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ABSTRACT 

A NONLINEAR THEORY FOR THIN ELASTIC PLATES 

Jatin M. Anadkat 

Masters of Science in Engineering 

Youngstown State University, 1972 

The purpose of this thesis is to derive a nonlinear theory of 

thin elastic rectangular plates including the effects of transverse 

normal stress, transverse shear stress, and transverse and rotary 

inertia. This nonlinear theory also includes the effects of the 

square of the rotation terms in the strain-displacement equations 

and the product of stress times rotation terms in the equilibrium 

equations. 

Using a -variation theorem due to Reissner, the equations of 

motion, the stress-strain relationships, and the associated natural 

and forced boundary conditions are simultaneously determined. The 

resulting equations may be applied to a certain group of rectangular 

plate problems where the applied dynamic loads produce deformations 

which are of such an order that only an appropriate nonlinear theory 

can account for them. 
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CHAPTER I 

INTRODUCTION 

Nonlinear theories for thin elastic plates as derived by using 

the theory of finite displacements differ greatly depending on the re

strictive assumptions placed on the resulting deformations. 

1 

The classical nonlinear theory for thin elastic plates is pre- ~ 

sented by Von-Karman(S), where the nonlinear rotation terms are retained 

in the strain-displacement relationships only. 

The classical nonlinear theory has been expanded to include the 

shell theory by Naghdi( 3), where the effects of transverse normal stress 

and transverse shear stress are accounted for. 

A nonlinear shear deformation theory for thin elastic shells 

and thin elastic plates is presented by Archer( 2). This paper derives 

a nonlinear theory of the Donnell type which includes shear deformations, 

transverse and rotary inertia effects, but does not include the effect 

of transverse normal stress. 

A direct application of the resulting equations play an impor

tant role in wave propagation problems, where the effects of transverse 

normal stress and transverse shear stress are of primary importance. 

The objective of this thesis is to derive a nonlinear theory 

of thin elastic plates based on Von-Karman 1 s( 5) approach. Additional 

nonlinear terms are retained, i.e., the product of stress times rota

tion terms are retained in the equations stress equilibrium. These 

terms are neglected in the classical nonlinear theory. 



Reissner's( 4) Variational Theorem is used to develop equations 

of equilibrium and stress-strain relationships together with natural 

and forced boundary conditions. 

2 



CHAPTER II 

METHOD OF ANALYSIS 

The basic assumptions used in the analysis of thin elastic 

plate are as follows: 

1. The thickness of the plate is assumed uniform and small. 

2. Lines which are normal to the middle surface before deforma

tion do not remain normal to the middle surface after defor

mation (i.e., shear deformations are accounted for). 

3. Linear elastic stress-strain relationships are assumed to 

hold; and the component of stress normal to the middle sur

face is considered to be of the same order as the other com

ponents of stress. 

The following steps are taken to achieve the end results: 

1. Assume stresses Vxx, Vyy & Jxy= 1yx 
' 

2. Solve for lxz, ryz & V-zz which satisfies nonlinear equilib-

rium equations and establish assumed stress field. 

3. Formulate the reduced form of nonlinear strain-displacement 

equations. 

4. Combine the assumed stress field and the strain-displacement 

equations in the Reissner 1 s Variational Theorem. 

5. Deduce equations of motion, stress-strain relationships to

gether with natural and forced boundary conditions. 

3 
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2.1 THE COORDINATE SYSTEM AND NOTATION 

The notation used through the paper is similar to that given 

by Langhaar(l)_ A middle surface of plate is defined as the x-y plane. 

The normal distance from the middle surface is defined by z, the normal 

coordinate. 

2.2 STRESS RESULTANTS AND STRESS COUPLES 

Stress resultants and stress couples applied to a differential 

plate element are shown in Figs. 2.lb and 2.lc. These stress resultants 

and stress couples are defined as total forces acting per unit length 

of the middle surface. 

(z) 

-z 
surface 

h 

(x) 
(y) 

Fig. 2.la 
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The stress resultants and stress couples are defined by the 

foll owing equations; 

.-\ -job. 
%.. 

N)l.)I. - j !Tx"x cJe 
' Mx>« - j i!· v;x dz 1 

-ly'L ;~ 

~t ... ~ 

N"" = j Vy'y ch ' Myy -::: I I!• V'yy di 
' -t -~ 

t 4: +!l 
'L 

Nxy = j ,;.'I d ~ 
' M1y j Z · '?xy cla ., 

-% -"1, 

f ~"2. -f- ~ 

Nyx = 'f;x al? , My)( ::: j i!; • 'ly x eh 
' -ir ... -'>z_ 

+b. +~ 
Qx2 / L 7';z dz , and Qy2- -::: j ~- ola- • 

-~ -~ z... 

Equation (l) yields the relationship 

Nxy = Nyx and 

2.3 STRAIN-DISPLACEMENT RELATIONS 

The general three dimensional nonlinear strain-displacement 

are given as follows: ' 

tx,x - Ux +- I ( 2- v,.Z. z. z u)( + x + Wx) ' 
{;_ YY 

:a. 1. ~ 

- Vy + i ( Uy + Vy + Wy) 1 

t z-1;- - w~ ( L t. 'Z. 

+ i U i + Vi + W z ) 1 

i1 == Uy + '\tx + (UxUy t V.x V>' + W,x Wy) ' 
tyz · = Vi + Wy -t {Uy Uc -+ Vy V2- + Wy\N2) 

' 
and 

'lx2: == W,. + Ua -t-(u.xU2- + VxYc + vJx W2) . 

6 

( 1 ) 

(2) 

(3) 



Retaining all linear terms together with the second order 

rotation terms wx2 , wy2 , & wxwy. 

Equation (3) reduces to the following: 

Ux 
l. 

€xx - + ½ w}( 
' 

€yy = V-,, + J.-W,~ 
z. 1 ' 

t-~i - W-e ' 
~.l ' - Uy + Vx + vlx W-, 

' I 

"fie == V1; + Wy ' 
and 

7 

~e - U-i + Wx (4) 

To obtain the appropriate stress-strain relation, the following 

approximate equations are assumed for the displacement field, 

U = U(x,y) + z'-'x(x,y), 

V = V(x,y) + z'tJ (x,y), y 

W ;= W(x,y) + zW' (x,y) + .lw"(x,y), (5) 
2 

where U, V & W are the components of displacement at the middle surface, 
I • 

<J (x,y) and c.) (x,y) are the change of slope of the normal to the middle 
X y ' , 

surface along the x and y coordinates lines respectively, and W'(x,y) and 

W11 (x,y) are the contributions to the transverse normal strain. 

Substituting equation (5) into equation (4), the following 

equations are obtained: 

.JUNGSTr ~ STATE IJt rRSUJ 
. U RAR 

' 1 ' I I '• 'II 

282289 



and 

ixz: 

_I - II 

W + 2-W 

., ( - ,:-;' z/---") :::= c.v'I + Wy + z.vvy +-\Ny 
2- 7 

.-i ( - w-' 2.-'') 
W,X + w, ... z X -+ I w )( ,, 

, 

., 

Equation (6) for the components of strain are rewritten in 

the following form: 

0 

f-.x)( 

_, -" 
W + 2 W 

• ix1 == (l'Jt.x + 2-ixx) + (iY)' Tcb)'I} +WxWy 

+ ~ .Dxy 

and 

• 

' 

8 

(6) 

(7) 



where, 
0 

€x,, 

0 

¥xx 

0 

Yyy 

Cx 

Fxy 

:: 

(
- _,, _,z. 

::; ½_ Wx Wx + W,c ) 

_L ( _ I _ 11 ,1 _ I ) 
= 2. WxWy+WxWy 

2.4 THE COMPONENTS OF STRESS 

, 

' 
, 

, 

' 

' 

, 

, and 

(8) 

Noting equations (1), the components of stress are assumed 

to take the form 

9 
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rx:x ;:: Nxx 
T + 12 c Mxx J;l 

, 

'Vyy ::: ~ + ~?. Mvy , 
h J,3 

and '"Y ::: ~,cy + ,2 M I! '2 xy . 
" 

The components of shearing stress of 'fxz, 1yz and Viz are 

determined by direct solution of the first three equilibrium equations 

of stress which are: 

' 

and 

It should be noted that each equilibrium equation contains 

six additional terms as compared to the linear theory. These terms 

contain the product of the stress times the rotation terms. 

For thin plate theory in orthogonal coordinates cJ
2 

= 0. 

Neglecting the body forces, Fx =FY= F
2 

= 0, and noting /Xy = /YX, 

10 

(9} 

( 10} 

Jxz = lzx and /YZ = /Zy the previous equation reduces to the following 

form: 



Substituting equations (1) into equations (11), and integrating over 

the thickness of the plate yields respectively, 

';x {Nx'I - Wx Qx2-) + ;'I {Nyy -~x Qyi) - wx 1 + Fz = 0 ' 

o'bx (cJ)INJty - &J:,fl;oc + Qu) + i (wxNyy -cJ1 Nxy+G/y2:) 

Multiplying the equations (11) by z and performing the integration 

over the thickness of the plate yields respectively, 

-c.)xQy.; - Qz2, + h f3 -r h w" ~ -fl w., f, - 0 1 

where, 
+!:I-

f, == 'fn /_h,._ 
7 

z.. 
+~ 

fz ::;:: lyi I ' - !) -;z,.. 

,I-'½..-
~ = v;I: l , 

-b :z-

}+~ and Qi-? == -a.. v1a~ d2:- " 
-b-

,z.. 

11 

(11) 

(12) 

( 13) 

(14) 
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Substituting equation (9) into equation (11), one obtains, 

-¾ (wxYx,) + ?(w,cY.,a) - .:~ (-r.,a • - w>'Viz) - 'X- 2 = o 1 and 

~ (~.) t ;., ('1'"v,) ti (v;,, -,. ~" -r;i! _o.).,Y;z.)~'X-3 = 0 , (15) 

where, 

and 

From equations (11) through (16), one obtains, 

x,, - - f [ '?it ( w'I Qu) + i; ( 4>:,Qvi) + wy ~ + P,] 
' 

"X, .i I - t[fit(wx ~u) rl(wKQv,)-1-w,c~ -~] ' ' 
X31 -· -i[ -fx (Qx1) +b~ (Q..,~) + ~ t cJ,cf~ - cJy tr J , 

"x'.., t === •~[ cJ)'Q~~ + G!x~ - ltw:,~ - I, P.] 
' 

;tu. = -f3 [cJx ~u ..j Q.,z - ltc.lxf5 + ii ~1 
' and 

X.Jt. = -ir c.J., Qxa - Wx Q'11' - Ql~ + Ji ( p3 + _c.J)( ~ -Wy P.)] 

Eliminating Vzz from equations (15), there results, 

wy,JC ,';~ + ;z ('1x"2.)(1 +c.J1J -t r.Jy,'J ~c -w,cw1 i ('1''1~) 

-,- ( 'X , - w.::, X- 3) = o .. , .and 

wx.xlt:~ . + -fc ('r'Kt)(Wx~1) + ~x.y'-(y~ - (,+w,t),b ('f'-,a;) 

-:- (Xz..+ u)x;t3) = O? 

(16) 

(17) 

( l 8) 

·· Uncoupling equations (18) into two independent equations in '-(;~ and '(y"' 

,- and neglectin~ all terms of the square and higher order of c.J , the 

followin~ equaiions re~ult: 



and 
... 

li:J.("r,a:} + }-i:(~c)(cJ'l,K-W:,,.,'J) +~('):.,-wy'X3)-wx.,'X-,-<.J1,y:>'z. == 0 • 
....-

The solution of the first equation (19) for / yz, as detailed in 

Appendix (B), and the second equation (19) for 'fxz, yields respec

tively , 
V"' 

lye ~ ( I - 1/; ~) - .L [ft+(, - 42!- - /E 1...) + fJ.-(, + 4c _ 12. e z.))_) 
2h t11. 4 7; >.1. z h i;a, 

-r ¾ ( I - 'if-:) [ wx,x[ f({ ~+ i> + P,-(z- 4) - ~ Q-,,.-.J 

- w1,x[rl(-i+1) + rz-(.!-iJ - 2: Qn]} ' and 

lxa 3ij{'~(,-~:) - f[ Pi+(,- 4i - 'r~) + R-(,+4,f-~f;,f"J] 

-t ,t- (, -1,;:) { w'J,:,[ f'z'° (c+ ~) + ({-( z-!J.,) - V; Q-n:.] 

- wx,:,[f.+(i+i) + P,-(2-~) - ~ Qxa]} • 

Substituting /xz and /yz from equations (20) into the third equilib

rium equation (15) and solving for Vi.z as detailed in Appendix (c), 

there results 

where, 

[R] 

[SJ 

I -¾ [1~-Tj1< -¾,[ :r~ -1Jy + ~ + + '¾1 er\. -T] 

- ~[:Ti.,,-J) + ~ {i-l+4~a)L3 +(£ -tl3)L4 
, .,<z.. z" l .h~ zi, 1,a 

+ ( ~ _ 62~ Ls- , 
zi. J;o J 

1 

, 

' 

1 

13 

' 
(19) 

(20) 

( 21 ) 
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[ 
I I 

s~ - s'J ::: 

1 

I I f.t"( 1, z 3 -r 2. a [,~ -T J ::: , ---c+2z+4z-) -t R l1. -c - ~ + 4-.2) 

' l. h W-
&. "' ~ 

Cr~ -:r'J = 
-t' 2. 3 -ch ~ 3 f':t..{-!1 - 2 +'22 -,.4-i!) + ~ - - 2 - '2.2 + 't:.E.) f :z. r. 1, "2, 'Z 1; 1,a. 

[1"'~ -T J ::::. F,t(-5 -t 1{+ 't;J 
~ 

ff(, 2. + 42: l'Z.~ ) 

' -i; - T2. 

(J'?.-rJ +( z. ::: ft. -s- -t'i! + IE) s, '-,_ 
Pz-(1 '2. 

+ 42: - '.ll) 1 ti 1-i1. 

[L,] ::: <.Jy c.J1,y -,. wx <J!l',x 

' 
[ L2] = Wy cJX,'j _. wx cJ,11,x 

' 
1 

' 
and 

(22) 

2.5 REISSNER'S VARIATIONAL THEOREM 

Reissner's variational theorem of three dimensional elasticity 

is written in the form 



15 

- f{ [ ( f.tu\ fz.,.V-1--t ~+W+-)-(f(t(..-R.-v-... Frw-J] clxd
1 

S1 

where, E = Modulus of elasticity, 

i = Poisson 1 s ratio. 

] dt - o 

The first term in the integrand represents twice the strain 

energy, the second term - the complementary energy, the third term -

the kinetic energy, and the last term - the workdone by the external 

forces on the upper and lower surfaces of the plate. 

The assumed stress distributions given by equations (9), (20), 

and (21 ), together with, the reduced form of the strain-displacement re

lationships given by equations (7) and (8) are substituted into equation 

(23). 

The resultant equation is integrated over the thickness of the 

plate, and the variation is carried out, yielding 

Xz. 

+[ Q...,u b Q.ll'1 - C Q-, 2 ,< f Q-,z + C t.J1<x dwx -t: C i..lyx &w-, / cly 
X, 

(23) 



!:11-

-CQx1y tG.x2- +CQ'l'l.~6Qy~ -tCwxydt.Jx t-[wyy[w.., / cix} ell: 
.), 

- Yhjf / Ut fij ... Vtfv + ( w.,-+ i w/J Cw + fi. .. w1:' t.;-/ 
s 

ta. 

t~ 

Ji:' <.,)y, I; [<J'J I 
/2. 

t., 

dxcl., 

+ j {ff { -:x[ Nxxbli +Nxy<fv + Cwxlw +Cw~&w'+ Cw;cfw" 
- t, s 

1. I ("' I 'L 2. - ,, ~- II 

+ .b. wu~ ow -t h. (viit~ ➔ ~ Wtt.) ow 
IZ. Z.4- .,_c, 

16 
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dxd" } dt === o (24) 

Where the functional constants Care defined in Appendix E. 

2.6 EQUATIONS OF EQUILIBRIUM AND STRESS-STRAIN RELATIONSHIPS TOGETHER 

WITH NATURAL AND FORCED BOUNDARY CONDITIONS 

Since U, V, W,cJx andcJY are independent functions, the coef

ficients of the functio'ns 6U, &V, E, W,~'w , and&c.JY are set equal 
X . I 

to zero. These conditions yield the following set of five equilibrium 
I 

equations: 

d c- o c-- Wx +~ ·. -, OX O'f 

and 

f
/_3 

- 1l l.J>t,tt 
12- ' 

:::. f.b.aw-,,t:f:-
12. 

I I 

1 

, 

• (25) · 



In addition, the coefficients of the functions ~ Nxx' ~ Nyy' 

bNxy' &Mxx' bMyy' OMxy' ~Qxz' and bQyz are set equal to zero. 

These conditions yield the fo~lowing eight stress-strain equations: 

~ CN,01)< + CNxx =O 
o)( , 

i C - CN..,-, -= 0 o7 Nyy-, ' 
"}__ C Mitxx -t C M>1x ::::. 0 
ox ' 
~ [Myyy - C My.., ==- 0 
-a...., , 

d C N>l'/)C. 
()~ 

;-, [Nxyy - C Nxy = 0 , 

b CM'lfy)( - )._ CMxyy - CM11y =O 

' c,J( 'a'/ 

~ C (x,<~X - ~ C G.xcy - CG..)(.c = Q , 
ox . "by 

and 

~ CQ'f2)( -~ C ~., '/ + [Qy'l: - 0 • (26) 
"ox 

The functional constants C are substituted from Appendix E, 

into equations (26). Solving for Nxx' Nyy' Nxy' Mxx' Myy' Mxy' Qxz 

and Q from the above equations, yields .. yz 

18 
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+ }t3 · ~- t~ k4,') + ~ ~D( K+,x -t l<s-,'I()[ 41 (J,.3 - 1) + t} 

+ 4tw'I K4,><P 'Jf3 (1 + i ~) - k] - YDc.Jx( K,..,"1 -t l<r,'1)[}ts -i- -a 
' 

N~y ;:;:. f3¾((1<+tl<,-)(-'4>y,x-Wx,.,) + t"J-i'fw::,,xk4-

-t ;,,1- JD t.)'J ( 1<-i- )C + k,-, x) t YD t..>y 1<4,>< f,-a ( I +- f Y) 
•\ 5 h3 (j, I I " 

- ~ "fD W,c (K .. .., +I< ... · .. '\ +- Y;p K4"' ~- g_ _ j]. 'JJ(k2+./1<.,) S-h3 ""f; ...... J JI J,,I 'J 5' Eh~ 1,i. 

-f .JD ( 4)..,,1<7 - LJx l<f() - YJ!. [( W>t,x - cJ't,";f) k, -t-(wxl<,,x - Wykb,..,)J 

- J.!. "tJ> { W1t.,'j I<,, x - W..,,'j k3,,, - Wx,,d<,,':I + ~.)i f<((,"J] 
48' . 



- ::, D t.J~ ( -1 k, , x + Kz ; )( ) [ ( !-? + I) ( I+ lJ)) - } '( '2. ;1l3 J 

+ Y:D'4J>t, {-?1<.,,-::1-tk:1.,'J)[-r ·1t,3(i-rj,) - ;_{1-rlJ)J] 

My-, ==- JJ(1< 4 -t-Kl"") - -:}YJ>(-ll{,-t-1<-d(w,.,:,-iw..,,x)(D-tJt~) 

-t -};: -j J) (El.\ I) r~~J (ww, x - w.,,..,) + G!_ ( Wx K3,,c - w-, /<3 ,-,) - cJ.,,,. I< 1 J 
~ IZ. 3 e 

- ~1> cJ~ (~I<, ,,c + l<~,x) [ :P ( ! Y + 1) -}-~J 

20 

, 

-t ~ D cJx ( b,, 1 'J + kz., 'J) [ ~~3 u + i) - ~ J -t y D r.)J K, 1 ,c [ t rt -t J 1 

' 

:::::. 

' 

"\ 



and 

where, 

+ 11. iD [ w),x ( l<z.,-, + Y K,,'J) - w'J,~ ( J<z,x +-/ 1<,,xi] 
4-8' . 

t l_!_!t t_f (w-,,-, 1<,,x· - cJ::,,x 1<1,'J) 
48' ' 

G = E :. 
2 ( l+·n Shear modulus of elasticity 

J) == 
3 

~"' ~~) = ' Flexural rigidity of the plate 
12 1- . 

.L 3 '1 L ( " J? h 4 
- "z.) + 2E 70 W., 3,>< + f,cx + - Cx + - Wx 

12. 6 40 

( 
0 y L- ,. ... _,,_,, 

+ 't"'l(x .,. il'f't + w)( w., + ,"2. Exy -t - Wx Wy} 
3:zo 

21 

, (27) 

, 

' 

, 

' 

, 

' 



and 

.3 J.!- _, ,2.-'' 1.. -· ..L +-+ , '#l - - Wy,'1 Wx + !l... Wy t .li:. w1 , x Wy + ·~ c.Jx 
60 4<> 6<> E 

In addition, the coefficients of the functions bW' and ~W" 

are set equal to zero, giving 

' 
and 

The natural and forced boundary conditions along lines parallel 

to the Y-axis take the following form: 

Either Nx)C = o 

N><., ::: o 

or 

or tv = o : l 

22 

(28) 

(29) 
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[ WI( =- 0 or 6w ::.o , 

C _, 
Wx::: 0 or 6w'=O ' 

C II w,. :. 0 ·or ~w" = o 

Cwxx = 0 or &wx = o 
' 

and c(,J.,'I( = o or 6<iJ., =o 
(30) 

Similarly, the boundary conditions along lines parallel to 

the X-axis are written as, 

Either Nxy = o or tii = 0 ' 
N.,.., = o or &v = o 

' 
Cw.,==- o or &w-= o 1 

Cw;==- o · or fw' = o , 

C _,, 
\f\/'1 == 0 or 6-" W ::. 0 

C CJxi= o or · 6w')(= o 
' 

and ci..l.,y= o or 6 clJ.., = 0 . ( 31 ) 



J. ... .. 
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2.7 EXAMPLE OF APPLICATION TO A SPECIAL CASE OF BEAM THEORY 

In this section, the results from the analysis are applied to 

a general case of the beam-column theory and reduced to a classical 

equation of beam theory in the following steps: 

1. General Beam-Column theory 

2. Beam-Column theory neglecting the effect of transverse normal 

strain. 
' 3. Classical Beam theory 

- - - . ·-, The terms containing Nxx' Mxx' and Qxz' U, W, W', W', 4Jx and 

P3 are retained. Hence, Nyy' Nxy.' Myy' Mxy' Qyz are set equal to zero. 

Also, the terms containing V and ~Y are neglected. The flexural rigidity 
_ fh3 

' of the plate D - ,2 (,-¾1J reduces to EI. For convenience Nxx' Mxx and 

Qxz are written in shorthand form as N, Mand Q respectively. 

Therefore, _ the eight stress-strain relationships reduce to the 

following three equations: 

N :::: [ I - / 3 ~E/] f i EI, ( 1<4 + l<:r) cJ>1,;, - '/r.,Jx !/ GI k. ( 

+- ~YG(wx,,ck, + Wxf<6,><) + 41' 11(w)(,:,k-,,x - c.)J(,;,c #(7,~)} 

-ri:r cJ><(k:4,-, +1<s-,-.,)[;1i! -1] +~.c.J_;.t~r 4 .~ 

M - ~e .r ( 1<4- + Ks-} +14£1 - } ·h·.r c::,,,., 1 ( ;K, + 1<2.){, + -11:r +- ft.:s -I J 
I , 
I 

+ -}t6i[9--:(1+tcr) + tz] (wx,xl<3 + cJx/<:3 1x) 
1 



' 
and 

• 

Also, the five equations of equilibrium (25) reduce to three 

equations given as 

and 

Where, Cwxx, Cwxy and CtJx reduce to 

I l 7'/Ji
3 

Q [ Q Q ] 2f: -- ,'f WJC,'J I JI' - WX,,X •'f 
/ 6 )(2. 4-)( ,as-

+ wx Q {f (w''+ l_ ~ M) - j__ [ h. wxwx,x Q + 3
7
~

0 
~11 

_ o e h3 ztr 10:r 

,, 

3 
== _L I 1 '1 h Q [w Q - w.x Q ] -Z.€ ,,,.,,4x1os ,x 'X,x ,-, ,-, •x 

, 

25 

(32) 

(33) 
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= 

Also, equations (29) reduce to 

, 

and 

013 - '2. - I J.,2 
:;:. L!} (Wtt -t 3_1_' Vitt) - - ~ 

/1 40 zo 7 (35) 

Futher, if the effects of transverse normal strain (i.e., 

i 1 = ~• = 0) are neglected, the stress-strain relationships remain the 

same in form, as those given by equations (32), however, the definition 

of the functional constants K simplify to -t<1 ==- u)( + t < w./ + i c 13 +- + 1:i -J 
• ZE 

, 

l<z. = I 3~ f:J + ½ cw.,Ji. -t- L c ~t.,. fi-J ' TE - £.)x 3,'f 
70 z.E 

K3 -= u, + Wx'iiy + ..!. ,3...h_ Wx f.J. ,X 
21: 7'? ' 

K4- =- wx,x + I, ~ Pa ' Sh 

k.,- ::= ~ i.fi 
s-1-i e- + 1e- l,,)x ( l°a:-, +"3-;..,) 

K<.-= Wx,y + :h- W,x ( ~:)( +'3; ><) ' 



27 

and 

The equilibrium equations (33) reduce to 

, 

' 
1 (37) . 

where, 

( '.!:.i.J. Jl cu,c Q z 
E 10'5" •Y 

' 
and 

• (38) 

The equations still remain highly ~oupled and mathematically 

complex. To deduce classical beam theory, the effect of rotation, cJx, 

is assumed small and neglected iii'J,: ft~e·,r,stress :·equilibr'<ium~: eq:uations 
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I 

along with the axial force N. Also, the effects of Poisson's ratio, Y, 
is neglected. 

The three equations of equilibrium takes the form 

1 

and (39) 

The stress-strain relationships reduce to 

and M == EilJx,x 
(40) 



CHAPTER III 

SUMMARY 

The linear theory for thin elastic plates limits the maximum 

deflection of the plate to approximately one half the thickness of the 

plate. 

29 

A classical nonlinear theory is derived by Von-Karman{S). The 

maximum allowable deflection of the plate as per this theory ranges from 

twice the thickness to twenty times the thickness of the plate. This 

classical theory takes into account shear deformations .in the strain

displacement equations, but does not include the effect of the nonlinear 

rotation terms in the equilibrium equations. 

In this thesis an attempt is made to derive a nonlinear theory 
I ' ' l 

for plates which includes the effects of the square of the rotation terms 

in the strain-displacement equations and the product of stress times ro

tation terms in the , equilibrium equations. 

As observed in Appendix A the author attempted to derive a non-
• . " I ) 'I ; 

linear theory for thin elastic shell. However, the application of the 

assumed stress distribution of Reissener's Theorem in ort~ogonal curvi

linear coordinate form results in extreme complexity in the necessary 

mathematical m~nipulations. As a result, the problem is reduced from 

the shell theory ~pproach to the theory of rectangular plates. 
I ' 

At this stage it is very difficult to say about the maximum 

~ ·, allowable deflection of the plate. The use of the nonlinear. theory 

,. . derived in this thesis, is expecte~ to range well beyond the upper limit 
I I 
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of the classical Von-Karman theory. The upper limit of the theory derived 

in this can be determined only by numerical method-type solutions to the 

coupled partial differential equations. No attempt is made to determine 

the characteri?tics of the limit in this thesis. 

The resulting nonlinear equations reduce to a special case of 

beam theory. If the effect of the transverse normal strain, i.e.(. 
22

, 

is neglected, the equations still remain highly coupled and mathematically 

complex. If in addition, the rotation terms are assumed small the theory 

reduces to the classical beam theory. 



CHAPTER IV 

CONCLUSIONS 

The equations of motion, the stress-strain relationships and 

31 

the natural and forced boundary conditions are determined for the special 

case of a nonlinear plate theory including the effects of transverse nor

mal stress, transverse shear stress and transverse and rotary inertia. 

The addition of the transverse normal stress into the stress 

analysis problem produces a set of highly coupled differential equations 

which do not easily extend themselves to the usual uncoupling procedures. 

The uncoupling of the equations is not preformed in this thesis. ,An ex

tension of this thesis is the determination of the proper procedure for 

this condition. 

The Reissner's variational theroem has again proven itself as 

an extremely powerful method of stress analysis especially when applied 

to nonlinear problems. · It's efficiency lies in the fact that the result

ing equations of motion, stress-strain relationships and natural and 

forced boundary conditions are completely determined without use of a 

free body diagram approach. 



APPENDIX A 

Strain-Displacement relations and the components 

of stress in the ·curvilinear coordinate system 

A.l The coordinate system and notation 

The middle surface of the shell is defined by the equations 

of X=X(x,y), Y=Y{x,y) and Z=Z{x,y) where the parameters x,y are called 

middle surface coordinates and X,Y,Z are rectangular cartesian coor

dinates. The normal distance from the middle surface is denoted by 

+z, the normal coordinate. 

The unit normal vector at a point of the middle surface is 

defined as nj and tangent vectors to the curves of constant x and y 

curves by rx and ry respectively. 

For the special case of orthogonal middle lines, the coor

dinate curves align with the curves of the principle curvature. 

The distance ds between points is given by the equation: 

32 

(Al ) 

where, 

0( = A(l + ~) 
' (3 = B(l +~) 

' 
{ = 1, 

j rl r2 

2 - - 2 - -
A = rx.rx, B = ry.ry . (A2) 

and l l are the principle curvatures of the middle surface. 
rl ' r2 
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A.2 Stress resultants and stress couples 

Stress resultants and stress couples applied to a differential 

shell element are shown in Figs. A.lb and A.le. These stress resultants 

and stress couples are defined as total forces and moments acting per 

unit length of the middle surface. 

( z) 

+z 

le surface 

(Y) 

Fig •. A.la 
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( z) 
Qx z 

~ (Y) 

Nyy 

Fig. A.lb 

( z) 

(Y) 

(x) 

Fig. A. le 



The stress resultants and stress couples are defined by the 

following equations: 

Nxx = 1 

., 

Nxy 

' 

Mxx 1 

:::: , 

Mxy 

Myx 

1 

... h. 

:-= ~ ( ~ tyi d2- • 
-!r_ 

35 

(A3) 
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Equations (A3) yields the relationship 

(A4) 

A.3 Strain-Displacement relations 

The equations of the general three dimensional nonlinear strain-

displacement are given as: 

1 

and 

y;t :=. ~ + -(U1: - 0(0(? ~ + ~ W + -2- (We -t -6 U + -(y v) (W:x - "!£ U} 
0 « CJ(,' o< 13 -( 

• 

(A5) 



Retaining all linear terms together with the second order of 

rotation terms w~, w; & wxwy , 
equation (A5) reduces to the following: 

€,ex = ;;;[ U'/( + ~ V _.. o(~ W + ,.!_ Wx,.] 
!3 , 2o< I 

€-,1 - "l3 [ ~ u + v':J + fl w + 713 w; J 
' 

' 
fxy = \h -+- '0! _ f3x V - o('l u -+ wxW't.. 

f3 o(, c,( (3 o<f3 D( 13 

'fyl ::: Vi + w':I - /{ V 
l3' 13 

and /xc == U2- + 
"'' >< 

_:_ ~ u . (A6) o( o( 

The differential equation of Codazzi for orthogonal shell 

coordinates are written as 

0 ( !J.J::: I P.y ] t'"z ' o::, r: 

and D ( f3 ) - 1. 13)( • (A7) "bx r2. - ti 

The following equations are obtained using equation (7): 

o('I = Ay 
p 8 ' 
I{ 

::: Bx 
o( ,q ' 
o<z =- .B. 

r; 

and f3z = B 
Yi. • (AB) 

37 ' 



Substituting equations (AB) into equations (A6) the following 

reducetl form is obtained: 

Exx :::: k[Ux + _fu V + /lw +2~ w,t·J 1 
~ r; 

~y ::: u" -+- Vx _ Bx;:!. A1 u + W><Wy 
. "13 o( ' fl/3 8"< "'( J3 7 

f;~ == Vi + "::Jy I{ V 

' r' ~ 

and ixi == Ul t Wx "'<'! u . (A9) o( - ~ 

38 

To obtain the appropriate stress-strain relation, the following 

approximate equations are assumed: 

u .::. U (.>< ,Y) + e w.11 ( x,y) 
7 

V :: V (X,y) + 2w-,(x,,1) 

' 
and w W (x,'J) 

_, ~ _,, 
-:: + Z \A} (x,'/) + l \N (><,'!) (Al O) ' 

where,U, V and Ware the components of displacement at the middle sur-

face, <Jx(x,y) and ~Y(x,y) are the change of slope of the normal to the 

middle surface along the x and y coordinates lines respectively, and 

W' (x,y) and ~•(x,y) are the contirbutions to the transverse normal 

strain. 



Substituting equations (AlO) - into equations (A9), the following 

equations are obtained: 

__ , - ,, 
:::: w+zw 1 

and 

If the terms J and} are replaced respectively by the terms 

land l in the first and second equations given in equations (All), A B 

the following equations for the components of strain are rewritten as: 

' 

• 
( I+ };_)/yi! .:= fya +: (W; + f 'N~

1

) 1 

39 

(All) 
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and j ( I +~)~a- • 
+ :?.cw; +i: w;J = 'Ix~ 

' A :z 
(A12) 

where, 
0 

Cxx - -Jr {iix + fl~ v) + ii.+ j_
1 

Cwx)7.. 
' a r, 2/1 

0 

iiI_ 2. t''ty Ir- Bx iJ) + I ( -13 v., ..,. 
7-t ti + ia .. Wy) ' 

0 

= -k(vx - fjJ iiJ °('l(X 

• 
'Tyy ::; 13 (ii., - 8;vJ 

' 
<fx~ -::::: 7i"{wy," - A8wx) , 

f..,., ;:::. 73 (w;c,y - ~ tJ-,) ' 
I) 

'lx2: - Wx u wx 7f - - + ' r, 

<> 

Yj_y - i + r)'I Yyt === , 
a r2. 

Kx _I - I :=. ~ (wx,-x +A;~}+ 1 + ~2. WJCWx 1 

- I I __ , 
_/{'I - 13 ( w-,,i,, + fu w1 + ~ 

t- Pi· Wyv,/y ' R ti.. 

r-·, . Cx I W I - -" - 2. = ::z r, +- A~( WxWx + Wx )] 

' 
c'1 [ _,, ,, ' ] = 4: 1 + i:1. (w1w1 +w,/) 1 

Dxy = 
11

1
& ( wxw; + w; wy) 

? 

- _,, I I -" -
~X'I -:: 

f1 ~ ( Wx2..'Ny + Wx Wy +- w~ Wy} 
' 

and 

fxy 
I I/ _,, _1 

(A13) -;:: .J_ ( W>f Wy +- Wx ""~) • 2/18 



A.4 The Components of Stress 

Noting equations (A3), the components of stress are assumed 

to take the form: 

and 

(I+ L) Vyy = r; 

( I + _g_ ) '(,_,x r, 

, 

(A 14) 

The components of shearing stress of lxz, I yz and Vzz are 

determined by direct solution of the first three equilibrium equations 

of stress which are: 

!x [ ~{(-r;y + tJc 'l;x - W;< lx~)J + :;'1 [c<.{( ~ + w2; '{y,x - Wx '17nJ J 

+ 1,~2:. [ <><p ('f'z.y + c.32 'ti x - Wx \lz,)] + C\' p,?, ( v1;'y~+- '{y l: - '1) '1 ''1X/ . 

41 



and 

It should be noted that each equilibrium equation contains 

fourteen additional terms as compared to the linear theory. These 

terms contain the product of the stress times the rotation terms. 

For thin shell theory in orthogonal coordinates w
2 

= 0 and 

{ = 1 , hence fx == 'I-, ::. ~ = 0. Neglecting the body forces, 

fx :::: F1 <=-. fz = 0, and noting 'hy = '7yx , 'fx2: = ~x and 

1vi = 'fz'I , the previous equations reduce to the following form: 

42 

(Al 5) 



and 

Substituting equations (A3) into equations (Al6), and inte

grating over the thickness of the plate yields respectively, 

- -
- Ay ( fJKx + .Jy Qicc) + Rf ( 6J 'f't- t wx 1u1'1 - w'J Nx.., J - fl 6W>< ~ + A 6 ~ -= 0 , 

and 

-t A8 ( f:3 + <.Jx fz. - w., R) - 0 , 

43 

All) 
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where~ 

*1 
ABF: == o<p, tx~/ ' -b 

'L-

+t - } AB Pz. - · o( p ,.,, 
-b 

1-

and 
+!t 

AB f:3 ::: o( p Vti I • 
- !,. (Al8) z.. 

Multiplying the equations (Al 6) by Zand performing the inte-

gration over the thickness of the plate yields respectively, 

O ( BMxx} + ~ ( A /Ylxy) + flr.13 ( Wx Mx'f - w-,Mxx) 
~)( u'f I 

1 

and 

- 0 , 
(Al9) 



where , 

and 

where, 

and 

f{ 

ABQzl = j o( f3 ~l d~ 

-b. ... 
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(A20) 

Substituting equations (Al4) into equations (Al6), one obtains, 

, 

' 

' (A21 ) 

')'.. I = 'X, II + c· X,2 

' 
?<--2 - 'X 1.1 -r c· ?lu - ' 
Ji-.3 -::: 'Jl 31 -t- '2· "°X3z_ . (A22) 
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From equations (Al6) through (A22), one obtains 

' 

?l~, ::: -i[ :r_ ( 8 Qx2) +::.,(A G.n) - A:. ~x2W'I 

+ ~ G.v2: wx -t RS (Pa + GJx ~ - w1R)] 
' 

~,z = •~3 AB [ Qlla + w-,Q-u - h P. -h~[j) 
' 

iAB[ Gn 
-

- hi{ + "w" Fi ] "):. Zl - - cJx Qi~ 
' 

and 

• (A23) 

El imina.ting Vzz from equations (A21), there results, 

+1.,1:[o(wy,;, +f"wx] -j, ~e. (4<f32..1'y1:,)(wxw-,) 

- ( Jl I - W"7 J:. 3 ) 0 ., . 
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and 

1x~[11 c.)l(,,.. -t "<7 c.J'l} + .J._ E. (~pYo)(w><w-,) 
P( °bl-

-t- '1y 2 [ o(_ tJ "· 1 '-f,.. w:,J "- 2. (3 :2 («f i'.,1.) ( I+ W)() 

-(x 2- -t- W)( ~3) :::O . (A24) 

Uncoupling equations (A24) into an independent equation in tyz 
and neglecting all the terms of the square and higher order of w, the 

following equation results: 

o<.J[ f3 ~~ (o<'Tyi)] + -p°;?.(o<pY:,cJ{(c.)-,,x-A;wx) + 2 <><t] 

+ ;;z 1-c (0 /r.,.1) ( Bx cJy - c.)1<,'f) t 2 0( (2~~-(o( '1-,1) 
A 

Now, draping all the terms with the product of~ and eu 

and similar or higher order and simplifying, one obtains 

= 0 • ] 

(A25) 

(A26) 



Integrating w.r.t. z, there results, 

The integration of equation (A27) is carried out over the 

function i. Applying the boundary conditions 

@ +!!. ,;~ -+ 
2 = , .::: fz_ , 

2. 

+-0( :::: fl Hz. 
' 

/3 
.,. 

-= 8 1-1, 
' 

And 

@ 2= - h. , 'r2 = fl. -
' z. 

o( = fl H,: ' , 

/3 = BI-J,- . 

48 

(A27) 

(A28) 

and neglecting the terms containing the quantity~ and all higher powers 

in comparision to one, the transverse shearing stress '("yz becomes, 



Similarly, the solution of an uncoupled equation from equations (A24), 

in "(xz yields 
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(A29) 

(A30) 

The solution for Viz is obtained by substituting /xz from 

equation (A30) andtyz from equation (A29) into the third equilibrium 

equation (A21). The result is integrated twice w.r.t. z and the follow

ing boundary conditions· are used 

-z = -t-h. a. , 

and 

@ z = - ll 
2. • (A31) 

The final form of the stress distribution Viz is written as 

'\ 
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' 
(A32) 

where, 

R :: Hz.-tfa.+ (? +~) t H; {{- ( 2 - i_) - z.i Qv.! , 

s ::;::. Ht ff',. ( i + 1½ ) ..- f-'I ;-{f • { l - ~) - 22- ~ .. ;lo 
"J;" ' 

f +- L _ L 
:;:: H, F.-f" ( 1 - 1: -1~; ) -+ H,-fl- ( I + t - '-j;f } , 

J + ~+ ( ~ i. - l 2 = rl z I - - 1:a ) -1- H- f{' (,-+ 4-2- - I:!..,, ) 
z ~ 1 h ~ 1 

M, = 
' 

Mz -= 

M3 = 

M.._ = 

_, 
R :::. 

I 
I 

_, 
.s ;;::: 
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f' == t-t( L 3 
H, fl - ~ - ~ -t- ~ + 4-.t._) + H,i=f· ( 4: - 2 - 2('-t 4:,.-3) 

J' ~ - .. ( b. 1. 3 -- t. 3 
,:::, Hi f.. - i. - -a -t 7i + ~ ) + H[P,,-(!i. - c ·- ?l_ + tJ 

' 
[. -::: o( w-, M, + pwx /'114- . 

' 

Lz = o< c,.)-, Mz. -t- f36Jx 11'13 
' 

L.3 ==- cJ-, p. - wx f{ -~ ' 
L4- == [ 13 ( Nx., <.Jx - Nxx 41.,)] X + [ fl ( Hvy cJ>t - N,.y<Jy}] -A.s{&.i< + N..1..v) 

I •'/ r, /'i. 

, 

and 

. (A33) 

The application of the assumed stress distribution of Reissner's 

Theorem in orthogonal curvilinear coordinate form resulted in extreme 

complexity in the necessary mathematical manipulations. 

As a result, upon consultation, it was decided to reduce the 

problem from the shell theory approach to the theory of rectangular 

plates. 

If the stress distributions are given by (Al4), (A29), (A30) and 

(A32) are simplified for the rectangular cartesian coordinates the re

duced form is given by equations (9), (20) and (21) as shown in the main 

body of the. report. 
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APPENDIX B 

Details For Solving '[yz 

From equation (19) draping all the terms with the product• of/ 

and c.) and similar or higher order and simplifying, one obtains 

Integrating w.r.t. z, yields 

Integrating again w.r.t. z, gives 

Ive + c•f,(x,'1) + fz.(x,-,) - tu))(,x (x11 +i-;l:'.12.) +c•'lt2,(t+f wy,x) 

Solving for functional constants f.(x,y) and i(x,y) by using the 

boundary conditions, 

and 

] (82) 

] (83) 

] (B4) 

And substituting into equation (B3) and also making use of equation 

(16) one obtains, 

3~~~ (,-41;:) -3f[fz1-(,-1f-'Z~) + Pz-(,+~-l~~LJ] 

+k,( I - 1:1 { Wx,x[ P/(a+.g_) + P.-(i!-~) - '\~ G.K2J 

(B5) 
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APPENDIX C 

Details For Solving Vzz 

Substituting the results of 'fxz and tyz in the third equilib

rium equation (15), we get, 

where, 

[ R] = 

[SJ .:::. 

[T) = 

[J"] = 

L4 =: 

and LS' == 

+-?a:{w,-f<,-\\-z.>[3~i~t -t-t"cJ.,,-,[R] -¾w•,)[sJ]-k[T]}} 

-J {c->x{(1-tJ["3~~i- + t wx.x[S] - ,f cJ.,,x[R]] -¼[J-JJ} 

~+(2 +~) + ~-(2-.b.) - ¥- a.,~ t.. 
, 

t 
f.(2+h) + r-:-(2-!J.J _ 22 Qn , 

l. 'I- 1i 

f. + ( I - 4 ~ - '-H 2.) 
. h h 

+ f.- ( I + 4e - l.1:.£l.) 
h h" ' 

+ 
1-

P2.(I-~ ~ f&- ( I 1- ~ - l'Z. 2-) + - ~) , 
" -p: >, "2. 

( Nx-, tJ,c - N,c,,_ cJy), x + (NvyC.J"' - Nic.,cJ.,),'j , 

( M,cy wx -Mx1t w., ), " + (,vi.,.,c.)x -M,.y~'J),'J 

(Cl) 

(C2) 
' 



Using equation (12) and integrating w.r.t. z, 

where, 

- t 3 2. :i. 
+ e· Pz ( g - h + ~ - ~ ) - }!; ( 1 - 2J ) Q .. 1: 

%- z 3h 1,.. h ,... ' 

(s'J 

[ .:r'J 

and 

and the functional constants f (x,y) is evaluated using the boundary 

condition, 

Vzz = P+ 
3 

Solving for f (x,y) and substituting the result into equation (C3), 

Vzz reduces to the form 

54 

(C3) 

(C4) 
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(C6) 

where, 

, 

, 

and • (C7) 
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APPENDIX D 

Integration of the Variational Equation 

The assumed stress distributions given by equations (9), (20) and 

(21), together with the reduced form -of the strain-displacement relation

ships given by equations (7) and (8), are substituted into equation (23). 

At this stage a simplifying assumption is made P1=P2=o and then carrying 

out the integration in Reissner's variational equation with respect to 

Zin the limit of!~ yields, 

/f rr{ 
t, 5 

[ N ( • J,2 1.4- '"· ( 2. , ,, 
t yy f:yy -t Ti Cy +-~" w., ) + Myy Ky + ~ WyWy}) 

-r Mx..., [ tfx)( -t- b yy + 1) K'f -t 31-2" Fxy 7 
Zo T_l 
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- z) [ i; Nxx Nyy + 't, /VJ)C)I, M't{J} 

- (I;•;) { [ * N>t,t + -i!,rvix.;J 

-t ;h Qxe 2. + i.~o { w.,,'I Q'fc _c.)x,yQx2:f"' 

== 0. 

( 01 ) 



C_, 
Wx ==-

.... 

Cw' ;:::: 

C
._,, 
w)( 

APPENDIX E 

Definitions of functional constants C used 

in equations (24) 

(
- , ,, N 

-t- Wx-t-b..Wx) xy 
.24 

/a2. _, ( - L " . -z. • 
..., Wy Nv'I t Wy t- ~ w,)/Vlyy + ~ wx Nxy 
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