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ABSTRACT 

Pseudo Random Number Generators (PRNG) are algorithms that help to create randomness 

in programs, but they are not truly random like the randomness obtain from physical 

processes. Despite this, PRNGs are widely used in applications that require random 

numbers, from gaming to security. 

This research evaluates the use of machine learning algorithms to predict the numbers 

generated by PRNG. These experiments involve three commonly used PRNG from C++, 

Python, and Java, and uses two Machine Learning algorithms, Linear Regression and 

Artificial Neural Networks. 

The outcome of the research confirms the possibility that machine learning algorithms can 

be trained to predict certain PRNGs. Even when trained with a small amount of data, there 

is evidence that machine learning algorithms can be used to predict the values created by 

pseudorandom number generators. Given that linear regression algorithm and a simple 

regression neural network were able to produce fairly good predictions with reasonable 

accuracy in our experiments, it is believable that more complex machine learning 

algorithms such as deep learning  and recurrence algorithms might produce still better 

results. 
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1 Introduction 

1.1 Motivation 

Random number generation is a key component in most computing systems. Gaming 

applications, gambling systems, and security systems among others use randomization to 

achieve different objectives. 

Randomization is used to implement AI in many gaming applications as it helps to reduce 

predictability, making games sustain their difficulty even after several attempts of play. In 

gambling, it could be used to ensure fairness in terms of chances and to depict the concept 

of luck. In security systems, randomization is used to generate keys and helps to increase 

the level of difficulty of unauthorized access in other ways. Unlike games and gambling 

systems where randomization can be said to be very useful, good random number 

generation is crucial for effective computer security.   

Usually randomization is implemented with pseudo random number generators (PRNG) in 

computing systems. However, PRNG are not truly random, as they are not actual physical 

processes like flipping a coin. The fact that PRNG are not truly random raises serious 

concerns, especially their use in security systems like crypto PRNG where funds are 

involved.  

Machine Learning (ML) is an area of artificial intelligence in which algorithms learn to 

perform predictions based on experience. A computer program is said to learn from 

experience E with respect to some class of task T and performance measure P, if its 
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performance at tasks in T, as measured by P improves with experience E [26]. In other 

words, machine learning differs from the traditional approach of a computer program 

containing explicitly typed set of instructions to perform a task. Among some of the 

successful applications of Machine Learning are learning to recognize spoken words, 

learning to drive an autonomous vehicle, learning to classify new astronomical structures, 

and learning to play world-class backgammon [26]. Machine learning applications in 

cancer prognosis and prediction [27]. There are several algorithms for implementing 

different tasks in machine learning. The choice of an algorithm depends on the nature of 

problem and data available. Recurrent Learning, Reinforcement Learning, and Supervised 

Learning are reviewed in this research work. More specifically, linear regression and neural 

network. 

This work seeks to evaluate the predictability of PRNGs using ML and AI. Specifically, 

we ask the question whether future values of certain PRNGs can be predicted by a machine 

learning algorithm based on the seeds used.  

1.2 Contributions 

The outcome of this research work can contribute knowledge related to the use of PRNGs, 

as well as how secure certain PRNGs are against an attack based on ML.  

1.3 Research Questions 

This deductive research work sought to test the theory that ML can be use to predict PRNGs 

by answering the main question how predictable is PRNG by ML algorithms? This major 

question further put into the following sub questions; 
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• Can ML learn from a seed or a sequence of PRNG random numbers and make 

predictions about future values? 

• How accurate is the predictability of ML on certain PRNG? 

1.4 Organization of Study 

The entire work in presented in five major chapters. Chapter one introduces the work with 

the background to the study, which entails the motivation to the work, the contributions of 

the study as well as the specific questions that lead the study. Chapter two reviews related 

literature to the main concept of the study, randomization and specific areas in machine 

learning. Chapter three describes and demonstrates the simple linear regression algorithm 

and the neural network learning algorithm to be use in this research and the evaluation 

procedure as followed in the work. Chapter four focuses on the actual evaluation process 

for all the three PRNGs selected for this research work. Chapter five presents the testing 

and results from the evaluation of the selected PRNGs. Chapter six ends the study with the 

findings, recommendations, and conclusion.  
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2 Background and Related Work 

2.1 Randomization 

In computing, random values (mostly in the form of numbers) are generated by 

pseudorandom number generators (PRNG), also known as a deterministic random bit 

generators (DRBG). A PRNG is an algorithm for generating a sequence of numbers whose 

properties approximate the properties of sequences of random numbers. The PRNG-

generated sequence is not truly random, because it is completely determined by an initial 

value, called the PRNG's seed (which may include truly random values). Although 

sequences that are closer to truly random can be generated using hardware random number 

generators, pseudorandom number generators are important in practice for their speed in 

number generation and their reproducibility. 

PRNGs are central in applications such as simulations (e.g. for the Monte Carlo 

method), electronic games (e.g. for procedural generation), and cryptography. 

Cryptographic applications require the output not to be predictable from earlier outputs, so 

more elaborate algorithms which do not inherit the linearity of simpler PRNGs are needed. 

Good statistical properties including correlation and regression analysis are a central 

requirement for the output of a PRNG. In general, careful mathematical analysis is required 

to have any confidence that a PRNG generates numbers that are sufficiently close to 

random to suit the intended use. 
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Some widely used PRNGs include the linear congruential generator and the Mersenne 

twister. 

The linear congruential generator is one of the most common and simplest PRNG. It uses 

the following recurrence to generate numbers.  

Xn+1 =(aXn + b) mod m 

In the formula above, a, b and m are large integers, and Xn+1  is the next value of X in a 

series of pseudo-random numbers. The maximum number of values the formula can 

produce is one less than the modulus, m-1. To avoid certain non-random properties of a 

single linear congruential generator, several such random number generators with slightly 

different values of the multiplier coefficient, a, can be used in parallel, with a "master" 

random number generator that selects from among the several different generators.  

Developed by Makoto Matsumoto and Takuji Nishimura in 1997 [25], the Mersenne 

Twister is by far the most widely used pseudorandom number generator (PRNG). It was 

developed to specifically rectify most of the flaws found in older PRNGs. “From a choice 

of parameters, the algorithm provides a super astronomical period of 219937 – 1 and 623 

– dimensional equidistribution up to 32 bits accuracy, while consuming a working area of 

only 624 words” [25]. Its name derives from the fact that its period length is chosen to be 

a Mersenne prime. In mathematics, a Mersenne prime is a prime number that is one less 

than a power of two. That is, it is a prime number of the form Mₙ = 2ⁿ − 1 for some integer 

n. The underlying implementation in C is both fast and thread safe. However, being 

completely deterministic, it is not suitable for all purposes, and is completely unsuitable 

for cryptographic purposes. 

https://en.wikipedia.org/w/index.php?title=Makoto_Matsumoto&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Takuji_Nishimura&action=edit&redlink=1
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://en.wikipedia.org/wiki/Mersenne_prime
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Most computer programming languages include functions or library routines that provide 

random number generators. They are often designed to provide a random byte or word, or 

a floating point number uniformly distributed between 0 and 1. 

The quality of randomness of such library functions varies widely from completely 

predictable output, to cryptographically secure. The default random number generator in 

many languages, including C++, Python, Ruby, R, IDL and PHP is based on the Mersenne 

Twister algorithm and is not enough for cryptography purposes, as is explicitly stated in 

the language documentation. Such library functions suffer limitations like poor statistical 

properties, either generating values that are not evenly distributed, or having excessive 

duplication among values generated. A typical example is the Python random() function 

used in this research. These functions are often initialized using a computer's real time 

clock as the seed, since such a clock generally measures in milliseconds, far beyond the 

ability of an outside entity to predict. These functions may provide enough randomness for 

certain tasks (for example video games) but are unsuitable where high-quality randomness 

is required, such as in cryptography applications, statistics, or numerical analysis. 

John von Neumann cautioned about the misinterpretation of a PRNG as a truly random 

generator, and joked that "Anyone who considers arithmetical methods of producing 

random digits is, of course, in a state of sin” [31]. That is, true random number generation 

cannot be realized with PRNG, since with enough patience and enough computing 

resources the sequence can be determined, particularly with modern computers.  

2.2 Pseudo random number generators (PRNG) considered in this research 
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While there are countless number of PRNG, three of the most used were considered in this 

research work. These PRNG are classes and methods used in the programming languages 

C++, Java, and Python. 

2.2.1 The rand() and srand() functions of the C++ PRNG. 

The rand() and srand() functions are used in C/C++11, to pseudo generate random numbers. 

The Engines and engine adaptors used by C++ PRNG include the, linear congruential 

engine, Mersenne twister engine, subtract with carry engine, discard block engine, 

independent bits engine, shuffle order engine. 

The rand() function can be used alone to generate random numbers, but  if a sequence of 

random numbers are generated with rand() function alone the same sequence of numbers 

are generated again and again every time the program runs.  

The srand() function is used to solve this problem by setting the starting point sequence. If 

srand() is not called, the rand() seed is set as if srand(1) were called at program start. Any 

other value for seed sets the generator to a different starting point. 

However, the PRNG is often only seeded once, before any calls to rand() at the start of the 

program. A standard way to set the seed to a random value is to use the result of a call 

to srand(time(0)) as the seed. The function time() returns a time_t value which varies every 

time it is called, which means the pseudo-random numbers will vary for every time the 

program runs. The relationship between srand() and rand() is that srand() sets the seed for 

the rand() function. The two were used together in this research. 

2.2.2 The Java PRNG (java.util.Random class) 
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Java offers three ways to generate random numbers in the form of built-in methods and 

classes including the java.util.Random class, the Math.random method, and the 

ThreadLocalRandom class. 

The java.util.Random class uses a 48-bit seed, which is modified using a linear congruential 

formula [34]. can generate random numbers in the form of intergers, doubles, longs and 

even Boolean.s An instance of the class must be constructed and invoked to generate the 

appropriate type using the methods nextInt(), nextDouble(), nextLong(). Passing some 

argument in some of the methods can influence their output; for example nextInt(6) will 

generate numbers in the range 0 to 5.  

The Math class contains various methods for performing various numeric operations such 

as calculating exponentiation, logarithms etc. One of these methods is random(), which 

returns a double value with a positive sign, greater than or equal to 0.0 and less than 1.0. 

The returned values are chosen pseudo-randomly. 

The java.util.concurrent.ThreadLocalRandom class is introduced in Java 1.7 to generate 

random numbers of type integers, doubles, and Booleans . 

For security sensitive application java provides SecureRandom which belongs to the 

java.security class package. 

2.2.3 The random() Python PRNG 

Python uses the random() module for implementing  various pseudo-random numbers, 

including integers, number sequences, and random permutation random sampling among 

others. 

https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
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Almost all module functions depend on the basic function random(), which generates a 

random float uniformly in the semi-open range [0.0, 1.0). Python uses the Mersenne 

Twister as the core generator. The functions supplied by this module are actually bound 

methods of a hidden instance of the Random class. You can instantiate your own instances 

of Random to get generators that don’t share state. 

The Random class can also be sub classed if you want to use a different basic generator of 

your own devising. This is done by overriding the random(), seed(), getstate(), 

and setstate() methods. Optionally, a new generator can supply a getrandbits() method, 

which allows randrange() to produce selections over an arbitrarily large range. 

The random module also provides the SystemRandom class which uses the system 

function os.urandom() to generate random numbers from sources provided by the 

operating system.  

Among the commonly used methods, the random.random() and random.seed() were used 

in this research work. random.seed(x) initializes the basic random number generator. The 

optional argument x can be any hashable object. If x is omitted or None, current system 

time is used; current system time is also used to initialize the generator when the module 

is first imported. If randomness sources are provided by the operating system, they are used 

instead of the system time (see the os.urandom() function for details on availability). If x is 

not None or an int, hash(x) is used instead. If x is an int, x is used directly. 

random.random() returns the next random floating point number in the range (0.0, 1.0). 

2.3 Supervised Learning 

https://docs.python.org/3/library/random.html#random.random
https://docs.python.org/3/library/random.html#random.Random
https://docs.python.org/3/library/random.html#random.Random
https://docs.python.org/3/library/random.html#random.Random
https://docs.python.org/3/library/random.html#random.randrange
https://docs.python.org/3/library/random.html#module-random
https://docs.python.org/3/library/random.html#random.SystemRandom
https://docs.python.org/3/library/os.html#os.urandom
https://docs.python.org/3.1/glossary.html#term-hashable
https://docs.python.org/3.1/library/os.html#os.urandom
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Supervised learning (SL) is an approach of machine learning in which the desired result of 

each training example is known. SL is intended to find patterns in data that can be applied 

to an analytics process. Basically, each data in a supervised learning approach is labeled 

based on its category. The goal of the supervised learning algorithm is to learn the unique 

features of each of the categories by studying all the items in each category. For example, 

a set of images of shapes (such as triangles, squares and circles) can be used. This data 

could be made up of 150 shapes which consist of 50 circles, 50 triangles and 50 squares, 

with each image is labeled accordingly. A fraction of the 150 (120 for instance) will be 

used as the training dataset and the remaining 30 used as the testing dataset.  The labelling 

process might seem like a very difficult task especially when dealing with very large 

dataset, but it is the most important part of supervised learning as the labelling serves as a 

guide for the learning algorithm.   

SL algorithms can be further broken into two categories: classification and regression. The 

main difference between these is in terms of their outputs. The output of classification 

algorithms are in the form of objects or some form of categories (for example shapes, rich 

or poor, cold or hot etc.) Regression algorithms outputs are related to figures or real values 

(for example amount, measures, etc.). 

2.4 Linear Regression 

Linear regression (LR) is a statistical method for finding the relationship between 

independent and dependent variables. Linear Regression is generally classified into two 

types: Simple Linear Regression and Multiple Linear Regression. 
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2.4.1 Simple Linear Regression 

Simple Linear Regression is used to find the relationship between two variables, an 

independent variable and it corresponding dependent variable. An example might be a 

person’s age and their average height. The age represents the independent variable while 

the height is the dependent variable. 

A pair consisting of an independent variable and its dependent variable is referred to as an 

observation. Simple linear regression uses the equation of a straight line to evaluate the 

relationship between the variables of an observation. An equation that approximates the 

relationship between the variables of an observation is said to be a simple model. A simple 

model can be used to find or predict the dependent variable given the independent variable.  

In some instances, there can be more than one independent variables. In such cases a 

different model known as multiple regression is used instead. 

2.4.2 Simple Linear Regression Model 

The following is an example of a simple linear regression model: 

y = β0 +β1x+ε 

The linear regression model contains an error term that is represented by ε. The error term 

is used to account for the variability in y that cannot be explained by the linear 

relationship between x and y. If ε were not present, that would mean that knowing x would 

provide enough information to determine the value of y. 

https://www.thebalancesmb.com/structured-equation-modeling-step-1-specify-the-model-2297161
https://www.thebalancesmb.com/structured-equation-modeling-step-1-specify-the-model-2297161
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There also parameters that represent the population being studied. These parameters of the 

model are represented by β0 and β1. 

The simple linear regression equation is graphed as a straight line, where: 

• β0 is the y-intercept of the regression line. 

• β1 is the slope. 

• Ε(y) is the mean or expected value of y for a given value of x. 

A regression line can show a positive linear relationship, a negative linear relationship, or 

no relationship at all. 

• No relationship: The graphed line in a simple linear regression is flat (not sloped). 

There is no relationship between the two variables. 

• Positive relationship: The regression line slopes upward with the lower end of the 

line at the y-intercept (axis) of the graph and the upper end of the line extending 

upward into the graph field, away from the x-intercept (axis). There is a positive 

linear relationship between the two variables: as the value of one increases, the 

value of the other also increases. 

• Negative relationship: The regression line slopes downward with the upper end of 

the line at the y-intercept (axis) of the graph and the lower end of the line extending 

downward into the graph field, toward the x-intercept (axis). There is a negative 

linear relationship between the two variables: as the value of one increases, the 

value of the other decreases. 

2.4.3 The Estimated Linear Regression Equation 

https://www.thebalancesmb.com/structured-equation-modeling-step-1-specify-the-model-2297161
https://www.thebalancesmb.com/structured-equation-modeling-step-1-specify-the-model-2297161
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If the parameters of the population were known, the simple linear regression equation 

(shown below) could be used to compute the mean value of y for a known value of x. 

Ε(y) = β0 +β1x+ε 

In practice, however, parameter values generally are not known so they must be estimated 

by using data from a sample of the population. The population parameters are estimated by 

using sample statistics. The sample statistics are represented by β0 and β1. When the 

sample statistics are substituted for the population parameters, the estimated regression 

equation is formed. 

The estimated regression equation is: 

(ŷ) = β0 +β1x+ε 

The graph of the estimated simple regression equation is called the estimated regression 

line. 

• β0 is the y-intercept of the regression line. 

• β1 is the slope. 

• (ŷ) is the estimated value of y for a given value of x. 

2.4.4 Limitations of Simple Linear Regression 

Even the best data does not tell a complete story.  

Regression analysis is commonly used in research to establish that a correlation exists 

between variables. But correlation is not the same as causation: a relationship between two 

https://www.thebalancesmb.com/surveys-research-confidence-intervals-2297097
https://www.thebalancesmb.com/market-research-101-sampling-plan-and-frame-2296679
https://www.thebalancesmb.com/market-research-101-sampling-plan-and-frame-2296679
https://www.thebalancesmb.com/how-do-probability-and-non-probability-samples-differ-2296696
https://www.thebalancesmb.com/quantitative-research-advantages-and-disadvantages-2296728
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variables does not mean one causes the other to happen. Even a line in a simple linear 

regression that fits the data points well may not guarantee a cause-and-effect relationship. 

Using a linear regression model will allow you to discover whether a relationship between 

variables exists at all. To understand exactly what that relationship is, and whether one 

variable causes another, you will need additional research and statistical analysis. 

2.5 Neural Networks 

An artificial neural network is a network of artificial neurons or nodes connected together 

by weighted connections meant to simulate the synapses of the brain . The first research in 

artificial neural networks was the perceptron model developed in the 1950s and 1960s by 

the Frank Rosenblatt.[30]  

In general, neural networks are a form of deep learning that maps inputs to outputs and 

finds correlations between them. It is known as a “universal approximator” because it can 

learn to approximate an unknown function f(x) = y between any input x and any output y, 

assuming they are related at all (by correlation or causation, for example). The  “universal 

approximation theorem claims that the standard multilayer feed-forward networks with a 

single hidden layer that contains finite number of hidden neurons, and with arbitrary 

activation function2 are universal approximators in C(Rm)” [28]. These artificial networks 

may be used for predictive modeling, adaptive control and applications where they can be 

trained using a dataset. Self-learning resulting from experience can occur within networks, 

which can derive conclusions from a complex and seemingly unrelated set of information.  

In most ANN, input signals to neural units are based on the following function: 

https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Predictive_modeling
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netY = ∑i(wi * xi) + b 

In the above function, x1,x2....xn are input variables. w1,w2....wn are weights on the 

connections from those respective inputs. b is the bias, which is summed with the weighted 

inputs to form the net input netY. Bias and weights are both adjustable parameters of the 

neuron. The goal of learning is to adjust these parameters to produce the output y that 

corresponds to the desired value of y.  

The output of a neuron can range from -infinity to +infinity, but is usually defined by it 

activation function, a mapping of the net input netY to the output value Y. The table below 

gives some common activation functions. 
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Table 1: Activation functions of ANN 

Activation function Operation 

Identity function  Maps input to the same output value. It is a 

linear operator in vector space. Also 

known as straight line function where 

activation is proportional to the input. 

Binary Step Function Uses threshold to classify output into either 

true or false. It is very useful for classifiers. 

Sigmoid Function  Approximates a binary step function, but 

has a smooth derivative. Two common 

sigmoid functions are the Binary Sigmoid 

Function  where the output varies from 0 to 

1, and the Bipolar Sigmoid 

Function  where the output value varies 

from -1 to 1. Also known as Hyperbolic 

Tangent Function or tanh. 

 

 

Ramp Function:  Maps negative inputs to 0 and positive 

inputs to the same output 

ReLu  Stands for the rectified linear unit (ReLU). 

The most widely use function that solves 
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 and replaces the problematic sigmoid 

function. 

 

A simple neural network model is adapted and used to predict PRNG in this research. 

2.6 Reinforcement Learning 

Reinforcement learning (RL) is version of machine learning that is motivated by a 

behaviorist psychology theory commonly referred to as “rewards and punishment”.  

In his attempt to describe RL[26] explained reinforcement learning to address the question 

of how an autonomous agent that senses and acts in its environment can learn to choose 

optimal actions to achieve its goals. The reinforcement learning model (otherwise known 

as an agent) is made to interact with its environment with the attempt to solve a given 

problem in a way that can be best described as “trial and error”. The feedback from it 

actions is used to evaluate if it has made an error or not and then to reward or punish 

accordingly.  

An agent in machine learning could be implemented in a self-driving car or a program 

playing chess that interacts with its environment, receiving a reward state depending on 

how it performs, such as driving to destination safely or winning a game. Conversely, the 

agent receives a penalty for performing incorrectly, such as going out of lane or off the 

road or being checkmated. 

In an attempt to compare reinforcement learning to supervised and unsupervised learning, 

Shweta Bhatt of Youplus, in an online newsletter wrote: [35] “Though both supervised and 

https://www.kdnuggets.com/author/shweta-bhatt
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reinforcement learning use mapping between input and output, unlike supervised learning 

where feedback provided to the agent is correct set of actions for performing a task, 

reinforcement learning uses rewards and punishment as signals for positive and negative 

behavior.” 

In reinforcement learning the goal is to find a suitable action model that would maximize 

the total cumulative reward of the agent. 

Reinforcement learning can be implemented with several algorithms. [7] listed 29 different 

RL algorithms in an online article titled “reinforcement learning algorithms quick 

overview”.  

The popular ones among them  include Q-learning, SARSA(State-Action-Reward-State-

Action), Deep-Q-Networks, DDPG (Deep Deterministic Policy Gradient) and Monte 

Carlo.  

These algorithms share some similarities mostly in the way they simulate the dynamics of 

their environment (model) and how they exploit it. Q-learning and SARSA are model-free 

and commonly used. Each of the algorithms use one of the three attributes for optimization. 

either model, value or policy. 

Some of the algorithms are simple to implement like Q-learning and SARSA but they lack 

generality because they lack the ability to estimate values for unseen states. 

Advanced algorithms such as Deep Q-Networks and DDPG (Deep Deterministic Policy 

Gradient) use Neural Networks to estimate Q-values. However, DQNs can only handle 

discrete, low-dimensional action spaces.   
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Table 2: List of learning Algorithms and their properties 

Algorithm Description Model Policy 
Action 

Space 

State 

Space 
Operator 

Monte 

Carlo 

Every visit to 

Monte Carlo 

Model-

Free 

Off-

policy 
Discrete Discrete 

Sample-

means 

Q-learning 
State–action–

reward–state 

Model-

Free 

Off-

policy 
Discrete Discrete Q-value 

SARSA 

State–action–

reward–state–

action 

Model-

Free 

On-

policy 
Discrete Discrete Q-value 

Q-

learning – 

Lambda 

State–action–

reward–state with 

eligibility traces 

Model-

Free 

Off-

policy 
Discrete Discrete Q-value 

SARSA – 

Lambda 

State–action–

reward–state–

action with 

eligibility traces 

Model-

Free 

On-

policy 
Discrete Discrete Q-value 

https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action
https://en.wikipedia.org/wiki/Q-learning
https://en.wikipedia.org/wiki/Q-learning
https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action
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DQN Deep Q Network 
Model-

Free 

Off-

policy 
Discrete Continuous Q-value 

DDPG 

Deep 

Deterministic 

Policy Gradient 

Model-

Free 

Off-

policy 
Continuous Continuous Q-value 

A3C 

Asynchronous 

Advantage Actor-

Critic Algorithm 

Model-

Free 

On-

policy 
Continuous Continuous Advantage 

NAF 

Q-Learning with 

Normalized 

Advantage 

Functions 

Model-

Free 

Off-

policy 
Continuous Continuous Advantage 

TRPO 

Trust Region 

Policy 

Optimization 

Model-

Free 

On-

policy 
Continuous Continuous Advantage 

PPO 

Proximal Policy 

Optimization 

Model-

Free 

On-

policy 
Continuous Continuous Advantage 

https://en.wikipedia.org/w/index.php?title=Proximal_Policy_Optimization&action=edit&redlink=1
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TD3 

Twin Delayed 

Deep 

Deterministic 

Policy Gradient 

Model-

Free 

Off-

policy 
Continuous Continuous Q-value 

SAC Soft Actor-Critic 
Model-

Free 

Off-

policy 
Continuous Continuous Advantage 

 

Reinforcement learning seems like a great idea, but faces challenges. “The excitement and 

PR hype behind reinforcement learning is a bit disproportionate relative to the economic 

value it is creating today. It turns out that reinforcement learning is a type of machine 

learning whose hunger for data is even greater than supervised learning. It is difficult to 

get enough data for reinforcement learning algorithms.  There’s more work to be done to 

translate this to business and practice” (Andrew Ng, cochairman and cofounder, Coursera) 

[1] 

While reinforcement learning was not used for the research in this thesis, it might be a good 

approach for further research on this topic. 

  



 

23 
 

2.7 Previous Work in this Area  

There has been extensive publications and research work on pseudo random numbers, but 

most focus on either evaluating, analyzing, or modifying the popular random number 

generator engines like the linear congruential algorithm and the Mersenne twister.  

However, two publications were found to be somewhat related to this work. F. Fan et al 

[36] used a simple neural network structure and a typical training procedure to  demonstrate 

the learning and prediction power of the neural network in simple pseudo-random 

environments. Petr Savicky et al [35] also describe how dependencies between random 

numbers generated with some popular pseudo random number generators can be detected 

using general purpose machine-learning techniques. However, neither experiments with 

the PRNGs used in actual programming languages, nor do they use the same learning 

algorithms explored in this paper. 

3.0 Methodology 

In this research, simple linear regression and neural network learning is used to evaluate 

the predictability of a set of commonly used pseudorandom number generators (PRNG). 

This involved generation of observations for each PRNG (broken into training and testing 

datasets), training the model with the training dataset, and evaluating of the model with the 

testing datasets.  

3.1 Generation of Observations 
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The PRNG is first used to generate a set of observations, a pair of a dependent and 

independent variables. For a PRNG, this will be a seed and a random number.  A total of 

2000 observations are generated for each of the selected PRNG. The first 1400 (70% of the 

total generated observations) were used as the training set, 15%  were used for validating 

and the remaining 15% for testing the model. In the rattle application, the validation 

process which precedes the testing process uses a fraction of the dataset allocated for 

validation to evaluate the model parameters whilst it is still being tuned but not for the final 

unbiased estimate of error.  Contrary to testing that evaluates the performance of the model 

over the testing data set, which is the remaining of the dataset not used for building and so 

will provide an unbiased estimate. 

3.2 Training of the Model with The Datasets 

The two machine learning models used for evaluating the PRNG in this research are the 

linear regression model and the neural network model. The two models are integrated into 

Rattle of the R programming language. Rattle is a free graphical user interface for Data 

Science, developed using R. R is a free software environment for statistical computing, 

graphics, machine learning and artificial intelligence. Together Rattle and R provide a 

sophisticated environment for data science, statistical analyses, and data visualization. 

Rattle version 5.3.0 was used, making it easy to train the models with different datasets 

validate and test them. The behavior of the models is explained in the following paragraphs. 

3.2.1 Linear Regression Model 



 

25 
 

The training for simple linear regression is done by first studying similar pairs of variables 

in order to identify a relationship between them. The algorithm starts by assuming a relation 

between the pairs of variables (x and y) as shown below: 

P(Y) = B0 + B1*X  

Where: 

• P(Y) = the predicted Y, 

• B0 = first constant, 

• B1 = second constant, 

• X = actual x variables. 

B0 and B1 represent constants in our function, and the objective of the algorithm is to 

adjust B0 and B1 such that they can eventually approximate a relationship between the X 

and Y variables. The algorithm starts the training process with B0= 0 and B1= 0, and 

adjusts them after every iteration during the training. The adjustment continues throughout 

the entire training process of the algorithm until the end. In Rattle the parameters that 

minimize the squared error loss are not estimated using gradient descent which depends on 

epochs to get better, they are computed exactly. 

We illustrate the training process by walking through the sample dataset as in the Table 2 

as follows;  

 

Table 3: A sample data set for explain the training process of linear regression. 
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X Y 

0 1 

1 5 

2 9 

4 13 

6 17 

8 21 

10 25 

 

From the dataset above, we first plug in the x variables to make a prediction for y. Initially 

B0 = 0 and B1 = 0, so we get: Y = B0 +B1 *X  = 0 + 0*0 = 0 

The algorithm compares this prediction to the actual values in the training set to calculate 

the error: 

error (e) = Prediction(P(Y)) - actual Y from our training dataset (Y(i)) 

For the first pair in the training set, we have error () = 0-1 = - 1. 

We must update/adjust the constants B0 and B1 in our function in order to reduce the error. 

This adjustment is done in small increments, usually a step size between 0 and 1. This is 

generally referred to as the learning rate. For this demonstration 0.01 is used as the learning 

rate.  

The formula for adjusting B0 is as follows: 

B0(t+1) = B0(t) – r*error 
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For this example that gives: 

B0(t+1)=0-0.01*(-1)= 0.01 

Since B1 directly interacts with the x variable its formula is: 

B1(t+1) = B1(t) – r * error * x 

For this example we get: 

B1(t+1) = 0 – 0.01 *(-1) * 0 = 0 

So after the example the constants B0 and B1 will be updated as B0 = 0.01 and B1 = 0 

This process must be iterated for all the (x, y) observations in the training dataset, updating 

the constants each time. A complete iteration of all the observations in the training dataset 

is known as a pass or an epoch. Normally, several epochs are needed to reduce the error in 

attempt to improve the accuracy of the model’s prediction. In rattle the iterations are 

experimental. 

3.2.2 Neural Network Model  

Artificial neural networks can be constructed to have similar principles as linear regression 

as demonstrated in Figure 1. In this model, X is an input. B1 is the weight on the connection 

from input X and B0 is the weight on the connection from the bias unit (always 1), which 

gives the output a value of B0 + B1X.    
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Figure 1. Comparing linear regression to neural network 

Another thing neural networks have in common with linear regression model is how they 

calculate errors and adjust their weights (that is, change B0 and B1 to reduce error). The 

Rattle package uses the backpropagation learning algorithm, the most used supervised 

learning algorithm for feedforward neural networks.  

A neural network was used in this experiment because relation between the random 

numbers and their seed might not necessary be a linear relationship. In such a case, it cannot 

be represented as a linear equation of the form B0 + B1X, and linear regression would not 

be effective. On the other hand, a neural network with at least one layer of hidden units can 

represent nonlinear relationships, and capable of learning them with algorithms such as 

backpropagation.  

The Figure 2 represents the structure of the neural network used for in this work, with a 

single layer of hidden units containing 10 units. However, neural networks can have many 

more connections and weights, and can be even more complex with many hidden layers in 

the case of deep neural networks.  

Hidden layer 

Output layer 

x B0 + B1X y 

bias 

Input layer 
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Figure 2. Structure of neural network used in this experiment. 

3.2.3 The Rattle Application 

The NNM of rattle presents a GUI from which optional features can be selected. The 

interface in Figure 2. Shows the available options that can be made to the model. A function 

to calculate the weight can be typed in weight calculation text box. A default partition of 

70/15/15 meaning 70% of the dataset be use for training, 15%  for validation and 15% for 

testing. of the dataset to be used for training, validation, and testing. nodes for the hidden 

layers. A default seed is set in other to keep the model consistent when it is train multiple 

times.  

Input layer Output layer Hidden layer 

X Y 

bias 
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Figure 3. Data tab of Rattle 

The model tab as shown in figure 3. Gives the option of the type of model to be trained. 

The selection of a model depends on the kind of dataset input at the data tab. Only models 

that can be train on the dataset will be activated for selection. There is also the option to 

select “All” which will train the dataset with all activated models. Another option is to 

select an integer for the node . this set the number of nodes the hidden layers will have in 

the model. For this experiment 10 was selected because the dataset is small. 

Other features including bias, epochs, and activation functions are experimental to the 

application. In the summary of training the model which can be seen at appendixes 14 to 

24, it show that the activation functions used by rattle in building the models are skip-layer 

connections and linear output units.  
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Figure 4. The rattle model tab. 

3.3 Model Testing 

After a successful training of the algorithm, there is the need to test the model. 

The experiment with the models on all the six generated datasets is implemented in chapter 

four and the performance of the models are evaluated and analyzed with linear fits and R-

square. This comes in a function in the rattle package and it presents the results in a 

“Predicted Versus Observed” plot. This graph is relevant for regression models because 

most the predictions are a continuous value rather than a discrete value. Figure 5 shows the 

evaluation tab as used in rattle. 

More details about the evaluation is in chapter five. 
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Figure 5. Evaluation tab in rattle. 
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4 Experimentation with Existing PRNGS 

Three major PRNGs were considered in these experiments, those commonly used in the 

programming languages C++, Java and Python. Since most of these languages have more 

than one method and classes for generating pseudorandom numbers, the PRNG algorithm 

chosen in each language based on whether it returned at least two variables for use as an 

observation consisting of a dependent and an independent variable. As described in the 

previous chapter, in most cases the independent variable is the seed of the random number 

generator.  

The procedure described in the previous chapter was used to evaluate each of the three 

PRNG in this section. Each part of the section follows the procedure to evaluate one of the 

selected PRNGs. 

The datasets were analyzed for outliers, skewness, distribution, and correlation before 

training them on the models. To explore the datasets and possibly find any interesting 

relationship with the outcome. Correlation between the seed and the random numbers is 

very important to this experiment and the Pearson correlation test was used. This statistical 

analysis is necessary to identify any relationship between statistical properties and training 

outcomes. This however does not dispute the fact that correlation is not necessarily 

causative. 

4.1 Part I: Analysis of C++ rand() and srand() datasets 
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In C++ the functions  rand() and srand() were selected and used together to generate 

random numbers. The srand function was used to generate the seeds (independent 

variables) for the random number generation, and the rand() function was used to generate 

the actual random numbers (dependent variables). See Appendixes 7  and 8 for the C++ 

code used to generate the observations.  

The code in Appendix 7 was used to generate 2000 random numbers based on the same 

seed 1 (that is, srand(1) was used in all cases), and the code in Appendix 8 was used to 

generate 2000 random numbers with each based on a different seed in the range 1 - 2000. 

The outputs are formatted into (X, Y) pairs, where the values of x are the seeds used as the 

independent variables while the values of y are the random numbers used as the dependent 

variables. See Appendix 1 and 2 for samples of labeled Dataset 1 and Dataset 2 

respectively.  

  The following graphs were used for the analysis: 

 

Figure 6. boxplot of dataset 1 
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Figure 7 boxplot of dataset 2 

 

Figure 8 scatter plot of dataset 1 
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Figure 9 scatter plot of dataset 2 

The boxplots in Figures 6 and 7 above show no outliers in the distribution of the random 

numbers in both datasets 1 and 2. The scatter graphs in Figures 8 and 9 also show an even 

distribution of the random numbers in both datasets; however, Figure 9 indicates a 

correlation between the random numbers and their seed. This is probably because the value 

of the seeds was directly proportional to their corresponding generated random numbers.  

   

4.2 Part II: Analysis of Python Random() datasets 

The random() and seed() methods of the Random module was used, as mentioned in 

Chapter two. The seed() function was used to set the seed for the basic generator and the 

random() function was used to return the appropriate random number. The random() 

method returns floating point random numbers, which were converted to 2 decimal places 

for convenience. Two sets of datasets labeled ‘Dataset 3’ and ‘Dataset 4’ each containing 

2000 observations were generated for this section of the experiment. See Appendixes 3 and 

4 for samples of Dataset 3 and Dataset 4, respectively. While all the random numbers in 

Dataset 3 were generated from the same seed of 1, for Dataset 4, every random number is 

generated with a different seed which were also in the range of 1-2000. Appendixes 9 and 

10 show the Python code for generating Dataset 3 and Dataset 4, respectively.  

Datasets 3 and 4 were analyzed with the following graphs: 
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Figure 10 boxplot of dataset 3 

 

Figure 11  boxplot of dataset 4 

  

Figure 12 scattered plot of dataset 3 
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Figure 13 scattered plot of dataset 4 

The boxplots in figures 10 and 11 above show no outliers in the distribution of the random 

numbers in both Datasets 3 and 4. The scatter graphs in figures 12 and 13 also show an 

even distribution of the random numbers in both datasets with no correlation between the 

random numbers and their seeds in both cases. 

4.3 Part III: Analysis of Java java.util.random() dataset. 

The random(), nextInt() and setSeed() methods were combined to generate two different 

sets of data, Dataset 5 and Dataset 6. The Java code for generating the two data sets is given 

in Appendix 11 for Dataset 5 and Appendix 12 for Dataset 6. For this section of the 

experiment each of the two datasets contains 2000 observations. All the random numbers 

in Dataset 5 were generated from the same seed of 1, while the random numbers in Dataset 

6 have different seeds generated sequentially. Samples of Dataset 5 and Dataset 6 can be 

seen at Appendixes 5 and 6 respectively. 

Datasets 5 and 6 were analyzed with the following graphs. 
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Figure 14 boxplot plot of dataset 5 

.  

Figure 15 boxplot plot of dataset 6 

 

Figure 16 scattered plot of dataset 5 
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Figure 17 scattered plot of dataset 6 

The boxplots in figures 14 and 15 above show no outliers in the distribution of the random 

numbers in both datasets 5 and 6. The scattered graphs in figures 16 and 17 also show an 

even distribution of the random numbers in both datasets. However, figure 17 indicates a 

pattern in the random number distribution which looks like a correlation between the 

random numbers and their seed. A closer look at dataset 6 reveals that there is an almost 

consistent increment and decrement over the about every 7 observations throughout the 

entire dataset. This could probability account for the pattern in figure 15. 

4.3 Correlation Test on Data Sets 

Correlation tests were used to see if there were relationships between the x and y values of 

the data sets used for this experiment, where the x values represent the independent variable 

while the y values are the dependent values. For Datasets 2, 4, and 6 the seeds were used 

as the x values. In Datasets 1, 3, and 5 the x value representing the sequence of the random 

number they correspond to. In simple terms, the x values in those datasets are just the serial 

numbers of the random numbers. PRNGs are highly dependent on their seed, and the 
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hypothesis is that there is a relationship  between a random number and it seed which would 

make it possible to perform regression functions.  

A Pearson correlation test was used to all the datasets. The null hypothesis is that the two 

samples have no (i.e., 0) correlation. Pearson's product moment correlation coefficient was 

used.  

If the p-value is less than 0.05 then we reject the null hypothesis and accept the alternative 

hypothesis that the samples are correlated, at the 95% level of confidence. The result from 

the correlation tests are presented in the following table; 

Table 4  Correlation test result comparison. 

Dataset Correlation P- value R square 

Dataset 1 -0.0139 0.5353 0.00019321 

Dataset 2 1 < 2.2e-16 1 

Dataset 3 -0.0222 0.3221 0.00049284 

Dataset 4 0.0067 0.3221 0.00004489 

Dataset 5 -0.0055 0.8047 0.00003025 

Dataset 6 0.0019 0.9311 0.00000361 
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Figure 18. Correlation test chats of data sets. 

We can see that only Dataset 2 shows a strong correlation between X and Y values. 

Each of the six datasets were used to train the linear regression and neural network models 

in R. 

The summary of the training on each of the data sets can be seen at appendixes 13 to 24. 

The models were tested and the results are presented in the chapter five.  

5.0 Results and Evaluation 

After training on each of the six datasets, validation was done using 15% of the dataset, the 

resulting models were tested for correctness using the corresponding testing sets. The 

outcomes of the testing are presented in graphs in this section. The section is made up of 

three parts, each corresponding to the three PRNGs used in this research.  
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Correlation Test Chart on Data Sets
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The testing was done with 15% of the entire dataset for each of the six datasets, and the 

results of each is presented in a “Predicted Versus Observed” plot, using the R-data miner 

application. This graph is relevant for regression models because most the predictions are 

a continuous value rather than a discrete value. These graphs contain the following 

components: 

• The plotted graphs for linear fit consist of two lines representing the actual and 

predicted data, where there is a perfect fit if the predicted values were the same as 

the actual observations. 

• The Pseudo R-Squared value in each graph is a measure that mimics the standard 

R-Squared measure that represents the proportion of variance for a dependent 

variable, but is calculated as the square of the correlation between the predicted and 

observed values. The closer to 1 this measure is, the better the correlation. 

5.1 Part 1: Test Analysis of C++  rand() and srand() PRNG. 

5.1.1 Testing the Linear regression model created from Dataset 1 

Figure 19 shows the results of testing the model created from Dataset 1 with the linear 

regression model. The R-square value of 0.002016 indicates that the predictions of the 

model are far from the actual observations. In other words, the model performed poorly. 

Figure 20, which gives the results of training the neural network shows similarly poor 

results. It may be the case that either the data set is too small for the models to learn from, 

or that there is actually no correlation between the independent and dependent variables, 

which was indicated in the scatter plot in Figure 5.  
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Figure 19.  Predicted over Observed plot with LM for dataset 1 

5.1.2 Testing the Neural Network model created from Dataset 1 

 

 

Figure 20. Predicted over Observed plot with NNM for dataset 1 
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5.1.3 Testing the Linear regression model created from Dataset 2 

Figures 21 and 22 give test results for Dataset 2 for linear regression and neural network 

learning, respectively. The line showing the linear fit to the points and the line showing the 

mapping of the predicted values to the observed values both lie on the same plane. The R- 

square value of 1 indicates that both models made an accurate prediction of the observation. 

In Figure 4 there is a correlation between the independent and dependent variables, and 

that probably is the reason for the accuracy in the predictions.  

 

Figure 21 Predicted over Observed plot with LM for dataset 2 

5.1.4 Testing the Neural Network model created from Dataset 2  
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Figure 22.  Predicted over Observed plot with NNM for dataset 2 

 

5.2 Part 2: Test Analysis of Python Random() dataset. 

5.2.1 Testing the Linear regression model created from Dataset 3 

Figures 23 and 24 give test results for models created from Dataset 3 using linear regression 

and neural network learning, respectively. The R-square value of the linear model is 

0.00155 and the R-square value of the neural network model is 0.0008148, indicating that 

they both performed poorly. However, the difference in their R-squares indicates that the 

LM performed better than the NNM in the prediction.  



 

47 
 

 

Figure 23. Predicted over Observed plot with LM for dataset 3. 

5.2.2 Testing the Neural Network model created from Dataset 3 

 

Figure 24. Predicted over Observed plot with NNM for dataset 3. 
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5.2.3 Testing the Linear regression model created from Dataset 4 

Figures 25 and 26 give test results for models created from Dataset 4 using linear regression 

and neural network learning, respectively. While the R-square value of the LM is 

0.0000004859,  the R-square of the NNM is 0.008327. Again, both performed poorly. 

However, the difference in their R- square values indicates that the NNM performed much 

better than the LM in the predictions. This could be as a result of the complexity of the 

ANN, which has more parameters that linear regression. It could also be something 

inherent in the data, or it is an indication that the data is not enough. A larger training set 

might help to determine this. Finally, figure 26 shows a strange outlier in the results. It is 

not clear what caused that outlier. 

 

Figure 25. Predicted over Observed plot with LM for dataset 4. 

5.2.4 Testing the Neural Network model created from Dataset 4 
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Figure 26. Predicted over Observed plot with NNM for dataset 4. 

5.3 Part 3: Test Analysis Of Java java.util.random() dataset. 

5.3.1 Testing the Linear regression model created from Dataset 5 

Figures 27 and 28 give test results for models created from Dataset 5 using linear regression 

and neural network learning, respectively. Whiles The R-square value of the LM is 

0.001212, the R-square of the NNM is 0.002146, showing that they both performed poorly. 
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Figure 27. Predicted over Observed plot with LM for dataset 5. 

5.3.2 Testing the Neural Network model created from Dataset 5 

 

Figure 28. Predicted over Observed plot with NNM for dataset 5. 
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5.3.3 Testing the Linear regression model created from Dataset 6 

Figures 29 and 20 give test results for models created from Dataset 6 using linear regression 

and neural network learning, respectively. The two models recorded the same R-square of 

0.001319,  

 

Figure 29. Predicted over Observed plot with LM for dataset 6. 

5.3.4 Testing the Neural Network model created from Dataset 6 
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Figure 30. Predicted over Observed plot with NNM for dataset 6. 

5.4 Comparing of Results Over All Datasets 

In the following table the performance of the models on the various dataset is compared. 

Table 5. Comparing model performance  

Dataset 
Programing 

language 
Seed status 

Linear model R-

square 

Neural Networks 

model R-square 

Dataset 1 C++ Common 0.002016 0.002016 

Dataset 2 C++ Unique 1 1 

Dataset 3 Python Common 0.00155 0.0008148 

Dataset 4 Python Unique 0.0000004859 0.008327 

Dataset 5 Java Common 0.001212 0.002146 

Dataset 6 Java Unique 0.001319 0.001319 



 

53 
 

  

The bar graph below compares the performance of the two models on the datasets 

 

Figure 31. Chart of LM R-Squares of the datasets   

 

Figure 32. Chart of NNM R-Square of the data sets 
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The charts in Figures 31 and 32 show that the performance of the two models were the 

same on three of the datasets (datasets, 1, 2 and 6) but the overall performance of NNM 

performed better than the LM. 

A closer look at the testing results reveals the following observations: 

• There was a linear correlation between independent variables and dependent variables 

in Dataset 2. The random numbers increased proportionally to their seed. It was the 

only dataset that both models made the best predictions on. This could be as a result of 

the PRNG used in generating the values in Dataset 2.  
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6.0 Conclusion 

There is evidence that machine learning algorithms can be used to predict the values created 

by pseudorandom number generators. Given that linear regression algorithm and a simple 

regression neural network were able to produce fairly good predictions with reasonable 

accuracy in some of our experiments, it is believable that more complex machine learning 

algorithms such as deep learning and recurrence algorithms might produce still better 

results.  

It can also be concluded that reseeding before each random number generated is to be 

avoided, specifically with C++ as the learning algorithms were often more successful on 

datasets created using that procedure.  

The C++ PRNG is predictable given the seed, but Python and Java PRNGs are not as 

predictable with or without the seed. 

The neural network performed no better than simple linear regression in most cases. This 

finding was a little surprising, as neural networks are in general a more powerful 

representation. 

6.1 Future Research 

The following suggestions are made for future research work related to this topic: 

• Tests should be performed on other PRNGs (including those with and without 

seeding) to further confirm the results of this thesis. This might include those 



 

56 
 

related to secure random number generation (such as the ANSI X9.17 PRNG which 

uses 3DES).  

• Tests should be performed using more sophisticated ML algorithms such as deep 

learning and recurrence algorithms.  

• Larger amount of data should be used in the training. 
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Appendix Pages 
Appendix 1 

Sample data set 1 generated with C++ rand() and srand() functions with the same seed 1. 

X Y 

1 41 

2 18467 

3 6334 

4 26500 

5 19169 

6 15724 

7 11478 

8 29358 

9 26962 

10 24464 

11 5705 

12 28145 

13 23281 

14 16827 

15 9961 

16 491 

17 2995 

18 11942 

19 4827 

20 5436 

21 32391 

22 14604 

23 3902 

24 153 

25 292 

26 12382 

27 17421 

28 18716 

29 19718 

30 19895 

31 5447 

32 21726 
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33 14771 

34 11538 

Appendix 2 

Sample data set 2: generated from C++ rand() and srand() 

functions with different seeds. 

X Y 

1 41 

2 45 

3 48 

4 51 

5 54 

6 58 

7 61 

8 64 

9 68 

10 71 

11 74 

12 77 

13 81 

14 84 

15 87 

16 90 

17 94 

18 97 

19 100 

20 103 

21 107 

22 110 

23 113 

24 116 

25 120 

26 123 

27 126 

28 130 

29 133 

30 136 
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31 139 

32 143 

33 146 

Appendix 3 

Sample data set 3: generated from python random() with the same seed. 

X Y 

1 0.13 

2 0.85 

3 0.76 

4 0.26 

5 0.5 

6 0.45 

7 0.65 

8 0.79 

9 0.09 

10 0.03 

11 0.84 

12 0.43 

13 0.76 

14 0 

15 0.45 

16 0.72 

17 0.23 

18 0.95 

19 0.9 

20 0.03 

21 0.03 

22 0.54 

23 0.94 

24 0.38 

25 0.22 

26 0.42 

27 0.03 

28 0.22 

29 0.44 

30 0.5 

31 0.23 
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32 0.23 

33 0.22 

34 0.46 

Appendix 4 

Sample data set 4: generated from python random() with different seeds. 

X Y 

1 0.13 

2 0.96 

3 0.24 

4 0.24 

5 0.62 

6 0.79 

7 0.32 

8 0.23 

9 0.46 

10 0.57 

11 0.45 

12 0.47 

13 0.26 

14 0.11 

15 0.97 

16 0.36 

17 0.52 

18 0.18 

19 0.68 

20 0.91 

21 0.16 

22 0.96 

23 0.92 

24 0.71 

25 0.38 

26 0.75 

27 0.65 

28 0.11 

29 0.55 

30 0.54 

31 0.01 
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32 0.08 

33 0.57 

34 0.53 

Appendix 5 

Sample data set 5: generated from Java java.util.random() class with the same seed. 

X Y 

1 985 

2 588 

3 1847 

4 313 

5 254 

6 904 

7 434 

8 606 

9 1978 

10 1748 

11 569 

12 473 

13 317 

14 1263 

15 1562 

16 1234 

17 1592 

18 1262 

19 596 

20 189 

21 1376 

22 332 

23 1310 

24 1099 

25 674 

26 959 

27 1298 

28 153 

29 1437 

30 1302 

31 1205 
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32 854 

33 800 

34 1006 

Appendix 6 

Sample data set 6: generated from Java java.util.random() class with different seeds. 

X Y 

1 985 

2 108 

3 1734 

4 1862 

5 1487 

6 611 

7 236 

8 364 

9 1989 

10 1113 

11 738 

12 866 

13 492 

14 1615 

15 1241 

16 1351 

17 976 

18 100 

19 1725 

20 1853 

21 1478 

22 602 

23 227 

24 355 

25 1981 

26 1104 

27 730 

28 857 

29 483 

30 1606 

31 1232 
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32 1377 

33 1003 

34 126 

Appendix 7 

C++ code to generate random numbers based on the same seed one (1) 

Using  srand() and rand() functions.  (for data set 1) 

 

//driver code 

int main() 

{ 

    srand(1); // replaced vale with different your 

preferred seed. 

 for(int a = 0; a<2000; a++) 

        { 

            for(int i = 0; i<1; i++) 

            { 

                cout<<a+1<<"--"; 

 

                cout<<rand()<<endl; 

            } 

        } 

 return 0; 

} 
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Appendix 8 

C++ program to generate random numbers based on the different sequential seed, from 1 
to 2000. (for data set 2) 

#include <iostream> 

#include <iomanip> 

#include <ctime> 

using namespace std; 

 

//driver code 

int main() 

{ 

 for(int a = 0; a<2000; a++) 

        { 

        srand(a+1); 

            for(int i = 0; i<1; i++) 

            { 

                cout<<a+1<<"--"; 

                cout<<rand()<<endl; 

            } 

        } 

 return 0; 

} 
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Appendix 9 

Python code for generating 2000 random numbers from the same seed of 1 

For generation data set 3 

 

import random 

sn = 0 

random.seed(1) 

while(sn < 2000): 

     

    sn = sn +1 

 

    pyRand1 = random.random() 

    print(sn, "-", round(pyRand1, 2)) 
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Appendix 10 

Python code for generating 2000 random numbers from the different seeds 

For generating data set 4 

import random 

sn = 0 

while(sn < 2000): 

    sn = sn +1 

 

    random.seed(sn) 

    pyRand1 = random.random() 

    print(sn, "-", round(pyRand1, 2)) 
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Appendix 11 

Java code for generating Dataset 5 (set of random numbers from the same seed)  

package randomNumbers; 

 

import java.util.*; 

 

public class randomNumbers { 

 public static void main(String args[]){ 

 

               

     // create instance of Random class  

        Random rand = new Random();  

   

     // set seed 

        long s = 1; 

        rand.setSeed(s); 

         

      // Generate random integers in range 0 to 1999  

        for(int i = 0; i < 2000; i++) { 

          

          

         int rand_int1 = rand.nextInt(2000);  

         

       // Print random integers  

         System.out.println( i+1 +" - "+rand_int1); 

         s +=1; 

        } 

                   

        

    } 

 

} 
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Appendix 12 

Java code for generating Dataset 6 (set of random numbers from the different seeds)  

package randomNumbers; 

 

import java.util.*; 

 

public class randomNumbers { 

 public static void main(String args[]){ 

 

       

         

  // create instance of Random class  

        Random rand = new Random();  

   

        // set seed 

        long s = 1; 

         

        // Generate random integers in range 0 to 1999  

        for(int i = 0; i < 2000; i++) { 

       

         

        rand.setSeed(s); 

          

        int rand_int1 = rand.nextInt(2000);  

         

        // Print random integers  

         System.out.println( s +" - "+rand_int1); 

         s +=1; 

        } 

                   

        

    } 

 

} 
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Appendix 13 

Summary of the Linear Regression model (built using lm): for training on Dataset 1 

Call: 

lm(formula = Y ~ ., data = crs$dataset[crs$train, c(crs$input,  

    crs$target)]) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-16467.6  -7947.9    169.9   8066.5  16540.1  

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) 16204.5062   500.8927  32.351   <2e-16 *** 

X               0.2291     0.4312   0.531    0.595     

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 9389 on 1398 degrees of freedom 

Multiple R-squared:  0.0002019, Adjusted R-squared:  -0.0005133  

F-statistic: 0.2823 on 1 and 1398 DF,  p-value: 0.5953 

==== ANOVA ==== 

Analysis of Variance Table 

Response: Y 

            Df       Sum Sq  Mean Sq F value Pr(>F) 

X            1     24885734 24885734  0.2823 0.5953 

Residuals 1398 123243239949 88156824                

[1] "\n" 

Time taken: 0.14 secs 
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Appendix 14 

Summary of the Neural Net model (built using nnet): for training on Dataset 1. 

A 1-10-1 network with 32 weights. 

Inputs: X. 

Output: Y. 

Sum of Squares Residuals: 123243239949.4717. 

Neural Network build options: skip-layer connections; linear 

output units. 

In the following table: 

   b  represents the bias associated with a node 

   h1 represents hidden layer node 1 

   i1 represents input node 1 (i.e., input variable 1) 

   o  represents the output node 

Weights for node h1: 

    b->h1    i1->h1  

  -352.02  -2857.30  

Weights for node h2: 

    b->h2    i1->h2  

   235.29     -0.11  

Weights for node h3: 

    b->h3    i1->h3  

  -117.65   -663.48  

Weights for node h4: 

    b->h4    i1->h4  

   483.94   3503.18  

Weights for node h5: 

    b->h5    i1->h5  
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  -338.53  -2929.99  

Weights for node h6: 

    b->h6    i1->h6  

 -1022.99 -70932.06  

Weights for node h7: 

    b->h7    i1->h7  

   331.39   1672.58  

Weights for node h8: 

    b->h8    i1->h8  

   764.72   5342.82  

Weights for node h9: 

    b->h9    i1->h9  

   105.57    746.97  

Weights for node h10: 

   b->h10   i1->h10  

   978.82   7455.83  

Weights for node o: 

     b->o     h1->o     h2->o     h3->o     h4->o     h5->o     

h6->o     h7->o  

  4330.84    -71.46   3112.99    626.78   2510.75   2587.90  

40608.05   1321.59  

    h8->o     h9->o    h10->o     i1->o  

  2795.53    962.91   1169.90      0.23  

Time taken: 0.11 secs 

Rattle timestamp: 2020-04-19 21:39:43  
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Appendix 15 

Summary of the Linear Regression model (built using lm): for training dataset 2. 

Call: 

lm(formula = Y ~ ., data = crs$dataset[crs$train, c(crs$input,  

    crs$target)]) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.51332 -0.25354 -0.00405  0.24628  0.51102  

Coefficients: 

               Estimate  Std. Error t value Pr(>|t|)     

(Intercept) 38.10442038  0.01534825    2483   <2e-16 *** 

X            3.26559480  0.00001321  247161   <2e-16 *** 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.2877 on 1398 degrees of freedom 

Multiple R-squared:      1, Adjusted R-squared:      1  

F-statistic: 6.109e+10 on 1 and 1398 DF,  p-value: < 2.2e-16 

==== ANOVA ==== 

Analysis of Variance Table 

Response: Y 

            Df     Sum Sq    Mean Sq     F value    Pr(>F)     

X            1 5056419600 5056419600 61088418483 < 2.2e-16 *** 

Residuals 1398        116          0                           

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

[1] "\n" 

Time taken: 0.20 secs 

Appendix 16 



 

77 
 

Summary of the Neural Net model (built using nnet): for training 

on Dataset 2. 

A 1-10-1 network with 32 weights. 

Inputs: X. 

Output: Y. 

Sum of Squares Residuals: 115.7155. 

Neural Network build options: skip-layer connections; linear 

output units. 

In the following table: 

   b  represents the bias associated with a node 

   h1 represents hidden layer node 1 

   i1 represents input node 1 (i.e., input variable 1) 

   o  represents the output node 

Weights for node h1: 

  b->h1  i1->h1  

 104.02 1390.38  

Weights for node h2: 

  b->h2  i1->h2  

  15.28  -33.17  

Weights for node h3: 

  b->h3  i1->h3  

  -7.98  -33.46  

Weights for node h4: 

  b->h4  i1->h4  

  64.17  342.45  

Weights for node h5: 

  b->h5  i1->h5  
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 -47.50 -851.74  

Weights for node h6: 

  b->h6  i1->h6  

 -24.74 -413.77  

Weights for node h7: 

  b->h7  i1->h7  

 105.75   56.61  

Weights for node h8: 

  b->h8  i1->h8  

  72.27  357.09  

Weights for node h9: 

  b->h9  i1->h9  

  30.08  136.44  

Weights for node h10: 

 b->h10 i1->h10  

  90.21  505.85  

Weights for node o: 

   b->o   h1->o   h2->o   h3->o   h4->o   h5->o   h6->o   h7->o   

h8->o   h9->o  

 118.94  -98.53   65.37   34.72   15.08   20.73    4.34   14.16   

30.16   11.45  

 h10->o   i1->o  

 -53.15    3.27  

Time taken: 0.05 secs 

Rattle timestamp: 2020-04-20 04:06:12  
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Appendix 17 

Summary of the Linear Regression model (built using lm): for training on Dataset 3. 

Call: 

lm(formula = Y ~ ., data = crs$dataset[crs$train, c(crs$input,  

    crs$target)]) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.52197 -0.24346  0.00441  0.24817  0.50897  

Coefficients: 

               Estimate  Std. Error t value Pr(>|t|)     

(Intercept)  0.52220320  0.01533102   34.06   <2e-16 *** 

X           -0.00001664  0.00001320   -1.26    0.208     

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.2874 on 1398 degrees of freedom 

Multiple R-squared:  0.001135, Adjusted R-squared:  0.0004207  

F-statistic: 1.589 on 1 and 1398 DF,  p-value: 0.2077 

==== ANOVA ==== 

Analysis of Variance Table 

Response: Y 

            Df  Sum Sq  Mean Sq F value Pr(>F) 

X            1   0.131 0.131216  1.5888 0.2077 

Residuals 1398 115.456 0.082586                

[1] "\n" 

Time taken: 0.05 secs 
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Appendix 18 

Summary of the Neural Net model (built using nnet): for training on Dataset 3 

A 1-10-1 network with 32 weights. 

Inputs: X. 

Output: Y. 

Sum of Squares Residuals: 115.3024. 

Neural Network build options: skip-layer connections; linear 

output units. 

In the following table: 

   b  represents the bias associated with a node 

   h1 represents hidden layer node 1 

   i1 represents input node 1 (i.e., input variable 1) 

   o  represents the output node 

Weights for node h1: 

 b->h1 i1->h1  

-10.58 -11.37  

Weights for node h2: 

 b->h2 i1->h2  

 -0.77  -4.78  

Weights for node h3: 

 b->h3 i1->h3  

 -2.05  -3.69  

Weights for node h4: 

 b->h4 i1->h4  

  2.32   7.18  

Weights for node h5: 

 b->h5 i1->h5  
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 -1.11  -3.35  

Weights for node h6: 

 b->h6 i1->h6  

 -2.19  -6.15  

Weights for node h7: 

 b->h7 i1->h7  

  0.05  -3.04  

Weights for node h8: 

 b->h8 i1->h8  

  1.16   2.45  

Weights for node h9: 

 b->h9 i1->h9  

 -1.21  -2.72  

Weights for node h10: 

 b->h10 i1->h10  

   0.80    3.28  

Weights for node o: 

  b->o  h1->o  h2->o  h3->o  h4->o  h5->o  h6->o  h7->o  h8->o  

h9->o h10->o  i1->o  

  4.83 -25.27   0.64  -2.11 -14.53   0.34   3.62  -2.47   5.49  -

2.79   4.73   0.00  

Time taken: 0.04 secs 

 

Rattle timestamp: 2020-04-20 04:29:00  
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Appendix 19 

Summary of the Linear Regression model (built using lm): for training on Dtataset 4. 

Call: 

lm(formula = Y ~ ., data = crs$dataset[crs$train, c(crs$input,  

    crs$target)]) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.49387 -0.25710 -0.00471  0.25500  0.52263  

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) 0.47084351 0.01561220  30.159   <2e-16 *** 

X           0.00001395 0.00001344   1.038      0.3     

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.2926 on 1398 degrees of freedom 

Multiple R-squared:  0.0007696, Adjusted R-squared:  5.487e-05  

F-statistic: 1.077 on 1 and 1398 DF,  p-value: 0.2996 

==== ANOVA ==== 

Analysis of Variance Table 

Response: Y 

            Df  Sum Sq  Mean Sq F value Pr(>F) 

X            1   0.092 0.092218  1.0768 0.2996 

Residuals 1398 119.730 0.085644                

[1] "\n" 

Time taken: 0.02 secs 

Rattle timestamp: 2020-04-20 04:34:26  
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Appendix 20 

Summary of the Neural Net model (built using nnet): for training on Dataset 4. 

A 1-10-1 network with 32 weights. 

Inputs: X. 

Output: Y. 

Sum of Squares Residuals: 119.5464. 

Neural Network build options: skip-layer connections; linear 

output units. 

In the following table: 

   b  represents the bias associated with a node 

   h1 represents hidden layer node 1 

   i1 represents input node 1 (i.e., input variable 1) 

   o  represents the output node 

Weights for node h1: 

 b->h1 i1->h1  

 -5.38 -30.04  

Weights for node h2: 

 b->h2 i1->h2  

  0.58  -0.42  

Weights for node h3: 

 b->h3 i1->h3  

 -0.62  -0.12  

Weights for node h4: 

 b->h4 i1->h4  

 -1.79  -3.86  

 

Weights for node h5: 
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 b->h5 i1->h5  

 -0.33  -0.15  

Weights for node h6: 

 b->h6 i1->h6  

 -1.64  -5.57  

Weights for node h7: 

 b->h7 i1->h7  

 -1.83 -31.41  

Weights for node h8: 

 b->h8 i1->h8  

 -1.54   0.76  

Weights for node h9: 

 b->h9 i1->h9  

 -0.09  -0.76  

Weights for node h10: 

 b->h10 i1->h10  

  -2.03   -0.37  

Weights for node o: 

  b->o  h1->o  h2->o  h3->o  h4->o  h5->o  h6->o  h7->o  h8->o  

h9->o h10->o  i1->o  

 -0.66  -0.03   0.45   0.01   0.72   0.06   0.73  -4.97   1.13   

0.70  -1.07   0.00  

Time taken: 0.02 secs 

Rattle timestamp: 2020-04-20 04:36:52  
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Appendix 21 

Summary of the Linear Regression model (built using lm): for training on Dataset 5. 

Call: 

lm(formula = Y ~ ., data = crs$dataset[crs$train, c(crs$input,  

    crs$target)]) 

Residuals: 

    Min      1Q  Median      3Q     Max  

-982.65 -492.74  -20.93  489.51 1018.00  

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) 977.722765  30.719710   31.83   <2e-16 *** 

X             0.004241   0.026445    0.16    0.873     

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 575.8 on 1398 degrees of freedom 

Multiple R-squared:  1.84e-05, Adjusted R-squared:  -0.0006969  

F-statistic: 0.02572 on 1 and 1398 DF,  p-value: 0.8726 

==== ANOVA ==== 

Analysis of Variance Table 

Response: Y 

            Df    Sum Sq Mean Sq F value Pr(>F) 

X            1      8528    8528  0.0257 0.8726 

Residuals 1398 463562051  331589                

[1] "\n" 

Time taken: 0.01 secs 

Rattle timestamp: 2020-04-20 04:42:21 herma 

Appendix 22 



 

86 
 

Summary of the Neural Net model (built using nnet): for training 

on Dataset 5. 

A 1-10-1 network with 32 weights. 

Inputs: X. 

Output: Y. 

Sum of Squares Residuals: 462334474.0702. 

Neural Network build options: skip-layer connections; linear 

output units. 

In the following table: 

   b  represents the bias associated with a node 

   h1 represents hidden layer node 1 

   i1 represents input node 1 (i.e., input variable 1) 

   o  represents the output node 

Weights for node h1: 

  b->h1  i1->h1  

   3.92   12.64  

Weights for node h2: 

  b->h2  i1->h2  

  16.51   20.81  

Weights for node h3: 

  b->h3  i1->h3  

 442.58 -112.82  

Weights for node h4: 

  b->h4  i1->h4  

 371.92  303.84  

Weights for node h5: 

  b->h5  i1->h5  
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 364.36  -41.70  

Weights for node h6: 

  b->h6  i1->h6  

  -0.41  -52.46  

Weights for node h7: 

  b->h7  i1->h7  

  -1.47  -15.20  

Weights for node h8: 

  b->h8  i1->h8  

 165.53  160.70  

Weights for node h9: 

  b->h9  i1->h9  

  31.61   26.29  

Weights for node h10: 

 b->h10 i1->h10  

  99.27  103.39  

Weights for node o: 

   b->o   h1->o   h2->o   h3->o   h4->o   h5->o   h6->o   h7->o   

h8->o   h9->o  

 204.26  126.79    5.15  896.84  201.40 -461.28   28.20   76.64  

203.58   36.73  

 h10->o   i1->o  

 202.57    0.00  

Time taken: 0.02 secs 

Rattle timestamp: 2020-04-20 04:47:03  
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Appendix 23 

Summary of the Linear Regression model (built using lm): for training on Dataset 6. 

Call: 

lm(formula = Y ~ ., data = crs$dataset[crs$train, c(crs$input,  

    crs$target)]) 

Residuals: 

    Min      1Q  Median      3Q     Max  

-996.49 -512.22    5.87  499.61 1002.14  

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) 995.784990  31.146065  31.971   <2e-16 *** 

X             0.001374   0.026812   0.051    0.959     

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 583.8 on 1398 degrees of freedom 

Multiple R-squared:  1.879e-06, Adjusted R-squared:  -0.0007134  

F-statistic: 0.002626 on 1 and 1398 DF,  p-value: 0.9591 

==== ANOVA ==== 

Analysis of Variance Table 

Response: Y 

            Df    Sum Sq Mean Sq F value Pr(>F) 

X            1       895     895  0.0026 0.9591 

Residuals 1398 476518789  340858                

[1] "\n" 

Time taken: 0.01 secs 

Rattle timestamp: 2020-04-20 04:50:12  

Appendix 24 
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Summary of the Neural Net model (built using nnet): for training 

on Dataset 6. 

A 1-10-1 network with 32 weights. 

Inputs: X. 

Output: Y. 

Sum of Squares Residuals: 476518672.3179. 

Neural Network build options: skip-layer connections; linear 

output units. 

In the following table: 

   b  represents the bias associated with a node 

   h1 represents hidden layer node 1 

   i1 represents input node 1 (i.e., input variable 1) 

   o  represents the output node 

Weights for node h1: 

   b->h1   i1->h1  

 -780.84  4363.65  

Weights for node h2: 

   b->h2   i1->h2  

   28.77  -413.11  

Weights for node h3: 

   b->h3   i1->h3  

  -24.11   -71.17  

Weights for node h4: 

   b->h4   i1->h4  

-1189.31 -1057.64  

Weights for node h5: 

   b->h5   i1->h5  
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  -54.70  -306.90  

Weights for node h6: 

   b->h6   i1->h6  

  -95.92 -6664.04  

Weights for node h7: 

   b->h7   i1->h7  

  500.10  3107.79  

Weights for node h8: 

   b->h8   i1->h8  

 -269.60   143.85  

Weights for node h9: 

   b->h9   i1->h9  

 -540.06 -8173.22  

Weights for node h10: 

  b->h10  i1->h10  

 -194.84   380.37  

Weights for node o: 

    b->o    h1->o    h2->o    h3->o    h4->o    h5->o    h6->o    

h7->o    h8->o  

  545.54  -117.96   328.62    90.94   268.74   308.22  3872.81   

416.53    10.76  

   h9->o   h10->o    i1->o  

  942.42   140.94     0.00  

Time taken: 0.01 secs 

Rattle timestamp: 2020-04-20 04:52:48  
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