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ABSTRACT 

 
Agglomeration is one of the major problems in fluidized bed processes which 

affects the uniform distribution of heat and may lead to defluidization and costly 

shutdown of the whole installation. Detecting the onset of agglomeration before it 

happens makes it possible to operate the plant more efficiently. The objective is to detect 

the onset of such undesired behavior with a minimum number of sensors. This research 

focuses on detecting agglomeration using a nonlinear statistic called the structure 

function. Because of the simplicity of this technique given its use of a single pressure 

sensor time series, it is also suitable for on-line detection. The single sensor data exhibits 

a Gaussian distribution when the bed is well fluidized and changes its dynamics during 

agglomeration often leading to a periodic pattern in the fluidized bed differential pressure 

measurement fluctuations. Structure function with orders 2 and 3 are suitably applied to 

the filtered data of the differential pressure drop from the fluidized bed. Before applying 

the structure function, the sensitivity analysis of structure function with respect to time 

lag and window size is performed and optimum values of these two parameters are 

chosen. Both the second and the third order structure function give the same information 

about the onset of agglomeration.  
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CHAPTER I 

INTRODUCTION  

 
1.1 Motivation and Background 

Bubbling fluidized bed are frequently used to combust biomass fuel to produce 

steam and electricity. The biomass fuel with its low concentration of Sulphur (S) is mixed 

with sand as a bed material rather than limestone. The biomass fuel contains alkali 

elements such as sodium and potassium in the ash. Since the alkali elements have low 

melting temperature compared to bed temperature this causes deposition of sodium and 

potassium on the surface of sand thus forming an eutectic. The softening of the surface 

can cause individual particle of sand to stick together to form agglomerates with a larger 

diameter than the individual particle of sand grains. 

Fluidization quality is a function of air distribution through the bed. A well-

fluidized bed provides good mass transfer of the oxygen in the air to the surface of the 

biomass particles to achieve good combustion. As agglomerates forms in the bed, the 

quality of fluidization will deteriorate and the mixing of the air and the fuel is 

compromised.  

The quality of fluidization can be assessed by measuring the differential pressure 

fluctuations in the bed using a high-speed pressure transducer. A well-fluidized bed is 

characterized by a Gaussian distribution of the pressure fluctuations. As agglomerates 

form the pressure fluctuations will become more periodic which is indicative of slugging 

behavior. Fluidization is a highly nonlinear process with dimension around 7 [1]. 
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Structure function (SF) has been shown to be particularly sensitive to shifts in system 

dynamics from chaotic to periodic. 

 

1.2 Purpose 

As the agglomerates form, the fluidization quality shifts from well-mixed chaotic 

behavior to poorly-mixed periodic behavior. The formation of agglomerates can be 

managed by draining portion of the bed and controlling the accumulation of alkali below 

the threshold limit where the agglomerates can form. A time-averaged measure of bed 

pressure drop does not reveal the shift in fluidization quality. In fact, the time-averaged 

pressure drop across the fluidized bed could be the same whether or not agglomerates are 

present, or the bed is well-mixed or slugging. A method is required to detect the early 

onset of agglomeration so that the bed drain rate can be adjusted quickly enough to purge 

the accumulated alkali constituents and small agglomerates.  

Previous work [2] has shown that linear and nonlinear signal analysis applied to 

high-speed pressure transducer measurement of bed differential pressure can be used to 

detect a change in fluidization quality. Linear signal analysis techniques can only provide 

a limited indication in bed hydrodynamics and struggle to provide an early indication of 

the onset of agglomeration. Nonlinear signal analysis techniques have shown greater 

promise, but have not been implemented commercially in a real bed-drain control 

scheme. 
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1.3 Goal 

The goal of this work is to show that the nonlinear structure function, when 

applied to a high-speed differential pressure signal, can be used to detect the early onset 

of agglomeration in a timely manner to be used as a control variable for the bed drain 

rate. 

1.4 Objectives 

The following objectives are defined. 

 Develop the necessary computer code to calculate structure function from a series 

of pressure measurements. 

 Perform sensitivity analysis of the analysis parameters to optimize the method of 

bubbling bed pressure signals. 

 Show the structure function can detect agglomeration in sufficient time prior to 

catastrophic agglomeration to allow the control system to mitigate the 

agglomeration and maintain well-fluidized bed. 

 Show that the computation time of the calculation is fast relative to the process 

[3]. 

1.5 Organization 

This work is divided into 5 chapters. Chapter II provides background information 

on fluidized bed process, agglomeration, and details on the structure function. The third 

chapter describes the details of the fluidized bed set-up and data acquisition. Chapter IV 

details the testing performed with the proof-of-concept implementation. This thesis is 

concluded with the fifth chapter, which summarizes the content of this work as well as 
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suggestions for future research on this topic. Several appendices provide Matlab source 

codes used to generate the plots presented in the body of this work.  
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CHAPTER II 

BACKGROUND INFORMATION 

2.1 Fluidized bed combustion 

In the fluidized bed, fuels or biomass, especially with high sulfur, can be 

combusted in the air-suspended mass of particles. By controlling the temperature of the 

air through the bed, and also by adding reagents such as limestone, the emission of 

nitrogen oxide (NOx) as well as sulfur dioxide (SO2) can be controlled in an 

environmentally acceptable way. It is difficult to burn biomass in a traditional furnace 

because of its low heating value, low volatile matter, and high moisture content [4]. 

There are two types of fluidized beds. In the first type, the bed of particles 

remains in the bottom of the furnace forming well-defined region of particles and fuels 

such as coal wastes or biomass is fed into this bed of fluidized particles commonly 

known as Bubbling fluidized bed (BFB) boiler. In the other, the gas velocity through the 

particle is sufficiently high to lift the particles out of lower furnace and transport them to 

the exit of the furnace where some type of particle separator returns the particles to the 

bottom of the furnace. This type of fluidized bed is referred to as a circulating fluidized 

bed (CFB) boilers. The latter can burn a boarder range of fuels. 

2.2 The fluidized-bed process 

When the air/gas is blown through the bed mass, it gets lifted and suspended by 

the air. For low air velocity, the air flowing through the inter-particle spaces is not 

sufficient to cause considerable motion of particles, and this state is known as fixed/static 

bed and is shown in figure 2-1. If the rate of gas is increased the force exerted by gas to 
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bed particle may counterbalance the gravitational force exerted on bed material at this 

state the fluidized bed just remains floating in the air. This is called fluidization condition 

and velocity at this state is referred to as minimum fluidization velocity. If the velocity of 

gas is increased further the bed particle doesn’t remain uniform and the bubbles of air 

start to form this is called bubbling fluidized condition. A further increase in velocity of 

gas causes the bubbles to become large and coalesce, thus forming large voids. And at 

this state the mass of bed becomes interconnected to each other. This is called turbulent 

fluidized condition which is shown in figure 2-1. Increasing the air flow further causes 

bed particle to separate from container, however if the solid bed particles are separated 

from the container and feedback to the bed then it is known circulating fluidized bed 

condition. 

The pressure differential between top and bottom of bed changes with respect to 

rate of gas/air velocity as shown in figure 2-2. For low air velocity the pressure 

differential slowly ramps up until the air velocity becomes equal to minimum fluidization 

velocity. After this point the pressure differential remains steady but at high air/gas 

velocity the pressure differential slowly decreases because of mass is lost from the 

system [5].  
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Figure 2-1Different state of fluidized bed (adapted from [2]) 

 
 
 

 

Figure 2-2 Effect of velocity on bed pressure drop (adapted from B&W, Steam) 
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2.3 Agglomeration 

During the solid fuel conversion process, alkali contained in fuel as Potassium (K) 

and Sodium (Na) reacts with bed material such as sand and ash, thus forming low melting 

alkali silicates. This causes formation of an adhesive layer around the sand particle which 

is sticky in nature. Due to this, the sand particles stick together forming larger 

agglomerates during inter-particle collision. The agglomeration is a slow process and its 

onset cannot be detected precisely. The formation of larger aggregates of particles lead to 

worse mixing, and if this process is not stopped, then eventually it results in complete 

defluidization of the reactor. This is one of the major operational problems because it 

leads to a lengthy,unscheduled, and expensive shutdown of the plant. 

In industry the defluidization is controlled by observing its time scale  [6]. If the 

time scale is long then the agglomeration can be controlled by feeding solid materials into 

the bed or by increasing gas velocity, which increases the overall momentum of the bed 

particles and thus decreasing the agglomeration tendency. The quality of the fluidization 

bed during normal operating conditions is characterized by a uniform temperature 

distribution and a stable average pressure drop. The onset of defluidization can be 

determined by early detection in either of these two quantities. During agglomeration, 

part of the bed particles will no longer be in a fluidization state. Due to this there is an 

average bed pressure drop.  

2.4 Structure function and its application to non-linear time series data 

The structure function was developed to study random variables associated with 

random processes. The continuous random variable as a function of time x(t) is one 

which can take different measurement values even for the same experimental condition. 
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The physical process, the results of whose observations are represented by a random 

function, is known as a random or stochastic process. For example, when resistance of a 

copper wire or any element is measured, different values of resistance will be recorded 

which fluctuates around its mean value. Therefore, it is difficult to accurately predict the 

value of a random function in advance. But a range of value can always be predicted in 

advance.  

The mathematical tools for the study stochastic functions were developed by the 

Soviet mathematicians A.Y. Khinchin, E.E Slutsky, and Kolmogorov. These tools are 

useful in the study of electric noise, velocity at a fixed point of turbulent fluid, or 

temperature and pressure which continuously oscillates [7]. 

A majority of random processes faced in real practice are best characterized as 

stationary process. A stationary process is one in which the value of the mean and 

variance remain fixed but the correlation function depends upon the difference between 

two times (t2 – t1). A certain part of random processes for a small interval of time lag, τ = 

t2 – t1 can be considered approximately stationary but if the time under consideration is 

large, the mean quantities undergo significant changes and cannot be considered 

stationary. An important class of processes is one in which the increment x(t+ τ)- x(t) is 

stationary but the process x(t) is not stationary. In such a case it has finite expected value 

for the mean, the square, and the higher powers. The structure function (SF) becomes a 

useful tool in the analysis of such random processes. The structure function computes the 

difference between two points in a time series of values each separated by distance time 

lag τ. As such it eliminates the data drift and the SF tends to converge to its ultimate 

shape more rapidly than the correlation function [8]. The structure function proves to be 
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fruitful in that case if one is uncertain that the process is stationary or not. The structure 

function is equivalent to the autocorrelation function. The following mathematical 

derivation helps to illustrate this. 

The autocorrelation function is given by, 

R(τ) =  

And, the structure function is given by  

SF(τ) =   

In these equations x is the stationary process, t is the running time, τ is the time 

lag, and T is the integration time. In experimental practice, the stationary process x is 

sampled at equidistant time increments and the integration is  approximated by the 

summation given in the equation below. 

SF(τ) =  

Here, 

x(i) is the ith sample number in the time series, N is the size of the window 

considered for the structure function, is the difference in the number of samples for 

which the structure function is calculated. There exists a relationship between correlation 

functions and structure functions [6]. By carrying out the square under the integral, we 

get, 

SF(τ) =   

For a stationary processes,  

The first two terms of above equation are identical at zero lag and equal to the 

autocorrelation function so that the equation can be written as, 
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SF(τ) = 2R(0) -2R(τ) 

From the above equation, it is clear that the zero lag terms are constants and the 

SF gives same information as the correlation function, the only difference being the 

constants, a negative sign and a factor of 2. This is only valid if the random processes 

under considerations are stationary and contain slow fluctuations. The detail 

mathematical proof of the above equations can be found in reference [7]. 

The correlation integral function is one of the non-linear time series tools 

developed by the nonlinear dynamics and chaos community. Therefore, the structure 

function can be used as a complement to the correlation integral method. The primary 

objective of time-series analysis is to obtain some quantitative information about the 

dynamics from a single scalar measurement. The use of single sensor data instead of 

multiple sensor data is one of the distinguishing features of nonlinear time-series 

analysis. Using surrogate data testing [9], it can be determined whether that the time-

series has either chaotic dynamics or it is linear with uncorrelated noise.  

After determining if the time-series has nonlinear or chaotic dynamics, the next 

step is to reconstruct the finite dimensional state space or phase plane of the observed 

system from single time series data. For this step embedding dimension and embedding 

time lag needs to be calculated. The embedding dimension gives the minimum number of 

the state space vectors that are necessary to describe the observed dynamics of the system 

[10]. The reconstructed attractor in phase space gives the information of stationarity and 

non-stationarity. From the geometrical view point, if the attractor containing the orbit 

does not change in the long time scale, such dynamics of the system is considered as 

stationary. However, if the orbit in the attractor changes, it gives important information of 
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system dynamics. The differential pressure data from BFB belongs to such a group. 

During a normal operation of the BFB, the data shows chaotic distribution, and as it 

approaches the onset of agglomeration the differential pressure data shows periodic 

distribution. That is, there is a change in data from stationary to non-stationary. The 

correlation integral method can be used to detect the nonlinear dynamical changes in the 

data. One example of the use of correlation integral method is on the compressor data to 

detect the onset of the stall [11].  

Provenzale et al. [12] studied the applicability of distinguishing low-dimensional 

chaos and stochastic noise, and also described how the structure function can be used to 

differentiate these two cases. The structure function has been previously used by a few 

authors to analyze turbulence of the atmosphere. 

The structure function has also been applied to the compressor data by Vhora [13] 

to detect the onset of stall. In his research work, he also studied the structure function in 

the Chua circuit, and Rossler’s system, and compared the SF with bifurcation diagrams. 

From his analysis of structure function on those system, he showed that the structure 

function amplitude decreases and becomes smooth when the dynamical system is 

periodic but the amplitude of the structure function increases when it is chaotic. 
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CHAPTER III 

B&W EXPERIMENTAL SET-UP 

3.1 Experimental 

Bubbling fluidized bed setups have been used in this research which is a 

cylindrical lab-scale setup with a diameter of 2 inches. Figure 3-1 shows one example of 

such a lab set up. The bottom of the furnace is a BFB consisting of a semipermeable 

membrane of a porous sintered metal frit. This provides air distribution or fluidizing air 

to the bed material in the furnace. The experiment was carried out with a bed material 

consisting of calcined flint nominally 1100 micron topsize. The fuel consisted of a 

mixture of filter cake and syrup from a cellulosic ethanol production process. The 

fluidizing gas was a mixture of air and nitrogen resulting in a 13 % oxygen content in the 

bed of fluidized particles. The fluidizing gas is preheated in an annular passage along the 

full length of the bed to the target bed temperature with clam shell electric heaters. The 

bed temperature can be adjusted by adjusting the power into the clam shell electric 

heaters. 

3.2 Pressure Measurement 

The bed pressure drop was measured with a differential pressure transducer 

(Validyne DP15-28). The pressure signal from the differential pressure sensor was then 

fed into a Validyne Model CD12 “High Gain Research Carrier Demodulator” which 

provides excitation, amplifies and demodulates the signal. The pressure fluctuations were 

then low pass filtered at 500 Hz and sampled at 1000 Hz to avoid aliasing effects 

according to the Nyquist criterion. Since the dynamics of agglomeration were all 
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reflected in the AC component of the signal therefore, the same signal was also high pass 

filtered to remove the DC offset. 

The pressure data were acquired through B&W’s custom data acquisition system. 

In this data-acquisition system, the pressure signal was sampled by using an IOTech A/D 

converter and then subsequently filtered by a filter card with a 500 Hz low pass and 1 Hz 

high pass digital filter. The sampling frequency was kept constant during the entire 

experiment. Time series of bed pressure drop and local pressure fluctuations were stored 

on a Laptop PC with custom software for data storage. 
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Figure 3-1 Fluidized-bed experimental set-up 

 

3.3 Data Collection 

The data were collected for about 8 hours and 25 minutes, the data were sampled 

for 120 seconds followed by approximately 12 seconds of analysis, and the collection of 

the next block of data was carried out. For each sampled data of 120 seconds (chunk), a 

separate folder was created where all the 120 seconds samples of data were stored in .wav 

format. Altogether there were 231 data sets collected. 
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During the experiment, the bed alkali concentration was estimated to be 1.5 % 

based on total fuel fired. The BFB’s reactor was heated initially to 700°C in N2 (reducing 

atmosphere) at 07:55 AM. The fluidized bed was heated at the rate of 1°C/min in N2. The 

bed was first agglomerated when the temperature was 815°C at time 12:48 PM which is 

also the collection of data set number 132. Also, the agglomeration was noted at several 

other points during the experiment. A metal rod was used to manually mix up bed 

material to get it suspended after agglomeration event, and the experiment was continued. 
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

 
4.1 Application of Structure Function to BFB Differential Pressure Time Series 

The structure function is calculated for both raw and filtered data. The time series 

data is divided into windows consisting of N sample points. In each window, a structure 

function value is calculated for a fixed time lag. The structure function can be calculated 

for overlapping or non-overlapping windows. Unlike power spectral analysis, the 

structure function does not have the problem of windowing or aliasing [14]. Before 

calculating the structure function, the time-series data are filtered with a sampling 

frequency of 120 Hz and normalized along it’s average value per data set or chunk. The 

Matlab code to filter and normalize data is given in Program 2 and Program 3 

respectively in the Appendix. The plot of raw data as well as filtered and normalized data 

are shown in Figure 4-1 and Figure 4-2, respectively. The Matlab code to plot the general 

structure function is given in the Program 1 of the Appendix section. Figure 4-3 shows 

one example plot of the structure function obtained from the BFB’s time-series. For this 

plot an arbitrary window size of 4000 samples and a time-lag of 70 samples was chosen. 

The structure function plot can be represented by using its average value and 

standard deviation as shown in Figure 4-4. The table 4-1 gives a glimpse of how the 

average value of structure functions are obtained. After total no. of structure function is 

obtained for a particular chunk for fixed time lag and fixed window, the average and 

standard deviation is taken for total no. of structure function value per chunk. And, just a 
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single value of average structure function gives the information of how the structure 

function value fluctuates in that particular chunk. 

 

Table 4-1 List of parameters required to calculate average SF 

Number of samples in each dataset 120,000 samples = 1 chunk = 2 minutes 

Sampling frequency 1000 Hz 

Window size 4000 samples = 4 seconds 

Time-lag 70 samples 

No. of strucuture function obtained 120,000/4000 = 30 number of windows 

 

 

Figure 4-1 time-series plot of differential pressure fluctuations 
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                 Figure 4-2 Filtered with butterworth filter and normalized around central mean 

 
Figure 4-3 Second order SF with window size of 4000 and lag 70 

 

 
Since it is difficult to interpret the graph obtained as shown in Figure 4-3. The 

structure function plot can be represented by using its average value and standard 

deviation as shown in Figure 4-4. Therefore, the average value of structure function is 

calculated for 30 number of structure function. In addition to this, the standard deviation 

for 30 number of structure function is also calculated. So just one value of average 
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structure function and its standard deviation gives all the information of structure 

function in that particular set of data. 

The number of structure function obtained from a single dataset may vary depending 

upon the size of window selected. Since the value of strucuture function depends upon 

time-lag and window size, it is always desired to do sensitivity analysis with respect to 

both of these two values.  

 

 

 
                Figure 4-4 Error bar plot of Second order SF with window size 4000 and lag 70 

 
 
4.2 Sensitivity Analysis of Structure Function with respect to Time-lag 

The average structure function is calculated for different values of time-lag in 

each window. For this analysis, an arbitrary value of Window size 4000 is chosen. A 

typical Matlab code to generate average SF versus timelag is given in Program 1 in the 

Appendix. Figure 4-5 shows the plot of average SF vs time-lag. From the plot it is clear 

that the peak value lies in the range of 70 to 130. The peak time lag is chosen as the 

optimum time lag since the peak time lag gives maximum information about the signal 
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[13]. As seen from the plot in Figures 4-5,4-6, 4-7, 4-8 and 4-9, for low values of time lag 

it gives information about the noise in the signal. The analysis is done with the second-

order and third-order structure function.  

Figure 4-10, 4-11, 4-12, and 4-13 shows time lag versus average third-order structure 

function. The peak value of the average structure function is in the range between 70 to 

130.  

Therefore, we choose time lag of 70 for both second order and third order structure 

function because near agglomeration the structure function peak occurs at lower values of 

τ (τ ≈ 70). For example, in Figure 4-8, note that the peak occurs at τ ≈ 70 for chunk no. 

133. 

 

Figure 4-5 Average 2nd order SF vs. time lag for Chunk 85, 86, 87, 88 
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          Figure 4-6 Average 2nd order Sf Vs. time lag for chunk 100, 101, 102, 103 

 
 
 

 

        Figure 4-7 Average 2nd order SF vs. time lag of chunk 116, 117, 118, 119 

 

Also, it can be seen from the Figure 4-8, 4-9, 4-11, and 4-13 that as the time-

series data approaches agglomeration, the peak is obtained for lower values of time-lag, 
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and also the average value of structure function is decreased. This gives information 

about change in time series from a chaotic distribution to a periodic distribution. 

 

 

 

       Figure 4-8 Average 2nd order SF vs. time lag of chunk 127 to chunk 133 

 

 

 

Figure 4-9 Average 2nd order SF vs. time lag of chunk 228, 229, 230 
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    Figure 4-10 Average 3rd Order SF vs. time lag of chunk 85, 86, 87, 88 

 

         Figure 4-11 Average 3rd order SF vs. time lag of chunk 126 through 132 
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          Figure 4-12 Average 3rd order SF vs. time lag of chunk 180, 181, and 182 

 

 

         Figure 4-13 Average 3rd order SF vs. time lag of chunk 226 through 230 

 
4.3 Sensitivity Analysis of Structure function with respect to window size 

The average value of the structure function is plotted with respect to the window 

size. A typical Matlab code to plot the SF vs. window size is given in program 6 of the 

Appendix. The Figure 4-14 shows one example of such a plot. 
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From the Figure 4-15, 4-16, 4-17, and 4-18, it  seems that for  window sizes less 

than 5000 the curve is reminiscent of a transient. However, for  larger windows, the value 

of the average structure function becomes nearly constant. The analysis is done with a 

second order structure function for dataset numbers 85 and 86 respectively.  

We have also done the analysis using a third order SF. As shown in Figure 4-20, 

4-21, 4-22, and 4-23 shows the plot of window size vs. third order SF with the different 

data sets . It seems that the structure function is independent of window size beyond 6000 

(2nd order) – 5000 (3rd order) window size, and such window sizes selected do a better job 

of capturing the fluidized bed dynamics.  

 

 

 

Figure 4-14 Avg. Second Order SF vs Window size of chunk 82 
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Figure 4-15 Avg. Second Order SF vs Window size of chunk 110 

 
 

 

Figure 4-16 Avg. Second Order SF vs Window size of chunk 132 
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Figure 4-17 Avg. Second Order SF vs. Window size of chunk 215 

 
 

 

Figure 4-18 Avg. Second Order SF vs. Window size of chunk 226 
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Figure 4-19 Avg. Second Order SF vs. Window size of chunk 226 

 
 

 

Figure 4-20 Avg. Third Order SF vs. Window size of chunk 100 
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Figure 4-21 Avg. Third Order SF vs. Window size of chunk 182 

 
 

 

Figure 4-22 Avg. Third Order SF vs. Window size of chunk 216 
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Figure 4-23 Avg. Third Order SF vs. Window size of chunk 228 

 
 
4.4 Structure function applied to BFB data 

The second order structure function is applied to the filtered and normalized 

datasets from 85 to 132. These datasets consist of time-series of chaotic and periodic 

distributions of data. As seen in the figure 4-24, as the sample approaches dataset 132 the 

differential pressure fluctuaton gets ramps down. At this state, the fluid bed dynamics 

shows periodic distribution of bed differential pressure measurements. The objective is to 

use the structure function and see if it detects agglomeration or defluidization before the 

average pressure drop analysis. 

We choose a second order structure function with Window size of 6000 and time-

lag of 70 samples for the analysis. The figure 4-25 is an example of such a plot. From the 

figure it is obvious that after chunk number 126, the trend of the average of the structure 

function ramps down. This gives good information about what is happening in the 

fluidized bed dynamics that is, there is a change in bed pressure dynamics from a chaotic 

distribution to a periodic distribution. As the data becomes a periodic distribution the 
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structure function becomes smooth, and its amplitude decreases. The Matlab code to 

generate the Average structure function with standard deviation as errorbar is given in 

Program 8 of the Appendix. 

 

 

                  Figure 4-24 Second order SF with Window size 6000 and lag 70 of data set 85 
through 132 

 

  Figure 4-25 Second Order SF Error bar plot from data set 85 to 132 

 
 



 
 

33 

 

        Figure 4-26 Relative % difference of SF between successive chunks from 85 
through 132 
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Another set of data from 200 to 229 is tested again using the second order 

structure function. Figure 4-25 and 4-26 shows the plot of 2nd order SF with window size 

of 6000 and lag 70. 

 

 

                Figure 4-27 Second order SF with Window size 6000 and lag 70 of data set 200 
to 229 

 
 

 

                  Figure 4-28 Second Order SF Error bar plot from data set 200 to 229 
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                          Figure 4-29 Relative % difference of SF between successive chunks from 
200 through 229 

 
 

Again, a third order structure function is used to do the analysis of data from 85 to 

132 and data set from 200 to 229. The sequential window size of 5000 samples and time-

lag of 70 samples is chosen. Figure 4-28, 4-29, 4-30, 4-31 shows plot of such a SF. 

 

                 Figure 4-30 Third order SF with Window size 5000 and lag 70 from data set 
85 to 132 
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Figure 4-31 Error bar plot of third order SF from 200 to 229 

 
 

 

Figure 4-32 Third order SF with Window size 5000 and lag 70 from data set 
200 to 229 
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Figure 4-33 Error bar plot of third order SF from 200 to 229 
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CHAPTER V 

CONCLUSION 

 
The structure function shows that as the bed material begins to agglomerate, the 

structure function value drops. This is indicative of the system shifting from random or 

stochastic to periodic processess. This is consistent with the expectation that as the bed 

material agglomerates the pressure fluctuations shift from a Gaussian distribution to a 

periodic distribution, i.e., a shift in the nature of the hydrodynamics or a drift in 

stationarity.  

The bed drain system of a fluidized bed has been designed to remove 10% of the 

bed inventory in one hour. The alkali content of the bed must be kept below 5% by 

weight according to B&W’s general rule of thumb. If the percentage weight of alkali 

were to increase to 6% and incipient agglomeration occurs, then the analysis needs to 

detect the onset of agglomeration approximately no faster than 6 minutes ahead of the 

need for action according to the B&W research group. This assumes the drain rate was 

fast compared with the accumulation rate of alkali. In 6 minutes the concentration of 

alkali can be restored to a safe level. From the data analysis, as shown in the figure 4-26 

and 4-29 which shows the percentage difference between consecutive chunks, so far only 

a 10% to 15% shift in structure function value indicates a shift in system dynamics, and 

this provides adequate sensitivity to detect the onset of agglomeration in a timely manner. 

The structure function is robust in detecting the onset of agglomeration.  Even though the 
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structure function has been extensively used by the turbulence community, this is the first 

application of it on the detection of onset of agglomeration. 

Since the analysis parameters can be significantly reduced to reduce the 

computation time and computing capacity, the technique lends itself to programming on 

an EPROM chip associated with VFD of bed drain screw or into the FocalPoint 

Optimizer. 

The structure function algorithm seems to be an accurate agglomeration warning 

algorithm that has been tested, in an off-line manner in this research work. The structure 

function investigation applied to the BFB time-series data has given promising results. 

However studies using overlapping window, and structure function analysis in frequency 

domain may give more insights of a BFB dynamics which is left as a future work.  
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Appendix 1 

1. PROGRAM 1 GENERAL SECOND ORDER STRUCTURE FUNCTION 

function [jk,yy,sf_out] =st_structure_fcn(x, N, n) 
%  Matlab function to calculate Structure Function, Usage: 
% 
%           [sf_out] = st_structure_fcn(x, N, n) 
%   where 
% x = Data column vector for which structure function is calculated 
% N = windows length for which SF is calcylateds 
% n = delay within window N for SF Calculations (n < N) 
% SF= the structure function output;  
% Note that this version pretain to non-overlapping windows 
% F.M. 
 
%**********************************************************************
****** 
  
k=1; 
Nx=length(x); 
ii=fix(Nx/N);               % number of windows of length N in x                                 
sf_out=zeros(ii,1);         % which is also the number of SF caculated 
for i=0:ii-1 
   temp1=x(i*N+n+1:i*N+N,:)-x(i*N+1:i*N+N-n,:); 
    
   yy(:,k) = mean(temp1.^2); 
   sf_out(i+1)=mean(temp1.^2); 
   k=k+1; 
end 
i=0:ii-1; 
jk = linspace(85,132,length(i)); 
 
%**********************************************************************
****** 
 
figure(1) 
plot(jk,sf_out,'k') 
  
title(sprintf('Structure function with window size(N)=%d and time lag(n) = 
%d',N,n),'fontsize',16); 
xlabel('chunk number [samples]','fontsize',16); 
ylabel('structure function (psig^{2})','Interpreter','tex','fontsize',16); 
grid on; 
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Appendix 2 
2. PROGRAM 2 FILTERING OF RAW DATA 

%filtering of raw data with sampling frequency of 120 Hz 
%Using 16 order butterworth filter 
clear y1 
clear xData1 
clear xN 
N1=85; % dataset number 85 corresponds to chaotic distribution 
N2=132; %dataset 132 corresponds to periodic distribution 
sampling_freq = 1000; 
nyq_freq = sampling_freq/2; % nyquist sampling frequency 
  
  
fc = 120; %cut-off frequency 
  
wn = fc/nyq_freq; 
[b,a] = butter(16,wn,'low'); 
% 
k1=1; 
for i=N1:N2 
y1(:,k1) = filtfilt(b,a,data{i}{1}); 
k1=k1+1; 
end 
%end of the program 
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Appendix 3 
3. PROGRAM 3 NORMALIZATION OF FILTERED DATA 

%% 
%Normalization of data 
k=1; 
xDat = y1; %y1 is filtered data 
nl = size(y1); 
nl =nl(:,2); % length of time series 
for j=1:nl 
    xDat_mean = mean(xDat(:,j)); % calculates mean 
    xDat_var = var(xDat(:,j)); %calculates variance 
    xDat_std = std(xDat(:,j)); %calculates standard deviation 
    xNorm(:,j)= (xDat(:,j)-xDat_mean); %normalized around central mean per chunk 
    Xscale(:,j) =(xDat(:,j)-xDat_mean); 
   
end 
xN = xNorm(:); 
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Appendix 4 
4. PROGRAM 4 OPTIMUM TIME LAG SELECTION 

% Program to find optimum time lag 
% N1 through N2 are datasets of interest 
N1 = 120; 
N2 = 122; 
k=1; 
k1= 1; 
for l = N1:N2  
    x2 = data{l}{1}; 
    xmean = mean(x2); 
    % 
    % Filter section 
    sampling_freq = 1000; 
    nyq_freq = sampling_freq/2; 
    fc = 120; 
    wn = fc/nyq_freq; 
    [b,a] = butter(16,wn); 
    y1 = filtfilt(b,a,x2); 
    % 
    %Normalization section 
    ymean = mean(y1); 
    ynorm = y1-ymean; 
    x1 = ynorm; 
    % 
    % 
    % Time lag calulation 
    n1 =5; %starting value of time lag  
    nstep = 5;  
    n2 = 440; %end value of time lag 
    for n=n1:nstep:n2 
                xm = mean(x1); 
                x = (x1-xm); 
                N = 4000; %window size 
                sf_out1 = st_structure_fcn(x, N, n); 
                sfn_1(:,k) = sf_out1; 
                sfn_1M(k) = (mean(sf_out1)); 
                k=k+1; 
    end 
    k=1; 
   sf_lag(:,k1) = sfn_1M; 
   k1 =k1+1; 
    
end 
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Appendix 5 
5. PROGRAM 5 OPTIMUM TIME LAG VS. SF PLOT 

%plot of time lag 
n = n1:nstep:n2; 
l=N1:1:N2; 
  
for i =1:(length(l)) 
  
    pp1=plot(n,sf_lag(:,i)); 
    hold on 
    grid on 
end 
  
%title('Third Order Structure Function vs. Time Lag','fontsize',16); 
title('Second Order Structure Function vs. Time Lag','fontsize',16); 
ylabel('Average Structure Function [psig^{2}]','fontsize',16); 
xlabel('Time Lag [n] Samples','fontsize',16); 
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Appendix 6 
6. PROGRAM 6 OPTIMUM WINDOW SIZE SELECTION 

% Optimum selection of window size 
% Program to find optimum window size 
k=1; 
k1= 1; 
%User can choose any chaotic dataset to determine optimum window size 
N1= 85;%Dataset number 85 selected 
N2 =86;%Dataset number 86 selected 
for l = 85:1:86 
    x2 = data{l}{1}; 
    xmean = mean(x2); 
    sampling_freq = 1000; 
    nyq_freq = sampling_freq/2; 
    fc = 120; 
    wn = fc/nyq_freq; 
    [b,a] = butter(16,wn); 
    y1 = filtfilt(b,a,x2); 
    ymean = mean(y1); 
    ynorm = y1-ymean; 
    x1 = ynorm; 
     
    for N=[200:200:1000 1200 1500 1600 2000 2400 2500.... 
            3000 4000 4800 5000 6000 8000 10000.... 
            12000 15000 20000] % window is selected in such a way that it 
        %gives whole number of structure function 
                xm = mean(x1); 
                x = (x1-xm); 
                n = 70; %time-lag is fixed to 70 
                 
                %Calling structure function  
                sf_out1 = fm_structure_fcn1(x, N, n); 
                sfn_1M(k) = (mean(sf_out1)); 
                k=k+1; 
    end 
    k=1; 
   sf_Window_size(:,k1) = sfn_1M; 
   k1 =k1+1; 
    
end 
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Appendix 7 
7. PROGRAM 7 WINDOW SIZE VS. SF PLOT 

% 
%Plot of window-size vs. average structure function 
 
n=[200:200:1000 1200 1500 1600 2000 2400 2500 3000 4000 4800 5000 6000 8000 
10000 12000 15000 20000]; 
l = N1:1:N2 
  
for i =1:(length(l)) 
  
    plot(n,sf_Window_size(:,i),'s-.'); 
    hold on 
    legend('chunk 85','chunk 86'); 
    
     
end 
grid on 
  
  
title('Window size vs. average value of structure function','fontsize',16); 
ylabel('average value of structure function','fontsize',16); 
xlabel('Window Size [samples]','fontsize',16); 
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Appendix 8 
8. PROGRAM 8 SF TREND WITH ERROR BAR 

%ErrorBarPlotFunction 
function [dd,i1,Xmean_sf,Xerr_sf,Xstd_sf] = 
stErrorBarSf(N1,N2,Ns,Window_of_sf,lag,sf_out) 
% 
%N1 = initial dataset number  
%N2 = final dataset number 
%Ns = 120000/(N2-N1+1) 
  
x1 =sf_out; 
  
NN = length(x1);% Number of structure function from dataset N1 to N2 
%dummy variables 
cc =1; 
kk=1; 
ll=1; 
% 
% 
mm = fix(NN/Ns) 
Sf_mean= zeros(1,mm); 
for i1=Ns:Ns:NN 
     
    Xm1 = x1(cc:i1); 
    Xmean_sf(:,kk) = mean(Xm1); 
    Xstd_sf(:,kk) = std(Xm1); 
    Xerr_sf(:,kk) = (std(Xm1)./(sqrt(Ns))); 
    cc =1+i1; 
    kk=kk+1; 
    ll=ll+1; 
end 
i1=Ns:Ns:NN; 
errorbar(i1,Xmean_sf,Xerr_sf,'k-.'); 
%xticks(Ns*[1:mm]) 
cc=0:Ns:NN; 
cc = cc(2:end); 
dd=N1:1:N2;    
%xticklabels({cc}) 
%xtickangle(90) 
%xt = get(gca,'XTick'); 
set(gca,'XTick',Ns.*[1:mm],'XTickLabel',dd,'fontsize',10);%structur function wrto chunk 
%set(gca,'XTick',Ns.*[1:mm],'XTickLabel',cc,'fontsize',10);%structre function wrto time 
xtickangle(45) 
hold on 
plot(i1,Xmean_sf,'bs') 
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title(sprintf('Errorbar plot of sample of structure function from data %d to data %d', 
N1,N2),'FontSize',16); 
%title(sprintf('Averaged Structure function for chunk number %d',zz)); 
xlabel(sprintf('sample number with window size of Structure Function %d and 
lag=%d',Window_of_sf,lag),'FontSize',16); 
%xlabel('Time[s]'); 
xlim([Ns NN]) 
  
hold on 
  
ylabel('Error bar of structure function around its sample mean value','FontSize',16); 
  
grid 
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