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ABSTRACT

ELASTIC STABILITY
OF
THIN CYLINDRICAL SHELLS
MOHANBEAI D. GADHIA
Master of Science in Engineering

Youngstown State University, 1972.

The purpose of this thesis is the analysis of
forced vibration of thin cylindrical shells including
effects of transverse shear, rotary inertia, and in-
plane stability forces. b

The solution of the free vibration problem is
formulated for the usual classical boundary conditions.
The orthogonelity conditions of the free vibration mode
shapes are obtained. The forced and free boundary condi-
tions are determined as an inherent part of the orthogona-
1lity conditions. :

The analysis includes both symmetric and asymmetric
motion of the shell. The forced vibration is solved in
Duhemel integral form which allows for the application of

any arbitrary static or dynamic surface loading.

YOUNGSTOWN STATE y . ~71502
LiBRARY © " VERSITY
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AQwwt): An arbitrary function of time
Awn, Bwn Cwa, Dww= Numerical coefficients

D = PFlexural rigidity of the shell,

[D= BW¥/I2c1-a¥]

= lodulus of elasticity
Shear modulus, [ &= E/2c1+a)]
= Thickness of the shell

L. : ZIength of the shell

> & m
i
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Mx, Mg, My, Mex = Bending and twis%in‘g moments
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@x , Bp = Shearing forces in shell

B . Pe . Axial, tangential and normal components
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and @-Z pleanes respectively
U,V , W = Axiel, tengential and normel components

of displacement of the middle surface of
the shell

Anzle of rotation of normal to middle

@, Y

n

surface in X-Z and & -Z planes
respectively

X, 8, 2 = Cylindrical coordinates
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CHAPTLER-T

INTRODUCTION

The elestic stability problem of the thin cylin-
drical shells is analysed using a nonlinear theory of the
stability for thin elastic shells as formulated by Archerp{
This theory includes the effects of transverse shear,
rotary inertia, and in-plane stébility forces.,

Kraus(a') presents the theory of free and forced
vibration of c&lindrical shells on basis of Donnell type
analysis, neglecting the effect of shear, rotary inertia,
and stability forces. i

Harrmann and Armenakes(?‘) consider the linear
theory for thin elastic cylindrical shells which includes
the effects of transverse shear, rotary inertia as a
special case of Plugge theory for shells, but neglects the
effect of in-plane stability forces.

The object of this thesis is to formulate the
mathematical solutions for free end forced vibration of
the cylindrical shells together with the orthogonélity

conditions of the mode shapes, and the associated free

and natural boundary conditions.
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CHAPTER-IT

JETHOD OF ANALYSIS

The analysis of the forced vibration of thin cylin-

drical shells including effects of in-plane forces is

carried out according to the following assuumptions:

1s

The thickness of the thin elastic shells is

assumed uniform and small when compared with

-radius of curvature, that is, terms of order

higher than &= b2

Teet 2T € dropped relative to

unity. 5
Lines which are normal to the middle surface
before deformation do not remain ﬁormal vo the
middle surface after deformation (i.e. the
effect of shear defdrmation is accounted for).
Linear elastic stress-strain relationships

are assumed to hold.

The in-plane force243 is negligible in compa-
rison to applied axial force fdx .

All nonlinear terms are omitted from the

equations of motion except stability term

(N¥wyx ).



2.1 EQUATIONS OF MNOPION:

The equations of motion for forced vibration of the
thin cylindrical shells including the effects of transverse
shear, rotary inertia, and in-plane stability forces are
formulated by Archerp)in orthogonel curvilinear coordinates,
If these equations are transformed in to cylindrical polar
coordinates, and using the notations of figures 2.,la and

2.1b, the following equations of motiom are obtained.

Nx,x + & Nox, 0 + Re= Sh( Uy + xa @té),

&NB;@ 2 r\lxe,x +é6{e +|°e = .?’1 (Vee “"*“‘Pu:))
Ax,x +-é—: G\8,6 — No + NxWyy +4 Nowpe + Pe

N X Wy L N6, 6 Wy T (1) [ o) +(Nxgti)g | - (1)
— [ MxeWo)x + CMxOWD) 0] = FhTWee,

My % + & Mox,0 — Ax+ My = Ph3(L U+ Pr),

and

Mo, 9 + M¥o, % ~Bo+ Mo = S (4 Vi + (.ljtf)._w

Teglecting the products of the stavility forces
with derivotives of displzcements (excert the term NxWiy ),

ore obtains from equation (1):

~ Ny,x +4& Nox,g +P = £h ((léuro(q &),



LNoo + Nxo,x +2Qgt P = gh(Vit +<a 219}
&XJX "'é\—@@,& —-Q_L?.NO +NXWXX +F‘E = 91\ W{f,

MX,X +éMOR)9 —®Ax +Mx = gésféaté"‘éﬂ),

and

3
LMgQ + Mxo,x —Bo + Mg = 8 13 Vv ),

vhere
Br= EEh[ Wae 2], Qes %@[&cvmsw],
Nx = 22 [ U+ A(VQ+W)+4Q§]
No= B2[L(VetW)+AUx- ouPe]’
Nxo = Gh[ Vx +& Uo +xa Wy,
Nex=Gh[ Vi + £ Us ~xX Ps],
Mz D [ B, +&(Uer®y)]
Mo= D[ 48 —4{&(Vorw)-hi]

Mxo = (125D & ( Vit o)t Bl
and

Meox = ("—}_"—{):D[-_ L (Ugt®s) + Lyx-_l’

—(2)

o

—(3)




where X and @subscripts on U, V, W, andf denotes daiffer-

entiation with respect to X and @ respectively;

£ - ¢ Vx

Pigs 2.1

Substitution of equation (3) in to equation (2),
yields the following five homogeneous partial differential

equations in matrix form:



Lo Lok Lk it 4 ed |V
L2z Laz  Laa bis V | Ps Q
Lag akay L balls | W jovbek bo iR O |-
Lyw Luz Lua tus| | @ _L_-W\x o
bgr  Lys Leggoles LI/ c‘li"\MG o
' L - . 4 L d>
Ly = ?_,;-z \—::‘-" Y PB*‘-""
L= Lo ';f.;%;;:
Liz= -La = "i;‘-‘_- 2,

% 2% _ e S
e e B 5 S0 8PS




and

Laz= -Ly2= 5,‘_-,_(14-@)%—9 2

Lag = L4z =

4

LZS': Lg‘z-_—_ '.'_‘2"_‘-0(_3_ ';(31

- a,z o6t a.‘

L33= (Nx-r&) " -\- S 3
DXL —-..L
92. azr

Lig=-Lsz= &
v Bx}

i ars
iy Lss:'éi—z(d*'s)%e .

L
B o A e, 3t

oxZ 202 3pa

- ok
Pbtz 3

PB&’

C(Z.

24 230 °

YOUNGSTOWN ST ATE UNNERS\W
LIBRARY.

alp 3
P3ee

—(8)




2,2 FREE VIBRATION ANALYSIS:

For free vibration, the eigenvalues and eigenfun-

ctions are found by setting
PX (X,@) t) = 0,
FQ(XJ 9)'{3) - OJ

\32 5 ?) t): O, ""(6)

MX.(XJ @) t):‘ Oa

_and

Mg (X)@)t) =0,

-

and by defining the following free vibration form as :

i.ﬂ—mwb b

; U'MY\(.X,@,'t): O-wm(X,G) e

3

s % 0
V'M?\ (x)G)-b) = V"‘"‘ (XJG) el' -b:

i_ﬂmh t
P

Vf\\/mn (x8) e

Waan (X%, 6,4)

—7)

; '_Q.‘wm. 2
@M” (X,@,t) ™ ¢7vm (X,&) eL L;




and

\Pwm (X,@,t) = q/wn (X,@) ﬁCﬂMMt‘

where

m =Tongitudinal mode index,
i 15
n=Circunferential mode index,
051 85003

and also,
: .
UL (%, 8) = Wwmn(x) Cosm®,
Ow\n(X,G) = Vwmn (1) Sin naeo,

lj\)mn QX,@) = Wwn (x) C‘USY\@,

—(8)
¢?Mn (x) (9) - ¢-m (X) _COS'Y)@)
and -
L’P'rnv\ (X,@) = ‘an (%) Sinné&. |

Substitution of equation (5), (7), and (8) in %o
equation (4), yields a set of five simultaneous, linear,
ordinary, total, differential equations with constant

coefficients given in matrix form as:



AI\ An'a. A|3 Anq. As um\

A?.\ A'z.'z. Az.'s Azq Az.s‘ V'N'\

A%l Aaz A33 A34 Ass‘ Wm

Aq\ At,tz Aq.z Alm Aa: ¢'mn

Asi As:  Ascs As Acs| | Yo

>

W

I

1

>

.
o

o MR
‘v

Are = /:zﬁ——g—i - ( "7'-}——-3—-—-!()

&2 J

10

O i ~(9)




>
W
w

i

and

2 Phkl” B %
= DKL (zcd-om +a—2_—-°(i<§,
_ I - 2
_As-q"' 20—0{)‘) >% 2
[-A o ne 3
’?:"( >~ (X2 + 2 ~K)

11

w— 1
Aca= = Adaxz (ob’ ——+"L\<)
~—(l0)

(N—X"‘S) %@- (qx“ +'L K)

For specific set of boundary conditions, equations

z
(9) are satisfied by five fold infinity of eigenvalues __n_,“,,

for each combination of m and n. The group of five frequency

equations may be obtained by' setting specific mode shapes in

to equations (9), and equating determinant of the coeffici-



1e.

ents of the modal constants to zero. The resulting equation
is of order five in.frinn. The modal constants associated
with each frequency are then obtained up to common, constant
multiple of one another by substituting the values of _ﬂfgn
in to equations (9).

For a specific set of boundary conditions, the mode
shape functions are determined by an additional separation

of variables in the following form:

B - e 2

vwm (X) = me ezx,

U\)'mn CX) = wa\ etx;
—(1)
¢-mn (x) = Doy ezx,
and
Zx
WM‘V\(X) = E‘ww\ € >
where‘
T4 e :

Substituting equation (11) in to equation (9),
vyields a set of five linear algebraic simultaneous equations

which take the following matrix form:



where

Bu Biz Bisg By 8\: —Aw:
B2, R22 Bz  Baq B Brwn
B3, Baz Baz Bza Bar -
Ryay Baz Baz Bas. Bar Dwn
.BY\ Bs2z Bs3y Bsa Bse Evan

Bu= 2% ! "U“ n* +K,

Biz =& ‘:’: 9",

Bis = e 2229,

Bia = Bay= otyt+ Al +K,

B(s = Bbsi=o,

Bk L rens ad s

"

13

=t




and

Baz = Bar = "éa_(l*ﬂn,

BZ.‘{—- - B4-2_: O)

BS‘?_:.

I—A y o( 2 -

a

Bags (Mss)p? = Sk, k.

R e
Rayy = A = "
Bas -~ B4 = =%

, SRBLERAL T, O 2
Bss- Lfdi g "Q‘ﬁ

D
é(—z —t-qKn

14

—(13)

For the nontrivial solution for constants Kioo Bo

s :DN\, By the determinent of coefficients in equation

(12) must to zero. The algebraic expansion of this condition

(given in appendix A), yield a tenth order equation in

parameter%: which may be solved for the ten roots of

(1=1,2,3,.0.,10.). These roots when substituted back

Ay
W
to
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equation (11), yields the result :

L (Sl B

L=l

lo »
Traviaghs R0

3z

ey =2 2o C,-,w,,,é yheee (14)

and,‘
i T
X
Waan(x) = E e St
L=l
where
SN
L e 8

A combination of ten natural and forced boundary
conditions, five on each edge, are applied to equations (14).

This result yields the mode shapes of free vibration.
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2,5 ORTHOGONALITY CONDITIONS:

The orthogonality conditions on eigenfunctions or
mode shapes are obtained by using free vibration form of
equation (2). Considering equation (7), it follows from the
form of equations (2) through (5), that the bending moments,

“

twisting moments, and shear forces are also harmonic in
time. Therefore, applying the subscripts mn to each moment,
shear force, and displacement term of the free vibration
form of equation (2), and multiplying these resulting
equations Dy L:(_H, \7?‘(' . {\‘l?‘i 5 cﬁn , and (AH,i respectively,
and integrating these equations over the surface area of
the cylinder, yields after proper algebraic summation a
cingle eguation. If the subscripts of this equation are
interchanged and these two equations are subtracted, one

obtains
S L

(—ﬂ:u "_Q-Lﬁ_ )—gj [f}m’( d:wﬁﬂ t 9““ 091 + G""“ﬁ")

-TE
5 flz o <¢ﬂh 4’({" ‘Vm ‘Pn) +S ( Mk t"‘htu-‘““ t "Pnhvn* \PP?. mj]aclxia

< [ [ Ml oGyt + g renni
>
+M X0 p¢ (i;”n et MX&M’\W,{ 'f'f\lxafi VNY‘

~ A
—Nxfmn Vpy + ( &xn * pr«\_\?\lxﬂ) W wmn




X=L

1 <a)\wm o NXN“(D;\M») b\?ft -] a 0‘6

X=o
2T L
A A A
+Sf[al\)x'mn u-ft —QNxpglmm + Nxown Upe
od

i Nﬁdnd\mn +&MXM“$xfi "quPi$xmn

T Mgxwmn Cﬁpri"‘ MOXFf_q;mMV; +Nc9~wn\70P‘t,

B Nﬂr‘tgw +aanmn\7xrz —aNxs?t‘“”“"
-+ MG”’“”""%!‘Q - Mgm_(pgmn + & Mxgwmh ‘?jxpt
— QMx@rt@xmn “+ N gwmn l:)pz_ - N9th’”"
—-N@ezﬁ)em&,,m —  NowmnWopg Womny +aéxmn43,t
"a; Bxpg 9;;“ t Qope Vsn  — Bgnt Df’i_
-ra,@{yw,,tﬁ,t - a[ﬁpfz %,, —f-Qélxmnl:fog

- anyqjt)xww +* dDN"J}&P% —ﬂgf,tbt)&mn ] aalx o(@

17

(15}
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L 5 " :
R J\ K_CL Nxefg Umn — QN xownlpg +QMK0H.(\6N"
o

—a Mxpwmn ‘ff‘t + Q NOIQ\"‘NV\ —a NewmnVpq

~ A A A
+ A MOPL Yun -0 MommPre + Adgpemn —aQopmipe
6:2.“

*MG?LGM’\‘:’D?Q o NOH*\ VDFQ L:l@un] Glx :
6=0 ik

The last term on right hand side of equation (15)
is equal to zero by direct substitution of the limits
shown. The sum of second integral is al.so equal to zero
by noting the free vibration form of equations (2) and (3).

This reduces the form of equation (15) to the following:

2mL | B!
(_(\:;n—_QEJOJS[‘?kQ (Umn G.?‘(-H?wu\'l\et -\-\ﬁmnl:lpl) |
60
+ ?Tl’;—_?q (éné\pg"'@u (Pﬂ)" ;é;(¢“ unfz'f‘éptamn +%.\fo+}%&.2:;in£
27T :
=f,q[N"Pid\“’\ "N"“““QP‘L +N"l"t¢m —Mxwn 6 -(/6)
o

~ A A A
+ Mxope Wmn — Mxgwn C//n +Nxa’tUm\ ~ N %0 nan I/Pi_
-] B

uo(g,

i (&Kft +N KPt“l(Pt) anh—(@xuh +anhlﬁxm\)ar;]
X:O __J
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The intesral on right hand side of equation (16)

contains terms which form the natural and forced boundary

conditions.

The right hand side of equation (16) is identically

equal to zero, if the following conditions hold at X=0 and

X=1:

Either

ANx (X, ®) =0

Either N0 (%X,0) = O

. A
Either ¢ @x (x>0 +a Nx(x,6)Wx(X,8)=0

Either

and

aMx(x,8)=o0

Either Q Mx®( X,0) =0

conditions ab X=0 and X=T2

Simple Support:

lLx,6)=0,

A Nxe(x,0)=0

W(x,0) =0,

= i
or lL(X, o) -’-D,L

or VU(x,0)=0,]

or WX, 8)=0,
~(17)

A
or ¢Cx10): 0,

A

o Y(X:0)= 0]

The following conditions hold for the usual boundary
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A Mx(¥x,0) =0,
and
aMxs (%,0) =0,
Clamped:
Gy glef) -
¢ (x,6) =0,
-(18)
Whow el is. O |
é(X,Q) - O:
and
O (%6)= O
Free:
A
CLiwe) = o




:&5
‘
|
!

-

%

.,—4«1
'L‘QL mhuuuc T ./\,LML//»_” \‘ / MY )

0

’

v\ W
a‘ S\?\LY\) \L. Av\‘ l\‘ r‘\ N "‘_)

A M« (X)&):'

A Mx0 (

the right hand

¥ il
i

%,8)= O

A
0\ ¥ \( 0 7.- ~
v/ V\J /\Q NO =y

to the boundary conditions given in

side of equation (1€) is

2 '»\Ar \ {9/<: /r
s : /
: 7[1“‘/1“[,{‘3,/' 3 !7;1_\
v &
A A
1{/ / )’l =
s v aaxag.<Q
T \fﬁ’(mm _{
A
. ~ i ke ¥ (\_}r/ ’\L: \
= %z < ol ¢~ LWA 4 - YT
—
" N N - = SF. ~ a A f\‘
:":}w' ¥| ‘v/}"/ -+ | v M IV ET {‘ { "'Ll» J " 4 “[’.:\'
e r & J'/'/I ={Tm} 'L My i)
T ol o i AT e
1 "y \ : A -
+ G Uwn + Ly Upa U lVuy ) [ adxd & S0
L L S \ | I G "
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2,4 TORCED VIBRATION AIALYSIS:

The solution of the forced vibration problem is

assumed in the form of a double infinite series as follow:

uwm (%,0,t)= [\: 5_ u.wncx,@) Amnét),

I

Vomn (X,0,%) = }‘_S_ Vo (% 8) Qomn (i),

1

W (X,0,¢) = ;‘é_ Winan (%,8) Qan ),

F 4 E A - » —C2l)
@mn (X,6,¢) = 2% D wn (%0) Clmn(t), |
WA

\Pwm (X,@,'l:) = g\_;%n(x,&) me(t),

_where

Qwmnt) is an arditrary function of time to be

determined.

Noting equation (21), it follows from equations (1)
through (4) that the bending moments, twisting coments, and
shear forces are similar in the form of equations (21).
Substituting equations (21) in to equations (1) throuzh (4)

and utilization of the free vivration form of equation (1),



gives the following results:

2 2 1 ek Qoan 4 Ve &\Jw“) (ot +_Q_’:“am¢))]= ]D (x,8 -t)-
A N ol

Y ST hal Vo e e W )( onced + Lon ]« by 1,8:0),
™ N

}:z (2 ha Wmn (&) +Lom Gwntsl)]: AL

[ W% (4 Lot hon) ( Goen®) 4_().mamct))]=mx(x,z9,9)

.

§M

and

Z Z [_g Q(a. mu*th)( Cﬁmnft) ‘f’_ﬂ.mha-’””(b)‘)] Ms(x,@)t)

Multiplying equations (22) by uﬁ_’ OP‘L \‘\lf%

—22)

q’f’z’ | ‘

and \'Pf‘L respectively, integrating each equation over the

surface area of the cylinder, adding and making use of

orthogonality conditions, yields

2L .
amnct)-;-_amamu-)_ L g[_—em(x.s.t)]qc!xalg’]-—(zs)

Lnn (%,6) 0/

where

27 L &
Im“(X,O): jj[fl\GLC CL;“ # O:n’t‘\:‘\\/m>
0o

-(24)

a2 A o T A 7
.2 f%(¢wn+ %:M)‘f' 22,}lz_'g(cpwnuww"'%w{}mw)]“’[x‘[g,J
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and

Ewn(x,8,t)= Pe(x,6% Lmnxs)

+ Po (%, 8,%) \’}m x8) + P (x,6,t) W X 8)|-(25)

A
+ Mx (%, 8,t) g’b;,,(x,o) + Mg (%,6,t) %ncwj

The integral on the right hand side of equation (23)
represents the x;vork-done by the external loads in the nrth
mode. The solution of equation (23) is determined by using
the Lagrange variation of parameter mei:hod, and takes the

form:

eanlk) = Cwm Cos (.ﬂ_wm t) + Dwm Sin (_ant)

& ~(26)

i
R o Ewmn (X, 6t dxd{l it
i { g Dj{ n (8¢ Sim (Lown (BT

T-0

—

The arbitrary comstents C,,, 2né Dyn 2re determined
by noting the conditions of linear and angular displacement,
and linear and amguler velocity defined by equation (21) at
time £=0. Using Leibtniz's rule and noting the orthogonality

conditions defined by equation (20), there results



U-Tnhc X) 8) O)

Awmn (0) = i L(27)

_and ey J

L] Utvnn (x)GJO) B
Awmn C0) = - (28)

Twn (X, 80)
L
where
277 L Zrt
Tmn (X,6,0)= _{ f [¢ A“{ iwn G2 (%,8,0) + Youn V (%,8, O+

Wy th,&,O) +im °~{ ¢,..,, (080 + ‘Pm (}J(x,a»O)} - (29)

fh3{¢ LLCK,@,O) T an ¢6{.0, 0) 'i‘(kqn V(l;0)0)+ Km SU(Y/J U%JXJG

J ~ ;
“and
e I L 2

\Tmn (X,0,0) IJ[fAQ{LLnn U»(.x)&) 0 + u”'n V‘(XJQ) 0) +
Wini (x,6:0) + il {43‘,..,. @(x,&;o) +%, ‘(/(x, 59 Lo

Py A At R " A
+j;é_ ?{ D0 LT 9/0)7‘unn?‘(x/ﬁ,O)f‘%nV“,&)O)f-Vm” %(w)a)}]aa[gc(g

—4\-.

The dot refers to differentiation with respect to
time. Usinz equations (27) and (28), the solution for the

parameters C,M,\ and 'Dw\n are given as;



Cwn\ = ClLwn (o) 3 ]»(30

and

:DW‘“:_-(\}N“ d‘mn (o) . (32)

The complete solution To the differential equation

(23) is written as:

=y

Awmn(t) = Amno) Cos (.ﬂmnt):{]fn; - (o) Sih (..(Zmu't}-

o -( 33)
/_i”_ : C

- [SS{ Ewmn (x,@,t)}w&:/f]&h _ﬁm (& 0dT.

Qwan Imn(x,0)
=0

The last integral is called the Duhamel integral,

©

. ] e (3 3
the perameters Qmmlo) and Amn(o) are given by equations

(o]}

il

(27) and (28) respectively.
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2,5 ILLUSTRATIVE EXANFLE:

Considering the case of simple support at each end
of the cylindrical shell, and the solution to the equation

(9) is assumed in the form:

ULwn (X)

™ TT
AMN COS -—:x,

]

Vwn (%) = Bwmn Sin M x,
Whan 00 = Cann. Sim mIx, | (34)

Cbmn(.x): Dwn Cos l‘gx,

and

Vi (x) = Ewm SmMTx £

Substituting equations (%4) in %o egquation (9) and
== ]

using notation

mra . b (35

the following five equations are obtained in the matrix

form:



where

Cu Ciz ¢ Cig Cis Awn
C2) C2z Gz Q4 Gos Bry
C3) Ciaz C33 G4 Gy G |=
Cy4 Ca2 €43 Cus C45| |Dwn
Cs) Csz Cs3 Csz 55| |Epn

\\ _O.—.;' zazﬂ +KJ
A s

2% Cq lez*\F)

Ciz= C3 1= -
ar|,
Cia = Cai = — =l FL e T

I 4 4 aot S m +d K,
Cis = Cs) = 0,

S MES AL LR O 8
C2 zaz| ~ ax t K,

28

-(36)




and

C35‘: Cs}"‘ (/+°()77

B A S
C‘H‘f" ___/,z “zl_az” ,.a_?_—f-o{l(,

+ A
Coss Core Lapm,

Cors - Bholp - gl - g euik,

29

-(37)

For the non-trivial solution, the determinant of

coefficients in equation (36) must vanish, The algebraic

expansion of this condition (given in appendix B), yields

fifth order equation in _ﬂ_?;“

. For each combination of m and

: 2 4 . "
n , five eigenvalues for__ﬂ\“can be found, corrosponding to

five natural frequencies associated with the mode shapes
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of the free vibration.
Considerins symmetric motions only (1.8, 0=0),
the fifth order equation reduces Go 2 cubic equation and a

quadratic equation given respectively as,
3 2
K"AZK “\'Cl\K“dO"-O: }C?’@)
-and
2
C.K—-C.K +Co=O, 39)
.where

d'z.‘- Ozla}.{ o<f7-(2+7~1x) + 5 (,4—01{92)_})

d = o[éz{ Lp2[p2 (142N + 2-u2 |+ SLE3{ e ',M)mﬂ}

do = e { (e FZ’HX"‘MZ) "0(5]"2(2/14—‘}’2) +ﬁx(o(j>2+s)la2£

=1
- (49)
C'Z:‘ 0{0,4)

¢ = AF{dl-mIPp? + s(1+3) ]

and

Co=  (p2{ A ()i s(i+3],
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The roots of equations (38) and (39), in view of

requirement that the natural frequency of free vibration

must be real quantities, the latter equation will possess

five, real, positive, unegual roots, which can be expressed

L gop],
Koz [P+ £Or 2]
JS !
K3: AR Cos(§)+ %3'2-:
' .
Kg= 2 &> Cos ( 8+27) + 9’52-)
and
,<S'-"- 2Rll3 COS (61":"77)_*_%}:)
where
[- ( dl 3 42) J
and

0= Cos [ 2R (do ~foida+2

.

—(41)

~(42)

-

Equation (41) includes the effect of in-plane

stability forces, If these forces are neglected, the five



roots of natural frequency equations are writien as:

& ' -(43)

" and
KS- = 2?"% Cos (5*4"% &,
where 3
&z 2 317 N
(= ["7_7 ( el""sl'ﬁz_) ] ]
A - =1
8= Cos zr(eo ee,_+._7e )]
£, » oT'a'a{ 2:0p2 + S (1+9p0) } —~(44)
e, = o—l&{ QFZ(F1+2_M1) *5[.?1{/*2"&5“)}}}
and .
Co = ;’2{ (L) (12 —dSPZCM-P‘Z)j
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Solving for in-plane stability force, setting natu-
ral frequency equal zero in to equation (38), where n=0

(i.e. for symmetric motion only ), gives

N Nx("“) e P _E:Z_M_; )

F?. FZ

One obtained the smallest value of equation (45)

“using condition %:;-: equal to zero, which yields

o aw | dscr-4%

P: . h —(4b)

h* . A L R
/1+€,S i 3</A)J

Substitution of equation (46) in to equation (45),

gives the critical buckling load as

o

ER | 1=t [(2+ ) /Fo-d) 0 2 )—2"“]

(Nx>c'~r B a

~(47)

J 3 (14 L)

_from which the critical buckling stress is given as

(NX)cv Eh I 44[(5 *5 —CI-A)(H "2/4-) :::c

(G'ix) g o (48)
B /3(/—42) (/+£_6f},a_)
c‘l
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Pig. 2.52 critical buckling stress versus radius to thickness

ratio.
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Equation (48) shows that the critical stress is
independent of the lengh, L, of the cylinder,

Experiments show that thin cylinder under compression
usually buckle in to short longitudinal waves so that p2 is
a large numbegf Retaining terms in the numerator and the
denominator waich are large in comparison to the term 24,
and if the effect of the shear siress is neglected, the
factor 1/S approaches to zero and the following result is

obtained from equation (45)

Eh (|-u?)

-y | B

Ny = —

+ oA P (49)

4
this result is similar to thatl given by Timosaenko and Gere

for n=0.

For the more general case of motion where n is not
equael to zero, the equation for critical load is found by
seivting the determinant of coefficients in equation (3€)

equal to zero, and setting the natural frequency of free

- e R . 2 . 4 § Lt
vibration equal (o zero (1.e.JQ“;$O), This condition yields

T L) &
N 22N £ o

wner

R= | t4) ”“Z)SP“O(( 38 [ (pm )t



{ 2LL+;L—(3+A)U-A)n"\s\="+§(\+u)}-§c’sm)w"—zﬂ}nzr‘
+1 [ L (M)t + (lra)a] + 3 () - § i+ 4 Graynt] np?
+{ (% (lw)’}n‘ b () (ed) + e PR =L ()P
-+ .{ 2(1-A%) * L ()M + %:(?—M)y\z}'y\*] |
+ ;_‘—aou)s[Q'f‘f‘)]w6 + 40 (144) I—3A)m1P5
(49 244 () o} wipt = [ 1 b0
4 § £ ((aa) a2 wp® L (- +L (34 “é]
+ 5 [U-Az)ﬁ:‘* £k () § L2 (me)n-1] PP
+ (-t ] 4 S [ wpeLinpntp
v 20+ L[ (o stn?] $n%tf L (ram)m-1) x

3 | acy
L(1#4)7 fg+{ 1+ 4% —pn® +[ 1% (2+ (’*“)M}hz}hi}

371

—(sl)

+5 [ 2 (m) AP —h(ronntp? {3 [ I 24 B2



+ 117-[ 12:( [R)(SM) — (:—A)n]} thw_+{,_ J__E_«(m”z?j ,%("4]
SR S CO L Uy
+ 57- [—’2!— ("’“)“7"74 -l’{ [+ #(}-f,u)?’,’}-nr—s

- | :
+4 Cem) (1-24) =& it —L(p) (=4 :‘

3 4
+ s [.‘ll_-(:-r/&)%?szﬁ-{ J},(HA)?’._LZ(/—A)}nzk?i.{,+§t(lfﬂ?ﬁ}bfa

; 4 7. 5 3 __4 "
+ Rty f bS[0 ﬂ%

and ' : _ iy

Te Lasp] spmd)+ SL Pt { g minig®

+ Lam)wtp®4 (Al { e Lot + £ aran©

+5 Y_ 3|a7' + L n* (™) +l,§_ (\—M)}]“1}] .

38

—(52)

Assuming 2 condition similar to that used in equation

- (49) where PZ is essumed large, equation (50) reduces to the

following simplified form:

e A ‘ -
Ny= =4 Ny = — it ~53)
Eh = i
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where

2 Y& +O( 2
(f'f“n) p

A
R =

{ - LA (pH+7V*

2 p*
(-4 (pFn)s*

k3
{‘CI—A)S‘ [zut}uw)(sm) hﬂ—S [I -4+ 5 "J (%)

2 a
e s‘[ 102 -S{ Latw'tpe 4 (M)ﬂ
R) ( prnt’s? -

B ]

et

and

24 p3 J
dx +.L w2 Ml 5§
T {H(m)(pzﬂv&t[‘b g ;

" The critical value of the stavility force may be
determined by setting%!%-‘ equal to zero, and solving for the
parameter p which yields, when substituted back in To the
general equation (53), the critical buckling load.

Noting the degree of the parameter n in the numera-
tor and the denominator of equation (53), it follows that as
the factor n increases the critical buckling load increases,
Por n=0, eguation (50) and (53) coincide with equation

(45), vhich was obteined for the symmetric motion only.
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CHAPI'EZR-TIT

 SUMMARY
W

.

The equations of motion for the forced vibration of
thin elastic cylindrical shells with consideration of tran-
sverse shear, rotary inertia, and in-plane stability forces
have been investigated by using normal mode theory. Orthogo-
nality conditions are determined for free vibration together
with associated boundary conditions, five on each edge.

The application of resulting equations is made for
simply supportea end conditions and roots of the natural
frequency equations are formulated in the term of in-plane
stability forces. The fifth order equation for natural fre-
guency of free vibration is solved algebrically for the
case of symmetric motion only (i.e. n =0).

Forced vibratvions solution is formulated in the
Duhamel invegral form which allows for the application of
any arvitrery surface load, static or dynamic. As well as
any initial conditions on displecement and velccity.

The determination of the natural frequencies of free
vibretion from the fifth order equation is an extremely
tedious algevraic operation, and is not carried out numer-
ically in this thesis.

Only algebraic solutions of the problem presented in
the thesis are obltzined, additional numerical work on the

problem could possibly carried out by using digital computer.
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CONCLUSTONS

The critical buckling stress of a cylindrical shell
as defined by equation (48) is valid for the special case of
thin shells only. The theory used to derive this equation

: : A5 7y ; -
applies only when the quantity Egl is the same order as
3

unity, and when higher order forms of this ratio (i.e. é% y
‘6}3 geee) @re negligible in comparison to unity. This condi-
tion restricts the radius-to~thickness ratio a/h to be equal
to or greater than 10. Referring to figures 2.,%a and 2.5b,
the inclusion of the effect of shear stress reduces the
critical buckling stress by approximately 5%; for 2/h=10,
wvhen compared with the theory given by Timoshenko and Gere,
As the ratio a/h increases, the reduction in the critcel

buckling stress due to shear siress becomes less significant,

-

hat is, for the condition a/h=48 the critical buckling
ress is only recuced by 1%.

Referrinz to equation (48), as Poisson's raiic , &,
increases, the critical buckling stress decresses, Increa-
sing the value of AL from 0.3 to 0.4 decreases the value of
the critical buckling stress by approximately 0.7% in the
renze of 2/h=10. This decrease becomes insignificant for
the ratio a/h greater than 50.

In restricting the =olution to symmetric motions

\

only, equation (48) for the critical buckling stress zpplies

only for the special case of chort cylinders which usuelly

£

buckle in 1cr;e nunber of short lonzitudinzsl waves,
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For long cylinders, equation (48) does not apply
because the critical buckling stress usually occurs for the
condition of antisymmetric motions (i.e. nz0) and for the
case where total number of longitudinal waves is small
(i.e. D° is small). Equation (50) applies to this condition
and can be used to obtain the critical buckling sﬁress for

the case of a long cylinder.
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APPENDIX-A

The determinent of the equation (12) is given in

the following form:

|Dl= “’B\3 Bz.3 R23 Baq Bys =0-(A-)
Bl‘]— O —qu. : 84-4- B4s

0 RBas Rzs —B4s Bss

= {( Bzngs‘—Bzzr)[BSB (B84 -B73 ) + B34 (2B13B1a+BUB3Y)
+ 858 1]t (spers 29[ B BB a8

— Bus(BiaBry+ BuBas)] * Bas [ Bas (81B28rs7Bistu)

—A2)

+ B:,s‘(&\\ B R34 +2B130B 4 312)]

o (834 Bys - Bss Bas) ['355 (Bu Bzz“B/?;.) ~Bar (3:1313*‘ B Bzzﬂ




+28,4B:s [512(3333%’ +B3483s) — B3 613845':]

s 82;4 [, GSS'( 823815" @szss‘)“st (323 83‘-823‘33:3}=Q
l

, Considering symmetric motions only (i.e'. n=0), the
quantities in .the second bracket of equation (A-2) equal to

zero, and the equation reduces to the form:

(B2aBos- B2:)[B33(BuBss-BE) +8,4 (28184 +81 Bag)+B2B4s])=0 —(A-D

Whic]i. gives .

)

(B2 Bss —Bzzs) =0 ~(A-4)
and

[ B23(BiRas—BS) +RBse (2-3133/4-4'3348“)'*373,8#3:0' ;(A-S)



APPENDIX-B

The determinant of the equation (36) is given in

the following form:

D= Ci3 C23 Ciay Cq Cas |=0O-(B-)
Ci4 o Ciq C4y  Cas
O Cos Cas Cys Csv

-
‘{(cuc;;- Cus )[C33 (ciresq- ¢/4) +C34(2613C4 "CIlC”)"'CI?in;l}I
%
i {@55 Cas -C34Css) L ¢ (263 Gy (‘/ZCSB)‘C“ C?-JJ
o C|L(2C'4C¢3+Cl1534)(czs G5 —Caq CSS’) -(8-2)

HGa s G C 4-4)[.('3 s (Cncea-Ciz) +26s (C”'C’;'C”CZQ




4

2
+Ct4[C2§C$$ - C;r(ZCzsCza _q_?-c'iY)]

T 2Ces [-.C”-F'4 (CGreGs —Gacys) +Cialy Czsle;]} = D'_}

Quantities in second bracket of equation (R-2) vanish
' when considering symmetric motions of free vibration (i.e.

n=0), the equation (B-2) reduces to the equations (38) and
(39).
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