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ABSTRACT 

A NONLINEAR THEORY OF THIN ELASTIC SHELLS 

by Gunvant Chauhan 

Master of Science in Engineering 

Youngstown State University, 1972 

The purpose of this thesis is to derive a nonlinear theory 

of thin elastic shells including the effects of transverse shear 

stress, in-plane stability forces, and transverse and rotary inertia. 

Using a variational theorem due to E. Reissner, the equations 

of motion, the stress-strain relationships, and the associated boundary 

conditions are simultaneously determined. The resulting equations may 

be applied t~ a particular group of shell problems where the applied 

statics and dynamic loads produce deformations which are of such an 

order that only appropriate nonlinear theory accounts for them. 

The resulting equations are simplified for the special case 

of a thin circular plate subjected to the above stress and loading con-

ditions. 

An analogy is made with the problem of a thin rectangular 

elastic plate using rectangular cartesian co-ordinate analyzed by 

R. D. Mindlin. 
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CHAPTER I 

INTRODUCTION 

A wide range of nonlinear theories for thin elastic shells as 

derived by using the finite displacements, differ greatly depending on 

the restricting assumptions placed on the resulting deformations. 

In Naghdi
4
bresents a linear theory for thin elastic shells 

which includes the effects of transverse normal stress, transverse 

shear stress, and rotary inertia. A number of existing theories is 

(6) 
summarized by Sanders where he derives a class of nonlinear theories 

and analyzed the Donnell-Mushtari-Vlosov theory as a special case. 

1 

Numbers of practical shell problems involving dynamic loads 

and displacments are of such an effective order that they must be taken 

(1) 
into consideration by means of an appropriate nonlinear theory. Archer 

presents the nonlinear theory of Donnell-type including shear deforma-

tions, transverse and rotary inertia effects in-plane stability forces. 

The effect of transverse normal stress is neglected. 

In wave propagation problems, the effects of transverse shear 

stress are of prime importance. In elastic stability problem/ the effect 
~ 

of the interaction of transverse shear stress with the in-plane stability 

forces is of greatest significance. 

The objective of this thesis is to derive a nonlinear theory 

of thin elastic shells including the effects of transverse shear stress, 

in-plane stability forces, and transverse and rotary inertia, using a 

(5) 
variational theorem due to E. Reissner. 



The equations from the resulting theory are applied to the 

special case of a thin circular plate. An analogy is made with the 

problem of thin elastic plate in cartesian co-ordinate analyzed by 
(3) 

R. D. Mindlin. 
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CHAPTER 2 

ANALYSIS 

The nonlinear theory is derived based upon the following 

assumptions: 

2.1 

1. The thickness of shell is considered uni.form and is small 
compared to the least radius of curvature, that is, terms 
of the order of •(h/r) 2 are retained in comparison to unity. 

2. The component of stress, normal to the middle surface, is 
negligible in comparison with other five stress components. 

3. 

Linear elastic stress-strain relationships are assumed to 
hold. 

Points on the lines normal to the middle surface before 
deformation do not coincide with points on lines normal to 
middle surface (i.e., shear deformations are accounted for). 

THE CO-ORDINATE SYSTEM AND NOTATIONS 

The notation used throughout the paper is comparable with 

(2) 
that used by Langhaar. A point on the middle surface of the shell is 

defined by the rectangular cartesian co-ordinates given as X = X (x,y), 

Y = Y (x,y), and z = Z (x,y) where the parameters x and y are called 

"curvilinear surface co-ordinates" (see Fig. 2,1). The normal distance 

from the middle surface to an arbitrary point in the shell is denoted 

by z. The unit tangent vectors to the curves of constant x and y are 

defined by ~ and ,S, , respectively. If the co-ordinate lines on 

middle surface of constant x and constant y are orthogonal, these 

co-ordinate lines coincide with curves of principal curvacture of the 

middle surface. 

3 



The distance ds between any two points in the shell is given 

by the equation: 

ds2 
=- old ·i -t {5 dy2. -\- Yd l. ~ ------·-· (I) 

where o{ = A (1 + ~) 

~ : B (I+~) 

y :. i, 
AZ ::(Y1<,.· i) a.nd 

B'2 =(~- ~y) 

I 
Also, the parameters ii I 

and -~ are defined as the principal curva­
'2 

t ures of the middle surface, and the parameters o{_ , ~ , and Y are 

known as Larne's coefficients. 

(z) 

Surface 

dAx. 

(x) 

Fig. 2.1 

4 



2.2 STRESS RESULTANTS AND STRESS COUPLES 

Stress resultants and stress couples are applied to a 

differential shell element as shown in Fig. 2.2 and Fig. 2.3. These 

stress resultants and stress couples are defined as total forces and 

moments acting per unit length of the middle surface, respectively. 

From equations (1) and (2), the areas of the cross-sectional elements 

are defined as follows: 

JA~ c o(dxd2. -::, A(\+~)dxd~ 

and dAy = f,dyd'.l. = B (1+ ~)dydz, 

where Y't and Yi are the principal radii of curvature of the middle 

surface. 

Nxx is defined as the in-plane force on a cross-section per 

unit length along the co-ordinate direction. The total in-plane axial 

force on the differential element in the x direction is the product of 

the force times the length, hence, which is given as: 

+nh 

dy j ?,Zxxdc Nxx Bdy = 
- ~1-z. 

or 

Nx)( 

Likewise, the in-plane force Nyy, the in-plane shear forces 

5 

Nxy and Nyx, the tran~verse shear forces Qxz and Qyz, the bending moments 

Mxx and Myy, and the twisting moments Mxy and Myx are defined in a similar 

manner (refer to Fig. 2.2 and Fig. 2.3). 
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(Z) 

(X) 

Fig. 2.2 

( X.) 

Fig. 2.3 
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This complete set of relations is defined as follows: 

Nxx 

Nyx 

h 
+ i 

" ~ ~ l?> Zx ,Jz. _., 
'Z.. 

l. 

M y K " l ( l o( z 'Zyx d "t.. 
A_~ 
+ht ... 

Q Xe. :: ~ f. ?. l3 'Z)( "l d~ 
-h1z. 

+li'z. 

Oyc -=tJ o< CZ1zJ~ 
- ht .. 

-::. 

h 
+'i 

~ c~x (, T ~) dz' 
-!'l 

"l... 

+-~ 

" ~ ,_ Zyy (i + ";;) de:, 
-h 

l, 

... (3) 

From the above equations, the following equality is obtained, 

-------- (4) 

28,2287 
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2.3 STRAIN DISPLACEMENT RELATIONS 

The general three dimensional nonlinear strain displacement 

equations are defined by Langhaar as follows: 

E J_ 1U °'':J V o< 2 2- (U o<.'1 o< )'" 
x. x. =- o< L 7( + ~ -+ "f W + '-°' )( +- ~ V + ; w 

+ J_ (Vx - e,<.'i U)-z. + ..L ( Wx - o(7e U)' J , 
'2,.c,( I:> 2o( y 

e.';}':f = -1 [v'j + ~!. w + ~ u +-1 
( v~ + !3-"t w+ ~ LJ)2 

~ '{ o<. -z.r, y °'-

-4-.., 'A. (wx _ l3~ v)7. ~.L (u':1 - ~,< v)J 
~~ ¥ l~ ~ I 

En" t[W"l+ ~ U+ ~V +~1 (','h+ ~U+~y'J" 

+ 7-IY (U'l. _;_ '"4 w )2+ ,/, ( Vr., - '/y Y\J )'2. J 
~ ~ I 

ix) = .Lr u':f + Vx - ?,xV - o<.:,U + J_ (Ux+ ~V+ o<~ U'· 
~ o< o( t> o( ~ '2.o<. p y >J 

··(5) 

( U':1 _ !3x V' ~ _!_ (V':3 + ~ U + ~ W'(V1- -~ UJ y ) e;,(!3 o'-. y ) ~ 

+<1-
1f,( Wx -~ U )C VV';J - ~ V )] , 

i~t =- [ Vr:. + w'-j - 'f':t w - ~~ V + _1 (v'd-+ (3~ w +@~ u"(Vi-~r-0 
o . Y ~ f3Y 'pf 13'( Y o( "J ~ 

+ _I (Wr:+ f'-i V + i<x U'(W"J - f_>t: V)+-1 (U'j - Bx Y)( U ~ - ()( W )] 
f:>t ?>- d-_ / Y ~t o( d-_ I 



Retaining all the linear terms and rotation terms of the second order 

as Wx 2 , Wy 2 and WxWy, the preceding equations reduce to the following: 

(: X. ;( = l. [Ux + ;YV+c<cW + _1_ w/] 
c<. ZD<_ I 

(::_ 'I 'I ~ [ ~" u + Vy T ~?: w + L) w; J / 

f. z :z -::. Wz '.:2 0 I 
By QSsLl'rflp+~on, 

9 

Yxy Uy Vx ~ x v _ °'>' u ;- w x w1, 
... (G) 

-:. -t- - -
f=> o<. o<.~ oZf> o(\3 

'V'jt- v~ + w,, b-v = --
\?> ~ I 

Yx~ Uc.+ w ;,I, o( C. u -- --::. 
~ o<_ 

For the special case of orthogonal curvilinear shell co-ordinates, the 

Codazzi's equations apply and take the following form: 

( ¢, )) - IA QYld - 'r1. 'j I 

(~~)~ l 61<.. ... (7) 
-= 

-rl 



Also, the following equalities are obtained using equations (2) and 

(7) : 

~ o<.'j 
-B ~ 

Bx ~x = I 

A o<.. ... (8) 

A 
o(:z ::. 

~ 

and B 
)"-?.. 

~ f> r . 

Substituting the above equations in the equation (6), the following 

reduced forms of strain displacement relationships are obtained: 

fxc = and 

= . Ve. -t W'-j 

f3 

The following displacement approximations are introduced: 

U = u (x,y) + z cp<x,y), 

V = v (x,y) + z "-y(x,y), and 

W=w(x,y). 

... (9) 

··- (10) 

10 
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The parameters u, v and ware the components of displacement of the 

middle surface in the x, y and z directions, respectively. The functions 

~ (x,y) and \.y (x,y) are the change of slope of the normal to the 

middle surface along the x and y co-ordinates, respectively. 

Substituting equation (10) into equation (9), the following 

expressions for strain-displacement are obtained: 

;_[u~ 4'x Ay (V "'- ~4-1) + A l '2.. 

f X: X :::. +- C. + w +- - \N,<. 
B Yj '2..0\ 

E'Jy - ~ [ v'i + c 4-1'1 -1-- \?,)( (LJ + c c:p')+ §_W+-1 w'Z-- Y'2 1.~ d' A 

~-z.~ = 0 

= o<_~ [oZ. ( Uy + z: cp_y) + 1p(VJ( + 2 4,J,c_) - ~x ex (V-t-c. 4>) 

-- Ay f> ( U -+- z <q) )] 
1 B 

... (11) 

o..Y)d 

Replacing the parameters .;z_ and I by _!_ 
~ A 

and I 
~ 

, respec-

tively, for the nonlinear terms in the first and second equations above, 

the equations reduce to the form: 

( I + ~ ) f )( )( :: E~: + ~ k.x 

( \ + ~L) E. ')' 'i = E 'f \ t- C k I I 

( I + ~. ) (1 + ~J I")' = ( \ + ;, )( Vx H S >) ' (, '- ~. X f1 +i' £ 1) 

(1 + ;, ) Yxc 

0 + ~~) '(j~ 

+ .!. Wx Wy AB I 
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where, 

kx ~ J ( Cf>x -\- ~ A~) , 

C O I ( U o) W I W'-
L 'I 'I :-

6 
Vy 1- -;;. D" + '{'--,_ + --z.. &2- y , 

k- :J ::- t ( lVy + ! B ~J I 

~x - l.l Vx - u A'J) 
A B ' ···03) 

l (~\ - 4> A'j) s ><- = B ' 

:;>'j - ½ ( Uy - ~ 1s~) , 

s'i = l ( cp'J - 'V B~) B A / 

~ t7l - Wx + cp _ U I o..nd - A Yt 

0 

W"J Y'f"l. 
V 

::: +- \..\J- - . 
e, Y--,_ 
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2.4 COMPONENTS OF STRESS 

The usual definitions of the stress resultants are applicable 

and take the following form: 

\

h11.. 

7 (1 -t 5- ) d"l-, 
~ Lx" Y"'1.. 

_h 
1.. 

-I"~ 

Mxx =-
J~ c~x. .(1 + {_) de., 
-h 

"L (14) 
+~ 

1-

Ox.-z. L l X z ( \ -\- ~~) d 7- I 

and 
= 

L. 

h 
+-l.. 

I\.J :I X = J, z. ~'j c,+ ~ J d-z. 
-,_ 

Assuming a linear variation in stress distribution, the 

following stress distributions are defined: 

~ + ~,) z.'i; -::. tJ)'J 1i M'f't 2 
I -+ 

h -,.._~ 

(1+:) c '1-'f 
r-J )(y \'2.. M .,_'f .:z 

= + 
/4-\ --h:> 

(1 T ~,_) er~ ~ -1--
1 i Nt)( ~ o..ri d 

:: 
~ i~ 

fxy ;:. Zix.. 



The thre e differential equations of stress equilibrium are given 

in curvilinear coordinate form as: 

<>: ( ~ Y rz:,._x) 4- ¾-~ (o<. Y 'c:'t><) ~ ~ ( o<. ~ cz-~z )-+ Vo<<} Zx'J 

+ f-, o(.! 'cx2. - Y~x CZ)~ - {?, Y,i: 'c°ze ~ )~ ~ Y f=x == o 
1 

;Xe f>Y 'cxlj) * :d (o<- Y CZ-11) * ;?_ (o<.~ 7,c)) + Yf.,x ~'a"' 

4- o<.. r-,c 'c5t - Yo'-'c} Cxx _ o( Yd" Ccc. ~ )°' t> Y fd' == o, 

;x(?>Y 7K~) + ~ 1(o<'¥ Zi~) + ;c:(°'t> 'cccJ + ~ ·-/>< rz.cx 

+ o( )'} CZ:-c'a, - t'o<2 ZY-x - o<_('c.. 'Zi1 -\- ~o<t> y f°"2::: o. -

Neglecting body forces and substituting the condition Y = l 

for thin shell the ory, the previous equations reduces to: 

t (~ 'lx~) + ?d ( ~ 'L6x) + ::~ ( ~ 'p 'Lex) -+ o('} 2'><-'-J­

+ f,o<-:c 'Zxe - ?,x 'L)} :::: o,. 

~~(~<c~'J)+ ;1(o<.?_'j'J)+ ~c(o<~'cx1)+ ?,x ~)?< 

+ o< f'~ CZ:';}-c.- o<'c} 'Lx)( = o, 

~ (2:/c.ic~)+ ~ (o<. CZ:'-ic) +2 (o<.~7cc) +o< Y-a 'lc.1 
c)x \ "'i3'} d or. . 

_ ~o<~ 'l..xx - o< ~e. CZ';fJ ::: c. 

Substituting the stress variations given in equation (15) into 

14 

the fir s t two e q u a tions of (17), yields the following stress distributions: 

· · · (18) 

the five components of the assumed stress field. 



2.5 REISSNER'S VARIATIONAL THEOREM 

Using the Variational Theorem of E. Reissner, a derivation 

of appropriate stress-strain relations, equilibrium equations, and 

associated natural boundary conditions for a given set of stress com-

ponents (see equations "15" and "18") and strain displacement relation-

ships (see equations "12" and "13") is carried out. 

The following form of the variational theorem for three 

dimensional elasticity is written: 

15 

b... +~ 

SI O 2) ) {{ lH [? .. £,,, 'Z1'f Cn, [,,/,, + Cxdn + C;p,Y:1"0 
t, -n 

"2.-

J... L-'7 7. C7 L 2 )-{__ CZ')(. X: 'Z'l't + 2 (_ 1-t- ,u.) ( C X 't-
2 ~ CZ >CZ

2 
t- 'Z 1'i )] 

- ZE.. L,u. + <....'J'j - oa a 

+ J [ u; ~ ~i" + w; J ~ 6 + ?, ) (, + ;, ) A e, d Y- Jy d "l 

?.... 

( s [ pf-- U t- pd V + t w ] A e, d,.. d.y 
+'111. 

,P [ Jh ( Uh Un ;. 'cnl ltt + c'.n-,_ V'i )(1 + ~) h] AC. Js ~ d s = c. 

"i. ••• (10) 
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Substituting equations (11) - (15) into equation (19) and 



Before carrying out the variation of the preceding equation, 

the following approximations are introduced: 

-\- ~ 

) .,_(1+ l )(1 + ";, )
1

dc ~ h [1 + ~r, (-/c, -tJ], o_
nd 

-h 
-z.. 

h 
~ - -I n ~ [ ~ h?. ( t I "\ J 

} 1-(1 ~ ;2. ")(1 +;;) l
2d~ '; T-f I+ i"o Y'i y, - Y-i.) . 

-h 
"2.. 

Taking the variational operations on the displacement and 

rotation parameters in the sequence u, v, w, tj::,, and y..;, and also 

on the force and moment components in the order, Nxx, Nyy, Nxy, Mxx, 

Myy, Mxy, Qxz, and Qyz, yields the resulting equation, 

_ [ ;x(B N?<-'J)-'" ]~( A Ni\i)-A~ N 1'X +- Bx "'1 'ir~ 

+ AB Q 'j ~ + AB P'-1 - ~ h A~ ' ( \ + h' ) \.9 -t. t 
Y -z.. --:;- '\. I '2..Y, Y' 1.. 

+ _h: (J. + 1 "\ '+- tt, t] £ t> 
I '2. Yi Y-i.. ) \ 

_ [ ~ \ B Q )( i:. + B N xx 'Nx + N x~ YY'-l (t J.- h'" 1. )- M"'-1 vv':J I 
ox\ A a a nr1 Y-'2,. J 

+-;':J l A Q6 =t. t- ~ N'-J'J- w'i -1- Wp1 w x (, + 1~~1J- M;:w'/. i 

17 

+ ABP +AB'~ 4-~ l _ ~hAB V1+J:
2 

\ VVtt1-JSil\J ~ "\. Y, Yi. ) \.~ \?.. Y1Y·2.} ) 



-[;x(B Mxx) +J"j (AM~x) + A'JMx'-J - BxM'J'j-At:>Qxl 

+ A6R'-:!. - ~h3 AB f(i~ ~ i "'\ Un .J,-(1 + 3h-i ) ~-lt? 7 ~ cp 
0 \'2. ~ 1 -i.) 'ZCY1'Y1- 1 j 

-[ ;x (B t--1\,ci)+ ;'j ( A M~'a)-A'J M1-~ +Bx M 6,< -ABQ6~ 

+ABRx- g~
3

AB~(-y1 +-y1 )l.9-tt+(1+ 3 ~-? '-'+'tll]S4 
1'2... \. , 2 'ZcY, ¥1.) S 

18 

+ [ ~~ t N xx:(, 4- 1~~"t ·c ~2.-t,))- ,,u t\\i) + tv1~)( ( 7, -i.)1- c:] 5N )(;( 

+[AB) N'J4(1+_b_:_ (l _ .!.)"'-4 Nx,::-+-M'J\.4(-y1 _l_ "\l_~:l~Nti Eh L ct I?. Y-1. Y1 Yl.)) )- "2. Y1 ) 5 .,j 

IF] 2:) Q d'"- \ AS J,.d'j l ,H 

... (22) 



2.6 EQUATIONS OF EQUILIBRIUM AND STRESS-STRAIN RELATIONS 

The following equations of equilibrium are obtained from the 

variational operations on the independent variables u, v, w, 4: and lf!: 

-E- [B t--i~ll..] + d [t-"1'-Lx] + N~';_A~. - ~~-'-i Bx:+ Q')(t AB+ f..S Px -a Y.. a) o c;r ~ <l' <r Ti 

19 

= ~ h AB [ Lltt. (. \ + \~ ~' "1.) -r c:t?tt h1~ ( ~ + ¢,)] . 
I 

d [B ~)(.~] + ;f '-1_ [ A ~d'd'] + Nd')( Bx - Nx ,< A'J- + ~Q :;(l + f\ e, P'i 
ct)( <f Y-1.. ct 

= g~AB [l9tt. (\+ l~~ly--LJ + 4t.t ~ ( ~L+~~J]. 
I 

a': [B M>'ic: J + "d't [f\ M},:.l + M)C.'i- A) - M~1 B >( -AB CQ )(=2 + 1\B t<.'1 

= ~ 3 
.L\6 L Ll~t ( ~\ -1. ~ ) + 4?tt (\ + '2~:'2 \r '], 

\'2.. ~ o,,,,J I 

;i [B M,c)] + ;
1 

[ A M'cr}J + M1 x BK - M X)(. A.'j -AB Q ><t + A. BRx 

-=. ~ ~ 3 A E> L U-u. ( ~l -+ ~ ') + 4't.t ( l .\- ~~ '2 'l , 
\ '2 1. 'Lo Y\ r1. /J 1 

{,,.[ l::,Q "'- -t 2 t,\,(,; V1h + l'-h'j vv'j- ( I+ I~~-;:'-J - M;1 w1 J 
+ c) [A.G;,."-lr.. + b N~'i wt+~""- IA/,c. D+ ~ 'l 1- H>'-j- Wi.J 

o'} <1 B a ~ \'2.r1. r1-

- ~P.:, ( N~x + \J'i'f) + AB Pi -:: ~h A.8 L Wtt (l+ 1~ ")
7 • 

'r1'" Yi a. ' 'r1. I J 

-{7..3) 
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Equating the co-efficients of variational terms ~Nxx, 5Nyy, ~Nxy ,&Myy, 

2>Mxx, bMxy, b Qxz and .SQyz to zero, one obtains the following set of eight 

stress-strain relationships: 



Additional algebraic operation on preceding set of equa­

tions (see appendix) yields a set of ten stress-strain relationships 

as follows: 

::- -E.h [ .•Jx :) '2. J Nx\.f_ Y~ + ¥'-I + by _ _b_ ( l - _!_ '\ + w.,_ Wy 
o 2(1+M) <f 6 i'l. Y'i ~) A.B 

( 
I I ) c, 

Mxx = -D 71 - ~1. C)l..,1. + Dk.x + D,uk_'cl-, 

Mx'-l= D (i-.u)(2. - J.. \[Yi<.+~½ -t £'ili=_(.! _l '+W"WJl 
0 'Z. 'r7- Y-1) 6 d' 1'2. Yi Y1./ Ae,j 

+ D c ,_ ,u) [ £ x + s'a + p'-t CJ_ _ 1 , _ w'f.. wy] 
2 a Yi Y1..) Ao 

0Y2 , 

M'ii<: D(~Ll) [ ,\-i~][fx + Y':J {-- .£x 7~ (+2.-¾.J + ""::'tJ 
+ D (1-..U) L- ~x: ,;- b'-' --t ~ (..!.. - l ) _ YV'I- Wy ] 

2. f '/. Y"2,. Y, A 6 y- I / 

Q><~-::: ~ Gh Y,.,"l, and 

O';fl:: 1 G h Y'fl. 

The (4) th and (8) th equations of the above set of ten equations are 

defined by noting equation (4). 
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The associated forced and natural boundary conditions are 

determined from the following terms which result from the variational 

operation: 

h?.. . I.'-- t.1. - ~ ~ I ~ h AB\ Lil [I+ ~ Y--J + q:,t, [ \'L ( {-+ f1. )] l bU \ t, d )(d'j; 
X J-

'1, 
) ) I A ~ d 'j ~ V \ ~ 

1 
d xd t ; 

t l( 
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CHAPTER III 

A SAMPLE EXAMPLE 

Using the theory developed in the previous section, the 

equations of motion, the stress-strain relationships, and the natural 

and forced boundary conditions are formulated for the special case 

of a thin circular plate subjected to a constant in-plane stability 

force Nrr as shown in Fig. (3.1). 

The internal forces and moments acting on an arbitrary 

element of the plate are shown in Figs. (3,2a, b, p). 

Using cylindrical polar co-ordinates, equation (1) which 

describes distance between two points in the plate reduces to the form: 

A-=- 1 

B "' y-. 

(~) 

. . . (2. 7) 

(X.) 

Fig. 3.1 
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Q,i ND6 

Qez. 
Or-t 

Fig. 3.2a 

Fig. 3.2b 



Also, since the plate has no curvature, the following conditions hold: 

== 0 

Using the above information, the five equations of equilibrium, ten 

stress-strain relationships, and associated natural and free boundary 

conditions are formulated using equations (24), (25) and (26) respec­

tively. 

3.1 EQUATIONS OF EQUILIBRIUM 

The five equations of equilibrium reduce to the form: 

=-

The algebraic signs of the terms Nrr , Noe and Nre must be reversed so 

that the effect of the stability forces is taken into account. 
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3.2 Stress-Strain Relationships 

The stre ss-strain relationships given by equations (25) reduce 

to the cylindrical polar co-ordinates form defined as: 

where, 

_t_ [Nvr - µ._ f\.J ee-J :: C-r~ 
E.h 

I 0 

E. ~ [N 0 s - .u. t\l 'a~] -= E 9e 

2(1+ .u.) [N ] 
E.h Y'S 

J1:.. [Mvv- - .u. Mee] = k Y', 
E..h:i 

~ [M~& - .,u MvtJ: ko, 
E. h.?, 

24(1+..U) 
MY'e. = ~Y-+ ~9 I 

E.. ~'3 

i2 (\+Ll) Q 
5 E..h Y'c = ;1v.:z. I o..nd 

{'2,.(1+MJ 
0 

Qg~ = iJe?J 
5 E.h 

0 w; C ,;/9 = Vt;; u w e-7. CY'Y' = u'r-+ +-+-- I 
)'- 2Y''- I 'Z. . Y' 

C> 
0 

~[Lle-\J] vr :: lJy- Y& ,:;-

c:tv- k e 1- l '-V& --r 4:> J kr- -= -:: , 
I Y' 

~i" = '+'-r-, be ~ } [Cf>&-~ J 

vy~ = 
0 

WG 
WV'-t 'P , Yee = - 4- \.V . 

Y' 
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Simultaneous solution of equations (30) yield the following definitions 

for the in-plane forces and shear forces, bending and twisting moments, 

and transverse shear forces in the following form respectively: 

r'-1 er = MV'6> = E-h.
3 L Y.,y- + ~ -~J 

V" '(" / 
24(1+.M) 

Q Ye 
s ½ C Wv-+ 4'] = 1'2.. (_\-\-µ) I 

Q9~ s E-~ L_ VV9 y> J =-
\'2.. (\_;~) --;:;:: -4- I 

N 'tG -::. N E;Jr, a.Y\d 

Mv-e -:=. M fJV-. 
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ASSOCIATED BOUNDARY CONDITIONS 

The natural and forced boundary conditions obtained from the 

reduction of equations (26) take the following form for a circular 

plate, on boundary r = R. 

Either or 

N 'fr ==- o 

£v :::.C> 

M Y'r=- o 

Also at r = o, the displacements u, v, and wand the rota­

tions 4> and 4' must be finite. 

It is expedient at this point to reduce the 5 equations of 

equilibrium to a combined set of three equations. This operation is 

performed by combining the first, second, and the fifth equations of 

~. equilibrium given by equations (29} into a single equation, This. 

resulting equation is written, 

• 
[ ) h r- ( U ~ t) -+ ~ & G] W v- + [Sh V- ( lY-l c) - ~ 't-(9] w: 

28 

.. {33) 

-+ Lv'• t-J-rrJ ~.,,.( 'Nv-J ~ [ tJr&J ";8 (wv) -r[r. WY~] i\.(~) ··{34) 

~ [_N tJs] ; 0 ( ~) + :r- [r• Q Y1! J + ;e [ Q e~ J 
~hr lvU::.- v-. Pe 



Applying the proper algebraic signs to the function Nrr and 

Ne I} and taking the special case when NY'e-= o, the three equations of 

equilibrium reduce to the form: 

29 

[ShY-(Utc)-~e~Jwv- + [~hV"(lJu:.)] VV: -[v-. t-Jry,J~""(wr1) 

_ r~ (9(9 J "). ( ~) + :). L- y-_ Q Y-l.] + d [(Qs"l-j = ~hr wu,-v-Pi 
~ ae Y' )'<" :)B , 

Substituting the stress-strain relationships given by equation 

(32) into the above equations yield 

D rrc1-.u) \ tl·4 -( q, + 'Z.Y'C9)t +(l-+M)2 /2] z ~ \ y-1.- Y''- ) ;;Y- --r 

- k..2- G h ( cp + W v-) =- ~ h3 
~tt. 

. I '2. i 

~ [(1-u) \ th,,_ ~" + -z.;'!-) -ic (1 +,u) ~ ; 9 4] 

-k2 Gh(4+7) = \~ \.fu:, o.Y1cJ 

k"c; h [ ,/·w + cp] + P-z + [ N Y-v--. W '{'( + ~ (90 ( w; + w ~"l,@2 

= ~h Wi::t, 
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whereJ 

0. I'") c! 
.. · (37) 

Differentiating the first and second equation of equations (36), perform­

ing proper operations, and re-arranging terms, the following equation is 

obtained: 

[ 
., ., 0~3 

D v'- - k ... G h - ~ 
\ '2. 

= ... (38) 

Combining equation (38) with third equation of (36) and eliminating the 

parameter cp yields the equation, 

,- ., 
~ d-z. J [ D'7-i- - ~ h3 d~J ~ h d'2.\t\/ Lv-- - w + 
k~Gh al'- 1-z. at,. c>t.1. 

[1- t)v'"Z. 's l,._3 d"Z.] -.. (39) 
+-

1'2.k..2G~ ofl. ~ZGI, 

The solution of this 4th order partial equation defines the transverse 

deflection of the middle surface of circular plate. This resulting 

equation compares to that given by R. D. Mindlin in (6) if the stability 

forces are neglected. 



SUMMARY 

Using E. Reissner's variational theorem, the equations of 

motions, stress-strain relationships, associated and natural boundary 

conditions for thin elastic shells are derived for the special case 

of orthogonal curvilinear co-ordinates. The resulting equations are 

applicable to cylindrical and spherical shells as well as circular 

and rectangular plates. 

If the theory is reduced to the special case of circular 

31 

plate and the resulting equations are combined to yield the differential 

equation for the displacement of the middle surface of the plate in 

operative form, the results coincide with existing classical theory of 

thin elastic plates. 

If the non-linear terms are dropped from the strain displacement 

equations, the resulting equations derived in this thesis correspond to 

the same equations given by Naghdi
4
if the effect of transverse normal 

stress is neglected from his work. 

The theory derived in this paper corresponds directly to that 

(1) 
given by Archer. However, in addition, the natural and forced boundary 

conditions for the general case of orthogonal curvilinear shell theory 

is derived. In addition, certain items of the resulting. theory in both 

the equations of equilibrium and stress-strain relationship differ 

significantly to those given by Archer. These conflicting terms are in 

the minority. 



CONCLUSION 

The use of E. Reissner's variational theorem is proven 

extremely efficient in deriving equations of equilibrium, stress­

strain relationships, natural and forced boundary conditions for 

the case of orthogonal curvilinear shell theory. The efficiency 

of this method is based on the fact that the complete set of result­

ing equations is obtained without the use of free body diagrams 

which in the past have proven to be extremely misleading, especially 

in the case of non-linear type problems, since this method requires 

one's experience and judgment. 

The theory is developed in orthogonal curvilinear co­

ordinates and includes the inertia terms so that the results may be 

applicable to spherical and cylindrical shells as well as circular 

and rectangular plates. Since the effect of transverse shear stress 

is included, the equations are well developed for use in wave propa­

gation theory. 

The equations are reduced to the special case of circular 

plate theory as a sample example. The critical buckling load as well 

as the dynamic response of the plate due to arbitrary dynamic loading 

may be obtained. 
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APPENDIX A 

The eight equations of stress-strain relationships obtained 

in (24) are written in matrix form as follows: 

A11 A12. 0 A14 0 0 0 0 N 1'-)( A 

A11. A1..?.. 0 0 -A14 0 0 0 N~j B 

0 C A33 0 0 Ao Cs> 0 0 N )( ;t C 

Al4 0 0 A44- A45 0 0 0 Mix D 
- ··{A,) 

0 -A14 0 A45 A5S C, 0 0 My-y E. 

0 0 A 3<.i, D 0 A c.i,&, 0 0 Mxy F 

C 0 0 0 0 0 A77 0 Gx-z. G 

0 0 0 0 0 0 c::, A~S Q 'jr. H 

where 1 
' 

I [ h'i ( l \ ) A I I : E. h \ + !211. Y-z. - Yi , 

A \'2. -:. 
L.{ -E..h 

A 14 = ~h ( ~' - t~), .(A2-) 

l [ h?_ ( 1 I )J 
A?..2.::. E.h I+ \'2..Yi Y1 - Yi. , 

A2s=--A 14-=- J... ( 1 _J..) E. h v-'2.. n , 



A4S= 

A (, (:, --

A71 --

A 80 = 

and also, 

C. :. 

D--= 

2.4 ( \ +- .,u) [1 + 
E.. I,; 3 

~h~ ( 1 1 )j 
'Z.O'f, Y-1., - -;, I 

\2 ( \+AA) [I+ £ ( ~ j_ )] 

S E:..h ?..~ Y.. y-"'Z- - Yi I 

\'2 (l+M) [ h2 ( I 1 )] - \4- ---
"S E-h ~ '<", Vi, Y--z.. :J 

E.. ::: k..:1 I 

o.."'d 

[ 
~h?. ( I I "\l y ( t I ) 

!= -::; 5 x + <i>'t 1 +- ~.. y:" - Y-, JJ + Y v=, - v-1.. -

G :: ;;x~ o..l'\d 
) 

H -== Y17. . 
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-.. (A -z.) 

COt--...\TD. 

.. -(A3 



Inversion of the A matrix yields the following inverse solutions for 

the stress-strain relationships: 

Nx.x A,~ A ,-z_ 0 A\4 A\S a 0 0 A 

N '1'/ Arz. A21- 0 A24 Ai.s 0 a 0 B 

Nx'i 0 C A?:>3 0 0 A3ro 0 0 C 

M.)(x: - A,4 A1.4 0 A44 A4s- 0 C 0 p -
M'i'i A1s· A1.s 0 A4s Ass D 0 C> E-

Mx'j 0 0 A~~ 0 Cl Afo6 0 C) F 

Q,c-e 0 0 0 0 0 0 A11 0 G 

Q1~ 0 Cl 0 0 D A e,<o H 
0 

Ai?.-= -u E. ~ 
(1- ,U'-) 

A
- - 12. E..h3 ( ~. - +2 ; 

14-:; ------------
[ \4-4(,-ui)+Aghi(.! _).J]' 

~ Y, ¥1.. 

Al?= 

35 

·· -(A4) 

... (p.5) 
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r:13(l_l) - c:. I'\ Yi \'t. 

3 h '- ( 1 ..!.. '] E. h [ I- i°iY"l Y1 - Yz.} 

Sela 

l '2. ( l + µ) [ 1 + ~::. ( J.. _ l )'J 
--z.. 7: y

1 
Y, Y1,.. 

I 

and A, B, C, D, E, F, G and Hare defined by equations (A3). 



h1. 
Neglecting the terms of order-~ and above in comparison to unity 

\" 

in the preceding matrix form, the elements of the matrix reduce to: 

B11 -=-

E. '1 
B-z:2.. :::- u-1 .. }·) 

E..h 
5:,3 -:: 

- I 2 (\4-.Ll) 

!344 -= 
E. h3 

1'2. ( 1-.u.'l) 
I 

'3ss 
E..h.=> 

-: 
\'2. ([-JJ.'1-) 

13 G,'7 = 
E..1--:~ 

z._4(1~P) 

- 5E:.\.,_ 
f.:>77 

z:: I 
I '2-( I + µ) 

B 88. -c: 
5Eh -\ "Z. ( 1 +M) 

B ,1.. ME-h 
e 

Q-J..A'Z-) 

.__. E. i,3 [ ..! - ~ J 
B14 -c - ~) r-1 v-1.. / 

Bis=- 0 

-
624 - C'.) 

B-zs -:: 
ct..3 [J _.!_ J 

1
~µ2) r, Y-i. , 

- £.A3 [ 1 '·] o..Y'ld 
/33 re, = - CAJ r,-;;2 , 24 /-+. 

- A.A E.. f-/> 
/;> 4-5" -:: .:.-----;. ) /2 (t-Li 
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t---..\ ~)(.. 

N'I'/ 

1'i )('j 

M,o< 

M'i'1 -:: 

M )(. 't 

Q>(~ 

Q ·-re 
where, 

A 

B 

C 

i) 

E..-

F 

G 

µ 

= 

-= 

:: 

--

:: 

e, 

E,)(.,{ 

b 

E--rr, 

k 'I 
I 

B" Brz. 

612 B2.2 

c::> 0 

Bl4- 62.4 r 

BIS B2s 

0 

0 0 

0 

0 614 61s C'.) 0 0 

0 624 B2s 0 0 C> 

-
633 0 0 B3b 0 0 

0 644 B4s 0 0 0 

0 B4s 13ss 0 0 0 

636 0 
0 

0 0 

C, 0 

and Exx, Eyy, ~ , ~ ,' , £>.,_, &y, kx, ky, fxz and / yz are defined on page 

(13), equations (14). 
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