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ABSTRACT 

VIBRATION OF LUMPED-~ASS 

DYNAMICAL SYSTEMS USING THE CHOLESKY TRANSFOR~ATJON 

Thomas Jack Parsons 

Master of Science 

Yo~ngsto ~n· State University, 1975 

The pur pose cf thi:; worlc described in th:!.s thesis 

~as t o develop th e mathe~atical ~ol~tio~ to the forced 

vtbratio n prob le::--. of r.r:lti-der;ree of f:reed o:.1 dynamical .sys­

tems co:~tBon to the fie =d of structural ;:.iy:·.a:;:ics. 

c : osed - f orm soJ uti on of the li~ea~ equation of 

motiori for both the free 3.nd forced vibration p:i"o·o1e:-:-.2 ·.\'ere 

formu lated utili z in g the Cholesky theor e~ o f triangular ~a-

tric es . ~oth the damped a~d ~ndamped dyna~ical syste~s 

were i~~es~igatcd ~1th a s9mple numerical example presented 

for e a2:: c:8.sc . 

i.. co mpariso:1 ct the above method :,;i th the classical 

solution~ ~as made to dcte~mine the overall ~umerical effi-

ciencv o: t~ e apDroach . 

Yll/1 'NBSTOWN \' . . 
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CHAPTER I 

Introduction 

The probl~m of the forced vibration of lumped-mass 

systems has been investigated by a number of authors. A 

vector-type infinite series approach is considered by Cran­

da114*. More recently, concise matrix-type solutions have 

been formula ted for both the damped and the undamped system. 

A classical matr ix solution of a lumped-mass system is pre­

sented by Tse 2 where a nonsingular matrix must be determined • 
which simultaneously diagonaliz e s the mass and stiffness 

3 matrices. Cauchey investigates the condition of classical 

normal modes in the linear damped dynamic systems. Recent­

ly, the Cholesky transformation method for the free vibration 

of undamped systems was presented by Timoshenkol et al. 

The forr:rntion of linear equations of motion of 

lumped-mass dynamical systems in structur~l dynamic problems 

yield equations which are expressed in the matrix form: 

[[A ]+l[B]]{x}={f(t)} 

For the case of undamped sy stems the matrix [BJ 

(i.e., the mass matrix) is symmetric and positive definite . 

. 
*The superscript refers to the literature cited in 

the bibliography. · 
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The matrix [AJ (i.e.,the stiffness matrix) is symmetric 

only. The classical approach to the solution of the problem 

requires the determination of a nonsingular matrix [UJ which 

simultaneously diagonalizes matrices [AJ and [BJ. This 

type of problem is termed the generalized eigenvalue-eigen­

vector problem (GEEP). The determination of the matrix [UJ 

requires a considerable number of numerical operations. 
• I 

The Cholesky transformation method allows the ma-

trix [BJ to be replaced by the product of a nonsingular 

lower triangular matrix with its transpos e,that is: 

[LJ[L]T=[MJ. 

This mathematical form allows the former equation to be 

transformed to the form: 

[[D]+A[I]J{y}={g(t)}, 

where matrix [DJ is symmetric. The form of the above equa­

tion is termed the classical eigenvalue-eigenvector problem 

(CEEP). This form of the equation of motion is more easily 

solved since the number of numerical operations in the solu­

tion is greatly reduced. 

For the case of a damped system the matrices [A] 

and [BJ are cast in a symmetric partitioned form,however, 

[BJ is no longer positive definite. If the Cholesky trans­

forma t ion is applied for this case,the matrix [LJ exists 

but it may be ni ngul ar,nonunique,and possess complex(i.e. 

real and imaginary) components. 



CHAPTER 11 

2.1 Undamped Vibration Problem 

The equations of motion for the vibration of a 

multi-de gree of freedom dynamical system i~ written , 

[MJ{i}+[K]{x}={f(t)}. (1) 

Where the mass matrix [M] is positive definite and syrnmet­

ric,and the stiffness matrix [K] is symmetric only. 

2.2 Free Vibration Problem 

3 

Equating to zero the right hand side of equation (1), 

and noting {x(t)} =eX
1

t{u} ,it follows that, 

[[K]+X[M]]{u}={O} (2) 

which is uniquely thP. form (GEEP). The Cholesky transfor­

mation yields the condition 

[L][L]T=[M], (3) 

where [L] is lower triangular,real,and nonsingular. Pre­

multiplying equation (2) by [LJ-1,noting [LJ-T[LJ-l=[I], 

[L]T{u}={v},together with equation (3) one obtains the equa­

tion (CEEP) 

[[Kl]+x[I]]{v}={O}, 

where [K1 J=[LJ~ 1 [K][LJ-T which is symmetric . 

(4) 

The determinant of the coefficient matrix of the 

vector {v} in equation (4) yields the characteristic equa-



tion of the matrix form with its usual classical type in­

variant coefficients. The roots of this equation (i.e. the 

values of A) yield terms containing the ·natural frequency 

of free vibration. For stable oscillation the values of A 

are always negative. Hence , the values of A are complex 

with zero real. 

The individual vectors {v} corresponding to each 

value of A are determined using the form of equation (4) . 

The vectors are combined into a single orthogonal matrix 

[VJ where the following orthogonal property holds: 

[V]T[K1J[V]=-[A]=[AwJ 2 . (5) 

The matrix [A] is a diagonal matrix with components 

A1,i=l, . .. , n , and the matrix [Aw] is a diagonal matrix with 

components equal to the natural frequencies of free vibra ­

tion of ~he system. 

2.3 Unit Triangular Matrix Form 

In addition to the transformation simplification 

in part (2.2), the matrix [M] is replaced by the product . of 

three matrices as follows 

(6) 

where [ L*] is a lower unit triangular matrix and [ Md] is a 

diagonal mat rix, with [L]=[L*][Md]. Substituting equation 

(6) and (1) into equation (2) and proceeding in a manner 

similar to that in section (2.2), it follows that 

[[ K1*]+A[I]]{v}={O}, (7) 



2.ij Forced Vibration Problem 

The closed form solution to equation (1) is ob­

tained in Duhamel integral form in the following manner. 

Equation (3) is substituted into equation (1) and the re­
-1 

sult is premultipli ed by [L] yielding 

[LJ- 1 [L][L]T{x }+[LJ~ 1 [K][ L]-T[L]T{x}=[LJ- 1 {f(t)} . 

The transformation {y}=[L]T{x} is substituted into the 

abov e equation which gives 

[I]{Y}+[Kl]{y}=[ LJ - 1 {f(t)}. 

Substitutio n of the additional tramsformation 

{y}=[V]{z} 

( 8) 

(9) 

into equation (8), with premultiplication by the matrix [V]T 
.. 

gives the di agonal matrix equations, 

[I]{z}-[ A]{z }=[V]T[LJ- 1 {f(t)}, or 

[I]{z}+[Aw] 2 {z}=[V]T[LJ- 1 {f(t)} 

( 10a) 

(10b) 

The component form of the latter matrix equation is written 

as 

1 ~l J z2 

. 
1 zD 

2 
w l;.> 

w2 

+ 

z n 

= 

(11) 

The general 1th scalar equation of matrix equation (11) is 

2 zi+w 1zi=hi(t) , (12) 

which possesses the following integral solution: 

zi ( t)=aicoswit+b 1sinw 1t+! f •=thi(T)sinwi (t-T)dT. (13) 
Wi •=O 
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Recasting equation (13) into matrix form gives 

(z}=[CJ{a}+[SJ{b}+[AwJ-l .f.~; t[gJ{h(.)}d., (14) 
A 

where [CJ, [SJ, and [SJ are diagonal matrices with components 

coswit, sinwit, and sinwi(t-i), respectively. Noting the 

combined transformation equation . 

{z}=[VJT[LJT{x} (15) 

tog~ther with equation (14), the general solution of equation 
• 

(1) becomes 

{x(t)}=[LJ-T [VJ [CJ{a}+[LJ-T[VJ[ SJ{b} + 

[L]-T[ VJ[A J-l J T-
0
-t[SJ [VJT[LJ - l{f(t)}dT. (16) 

W Tc 

Applying the initial conditions at t=O, 

{x(O)}={x 0 } ~nd 

{x(O)J={x 0J, 

it follows from equation (16) that 

{a}=[V]T[LJT{x
0

} and 

{b}=[AwJ-l[ VJT[ L]T{xO}. 

(17a) 

(17b) 



?..5 Summary of Results 

2.5a Free Vibration Problem 

1. [ L] [L]T= [M] 

2. [L]=[L*][Md] 

3. [K
1 

]= [ L]-l [K] [ 1)-T = [Kl ]T 

4. [[K 1]+A[I]]{v} ={O} 

5. [VJ [VJT= tvJT[V]= [I] 

6. [V]T[K
1

][V]=-[ A]=[hw] 2 

2.5b Forced Vibration Problem 

1. { x(t) }=[L]-·T[V][C][V]T[L]T{x~ }+ 

[L]-T[V][S][hw]- 1 [v]T[L]T{x
0

}+ 

[L].:'.r[v] [ hw ]- l JT!;t [S] [V]T [LJ- 1 { f ( T) }d T 

2.6 Numerical Ex~Jnple 

Referring to the problem presented by Crandall, the 

following numerical matrices are considered: 

[M]= 

0 0 

3 2 

2 2 
[K]= 

0 0 

Fig . I. Modeled system 

4 1 

1 1. 5 

0 0 



Using the theory developed in sections (2.2) and 

(2.3) one obtains the following matrices when the damping 

matrix, [CJ, is set equal to zero. 

I 13 0 1 0 

[LJ= 2/3 lo . [L*J= 2 1 
3 3 3 

13 0 4 -512 
3 -r 

.[Md J= 0 lo [K1J= 
3 -512 35 -r 12 

.467 .883 3.348 0 
[VJ= [A J= 

.876 - . 4 70 w 
0 .318 

The natural frequencies of free vibration become, 

~1=3,34 8 cycles/sec 

w
2

=,318 cycles/sec 



CHAPTER III 

3,1 Damped Vi bration Problem 

The standard matrix equations of motion for the lin­

ear damped dynamical systems which are coITL~on to structural 

dynamic problems tak e the form 

[M]{x}+[C]{x}+[K]{x}={f(t)}, (18) 
I 

where matrices [ M], [ CJ , and [K] are symmetric and [M] is 

pos itive definite. 

Previous work has shown that the s olutio~ of equ a­

tion (18) yields a more compact solution if it is recas: in 

;art itioned ~atrix form. Letting 

{x}={yl}, 

{i} ={f
1

}={r 2l, and 

{x }-::n\}={y2} , 

it follows that equation (18) takes the partitioned natrix 

::orm 

CT~I} _L ~~ }] [":~~ iJ+ r-~ J_~ _[_K_D{. ~:s :}~f~:~t_)_i). 
. [[o] ~- [K J] {~ 1 }] '-[K] : [oJ ] {y 1 } L {O} J. (19' 

For simpli city, equatiqn (19) is written in the compact ~or~ 

as 

[MK]{ ~ l + [KC] {y} ={g(t)}, (20) 

Where the m~t rices [ MK] and [KC] are symmetric . The matrix 

[~K] is not a positivA defin it e matri x. 

As stated in the introduct ion the Cholesky transfor­

~at1on is arplicable, towever , the matrix [L] may be singular, 
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nonunique,and possess complex number components. Assuming 

the following condition applies 

or 

[L][L]T=[MK], 

=--- -~-----
[

[M]: [OJ] 

[ 0] :-[K] , 

[ Ll l][L11JT=[M], 

[L22 J[L 22 JT=-[K] , and 

I. 

[L2l][Lll]T=[L11J [L21JT=[O] . 

(21) 

(22a) 

(22b) 

(22c) 

Solution of equation (22a) for the matrix [L
11

J is unique 

since the matrix [M] is positive definite. Solution of 

equation (22b) for the matrix [L22 J is more complicated 

since the matrix - [K] is not positive definite. Assuming 

there exists a transformation matrix [L22 J which satisfies 

equation (22b),it follows that,for the usual type of stiff­

ness matrices which are defined for line ar dynamical sys ­

tems, the matrix [L22 Jqonsists of components which are al~ 

complex numbers with zero real parts. In addition matrix 

[L22 J is not unique since the two following equations hold 

simultaneously. 

[L 22 JT[L22J=-[K] and 
- T ._ 

[L22J [L22 J=-[K ], where 

the designation[-] repredents the complex conjugate defini ­

tion . Fi nally , equatio·n ( 22c ) req ·uires the matrix [L21 J to 

be identically the zero matrix. 



Noting equation (21) with appro~riate simplifications, 

equation (20) is rewritten 

[L][L]T{y}+[KC]{y} = {g(t)}. (23) 

Substituting [L]-T[L]T=[I] into the second term of equation 
-1 . 

(23) premultiplying the equation by [L] , and noting 

{z}=[L]T{y}, one obtains 

[I]{i}+[G]{z}=[LJ-l{g(t)}, 

where [G]=[ LJ- 1 [KC][L]- T
1
is a complex symmetric matrix. 

The form of equation (24) is similar to the (CEEP) form 

except for the complex ~omponents in the matrix [G]. 

3.2 Free Vibration Problem 

(24) 

For the free vibrati on problem the right hand side 

of equation (24) is equate d to zero, and the condition 

{z}=eAt{u}substituted, yielding 

[[G]+l[I]]{u}={O}. (25) 

The roots l of equation (25) must complex conjugate paira 

each posse3si~~ negative real parts. This is the require­

~ent of aEy lightly damped vibratory system if stable decay­

type oscillation occurs. For each complex value of A, the 

asso~ia te d eigenvector {u} is determined by the solution of 

equation (25). Defining the matrix [U] whose columns con­

tain the complete set of eigenvectors it follows that 

[UJ- 1 [U]=[I ] and (26a) 

[UJ- 1 [G][U]=-[Ag], (26b) 

where - [Ag] is a diagonal matrix with components equal to 

the individual roots A obtained by the solution of the 



.J. C: 

determinant form of the left hand side of equation (25). 

The column vectors of matrix [U] are individually normalized 

by dividing each vector component by a number equal to the 

square root of the sum of the . products of each component 

times the associat e d complex conjug~te. 

3.3 Forced Vibration Problem 

The solu t ion o f equ ation (24) forms the basic solu­

tion to the d~~ped vibration problem. Premultip ly ing equa­

tion (24 ) by [U ]-l and substituting {z}=[U]{w} , one obtains 

[I]{w }+[~J- 1[G ][U]{ w}= [UJ -
1

[LJ- 1{g(t)}={n(t)}. (27a) 

Noting equatio~ (2 6b) the above equation becom e s 

[I]{i}-[A~]{w}={h(t)} . (27b) 
C) 

Equation (27b ~ is rewri t t en in par titioned f~rm as 

[[rJ:[oflf {w2}l rA2J: [O~f{w2}1 f{h2(t)f\ 
l[-oJ;[;Jj i,;1 \f [:O~ t[i1jJD~.~if Uh~ Ct l iJ. < 20i 

The genera l ith equation of the partitioned form is 

Wi-AiWi=h
1

(t), (29 ) 

. whic h possesses the fol l owing integral solution form 

w (t)=eA ita ·( o) + J_ · =te>.i~t -·r)h (,)d,. (30) 
i i 1= 0 i 

Recasting equation (30) into partiti on ed matri x form yields 

f ~~? .. }}= fe_x~ [~~] 1 _ [-~: _l [{ :-2}}+ ( 31) 
llw1 J} l LOJ !expLA1 1]l {a1 }J 

.j ~=t [e~p~ A~J_<: - : )_ i ---~o~ -~1 f~ ~2~-r_)21 d. 
1"= 0 L [OJ iexp[A

1
](t-,)] {h 1 (-r )}J 

-1 T -1 T 
{w}=[U] {z} , {z}=[L] {y}, and hence {w}=[ UJ [L] {y} 

equati on (31) becomes 
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where 

3 Numerical Example 

Followin~ the nu~erical example of Crandall the 

mass , damping , and stiffness matrices (fig. 1) are 

[M]= 
3 

2 

2 

2 ' 
[CJ= 

0.14 

0.04 

0.04 

0.06 
,and [K]=l4 

11 

It follows by the pre~ious theory that 

/3 ') l±2i 0 
[L11J= 

2/3 16 [L22J= I +·~ 
' 

±i -~ ' 3 3 . 2 2 

0.0467 -0 .0377 -1.1551 0 .0 

[G)=[G]T= 
-0.0377 0.1033 1.0211 -1 . 3691 

-1.1551 1. 0211 0.0 0.0 

0.0 -1.3691 0.0 0.0 

1 

1.5 . 

Note that the matrix [G] is complex. The charaqteristic 

equation which yields the roots of the determinant equation 

(i.e . l[G] +A[IJl=O) be comes 

A4 +0.815CA3+4 . 225A 2 +0.1851A+2.500=0 



The four roots of A are determined as 

Al 2=-0.014±0.83971 and , 
A

3
, 4=-0.06l±i.8818i . 

14 

These roots are the same as those given by Crandall. 

Observation of the characteristic equation shows that there 

is no sign change in the coefficients. This condition 

prevents any real roots of the equation from existing. 

This is expected since the damping in the system must pro­

duce roots(i.e. values of A ) which are complex conjugates 

with neg at ive real parts. 

The matrix [U] equals 

1 
1.6028 

1 
1. 6028 

I 

1 1 . 
3.0057 3.0057 

Q,533-Q,QQli Q,533+0,QQli I -l.875-Q,QQ73i .-l.875+Q,QQ7i_ 
1.6028 1.6028 3.0057 3.0057 

-------- ----- -- -'---------·--------
0. 727-0. Olli -0. 727-0. Olli : 1. 630-0. 04881 -1. 630-0. p48i 

1.6028 1.6028 3.0057 3.0057 

0.869-0.0161 - 0.869-0.0161 : -1.363+0.03881 
1.6028 1.6028 3.0057 

i.363+0.0381 
3.0057 

The [ Ag] matrix is produced by [UJ-
1

[G][U]. The [Af] takes 

the form 

0.014-0.8401 0.0 0.0 0.0 

I 

0.0 Q,Ql 4+ 0,8 4Qi I 0.0 0.0 
I 

- - - - - .. -------------- !. - - - -- - - - - - - - - - - - . - - - -
0.0 0.0 

I 
0.060-1.8821 0.0 

• 
• 
I 

0.060+1. 88~1 0.0 0.0 I o.o 
I 

• 
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CHAPTER IV 

Discussion 

"A closed-form solution of "the undamped dynamical 

system is obtained for the forced vibration problem. The 
I 

Cholesky transformation is applied to the positive definite 

mass matrix [M] . Hence, the matrices determined in the sol­

ution are unique. This transformation yields a solution in 

a compact and precise form. 

A closed-form solution of the damped vibration 

problem is obtained ass~~ing the Cholesky transformation 

applies. Since the partitioned mass matrix is no longer 

positive definite , a solution is obtained which possesses 

nonunique parts. Utilization of the transformation is 

validated by comparing the resulting numerical values with 

those obtained via classical techniques. In all cases the 

values of the natural frequencies of fre e vibration corre-

·1at e with those obtained by the classical techniques. 
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CHAPTER V 

Conclusions 

The prtncipal advantage of the use of the Cholesky 

transformation for the solutions of linear dynamical systems 

is that the number of numerical computations which must be 

performed is reduced by approximately sixty(60) percent. 

This condition becomes meaningful in systems possessing a 

large number of degrees of freedom which are most efficiently 

solved using computer techniques . 

Since the transformation increases the efficiency 

of the mathematical operations, time required for computer 

usage is noticeably reduced. This directly minimizes the 

cost for analysing the systems . 

The previous analysis justifies the use of the 

Cholesky transformation for linear damped dynamical sys-

tems where no matrix possesses a positive definite . form. In 

this case the [L] matrix used in the formulation is nonunique 

since it may be replaced by its conjugate without effecting 

the final solution. 

The damped vibrations problem requires the diagonal­

ization of a matrjx [G] where [G] = [G]T and whe,re [G] is 

complex. This case is not covered in the available mathe­

matical literature. The usual congruent transformations 

do not apply and a reversion to the inverse technique for 

diagonalization is a basic requirement. 
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APPENDIX A 

Classical Eigenvalue-eigenvector Problem 



CLASSICAL EIGENVALUE-EIGENVECTOR PROBLEM 

'l'he .solution of equation (1) using the ( CEEP) is 
, 

formulated here for comparison purposes. The eigenvector 

matrix [U] which simultaneously diagonalizes matrices [A] 

and [BJ is determined by the solution of the equation 
. . 

[[ K] { X } + >..[ M 1{ x } = { f ( t ) } . (Al) 

The solution of the determinant equation 
I 

l[ K]+X[M]j={O} (A2) 

is obta ined first. The roots of X are substituted back into 

equation (Al) and the associated eigenvectors which com­

pose the matrix [U] are obtained ·; It follows that 

[U]T[M][U]=[Am .J, 

. [U]T[K][U]=[Ak], and 
. . 2 
[Ak]=[Am][Aw] ' 

(A3a) 

(A3b) 

(A3c) 

where [Am] and [Ak] are_both diagonal matrices. Premult­

plying equation (Al) by [U]T and noting that {y}=[U]{z} 

one obtains 

(A4) 

Noting equations (A3a) and (A3b),equat~bn (A4) reduces to 

the diagonal form 

[AmJ{z}+[Ak]{z}=[U]T{f(t)}. (A5) 

Premultiplying equation (A5) by [Am]-l and noting equation 

(A3c),one obtains 

(A6) 

For the numerical problem given in Chapter 2,the 

following results are formulated. 



<- V 

9 0 1 4 
5 5 17 

[A]= [U]= . k . 0 99 -2 1 
17 5' 17 

· 9 0 1 0 
5 

[A]= [A]= m 
0 18 . w 

0 2 
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APPENDIX B 

. 
Characteristic Equation and Matrix Invariants 



CHARACTERISTIC EQUATION AND MATRIX INVARIANTS 

Given 

[Q]=[Q]T= ql2 q22 q23 

ql3 q23 q33 ' 

It follows that the three tensor invariants are: 

I
1

= Trace of [Q]=q
11

+q 22 =q
33 

I 2= sum of the de~erminant minors of the principle 

diag.onal ·= q11 q 12 q 11 q
13 

q22 q23 
+ + 

ql2 q22 ql3 q33 q23 q33, 

r
3

= Major determinant of [Q] 

The characteristic equation is written as 

A3-I 1 A2+I 2A-I
3

=0 
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. APPENDIX C 

Modeling Example 



• 

MODELING EXAMPLE· 

C.l Two Story Frame 

The modeling of a two story frame into a spring 

mass system proauces equations of vibration that are in the 

form of equation (1). The girders are assumed to be infi~ 

nitely ridid as compared to the columns. 

stiffness - ) is expresseq as 

for the fix-fix conditions. 

50 psf 

12 1 

' --
100 psf -

- 60 1 . 18 1 

-

Fi g. 2. Two story building 

K 
1 

0 0 0 

Fi g. 3 . Model ed two-story building 

Ki (i.e. column 

0 

10 WF_2 5 col. 

20' bet 
columns 

E=30xl0 

20 psf 
load 

ween 

6 psi 

wind 



• 

MODELING EXAMPLE 

The equations of equilibrium are written in matrix form 

[
m~ 

. 0 

The spring and · mass constant are 

k1=. 2~(12)(30xl0 6 )(133.2) = 9.52 kips/in 
(18) 3 (12) 3 

k 2~ 2 (12)~30x10 6 )(133,2) =: 3~.12 kips/in 
(12) 3 (12) 3 

m1= 100 (60)(20)+20(2)Cl5)(20) ~4.10 k-s 
32.2 in 

m = 
2 

.50 (60)(20)+20(2)(6)(20) • =2.01 k-s 
32. 2 . in 

The natural frequencies of free vibration· 

cyL/sec 

C.2 Model of Crank Shaft 

Equation (1) is rewritten into polar ccordinates 

where 

[ J ]{ 6 ~ + [ K] { e} =~ ~ 

J - Mass moment of inertia 

k - Torsional spring constant 

Q - Angle of rotation 

T appli€d troque 
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MODELING EXAMPLE 

Ql Q2 Q3 

Kl K2 

Jl J2 J3 + 

Tl ~T 
2 T3 

The equations of equilibrium are written in matrix form: 

Jl 0 0 

!}+ 
kl -k1 

-:~:}=·{:} 0 J2 0 -kl k1: +k2 

0 0 J 0 -k2 
3 

C,3 Modeling of Beam Structures 

By lumping the masses and loads at discrete pionts 

along the beam the dynamic re·sponses can be det·ermineq.. 

The motion equation that governs is; 

•.. + k y ) nn n 

in matrix form 
• • 

[M]{yn}+[K]{yn}={O}. 

The stiffness coefficients can be calculated by the method 

of moments distribution. 

:O....'· ' 

L 10
1 10 I . 10' 10' 

Fig. 4 Modeled beam 
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MODLEING EXAMPLE 

, 171. 0 -162 ·. 2 66 . 6 . 

[K]= -162.2 235.0 -162.2 kips/in 

66.6 ·- 162. 2 171.0 

4 0 0 

[M]= . 0 2 0 

0 0 4 

M1=4 kips,M 2=3_kips,M 3=4 kips . where [K] is the stiffness , 

matrix and [M] the mass matrix. 

· ~.4 M0del Truss 

A simple truss is rnoleled by placing the mass of 

each member at the .nodes and having the members act as 

springs. The stiffness coefficients is equal to 

k = AE 
i L 

where A is the area of the member, E , the modulus of 

elasticity, L .; length of the member. An example of a 

model truss is 

4 I 

Fig. 5 Model truss 
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• 

MODELING EXAMPLE 

M,= M2 ·=M = 2 kips 
± . ) 3 

· E= 3o'x10 6 psi 

2 
A= 3 in. 

K1= K2 = 3 (30xlo 6 ) 
. 5 ( 12) 

= 1500 kips/in. 

The equilibrium equation matrix is 
•• [2]{v}+[l500]{v}={O} 

The natural frequency ~r the system is 

~= 54.78 cyl./sec .. 
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