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ABSTRACT

A NONLINEAR THEORY OF THIN ELASTIC SHELLS
by Gunvant Chauhan
Master of Science in Engineering

Youngstown State University, 1972

The purpose of this thesis is to derive a nonlinear theory
of thin elastic shells including the effects of transverse shear
stress, in-plane stability forces, and transverse and rotary inertia.

Using a variational theorem due to E. Reissner, the equations
of motion, the stress-strain relationships, and the associated boundary
conditions are simultaneously determined. The resulting equations may
be applied tq a particular group of shell problems where the applied
statics and dynamic loads produce deformations which are of such an
order that only appropriéte nonlinear theory accounts for them.

The resulting equations are simplified for the special case
of a thin circular plate subjected to the above stress and loading con-
ditions.

An analogy is made with the problem of a thin rectangular
elastic plate using rectangular cartesian co-ordinate analyzed by

R. D. Mindlin.
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CHAPTER I
INTRODUCTION

A wide range of nonlinear theories for thin elastic shells as
derived by using the finite displacements, differ greatly depending on
the restricting assumptions placed on the resulting deformations.

In Naghd£4£resents a linear theory for thin elastic shells
which includes the effects of transverse normal stress, transverse
shear stress, and rotary inertia. A number of existing theories is
summarized by Sanderée&here he derives a class of nonlinear theories
and analyzed the Donnell~-Mushtari-Vlosov theory as a special case.

Numbers of practical shell problems involving dynamic loads
vand displacments are of such an effective order that they must be taken
into consideration by means of an appropriate nonlinear theory. Archeél)
presents the nonlinear theory of Donnell-type including shear deforma-
tions, transverse and rotary inertia effects in-plane stability forces.
The effect of transverse normal stress is neglected.

In wave propagation problems, the effects of transverse shear
stress are of prime importance. In elastic stability problem{the effect
of the interaction of transverse shear stress with the in-plane stability
forces is of greatest significance.

The objective of this thesis is to derive a nonlinear theory
of thin elastic shells including the effects of transverse shear stress,
in-plane stability forces, and transverse and rotary inertia, using a

(5)

variational theorem due to E. Reissner.



The equations from the resulting theory are applied to the
special case of a thin circular plate. An analogy is made with the
problem of thin elastic plate in cartesian co-ordinate analyzed by

(3)
R Do Mindlin,



CHAPTER 2
ANALYSIS

The nonlinear theory is derived based upon the following

assumptions:

£ The thickness of shell is considered uniform and is small
compared to the least radius of curvature, that is, terms
of the order of -(h/r)2 are retained in comparison to unity.

2. The component of stress, normal to the middle surface, is
negligible in comparison with other five stress components.

Linear elastic stress-strain relationships are assumed to
hold.

£ Points on the lines normal to the middle surface before

deformation do not coincide with points on lines normal to
middle surface (i.e., shear deformations are accounted for).

2;1 THE CO-ORDINATE SYSTEM AND NOTATIONS

The notation used throughout the paper is comparable with
that used by Langhaaé?) A point on the middle surface of the shell is
defined by the rectangular cartesian co-ordinates given as X = X (x,y),
Y=Y (x,v), and 2 = Z (x,y) where the parameters x and y are called
"curvilinear surface co-ordinates" (see Fig. 2.1). The normal distance
from the middle surface to an arbitrary point in the shell is denoted
by z. The unit tangent vectors to the curves of constant x and y are
defined by 5& and i@ : respectively. If the co-ordinate lines on
middle surface of constant x and constant y are orthogonal, these

co-ordinate lines coincide with curves of principal curvacture of the

middle surface.



The distance ds between any two points in the shell is given

by the equation:

ClS2 = a(_zdxz + ?fdyZ», Vldzz' I )
where ol = K (‘+§:) '
A 20

L }’_ ; ol
Az :(Y;\-V\'x) and

B: =(%-%) .

. _ |
Also, the parameters %, and 7% are defined as the principal curva-
1

tures of the middle surface, and the parameters L, ﬁ,, and }) are

known as Lame's coefficients.
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e STRESS RESULTANTS AND STRESS COUPLES

Stress resultants and stress couples are applied to a
differential sheil element as shown in Fig. 2.2 and Fig. 2.3. These
stress resultants and stress couples are defined as total forces and
moments acting per unit length of the middle surface, respectively.
From equations (1) and (2), the areas of the cross-sectional elements

are defined as follows:

dAx « Xdxdz .A(\+%)Ax&_
and dAy = Edydz B Ci+ %)dydz,

where Y, and Y3 are the principal radii of curvature of the middle

tl

surface.

Nxx is defined as the in-plane force on a cross-section per
unit length along the co-ordinate direction. The total in-plane axial
force on the differential element in the x direction is the product of

the force times the length, hence, which is given as:

+h/1
Nxx de = cjy S ?Zxx CJZ 7
-h/.z_
or *2
N xx = 'é f & Zxxdz .

Likewise, the in-plane force Nyy, the in-plane shear forces
Nxy and Nyx, the transverse shear forces Qxz and Qyz, the bending moments
Mxx and Myy, and the twisting moments Mxy and Myx are defined in a similar

manner (refer to Fig. 2.2 and Fig. 2.3).
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This complete set of relations is defined as follows:

b o }
%
Nxx = 'é g B Cuxd= = g Zxx("" Y=,_> dZ'
zh +h
(e (TEy (+B) e,
NY\/ = A‘ . 7ydz = _%
K o
z 3 %
Nxy = ‘;gg B Ty dz . ,f», Cey (v B ) dz,
..-2 v i
[ A J:
Pttt SRR ho< Z"YAZ 5 Jb_ Z"V C“' Y‘.) :
b Wb
& - Z -+ (3)
Mxx = ‘é . (32 Cexde =-‘(h 2 (""ﬁ_) (Zxxcizl
3'-% +h ¢
gy ®s AL j K2 ?773,% = S z (H- E)?\”JZ,
—h a
uh b
Mxy = b J B2 Tuyde = [ 2 (+E2) T,
e
Myx = ;s{'_gh L2 Cyxdz = Z C‘+",> (Z‘}x dz
t+h,zt *b’—?_i &
Qxz =E§h g Crz de ® (h Txe = (O 73_)‘;2/
LYg J
*hIZ +h'7. =
CDyz:kM « Cyzde =Sw Tyz Qi+ &) d=. .

From the above equations, the following equality is obtained,

Mxy My x i
Nx\/ o = Nyx + Y (4)

\

282287



2403 STRAIN DISPLACEMENT RELATIONS

The general three dimensional nonlinear strain displacement

equations are defined by Langhaar as follows:

o 3 -
éx,(=i[Ux+%V*$W+§(Ux+%—V+°§;W)
‘Z.J;((VX— %U)l-‘- iLo( <Wx— a;—j'i U)?-J )
Ey\j=é—[V3+%W+@_§U+L(V3+§_1W+§LU>1
ZB(W ——"‘V)“’ (Uy - E)XV)J
ézz—- [_WZ‘*'{)(U"“?V*"‘(WE* U_,._jgi_v)
*7(”2——’1w)+7(vz_%mz]

£ U <V _XyU
X”:LE\]*?—%—;@ i (Uxs GV 1)

(Us-Bxv) oy (wy+ BEU 52 W)k - 0)
ap(We 32 UXWs -2V
Yy [ o Tl - BeV o L (vyr BBy D)
+5LY(W2*—§{3V+ § U)(V\:’y 2 E}; \/)%.X (Uy- 150_; V)(Ue - ;YE W)]

Xx%-’ "ok 7— 3{;& Y.

+5/La< [(LA;«J«D—;; V)(Uz__x( V\!)"‘ (VZ" v\N)(\/x d?@

we Vs ol Tun oL (e v e TV, )

i (5)



Retaining all the linear terms and rotation terms of the second order

as Wx~, Wy~ and WxWy, the preceding equations reduce to the following:

Qxx = DJ(‘:U, +?-<—\/—V+O(ZW +£l‘o<le]

P

M
!
N
i

WZ 20[

/

By QsSumP'Hoﬂ,

P s Uy S M B e e

il S i b

<_
el
™
9
<
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z
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W\
=
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oL B

s
o™
¥
iz
|

=
s

-(6)

For the special case of orthogonal curvilinear shell co-ordinates, the

Codazzi's equations apply and take the following form:

(%)\} 5 JYT}‘A:I. and
(2108 B

1)



Also, the following equalities are obtained using equations (2) and

(7):

o R |

B P

Bx _ B~

A oty

A

v X
and 4;i = Bz.

.

-(8)

Substituting the above equations in the equation (6), the following

reduced forms of strain displacement relationships are obtained:

exx-i[U+~V+ W
éﬁti:é[ 1
éz?ﬂa = O,

P spllyie g Vo 5
Yxz - Uzdr%‘-?f&ilf
?/\Xzz'Vz+w‘J~%i\/

The following displacement approximations are introduced:

U = u (x;¥) + =z ¢(XIY)1
V=v (x,9) + z \J{/(x,y). and
W=w (X,Y)-

—

- (10)

10
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The parameters u, v and w are the components of displacement of the
middle surface in the x, y and z directions, respectively. The functions

Ct) (x,¥) and \P (x,y) are the change of slope of the normal to the

middle surface along the x and y co-ordinates, respectively.

Substituting equation (10) into equation (9), the following

expressions for strain-displacement are obtained:

A
Cih = i[uxlr = B +§1<V+zw)+%W+?-'_;\Wf
il 2 R
Eyy = plWrz Wy + Br(Uez ) Wy

Exgls O,

D)
Yx\j o<g, [o(.CUy +Z cpj) +B(W+Z2W,)- Bxfxcwzw)
- B (Urz )],

A a
))xz - UZ == \A/_ - —?‘— | \’\d
A& A
Wy 2
sz = Vgt *B‘— - Eé— W k-
Replacing the parameters oJZ, and é byzl: and é ¢ respec-
tively, for the nonlinear terms in the first and second equations above,
the equations reduce to the form: B
hel
(“\"—“ CX)( = Exx“"ZkX;

5\/0\/ ¥ Z 1"7,

(1+ 2)Ev
(1+ 5 )(+ 3) 0y =(e f J(Fer = 80404 3 ) r28r)

1 Wix W
+AB 7

<H‘—$7 ))xz = g)x?: ond

(\-\— \)\/% ¥ ?j? y

(12)

ﬁlm




where,
O
‘Pl

ke x

i

‘

(1

1"

-(13)
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2.4 COMPONENTS OF STRESS

13

The usual definitions of the stress resultants are applicable

and take the following form:

h
Mx& = -gh Zxx (\+ %1) dt’
:_h
Mxx 2 Jh Z%K (H )Jz
i“{
sz # S ZXZ C\'\'%z) AZ' Aoe
~h
.
N}/X T S ij (H%‘.)AZ
=h

e

. C\4)

Assuming a linear variation in stress distribution, the

following stress distributions are defined:

2 My
([‘*'—)Zxx— N:‘X+‘Mx2 ;

3

Myy . {2 M\,y Z
A A3

i
£=
4In
N& A
5\]

\<

N xy 12 MxyZ

-+ PR L T

3.3

-
31N
\_/
(\']

X
<
1

WA
Ny 4 4_'%_'\_4_\&’_"__2: _ ond
I e

T
o
=
™
=
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The three differential equations of stress equilibrium are given

in curvilinear coordinate form as:
5 (BY T )+ 5 RV Tp) 0 2 (o p Tz )+ Vot Ty
_¥,F,0(2 ?:xz,-— QFBx‘QS?E.—-FBY%tqzzil-» %c(t5'?{:x =o,

%C@)’ (Z"‘j:)* —“a?‘\é <°<>)‘Z~a~&) + _322. (&ﬁ er'}) +))l5er\3x
AP Z}Z.-—))%;L(ZKX_D(?%'ZZE_tgo(P))F\A_:o - 16)
(5)) ZXZ} o (‘7«9 Z\&a) RS ___ QX? ZZE] + fS))x “Czx

* o(\)\}(Z;z_\& ~§0<Z Cans o&@zfzx&\é X gD(F;‘ZFZ = O,

Neglecting body forces and substituting the condition ))= 1

—

for thin shell theory, the previous equations reduces to:

%(@ Zxx) + ;-\&(a( zﬁ"‘) ¥ 59-2 (%@ZEK)—\» o<y Zx\a.
spreTaa-BxTay=er |
5 (BTey) + 2K Tyg)+ 2, (<P Tuy) + Bx Ty
+ X Pz (Z\}z— “\A(Zxx =,
2 (B Txe)+ B, (% Tye) + 2, (<@ Tee) v ¥y Toy
_pdz(Cxx—‘xE?Z(Z*a—} s e NN

Substituting the stress variations given in equation (15) into

the first two equations of (17), yields the following stress distributions:
2 s
o<
z = Q xx [4- —"“J
(?*”Fi)‘ZTxE 2 h h*
z .
(+2) Ces 3 D- 43]
e 2= = .
Vi 7 2 n

Noting the assumption that?ﬁ}g= 0, equations (15) and equations (18) define

..(\g)

P

the five components of the assumed stress field.



15

2.5 REISSNER'S VARIATIONAL THEOREM

Using the Variational Theorem of E. Reissner, a derivation
of appropriate stress-strain relations, equilibrium equations, and
associated natural boundary conditions for a given set of stress com-
ponents (see equations "15" and "18") and strain displacement relation-
ships (see equations "12" and "13") is carried out.

The following form of the variational theorem for three
dimensional elasticity is written:

5L+ 5 [ J{{f( [gec Eex + TayCoy » Togloy» DradnsTyndyd)

! =
T

¥ :Z—LE [‘Z"Z " "Z\J; o ZMCZK’( OZH} » ZCH'}*) ( ZX}Z-Q- FZ)(22+ OZ\;?_)]
+ S [ UZ» \9&-» WEJ%Q-&-%)O«— %1) AR dxdydz
7

q (.([qu* PyV + 9w | AB dxdy
+hiy

e ¢ [_ I (6;{ Un + GZnLLH:-!-‘anW)(H' %)JZ]A&JS% ds=o.
-k
T --(19)
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Substituting equations (11) - (15) into equation (19) and

1ntegrat1ng over the thickness of the shell yields:

51+ 81 T7{L e (hen)+ i (3] +L9pCh )
\2M\m( kg)]

*ig%[“\ Yx + (hs 7.Y1>W‘wy nMp}[nsx 1;\-& AB]

Py M‘}X\O/\Jx + M\}x 8‘37(}
+§sz§)xzz, + i@jz\v}zﬁ

Nxx M h3
—Z-LE Ehéizi[h*ﬁ B YYJJ = d AT ‘Yz)]
+ LT 4?\24” e s 5 = (i “Rn)”
ZE,{ D‘* nz mr,_)] 24MW ik [ t‘g(%{'\%ﬂ
WS
i ‘—-————-M;\CTW[TH; J”%Tcp e —'71)]}
g [Nx,(hu\,\, 17.M,<€3Mw
<'+“>{ ST B (G- f)] AR [ 26 L)
s
44 hﬂxy [- g\lo ( e vpﬁij}%

G S Gam 5D 5]

i (\—\-‘M) {(3 Gn) [8 h+4~05 wm- Y'\Yz)]H

o ?{L{L[h‘*"“] ZutCPt[ (r. )J*Cbtl.r? :THY}[

+2\9t\¥t[ﬁ?’(ﬁ )]*L"&[n g;e"- 17}

{ D‘*‘ YiYs
dxd
-5 {wkxs)[h \2m'z]\)§ A dndy .h
~SS[_szCU+Z¢+Z‘31CU+Z¢) ’Zza\/\)](n- E)CH_Z) :Abdxdy

u{@[ @'Un»ZntUt+anW)<‘* )32]‘\‘:‘1‘1&"“10 “(20)
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Before carrying out the variation of the preceding equation,

the following approximations are introduced:

vh

S‘ (\+%)(\+ %Sldz o [1+ _l%”. (\i,l_%,z)]' and

h

oy (1)
5 —
LCH%)(‘ +‘3’.) 2242: [H;o 1'.(*:\ Ym)}.

A
2

Taking the variational operations on the displacement and
rotation parameters in the sequence u, v, w, CP, and \}’, and also
on the force and moment components in the order, Nxx, Nyy, Nxy, Mxx,

Myy, Mxy, Qxz, and Qyz, yields the resulting equation,

(465~ 2(8Mxe) +34 (ANya) + AyNixy - Buigy

€
L ABQxz | AE:Px §‘hAB{(i+ YUt
7

EE (3 v )b b Su
- [:;—XCB Ny —x%ﬂ(A Mﬂg)-A\zMxx ¥ BXN‘&X

AB
X —-?C?—j—z«k’ffif‘é ShAB {(1+A2 Yk

+ = (% )\\*ttﬂ oU
1 [%{BQ,(E +.?3 Nxx Wy 4 Nxy Y\/\j,(\—k ‘l";\’i‘)_"i;_‘i wj}
KAQ\&zJ»- ANx&\}W\“Mv\;Wx(H h? )—‘\’lﬁ’w }

4 ABPzﬂLAB{‘\L%ﬁ +,‘§L}3%— ChAB {(\-»%}‘YD V\Jtt)g]g\'\)'
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o [g.x(B Mxx) +§1\3 (AM‘ax) + A%Mx% ~ B"M‘d‘j ~ABQxz

T ABRy - Was{hob) v s (0 2 Y] s
_[§%<BM"\3>+§§ CAM%\})—A\é Mxx-\-BxM\ax—ABQ\éz

+ ABRx - __AB{(Y e s (042 Yyl SW

L {M <1+ ml(vz n) M Ny Mk (3,8 - & SN %«
+J: {N‘é‘}(l—# e l‘__ > AMxx-»MxH(YI 3 ’3 &ngxﬁ
+[ /LO{NX\J(H-\’ZY}_ LZ v.) Mx\;( « 7_)73—%(

—g/\é [14'_ \!/7_. v“.)] \3|7_ <Y. Y»J WKW\/ \21’2]% *y
+[‘_2 Mxx{l%—zeh FL_;')__ (,{M\é\}} Nu ) k]SMxx

[ 2 Myy §10 2 (4-4) - M );’_\”(n L)y SMyy

[z4o+mM {H%KL (i }4.? ‘”DN (45

E ho AnYes ¥ 0

—Sx—gj{”%,' ».’7, r)% %%(lv.“l?v_ v[;/g:\)y:]ng

Z%‘E‘foz{Hw nov Y- Y2 SQua

Z ‘/
o PAT i )UOQ\&E {H:&%r‘ (Y‘;\_lhﬂ- }/yq_] éQ}Z%A%de\ji dt

S5Eh
..(22)
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2.6 EQUATIONS OF EQUILIBRIUM AND STRESS-STRAIN RELATIONS

The following eguations of equilibrium are obtained from the

variational operations on the independent variables u, v, w, ¢ and Y/ :

531 [BNxe] * 22\} BNyx] + Ny Ay — Nyy By + Q_lc_z. AR +ABP

_‘EHAB[Ul.ttC“‘?_,»vQ"'CPb (\r\ \m)]
2 (BNy] + FLANpg] + NyxBr-Nux Ay + 22093 4 a8 Ry
= ghAB [bee O+ BT ) + Wee 2 (L],

[E Mxe )+ 5 [AM}A.]*'MX‘} A*&- M%\}Bx -ABQ«xz + ABRy

- 0 ag (o (heg) « e (4 28 wlj] g

%[BMxﬂ*- = [AMB}]*'M‘H Bx—MxxAg ABQXZ+ABRK

= 82 pg Lo Chod) » e (e 22 ],

%[BQQ—& %— NxxWe + Mxy W\;D*‘ (’,:{J M——}W‘}]

+ 2 [A@}ﬁ % .4 Ny W + My Wx U+ mi'] M"} W;L]

Ao ) o = s Lo o )

P
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Equating the co-efficients of variaticnal terms éNxx, éNyy, Sny,SMyy,
SMxx, 8Mxy,Ssz and SQyz to zero, one obtains the following set of eight

stress-strain relationships:

EHLMM{ th _‘;1__'3;«)23 - 4 Nyy +Mxx<'|r == )]

o A ey

= A*AE>\4+\1 A E—":,
| A
é‘hEN\j\jgl-\-%} \"_ ;,_L)S MNxx+Myy<—l——)}

e

g -+ K'BBX + 2 +252W7 = &3;,
20+ M)
—Fj:—.E X\J{Hnﬁ(ﬁ Y> MKY’{— _—Xl

_[‘_’f v Ay« [2- el 2 (b
e wg][ CEN W‘W*Emvj

3 ))" : ))ﬂ iy nn Y vl S\’ m )

LR @
[0 L 2 (& -5 0] R (58)
Cix a7 gkl kx
Eh‘#[M“ &456\7 1} MM)&X]+N\!3< )
: ‘gy + BB by,
24.Ce ) g (1438 (4 -3,)]) ~ 26520 Ny (- >

E h? d) + 35" L
W q; B] |+ —
= s. A" o TR A\_j] *l B L zo\f

“—'ABBX][- '\lfz] % %\%‘[;&

= Sx+ 53[_”’10& ""):] ))V( )

_ Wixwy
ABYz




_ il
12 (1 + 1) Bt - Yo -

B EW Qe [1+ Tian Y‘ ’”)] e | })xz’

12 (14 M) RV T g L R
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Additional algebraic operation on preceding set of equa-
tions (see appendix) yields a set of ten stress-strain relationships
as follows:

N x x 'O u,_) E.xx & ( z) 873 - D(‘\,;‘-%,_L) kx|,

¥ MEH ° E-.H ® |
POl S S8 s BAS J0tg

{

Eh : : 2 %
Nx\-A, = 2(|+,u)|:-%( + ))} + 8\}%—(3¢'-%>+ WA;\J\/J

, SR 3 8 | Wy W
Rl Ao nti-4)-52]
- Ebh L) L
e £ [ty v s Gy T
E et H _Wny
Gh [_Yl Y’z.] [éx+%\a+ b/x

Y % ABr, ’

Mxx = ~D<?’-l —ly,_)ci:,l + Dkx + D,uk‘g :

Myy= =D ($,- £)Eyy+ DutkxaDky

Mx\&_ D (1~ u)(ﬂ_ ¢,>[Yx+ ))‘;j bt 5“3 (n Y1>+W5W\/

AR
+E£'2-_&>[gx+sx3+m}(¢,, 1)- \Zg\:iy]
Myx = RO [ 1% + 5+ 5402 (3,- %, *“L’“Q’
« DO 6 s 8y 4 ¥ (-1 - h//:e,wry. :
Quz < 2 Gh¥se, and |
@yz = 2 GhYyz. i

The (4)th and (8)th equations of the above set of ten equations are

defined by noting equation (4).
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i (24)

COMNT.

..(25)




22

The associated forced and natural boundary conditions are

determined from the following terms which result from the variational

operation:

5 90 S
f j ‘5Nxx Su‘x d\}ou: - gg‘A N\d,x SU\;Taxdt;
te % ' ¥

I%AB{U{[HQ” v el @ (‘ )]§gu\ A*A\jl-

A

%2
( 1AM~“5\;\ " dxdt g\Sj\BNx\;SV\N dydt

lthg{m[unm] Wil (L h)]‘}g\} . dxdxf,

*

rBNxxWx-\-Bsz] [NX\'("H-W_Y) \1—-&_":’_?‘{7]32\/\}\ dch‘C

£
ks
5!
310
%
1

t
(114 Moy - Aoye] L5 (o 2 Y Mgt i
o

- ({[{aBh s 2w swly, Sy, éi\BMm5¢le7dt;

€

H&Agghut[ ?{(7"'“‘"1)) + ABSL [ + & oY
XY
\ )JJ-AB?\-\‘&L {2 gom@] S\Pg ‘h A’(GL}J,'

{(ABghut [ (5 *
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CHAPTER III

A SAMPLE EXAMPLE

Using the theory developed in the previous section, the
equations of motion, the stress-strain relationships, and the natural
and forced boundary conditions are formulated for the special case
of a thin circular plate subjected to a constant in-plane stability
force Nrr as shown in Fig. (3.1).

The internal forces and moments acting on an arbitrary
element of the plate are shown in Figs. (3.2a, b, ).

Using cylindrical polar co-ordinates, equation (1) which

describes distance between two points in the plate reduces to the form:

ds?

Aldvt + BYde* - 9(2T)

(z&)

(XD

Pig. 3.1
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Fig. 3.2a

Fig: 3.2b
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Also, since the plate has no curvature, the following conditions hold:

Using the above information, the five equations of equilibrium, ten
stress-strain relationships, and associated natural and free boundary
conditions are formulated using equations (24), (25) and (26) respec-

tively.

ek EQUATIONS OF EQUILIBRIUM

The five equations of equilibrium reduce to the form:

"

2 (rNe) + 2 (Nre) - Nos = 8hr 3 (Ue),

ghv* ;_h O}’f—),

%GNW} e, (A hire

3
%(Y‘.‘Mra +—§~6<Mr(9) ~-Meoe - vQve = %” %(4&)’ - (29)

]

3
(Y‘ Mr9>+ (Mg@)»« Mre - v.Qoz % Y g.b(‘h)/

+ ZQEQ9a+lN99W<9+ Mr&wvj 3h AB? (Wb)

The algebraic signs of the terms Nrr, Nee and Nre must be reversed so

that the effect of the stability forces is taken into account.



Stress-Strain Relationships

The stress-strain relationships given by equations (25) reduce

to the cylindrical polar co-ordinates form defined as

Eif [er~ AMBGJ = Evr
E_LL\ [MGG— Nyl = €66 :

22 [uve] - Ve » Vo [ HE]

F_—L'ff.%[Mw—-uMee] = kv,
E{%[M&S_AMVY‘]: ke,

2.4 C1+ LD Mye - Sr+ o,

E h3
12 1+ L) Y
nctond i s = Yvz , and
SEn are
H -]
42 C1x __) QG = XJGZ)
5Eh
where,
Eree o b FA . Ve s ve
vy = "*———2- ! o = ™ ~+ ™ 2yt
Yo = Un \0/9 :\-‘r-[\.le..\)] ,
ky = <Pv ke ="¢L‘V6’*¢]
Sr o= Wy, S0 = [‘#9'“\’],

(=]
;/7*2= Wvas | Yoz = B
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Simultaneous solution of equations (30) yield the following definitions

for the in-plane forces and shear forces, bending and twisting moments,

and transverse shear forces in the following form respectively

Eh T Wy Ve, gty J
Nr\r :(—‘\_M.L) uY"‘——_zr "'M(. v " Y 'Zrl.)
e

u WSJ

Mss:(\u[u(u +Wf)+-— v Vgl
\% Wy W e

Eh V ug.‘-**—————:(

S T L Y i !

N ge ’2,(\+}J0]'

o B E¢w+u(t‘f+ %)],

\?_(\—Mz)
MGQ: [Md>r \-\)GJ‘?]

C )u‘)

3 Po WP
2 WAV D E-h e+ = 7] ’
L 24 (e ) L .

Q\rz=“5 [ Wy« 4":]

Iz +M)

Qo =g = [We.yw]

2 ()

NY‘Q - NQV“ ay\d
Myre = Moeov.

A (32)
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3:3 ASSOCIATED BOUNDARY CONDITIONS

@

*1, The natural and forced boundary conditions obtained from the

reduction of equations (26) take the following form for a circular

‘ plate, on boundary r = R.

Either or
i) Nyy =0, Su=o |
Ny =0 , : oV =0,
LT ‘ .mf‘ i R )
o0 Myr=0 |, > P=o0,
b%“>n ’ ‘
P Mroe=0 , ' Y =0; i

Also at r = o, the displacements u, v, and w and the rota-

'!a,_,,} tions ¢ and Y must be finite.
W e ; It is expedient at this point to reduce the 5 equations of
**[\EA.': equilibrium to a combined set of three equations. This operation is

performed by combining the first, second, and the fifth equations of

KBy Equilibrium given by equations (29) into a single equation. This.

;u iﬁﬁ' . resulting equation is written,
iy p
: L ghp(uet)*Mes{]Wr»«[_Sk\ﬁ(l}tt)—klmj"iy?

+ {_\(‘- Mvr] %r( wy) + [Nrs] 59‘9(."\’\') ’f[w Nve) 'a?r W;E) - (34)

I

"{vs‘; R f

Be L [vee] 2 (29)« 2 [reral 3 [aes)

1;&-: b 2 = §WTY‘(*)LfL‘ Y= (Dii s o]
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Applying the proper algebraic signs to the function Nrr and
N ©© and taking the special case when MY‘G= o, the three equations of

equilibrium reduce to the form:

[ghr(Uee)-Nos]Wr + [Shr (o] B2 -Lr Nrr] 2, (wed

r o
—[,M@@} ;_S(V_’\‘IT‘_S> %) ;r LY\' sz] % Se [(ng_] = §L\Y‘ L\)LL—V‘PEI
r 5
2 [ Mrr] + 2 (Myo)-Meo - ¥ Qre- 8\{?. Dee

G
2 [_Y\ MY@] + 529('\4 99}"‘ Myoe _yY-Qet= g_:,‘a""~ Yetk.

—

25

Substituting the stress-strain relationships given by equation

(32) into the above equations yield

B[~ {7 (f ) r0r3 4]
3
12

1

W (W) T
3 (w | T 2 BB (4083, )

3
_K2Gh (¥ +5E) = %TL\’Z Yee, ond

Koh [Vw+ D] + P s [Nvr. Wer + N@G("Y\gﬂ‘i\%@ﬂ

= Sh Wtt,

—

...(35)
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where,
e
Cf):(:CP,-,t C—‘;;— v . e
- (37)
Vl¢_ d>vr+ ¢Y‘ qDQr:

Differentiating the first and second equation of equations (36), perform-

ing proper operations, and re-arranging terms, the following equation is

obtained:

[Dv’-_ K*Gh - 9\“; z;] P = KGhVW. - (28)

Combining equation (38) with third equation of (36) and eliminating the

parameter CiD yields the equation,

[ oo 8 22 T L §h W
LV kzeh a][ 12 ot o o

DVv* Qh3 23] . - (39)

- —

K2Gh | 12k2Gh 2t

[P2+§NYrNW+N99(wV &>j

The solution of this 4th order partial equation defines the transverse
deflection of the middle surface of circular plate. This resulting

equation compares to that given by R. D. Mindlin in (6) if the stability

forces are neglected.



=%

31

SUMMARY

Using E. Reissner's variational theorem, the equations of
motions, stress-strain relationships, assoéiated and natural boundary
conditions for thin elastic shells are derived for the special case
of orthogonal curvilinear co-ordinates. The resulting equations are
applicable to cylindrical and spherical shells as well as circular
and rectangular plates.

If the theory is reduced to the special case of circular
plate and the resulting equations are combined to yield the differential
equation for the displacement of the middle surface of the plate in
operative form, the results coincide with existing classical theory of
thin elastic plates.

If the non-linear terms are dropped from the strain displacement
equations, the resulting equations derived in this thesis correspond to
the same equations given by Naghd£4%f the effect of transverse normal
stress is neglected from his work.

The theory derived in this paper corresponds directly to that
given by Archerfl) However, in addition, the natural and forced boundary
conditions for the general case of orthogonal curvilinear shell theory
is derived. In addition, certain items of the resulting, theory in both
the equations of equilibrium and stress-strain relationship differ
significantly to those given by Archer. These conflicting terms are in

the minority.



CONCLUSION

The use of E. Reissner's variational theorem is proven
extremely efficient in deriving equations of equilibrium, stress-
strain relationships, natural and forced boundary conditions for
the case of orthogonal curvilinear shell theory. The efficiency
of this method is based on the fact that the complete set of result-
ing equations is obtained without the use of free body diagrams
which in the past have proven to be extremely misleading, especially
in the case of non-linear type problems, since this method requires
one's experience and judgment.

The theory is developed in orthogonal curvilinear co=
ordinates and includes the inertia terms so that the results may be
applicable to spherical and cylindrical shells as well as circular
and rectangular plates. Since the effect of transverse shear stress
is included, the eguations are well developed for use in wave propa-
gation theory.

The equations are reduced to the special case of circular
.plate theory as a sample example. The critical buckling load as well
as the dynamic response of the plate due to arbitrary dynamic loading

may be obtained.
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APPENDIX A

The eight equations of stress-strain relationships obtained

in (24) are written in matrix form as follows:

_ _Au A o A4 | o o o o——‘ T\IM & PA i
AR A 5 © o -Aid o o ° Nyy B
o o A2z o o Aze © o N xy c
Ala o o Aas A4S o ) ') M x x D
o -Aig4 o Aa5 Ass o o = Myy i E
o D AaG S o AGL © o Muxy I
o © © = © S TeRn S ¢ SRR Qxz G
o ) o o o o o Aag| |Qyz S
Lol Gt ol o 2 M
where,,

(A

@



2 Qix ) h?
Az = 5 o \2r7_ " r.ﬂ
‘ E h v
12 2h* ]
Adsg s Sz L' Zon Vz v‘,)
—\Z M
Aas: =3
5\'\7‘ < Bl
A 5 = E[,\’b L\+ 204 C\r‘. \(2)11
24 Qe : —J
2 l+ =
oy ' E_\'\3 L ’Z_OY <Tz Y.) 7
\2(\4-,0\) e e
A77 i bE—h {_. zgy ("'7- V)
9 2 (M) T ]
A (i ¢ ”:ggr T )
and also,
A < E—:-,L !
B: &y
° 9 i __E 1 \ S Lh 3 [
C = ¥Yx + \fLH-\’ZY:. M‘L«-;'.)] +2Y| A7
D = k. x
E.= k_y, :
3h 5
E = sorsp e 22 (A% e Y7
G e ?le and
H = ‘\?/712
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AB G

W x Wy
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Inversion of the A matrix yields the following inverse solutions for

the stress-strain relationships: -

rN xx i ] A_ﬁ Al o A: Ars 0 o o i A

Nyy A A2z o© A24 Azs © o o B

N xy o o A3 o o A o o c

ng -| ma Aza o Aaa Aas o o e D dees
Myy Als KB o Ajs Asgla T e o E

M X o ‘B A o ° e o e F

Qxz o ) o ° = o G 7 G
_G) 2 L o o o o o o o AE‘E’_J : H_J

"en 2L s T Ch - w) (B ) e - RG]

O-FO[ (a4 (=B + ABRE (14 Y] '

i

A= MEh
(\—uz)
o ER (B ) i

[1aa o+ 42 0T

— 12 meRGEA) N G v (St ‘%ﬂ

Al = — o
(-0 {144C1- ‘)+4&k1<h y;)J

Wriis s 1 " ‘
A—’—Z——’L = Eh 5\\44—0-—142)[_\- "{{,z J\’ﬁ"?;_) 43“1 ."’\Z.JIJ }
(l"M)[\AA.(\ ,LA) 1 4&1«1 3 )J ’ ‘J

Yl
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A;4 = T |2“E‘h.5<'\lm—" )[ kl( Yy Yz}(lzh_ 'Zan)]
)['44 Q=) + 42;:2 y\'YJ 4
BN (5 ) [12 O MR 2 ) - (5.~ 5, ) W]
A’ZB: 2 ’
(1~ u’L)Lm,M\ W Y ]
ey CDE—L\ [:l 'ZOVLCY! J
A?’%-( e 14 Wt 2 \3_]’
|+ M 5“ ¥ _D h —-;,_
A——-— - El'\ <7x"71.)
36 = 2
A [‘7—%“ ;I;Y ("l Yzy‘} " (Y\ Y’-)J
A4l 2o uth 1
erd (12t 12k? (‘ '“,_3(30,,, \zv,) L\G “‘ M‘—r— 7 r-,j-]
o (-4 (144 Q-08) + aBW (41 V] - (Ag)
= CONT.
e 12 U ERS
45 = 2 i :
l4—4~C\—M") & 48;1\ (,;;‘__?z 'zJ
A—'—— i 12"—-1" [‘ ’LoY—;__k"x YL)J ;
i (44 (1= M%) 4 43 h? R
".D b2 Yy
2
hg  Shds i (3 %))
: i L AT T ’
20l B 2 (130 W (k4]
A*—- & 5 &h 4
i ' am
e i
5 (HM)[‘_'L&’Z *n" Yv) ]
e S5&h
88 = 2
12 Qry O h SO VY
E_hlz( Y (:,' Y1>]
and A, B, C, D, E,. F, G and H are defined by equations (A3).
i
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Neglecting the terms of order-?i

and above in comparison to unity

in the preceding matrix form, the elements of the matrix reduce to:

S Bh o
Bn T Q ) ]
g A ,
EYZ2. = (Y‘ 1)
L .
B3 7 Creid)
L. E_H3 ’
64—4 = I'Z(\-UID
E W
RES " R |
o
Bee = 2cam
ey
By ‘zjﬂ-kji)
- SEh
T
i MEH
B =
(=M [T
A 3 i) [ )
&14‘ - 1 2.Lr~ MZ‘) L S 7 ¢
%IS: © ’
B2a = O,
e 2R3 f g
525 = I?.(/-/“Z)[ 1 }’7,7
okl EA3 [J ,’.j and
B36 | % " o4 Crst) P e
—— . LuEA®
DS * T i)

- (Aw)
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N xx B Bz © @ Bia Bis o o o A
Nyy Bz fez &gos Bis 2 © © o 2
ny o o &—32 o o B_'z—;(; () o c
Mxx P Bea. © Baa BAS © i Sl (A
- —_— S e &
Filopis S LT < 1 g8 PR R, B
Mxy o o é—;é & © Bt . @ o F
Qxz o o o o o o By o G
Qy= o & = & & o) = 5?59 H
where,

A o e

A < Exx o

% 6

B = -Lyy

- [+ © wa\/
CehE e 5)7 * 57 1

C\ﬁ V1) ~-(/\8>

ke AN

E sy,

g 2 o Py

F = Sx + Sy + 7( h e

C:: 1 g))(z . C\‘na

Yy i

0 © ; e
and Exx, Eyy, 1)% ’ \)'7 ,Sx, Sy, kx, f(y, }./xz and B}yz are defined on page

(13), eguations (14).
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