of spell in that

particular state. It means that the insertion or deletion of any state does not affect the

sequencing. But, there are more consequences on the indel cost of a state different

to its neighbors’ state. Therefore, a higher cost must be charged for indel cost.

Generally, the cost of inserting z between p and q is defined as ci(z|p, q)[15, 18]

ci(z|p, q) = eγmax + g γ(p,z)+γ(q,z)
2

[15]

here, γ() indicates the cost of substitution, γ()max is the maximum cost of substi-

tution, g and e are user-defined costs. The expression eγmax is the indel cost that is

fixed and e is considered as the spell expansion cost. In 2009, Hollister conducted

experiments and got the good results with some small shift penalization, g and e near

to 1− 2e. The method stops OM from the use of two indels instead of a cost of sub-

stitution and if e and g satisfy the limits 1− 2e ≤ g. In all experiments conducted by

Hollister, even though surrounding states are changed, indel costs remain same. By

changing the indel cost after each operation results in the rise of computational issues.

This is because the total cost will change along with the order in which successive op-

erations are applied. By construction, if the differences in spell length are compared

then localized OM is considered to be less sensitive than classical OM[15][16].
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3.2 Number of Matching Subsequences (NMS)

In this section, I will discuss a Metrics depending on the number of count of similar

elements called from Number of Optimal Clusters).

In 2003, Elzinga proposed a measure (dissimilarity) which is dependant on the

count of matching sub-sequences, NMS. The concept of this measure is that, how

frequently a particular order of tokens from one sequence is observed in another

sequence, the closer two sequences are to each other.

Studer and Elzinga (2015) introduced a model of NMS which is termed as SVR-

spell (sub-sequence vector representation-based metric). The distance is dependent

on the subsequences that are matching between DSS sequences and these matching

sequences are given weight according to the duration of spells involved and their

length. The behavior of this measure is controlled by two parameters. First, a ≥ 0,

which is expressed as an exponent for the length of subsequence weights. Second,

b ≥ 0 which is the exponent for the duration of spells. Apart from these weights,

SVR (subsequence vector representation) also considers the proximities of states.

SVRspell and NMS are the Euclidean distances. They are sensitive to differences

in duration and also differences in sequences. Considering the increase of duration, the

original version will increase the count of embeddings of concerned subsequences. This

is done by the second form by considering the spell durations. Contrast, calculating

NMS between DSS sequences is equivalent to SVRspell with b = 0[16].
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3.3 Time Warp Edit Distance (TWED)

In this section, I will discuss an edit method called Time warp edit distance (TWED).

In 2009, P.-F. Marteau developed Time Warp Edit Distance (TWED) measure.

TWED is a distance measure between discrete time series. Unlike other measures

(DTW , LCS ) TWED is a metric measure. In other distance measures, it is assumed

that all the data points present in the measured time series must be sampled at

the same frequency and present at equidistant sampling times. In the context of

clustering, the main problem with the processing of time series is the determination

of the similarity of time series to one another.

In time series, we look at a sequence of edit operations that allows the transfor-

mation of 2 time series parallel, such that they are superimposed with minimum cost.

If we represent this in a 2-dimensional graphical representation of time series, then

the horizontal axis will represent the time stamp scale and vertical axis will represent

spatial projection of 1-dimensional spatial co-ordinates[16].

TWED gives the following conclusions:

The cost or effort of editing any deletion operation is directly proportional to the

length penalty added vector. Because of sampling rate variations, we can face a

situation in time series data, where an event can be registered more times or few

times depending on the number of occurrences. This will conclude that the deletion

cost of an event is proportional to the distance in the previous sample.
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4 Clustering Algorithms

Clustering a data means, all the data points in a data space are grouped together

considering information found in the dataset which explains the relationship between

its data points. Target is to create a group with similar objects by forming a relation

between objects from same or other groups. The uniqueness of the clustering increases

with greater the homogeneity within in the created group. In most of the applications,

view of the cluster in datasets is not defined properly.

Every clustering technique follows a different set of rules in order to define the

similarity among all the data points in data space. Practically, in data science, there

are about more than hundred clustering algorithms. Among all those few models are

listed below [5, 7, 14].

• Connectivity models: Connectivity models follow the rule that all data points

in a data space which are closer to each other have more similarity than those

points which are far away from each other. There are two approaches for this

model. The first approach is to organize all points in a data space into separate

groups called clusters and then grouping all these data points as the distance

between them decreases. The second approach is that, all the data points are

organized in such a way, to form a singleton cluster and then the singleton

cluster is partitioned as the distance between the points increases.Connectivity

models are easy to implement but they cannot handle big datasets. Hierarchical

clustering and its variants are the examples of this model.
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• Centroid models: Centroid models are known as iterative clustering algo-

rithms because the view of similarity between objects is obtained by the close-

ness of each object in data space to the centroid of clusters. K-Means clustering

algorithm falls into this category. In these models, we must know about the

dataset before hand, because the number of clusters required has to be men-

tioned at first.

• Distribution models: Distribution clustering models follow the view that,

what is the chance of having all data points in data pace in a cluster belong

to the same distribution. These models have a disadvantage of over-fitting.

Expectation-maximization algorithm is an example of this category which uses

multivariate normal distributions.

4.1 Hierarchical Clustering

Hierarchical clustering approach follows the clustering procedure that produces a clus-

tering result, which starts with every single point in data space as a singleton cluster

and performs the grouping these points continuously on 2 nearest clusters. This pro-

cess will be continued until a single cluster remains in the complete dataset. These

techniques are divided into two groups. First, in terms of graph-based clustering for

one group having a natural interpretation. Second, having an interpretation in terms

of a prototype-based approach. [5] There are two methods for performing hierarchical

clustering:
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Agglomerative method: This approach considers all points as separate clusters

and at each step, the nearest pair of groups (clusters) are merged together. For this

process, the notion of cluster proximity is to be defined first.

Divisive: This process starts with a single cluster (having all clusters in it) and at

every step, each cluster is split into two and the process continues until all the clusters

having single points are remained. In this method, we should decide which cluster is

to be split and how the splitting is carried out.

From the two clustering techniques stated above, Agglomerative hierarchical clus-

tering technique is often common and is discussed here. A hierarchical clustering is

generally displayed in the form of graphs using a tree-like structure called a dendro-

gram. Every dendrogram displays all the cluster-sub-cluster relationships and the

order in which the clusters were merged (in case of agglomerative) or split (in case of

divisive). [2, 12] . Following Algorithm explains more in detail about the Hierarchical

clustering.

Figure 9: Dendrogram showing four points using hierarchical clustering
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Algorithmic steps for Agglomerative Hierarchical clustering:

Let us consider a set X having the data points as X = x1, x2, x3, ..., xn.

1. Start with the initial (disjoint) clustering level L(0) = 0 and a sequence number

m = 0.

2. Search for the distance pair of clusters that is minimum in the present clustering,

assume pair (r), (s) are the required clusters. According to distance d[(r),(s)] =

min d[(i),(j)] where the min is total pairs of clusters in the present clustering.

3. Increase the number of sequence: m = m +1. Group the two clusters (r) and

(s) to form a new cluster m. Change this clustering level to L(m) = d[(r),(s)].

4. The distance matrix D is updated by deleting the rows and columns which

corresponds to clusters (r), (s) and the new rows and columns which corresponds

to the newly formed cluster should be added. The expression d[(k), (r,s)] = min

(d[(k),(r)], d[(k),(s)]) defines the distance between the new cluster (r,s) and old

cluster(k).

5. If all the data points are grouped in one cluster then algorithm terminates, else

repeat al the steps from step 2.

Some of the other factors that must be considered while performing hierarchical clus-

tering are Defining Proximity between clusters and Time and Space Complexity.

Proximity between clusters: The main goal of this algorithm is to compute the

proximity between two clusters, and that is one which differentiates various agglom-

erative hierarchical techniques. Proximity between clusters is defined with a special
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type of cluster. A graph-based view of the groups (clusters) is the basic structure of

agglomerative hierarchical cluster methods like MIN, MAX and Group Average. The

proximity between any two close points in a data space that are in different nodes or

clusters is defined by MIN. Similarly, the proximity between any two farthest points

in a data space that are in different nodes or clusters is defined by MAX[5].

If suppose we take a view for which every cluster is shown by a centroid, then

there are many definitions for defining the proximity between clusters. If the centroid

is used to define proximity between clusters then the cluster proximity is defined

as the proximity between centroids of a cluster. Another clustering method called,

Ward’s method, proposes that a centroid is used to represent a cluster, but the cluster

proximity is measured by the closeness between two clusters which is measured in

terms of increase in the SSE.

Time and Space Complexity : We discussed that, agglomerative hierarchical

clustering algorithm makes use of a proximity matrix. So, by assuming that the matrix

is symmetric, we require to store m2 proximities, where the number of individual

data points are represented by m. The total space required to store all the clusters

is directly proportional to the number of clusters. Therefore, the space complexity of

all the data points is given by the expression O(m2) [4].
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4.2 K-means Clustering

In K-Means clustering choose K initial centroids, where K is the parameter specified

by user which represents the number of clusters. Every point in the dataset is assigned

to the centroid that is closest. A centroid that is assigned by every such collection of

points is a cluster. Based on the points assigned to the cluster, the centroid of each

cluster is then updated. These steps are continuously performed until there are no

point changes in the clusters i.e. until the centroids remain the same. [3]

J(V ) =
C∑
i=1

Ci∑
j=1

(|xi − vj|)2

where,

|xi − vj| is the Euclidean distance between xi and vj.

Ci is the number of data points in ith cluster.

C is the number of cluster centers.

Algorithmic steps for k-means clustering:

Consider the set of data points X = x1, x2, x3, ...., xn and the set of centers V =

v1, v2, ..., vc.

1. Select a random number of clusters (say C).
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2. Calculate the distance between the center of clusters and each data points.

3. Observe the cluster center whose distance is minimum of all the cluster centers

and assign the data point to that cluster center.

4. Recalculate the center of the new cluster using:

Vi = (1/Ci)

Ci∑
j=1

xi

where, Ci represents the number of data points in ith cluster.

5. Recalculate the distance between newly obtained cluster centers and each data

point.

6. If there is no data point that is reassigned then terminate, otherwise continue

from step 3.

Time and Space Complexity: The required space for K-means clustering is not

too high. This is because we need to store only the data points and centroids. The

storage required is given as O((a+b)z), where the number of points is represented by

a, the number of attributes is denoted by z. Time needed for k-means clustering is

given by O(I x k x m x n), where number of iterations required for k-means is denoted

by I, which is often small and maximum changes generally occur in the initial few

iterations. Therefore, K-means clustering is considered to be linear the number of

points (m) and is simple and efficient if the number of clusters (k) is practically less

than m.
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5 Dimensionality Reduction Methods

Dimensionality Reduction Techniques are used to map a high dimensional data space

to a low dimensional data space. It is expressed as follows: Suppose X ε R(pxq), is

considered to be a set of p data points in a q-dimensional data space, δp, δt are two

metric distance (or dissimilarity) function, given δp : Rp x Rp →R and δt : Rt x Rt

→R, where Rp is data space and Rt target space respectively, with p, t ε N*, and t «

p, be given. A mapping function φ that maps the p-dimensional data points (xi ε X)

to t-dimensional target points (yi ε Y ), i.e.,

φ: Rp →Rt

xi →yi, for 1≤i≤n,

5.1 Multi-dimensional Scaling

Multi-dimensional scaling (MDS) is a technique that is used when we are given a

table of distances between several objects and to map them. This mapping may con-

tain dimensions like 1,2,3, or more. The technique computed one of the solutions

from metric or non-metric. The table formed by distances is known as proximity

matrix. Proximity matrix can be taken either from experiments or as a correlation

matrix. Multi-dimensional scaling is divided into two groups called Metric, or Clas-

sical, Multi-dimensional Scaling (CMDS) and called Non-Metric Multi-dimensional

Scaling (NMMDS). Metric MDS tries to reproduce the original distances. Non-Metric

Multi-dimensional Scaling (NMMDS), is based on the concept it produces a map
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which tries to reproduce the ranks of the distances[6].

Goodness of Fit: Expressing a data how good it is to be represented by the model

which is used in analysis. For MDS, modeling of the distances is the aim. Hence, the

best option for goodness-of-fit is dependent on the difference of the actual distances

and predicted values. It’s termed as stress and can be computed as follows:

stress =

√∑
(dij − d̂ij)2∑

dij2

Here the predicted distance depending on the MDS model is given by d̂ij.

Number of Dimensions: One of the important goals for an analyst using MDS

model is to determine the number of dimensions. It is important to keep the number

of dimensions low as possible. Generally, one selects 2 or 3 dimensions. The concept

of MDS is to solve for values with several dimensions and get a small number of

dimensions that give a lesser value of stress[6].

The size of the eigen values which are obtained at the time of the solution process

is also considered by some of the researchers. As these eigen values are used to

compute the number of factors during factor analysis, and also used to calculate the

number of dimensions.

Proximity Measures: These are used to calculate the closeness of two objects. MDS

defines three types of proximity values: dissimilarities, similarities, and correlations.
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Dissimilarities: Dissimilarities represent the distance between two objects in a

dataset.

Similarities show how closely two objects are arranged in a dataset. Similarities must

obey the rule: similaritypq ≤ similaritypp and similarityqq for all p and q. Similarity

matrices are symmetrical.

Similarities are converted to dissimilarities using the formula:[6]

dpq =
√

spp + sqq − 2spq

where dij represents a dissimilarity and sij represents a similarity.

5.2 Principal Component Analysis

Principal component analysis (PCA) is an example of a statistical procedure that

converts a set of observations using orthogonal transformation. The set of variables

which are possibly correlated are mapped to a set of values that are linear and un-

correlated variables known as principal components. The count of distinct principal

components is given by min (n-1, p) where, n is the number of observations with

p variables. The orthogonal transformation is defined as the principal component

which first has the possible variance of highest and each component that succeeds

the first has the highest variance having a restriction that it should be perpendicular

to the preceding components. The set of all resulting vectors are a set of uncorre-

lated orthogons. PCA is very much flexible to the relative scaling of the original

variables[16].
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Let us assume that a data matrix is given with variables count of q and observa-

tions count of r, then all data points are centered by the means of each variable. It

makes sure that most of the data is at the center of the means of each variable. The

first principal components (Y1) is given by variables of linear combination as X1, X2,

...,Xq

Y1 = a11 X1 + a12 X2 + ... + a1p Xq

or, in matrix notation

Y1 = aT1 X

The principal component that is calculated first will account in the variance in the

data set which is maximum possible. By choosing large values for the weights a11,

a12, ... a1p variance of Y1 can be made as big as possible. To avoid this, there is a

constraint on the weights such that their sum of squares is 1.

a211 + a212 + .....+ a21q = 1

The Second principal component is also calculated in the similar fashion, by having

a condition that is perpendicular to the first component and it accounts for next

maximum variance.

Y2 = a21 X1 + a22 X2 + ... + a2q Xq

This process is continued until we calculate q principal components, which are same

as the number original variables. At this step, both the sums of variances of all the
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variables and variances of all the principal components will be equal. So, together the

transformations of the variables that are original to principal components is given by

Y = AX

5.3 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor(t-SNE) Embedding is a non-linear dimensionality

reduction algorithm that is used for reducing high-dimensional data into two or three-

dimensional data. t-SNE algorithms help in plotting graphs with fewer explanations

and data analysis, that are useful for analysis[10].

Algorithm:

1. t-Stochastic Neighbor Embedding (t-SNE) algorithm starts taking high-dimensional

Euclidean distances between data points and converts them into conditional

probabilities that represent similarities between these data points. Suppose a

distance matrix D is given between two input objects xi and xj, the conditional

probability is given by pj|i and is mathematically represented as

pj|i =
exp(−|xi − xj|2/2σ2

i )∑
k �=1 exp(−|xi − xk|2/2σ2

i )

where σi is the Gaussian variance which is centered on data point xi. The σ

for each object is chosen in such a way that the perplexity of pj|i has a value
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that is close to the user-defined perplexity. This value determines how many

neighbors in the near space are considered for constructing the embedding in

the low-dimensional space[10].

2. For the low-dimensional points in data space like yi and yj of the high-dimensional

data points xi and xj the Cauchy distribution (t-distribution with one degree

of freedom) is used to calculate the similar conditional probability, which is

denoted by qj|i

qj|i =
exp(−|xi − xj|2)∑
k �=1 exp(−|xi − xk|2)

The difference between the data points pj|i and qj|i should be made zero for

the perfect representation of the plot in low and high dimensions, which is also

termed as the conditional probabilities pj|i and qj|i and should be same for a

perfect replication of the similarity of data points.

3. t-SNE minimizes the divergences of Kullback-Leibler (KL) over the data points

by using a method called gradient descent, to measure the minimum sum of

difference of conditional probability and also these divergences are asymmetric

in nature.

4. Hence, t-SNE minimizes the sum of differences in conditional probabilities and

is done by the symmetric version of the SNE cost function with simple gradients.

t-SNE performs high distribution in the low-dimensional space exaggerate the

crowding problem and the optimization problems of SNE.
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5. The entropy of this distribution increases with increase in σi. t-SNE uses binary

search to find the value of σi which will produce a pi with a perplexity that is

fixed perplexity and is specified by σi by the user. Therefore, we define the

perplexity as

Perp(pi) = 2H(Pi)

where, Shannon entropy of pi measured in bits is defined by H(Pi)

H(Pi) = −∑
j pj|ilog2pj|i
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6 Experiments and Results

For my experiments, I have used a total of four datasets. Experiments and results

from each dataset are described in four sub-sections below. First two datasets are the

data collected from Swiss Household Panel Biographical Survey (biofam data) and

Transition from School to Work (mvad data) respectively. Other dataset is the data

collected from Panel Study of Income Dynamics, named totalFUSmall dataset. This

dataset is divided into two parts: with missing values and without missing values.

The following distance measures and dimensionality reduction techniques were used

to extract the results.

Distance Measures:

• Optimal Matching (OM)

• Localized Optimal Matching (OMloc)

• Number of Matching Subsequences (NMS)

• Time Warp Edit Distance (TWED)

Dimensionality Reduction Measures:

• Principal Component Analysis (PCA)

• Multi-Dimensional Scaling (MDS)

• Rt-SNE
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6.1 Experiments on biofam dataset

Following steps are done to experiment the data.

Step 1: I have used TraMineR package to start the experiments. biofam data comes

along with the TraMineR package. Initially biofam data is loaded and sequential data

was built using four distance measures.

Step 2: Partitioning Clustering (PAM) is done on biofam for first iteration, with a

random selection of 20 clusters using the distance measures Optimal Matching (OM),

Localized Optimal Matching (OMloc), Number of Matching Subsequences (NMS),

Time Warp Edit Distance (TWED) separately.

Step 3: Internal clustering validity measures of biofam were graphically represented

for ASWw, HG, PBC, HC using all four distance measures and are shown in the

figures 10, 11, 12, and 13.

Figure 10: Internal Clustering validity measures for biofam dataset using Optimal
Matching (OM)
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Figure 11: Internal Clustering validity measures for biofam dataset using Localized
Optimal Matching(OMloc)

Figure 12: Internal Clustering validity measures for biofam dataset using from Num-
ber of Optimal Clusters)
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Figure 13: Internal Clustering validity measures for biofam dataset using Time Warp
Edit Distance (TWED)

Step 4: From the figures 10, 11, 12, and 13, I have considered the highest peak

value among ASWw, HG, PBC, HC ( for all four distance masures) and took the

corresponding number of clusters as Optimum number of Clusters for that particular

distance measure.

Step 5: By taking the number of clusters from Step 4, PAM is ran for 2nd iteration

on biofam data for OM, OMloc, NMS, TWED respectively and individual clusters

are observed, shown in the following sequential distribution figures 14, 15, and 16.
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Figure 14: Sequential Distribution Plots from Number of Optimal Clusters for OM
in biofam Dataset

Figure 15: Sequential Distribution Plots from Number of Optimal Clusters for NMS
in biofam Dataset
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Figure 16: Sequential Distribution Plots from Number of Optimal Clusters for TWED
in biofam Dataset

Step 6: By taking the output from Step 5, Dimensionality Reduction techniques are

implemented using Multi-dimensional Scaling (MDS), Principal Component Analysis

(PCA) and Rt-SNE shown in the following graphs 17 - 25.

Figure 17: MDS Technique Using Optimal Matching (OM) on biofam Dataset
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Figure 18: PCA Technique Using Optimal Matching (OM) on biofam Dataset

Figure 19: Rt-SNE Technique Using Optimal Matching (OM) on biofam Dataset
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Figure 20: MDS Technique Using from Number of Optimal Clusters) on biofam
Dataset

Figure 21: PCA Technique Using from Number of Optimal Clusters) on biofam
Dataset
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Figure 22: Rt-SNE Technique Using from Number of Optimal Clusters) on biofam
Dataset

Figure 23: MDS Technique Using Time Warp Edit Distance (TWED) on biofam
Dataset
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Figure 24: PCA Technique Using Time Warp Edit Distance (TWED) on biofam
Dataset

Figure 25: Rt-SNE Technique Using Time Warp Edit Distance (TWED) on biofam
Dataset
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6.2 Experiments on mvad dataset

Following steps are done to experiment the data.

Step 1: I have used TraMineR package to start the experiments. mvad data comes

along with the TraMineR package. Initially mvad data is loaded and sequential data

was built using four distance measures.

Step 2: Partitioning Clustering (PAM) is done on mvad for first iteration, with

a random selection of 20 clusters using the distance measures Optimal Matching

(OM), Localized Optimal Matching (OMloc), from Number of Optimal Clusters),

Time Warp Edit Distance (TWED) separately.

Step 3: Internal clustering validity measures of mvad were graphically represented

for ASWw, HG, PBC, HC using all four distance measures and are shown in the

figures 26, 27, 28, and 29.

Figure 26: Internal Clustering validity measures for mvad dataset using Optimal
Matching (OM)
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Figure 27: Internal Clustering validity measures for mvad dataset using Localized
Optimal Matching(OMloc)

Figure 28: Internal Clustering validity measures for mvad dataset using from Number
of Optimal Clusters)
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Figure 29: Internal Clustering validity measures for mvad dataset using Time Warp
Edit Distance (TWED)

Step 4: From the figures 26, 27, 28, and 29, I have considered the highest peak

value among ASWw, HG, PBC, HC ( for all four distance masures) and took the

corresponding number of clusters as Optimum number of Clusters for that particular

distance measure.

Step 5: By taking the number of clusters from Step 4, PAM is ran for 2nd iteration

on mvad data for OM, OMloc, NMS, TWED respectively and clusters are observed,

shown in the following sequential distribution figures 30, 31, 32, and 33.
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Figure 30: Sequential Distribution Plots from Number of Optimal Clusters for OM
in mvad Dataset

Figure 31: Sequential Distribution Plots from Number of Optimal Clusters for OMloc
in mvad Dataset
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Figure 32: Sequential Distribution Plots from Number of Optimal Clusters for NMS
in biofam Dataset

Figure 33: Sequential Distribution Plots from Number of Optimal Clusters for TWED
in biofam Dataset

Step 6: By taking the output from Step 5, Dimensionality Reduction techniques are

implemented using Multi-dimensional Scaling (MDS), Principal Component Analysis

(PCA) and Rt-SNE shown in the following graphs.
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Figure 34: MDS Technique Using Optimal Matching (OM) on mvad Dataset

Figure 35: PCA Technique Using Optimal Matching (OM) on mvad Dataset
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Figure 36: Rt-SNE Technique Using Optimal Matching (OM) on mvad Dataset

Figure 37: MDS Technique Using Localized Optimal Matching (OMloc) on mvad
Dataset
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Figure 38: PCA Technique Using Localized Optimal Matching (OMloc) on mvad
Dataset

Figure 39: Rt-SNE Technique Using Localized Optimal Matching (OM) on mvad
Dataset
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Figure 40: MDS Technique Using from Number of Optimal Clusters) on mvad Dataset

Figure 41: PCA Technique Using from Number of Optimal Clusters) on mvad Dataset
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Figure 42: Rt-SNE Technique Using from Number of Optimal Clusters) on mvad
Dataset

Figure 43: MDS Technique Using Time Warp Edit Distance (TWED) on mvad
Dataset
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Figure 44: PCA Technique Using Time Warp Edit Distance (TWED) on mvad
Dataset

Figure 45: Rt-SNE Technique Using Time Warp Edit Distance (TWED) on mvad
Dataset

62



6.3 Experiments on totalFUSmall dataset with no missing val-

ues

Following steps are done to experiment the data.

Step 1: Initially totalFUSmall data with no missing values is loaded and sequential

data was built using four distance measures.

Step 2: Partitioning Clustering (PAM) is done on totalFUSmall with no missing

values, for first iteration, with a random selection of 20 clusters using the distance

measures Optimal Matching (OM), Localized Optimal Matching (OMloc), Number

of Matching Subsequences (NMS), Time Warp Edit Distance (TWED) separately.

Step 3: Internal clustering validity measures of totalFUSmall with no missing val-

ues were graphically represented for ASWw, HG, PBC, HC using all four distance

measures and are shown in the figures 46, 47, 48, and 49.

Figure 46: Internal Clustering validity measures for totalFUSmall dataset with no
missing using Optimal Matching (OM)

63



Figure 47: Internal Clustering validity measures for totalFUSmall dataset with no
missing values, using Localized Optimal Matching(OMloc)

Figure 48: Internal Clustering validity measures for totalFUSmall dataset with no
missing values using from Number of Optimal Clusters)
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Figure 49: Internal Clustering validity measures for totalFUSmall dataset using Time
Warp Edit Distance (TWED)

Step 4: From the figures 46, 47, 48, and 49, I have considered the highest peak

value among ASWw, HG, PBC, HC ( for all four distance masures) and took the

corresponding number of clusters as Optimum number of Clusters for that particular

distance measure.

Step 5: By taking the number of clusters from Step 4, PAM is ran for 2nd iteration

on totalFUSmall data with no missing values, for OM, NMS, TWED respectively and

individual clusters are observed, shown in the following sequential figures 50, 51, and

52.
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Figure 50: Sequential Distribution Plots from Number of Optimal Clusters for OM
in totalFUSmall Dataset with no missing values

Figure 51: Sequential Distribution Plots from Number of Optimal Clusters for NMS
in totalFUSmall Dataset with no missing values
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Figure 52: Sequential Distribution Plots from Number of Optimal Clusters for TWED
in totalFUSmall Dataset with no missing values

Step 6: By taking the output from Step 5, Dimensionality Reduction techniques are

implemented using Multi-dimensional Scaling (MDS), Principal Component Analysis

(PCA) and Rt-SNE shown in the following graphs 53 - 61.

Figure 53: MDS Technique Using Optimal Matching (OM) on totalFUSmall Dataset
with no missing values

67



Figure 54: PCA Technique Using Optimal Matching (OM) on totalFUSmall Dataset
with no missing values

Figure 55: Rt-SNE Technique Using Optimal Matching (OM) on totalFUSmall
Dataset with no missing values

68



Figure 56: MDS Technique Using from Number of Optimal Clusters) on totalFUSmall
Dataset with no missing values

Figure 57: PCA Technique Using from Number of Optimal Clusters) on totalFUSmall
Dataset with no missing values
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Figure 58: Rt-SNE Technique Using from Number of Optimal Clusters) on totalFUS-
mall Dataset with no missing values

Figure 59: MDS Technique Using Time Warp Edit Distance (TWED) on totalFUS-
mall Dataset with no missing values
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Figure 60: PCA Technique Using Time Warp Edit Distance (TWED) on totalFUSmall
Dataset with no missing values

Figure 61: Rt-SNE Technique Using Time Warp Edit Distance (TWED) on total-
FUSmall Dataset with no missing values
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6.4 Experiments on totalFUSmall dataset with missing values

Following steps are done to experiment the data.

Step 1: Initially totalFUSmall data with missing values is loaded and sequential

data was built using four distance measures.

Step 2: Partitioning Clustering (PAM) is done on totalFUSmall with missing values,

for first iteration, with a random selection of 20 clusters using the distance measures

Optimal Matching (OM), Localized Optimal Matching (OMloc), Number of Matching

Subsequences (NMS), Time Warp Edit Distance (TWED) separately.

Step 3: Internal clustering validity measures of totalFUSmall with missing values

were graphically represented for ASWw, HG, PBC, HC using all four distance mea-

sures and are shown in the figures 62, 63, 64, and 65.

Figure 62: Internal Clustering validity measures for totalFUSmall dataset with miss-
ing using Optimal Matching (OM)
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Figure 63: Internal Clustering validity measures for totalFUSmall dataset with miss-
ing values, using Localized Optimal Matching(OMloc)

Figure 64: Internal Clustering validity measures for totalFUSmall dataset with miss-
ing values using from Number of Optimal Clusters)
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Figure 65: Internal Clustering validity measures for totalFUSmall dataset using Time
Warp Edit Distance (TWED)

Step 4: From the figures 62, 63, 64, and 65, I have considered the highest peak

value among ASWw, HG, PBC, HC ( for all four distance masures) and took the

corresponding number of clusters as Optimum number of Clusters for that particular

distance measure.

Step 5: By taking the number of clusters from Step 4, PAM is ran for 2nd iteration

on totalFUSmall data with missing values, for OM, NMS, TWED respectively and

clusters are observed, shown in the following figures 66, 67, and 68.
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Figure 66: Sequential Distribution Plots from Number of Optimal Clusters for OM
in totalFUSmall Dataset with missing values

Figure 67: Sequential Distribution Plots from Number of Optimal Clusters for NMS
in totalFUSmall Dataset with missing values
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Figure 68: Sequential Distribution Plots from Number of Optimal Clusters for TWED
in totalFUSmall Dataset with missing values

Step 6: By taking the output from Step 5, Dimensionality Reduction techniques are

implemented using Multi-dimensional Scaling (MDS), Principal Component Analysis

(PCA) and Rt-SNE shown in the following graphs 69 - 77.

Figure 69: MDS Technique Using Optimal Matching (OM) on totalFUSmall Dataset
with missing values
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Figure 70: PCA Technique Using Optimal Matching (OM) on totalFUSmall Dataset
with missing values

Figure 71: Rt-SNE Technique Using Optimal Matching (OM) on totalFUSmall
Dataset with missing values
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Figure 72: MDS Technique Using NMS technique on totalFUSmall Dataset with
missing values

Figure 73: PCA Technique Using NMS technique on totalFUSmall Dataset with
missing values
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Figure 74: Rt-SNE Technique Using from Number of Optimal Clusters) on totalFUS-
mall Dataset with missing values

Figure 75: MDS Technique Using Time Warp Edit Distance (TWED) on totalFUS-
mall Dataset with missing values
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Figure 76: PCA Technique Using Time Warp Edit Distance (TWED) on totalFUSmall
Dataset with missing values

Figure 77: Rt-SNE Technique Using Time Warp Edit Distance (TWED) on total-
FUSmall Dataset with missing values

80



7 Conclusion

Constant advancement in fields of science and technology is resulting in huge col-

lection of data. To extract useful information from these data and proper visualize

it, clustering methods along with number of distance measures and dimensionality

reduction methods are implemented to get the most useful information out of the

data. Clustering of life-course individual time series sequences helps in identifying

the information more accurately.

The research question I would seek to conclude here is "Can we Identify and

extract representative sequences from categorical sequence datasets using clustering

and dimensionality reduction techniques?". From the results we observe that optimal

number of clusters is different for same dataset when different distance measures are

used. This is because each distance measure implement separate number of groups

that match the similarity between data points. It can be concluded that optimal

number of clusters depends on the measures used for any dataset and is not constant

for all the measures for the same dataset.

There is no perfect measure to capture the information in every dataset. For

some datasets, tsne is able to show the good graphical representation of clusters in

the data. That is harder in the case of totalFUSmall with no missing values. The

future work that needs to be done is to identify representative sequences for each

cluster and plot them using the t-SNE technique graphs.
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