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1
ABSTRACT

OPTIMUM STRUCTURAL DESIGN

Prasert Tantayanondkul

Master of Science in Civil Engineering

Youngstown State University, 1972

The purpose of this thesis was to derive the equations
for optimum design of slender beam~columns by analytical
methecds, Design charts for simply supported steel beam-
columns hévc been constructed from the equations that were
derived, Techniques which lead to fully stressed solutions
were employed., The algebraic techniques which are tedious
and difficult to handle are presented along with design
charts and optimum design equations, From these equations
and design charts, it is relatively easy to design a specifie
form of beam-column to optimum state without using trial

and error techniques,
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BACKGROUND

1 , Optimum structural design is the process of determining
the best configuration (froms and proportions) over other
possible choices which are acceptable under the applicable
constraints (limitations & restrictions). Form is the shape
and relative arrangements of the component elements while

¥
proportions are the size of components.(l)

Proportions are
also called "design variables".(Q)

Leonard Spunt in Optirum Structural Design,(l) derived

the optimum design process into five major steps as following:

Phase 1- Recognition of Environments

The loads acting on the structure and the purpose of
the structure must be knowvn since these limit the shape of
the structure, For the beam-columns, the factors which are
of enviré%ental concern are:
P , load on the structure
e , eggentricity of the load which causes moment on beam-column

L , length of span

¢ , factor which depends on end conditions

(f.

*Numbers in parenthesis indicate reference cites.,
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These factors are called environment factors (ES).

Phase 2- Establishiient of Criteria

The goal in optimizing such &s minimum weight or
minimum area is represented by a function, This funtion
is called "merit function“.(l) For example in designing a
minimum cross section area of a circular tube column,
the merit function is:

A

g

where
A is cross section area
D is diameter of tube
t is thickness of wall

(2)

This function is also called "objective function',
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Phase.3—r Specification of Form

Thege is no analytical procedure to optimize the forms
of the structures, The forms of the structure have to be
predicted by experience, Fach form should be optimized and
the results compared.

When the form has been specified, the system variables

are defined, There are three types of system variables:

Sp proportion variables
S0 orientation variables
Sm material variables
See Figure B,2 _"D47
A——\ T |
G
1 -1 2 w 9
Subsystem
35 oot | {Sp = A
3 @ Sm = Ej, syl

Subsystem

gL . W

—



Phase 4- Recoocnition of Constraints

Since it is required to find the minimum area of a
given section, the question is; whatis the least area that
can be used? The answer is; when it does not fail and it
satisfies the geometric requirements, The constraints can
be classified as fwo types.

a. Failure Constraints
These constraints are the limitations and restrictions that
prevent the structure from exXcessive stressing and deflection
and buckling,

For example:

Sp £ sy ________ *
Sa £ TE%%;TQ ________ *
d < 0,001, = e<cosmmen= *
Where .
Sy is design stress
sy is yield strength of material

d is deflection
b, Geometric Constraints
These are the requirements on the size of the structure
depending on its proposed use,

For example:

diameter, - D £ 2t
thickness, t =2 1/2"
e

hight, H = oum
A
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Phase 5- Cptimization

The techniques of optimization can be classified
broadly as analytical and numerical,

Numerical Methods

These methods employ the concept of mathematical
programming and the use of systematic numerical algorithms,
The work that will be presented here employs only analytical
methods,

Analytical Methods

An analytical methodé employs algebraic techniques and
the following:

a. Slack Variable
Slack variables are the parameters which are less than
or equal to unity (¥=1)., By employing slack variables,
the failure constraints which are written in inequality
forms caﬁ be changed to equality equations and the nature
of inequality still remaiﬁs.

For example:

s &~ I L e e et 0 *
o
LS E TR WS T T R SRR R e *
SA = l{rysy
where
& 1
?&

It will be seen that these two equations are the same,
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be stated as follow:
failure modes which

neously under the action

ints cannot be explicitly
to the difficulty in
e to optimize by

technique,
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Desien Space

Design space is not a part of analytical methods, but
it is a tool that assists in understanding the techniques
used in optimization, The n-dimension space represents all
possible design points, and the failure constraints can bhe
visualized as a hjpersurfaceg/which divide the design space
into acceptable and unacceptable regions, Another type of
hypersurface is the family of constant value contours of

the merit function., (see Figure B.3)

Dy

Rie B S

The unacceptable regions are crosshatched in Figure B.,3
and where

D D2', are design variables,

FC

1 ?

FC are failure constraints,

2’ 2
M is a merit function, shown by dashed curves for each

constant value,



xXiv

INTRODUCTION

Most of the engineering structures today use trial
and error procedure in their design project, Time saving
economic designs have been a long desired goal, The best
economical design that satisfies all the limitations without
a lengthy trial process is desired by designers, This is the
way that optimum design aspect arises, With the aid of the
electrical computer, the problem of designing for an optimum
state has become possible,

In recent years, the modern technique, which employs the
concept of mathematical programming, has been developed by
the structural engineer, This technique of optimization is
called the numerical technique, Some engineers are still
looking for techniques that do net have to employ mathematical
programming as they expect that it might be easier, Leonard
Spunt(l) has derived the equations for optimum design for
beams and columns by using analytical methods, The backgro&hnd
of this work has been taken from his book, "Optimum Structural
Design" and extended to beam-columns,

The work that is presented here derives the equations
that determine the best proportions for the specific form
of beam-column, With these proportions, the beam-column

o

will be the designed optimumly,



The shapes of the cross-sections of the beam-columns
which will be considered in this study are as follows:

1., Thin Circular Tube

2, H - Section

3. Thin Rectangular Tube

Only uniform cross sections will be considered,




CHAPTER I

" CIRCULAR TUBE SECTION

g Y
P (-
S e
SR cat
| L
) R AT B e it
- a

For thin wall circular tube section shown in Figure 1,1 ;

A = mWt  eeeeeeee (1.1)
3
¥ el EERE (1.2)
8
Bt
g
2
D
= g -------- (103)
M = Pe @ eeme———— (1.4)
Me P
SA = v +* y
S SR ) B L N A TR TS (1.5}

7 0 7




The phases of optimum design applied to the circular tube
are as follows;

Recognition of environment; The following is applicable

oo+
]
!
1
1
i
1
1
1
*

Establishment of criteria; Since it is desired to optimize

the area of cross-section, the merit function is given hy

A

Tt e e ore *

Specification of form; Fer the circular tube section comnsidered

here;

Recognition of constraints; Only failure constraints will
be considered here, These constraints will prevent the
structure from over stress and buckling,

FC, , design stress can not be more than yield strength;

1
€ s, 00 @ meeeccee- *
SA = sy
!
FC2 , from Euler Buckling formula;(l)(*)
AL
" (cL/r)?
' 22 _
< RO Py ke i

802L2




(1) (%)

FC, , local buckling;

3
B, & KE(t/D) T i o *
where
FCi are failure constraints
c is factor which depends on end conditions
K is buckling coefficient

For optimization, the failure constraints are rewritten into

equality equations by employing slack variables,

FC, , s, = Bl /UKL e (1.6)
h = i 3
where %
¢ m2En? L%
FC Bt bt A (1.7
2 1 A B .
where q% & :
F03 ’ SA - ‘YLKE(t/D) -------- (1.8)
where ¥, = 1

It is impossible to optimize the cross-section area
of

directly becausehthe_difficulty in algebraic techniques,
Indirect method is presented here by optimizing the design

stress,

8. ——ps Maximum,

A




By equating Equations (1.6) anad (1.7);

Q%WQEDQ
%oy 3 8¢2L?
2.9
8 s ¢L
D2 " _E&JYO
qﬁn“E

o
1]
@
= F@
<
3. e
ol
==
i
]
1
4
1
1
1
L}
=
O

By equating Equation (1,6) and (1,8);

?&Sy = quE(t/D)
, qrsVD
% . q%ﬁﬁ‘ -------- (1.10)

Substituting the value of D from equation (1.9) into Equation

(1,10); N
“I’vsv S%SV - cL

t = q?ﬁﬁ (quﬁh) - =--(1.11)

By equating Equations (1.6) and (1.5);

4Pe + DP
e
P TDt

Substituting the values of t and D from Equation (1,11) and

(1.9) into Equation (1.12);



x

8? 8
L
LPe + (__X_X) 2—

Y E
Wy ®

oD 1

8 quSyC L LK’SY (s?vsv)z L

TR 0

E

5/ 2 5/2 1 g
spey 3/ 22y xe5/ . By B
83;2C3L35 7:2 8sy30?‘L2

¥

q§7/2

Since there are two proportional variables, t and D,
only two failure constraints can occur siuultaneously,
Letting FC2 and FC3 be the failure constraints that will
occur simultaneously;

n
et
1
1
1
L}

I
|
1
1
—~
=

-
-
o

~

&Y,

Substituting the values of Qﬁ and %i from Equation (1.,1%4)

into Equation (1,13) and rearranging;

[

5 2
72 WIEEEMLN  pn®)(e/mirEd/2 ¥
BN 83/203s1/2 i
8s-¢c Th. 3
y

)

For a simply supported beam-columnj;
c = i

(%)

From Timoshenko;

K

0.4




Using AISI 1025 steel;

E %30 x 106 psi.

s
¥

36,000 psi.,

Substituting these values into Equation (1,15);

0 =-=-(1,16)

/% - s.on(ent)g - 5P (/1)

Solutions of Equation (1,16) were obtained by running the
computer programs (see Appendix A), For q§ = 1 , the
relation between P/L2 and e/L :is shown in Figure'1.2 and
Figure 1.3 . The relation between q§ and P/L2 for e/L

equal to 0,00 , 0,01., 0,05 and 0,10 -are shown in Figure 1.4 ,




x10™2

2 it

20 2

e/L Range P/L° 0.01-0-33
16

12 +

Br N 20 25 30

4

P/1.2  1bs/in® X 1072

Figure 1.2 e/L & P/L® Relaticnship for 4 =1

284347
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Range P/L?  0.0005-0,01

Figure 1.3

4 6 8
P/12  1bs/in%x103

10

e/L & P/L2 Relationship: fory, = 1

v



0 : i 8 12 16 20 oy o8 30
P/L2  1bs/in® x 10”2

Figure 1.4 P/L2 & \j»y Relationship

il 4 + - o
y
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Locating point (P/L2 , e/L) on Figure 1,2 or Figure

1.3 it can be seen that there are three possible values

of Q§ A ié,
Xp

]
=

2, q§

1, ‘Eor q; o |

Reading the value of q§ from Figure 1.4 ;

From Equation (1,9) and letting Q& U AN

Dopt

24 Hor 4& — g |

Equation (1,17) and (1,18) can be used to find Dopt

and topt

3+ For %& - BB ¢

Since q& rmust be less than or equal to unity,

10
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Letting q§ A R S S R S T *

Therefore, the values of QE and Qi cannot be equal to
unity at the same time because there are only two proportional
variables ( D& t ).

Dagbang - AL a0 e T T e *

Since ¥ = 1, from Equation (1.6)

B e G e *
From Equation (1.8);

8 = Ke(t/D) 0 eeeeeeee (1.19)
From Equation (1.5);

s b et AR, 3 4 G SRR S (1.20)

y TD ¢

Solving Equations (1,19) and (1.20) for Dopt and topt .
Result of these two equations were obtained by running

the computer programs (see Appendix A) and shown in Figure 1.5 .

Note: 1In this case, if §, = 1 , the optimum solution will

not be obtained,




1bs x 107
20 1
16
e = 1" _________ 0o
'\\
12 | o B8
= 10"
P N,
8
4
0 2 A 6 . 8 10

D in inches,

Figure 1.5 Result of Equations (1.19) & (1.20)

32
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Example 1,1 Design a simply supported circular tube beam-

column for the following environment factors and material

variables :

P = 1000 1bs,

|
)

100 inches
e = 1 inch

s. = 36,000 1bs,/in>

E = 30 x 10° 1bs./in2
P & S
[ —— j |
B ;;/ t
L‘\‘\ \ '
ot . L
Fig, 1.6
Solution
ofL GO U L *
P/L2 = 0,1 1bs./1n? ________ *

From Figure 1,2;

ql PN
) §
From Figure 1.,4;

¥

0.892




From Equation (1,17);

Dopt

From Equation (1,18);

opt

Results of this example are shown in design space in

Figure 1.7 .

( 8 x 0,892 x 36,000

30 x 10°

2,95 inches

0.892 x 36,000

0.5 x 30 x 10°

0.008 inches

x. 2,95

14
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= 0,892
Yy 9
F02 D & 2,95 PRARERS 4
Fc3 /D 2 00,0087 ...0.(2)
10 110 = 321 ococ.(})
-2 i
in.x 10 Dt DYt
P85k ¢ ,—Area = 0,111 in®
PR e O
A
. 0,055 s
[* " #
t
| ——(1)
2 r /—Optimum design point
1
0 § 2 3 - D in inches

Figure 1,7 Design space of Example 1,1, unacceptable

regions are shown crosshatched,
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Example 1,2 Design a simply supported circular beam-

column for therfollowing environment factors and material
variables:

P = 1000 1bs,.
L = 100 inches
e = 5 dinches
i o
sy, = 36,000 1bs,/in?

E = 30 x 10° 1bs./in2

€ |
St
e s _._L,._.____ ,,*1/
Fig, 1.8
Solution
e/L = 0,05 === ce;ceeea- ¥
BT E0,008 MR AABT S Dok e Ed *

From Figure 1,2 ;

L
4]
¢}
&
|

ot
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From Figure 1,5 ;

o SRR Ee [ St e S ot SR R e ol *
Dopt = 4,15 inches

From Equation (1,19) ;

- Rl i R i i *
topt = 0,0125 inches .
Results of this example are shown in design space in

Figure (1.9) .

As mentioned before, if \l/Ex = 1, the point P' will
be obtained (see Fig, 1.9) as the design point which is not

the optimum design point,

The contraints that intersect at the optimum design point
are called "active constraints"g3) The other constraints are
called "passive constraints",

In Fig, 1,9 FC, is an active constraint and FC_, is a

3 2

passive constraint, FC1 is also an active constraint since

\[,yr'l’
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&
]
-

36,000 1bS./in% "~  v....(1)

3,12 in, e neas i)

t/D > 0,003 AT (. §

36 s R d )

)
O
i

0,198 in°

>
iz,
]
o
i

0,163 in®

0.126 inZ

/,~____(2)
L/

(3)—

FC1
FC2
FC3
1 +
Dt
in. x 19’2
5
l} - t
i
3 L
2 -
1 --—
NS
‘ L
Q 1
Figure 1.9

&1 ‘5

o
N

D in inches

Design space of Example 1.2 , unacceptable
regions are shown crosshatched,
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CHAPTER II
H - SECTION
a
P : P
er { i
i st i AR NOTC) i) 4.
;y 1 L I
Fig, 2.3
For the H shaped beam-column shown in

5
th h\2
5 *+ 2k1hk2t (5)

3
th
T ( 1+6k1k2)

okt
2 3
—5~ ( k4h )

. .
th 3
15~ ( 2Kkjk,)

th ( 1+2k1k2)

Txx

A

th3 ( 1+6k1k2)
12 th(1+2k1k2)

I
k2t |
t
h‘ SSRGS
| gl g
ERIEPE T
DT 1
kih
a = 8

Pigure 2,1 ;3

19




n? (1+6k, k,)

20

(. S ST C————————— L o e e e S G e *
12 (1+2k1k2)
I
r2 5
y A
T 3
g th (2k1k2)
12 th(1+2k1k2)
2 3
RE Gt W R e R S *
6 (1+2k1k2)
IXx B Iyy'
A 3 ;
1+6k1k2 = Pheky | TR S A e e e e
M = P.e - coccececeee- *
The failure constraints applied to the H-section
shown in Figure 2,1 as follows :
1 ]
FCi, local bucking in flange;(i)(*)
N
SA 5 SLE
et
£ L CART W,
kih/2
k,t _
2 2
= \I,Lf 0.385 E ( ) (2.1)

7/
kih/2
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where
S is design stress
Sy.¢ is local buckling failure stress in flange
ki’ ké, t and h are proportional variables shown in
Figure 2,1
qif is slack variable
)
FC2, local buckling in web;(l)(s)
<
SA dp SLw
2
< k.oB{ )
p
SRR T N (R 7/ 3 i ———— (2.2)
5 Lw "p ¢
where
Star is local buckling failure stress in web
k is buckling coefficient
il s o s 2 T
'Jj, fuler buckling in bending axis;
&
Sp & S s
2 g
| T°E E_ (1+6k1k2)
At 2.2
evl, 12 (1+2k1k2)
) 2
¢ meE  hY  (1+6k k) i
= —_— | —— e ——————— 2.3
BX 0212 19 (142K k,)
. 172
where

Shx is buckling stress in bending axis

c is factor which depends on end conditions




22

| ) (2
FC,, Euler buckling in lateral direction;(il(*)

Sa1 f Spy
e 1. kg, |
s L e s R R . (2.4)
52 .
c“L” 6 (1+2k1k2)

where
.SA1 is compressive stress due to axial load only

S is buckling stress in lateral direction

Ey
FCS’ design stress can not be more than yield strength;

S < 8

A Y
= s e e e e e e
%Sy | (2.5)
2 - For linear materials in which the applied stress is not

more than yield strength, The formula for combined axial

and bending stress is;

b al i e Bt
A ol s o
th(1+2k1k2) th (1+6k1k2)

Using the same procedure used in Chapter I, the method

proceeds indirectly by optimizing the design stress,
(=] (<}
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By equating Equations (2.1) and (2.2);

Kkt 2
2 5
Yiakp E(t/h) Y¢ 0.358 E ( K;h/2 )

Letting W, = by S.M.D.

ol

0

k
ky (v )  meemeeee- (2.7)

¢

1\
I

By equating Equations(2.,5) and (2.6);

P + 6Pe

‘.[/S ]
vy th(14+2k,k,)  th” (146K, k)

Multiplying Equation (2.2) by Equation (2.3);

2 2 (1+6k.k,)

i

E (t/h)2 \IIEX_.Q.}J_}QQ S ____._-l._g_ ....(2.9) ii
C

&
Lw b
12 (1.2k1k2) |

= o

p

Substituting the value of s, from Equation (2,5) into Equation

#*
(2.9); , |
e & t21°E%  (1+6lk;k,)
;S = \I»’ k :
Y%y ST SN L S e
9.9 9 o
TP
- D = St A%

oy .
4iwthkﬁ” E (1+ok1k2)

(1+2k1k2)
|
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o=

L] : (1+2k. k)
1.2 cLQ&sy e 1Ko

(qiwqﬁx)-kpﬂn (1+6k1k2)

By equating Equations (2,3) and (2.5);

m2g  h2 (1+6k k)
s =" - e ;
WSy EX .21 12 (1+2k,k,)
( i
sr12 ol (149K, k.)?

: “ ?%_‘ Lo SIS (2.11)

1
¢ mE? (1+6k1k2)~

Substituting the values of t and h from Equations (2,10)

and (2.11) into Equation (2.8)

= P
& 1 PR 3
12-cL 1+2k: 1 € grfss 12%L 1+2k.1
i sle Fi: {2) Bl i i 1 8% (1425
(qﬁwqﬁx) ke (1+6k1k2) Vo TE (1+6k )
6Pe
3
L{.s (1+ 2k, k ) qzs 12¢212 (1+2k.k,)
CJ “ & <
%y B (L+6k, k

5 5
(qiwq@\) k IR (1+6k1k2) Yoo TE (146K k)

o)

1 2)
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Simplifying the above equation and letting B = Yo =1

and for the simple support end condition, ¢ = 1, Thus;

3/2 .33 2
123/ Sy (1+2k,k,)

I"d

L 1 : RO SR o 1
g N v ek W 8 I i :—I
kp IEI E (1+6k1k2)12 %Sy * 6 £ TE (1+6k1k2) (1+2k1k2) |

From Equation (2,12) and letting tpy =1 ;

3/2..5 2
12 5 (1+2k1k2)

P
L2

b
B

1].2.3/2 2 % 0 3.2 % 4 3
kp T°E (1+6k1k2)12 sy+6T:‘n E (1+6k1k2) (1+2k1k2)

From BUCKLING STRENGTH of METAL STRUCTURES by BleiCh:(s)

e/L = 0,00, k, = 3.62
e/L = 0.01, kp = 5047
e/L = 0. 05, k = 7054
p > Approximate Values
e/L = 0,10, kp = 10,30
ot B ¥gla0. kp’ = 21,7
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From Equation (2.7) ;

o 1

ko, = ky ( kp/1.54 ) IR —— *
e/, = 0,00, ko = 1.53 ky
e/L = 0,01, ko, = 1.89 ky
e/L = 0,05, k, = 2,22k,
e/L = 0,10, ko, = 2.59 ky
(¥ vk S« B ko = 3.76 k,
Using AISI 1025 steel ;

E = 30 x 106 psi,

sy = 36,000 psi.

Substituting the above values into Equation (2,13), the
relation between P/L2 and kl are shown in Figures 2,2 - 2,6

for each value of e/L , (see computer program in Appendix A)

The next step is to check whether FC4 is satisfied or not,

From Equation (2.,4);

B |
] i TT2E 23 k1k2
“A S 20 P i Kl
A c“L 6 (1+2k1k2)
P e 1 By
iy [2)
th(1+2k k,) £ o*1% - 6 )
TR tho
2 = o - M g mmemeeee- (2.1%)
By 272
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Substituting the values of t and h from Equations (2,10)

and (2.11) into Equation (2.1%4) and simplifying:

2qq%y 2q5/2 5/2 (1421 X, k3k

i
= 3/; (1+6k1k2)“

L

---(2.15)
qiwqﬁx p

From Equation (2,15) and letting qiw = = qﬁy =.-1..and Tor

Ex

the simple support end condition, ¢ = 1, Thus;

ol 5/2 5/“ (1+2k1k2)2

P A 3
S = A k7K, =————— {2.16)
2 2 3/2 172 ¢
L Ip’W E (1+6k1k2)
From Equation (2,16) and with q§ =1 3
ph 521 Kyesn s
B = s I (2.17)
L KZmeg2/ 2 (146K .k, )" 5
P 1 2
Equation (2,17) is satisfied for FCy, FCy, FC., FC,, and FCg,

but it is not satisfied for Equation (2,8), The relation
o
between P/L” and k, of Equation (2.17) are shown in Figures

2,2 = 2,6 , The computer program is shown in Appendix A ,

1%
|

Since gl L

XX Yy
¥ -— W B - e e
1 + 6k1k2 = 2k1k9 : *®



Foxr

For

For

For

For

e/L

e/L

e/L

e/L

e/L

0,00 ;

1 + 9,18Kk>

0.0% 3
: 2
1+ 11.34k1

ky

0.05 3
1 13.321:?

ky

0,10 ;

2}
1+ 15.54k;

17

IN

1174

IN

v

IN

114

IN

v

IN

i
4.4&ki

1.74

5.18k1

1,74

7.52k;
1.74

28
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1bs./inZ

S+ : e/L = 0,00

0 0.4 0.8.. 1:i8 1,6 2.0

Fig., 2.2 Point 0 is the only design point when Sp= Sy
region which violates FCQ ‘is shown by

crosshatching,



lbs./in?

e/L = 0,01

B, 2100 =,

— By (2.13)

0.6.1

30

T

]{1

Fig, 2,3 Curve OR is design curve when Sy = sy ;




1bs, /in2
e/L = 0,05
1,0
R
,—Eq. (2.22)
0.8

P/L

0.6

0,4

Fig., 2.4 Curve OR is design curve when Sy =




lbs{/in?

e/L = ‘00 10

0.5 | R

0.4 |
p/1.2 |

0.3 |

R S R




1bs,/in2

.25} R

e/L = 0,20

Fig, 2,6 Curve
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In Figure 2,2 point O is the only desiecn point and

]

hence, k1 equal to 1,77 , because in this case, e is equal

to zero (there is no bending moment) and I must equal Iyy

From graphs of Equation (2.13) and Equation (2.17)
shown in Figure 2,3 to Figure 2,6 ; The optimum design
stress can be classified into two cases as follow:

(2]
- (e s, » when load is large (P/L° above point O

A=
shown in the figures),

o

2, sy < s, when load is small (P/1.2 below point O

A

shown in the figures),

i. = S

Sp v
In this case FC3 can not be active constraint because
it will not provide the optimum cross section area (the
proof will be shown in Chapter IV), Therefore, FCi, FC2
and ch are active constraints, FC5 is also active constraint

since optimum design stressed equal to yield strength, Thus;

______ *

]
=Y

1% i « T S ks i oty

From Equation (2.2) and letting Yo = 13

s
-

2
kPE(t/h)

o
1]

(sy/kPE)%h -------- (2,18)



From Equation (2,14) and letting 4§y

support end condition, ¢ = 1 , Thus;

. 3
TE 12— k3k

¥
L2 6 12

F I |
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and for simple

Substituting value of t from Equation (2,18) into Equation

(2.19) and rearranging ;

o 1
l* 6PL k')'
p
i B M2sER2KIK
y e
o 1
h = 4
m2g 2R )
; Sy 152

Substituting value of h from Equation (2.20) into Equation

(2.18) ;

Substituting values of t and h from Equations (2,20) and

(2.21) into Equation (2,6) and simplifying;

i
e

3 1
(P/L2)2k§E3/4nk2/2k2

67 (p/12) % (e/1)x}/Bn?/8r3/ 29/ M 3/

+

¥ T
6 sy(1+2k1k2) sy

The relation between P/L2 and, k,

1/8

(1+6k1k2)

--------- (2.22)

in Equation (2.22) was obtained

by writing a computer program and are shown in Figure 2,3 to

(9]
Figure 2,6 , For designing, the relation between P/L” and

k
1

shown in Figure 2,7 to Figure 2,10 .,

of Fquation (2.22) is plotted in more accurate scale
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1bs,/in2

AR Rk - e/L = 0,01

i

1.0

——

.78 .88 .98 1,08 . 1,18 1.28

Fig. 2.7 Relation between P/1L2 and k; in Equation (2,22)

when sA = sy 3
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1bs./in?

1'3 B

009 -

0.5 |

0.1 . P

o3 ol +5 .6 ol .8
k1

Fig, 2.8 Relation between P/LZ and k, in Equation (2.22)

1

when SA = sy .
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1bs,/in?

G e/L = 0,10

ad B

2 ]

"
T

«35 40 45 .50 +25 .60
k1 |

Fig, 2.9 Relatiqn between P/L2 and k1 in Equation (2,22)

when Sy = sy 5
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.51
P/L

4

¥ o

.0

i e vy {d
T =3 T t i

.20 .25 .30 .35 .40 W45
Ky - 3

Fig., 2.10 Relation between P/L? and k, in Equation (2,22)

b |

when Sp = s:y .



40

From Equation (2,20) ;

( 6PL ](2 )_1_
h = Il A e e P RRPERS o A - S %
opt 2_Fniy N
" syu 1{1‘(2
From Equation (2,21) ;
4
A (s /i B ) it Tt *
= L e B Tt e e e
opt X P 2 _tpid
151 syE k1k2
2. Sy < sy
In this case FC5 is passive constraint since optimum
design stressed less than yield strength, Thus ;
Ll X o 3o ARl e e *
Wi = g =0 T Y LRGSR T
Substituting s, = q§sy into Equation (2,12) and Equation
(2.16) and then equating ;
3/2.3 N
127/ sy (1+2h1k2)
T lq2g3/2 ¢ )1o¥gt 302 (140 g0k k)t
]&JE E (1+6k1k2)12 sy + 6(e/L)TrE (14 k1k2) (1T2L1k2)]
8 5/2 ok 1 )2
(12) Sy (1+2K,%, 5
= » k1k2
o LS 2
Gy r3/ (1461, X,)
Simplifying the above equation ;
3 1 i
- i 101 2
gL 12 kikg(e/L)TTE (1+_h1k2) _________ (2.93)

e
| . 3 by g
(1T6kik2) —2k1k2(1+6hih2)-g
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The relation between s, and k, in Equation (2.2%) is shown

A
in Figure 2,11 , Substituting the values of s, and I, from

A
Equation (2.23) into Equation (2.12), or Equation (2.16),
can yield the relationship between P/L2, sy, and k.
The relation between P/L2 and Sy is shown in Figures
21D and 2 Sl The relation between P/L2 and k1 is shown
in Figure 2,14 to Figure 2,17 .

From Equation (2,10) ;

rafes

X
12%Ls (1+2k Xk,) '
8 : A i 8 | mmmmm———— (2.24)

opt
k: TR (1+6k1k

Y

10

L.

5)

gk

From Equation (2,11) ;

L 3
‘ 12%s%L,  (1+2k k. )?
h = . LE . T e (2.25)

opt 1 i
ME* (1+6k1k2)“
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1bs./in>

32

ol

16

Fig. 2,11 Relation between s

A

and k

1

20

in Equation (2,19) .

(]



1bs,/in> < 107

16

~

-

0.2 0,4 0.6 08 > 1.0 1,2

2

P/12 in 1bs./in®

»,

Fig, 2.12 Relation between P/L2 and Optimum Design Stress.

o



1bs./in% x 10°
~—8, = sy = 736,000 psi.

39
5
o . P TR e T

= 0,80
161
g |
0 ° % 6 g 10

P/L2 in 1bs./in® x 10”2

¥

Fig, 2.13 Relation between P/L2 and Optimum Design Stress,




1bs./

1.0

0.8 |

P/L

0.6

0.4 |

45

0.0

v

in>
L
e - = o :
1.00 1.06 P i 310 1.24 1,30
k :
1 LS

Fig, 2,14 Relation betweenvP/i?and k, when Optimum

Design Stress less than Yield Strength,
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lbs./in? x 10
15 1
12 |
P/L2
9 ¢
61
38 1
0
0,60
Fig., 2.15

It
+

i $ 4 1
T T T

0.6%4 0,68 0,72 0,76 0.80

k1

Relation between P/L2 and k, when Optimum

Design Stress less than Yield Strengfh.

|
/

[




1bs./

: 60§

48 |

P/L

36 |

24 |

12 1

47

?n?

e ] 'S i . %
T T T

0.38 0,42 0,46 0.50 0.54 0.58

kl

Fig. 2,16 Relation between P/L” and k, when Optimum

Design Stress less than Yield Stirength,
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lbs./in?:x 10~3

20 +

o } . - i | -
0.30 B2 0,34 0,736 0.38 0,40

ky

Fig, 2.3% Relation between P/L2 and kl when Optimum

Design Stress less than Yield Strength,
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Example-2,1 Desisn a simply supported H-section beam-column as

shown in Figure 2,18 for the following environment factors
- and material variables:

P s 15,000 1bs,

e = o IR 11 5 I
L = 1000 in,
B = 30 X 106 psi,
sy = 36,000 psi, Y
a Ko i)
P 2 s
R S
e | 1
oty h| X
& 2 |
ot | b
L ' .
a kih '
Fig, 2,18 Rl
Solution
e/L = 0.01
P/L2 =7 Y. 8 Abefins

Since the value of P/L2 is above point O in Figure 2,3 ,

then Sp = Sy .

From Figure 2,7 ;
k1 = 1.04
k2 = 4 891{1

= 1.96
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From Equation (2,20)
AP
~ (6p) 1,5 1/8
% b ik,
n2s;/8kz/“k§E1/8
i ( 6)&15000 ) ( 5 1%7 6)1/8(100 )
i 36000xx30x10 i PR LSl 043/4
= 5 LA 13 ¢
From Equation (2,21)
") o, %
topt i3 ( ka ) hopt
B 36000 )% 4%k
5.47X30X106
= 0.046 ix,
Check
From Equation (2,6) ;
Sfine (o neRGe 90000
= (2]
A 0.725 * T 046)(3.1)2 (1+6x1, 0hx1.96)
= 20600 + 15400
= 36000 psi, === meemcemee————— O.K.
From Equation (2,3) ;
g s gh®s gox 10% o5.4% 43,04
B 0 E 10000 R i T

61500 psi, 36000, -psi,  ~=—ce—=- 0.K.
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From Equation (2,4) ;
B 5142 4,04%x 4,66

3.14°x 30 x 10 & gt
o 5.07

i 10000

= 20600 psi,
= Co R TS SRR R HA e N S — 0.X.

From Equation (2,1) ;

6

ot 1,96 x ,046 2
Spg = 0.385 x 30 x 10 x ( T L )

o= 36000 psi, | e —————— 0.K,.
A = 046 x 3,1 (1+2x1,04x1,96)

S 0 B e g T S e S *

From Figure 4,2

we

AJI2 = 0.725 x 107
e s g el e R DG 0.X.
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Design a simply supported H-section beam-column as

shown in Figure 2,18 for the following environment

factors and material variables

Solution

From Figure 2.4

3

From Figure 2,12 3

s

From Figure 2,15 ;

From Equation (2.24) ;

topt i

1000 1bs.
L & ¥
100 in,

6

U x. 10 psi,

36000 psi,

0.05
st
0.1 1bs,/in}

0.027

in,

SA sy
= 31300 psi,
opt
ki = 0.73
= 1,61
% 2
128 x 100 x 31300 ( 1 & Qx.73::1.61):?1
1,545x 3,14 x 30 x 100 ( 1 + 6X.73x 1.61)7



From Equation (2,25) ;

h

opt

Check

A

opt

From Figure

V) ke

A

4.3

( 28..%.531.300

30 x 10

2.3

in.,

6

)

i
5

X

3.14

100 x ( .4 2 x .73 % 161

146 x ,73 x 1,61

peaRae 9t x { 1 42 X,7% x 1,61")

0.208 in2
:
0.207 x 10~
o
0.207 inZ

i
)
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CHAPTER III
RECTANGULAR SECTION
x
| S A
e _ 2 I
P P T
_r_.. }""‘_— [
£k 1 §
i - . 'h e X
| l i
’ T, i 1 E =
i
.._j;f
. I A TSR
‘klh
a- a

Fig, 5.1

For the rectangular shaped beam-column shown in Figure 3,1 ;

P (1+ 3kk, ) *
> Ty ALY - Tt AT TR
f i bk pd ( kox, + 3k2) *
b o LR - 12 A S TR R
A = 2th (1 + kk,) —  —meeeeeeee *
ot EE (1 + 3k1k2) __________ i
x 32 0T + k1k2‘7
2 [>) Sk 2
L 3 i AR ( k{ko+ 3k1) __________ .
Yy 19 :

(1 + k1k2 )
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Ixx ’e Iyy
3 2
e SF 3k1k2 & k1k2+ 3k1 ________ *
M = D 1 e e oo *

The failure constraints applied to the rectangular

shaped section shown in Figure 3,1 as follows:

(1)

FCl, local bucking in flange;

where

Ba il
;R -
£ g w f <Ba)E
ltlh
Kot
a¥ .5 i
= qif 3-62 E ( N ) '''''' (J.l)
k.-h
T
s is design stress

A
S1, is local buckling failure stress in flange

kl’ k2, t and h are proportional variahles shown in
Figure 3,1
qif is slack variable

FC local buckling in web;(é)(5)

2,

- < S
e T

I\

'0
kK E (t/h)"
oE (t/n)

$ar KpE (t/h)gl -------- .(3.2)




where -’
SLw is local buckling failure stress in web
kp is buckling coefficient

yJ
FC Euler buckling in bending axis;(*)(5)

3’
SA = SEx
{ 12p 23 (1+3k1k2)
o 2-i2
c“L 12 (1+k1k2)
2 12 (1+3k1k2)
= 4@x 55 9% T SR AR Ty & BT ey ik (3.5)
e L 12 (1+k.K3)
N
where
Sy is buckling stress in bending axis

€ is factor which depends on end conditions

(1) (4)

ch, Euler buckling in lateral direction;

IN
]

4 )

" 2
12 12 (k1h2+3k1)

o amalE - seaid e 3 oe i RN L L i oy cee nadaatoantiad (3.1*)
212 12 (141K,

IN

where

s is compressive stress due to axial load only

Al
Ey

s is buckling stress in lateral direction

FC design stress can not be more than yield strength;

59




v

For linear materials which the applied stress in not
more than yield strength, the formula for comhined axial

and bending stress is;

Mc P
S = + —
A ;i A
P P
th (1+3k1k2) 2th(1+k1k2) :

By the same procedure that has been used previously,
the procedure proceeds indirectly by optimizing the design
stress,

FCl’ FCQ, FC3’ and FC5 are active constraints, since

e

there are only 4 proportional variables t, h, kl’ o

Hence, FC4 is a passive constraints,

By equating Equations (3,1) and (3.2) ;

d
Do

<

o+
o

e 3.62 E( ) = Yar ka( t/h )2

oy
=

<
1
Letting Vg = W by S.M.D.

Q&sy ————————— (3.5)_
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By equating Equations (3.5) & (3.6);

3Pe »
+o— e (3.8)

Ve
iy th”(143k,1,)  2h(1+k k)

Multiplying Equation (3.2) by Equation (3,3);

2 2

7B B* {18k k)
o 12
s = g, KE(E/M] ey — P
A Lwv P Ex .2;2 4o (1+ k, k,)
12
From Equation (3.5);
2 1o
k E°m°  (1+3k k)
¢3S§ ¥ qiwqﬁx i’ W =y
) 12¢“L° (1+ k. k)
12
2 1202L2\[f2<;2 (141X, i )
B0 RSN TR T Ny Ok R anens T SRR L At B S D SR SR e 3.
L}/qu/Ekk meE2 (143K k)
'l 1
12%c1, ¢ s, (1+ k 4K )
X & X L mmemme—eee (3.10)
qﬁnqixkpﬂF (1+3k1 2)—
By equating Equations (3.3) & (3.5);
. 7?E  h? (1+3k,k,)
e " o i i it
i e de (1 ki)
259
¥ o/l 24§SX e Y/ T o (3.11)
Y T°E (1+3k,k,)
1 Bl 2
127 oL yTsE (1+ k1k2)~
A 3 Y5y R ENE R WA, (3.12)

iy Y
e, MES (14730, ), )4
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Substituting the value of t and h from Equations (3,10) and

(3.12) into Equation (3.8);

3 Pe
S =
\}JY b 4 1 1 2.8
12%cLy s {1+ kiko)'— 12¢7L7Y s (1+ 1(1k2)
e '.Ly e | R at (14‘31{11{9)
2] 72 2 ’l? 2 e Ll
\}'LWL}EXRPTT“ (1+3k1k2) &PE TE ( 1431, k)
P
o+
i ., 3. 1% %
ad L 2 2 g~ 2
2(12) cL%,s:V (1+ k ky)® 12%cLys i (1+ k1k2) i
* 1°2

a2, 2k R i
2 2 - 2] 2 " 2
., xp TP (1431, %,) LI/EX TR (1+3k1k2)

Simplifing the above equation and letting th = qﬁx = 1 and
for the simple support end condition, ¢ = 1 , Thus;

i Jo 2
24q&sy(1+k1k2)

)
P/L Ry ¢ 5 . T G

e s M) = T 23/ 2 :
kp[B (/DB (143K 1y ) (L4ky kg ) 247 B2/ 2 (143K Jep )y sy]

-------- (3.13)

Letting % in Equation (3.13) be equal to unity;

3 2
!
21§y(1+k1k2)

5
P/IJ = o

2 R, 5
x [5%/00E" (1431, Ky ) (141 Ky ) P4 B/ (1+3k1k2)s};]
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From BUCKLING STRENGTH of METAL STRUCTURES by Bleibh(s) s

e/L = 0,00, e 3.62
q
e/L = 0,05, k = 10,30
P > Approximate Values
e/L = 0,10, : k, = 14,10
e/L > 0,10, kp = 21,70 ]

From Equation (3.7) ;

=5
ko = ky ( kp/3.62 ) R e *
e/L = 0,00, k, = Ik
e/L = 0,01, ko = 1,45 ky
e/L = 0,05, kg = 1,71 ky
e/L = 0,10, k, = 2,00k,
e/L > 0,10, k, = 2,49 k,

Using AISI 1025 steel ;
E = 30 x 106 psi.

8. = 36,000 .psi,

Substituting the above value into Equation (3,14), the
relation between P/L2 and kl is shown in Figures %.2 to

3.6 for each value of e/L ,
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These procedures are the same as in Chapter 2, The

next step is to check whether ch is satisfied or not,

From Equation (3.4%)

- 2
) ; o 2o EE (k ko+3ky )
A1 e 1o (141, X,)
3 2
p 4 ¢ V1A T B i s LRI Y]
2th(I+k K, ) Ey c“LQ 12 (1+k1k2)

IN
]

where QEY

Substituting the values of t and h from Equation (3,10) and
Equation (3.12) into Equation (3.15); Simplifying the equation,
letting | = = Qﬁx = Qﬁy

condition, ¢ =1 , Thus ;

1 , and for the simple support end

2445 /2 5/2(1{31' +)k?)(1+k1k2)2

P
— = i 3016)
2 2qlpd/ 2 a 2 (
L kpﬂ E (1+3L1k2)
Letting q§ in Equation (3.16) be equal to unity ;
5/20,.3 2 . 32
P ? 2lfsy (L1k2+3k1)(1+k1L2) i
| A 22 3/2 2 TR
L k2T (1+3k;k,)

p



satisfied Equation (3,8).

i

For

For

For

For

For

As in Chapter 2 , Equation (3.17) does not

e/L

e/L

e/L

e/L

Since

0,05

0.10

of Equation (3,17)

“we

“e

Txx

1l + 3k1k2

2
1 + 3k1

kl

1 4.35k§

e 4 7.47k§.

kl

v

W

17

IN

W

IN

117

IN

1%

IN

v

IN

I
2 4

D
k1k2

gl

k1+

-+ 3k§

3]{?‘

1.71k$ + 3k

okt
51

1.32

2
+ Zkl

The relation between P/L2 and

is shown in Figures 3.2 to 3.6 .

2
1

L .
2.49k1 4 3k1

1,40

62
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1bs, /in;

5 1 ; e/l. = 0,00

SoRg, (3.17)

i

0 0.4 0.8 1,2 1.6 2.0

kl v

Fig, 3.2 Point 0 is the only design point when Sy = S

, Y’
region which violates F‘Cll is shown by

crosshatching,




1bs./in2

e/L = 0,01

20

64
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lbs./in%
e/L = 0.05
5L R
0.4 | AL i oo
/'/
/
—Eq, STy
P/L2 // q (3 7)
0.3 | Ba. (3.14) -
Oz20
OnE |
‘ : + +
0 0.4 L SN 1.6 2,0
1




lbs./in?

e/L = 0,10

30 1

o
P/1.2

I8 4

012

Fig, 3.5 Curve OR is design curve when s
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1bs, /in>
e/L = 0,20
.151
.12 Eq. .22
2 ;
P/1L o { v N (3.17)
.09 | Ba. {3.14) =
.06]
03]
‘L 1 ‘ d
0 0.4 0,8 1.2 1.6 2.0

Fig.3%.6 Curve OR is design curve when sA S SR
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The relation hetween P/L” and k, shown in Figures 3.2
to 3.6 is similar to Figures 2.2 to 2,6 respectively,
4 From these graphs thevoptimum design stressed can be
classified into two cases as follow:
¢ RN - T sy ’ when the value of P/L2 is ahove point d.

o
., 8 vthen the value of P/L”~ is below point O,

Sy, = v
In this case if F04 is passive constraint it will not

provide the optimum area (The same as in Chapter II), g

Letting FC, be passive constraint;

3
Mg - » qiw ¥ qﬁy T} W& i et i
From Equation (3.2) and letting 4iw =1 3
LR R G R (3.18)
P
From Equation (3.15) and letting q%v = 1 and for simple
support end condition, ¢ = 1, Thus ;
2 3
s T™E th- 3 P2 R T 3
F 0P e (k %o+ 3k7) (3.19)

Substituting value of t from Equation (3,18) into Equation

(3.19) and simplifying,

2k &
6P kpsy

h

g
ﬂzE:(kzk2+3k§)
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Substifuting value of h from Equation (3,20) into Equation

(3018) 2 71. ..1_ -‘;}
- OPL k=82

- T
m°E (k1k2+3k1)

Substituting values of t and h from Equations (3.,20) and
(3.21) into Bquation (3,6) and simplifying;

$.3/! : 1 1
(P/L2)“EB/*(kzk2+3k?)*nk‘

P

14
24*5& (1+k1h2)

3(P/L2)%(0/L)E7/5(k k +3k )3/4ﬂ3/2k%/8

o+

63/43;/8(1+3k1k2)

The relation hetween P/L2 and k, in Equation (3.22) was
obtained by writing a computer program (See Appendix A) and
are shown in Figures 3,3 to 3,6 ., For designing tﬁe relation
between P/L2 and ki is plotted on more accurate scale shown
in Figures Ha 7 tholi5is 10 ;

From Equation (%,20)

H a. 4 % b
6PL Kk s™ s
]1 l'= P y ————————————— *
PR 2 %03 2
Lm®E? (1K, +517)
From Equation (3.21) ;
\
i
- O TSR Ly AR R g S S T (P %
topt = (sy/kPE) hOpt
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1bs./in>

1.7 |

1.5 1

P/L

1,3 %

0:9 |

0.7 |

0.5

l + I
y; T % T T T

‘30 .35 .l&o .45 .50 .55
Iy \

Fig, 3.7 Relation betWeenvP/Lgand Ity in Equation (3.22)

when sA = sy 5




11
1bs,/in?

1.2 1
130

0.8 |

P/L

0 .

4 4
T 1 1

A 24 o 14 .16 18 20 v 22
k4 o

Fig, 3.8 Relation between P/LZ and k, in Equation (3.22)

1

when sA = Sy i
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2
1bs,/in.

5 : 5 e/L = 0.%0

0 + } + t

.10 o o 12 X «13 .14 + 15

1

O
Fig., 3.9 Relation between P/L” and ky in Equation (5.922)

when sA = sy o




1bs./in2

73

; s
x| 1

.05

Fig. 3.10 Relation between P/LZ and k

.06 07

1

when Sp = Sy -

in Equation (3,22)
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2, SA <Sy_
In this case FC5 is passive constraint, the other

constraints are active constraints ;

e

Substituting s, = q§sy into Equations (3,16) and (3,13) then

qiw g qﬁx = q%y = | AR L L ¥

4

equating

3 g 2
2hsy (1+L1k2)

1 3 ;| 1 1
ol vy i Blas AW B
kp[} (e/L)T’E (1+3k1k2) (1.k1k2) +T°E (1+3k1k2)gA}

5/2 5 2
24sA/ (1255305 ) (L4, X, )

1. _2.3/2 2
K2 T 3/ (1+31,X,)
Simplifying Equation (3,23) ;

2.2 3 2y
3(e/L)“m E(k1k2+3k1) (1+k1k2)

IR
(1+3k1k2)(1+5k1h2—k1k2-5k1)

The relation between s, and k; in Equation (3,24) is shown

in Figure 3,11 ,




' 1
1bs./in® x 10 .
‘ :
g S, = 8, = 36,000 psi,
3671
30-L' e/L = 0,01 —*__\
i S S L N
°A 0.10
on 1
181
12
Eﬁ
3
6J.
} , , : L
0 .1 .2 '3 'I" 05 i
ky ]

Fig, 3.11 Relation bhetween and k1 in BEquation (3,24) . ﬁ

SA
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Sﬁbstituting the values of s, and k, from Equation (3.24)
into Equation (3,13) or Equation (3.16), will yield the
relationship between P/L2, s, and k; ., The relation between k, ,
P/L2 and s, is shown in Figures 3.12 to 3,16 ;

From Equation (3,10)

.o

1 3
12°Ls,  (1+k k)
Yopt = 4  pe o G N O F e ARt
I mky B (1+3k1k2)“
From Bquation (3,12) ;
197t (141 3,) "
SRS = +K_ K =
h, L = R — (5.26)

L
e TR (143K, ), )*



1bs./in? x 10°

S R 36,000 psi.

0 0.1 0.2 0.3 0.4 0.5 0.
' in 1bs./in2"

A ' -
Fig., 3.12 Relation between P/L” and Optimum Design Stress,

6

LL



>}
1bs./in> x 107

r_sA - sy = 36,000 psi.
1

1 1 f 1
— . iy

0 0.02 0.0% 0.06 0.08 0.10 0.12
P/12 in 1bs./in>

8L

Fig. 3.13 Relation between P/L2 and Optimum Design Stress.



1bs./in2

.6

.51

79

3 3
5 Al

.34 .39 e .19 .54 .59

Fig, 3.14 Relation bhetween P/L2 and k4 when Optimum

Design Stress less than Yield Strength,




1bs

S L

» 100 §

P/L

075 |

.050

./in?

80

12 Ak 16 «18 .20 w22

Fig. 3.15 Relation bhetween P/L2 and k, when Optimum

Design Stress less than Yield Strengtﬁ.
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1bs, /in2

.10 |

06}
P/1.2

L0 |

0 + + ¥ I + o T
t + t T -

a0 £ 0 .12 w13 L N 1 .16
- k4 _

Fig, 3.16 Relation between P/L and k when Optimum Design

Stress less than Yield Strength,
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Exampie 3.1 Design a simply supported rec£angu1ar tube
beam-column as shown in Figure 3,1 for the
following environment factors and material
variables :

P = 1000 1bs,
sBE 5 n,

L = 100 in,
6

E = 30 x 10" vsi,

s = 6000 psi.

y > p
Solution

e/L = 0005

B2 = e ame, et

From Figure 3.4 ;

SA Sy

From Figure 3%.1%;

Sp = 32800 psi,
From Figure %.15 ;
: 1{1 = 0215
k2 = b P & k1
= . 368
From Equation (3%.,25) ; z "
12%Ls,  (14kk,)?
topt T a 3
ﬂkﬁE (1+3k1k2)

i :
< 32800x100,. +0,215x%0, 368

SihhE & yé
10.37 3,14x50x10" +3%x,215x%, 568

«O352 ' 1,




From Equation (3

hopt

Check

From Figure 3.1

A

From Figure 4,2

b

A

From Equation (73

Sy

From Equation (73

i
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.26) ;

1

i 1 i
12°Lsy (1+k1k2)~

&8 1
mE= (1+3k1k2)~

(12x32800 % 100 (1+0.215x0.368)%
305100 = O+ 14 T145X.215x%.368

BnHo -

1

2th(1+k1k2)

2x0,0352x%,42(1+0,215x0,368)

25.0,262  in°

;
0.260x10™ "

B R o i bt 0.K.

6 (0.368X0.0352)2

3.62x30x10 0,215X3, k2

33000 psi, = emeeseces 0.X.

.3) and for simple support end condition,

n2p p2 |, (1470) :
gkt R

L 12 (1+k k2)

(3.14x3.h2)2x30K106 (1+0,237)
10hx12 1+0,079

33000 psi, = @ eeceoesnce DKy
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From Equation (3.%4) and for simple support end condition,

e 13
S

Ey

P/A

From Equation (3

o |

n%g n® (kzko+3k§)

\e)

e (1+k1k2)

13.14x3.&2)2x30x106 LJ2153x.368+3x.2152)
10%x12 1,079

3780 vpsi.

1000
. 262

3800 psi, === 0 =eccccaccae- 0.X.

e

3Pe " P
2 .
th (1+3k1k2) 2th(1Tk1k

5)

3x1000x5
0.0354x3,427(1,237)

+ 3800

29200 + 3800

TR0 PAE, L e ———— 0.K.



85

CHAPTER IV

COMPARISON OF RESULTS

Circular Tube Section

From Figure 1.1 ;
A -l @Mt @ eeceeee- (401)
When the optimum design stress is less than the yield

strength, D . and t_ . are obtained from Equations (1.17)

pt pt

and (1.18).

Substituting Dypt and tg into Equation (4,1) ;

pt
2

Aopy = TS /KE) (8¢ s /E) o

( A

Sps B (TP e (1.2)

Using the relation between % and P/L2 from Equation (1,16)
as data in running the computer program* for Equation (4,2),
the relation between P/L2 and A/L2 were obtained and are
shown in Figure (4,1) to Figure (4.4).

When the optimum design stress equals the yield strength,
D

and t_ . are obtained from Equations (1.19) and (1,20).

pt
From Equation (1.19) ;
D

opt

t

&

From Equation (1,20) ;

4Pe + DP -

S = | ee— e
¥ T3t

*
See computer program in Appendix A



86
i
| Substituting the value of t from Equation (4,3) into this
| _
equation and rearranging ;
2 3
s (p/L)
P/ = Yoo e (4.4) -

KE(4e/L + D/L)

Substituting the value of t from Equation (4.3) into Equation

(4,1); ns. D2
Vs Rt
A i KE
2
. ns_ (D/1.)
A/LS = _ll'('ﬁ:—"°' --------- (4.5)

From Equations (%4,4) and (4,5) the relation between P/L2 .
D/L and A/L2 is obtained by running the computer ﬁrogram.
The relation between P/L2 and A/L2 is shown in Figure (4.,1)

to Figure (4.,4) .

H - Section

From Figure 2,1 ;

A = th(1+2k, Xk, ) ————————— (4,6)

e

When the optimum design stiress is less than the yield strenght,

t and h . are ohtained from Equations (2.24) ana(2,25) .

opt p
: ! : Bouati N, 5
Substituting values of topt and hopt into Equation (4.6) and

simplifying ;

3/2 2
12 s; (1+2k1k2)

ST
kp TR (1,6L1k2)

(A/LQ)OPt i

Using the relation between P/1.2 and k, shown in Figures 2.1k

to 2,16 as data in running the computer program for Ecuation
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(&,7) the relation between P/L2 and A/L2 were obtained ana
are shown in Figures 4,1 to 4,4 .,
When the optimum design stress equals the yield strength,

& and h0

St 4 are obtained from Equations (2,20) and (2.21),

P

Substituting values of t_ . and h into Equation (4,6)

pt opt
and simplifying

we

1 2,1 i
62(P/L )“(sy/kn) (1+2k1k2)

2
(A/L7)
opt ¥

: np3/% k3/2 y1/2

The relation between P/L2 and k, from Equation (2.,22) was used
ik : 2 A : ;
to obtain relation between A/L” and P/L” in Equation (%4.8).
The resulis are shown in Figure 4,1 to Figure 4,4 ,
In this case if F03 is the active constraint and FCQ is the
O
passive constraint the relation between P/L2 and A/L° will
be obtained as follows:
From Bquation (2,10) and letting q& = Y, = th = 1 and for
simple support end condition,c = 1 , Thus ;

=5 1
12°Ls, (1+2k1k0)“

t = £ oS e i ot (1109)
kﬁ’ﬂE (1+6k1k2)~
From Bquation (2,11) 2 >
12%82L  (1+2k Xk, )*

Al b, L8 R D A 0 (4.10)

" fL3
mE*> (1+6k1k2)3

Substituting values of t and h from Equations (4,9) and (4.10)

into Equation (4.6) and simplifying ;

¥ A 3
See computer program in Appendix A
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1053/2 (1+2k1k§)2

RV R S AU W L . 4,11
e 253/ (1+6k1k2) e )

Using the relation hetween P/L2 and k1 from Equation (2.13)
to obtain the relation between A/LZ ana P/L2 in Equation
(4.11), the relations between P/L2 and A/L2 in Equations (4,8)
and (4.11) are plétted on same figure forAcomparisioﬁ, Figure
4,5 and Figure 4,6 for e/l equal to 0,01 and 0,05 , It will
be seen that if FC3 is an active constraint, optimum area

will not be obtained,

Rectangular Tube Section

From Figure 3.1 ;

A = 2th(1+k1k2) ........ (4,12
When optimum design stressed is less than yield strength,

X and h __. are obtained from Equations (3.25) and (3.26).

opt

Substituting values of to and hopt into Equation (4,12)

pt
and simplifying ;

2 2
24s2/ (1+k1k2)

o
(A/L ) = =5
apt k;ﬂgEB/Q (14311,

Using the relation between P/L2 and k1 shown in Figures 3,14
to 3,16 as data in running the computer program for Equation
(4.13) the relation between P/L2 and A/L2 was obtained and
is shown in Figures 4,1 to 4.4 ,

When the optimum stress equals the yield strength,

t and h__. are obtained from Pquations (3.20) anad (3,21)

opt



Then, -snbstitu_ting values of topt and h into Equat]‘_on

pt
(4.12) and simplifying ;

i % ; |

° gae(P/L )3 sv/kn) "(1+k1k2)

(A/L )opt = e e (2.14)
ﬂES/q(k%k2+3k§)1/2

Using the relation between P/L2 amd k, from Equation (3.22)
for running the computer program (see Appendix A), the relation
was ohtained between P/L2 and A/L2 in Equation (4,11) and

is shown in Figure 4,1 to 4,4 ,




WS e/L = 0,01

o5 4

o

A/L

3

o1

90

"
i

0 0.2 0.4 0.6 0.8 1.0

P/1.2 in Ibs./in>

Figure 4,1 Form comparison of cross sectional area
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x 10 :
e/L = 0,01 (cont,)

1.0 1.2 1.4 1,6 1.8 2,0

P/L2 in 1bs./in®

Figure 4,2 Form comparison of cross sectional area




e/l. = 0,05

O .1 .2 2 .3 2 04 .5
B/L," in 1bs. /in,

Figure 4,3 Form comparison of cross sectional area




e/L = O. 10

93

0 .05 «10 15 « 20 «25
o 2
P/L” in 1bs,/in}

Figure 4,4 Form comparison of cross sectional area



94
"
x 107"
e/L = 0,01
1,0
0.9 | FC, is passive constraint il
0.8 |
]
A/12
0.7 L
\\——* FC3 is passive constraint
0.6 |
0.5 + t } + 5o
)58 152 1.4 1.6 148 2,

o O

P/L2 in 1bs./in>

Figure 4,5 The proof that FC3 is active constraint

optimum cross sectional area will not be

ohtained,



o5

e/L = 0,05

FGQ is passive constraint

-+

\——Fﬂﬁ is passive constraint
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' 4 N
t i ’

oi 02 o:')' 04 -L;

o
P/L2 in 1bs,/in?
Figure 4,6 The proof that FC; is active constraint

optimum cross sectional area will not be

obtained,



CHAPTER V
CONCLUSION

In this study, the equations for optimum design of
specific forms of simply supported beam-columns have been
. presented along with appropriate design charts . In
Chapter IV the optimum designsof various forms have been
compared, With the aid of the design charts, it is
possible to design simply supported beam-columms opfimumly
without trial and error procedures, These equation can bhe
adapted for use with different end conditions,

Techniques which lead to fully stressed solutions are
employed._ The difficulty in the use of these techniques
arises when trying to find which constraints are the active
constraints, A set of active constraints must be assumed
and then compared with the other set of active constraints,
However, it is believed that this approach yields time
saving economic designs,

In further studies, it is recommended different types
of stress conditions shouvld be investigated such as torsion,
combined bending and torsion, and combhined axial stress and
torsion, A combination of all three, i;e,, axial stress,
torsion, and bending would prohably involvgﬁbé too complicated
procedure and other optimum fechniques would need to be

employed,
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APPENDIX A

FORTAN COMPUTER PROGRAM

The symhols use in the computer program are as following:

AL2 . A/L?
e = P/L°
CK1 - Kk,
CK2 o Iy /k,
CKP . = K

D
DL - /1.
S = e/L
SA = SA



 TRAN IV G

)01
)02
)03
)04
)09

co6
)07
)08

LEVEL

C
(%

100
20

20 YAIN

OPTIMUM STRUCTURAL CESIGN
CIRCULAR SECTIUON S & C RELATIONSHIP

N0 20 K=1,35,1

P =K

C=0.0005x%p
S=(1.0-3,04%C)7388.,0/C
FORMATI(2F15,5)
ARITE(6,100)C,S

STGoP

END

DATE =

FOR X=1

12091

98

14



fORT
coe
CO
007
000
000
cuQ
0o
ok}
(WEV)

100
20U

GPTIMUM

Gl
(%
P =K

7
N
)
<

L LA

() K

'
\

t:z‘JQ\/I:}')
X=13.C4

b

ST

bVl

-r)

)l"'\l.',,
SEL.3
Le35,

B0 ) K
AT 2F 159

WAl T (h' LA ) 5

AR

X

MALN

DesSd G
’.. s HxL:«‘l

JASHILP

{

RDATE =

J

WHEN 5=0

1¢C91

99



100

aTRAN IV G LEVEL 20 MATN _ DATE = 72091
C OPTIMUM STRUCTURAL DESICN
: C CIRCULAR SECTICN X & C RELATIONSHIP FCR  §=.01
001 100 -FORMAFI3IFLIS.S)
002 C=0,01
003 101 00 20 K=1,100,1
004 P=K
005 X=0s01%P
006 A=X%%3,5-3,04%C*X**¥0,5-3.88%(
007 20 WRITE(6,100)CyX,A
008 C=C+0.01
009 IF{C-0.35)101,102,102
010 182 “S510P

11 END




TRAN IV G

LEVEL

4
r

100

101

20

102

20 MAIN

OPTIMUM STRUCTURAL DESIGN
CIRCULAR SECTION X & C RELATIONSHIP

.FORMATA3F 15.5)

C=0.01

N0 20 K=1,100,1

P=K

X=0e 01 %P
A=X%%3,5-3,04%CkX%%0,5-19,4%C
WRITE(6,100)CyXyA

C=C+0,.,01
IF{C-0.35)101,102,102

STae

END

DATE

FOR

= 72091

$5=.05

101

L5,




(TRAN TV 5

)01
02
02
)04
905
06
107
)08
009
310
oLl

T

LENEL

C
C

100

101

20

102

20 MATN

OPTI#UM STRUCTURAL DESTGN
CIPCULAR SECTION X & C RELATIONSHIP

FORMAT(3F15.5)

C=0.01

DO 20 K=1,100,1

P=K

X=0.01%pP

A=X**3o 5"3. OQ*C‘:X**OQS_38.8*C
WRITE(6,1005)CyXyA

C=C+0 .01}
IFLC-0:350001,1024+102

STOP

END

DATE

FOR

= 72091

S=.1

102

&



SRRMTNRRS -, T Er B R e Y
P R e IR D LS L L e HEF b VAL v PR R 2 0 A5 10 ) L S

PECATIAN CLETWSEN . AQEA aD1-2 WHENM QA ¢ S¥

ADTIMIM STRUCTUREL DFSIAN “TRCULAR - TUBESECTION :

_EORMATSEE] Se 5 Sod, B AN g 2 : il
RIEAD(S « 1 OR L END= ’7‘7)9 = M .

.»,.\L =R QR X "’323.‘3)“3‘.?_.3/!_.1. 4%3 0 COAOSNNGrEE S AN VDA G e
QITC‘(011 l\;):-'pi_7 Al 2 3 ; \

GE ST PO

377p . ,

RN L st B e (e

~




20

99

104
29 MAIN DATE = 72231 iR f56/21

DPTIMUM STRUCTURAL NDESTGN CTRCULAR TUBE SECTION®
RELATION BETWEEN AREA €PL2 WHEN SA& = BY
FORMAT(S5F15%.5)

READ (5, 100,y END=929)S

DO 20 K=10,200,2

P=K

DL=0.001%P
PL2=36000,0%%2, 0%, 14%DL*%3,0/ (0 4%30000000.0)/(40%S+DL)
AL2=3,14%DL*%2,0%36000.0/({0.4%30000000.,0)%10000.0
WRITF(G6018D)SeNL,PL2yAL2 '

GN TO 101

STOP

eND



z JZ/IH'MN(Z/ COMPUTER CENTER 105

- EBEVEL 20 MATN DATE = T2234 197 Yo/ 35

C OPTINUM STRUCTURAL DESIGN « H-SECTION
& C 5 K1 RELATION FOR PSI-Y=1 PIL%%2=C ,K1=CK1

% REL a1 BEN R weEeN A e 2 5 KL 1N ERUanEaN T o)
108 FORMAT TS ENY 5]
101 READ(95 130, END=79)S,CKP4CK?2

i) I O G PR ERS

P=K

LRIT=0 J1%=P

L=l e Lat RZTEFZ O/ CRPF#0,. 57 (3. 1
16%%2, 02350000 ) %124 0%%0.5%35000.0%%0
20940, % 5% 13, CXL%%2,0%CK2)*%C 5% (1.

TR I P JR 2 O O R e RS W e RO AT
2L} WRITE(S59130)85,CKLeCK2,C
G0 1G]

32 5 1{IF
END




f
Vj//lll'ttﬁdlgy COMPUTER CENTER , A 106
5 LEVEL 20 VA TN DATE

72234 19725735

R U P TR RS REAB W @ 70 e o R B RS
C C 6 kil RGBSR AT (P ST = ] P/L=%2=C K1=CKl1
C RELATION "RETWEEN P/L#%2 & K1 TN FQUATION (2.17)
2

g ol
o9
e

! READ(S5 ¢ 100y END=9 JS,EKD ;K2
DA 210 K=like 2004

CKL=001%x)

Czl2 0%%2:0%36000,0%%2, 5% (1,042 O%CKIRER2 OXCK2) %52, DFCK]1*%4 ,0%CK2/
3 P

. 3 /\ 4
T T UTLRP =R D% S [4¥FE LT IITIU TUUe U¥F1e Y¥ N LeUFE SO ECRKTFFLTFURL Y 520 U
?/(JQU
20 WEITE(6,4100)5,CK1,CK2,C

B 5T U1
A3 Sinp
END




Lﬁ@rthUﬂncanaa A TN DATE = 72229 20715754 107

. CPTIMUM STRUCTUKAL DLS1Gn H-SECTION :
C RELATIGN BEINESN PLZ B K1 wWH-N  FC2 1S PASSIVE CURSTIAINT
10O F£ORMAT (SFL1S55)
1Ol REAU(SLO0sESL=U31 Sy UKy G2
i) 200 e =ba) o Uikl 2
D=k
LK1=6.01%D '
A= 3, 1AELKE X% L URLK2E %0 .5%30000000e 0¥%0e 75/ (1 0+2 0¥SRKI¥%¥2.0%C42)/
16 0%%045
=6 e GES¥3, 14431 o 530K 1 %53 020K 2250, 75530000000 05%0,B795/(1 . 0+6.0%
LOKLEH2 08CK2 )/ (b aU%tUe I9FCKPE¥00 125) % 36000 U%% U125
C=360000%% ] aZ23/0KP%%k0.25 :
X1=((E$#2 . 044 05AR0) #%0,5-8)/2.0/A
: PL2=X]1%56,0
20 WRE TEI G005 G L Ly PL2
GO TO 161
99 STOP
£EnD




V//AM'WMIZ‘/ COMPUTER CENTER 108
6 LEVEL 20 MA IN DATE = 72234 19/16/757
i 8 S O YR A D0 e S SR et B T
C SRR Kk ’rL TION Kil=CK 1 SA=DESIGN STRLSS
100 FURMAT(S5F15.5)
Tl T'L.l“")v]’.’uy" =99 I53 LKP s ULRZ
D0 20 K=54123,1
P=K
LRI=s i F

SA=(12.0%%0 . 5%CK1%%4 ,0%CK2%] ., 0%5%3, 14*‘u;00)u0 0%%0,5%(1,0+2,0% K1
1v¥2.d'rk’)*40.b/i(1.0*5‘d CKL#%2,0%CK2) %% 4 5-02. 0%CK1%%4 ,0%¥CK2%( 1,

U0 UT G L IR R O S i R
28 «rIT?(5 10°)S.”Kl,(K7.sX
GAl: 0101

R ST

END




(- -
“2(-11!1:0!)1{/ COMPUTER CENTER 109

LEREL, .28 : MAIN DATE =.72234 V9L 19/ 15

~

TP TTATT STRUTTURAL DESTHN W =SFTTTTTN
€ RELATION RETWEEN P/L#%¥2 & SA & K1
D0 FORMAT(5F15.5)

2= e
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