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ABSTRACT

MOTION OF SEMI-DEFINITE SYSTEMS
INCLUDING THE EFFECT OF AXIAL FORCES
by Chandrakant V. Sodha
Master of Science in Engineering

Youngstown State University, 1973

The purpose of this thesis is to determine a
general closed-form solution ot a discrete linear dynamic
system having n degrees of freedom. The solution includes
the effect of axial force as well as rigid body motion.
This class of dynamic system which represent a large group
of practical engineering problems are called "semi-detinite
systems."

The solution is given in a compact matrix form
which eliminates the necessity of a series-type solution.
The matrix solution is developed in Duhamel's integral form
which allows fof the application of any type of time-

varying external forcing function.
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CHAPTER I
INTRODUCTION

The static stability problem of lumped-mass system
including the effect of axial force is considered by
Timoshenko, (9) where the inertial terms are neglected and
general solution is given in algebraic form. The matrix
formulation of static stability problem is considered by
Rubinstein., (8)

The effect of inertial forces and axial forces
on these systems is considered by Newmark and Rosenblueth. (7)
The general equation of motion for this special case are
formulated in matrix form, The solution of these formulated

(1)

equations is given by Bellini using model analysis. The
effect of simultaneous diagonalization of the mass, stiffness
and axial force matrices is also considered.

Herein, the effect of rigid body motions is
considered together with axial-type forces., The effect of
damping forces is neglected for the mathematical models

considered. A formal closed-form matrix-type solution is

presented for arbitrary external time-varying forces.




CHAPTER II

General Formulation of Problem

Consider a linear dynamic system with n degrees
of freedom, where the motion of the system is described
by m relative generalized displacements Xj(t), j=1,2,+..m
and (n-m) absolute generalized displacements Xj(t),
j=m+l,...n relative to a fixed inertial frame. In symbolic
partitioned column matrix form, these displacements are

defined as

{x (t)} = {x '_‘_t_)_g_

{ x20}

where {x} is the matrix of relative displacements
and {x} is the matrix of absolute displacements.
In a similar manner the generalized velocity

components are written in partitioned column matrix form as:

Hence, the kinetic energy is defined by the following

equation

T = %{Q?IM]{*} (1a)



Where [M] defines the partitioned mass matrix as follows:

r’_'t)n M2 --- Mym ﬁnl,ﬂlfl = Mym

Mm,m+""" Mmn

A

M mmz"‘mmmJ

Gn'ma-l,l oo ‘m-ma-l;n

]
b embcimsam b de -eens

m-n,‘rn¢| s m 'n‘n

25
F[Mu] [Mu]

....... Vs
..[M l?-] : [Mn]

[Ml]] and [MZZ] are always symmetric square matrices and
[MZ]J is a transpose of [Mlz] » The matrix [Mlz] is a square

matrix only if (n-m) = m.
The total internal potential energy \ﬁ is

expressed in terms of the generalized displacements in the

following form:

Vi = 4 {x] [K]{x} iy

Where [K] is defined as the stiffness matrix possessing similar

partitioned characteristics as the mass matrix; the matrix is

defined as follows:

[Ku] S [Kn.]

Lol o



The total external potential energy is comprised
of two parts: the part due to axial conservative forces and
the part due to non-conservative time-varying forces. The
total external potential energy Vg is then written in the
following form:

T

Ve = 7 {x}[P]{x} + {ﬂt)}T{x} (1c)

where [E] defines the partitioned stability matrix as:

D%] lDﬁi]
[Pl |o
[Ra] i [P
Using the matrix quadratic forms given by equations
(la) through (lc), the following set of differential equations

of motion are obtained in matrix form using the Lagrange

equation approach (7):

[Mu] [Mi] %} i Kul-P[R/] [Kiz]-p[Ra]| (%)} s { £} i
Mal ]| )33 |Kl-P[Re] ke -PIRa]| ($%23 {H,}

The (n-m) absolute displacements are directly associated
with the (n-m) rigid body motions. The semi-definite dynamic

system which results, produces a series of mathematical




simplifications. 1In general,

are produced:

[ki2]
[R-]
[kaa
[F]

and the matrix [M22)

Noting the above conditions equation (2) reduces

to the form:

&hJ Emﬂ gﬂ} + [
[M'Z] [Mn] {xz}

= [Kz.]T =[] |

= B = [o]
=+ [o]
= [o]

is diagonal.

Ku] = P[Pu] [OJJ {{Xl}
{xa}

[o] [

the following matrix definitions

(3)

(&)



CHAPTER III

Free Vibration Problem

The free vibration problem including the effect of

axial force is given by the partitioned matrix equation

[[M..] [M.z]H{)'(]}f - [[K..]—P[F?.] [o]} {x.}} " [0 s
] [ 5 o]  [lf}it)  |fol

Solution of the Free Vibration Problem

Referring to equation (5), the general solution

is assumed to take the form

o) = < {1l

¥here o B is defined as natural frequency of free vibration
and the partitioned column matrix in {U} is defined as the
associated partitioned eigenvector matrix. Substituting

equation (6) into equation (5) yields:

[[-m.g r.mm.gJ s [[Ku]-p[r’..] [o]} {m} i {{o}} o
[:0%Ma] [20*Mz] [o] [o]]| |{ud {o}



which for the non-trivial solution of the eigenvector

fuid } .
{Us} require that,
g [KI)]_P[RIJ [0] e [Mu] [Mn,] . {o} =

[e] [0] Miz] [Mz] = fo}

Equation (7) and (8) define the generalized eigenvalue-
eigenvector probl;m in partitioned matrix form. Equation
(8) yields j values of the parameter ,ﬂg, e B G [l e G T
m+l,...n. The values of the natural frequencies associated
with the rigid body motions are equal to zero, i.e.,.ﬂé =0,
j =(m+Dl,...n. Corresponding to each value of _ﬂ% 9
equation (7) yields a single partitioned eigenvector {U}j,
J=1 92500 aMym+tl, s s sna )

The set of n eigenvectors are combined into a single

partitioned eigenvector matrix [U] which is defined as:

[Un] [Uig]

1=l e

The form of equation (7) requires that the matrix [Uw]=[€]
and [U,2] 1is a diagonal matrix with arbitrary terms. For
convenience, the DJNJ matrix is taken as the identity matrix

fI] . Thus, the eigenvector matrix [U] reduces to the form

YOUMOQTOWA ©TATE 1IAY f
(BUNGSTUWN STATE UNIVEL nFTY

LAY b Wls B a
S HH Y o IR AN R
!




00)

L] [1]

The following two orthogonality conditions result from the

i {[uu] [o]J

generalized eigenvalue-eigonvector form of equation (7):

l:[U'L-IT [Uz']jl FM'J [M'Z]} l: ll] [O]:| ltAmu] [O :1
[o] [1]||Md M| [[VadlT)]  |[© ] [Amad] (92)

(9b)

T w] [[K,a-pm [o] {[u,a [o]] : [[Ak.a [o]]
o] [x])[ o] [o]|[uli)] ~ [[o] ed

The right hand side of equation (9a) and (9b) are diagonal

vartitioned matrices. Referring to equation (7) it follows

that,

N - -
[o]  [o]]|fua [1] [Mi] Mad] |[U2) [T]} {[0 ] [Ana]
vher Eiha[c>ﬂ is a diagonal partitioned matrix with terms

[ ] [Am-;]

V4
J, T2 .m and where D@ﬂmﬂ BD] since Jlj ==0
T
j=m+l,...n. Premultiplying equation (10) by Epdlyﬂ and

[uz] [1]

noting equations (9a) and (9b), one obtains



0 Bed 06
(016~ [[e1Pe] [0 1F] e

or in simplified form

[Aku] = [Amnﬂ[/mlﬂ (11v)
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CHAPTER IV

- General Solution of the Forced Vibration Problem
Including the Effect of Axial Force

Referring to equation (4), making the substitution

Pt g {m EO]] {m i
{ %2} W] [T ){%} .
premultiplying by [[U"] [Uz'] and noting equations (9a) and
[l r1]

(9v), it follows that

[[Aml:][ :ﬂ{{m} FA“] 2 = [Uu]T[UJ {finr}

[0 ] [Amal|J{¥; [o][o]] |33 o][1]|){te% L

Premultiplying the equation (13) by’fhnuﬂ Fﬂ:]and substituting
[0] [Amz3)

the equation (lla% one obtains

[m [OJJ {{«x}} 4 FM [o]| [fvd] _ (faw} .
A1) A T R &

where

{{3!(‘&)}} 3 [Amﬂ'[ O] EJI] [Uz] {f(t)
{ta}|  |[0] [in] ||[0] [1] {fzm}; P
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The form of equation (14) represents the total uncoupling of
equations of motion. Using Lagrange variation of parameters,
the solution of equation (14) in partitioned matrix form

becomes

{m} : [[A] [o]] {{a,}} : {rm.j"‘ [oj} FBJ [OJJ {{b.;}
{wlj flollz][|fadff  [[o] [o]]|[o] t[r]]]{b;}

=t
E1R ffaco} 2
; f [[o] (t-z)[Iﬂ {{32@)} g 5 %

where [A], [B] and [E] are diagonal matrices with terms Cosdlt,
Sinlht, and Sinlhari) respectively. Substituting equations (15)

into equation (12) yields

{wi [[u.a [o]] {[A] [oj] g{a. } : [uu] [oj} [Aﬁ.'jz [o]} ([B] [o]] ftos
o] ]| fo] [1]} foal{ * |Da] ][ [0 1 o] |fo) {bz}}

(16)

3 [[u,,] [o]] [[A_({,ﬂz [o]J f [[E] [0] } [Amljl[O] W] el ] (0} ¥
- T
U] [z]{[[ o] [0] : [o] &-ol1]| |[0] [Anz] | [[o] [T] | )0}

Sim‘i)arl},

{ x,;}zjru:a [o] [[m] ] foJH{a,% [ [o]} [[A] [o]] e}
{%2} [Ua] £])| [o]  [o]]fadf [Uzt] [1]] [e] (]} )3

R (17)
& v [0] (

[[r] [o]} |:Am|:| [o]] [[u.j[uza‘] theot] |
LA ) (11| [T ] Deeg] [[6] (2] | icot

iL=



where, [F] is a diagonal matrix with terms Coslljﬁt—t)

Using the following prescribed initial conditions

{xer} = {x@} and
{xb} = {x@}

(v @ t-o,
(:LiJ @ ‘t:o,

?mwg}: E@JBJ}?Q} and
{xa(} [ud) [1]] {0 )

{{x.wz% ; {[uu] [o]} {{b&
{X,} [z (2] ) §bs}

Noting equation (9a), one obtains

{{al}} i P[Amlj‘ l___O :]_-,— T!J(jr [Uz_;]-r:l —[Mu] [Mn_:r {{x,(o)}
{ai} L[O] Q\m;l_i _[-_O] [I] h[Mr;] [M'nL

- {{b.}} _ [l Lo ] [0 MJ 1 ]
ool ([0 ] Dy | [l0] [11] [ (]| | o}

(18)

(19a)

(19b)
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The general solution of equation (4) then takes the following

form:

{{x.} 3 [@.a IOJJ [[AJ [oj} [[Amu][ ]J [[u.] [uz]} fﬁm..] ] [ «»}}

{x:} EJ;.:I [I] [0] [IJ [O:l [Ang] [0] [I] EV]I‘IJ [Mz'z] {Xg (02}

N [mu] [0]} [[Anij’z [01} {[51 [o]] [[Amﬂ" [ J_] [fu"f@za] [[M..J ] {w}
o [} [[o] ) |[e] £[2]{ Lo ] med J|[0][x] | |[Me] b |fcc3

[w [oj} [[Aaa IO}[A‘J [o] 1;F—:J [o] “[uﬂuzjr fiod|
U | |Ce 1 E1|C0 ] (Amea] [o] &-0[t]{|[c] [1] | {0}

(20)

The simplification of the above equation is given in
Appendix I. Equation (20) is investigated for the special

cases of externally applied force i.e. {ﬁCtﬁ}
{foa)} .
CASE: 1

Taking the initial conditions as zero,

{{x.@}} ) {{x.«»}} : {{O}f and
{mat{  {holf ){o}

.  ){fe)

Ll )go} ,
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where the external forces are assumed as constants, equation

(20) reduces to the form

{x.}; [[UJ [ol] [[Am] [01] [Am.] [o J} E/hu] [1-4] [ﬂ [[u.a* ) } {{w} S
pd [ 1) [ 1 (1|0 1 Ihecd) | [0 %lx)|{[o] [2] ||f5e

CASE ii

Assuming the initial conditions as zero and the externally

applied forces as harmonic variation of time in the form
£ 5ineT
fQSinosz

£ et
{;ﬁnsm o(,,T} (22)
_ {E0)
{0}

it follows that, for steady state motion only equation (20)

reduces to the form

%{x.} f : {w [o]} {[Anij"[o} {[Amﬁ’ [o ;1 [[0.,1 IG,Z]J %{f.m}% a4
fd|  |[uad (1) [fo 1 [e]] [[0 T (Amea] | [[02] 2] | 80
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where - €
{) : N
A Uu'_[T_’.o?lz_ Sineglitwee Sl L _D.;'"— v Sinopt
L] = % :
A . A :
LUIm KQ.T‘X,—')_' Sinxt - - Umm—h;—'_nq? Sinxt
BT gl :
Xmyl o(:_-‘ﬂ Sin Q(mﬂ-t ¥ o
A . .
0.4 = : AR
K n g
A
[U,,] = [O]
.ﬂj . _[2 ; 3
U‘“*'ll_—-.ﬂ.'f— <z Siney o - - o Umm SinX,t
A ; °
and [Unz] - >
A 2 0. )
Um“,mi,f_,:m?n_lé: Sin °(m+ﬁ7 e Un'mﬁ Sineyt
= E

If any of the impressed frequencies «, ,,..~,1is equal to any
of the natural frequencies, ,, 0,,...f2n then the resulting motion
is unstable, that is, at least one of generalized displacements

xj(t) takes on an infinite value.
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CHAFTER V

Discussion

The use of the matrix type form for the equations of
motion is proven more efficient than the series or algebraic
type form. Its efficiency arises due to the fact the matrix

type solution is easily programmed for computer use.

Since the solution is given in Duhamel's integral form,

it is applicable for any type of time varying external forcing

functions. In this particular thesis, constant external and
harmonic time varying forces are considered as special cases
where steady-state motion is considered.

The solution obtained is based on the existence of a
simplified mathematical model of a complex dynamics problem,
It is not the intention of this thesis to develop directly
a design procedure to convert a physical dynamics problem

into a mathematical model as illustrated in this thesis.

This ability is obtained only by considerable experience both

in the design office and under actual field conditions.

The basic matrix computations utilized in the general

solution involved typical matrix addition and multiplication.

The formal matrix type solution presented in this thesis

requires inversion of diagonal matrices only which is extremely

important for large scale system, since the general matrix

inversion process requires a large amount of memory core in




"

the computer.

To better understand the theory, a numerical example of
forced vibration problem is solved, the solution of which
resulted in a complex algebraic form. Hence, numerical values
are assigned to the physical parameters m, L, k and kt' Then
upon varying the axial load P from O to reasonable positive
values, behavior of .J?% the square of the natural freguency

of vibration, is tabulated and graph is plotted.



CHAPTER VI

Conclusion

For the dynamic system considered the values of the
sguare of the natural frequencies of free vibration decrease
as the axial force increases. In addition, the inclusion of
rigid body motion produce a condition where some of the
square of the natural frequencies are equal to zero. The
remaining square of the natural frecduenclies are decreased
towards zero as the axial load is increased. Thus, for the
semi-definite system considered the sguare of the freguency
equal to zero is obtainable either by the existence of rigid
body motion or by the increase of the axial load to a value
equal to the minimum critical buckling load.

In general, semi-definite systems produce lower values
of square of the natural frequencies of free vibration than

the ordinary systems. This is evident by the graphical

interpretation of fig. II-2, where the ordinary dynamic system

as well as the corresponding semi-definite system are
considered simultaneously.

In general, rigid body motions produce more complicated
conditions of mathematical analysis. Some reduction in
complexities are realized (i.e., certain values of natural

frequencies are zero), however, the eigenvector problem

becomes much more complex from a condition of physical under-

standing.



¥

It is uniquely shown in this analysis, that the introduction
of partitioned matrix form not only allows for a simplified
mathematical approach but also yields a simplified physical

interpretation of the resulting mathematical constraints.
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AFPENDIX I

The simplification of equation (20) is as follows:

fricot = [DdAIDmT L Ba) + Da][A]Am Le] ]| 500
AT Amd o Bea] + [ul(A] (o] o] Bl 0}
o Bl o] + BB E Aed e 03
il Elnd i) + ] 3a BTt ] i

<=t S 7
s [ vl Mo TAmilE] {3001 T i

{xw} =[[u2.][A] e [T [] + [U2] [A] [Amu] V2] Mio]
+2] [z [1] Ma] ] {5,000}
+ [ TAT A 0] + ] [A] (A Tt
| + 1] [ ]| a0} (1-2)

It should be noted carefully that the displacements defined
by the components of {xmtﬁ are relative displacements only by
the definition given in Chapter II. If the absolute displacements

of these latter displacements are desired, they are computed by



proper scaler addition of the individual compon

with vectors {x,cb} and  {xx®)} -

21

ents associated
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Numerical Example of the Forced Vibration Problem

II-1 Mathematical Model

Fig- IX-1

For the mathematical model shown above, assuming wm,=mM,=™),

k.H R ey e o OB and P7.=/5P' following matrices

are obtained:

zml® i 2ml 2k,

[M]= ml wmlf mL| , [K] = |-kg
gmL mL  3m o
F(I+P)L o

Fl=| o &

o o

"kt (@)
k‘t fo) and
(o) kJ
o
(II-1)
)



II-2 Solution of the Free Vibration Problem

23

Noting equations (5), (6), (7) and (8) the free vibration

problem yields the following determinant:

-2ml0® +2ky~3PL
-mN* - kg
-2mL 0?

-ml0% -k,
—ml0% + Ky -2pL
-mlL.0?

-2mL 0%
-mlL 0?*

—-am 0%+ k

(II-2)

The simplification of equation (II-2) results in the following

algebraic equation for the determination of the natural

freauencies and critical buckling loads:

4 2
-06 + dL'(8ky +k-10P) + 2 (CGkky —3K*+7Pk +21Pk; ~18P?)
¥ [ K2 TPRI > LP k) =40

CASE i k -#-0

The solution of equation (II-3) in the form given is

algebraically complex.

to the parameters m,

L, kX and kt'

ITniaddition,

Hence, numerical values are assigned

the parameter

P is varied over the range o to reasonable positive values.

The results are tabulated in tables (T-1) and (T-2). A

graphical solution of the tabular results is shown in figure

(I1-2).

The form of equation (7) gives three tensor invariants

which are defined as follows:

(II-3)
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.Qf + j&i + jig = FeL
If.ﬂi + _().22127; + _(223122, % b (II-4)
SER R =t -
where
a = #;(8kt + k - 1oP)
b = i (-6kkg - 3ki —7Pk +2IPky~I8P")
| 2 2
and Ci= il kki—7Pklk; +6P k)

relative to equation (II-3)

For each variation of physical parameters mentioned above,
the equations (II-4) are checked to insure that the implied
equalities are satisfied. These results are tabulated in
tables (T-1) and (T-2).

In general, the free vibration problem is satisfied by
a set of natural frequencies which are all positive real values
for the condition of stable oscillations about the eguilibrium
configuration. Since the value of (FER)mh) is unknown
apriori, a value of P is assumed initially and the square of
the natural frequencies are calculated. If the resultant
frequencies are all positive, one is assured that the assumed
value of P is less than (P&)min . The value of (B_:R>m-m
is therefore obtained by a simple inspection of the signs
of the square of the natural frequencies. This is uniquely
apparent in tables (T-1) and (T-2). Observation of the
condition under which the value of one‘of the square of the

natural frequencies is identically zero yields the
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condition from which the value of (P®)min is obtained. This
can be seen in tables (T-1) and (T-2) in 2rd and 7th/8th lines
where ' (Pea)min = (I—‘cr)l =. 0.167 and (Pcr)2 = 1.0 are lower
and higher critical buckling loads, respectively. It should
also be noted that as the value of the load P increases,
211 the values of the sgquare of the frequency decrease.
Furthermore, the graphical solution in fig. (II-2) shows that
one of the square of the natural frequencies remains positive
and asymtotic to the horizontal axis. The remaining two
square of the frecuencies are intially vositive, decrease to
a value of zero and then assume negative values for any
increase in the load P.

The reader should note at this point that this particular
case involves no rigid body motion. However, the analysis
is performed so that a comparision may be made with the
problem which includes rigid body motion. This problem
appears in the next section.

CAS:E

(951
g5}

ii kK ='0

Eouation (II-3) reduces to the following form:
05— 2 (g 0 32 2Pk, —18P7) = ,
—TT-)-( kt IOP)_"";';_ kt+ Ky 8P%*) = © \tek

Noting equations (5) to (8), (9a), (9b) and (1la) the

following results in matrix form are obtained:



and

where

26

—

L (4x,-5P+y) o 0
O  Al4ky5P-y) | o
(S e e ek e
[ S <B, | ©
|
Slitenlei i g
I g
t;nSEX+.Sﬁixﬁ+zﬁg] o i 2
Lol e BRI T
o o E3qnn
S #iva-28k +AC] o o
o «*[B{BA-2BK}+EC] | o
R ey T e io
- 4kg+¥5P +

Ckg +P-w)(-Tks +4p +¥) = 4kg¥

—akg=HP -
(kgtP +@)(7Tkg T4P-Y) + 4kiY

kg +P+y
~kg+P-Y¥

4ky-3P

J13kZ - 19k + 7P*
(2ky-3P)

(kg-2P)

(II-5)

(11-6)



The inclusion of one rigid body motion produces a condition
where one of the natural frequencies is zero. In addition,
it is obvious that the components of the[Ulélmatrix are zero.
Also, the E&nﬂmatrix is identically the unit matrix [i] yoin
addition, the components of matrix [jxkzélare identically
Zero.

To determine the minimum critical value of the stability
force, the values of the two frequencies _04, and le are

equated to zero,

i
0

e. = (4ky -5P + ¢)
ond 'r]-?) (4kt-5-P-—‘P) = o (I1-7)

The two above equations yield

\

(EER)TnPn. 3 <réR)1 =

|
>
o

And s (F%R)z = = (II-8)

Numerical results of the above equations are tabulated in
table II-3 and a graphical solution is shown in Fig. (II-2)
where specific numerical values of the physical parameters are

chosen therein.
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APPENDIX III

Justification of [U] Matrix

The form of equation (7) requires that the matrix
[Ulé]= o and{pzé]is a diagonal matrix with arbitrary terms.
For convenience, the[UZéImatrix is taken as the identity
matrix [I] . These conditions are further justified by
considering a special case where two rigid body displacements
are considered. The mathematical model is shown in figure

below.

Mathematical Model
Two Rigid Body Motions

p— — x

i
/S N7\

F@;S

From the above model, one obtains

[2m)? wm® 2ml o
o e [ mL 0
Eﬂ = lemL  mL 3am o)

(0] (0] O M

- -




2k,

_kt

[P]="P

Using equations (5) to (7), it follows that
~2mL 0*
~mL.?
-3m*

Using equation (8) and solving for (_(7_)7' » one obtains

2L

o o
o (]
o o
(o} o
o] o
(] o

o
(e} ale,

(0]

—-mef' Q"+ 2k, 3PL —mlk
-ml0*- kg -—mf.().2+kt+2PL
-2mLa? -mL0*

i o o

) = ' = o
(Ng) = a(4ks—5P-)
g =

7 (4ke= 5P + )

where Y = [13kZ - 19Pk; + 7P%

(&)

o

(@)

-Ml-ﬂ-z
)
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(III-1a)

(I1I-1)
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2 2 : . 3
Substituting (@()={{12)= 0 in equation (II-1) it follows that

(Zhegm3plathine BkeUs 0+ 7 ¥0.Uy 0 #2905 %0 (III-2a)
o.U, Fi kg 2Pl U, & ™0 Ug Ui g 3 S SN (III-?h ).
0.U, + O.Ujy e 0.U3 + 0.Us = o) {1f1-2a)
0.U, +  0.U, + “0.U3 ¥ ™0y t=z'sg (III-2d)

From equation (III-2a) one obtains,

2k - L
5o —1}3—'9- : (III-3)
t
and from equation (III-2b),
kg
U2 = kg - 2PL U, (IT1-4)

Equations (III-3) and (III-4) for P<Gﬁdv are true only when:

Ul = U2 = N0 (III-5)

i.e, U12 = 0,

From equations (III-2c¢c) and (III-24), it follows that

C),U3 —+ QU4 = (@)
Hence, U3 and Uh can have any arbitrary values.
: Ci Cn
B T S N
Ca Czz
Using orthogonality conditions in equations (9a) and (9b),
one obtains,
2 2
Cu My + Ca1 M2 CnCrz,M“ =+ CZICZZM'L’?—
2
CuCieMy + C21C22Mpy Coo M2 (111-6)
where CuCizMu + C2/C2Mg2 = O . Hence it follows

that
Cu

Ce “‘3‘2“1) Ca (912) f | (I1I-7)
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: Loz, : Mgy ont-
Since €n A8 arbitrary and My 1S any positive value,

the equality will hold for the condition where
Cz; = Cl2 = O (III—S)

Thus, the matrix [UZél is a diagonal matrix with
arbitrary terms. For convenience, the [UZJ matrix is taken
as the identity matrix [IJ » Hence the [U] matrix reduces

to the following form,

EhJ [o]
B = 1 m



DYNAMIC STABILITY CASE

m = kt =L=%k-=1

Value Natural Frequencies Tensor Invariants

e Jii i) li; —5 - =L

Calculated| Actual |Calculated| Actual [Calculated| Actual

.0 0.127 1.000| 7.872 8.999 9.000 8.998 9.000 5 1 1

0.1 .061| 0.829 | 7.111 8.001 8.000 6.380 6.380 0.36 0.36
0.167| O 9.733 | 6.597 7.33 7.33 4.836 4.826 0 0

0.2 -0.037 0.689 | 6.347 6.999 7.000 4,113 4,120 -0.162 -0.16
0.25 -0.099 0.633 | 5.966 6i5 645 Jsles 3.125 -0.374 -0.375
0450 -0.527 0.465 | 4,061 34999 4,000 -0.497 0.500 -0.995 -1
0.75 -1.057 0.379 | 2,177 1.499 1.500 -1.877 -1.875 -0.872 -0.875
1.00 | -1.618| O 0.618 -1 -1 -0.999 | -1 -0.999 | =-1.000
25 -2.193 | -1.735| 0.427 -3.,501 -3.500 2¢217 -2.215 4+1.625 +1,625
1.50 | =3.632| -2.766 | 0.399 -5.999 | -6 7.493 7.500 +4,008 | +4,000
1.75 -5.534 | -3.35 0.384 -8,5 -8.5 15,128 154125 7.119 Ted25
2,00 7,443 | =3,935| 0.376 -11.002 [-11.000 25,000 |[+25.000 11,012 11.000

TABLE T-1

Z€



DYNAMIC STABILITY CASE

mek, =L=l; ke?

Value Natural Frequencies Tensor Invariants
of P jﬁ _ﬂi ‘ﬁ; - b -C

Calculated| Actual |[Calculated| Actual |Calculated| Actual
0.0 0.148 1.650 8.200 9.998 10 14,978 15 2.002 2
0.1 +0.064 1.490 7.445 8.999 9 1l,66 11.68 0.71 0.72
0.167 | O 1.393 | 6.940 8.333 8.333 9.667 9.667 0 0
0.20 0.034 1.346 6,689 8.001 8 8.73 8475 -0.31 -0.32
0.50 -0.448 0.998 L.450 o o 2 2 -1.990 -2
0.75 -0.902 |+0.724 2.676 2.498 245 -1.129 -1.125 -1.75 -1.75
1.00 -1l.414 0 +1.414 0 0 1.999 -2 0 0
1.25 -1.986 | -1.544 1.030 -2.5 -2.5 -0.570 -0.625 -3.16 +3.25
1.50 -3.473 | -2.463 0.934 -5,002 -5 +3.,010 +3,000 +7.989 +8.000
X715 -5.337 |-3.041 0.877 -7.501 =7¢5 8.882 +8.875 +14,234 |+14.25
2,00 |-7.226 |-3.616 | 0.841| =-10.001 |-10 17.010 [+17.000 -21,974 | +22,000

TABLE T-2

€e



DYNAMIC STABILITY CASE

m =L=1, k=0

Value (Natural Frequencies)?

ofe P 4; _dﬁ _Ifz Ifg
0.0 3.605 0.395 0 7.605
0.1 3.342 0.158 0 6.804
0.167 3.165 0 0 6.330
0.25 2,947 -0.197 0 5.697
0.50 2,291 -0.791 0 3.791
0.75 1.640 -1.390 0 1.890
1.00 1.000 -2.000 0 0
1e25 0.433 -2.683 0 -1.817
1,50 0.500 -4,000 0 -3.000
1.75 1.090 -5.840 0 -3.660
2.00 Lefd2 =7«732 0 -4,268

TABLE T-3

uis
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