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ABSTRACT 

A NONLINEAR THEORY FOR THIN ELASTIC SHELLS 

INCLUDING THE EFFECTS OF TRANSVERSE SHEAR STRESS, 

TRANSVERSE NORMAL STRESS AND TRANSVERSE AND ROTARY INERTIA 

Torpong Torsuwan 

Master of Science in Engineering 

Youngstown State University, Year 1971 

The purpose of this thesis is to derive a nonlinear theory of 

thin elastic shells including the effects of transverse normal stress, 

transverse shear stress, and transverse and rotary inertia. 

ii 

Using a variation theorem due to Reissner, the equations of 

motion, the stress-strain relationships, and the associated natural 

boundary conditions are simultaneously determined. The resulting equations 

may be applied to a certain group of shell problems where the applied 

dynamic loads produce deformations which are of such an order that only 

an appropriate nonlinear theory can account for them. 
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CHAPTER I 

INTRODUCTION 

Nonlinear theories for thin elastic shells as derived by using 

the theory of finite displacements differ greatly deperxiing on the res

trictive assumptions placed on the resulting deformations. 

A linear theory for thin elastic shells including the effects 

of transverse normal stress, transverse shear stress arxi rotary inertia 
(J) 

is considered by Na.ghdi. A group of existing theories is summarized by 

Sander~~)where he derives a set of nonlinear theories which include as a 

special case the Donnell-Mushtari-Vlosov theory. A nonlinear shear defor-
(1) 

:roation theory tor thin elastic shells is presented by Archer. This paper 

derives a nonlinear theory of the Donr>:ell type which includes shear defor

mations, transverse and rotary inertia effects, but does not include the 

effect of transverse normal stress. 

A direct application of the resulting equations play an impor

tant role in wave propagation problems, where the effects of transverse 

normal stress ard transverse shear stress are of primary·importance. 

The objective of this thesis is to derive a nonlinea~ theory of 
' ' 

thin elastic shells of the Donnell type based on Reisener•e variational 

theorem ot finite elastic dieplaoeme~t~4) 
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CHAPTER II 

METHOD OF ANALYSIS 

In analysis of shell, not only basic assumptions of the analysis 

in beam and plate were used, but also some more restrictly assumptions 

to get the useful results were included as followss 

1. The thickness of the shell assumes uniform arxl is small when 
compared wi~h the least radius of curvature. Terms of the · 
order (h/r) are retained in comparision to unity. 

2. Points on the lines which are normal to the middle surface 
before deformation do not remain normal to the middle surface 
after deformation ( i.e., shear deformations are accounted for). 

3. Linear elastic stress-strain relationships are assumed to hold, 
· and the component of stress normal to the middle surface is 
considered to be of the same order as the other components of 
stress. 

2.1 The Coordinate System and Notation 

The notation used throughout the paper is similar to that given 
(2) . 

by Langhaar. Where the nd:ddle surface of shell is defined as the equa-

tions of X = X(x,y), Y = Y(x,y) and Z = Z(x,y) where the parameters x,y 

are called middle surface coordinates and X,Y,Z are rec~ngular cartesian 

coordinates. The normal distance from the middle surface is denoted by 

± z, the normal coordinate. 

The unit normal vector at a point of the middle surface is de

fined as nj and tangent vectors to the curves of constant x ard y curves 

by r and r respectively. 
X y 

For the special of orthogonal middle lines, the coordinate curves 

align with the curves of principle curvature, 



The distance ds between points is given by the equations 

o( = A ( 1 + J
1 

) , 

A2 - -= rx•rx, 

p = B(1+ F2> ' 
2 

B = Fy•Fy • 

am' 1 , .!. are the principle curvatures or the middle autace. 
i"l r2 

2.2 stress Resultants and Stress Couples 

( 1 ) 

( 2 ) 

Stress resultants and stress couples applied to a differential 

shell element are shown in Figs. 2.1b & 2.10. These stress resultants 

and stress couples are defined as total forces and moments acting per 

unit length of the middle surface. 

(z) 

.,---- -J.-, ___ _ 

---
(7) 

(x) 



4 

------(1) 

-----(1) 
(x 
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The stress resultants and stress couples are defined by the 

( 3 ) 

E:quation ( 3) yields the relationship ot 

( 4 ) 
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2.3 Strain-Displacement Relations 

The equations of the general three dimensional nonlinear strain

displacement are given as: 

~~ = i[~+'!•lA. +'t~V +! (W~+f,tt.t,..(~V J' +i l1A.-t-!-~[ ... 1 (vi-!1w)] , 
lJ c,< ~ 2lf rJ. {J 21 ~ zr f 

D,c'i :a ~"1+Y,c.~£' _o(~\A -ti {\Ax+~~V+~~lA)(U.~-~acV) 
P ~ ~e ~e ~ e r r 
*(V~+~"-+t,W)(V>1-~1lA.) b<} (W,c-rlt)(W'1-, V) , 

"'~ : ~~~~'1-W-fH tfr{V'1+f3f W+~xlA){Vi-,'1W) 

+! (wi+t'(Vtr"~)lw.,-~~vJ +i (u'\-~VJ(u.~-~"W) , er fl o<. r 13r ~- (?( 

( .5 ) 

Retaining all linear terms together with the second order ot 

rotation terms ~• ~, & Wx'Wy• ., 

238361 



:Equation ( 5) reduces to the followings 

The differential equation or Codazzi for orthogonal shell 

coordinates are written ass 

? ( A ) * .!. ~ -_Lf rl r2 ' 
2(1!)= 1 B 

't),c r2 - X 
rl 

• 

The following equalities are obtained using equation ( 7) 

/ ~y = r ' 13. 
/!_x = ~ ' ~ 

O(z = A. 
rl ' 

,sg = 1l • r 
2 

7 

( 6 ) 

( 7 ) 

( 8 ) 



Substituting equation ( 8) into equation ( 6) the following 

reduced form is obtaineda 

:s ! [U,K +~'\\I+ ~ W + ! w!] t 
~ e> ~ 2'1\ 

a; l v~ + ~J( u ... ~ w ... .1- w;] , 
c A r2 2(3 

-= Y~ + '/_.,. _ ~x V - ~~ll + WxW'1 t()(.¥ gq\ ~e· 
= Vt: + ~~ - ~a 'IJ , 

8 

= u~.,. ~"-~tu. . ( 9 ) 
P< (K 

To obtain the appropriate stress-strain relation• the following 

approximate equations are assumed: 

U = 'U'(x,y) + zct,(x,y) 
' 

V = V(x,y) + zf(x,y) , 

W = W(x,y) + zW(x,y) + !,.2w(x,-y) • 
2 

( 10) 

'Where U and V are the components of displacement at .the middle surface, 

q>(x,y) and lf(x,y) are the change of slope of the nonnal to the middle 
t 

surface along the x and y coordinates lines respectively, and W(x,y) am ..,, 
W(x,y) are the oontri~utions to the transverse norJtJal strain, 
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Substituting equation ( 10) into equation ( 9 ), the following 

are obtained t 

l." ·01~ IO(< u.. ·~~d. e( v" •tfx> -~•o( <v H, > - ~" e ( u. ·~ > 

+(W11+~W~+i-w:xw1HW~+(W~)] , 

( 11 ) 

If the terms!. and 1 are replaced respectively by the terms 

°' ~ . !. and !. in the first and secom equations given in · equation ( 11 ) , the 
A B 
following equations for the components of strain are ·. rewritten ·ass 
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(t+~ x1 .. t>r.'f = (t+ txi~-+ ~6~><) + (~ + ~ )('r11" + ccf'11) 

- - ~ ,3 "" -" ,, + }
8

W-.w'1 + ~ D.c 11 +l E.11 +i F-11 + ~ (w>'w"\} 
4Ae, 

( 12 ) 

( 1:,) 
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2.4 The O:>mponents of Stress 

Noting equations ( J ), the components ot stress are ass\Dlled to 

take the form, , 

= ~"" + ~ t M"" , h h._. 

= ~'t, + ~ i M~1 , 
h h3 

( 14 ) 

the components of shearing stress of~.,~• and~~ are determined by 

direct solution of the first three equilibrium equation of stress which 

ares 

0~ (f~,.) ~~ (o<Jr'tJ') +a~ (otef~) + roe'1'G't +e«:,:,r~i 
-ie_ -r'1'1 -e )f ,/4~ • (o( ~ '2( F~ = o , 

~ ( sr~'t) + 2. ( o( r "1'1) + :e {o< e '[~~) + i f,/['1,c ... "'e~ r~~ 
0)( \. -a~ ' ~~ . 

- ~o('i'l"l'>C -t,( l'1 ~+('tie~ F'1 . = O , 

Q ( Sl~i) + i (o<t'l'.,1) + ~ (o(R4t) + ~~,c (~>< +o\1'1 'fc"I 
c))( \ ?"I '<),i C . 

-e«~ 'C,u~ -o(~,l r'1~ + eoe t' t fa, = 0 . • 

( 15 ) 



For thin shell theory in orthogonal coordinates r = 1; the 

previous equations reduce to, 

. /x((3f>t'\)+~ (~r't'1) ~ (ot~'[t.'1) +ex '('1>< -l-,c,(e,tr'1~-e,(''1 '[JCK: 0 , 

ix {~tx~) ~~ (()((i.\~) ¼_ (o<~ f~) - ~~'r-.x -de~ '['1'1 • O o 

12 

( · 16 ) 

Substituting equations ( 3) into equations ( 16 ), and integra

ting over the thickness of the shell yields respectively, 

a)( (BN"'f) +~ (AN'1'1) + BKN..,,c -A"N"". '? a~:,,+ AB~ • o , 

,a ( BQx~) +,J ( AQ11~) . - ~ N",c - ~ N'1'1 + AS~ • o . ~x ~~ ~ . ~ . 

( 17 ) 

Multiplying the first two equations ( 16) by z ard preforming 

the same operations as in the previous set of equations yields respect

ively, 

/x (BMX)t) +,A (AM'1x) + A'1 M,c~ - BxM'\'\ -ABQ>t.~ + AB R'1 = o , 

"~(BM1''t) ~~(AM~~)+ ~M'1,c - A11 M,oc -At>Q~.._ - AE>R~ a O • 

( 18) 



where, h/2 

AB Px = (X~r;z , 
· -h/2 

· h/2 . 
AB p z = (l.~Z';z l , 

· h/2 

h/2 

AB Rx = - o(~zr;z , 
-h/2 

h/2 

AB· P = "A '7' 
7 "'c- 'yz ' 

-h/2 

• 

1) 

( 19 ) 

Substituting equations ( 14) into the first equation ( 16 · ) 

and noting equations ( 3 ), yields 

l (o1pr-.) •~ t;.. • ~ [ ~t (sN,.,.)-J .. (AN~.) -A~N·~ + s,.N ~~ ] 

+~l[-i(Bld,..)~ (AM,.J-A,M., + s-M~~] • 
( 20 ) 

Rearranging the left hand side of equation ( 20) and substitut

ing equations ( 17) &·( 18) into the right hand side gives, 

t.. I lh/2 h/2 ~a~(o(t3'l;,) = fQ>Ci(t.·?1e)+~ ()(t'~~ +~lrJ.eet'xf; • 
-tv2 · -h/2 

( 21 ) 

The integration of equation ( 21 ) is carried out over the func

tion z. Applying the boundary concli tion of @ z = 1- , "xz = P; , am neg

lecting terms containing the quantity h. am all higher order terms, the 
r 

transverse shearing stress t;z becomes, 



+ - ..,, where P1 am P1 are the values of•1.xz at the upper a:rd lower surfaces ot 

the shell respectively, 

a:rd where 
H+ = (1+2~ ) (1~~ ) , 

1 2 

H- = (1•
2
~ )(1-2~ ) , 

1 2 

~ = (1+ h. ) ' 2r
2 

Hi = (1-2~ ) ' 
2 

H+ = (1+
2
~ ) , 

2 1 

14 

}C' = (1- b. ) • 
2 2r1 

( 23 ) 

In a similar manner, using the secom equation of equilibri\Dll 

of stress, equation ( 16 ), the expression of 'lyz is written, 

( I+\ )'z;., " i ~-['-(~)]-J 1 H:ii[ 1-2(~2)-~(~S] +lf21f [1+2(t)-.3(~} . 
( 24 ) 

Using the third equation of equilibrium, equation ( 16 ), 

together with equations (22) and (24), am noting the bourxiary corxli.tion 

of@. z = 1 • "zz = q+ , th~ transverse normal .stress, ~, bec.omes 

f s ii +t ~ 
(1+ij)(l+~ • .l~ • C [h +_.1'l~J][1'."(~J] +~ H'H1+j ~J-i {~J] 

+!H'f[1-t(~)+~{~]} I 

( 25 ) 



where q + and q- are the values of 't';z at the top and bottom surfaces ot 

the shell. 

The parameters Sand Tare to be determined in the variational 

problem in the following section. 

1S 

The coefficient o on the right hand side of equation ( 25) is 

introduced in order to distinguish the tems introduced by the transverse 

nonna.l stress. In the final result, the value of c is set as unity. 

The completed set of the approximation equations ot stress dis

tribution is given by equations ( 14 ), ( 22 ), ( 24) am ( 25 ). 

2.5 Reissnor•s Variational Theorem 

Reissner•s variational theorem of three dimensional elasticity 

is written in the form 

01 • rt {~1 [r;..t;.,. •~ €"" + fu€u. + r;.ft1 + ~i~ + ,z;., t""] 
'-1 Y • r i 2. i 2 ~ 26 Lc;K + ~~ + 'Cn, - 2: t r_v. ~~ + 'l'xx '!.i1: + ~-1 'tu) 

+2(4wJtr!. + rJ + r.ft.)) 

-(z [ Lt~ +\f +w;] ~(I+ t. )(I+ \)/>.B Ghc~'i c:At 

-f) [ ( 1f it+ r{ v\ \w)tt ♦a~ )( t ♦Jt;.)+(if ll +fiv" +~W)(1~)(1tr;>]ABdxd~ 

S1 h 

-f[) (rn.u,,,,+'4U. 1-'l;..W)(t+\)dt]r,.tc.tstJdt • o , 
-hn ( 26 ) 

where E = Modulus of elastioit7, 

~=Poisson's ratio. 
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The first term in the integrard represents twice the strain energy, 

the seoord term - the complementary energy, the third term - the kinetic 

energy, the fourth term - the workdone by the external forces on the upper 

and lower surfaces of the shell, the last term - the workdone by the edge 

forces. 

Substituting the relation of stress and strain from equations 

( 12 ),( 13 ),( 14 ),( 22 ),( 24) ard ( 25) into equation ( 26 ), we ob

tain. 

The variational equation then becomes; 

,{" f \\\ {[< ~••+ ~~M••X (.,.+1!K,. +ll .. •J ii.@: +/; ,: ) 
y )I I II -4, II 

+{ ~'C'i ... ~~ M'f,X €'1'1 + ~K'1 + ~~ i2. w, w., ~~1. w1) 

+c:f[ f ~ i{~))[ 1-~D •~iH·[•+i \f,J-i (QS] 
+!ili~-i li2)+!(~SH (W' +ii) 
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-, ~ 

+c(1+~) [~~'1+ ?iM~1]{ Li~ i-J(~~)][1-(f,2) J 
-t t " +!~H [1+! ~2)-~(~2.)] 

. ~ ½ {H l 1-1 (fi7~) + i (~2)] l l 
+ 2 (l+il >{ ( I+~ )(t+fS Pt., + w. ~ M.l . 

_, t"\ ~ + ... 2 

i-(1+~ )(•+~)rt ?1't D-{~2) J-J ~ H1 [1-2~2)-3 (~J J 
1 ~t 12, 

-! Ff~~ +2(~2)-J(~2t] ~ 

+ (t+ 1 )l t♦\){ i~'lt [1-l/,JJ-1 fi1-1:[1-2{ift2l-3(~S] 
. · · -J 1iff2V+2(~-3(~SJtil 

1 AB dxd it d ~ 

-, ~)~f Lat+ a~i• [\+ t~tfi.+ [W., +i wt+ f w~ t} < 1♦ ~ w+t> AB dlCdijdi: 
V . 
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_ \) i[P: (QH4> r +ti(V+~!Y> +itwHw + t1s1"J 1 (•+2i w+Ji.> 
5t +[P.(il+t(\)) + ~ (V+l~) + GL(W ~iW

1

+ t\v1

)l( •-b )(t-h )1 AB dxd~ 
-, 2. '.J ""1 flti, J 

h/2. -f f ( [ '(..., ( U.,.,+~4li,.} + !;.1 ( 11,,i H4>.,\) +~. ( W +iW'+ tw•J ](◄+ ~ ) ~ i 

-h/v. },t d8t l ~t = O • 

j ( 27 ) 

Before carrying out the variation in equation ( 27 ), the follow

ing approximation is introduced. In the expansion of the function (1+-;")n 
2 

only the terms up to~ are retained, thus 

J
h/2 

(1+ !. )(1+ .&. f 1
dz ~ h[1+12~

2 (¼ - ¼ >] , 
r2 r1 1 1 2 

-h/2 .. 
h/2 · 

J(1+ Z&. ) (1+ I. )-
1 

i&2ds ~ 1'f (1+ l b.
2 
(!. - !. >] • ( 28 ) 

r
2 

r
1 

20 r
1 

r 1 r 2 
~h . . 

.Using equation ( 14 ), the expression for Myx am Myx is written 

as h/2 · 

f ~l a ) [~ ~ 1~ o11q] (1+ t2r
1f: l (1+ :/ d• , 

-h/2 ( 29) 

The following integral relating the inplane forces am bending 

moments, can be .shown to hold, 

{(( ~ + 1~• ~ )(lyy + zOyy )(1+ A )(1+;, f 1Aaixdyd• 
)\~ h h., r1 2 

a ~\c xJn + x,xcSyy )ilixd7 • 

( '.30 ) 
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Carrying out the integration in equation ( 27) -with respect to 

z in the limit of!~ yields 

c5(H[ [~ .. (hi •• •.! l.. •iii~)+ i1i1 •• ( lf K,. ~~~ w~w:)] 

+[~11~(h{..~+h~G'1+ J:lra,.i/~)+~M11(b.'3K'1+ h' !lw~~)~ 
h f2 640u H 12 1"<>6 J 



20 



21 

-t°i K f ( u: + Vt\ w: )[ h ( • 1'i~'i)] + 2.[ °'~+Vt <Jt +Wl'~] 11 ( HJ . . 
s +(<\>:+lY:+il:+w~w~\("3

(4+~i), +(w~w:)lf(-r.' +i) + vitr !1(4•~)] 
1 12 20r.r1 '.J ao 1 12 4 L!O 2arir2. 

. t ABc:4)(c:4~ 

-ff {[FftllH<)J +ff(V+t.q,J +i(W+i!iii+(W°t](1+11.~)l4+a) 
0

1 + [ Re iA+t;41) + Ff c VH cy) +((iii +~w·+ i Vi}] ( 1-~)l 1-.lt) 1 AB~<A11 

yields 

r 

- ~{ ( SM,..) + f.t (AM1it) +A.iM-'I -B,,.M~'I -Ae ( Qw ~1) 

· -e~~Ae{ (fi+}J ~ 1- (1+~rllittl}5~ 
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-[a (BMx'1) .... .Q (AM'1'i) + ~M'1,c -A'1MX)l -AB(Q"'-1.-'™2.) 
c,,c a"' 

-t;{A6 {( 1 •~J Vtt t ( 1 ~~L) fu} ] Jq, 

_f o (eQi~) ... ~ (1'Q't~) - ~N,,.,,.-~N'1'i +AB(iHt-tfH) 
~ 01.t ti ~ V 

+. d fBN,0/ ~,c+h'l.~:) ... BM>tJl {~~) +Nuaf (4+J,:)iJ1-h.-a.W11+h2(H3~)W~l 
'1)( -l \ A 24 A "' · •~ 1 .... 2. 12r2. U 20r~ ~ 

-M>'tl f ~'\-(4+~!t)~ +~~w~) 2 
L ti 2ort, AO"i ! 

• I I I 

+ .e S AN 11~ { ~ ..... b.2"~-1) +AM"~ ( ~~) +N-~f(1 ... ~)W11-h'1wJ(.a.n'(H~)N"l 
'1~ l e, u. e, e, ~ 12.q i2r2. ~ ui,, J 

-M,c .. [~it-(H ~JW~ +~1w·:] 2 
ti 2o~ 4Cti. J 

-ehABf (1~t:rJWtt~t<ti•kl~+,(1+~;;~J] cf~ 
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Bourxiary corditions take the form, 

r r r I BN .... OiA + ,,N .. , 6 v + ~M.... o~ ... BM .. ~ cS~ rd"' 
~\ ~ . 

11 AN"" Oil. + A~ ov + AM~ .. cS~ + /\M'1'10 lj Cd)( 
\.---
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( '.34 ) 

Also the irdeperdent vanishing of each term ot the line integral 

in equation ( 33) furnishes the required bourdary conditions along each 

edge of the shell; these are either the stress or displacement prescribed 

tor the boundary corditions. 

When the stress is prescribed, boundary cord.itions are 

'Unn = Unn( xnn, Xnt, 0 ) 
' 

0nt = uni< xnn, ~t' 0 ) 
' 

<l>nn = <l>nn ( JCim, Xnt, 0 ) 
' 

<I> • -nt - <l>zii ( Xnn, Xht, 0 ) 
' 

w = w ( Xnnt Xntt 0 ) 
' tt " - w ( Xnn, ~i, 0 ) C 35) w = • 

When the displacement is prescribed, boundary conditions are 

N* = nn Nnn ' 
N*,. -nt - Nnt ' 
~= 11nn ' 
~ .. -t- ~t ' 
~z= ~ ' 

( 36) 

where each cordition in equations (35) and (36) are respectively along 

the Xnn = oonatant and Xnt, = constant. 
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2.6 Equations of Equilibrium and Stress.strain Relations 

Since U, V, W, q>, and CJj are independent functions, the coeffic

ients of the functions OU, Jv, c5w, oq> ,&O~ are set equal to zero. 

These conditions yield the set of five equilibrium equations in the form, 

( 37) 

In addition, the coeffibients of the functi~ns cf N:xx, O Nyy, 

ONxy, 6M.xx, cSMyy, 6z.;cy, d~z and c:S~z are set equal to zero. These 

conditions yield the following eight stress-strain relationships, · 
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ixe-+ hll,.~: = 2(1+o/) J ~[4- h~(!-1 )lQxt-~[4+ h2.(i-.L )]1t11+.h.!2.(L-i )~(, 
, 40 I"\ Eh { s 26ti. G ~ J ~ ~r2. G ri. 20 '1 r2. j 

x.e+ h~f1~ = 2l!±!>f ~.r1+ h2-(1-l ))QIA~-! r.~ h'\!-i )]'»12-h\i-i. )~}· 
"'1 40 B Eh s L 2dl'i ~ r~ -, s L ta'1 ~ ~ 20 ~ r2. 

( 38) 

' " Finally, the coefficients of the fuhctions OW, OW, OS an:l OT 
t " are set equal to zero. These equations, which yield the functions t?, w, 

S ard T, are written 



)1 

( 39) 

Retaining tenns of the order ~ and hr only ( see a pperdix A ) 
· 1 2 

the stress-strain relationships are written as, 



' 

Nx'1 • Ghftx+Y·&4-h2(!-t )01t~+W..i&it - kc[1- (~"W~ +W~f.J~)] 
1111, 12. r. ti. A'o 1<2G Ae> 

+ h'l.[ 1 , ~~ + w~w~ + ~'1)~ _ ~ [.L ( w~w~ + w:w~)] + n• ~~ l , 
12. AB' 2 2. J 1for'.i AB .sw AB ~ 

Mxx = of u<~.+~~~)+~'+Wf J+~[~(~~+t~i+t•~:i] -(~-Vixx 
-b.'\ !-i)[A42(fi>tw:+fi

1

!)]-~(l-l) ef} ... 3h~~~+~ ~;], 
f4. ~ r~ 64o t1 ti /\ 40 L A2. B'l. ) 

+ 2.C:.. h'l,f(1to/) T _, (32}§;_ 2.1s +~(H-o/)(ciH+-{H)-b[ 2. _c4-1>1(<ii\\tm)l, 
(4-,llJ i2. '-'h L $G sr2. '5 u· · 2. r2. '1 .J ,.. 1-- '} 

M11~ = D f ;>rl(<\>)(+~~)+~·~w)(w~] +[it~~ +~~)+i.l + w~~] +(i-i) ~'4 l LA e, y:; A2. E> A rz. e?- ,1 ,Q. , 

+h2.(!.-L)f 1(w1w~+~1)1 +h.·\t-1)~; + ~~r;?~~ + w~~] l 
QA. '1 ti Le,'2; ~ 6:10 G rs,_ Ba; 40 L Ai. e11. ) 

t ~ lt f (~¥1) T -[(3!±,5)_ 'l.] s .... fl (~+~J(dH+-~)-b [2- _(◄-o/)1,Jl+ittjl 
(•-j~) 12. i sh sr-2. .5G 5 -o· · 2. G r2. J\, ·, J ' 

( 40 )' 

where, G = Shear modulus of elasticity ( = 
2

(
1
!:;,) ) , 

D = Flexural rigid1 ty of the shell ( = ( Eh; IE) ) • 
12 1~ 
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Where the quantities of N;yx and M,yx can be computed by the iden

tity given in equation ( 4 ). 

If the effect of transverse normal stress is neglected, that is, 
_, J• 

the coefficient c = 0 and the tems Wand W, are neglected, then the 

stress-strain relationships are the same as those given by R. Archer~!) 

If the nonlinear tams are neglected, the resulting equations 

are as derived by P.M. Naghdi~J) 

2.7 Example of Application in a Beam Problem 

In this section, the results from the analysis are applied to a 

one <µmensional problem, a beam simply supported at both ems is subjected 

to the following axial-load conditions, 

1. Free and Forced Vibration .of a Beam 

2. Free arxl Forced Vibrati9n of a Beam-Column 

J. Parametric Excitation of a 13eam- ·column 

Thus, only terms N,a, M_xx, and ~z are retainedo Al.so, r;z = 0 
' .. which implies the parameters s, T, W arxl W equal zero. All functions of 

y are eliminated together with the tems V am Uj • · The external shearing 

forces ( P+, p-) on upper arxl lower surfaces are neglected together with 

the external normal force at the lower surface ( q- ). The radii of cur

vature approach infinity for this problem which implies that -r1 · = -r1 = o. 
. 1 2 

In rectangular cartesian coordinates, A= B = 1. If Poisson's 

ratio ( ~ ) also is set equal to zero, the elastic constants (l ';}2) ani 

· 1!3 
2 corresponi to following conditions, 

12(1 - ' ) 
extensional rigidity 

fiexural rigidity 



Also, for convenience Nxx, Mxx and ~z are written in shorthand 

form as N, M ar:d Q respectively and the sign of the term I is changed so 

that the stability comition may be investigated. 

Therefore, the five equations of equilibrium ( 37) reduces to 

( 41) 

Also, the ~ight stress-strain relationships reduce to the fol

lowing two equations 

M =- EL}~ , 
Q • f C7A(f-t ~] • { 42 ) 

Thus, there are five equations for five functions N, M, Q, W 

am Q). The first equation or equations { 41 ) restricts the function N 

to be a constant function, am indepement with function x. For conve

nience, _ the function N is replaced by the function· P to correspord to cur

rent practice in the literature. 

CAS:S: I. Free a.bi·. Forced ·Vibration of a Beam 

For this case the conditions P = q = O hold. Equatio.ns { 41 ) 

am ( 42) beoome, 

( 43) 



The variables W(x,t) and cl>(x,t) are assumed harmonic in time, 

or "1m(x, t) = Wm(x)e ~t an:i ] 

<Pm(x,t) = 4>m(x)ei~tfor ~he m th mode of vibration. ( 44 ) 

Substituting ~(x,t) an:i <l>m(x,t) into the first two equations 

( 4J) an:i noting the last two equations of equations( 4J ), the follow

ing equations are obtained, 

( 4.5 ) 

The orthogonality con:iition for the functions W(x) an:i ~(x) is 

obtained by operation on equation ( 45 ), as 

Cw!.-~) n(I <l> .. Ot.> ~,.ex) t fA W_;.•> w,.,<•> ] d11 

=• (t.t,. (~ i-J~~ -tQ.(lcJ:JV1-[tJi:~"1 t~W..~ r :6 i 

"•O 
The right han:i side of equation ( 46) contains both natural 

boun:iary conditions and forced boun:iary con:iitions which become Bero for 

simply supported, fixed and free boun:iary oon:iitions. 

Thus, we have, 1,. 

). [fI t<l(><I>. cl(> t fA ~K)W.,(K>] dx ,. o • 
. 0 ( 47) 

provided ~ j w!, for m(1,2,J, ••• ) # n(1,2,J, ••• ). 

Combining the four' equations ( 4J ), we obtain the fourth order 

( 48 ) 

where berding stress, transverse shear stress, transverse am rotary 



inertia terms are included. 

A similar fourth order equation is obtained for the shear para

meter where W(x,t) is replaced by <i,(x,t). 

Using the method ot separation or variables, ard noting equation 

( 44) 1.rd as•urning the time function as harmonic, we obtain, 

,/w·c1<> +/'-1. iwcac, • -rtW(>e) 
~><• oJ(a 

• 0, ( 49) 

where 
~'/.IS 

2. 

} f!!J. ( i .t +1) ' E SG, 

11.+ • f!D.'( b - i fjQ'") • (so) E I S G 

Then, it follows that 

( .52 ) 

A similar solution for function 4>(x) is obtained in the same 

manner. 

The bourdary conditions tor a aim.ply supported beam with 

length Lare ( see equation ( 46) ) 

x=L 
W = 0 

M= 

x=O 

EI~ dx 

' 
x--L 

• 0 • 
:x=O 
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Noting equa. tions ( 4 3 ) , we obtain, 

( 54 ) 

Thus, the bourxlary corxlition for moment written as a function of W only, 

' g_ 2 ] 1J<•L 
is M - - EI [ ! f ~ w + cLJI • o · 

- S ~ dxa ,c.o ( 55 ) 

Using the preceding two boundary con:litions, the following set 

of eigen £\motions are obtained, 

where, ~ - nlI. 
d - L 

' 
( n = 1,2,3, ••• ) 

( 56) 

• 

Substituting ~into the roots RJ,
4 

in equation ( 51 ) yields the natural 

frequency of free vibration defined as, 

(Al"°. ! '11ll'J2 ![:;.+~+I ~(~t] ±S[s+g;-+~ ~, .h.)~2. 
" 2 \ L l (' 6f' 6 fl ""'· 1 f 6f 6 fl \ntr 'J 

. - 4(f '3fJP'~ • ( 57 ) 

A similar result is obtained for the t\m~tion 4>i). The boun

dary con:litions are taken with the aid of equation ( 4J) as follows, 

( 58) 

The solution of the forced vibration is obtained from the fol-

lowing equations, aM - Q = ri e._'1> ax ota. 
~TC\- :fAH 

M = Eri 

' 
' 
I 

Q • f<tA[~ -tq>] • ( 59) 



Combining equation ( 59) yields a fourth order partial differential equa

tion in the fom 

A similar equation is obtained for the function (x) 

( 61 ) 

Since the free vibration problem yields a complete set of orthogonal func

tions for both the functions W(X) and (\)(x), a normal-mode type solution 

for the forced vibration problem is assumed to take the form, 

<P(x,t) = 2. a (t) ~ (X) 1 
'WI ,.. Mf 

W (x,t) = :Z a. ct) W~> , 
.... '"' 

ard also, by equations ( 43) 

M (><,t) = 2- Q.<t> M <><) , 
'"' "" '"' 

Q(at,t) = 2_ Cl (t) Q (X) • ..,, '"' .... 

} ( 62 ) 

} ( 6J) 

Substituting these conditions into equation ( 59) integrating 

over the length of the beam, and_ma.king use o~ equation ( 45 )' gives the 

following result, 

&,.. 

i ( ~t> + u>!, a.J,t1) ). [ t' I <j,~•>tx> + fA ~•J r(,<J\I] die 

• ~ ~l" ,t) W.."'' dx , 
0 ( 64 ) 
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Applying the orthogonality oorxlitions of equation ( 47) reduced the form 

ot equation ( 64) to the fonn, 

L,. 

Ltt-(><,t) W~"' "l( 
=---------. i[f r(Q<> + fA w.,ti<J )dx 

t, 

• 

. ( 6.5 ) 

Using the method of variation parameters the solution of equa

tion ( 65) is assumed as, 

where Am(t) arxl Bm(t) are arbitrary functions of time. 

This results in the solution for ~(t) as follows; 

, 

~>.AJ>cosc.u.,J: +~o)sin~ + ~~.:,, si-n~(t-r)d'(, 
(.A)'"' 

( 66 ) 

~

'r•t 

't•o ( 67 ) 

where, f~c><,">~>dx , 
rtpI4'J1<> + fAwjx)] dx 
• 

( 68) 

and the last integral called Duhamel's Integral. 

The parameters ~(O) arxl l\n(O) are obtained by applying the ne

cessary initial oorxlitions on displacement and velocity. 

Combining equations ( 67) with equations ( 62 ), we write, 

WCY-,t) = ~ f { [~o)CD6~ +~o) sin~]+ 4-_ ~t,,:,sm "l..lt-t)dt}~i<+ 

<P(x;t) = ~ {{ [A.i,o>c:,s~t + ~~fflCAlJ:] +c&,. ~K,t)si-ti ~lt-r,~rf t,u,J, . 
( 69) 

where fJx,r) and 'l~x,'C) are the right bani side of equation ( 60 )&( 61 ). 



40 

Using Liebnitz•s rule which is defined as 

i"•C2<tJ £'t=Catt> it. f!'C,t)d'( = fC-c,t)d'( -t \[½ltJJfta.lt.> _f[C,Ci)J ~C,1ti 
r•C1lt) .c4,t> 

( 70) 

arxi noting the initial conditions on displacement and velocity as, 

Ot=O W(x,t) = W(x,O) , 
0 • W(x,t) = W(x,O) , 

(p(x, t) = q>(x,O) , 
0 • (J>(x, t) = (l>(x,O) , ( 71) 

arxi together with the orthogonality conditions given in equations ( 47 ), 

it follows that, 

( 72) 

. The general solution is written in final form as, 

( 7'.3 ) 
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and, 

( 74) 
• 

Similar solutions r or (p(x, t) ard (p(x, t) are obtained, 11' the--

proper load functions are substituted. 

CASE II. Free and Forced Vibration of a Beam-Column 

Refering to the equilibrium equations ( 41 ), we write 

0 0 , 

( 75) 

Proceeding in the same manner as in CASE I, ( see eq~tion 

( 47) ) the orthogonality condition for the beam-column are determined 

as, ( c.t-~) i[ fl IPJ<> <\l.,p•>+ fAWJ•>~O<)] di< . ( 76 ) 

= j[t.t.<",t) 4>111(") -t-(~,t.J-Po !..W)~-[ M,,.<4)<>.,0l)+(~,t).. Po ~)WJi<j [ 
For the special cases of simple supports, free ard fixed bourdary oonii-

tions, the orthogonality cordition reduces to 
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( 77) 

The fourth order differential equation for the functions W(x-,t) 

and q(x, t) are respectively, 

( .78 ) 

,and 

E1(4-~)i + P.j-fI(1-~ +~~t~ +fAi~ + !~i 
= ;r1<.,t) < 79 > 

Assuming the function W(x,t) 1s harmonic function of time-, the 

tree vibration form of equations ( 75 ") are 

~ 

= - (' I .52.: (pO<) , 

Q 

=- -fA .Q. Wlx) • ( 80) 

In a s1m1.lar manner, the free vibration torm of equation ( 78) 

takes the form, 

where 

( 81) 

. ( 82 ) 

( 83) 



For the special case or simply-supported bouniaries, that is 

M(O) = M(L) = 0 am W(O) = W(L) = O; the equation £or natural frequency 

is determined as 

sin jL = o, j = 1,2,3, ••• 

thus, jL = n11' 

and the natural frequency is obtained in the form, 

The solution of the forced vibration problem is obtained 1n,a 

similar manner as in equation ( 73 )&( 74 ), in the form . f[ l[fl(p()(,0)4>J>() -t-fAW. (x,o)WJxJ]tAx . 
W<x,t) • c:;"" 0 cos '·" t-~ ,~ 2,. 1 -..et" 

• '• [ el<P,..U<J +(A "i,.<~] ·cA x 

· Jle.t$(1c,oJ<jl,.W + fAW(x,o)W.,.W]c:A" . 
+ ('- · s,11 c.o .... t 

-~).[er~:>+ eA~>) tAx 

+ 1 r · t f 'tl" ;ow.,p<i,i,,c sill "3.,l~-n c:Ar l w (ll) 1, 
Sl..,. tJJf~!>+fAl\,°w]-'x .. . . Y"' ~ 

am, <as> 
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( 86 ) . 

CASE III. Parametric Excitation ot the Beam-Column 

The axial load on the beam 1a assumed to be ,a harmonio tunotion 

ot time,•• P(t) = P0 + Pt oos et ( see Figure 2.2 ). 

P(t) 

Figure 2.2 Time Variation of the Parametric Force 

As a first approximation to the solution, we neglect the ~ourth 

order· derivative with respect tot in equation ( 78 ). 

The equation becomes 

The natural frequency of free vibration from CASE I am CASE II respect

ively reduce to the form 

(fJEI ( 88 ) 
= 

[fA +fI{ft(•+ l)J 



and 

where 

' 

and 

' 
P c.R is defined the cri tioal buckling load ard 
"' e, is the Euler buckling load. 

( 89) 

( 90) 

( ·91 ) 

Setting the external load q = o, the equilibrium equations ( 75) 

are aµiplitied to the form 

( 92 ) 

Taking one derivative with respect to x for the first equation 

in equation ( 92) am combining the result with the secord equation 
' ' 

)1.elds 

( 93) 

Since the eigen functions for the both quantities of c:>(x) am 
W(x)are ·s1ne functions for the special case of a simply supported beam at 

both ems, the function cp(x,t) is assumed in the form, 



where f (t) 1s a pure function of time • ... 
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( 94) 

Refering to equation ( 58) the relationship between the func-

tions 4'>(x, t) and W(x, t) is given Js, 

- [ El f£P I. ~] 
W(x,t) = - fA;f;i 7J1-" + A 'fJ~ • ( 95) 

Substituting equation ( 94) into equation ( 95) yields, 

W(xt) - (!i)[ ~-,.1 { ~J2- l ] f (t) C06 '!K~ 
' - L. fAw.,. L. A '\II L. 

( 96) 

Substituting equations (94) and (96) into equation ( 93) yields 

00 f i -2 2 
fat}+ l W!° + [~i"t)- i ](P.+~cos8t)5 \Jt>. o • ( 97 ) 

-~ Noting the value ot "°"' from equation ( 88 ), equation ( 97 ) 

reduces to 

Substituting equation ( 89) into above equation, am rearrang

ing terms yields the form of Mathieu's equation as, 

( 99 ) 

where 

' ((100) 

am 

~ ( 101) 
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Exact solutions of these types of equations are not possible. How

ever, the stability characteristics of the equations are known. The sta

ble and unstable regions are shown by use of Floguet•s theory or differen

tial equations to be separated by solutions of periodic functions or per

iod Tam 2T or the parameter 9t. 

To determine regions bourded by periodic functions of period T 

w assume Fourier's series solution in the form 

oO 

1<.t) • bo + 1 < ~ cos kst + a.k '5i-n ket > ( 102) 
k,,.4 

Substituting into equation ( 99) by equation ( 102 ) and equa-

ting the coefficients ot similar trigonometric functions gives, 

" ,.. 
[Ji.2"'."92] - -i 

0 at ;,USL 0 • • 0 

A [ .a2 -(12.9lJ " - -2. ~slQ. 0 aa -;,«~ • • 0 

0 ~~ [l~<~elJ -)2.ll.2 • • ~ 0 

• • • - • .. 
--• • • • • • 

• • • • • • 

• • • • . . • 

• • • • • • 

• .. • • a. o .. 

( 103) 
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arxl 

~Q. 
.J"2. - ~ :2. 

~ 0 0 • • bo 0 

-~!ta. c.n~-,lJ - c:. !2. ?'A-JL 0 • • q 0 

0 · Ai . [1i~l28l] :;,aJia. • • ~ 0 

0 0 ~a [t'-c'3elJ • • bJ 0 --
• • • • • • 

• • • • • • 
• .. • • • • 
• • • • • • 
• • • • • • 

• • • b_ o • • 

( 104 ) 

To determine regions bourxled by periodic functions ot period 2T 

the Fourier's series take the form 

(;I ' 

f<t) • 2. ( (¾&i'" k:t+ ~cos ~t) . 
k=•ill,ol,•-- · 

( 10,5) 

Substituting equation ( 10,5) into equation ( 99 ), gives 

{[4-lfl)J~j - 0 0 . • a. ·o -~ • 

- [1-(a-tJ .,a, ~ -,,«, 0 • • 0 

0 -fi [1-(S)SLJ '"' • • a, - 0 -
• • • • • • 

• • • . ' • • 
• • • • Q.c 

( 106) 
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and 

f [~-,tn.)J::M-} - b1 -,Mo 0 0 • .• 0 

- D-(fftJ bi -fo ?'<- 0 • • 0 

- 8-(ff-JJ -)t • ~ 0 -_µ. • - 0 -
• • • • • • 

• • • • • • 

• • • • Gt. o,... 
( 107) 

As a first approximation, the coefficient of Qi\ in equations 

(103) am (106) yield the solutions as 
2 
~ = 0.5 and ~ = 1.0 respect-
.n.. . 1.n. 

ively. If additional terms are included,the curves of stable anrJ un•table 

are shown in FigUre 2.3 as follows. 

------------ ..a o 0.1 0.2 0.3 o.4 0.5 
Figure 2.3 Location of Stability am Instability Zone . 

The shaded area shown represent the first two instability zones. 



CHAPTER III 

CONCLUSIONS 

so 

The equations of motion, the stress-strain relationships ard 

the natural ard forced boundary corditions are determined for the special 

case of a nonlinear shell theory including the effects of transverse nor-

mal stress, transverse shear stress ard transverse ard rotary inertia. 

The addition of the transverse nonnal stress into the stress 

analysis problem produces a set of highly coupled differential equations 

which do not easily exterd themselves to the usual uncoupling procedures. 

The uncoupling of the equations is not preformed in this thesis. An ex

tension of this thesis is the de:termination of the proper procedure for 

this cordition. 

The Reissner•s variational theorem has again proven itself as 

an extremely powerful. method of stress analysis especially when applied 

to nonlinear problems. It's efficiency lies in the fact that the result

ing equations of motion, stress-strain relationships ard natural ard 

forced bourdary corditions are completely determined without use of a 

free body diagram approach. 

Application ot the resulting equations neglecting the transverse 

normal stress, 1s made for the speoial case of the parametric stability ot 

a beam-column. It is found that the beam-column becomes unstable at a 

much lower frequency when the effects ot shear ard rotary and transverse 

inertia are incl\Xledo 
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APPENDIX A 

The eight stress-strain relationships given in equation ( 38) 

are reoasted in the following matrix form. 

where, 

A B O •C O O O 0 

B D O O C O O 0 

0 0 E O O F O 0 

•C O O G H O O 0 

0 C O H J O O 0 

0 0 F O O K O 0 

O O O O O O L O 

0 0 0 O O O O M 

Nxx 
N .. yy 

Nxy 

Mxx 
Myy 

1¼r 
~z 

~z 

r 
B 

c 
D 

= E 

F 

o 
ff 

--



am where, 

A • ~)( .... hg_[fl+A!g_(w,,.w: + rh J] + h ... '&':.- + ~ [( 4 + ~ 11.) s -h. T 
.f4. t'1 640 M' Eh 20ri ~,~ 

+ b ciH 
4
( ◄ -h + h;o.) + h i•f(1 + .h. + .h\.)] 2 U &r'i. 12r~ 2. -u Bri 12-li. t 
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( A 3 ) 

The solutions are given as, 

Nxx 11 12 0 -14 15 0 0 0 I 

Nyy -12 22 0 24 -25 0 0 0 B 

Nxy 0 0 :n 0 0 -36 0 0 c 
Mxx -14 24 0 ~ ·45 0 0 0 ]j" 

Myy 
a..!.. 

15 -25 0 •4,5 55 0 E ID I 0 0 

Mxy 0 0 -36 0 0 66 0 0 F 

~z 0 0 0 0 0 0 77 0 o 
Qyz 0 0 0 0 0 0 0 88 H 

( A 4 ) 

where, IDI = . ML( KE ~ r ) [ca., - If )(AD - f) - cf (AG-2BH+DJ·c2il' 

11 = NL( KE - r ) E> ( GJ - If ) - c2o] , 

12 = ML( KE - .; ) ~ ( GJ - if ) - cf H] ' 
14 = -ML( KE - .; ) ~( DJ - c

2 
) • BHc] , 

15 = •ML( KE - .; ) @( DH - BG )] , 

22 = ML( KE - F
2 

) E.< JG - If ) - <f J l ., 
24 = •ML( KE - -j ) f( BJ - AH )] , 

25 = •ML( KE - .; ) f ( c2 
- AG' ) + BHc] , 

33 = MLK [ (GJ - lf')(AD - If) - c2(AG-2BH+DJ-c2)] , 

36 = l'lLF [ ( GJ - it) (AD - B
2

) - cf' (AG-2BH+DJ-c2 B ' 
~ = ML( KE • j ) ~( DJ • cf ) • f J] ' 
45 = ML( KE • f )[w • B( BH + cf )] ' 



.55 = ML( KE - j )[Ano - B
2

G - if'D] , 

66 = MLE [ ( GJ - If )(AD - 'ff) - if' (A0-2BH+DJ-c2)], 

77 = M( KE - j ) [(GJ - lf)(AD - 'ff) ~ c2(AG-2BH+DJ-C
2

)], 

88 = L( KE• j )[(GJ • lf)(AD - B
2

) - c
2

(AG-2BH+DJ-c
2)J• 
( A S ) 

Note that eaoh term in the matrix is divided by the term 

IDI which will resulting terms containing ratios of the form b., b., and 
8 r1 r2 

up to the order or Jls. 
r 

Division ·of each term or equation . ( A 5 ) by the detemninant 

yields, 

11 = U?( GJ - If * - c2o] - ' IDI IDI 
12 = U3( GJ - if ) - cif] - ' IDI IDI• 

2 
"BHC] 14 - - [C( DJ - C ) -- ' IDI 1°1• 

.Ji.. - - cc, DH - BG >l 
' IDI IDI* 

2 2 
22 = V:( GJ - H ) - CJ] - ' IDI IDI* 
24 [C( BJ - AH )] 

' - - -IDI lnl• 
2 

BHC] _g_5_ = _ ~( C - AG _) + ,· 
IDI ~lnl• 
--2.L = · K ;, ' IDI ( KE -

...2§.. = F 
' IDI ( KE - ~) 

44 = ~( DJ - c2 
) - B2J] - ' IDI lol• 

..!t.2.. = ~H - B( BH + c2 2 l 
' IDI 101• 

---
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...ii... 
VJ) 2 2 

= _G - BG - C DJ • IDI ID I* 
66 E - = (KE-r) • 

1°1 
..IL = 1 - • IDI L 

88 = 1 • ( A 6 ) - -IDI M 

where, 1°1· = [(GJ - lf)(AD - If) - cf(AG-2BH+DJ-<f)] • ( A 7 ) 

Substituting the value of A,B,C,D,E,F,G,H,J,K,L, a:rxl M trom. eq. 

uations ( A 2 ) into equations ( A 6 ) gives the following set ot equa
tions with the restrictions ot the orders or the tems h.. r 

8 
I. Retaining terms up to~ 

' r 

Eh ,,_:;y2Jr1+ h!l.(t -k ] + h2.(1-!.J
2[1-£~: ]+ h4-(l-!. 

3
)[i+i(1-~)1 a,,

1 
• , L li n "4 ri ,11. o t'4 r11. r. r!Z. 20ttr~'.J 

l a 9 

·• 

Q ~ Ei.:.a .b.°·( ! - !. )2.r ~ + !. ] 
24 = - ., .bD 12. t'i ra. L-'"t'i ri. 

12. a! ' 
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' 

' 

( A 8 ) 

where, 

( A 9 ) 



6 
II. Retaining terms up to~ 

r 

, 

' 

57 



~- a&& 

b77 = a7, 

b88 = Clse 

where, 

' 

' 

4 
III. Retaining terms up to~ r 

( A 10 ) 



C,1 .. a.11 , 

Cc,8 = aac, , 

where, 

2 
iv:. Retaining terms up to ~ 

ci
11 

• Eh fo-;>) 1+1f;t'(t,-~) 
~) d' 

.S (i-;>a 7hi. i i ~l . 
d11 • - ~ £b ( J + .Fo C r; -ra,J } 

<1-J'J.) d' • 

d ,. -~ Pf ( t~h_) • 
, Z. I 
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( A 12 ) 

( A 13 ) 

' 



, I 

d.u ,. Eh f ◄ -~:<~-~1)} 
2c1+1> d" 

d~ = Eh3 (~-k) 
24-(Hl) d" 

d 
1j,J .ft+ .3h2. ( .L L ) 2 

~A- = E!1 l !iiff r. - ta: [ 
12 d' 

d71. a11 • 

daa • a.ae , 

, 

• 

( A 14 ) 
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wheN9 

d' .. {(t•tJ+f(f.•~i2f I 

d".. ~ •-~(~-~1)-1t< \-~Ji · ( A 1.5 ) · 

y • Retaining terms up to ~ 

e Eh 
11 D (1-~i,) f 

'12 =- ~Th • 
(f-ja) 

e. Eh" (-'--!) , 
1'1- = 12.(1-i~) '1 ra. 

e24 - o • 

e - Eh • 
" 3 - 2(1t~) 



e • -~ Eh" 
~ 12(1-o/1) 

e Eh'3 
S'SD t2(1-"i>il) 

, 

e Eh13 

66 - 24(t+~) 

e = Eh ~ , ea 2(•+1) 6 

, 

( A 16 ) 

Where the tenns ot a., b' C' d. and e are partioul.ar terms 

in the matrix aa .the order of the quantity ( .~ ).•·changes. · 
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