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The purpose of the worlt described in this thesis

develop the mathematical solutiorn. to the forced

vibraticon oroblenm of muilti-degree of freedom dynamical .sys-

tems common to the fieXd of structural dy:aanics.

Closed-form solution of the limear equation of

motion for both the [ree and forced vibration provlemz we

formulated utilizing the Cholesky theorem of triangulzar o

trices.

Foth the damped ard undamped dynamical systems

were invesvigated with a sample numerical example present

re

18-

ed

A comparison ci the above methed with the classical

solutions was made to determine the overall numerical effi-

ciericvy o the apnroacih.
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CHAPTER I

Introduction

The problem of the forced vibration of lumped-mass
systems has been investigated by a number of authors. A
vector-type infinite serjes approach 1s considered by Cran-

dallh*.

More recently, concise matrix-type solutions have
been formulated for both the damped and the undamped system.
A classical matrix solution of a lumped-mass system is pre-
sented by Tse2 where a nonsingular matrix must pe determined
which simultaneously dliagonalizes the mass and stiffness
matrices. Cauchey3 investigates the condition of classical
normal modes in the linear damped dynamic systems. Recent-
ly, the Cholesky transformation method for the free vibration
of undamped systems was presented by Timoshenkol et al.

The formation of linear equations of motion of

lumped-mass dynamical systems in structural dynamic problems

yleld equations which are expressed in the matrix form:
CLAJ+A[BII{x}={f(t)}
For the case of undamped systems the matrix [B]

(1.e., the mass matrix) is symmetric and positive definite.

*Thé superscript refers to the literature cited in
the bibliography. ‘




The matrix [A] (i.e.,the stiffness matrix) 1s symmetric
~only. The classical approach to the solution of the problem

requires the determination of a nonsingular matrix [U] which

simultaneously diagonalizes matrices [A] and [B]. This
type of problem is termed the generalized eigenvalue-elgen-
vector problem (GEEP). The determination of the matrix [U]
requires a considerable number of numerical operations.

The Cholesky trangformation method allows the ma-
trix [B] to be replaced by the product of a nonsingular
lower triangular matrix with its transpose,that is:

[LI{LIT=[m].

This mathematical form allows the former equation to be
transformed to the form:

[[DI+A[I]Hy}={g(t)},
where matrix [D] is symmetric. The form of the above equa-
tion is termed the classical eigenvalue-eigenvector problem
(CEEP). This form of the equation of motion is more easily
solved since the number of numerical operations in the solu-
tiontis greatly reduced. .

For the case of a damped system the matrices [A]
and [B] are cast in a symmetric partitioned form,however,
[B] is no longer positive definite. If the Cholesky trans-
formation 1s applied for this case,the matrix [L] exists

but it may be singular,nonunique,and possess complex(i.e.

real and imaginary) components.




CHAPTER 11

2.1 Undamped Vibration Problem

The equations of motion for the vibration of a
multi-degree of freedom dénamical system is written,
[MI{x}+[K1{x}={£(t)}. (1)
Where the mass matrix [M] is positive definite and_symmet-

ric,and the stiffness matrix [K] is symmetric only.
2.2 Free Vibration Problem

Equating to zero the right hand side of equation (1),
and noting {x(t)}=ek&t{u},it follows that,

[[KJ+a[M]]{u}={0} (2)
which is uniquely the form (GEEP). The Cholesky transfor-
mation yields the condition

[LirLi®=[ml, (3)
where [L] is lower triangular,real,and nonsingular. Pre-
multiplying equation (2) by [L]-1l,noting [L]-T[L]-1=[1],
[L]T{u}={v},together with equation (3) one obtains the equa-
tion (CEEP)

[[K, #ALI11{v}=(0}, (4
where [Kl]=[L]’l[K][L]'T which is symmetric.

The determinant of the coefficlent matrix of the

vector {v} in equation (4) yields the characteristic equa-




tion of the matrix form with its usual classical type in-
variant coéfficients. The roots of this equation (i.e. the
values of A) yleld terms containing the natural frequency
of free vibration. For stable oscillation the values of A
are always negative. Hence, the values of A are complex
with zero real. '

The individual vectors {v} corresponding to each
value of A are determined using the form of equation (4).
The vectors are combined into a single orthogonal matrix
[V] where the following orthogonal property holds:

[VITIR, I[VI=-[A]=[A4]°. (5)

The matrix [A] 1s a dlagonal matrix with components
A3,i=1,...,n, and the matrix [A ] 1s a diagonal matrix with

components equal to the natural frequencies of free vibra-

tlon of the system.
2.3 Unit Triangular Matrix Form

In addition to the transformation simplification
in part (2.2), the matrix [M] is replaced by the product. of
three matrices as follows

[M1=(L*][Mq12[L¥]T, (6)
where [L¥] is a lower unit triangular matrix and [Md] is a
diagonal matrix, with [L]=[L*][Mgq]. Substituting equation
(6) and (1) into equation (2) and proceeding in a manner
similar to that in section (2.2), it follows that

[[K,*1+A[I11{v}={0}, (7)




where [Kl*]=[Kl*]T, that 18y [Kl*] is symmetric.
2.4 Forced Vibration Problem

The closed form solution to equation (1) 1is ob-
tained in Duhamel integral form in the following manner.
Equation (3) is substituted into equation (1) and the re-
sult is premultiplied by [L]—l yielding

(L1 nrn T e+ L1 k11T T =111 e (o) 3.
The transformation {y}=[L]T{x} is substituted into the
above equation which gives
(1145 1+K, 1y =111 E(E)). (8)
Substitution of the additional tramsformation
{yt=[Vv1{z} (9)
into equation (8), with premultiplication by the matrix [viTt
gives the diagonai matrix equations,
[114Z}-[ad{z}=[VIT[LI"L{E(E)}, or (10a)
[I114%)+00,12(z1=0vITILI"2ir(t)) (10b)

The component form of the latter matrix equatlion 1s wriltten

as
B! (% P 1rz1y (2, (t)
] o 13 1.9 - l(t)
2.2 (.02 2 g2
+ =
L 1L Ed | w2lz ) Le, (00 . (11)

The general 1th gscalar equation of matrix equation (11) is
2
zi+mizi=hi(t), (12)

which possesses the following integral solution:

i i i

= - s TG _
zi(t)—aicoow t+b,sinw L+Ui J[;=O hi(r)sinui(t t)dr. (13)




Recasting equation (13) into matrix form gives
o =X =tr@d
(z}=[clak+[s1{b3+[a 17 [ I5081tn(a)1ar,  (14)

where [C], [S], and [8] are diagonal matrices with components

coswit, sinwst, and sinwy(t-t), respectively. Noting the
combined transformation equation.,
(z1=[v1T L1 () (15)

together with equation (142, the general solution of equation
(1) becomes
(x(£)1=(L1 7 [VI[c]al+[LI"T[VI[S (b }+
(L17Tovaca 37t S retrsirvitrl-ler(e)zar. (26)
Applying the initial conditions at t=0,
{x(0)}={xy} and
{x(0) }={%,1,
it follows from equation (16) that
ta}=[v1T[LIT(x )} and (17a)
ti=0a 17 rvaTre1 g, (170)




2.5 Summary of Results

2.5a Free Vibration Problem

1. [LI[LIT=[M]
[LI=[L*1[M,]
(K, I=[L1 7 [KI(L] T=(k, 1T
[[K1]+A[I]]{v}={0}
(vitviT=tviTrvi=[1]
6. [VITCK 1[VI=-[ad=[a,1°

Ul &= oW N

2.5b Forced Vibration Problem
1. {x(£)}=[L1"TrvirelrvITiniTixg 1+
[LI"TLvaCsI0a, 17 vt ix )+
(L1 frvaea, 37t ISt rs1vaTinttee (o) ar

2.6 Numerical Example

Referring to the problem presented by Crandall, the

following numerical matrices are considered:

s & U |
[M]= [K]=
2 2 1 1.5
G %= C.
| =
AR
C| M
< | /2] 2
K“\l Ml ¥z
) :
o O ‘ (@] ‘O R ¢ O

, Jodeled systam " “
Fig. 1. MModeled syste ‘“\\“GSN““ 5\‘&%\\‘{

345064




Using the theory developed in sections (2.2) and
(2.3) one obtains the following matrices when the damping

matrix, [C], is set equal to zero.

|/§ 0 1" @
ELJ=]y_‘_3‘ Bl =z 1
3 3 3
3 0 4 -5/2
[M;]=]0 6 [Kq] 3
6 1
.467  .883 3.348 0
[V]= [r, 1=
876 =.470 0 . 318

The natural frequencies of free vibration become,
ul=3.348 cycles/sec
w2=.318 cycles/sec




CHAPTER III
3.1 Damped Vibration Problem

The standard matrix equations of.motion for the lin-
ear damped dynamical systems which are common to structural
dynamic problems take the form

[MI{X}+[CI{x+[KI{x}={F(t)}, (18)
where matrices [M], [C],'and [K] are symmetric and [M] is
positive definite.

Previous work has shown that the solution of equa-
tion (18) yields a more compact solution if it is recas® in
rartitioned matrix form. Letting

| (x}=(y,),
{i}={§l}={y2}, and
{X}={?l}={92},

it follows that equation (18) takes the partitioned matrix

FM] ; [o]}{l&z}} fTels [KJ]{{yQ}} Le(t) ]
e ale == T & R R b it £=X SRR
o1 -tk Led ) Toeat colynd Loy J. e

For simplicity, equation (19) 1s written in the compact form

form

as

[(MKI{y+{KC1{y}=1{g(t)}, (20)
Where the matrices [MK] and [KC] are symmetric. The matrix
[MK] 1s not a rositive definite matrix.

As stated in the introduction the Cholesky transfor-

mation 1s arplicable, however, the matrix [L] may be singular,




- R e i 1o

nonunique,and possess complex number components. Assuming
the following condition applies
[LicniT=rmx1,
it follows that
[} Tl ]
Ry i T P Y S 1A

[L21]€[L22] (0] LI |01 }-CK]| L (21)

]

or
[Ly,10Ly,1%=[m], (22a)
[L22][L22]T=—[K], and (22b)
[L,, 1Ly 37=[L,; 1(Ly, IT=C01. (22¢)

Solution of equation (22a) for the matrix [Lil] is unique
since the matrix [M] is positive definite. Solution of
equation (22b) for the matrix [L22] is more complicated
since the matrix -[K] is not positive definite. Assuming
there exists a transformation matrix [L,,] which satisfies
equation (22b),it follows that,for the usual type of stiff-
ness matrices which are defined for linear dynamical sys-
tems ,the matrix [L22]qonsists of components.which are all
complex numbers with zero real parts. In addition matrix
[L22] is not uniques since the two following equations hold
simultaneously.

[L,,1%[Lpp)=-[X] and

[T351 [Ty, 1=~[K], where
the designation [T] represents the complex conjugate defini-
tion. Finally,equation (22c¢) requires the matrix [L21] to

be identically the zero matrix.

B e b o o




Noting equation (21) with appropriate simplifications,
equation (20) 1s rewritten
[LILIT (g 1+ IKC Iy d=1g(t) }, ‘ (23)

Substituting [L]-T[L]T=[I] into the second term of equation
(23) premultiplying the equation by [L]—l, and noting
{z}=[L]T{y}, one obtailns -

[I1{z}+[G]{=z}=[LI"1{g(t)}, (24)
where [G]=[L]"1[KC][L]—T'15 a complex symmetric matrix,
The form of equation (24) is similar to the (CEEP) form

except for the complex components in the matrix [G].
3.2 Free Vibration Problem

For tﬁe free vibration problem the right hand side
of eguation (24) is equated to zero, and the conditicn
{z}=ekt{u}substituted, yielding

[LGI+A[TI]]{ul={0}. (25)
The roots A of eguation (25) must complex conjugate pairs
each possessing negative real parts. This 1s the require-
ment of any lightly damped vibratory system if stable decay-
type oscillation occurs. For each complex value of A, the
assoriated elgenvector {u} 1s determined by the solution of
equation (25). Defining the matrix [U] whose columns con-
tain the complete set of elgenvectors it.follows that

(U1 [UI=[1] and (26a)

(6171 [6I0UT==[4,], (26b)

where —[Ag] 1s a dilagonal matrix with components equal to

the individual roots A obtained by the solution of the




determinant form of the left hand side of equation (25).

The column vectors of matrix [U] are individually normalized
by dividing each vector component by a number equal to the
square root of the sﬁm of the products of each component

times the assoclated complex conjugate.

3.3 Forced Vibration Problem

The solution of equation (24) forms the basic solu-
tion to the damped vibration problem. Premultiplying equa-
tion (24) by [U]_1 and substituting {z}=[U]{w} , one obtalns

[T1+ 001 610G =u] T LT g () ben(e) ). (27a)
Noting equation (26b) the above equatlion becomes
[I]{W}—[Ag]{w}={h(t)}. (27v)

Equation (27, 1s rewritten in partitioned ferm as

{[1]'[0"‘ {wy) E[ 5 [OJ}EWQ} {hg(t)
03 f11 Loy, S Gy G . (28)

The general 1 Bl equation of the partitioned form 1is

‘;’i—"\iwi-_'hi(t)’ (29)

_which possesses the following integral solution form

wi(t)=e“tai'(o)+ flgte*i—(t"”hi(ﬂdr. (30)

T

Recasting equation (30) into partitioned matrix form yields

{w,} explA,1: [0] {a,}
(e i 0 e, o
iwyl L [03 rexpinrljUay}

f =t exp[Ae](t-r) : [0] {hg(‘f)}}d
ol e | 101 texplh, 0] Limpeoy

- =1
Noting {wl={U] l{z}, {z}=[L]T{y}, and hence {w}=[U] [L]T{y}

equation (31) becomes




T =T [ : . ?
{EY%}. (e i -T-[ [.U.l%].lt.u.léq gl 1} E".].-.:l{{_a}i},
{y,1) L0063  «ifigudr™ | £U211:tv22]_[£03 ' explap]]l{ay)

L1

F[LHJ“T: (03 [L’lll:[U12J:lft=tEexp[A2](t—r)5 [0] J

- - - SRS - o wfe w o = > - e e e el e e e e i
[fo1  irr,, 077 J{[uyy1tTupp1Me=0 [ [0 texpByd(t-r)
{h1(1)} _

- - -=3dr,

{h2(T) (32)
where »

{{hl(t)}}' E[Ull]:[Ulzj‘:[‘l[[Ln]'lf Lo, {{f(t)}}
Shus 0 30 hiTesdl $000 1D w007 « - ! Dl iy . (320)

3 Numerical Example

Following the numerical example of Crandall the

mass, damping, and stiffness matrices (fig. 1) are

ae 0.14 o0.04 L 1
[(M]= . [C]= ,and [K]=
2B 0.04 0.06 R
It follows by the previous theory that
/3 B |21 0
[L;1]= [Ly,i=
Ty 2/3 V8|, o i zi/EQ,
3 3 2 2

0.0467 -0.0377 -1.1551 0.0

(o=t ]T -0.0377 0:.1033 1.0211 -1.3691i
Gi=lG 1l =
-1.d551s 31;02314 0.0 0.0

0.0 -1.3691 0.0 0.0
Note that the matrix [G] is complex. The characteristic
equation which yields the roots of the determinant equation

(1.e.]I[G]+x[(I1|=0) becomes

A440.0150A3+4,2251240,1851142.500=0
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The four roots of A are determined as

A 2=-0.01“t0.83971 and

1,
A3,“=-0.061ti.88181

These roots are the same as those glven by Crandall.
Observation of the characteristic equation shows that theré
is no sign change 1n the coefficients. This condition
prevents any real roots o? the equation from existing.

This is expedted since the damping in the system must pro-
duce roots(i.e. values of A ) which are complex conjugates

with negative real parts.

The matrix [U] equals

i 1 1 : 1 il 18 ]
1.6028 1.6028 ; 3.0057 3.0057
(]
0.533-0.0011  0.533+0.0011  -1.875-0.00731 -1.875+0.0071}
1.6028 1.6028 ; 3.0057 3.0057
............. Sl Rl N L R e e o R
0.727-0.0111 -0.727-0.011i ' 1,630-0.04881 -1.630-0.0481
1.6028 1.6028 1 3.0057 3.0057
0.869-0.0161 -0.869-0.0161 ! -1.363+0.03881 1.363+0.0381
L 1.6028 1.6028 : 3.0057 3.0057
The [Ag] matrix is produced by [U]—l[G][U]. The [AEJ takes
the form
0.014-0.8401 0.0 f 0.0 0.0
0.0 0.014+0.8401 1 0.0 0.0
]
0.0 0.0 E 0.060-1.8821 0.0
0.0 0.0 : 0.0 0.060+1.88z1




CHAPTER IV

~ Discussion

"A closed-form solution of the uﬂdamped dynamical
system 1s obtained for the forced vibration problem. The
Cholesky transformation is'applied e the positivé definite
mass matrix [M]. Hence, the matrices determined in the sol-
ution are unique. This transformation yields a solution in
a compact and precise form.

A closed-form solution of the damped vibration
problem 1s obtalned assuming the Cholesky transformation
applles. Since the partitioned mass matrix 1s no longer
positive definite, a solution is obtained which possesses
nonunique parts. Utilization of the transformation 1s
valldated by comparing the resulting numerical valueé with
those obtained via classical techniques.. In all cases the

values of the natural frequencies of free vibration corre-

‘late with those obtained by the classical techniques.
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CHAPTER V

Conclusions

The principal advantage of the use of the Cholesky
transformation for the solutions of linear dynamical systems
is that the number of nunerical computations which must be
performed is reduced by approximately sixty(60) percent.
This conditidn becomes meaningful in systems possessing a
large number of degrees of freedom which are most efficiently
solved using computer techniques.

Since the transformation increases the efficiency
of the mathematical operations, time required for computer
usage 1s noticeably reduced. This directly minimizes the
cost for analysing the systems.,

The previous analysis justifies the use of the
Cholesky transfprmation for linear damped dynamical sys-
tems where no matrix possesses a positive definite. form. In
this case the [L] matrix used in the formulation is nonunique
since 1t may be replaced by its conjugate without effecting
the final solution.

The damped vibrations problem requires the diagonal-
ization of a matrix [G] where [G] = [G]T and where [Gj is
complex. This case 1s not covered in the available mathe-
matical literature. The usual congruent transformations
do not apply and a reversion to the inverse technique for

diagonalization is a basic requirement.
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APPENDIX A

Classical Eigenvalue-eigenvector Problem




CLASSICAL EIGENVALUE-EIGENVECTOR PROBLEM

The solution of éduation (1) using the (CEEP) is
.formulated here fof comparison purpoées; The eigenvector.b
matrix [U] which simultaneously diagonalizes matrices [A]
and [B] is determined by the solution of the'equation

| [R1GMYxd={eCE)}. . (A1)
The solution of tﬁe deteqminant equation

|[KI+ALMI|=(0} : C (a2)

is obtained first. The roots of A are substituted back into
equation (Al) and the assoclated eigenvectors which com-

pose the matrix [U] arée obtained. It follows that

[u1TCMICUI=[a,], (A3a)
[UIT[KI[UI=[4, ], ana - (A3b)
fad=0a_108,3% , (A3c)

where [Am] and [Ak] are both diagonal matrices. Premult-
plying equation (Al) byl[U]T and noting that {yl}=[U]{z}
one obtains ‘ _

(03703 (23 + 01T TKICUT (2 =[0I T ee (8)) (ak)
Noting equations (A3a) and (A3b),equation (Al) reduces to
the diagonal form [
| [aglizd+ln, Iz}=[U1 (s (t)}. (A5)
Premultiplying equation (A5) by [Amj"1 and noting equation
(A3c),one obtains -

[134z}+0n, 1% z=[a, 172U (e (1) ). (A6)

For the numerical problem given in Chapter 2,the

followling results are formulated.




[Ak]f

[a, J=

‘=N (Vo)

o uUjo

o

[ul=|

Al

1
U'!‘l\) U] =

o . K =
-3 -3

=t O
H .

L




APPENDIX B

Characteristic Equation and Matrix In?ariants




.

CHARACTERISTIC EQUATION AND MATRIX INVARIANTS

Given 911 8312918
a .— T_ L
[Q]*[Q] — q12 q22 Q23

It follows that the three tensor invariants are:
Il= Trace of [Q]=qll+q22=q33
I,= sum of the deperminant minors of the principle
diagonal= 922 dz3
923 433,

433 933
433 933

9311 912

912 95

I3= Major determinant of [Q]

The characteristic equation is written as

A3-I32%+I,)-1,=0




" APPENDIX C.

Modeling Example
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MODELING EXAMPLE -

C.1 Two Story Frame

24

The modeling of a two story frame 1nt6 a spring

. mass system produces equations of vibration that are in the

form of equation (1). The girders are assumed to be infi-

nitely ridid as compared to the columns.

stiffness.) 1s expresseq as

for the fix-fix conditions.

50 psf
Igt
100 psf
R 60" 18¢

Ki (i.e. column

10 WE_25 val.

20! between

columns

6

E=30x10" psi

20 psf wind
load

Fig. 2. Two story building

Fig. 3.. Modeled two-story building

B o= B B .




MODELING EXAMPLE

The equations of equilibrium are written in matrix form

| [ml 0 }{xl}{ kq+kp -k2]{-x1 - _{o}
0 mylix, ks koJ{x2 0
The spring and mass constant are

k = 2:(12)(30x10%)(133.2) = 9.52 kips/in
(18)3 (12)3

‘kzs 2 (12)%30x105)(133,2) =:32Q12 kibs/in
(12)3 (12)3

my= 100 (60)(20)420(2)(15)(20) =4.10 k=s
Bdn 2 in

m,= .50 (60)(20)+20(2)(6)(20) : =2.01 k=s
32x28 - in

The natural frequencies of free vibration-
wy=24.634 cyl/sec

wy=1.5 cyl/sec
Cc.2 Model of Crank Shaft

Equation (1) is rewritteg into polar ccordinates
[T 8Y+[KI{o}={Ty
where

-~ Mass moment of inertia

Torsional spring constant

Angle of rotation

H & % 49
1

applied troque




MODELING EXAMPLE

T I .
1 2 y 3
The equations of equilibrium are written in matrix form:
]

Joo"ék-kloe

1 1 -
:0 ,O J3 e 0 -—k2 ' k2 (8] i

C.3 Modeling of Beam Structures

By lumping the masses and loads at discrete pionts
aiong the beam the dynamic responses can be determined.
The motion equation that governs is;

| mnyh=knlynl+kﬁ2yn2+ cor ¥ kpnVn s
in matrix form '
| [M1{y,}+[K]{y }={0}.
The stiffness coefficients can be calculated by the method

of moments distribution.

10" I '10"i' 10! . 10"
- Pe L

Fig. 4 Modeled beam

T R . W 0 ey



MODLEING EXAMPLE

171.0 -162.2 66.6.
[K]=]-162.2 235.0 -162.2| kips/in
66.6 -162.2 171.0
il .9
[M]=.]0 2 0
bl 0 0 4
My=4 kips,M =3_k1ps,M3=4 kips ; where [K] is-thé stiffness

matrix and [M] the mass matrix.
€.4 Model Truss

A simple truss is moleled by placing the mass of
each member at tﬁé.nodes and having the members act as
springs. The stiffness coeffilcients 1s equal to

k.= AR
i =

where A is the area of the member, E , the modulus of
elasticity, L 5 length of the member. An example of a

model truss is

Fig. 5 Model truss
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MODELING EXAMPLE

M= m =M, = 2 kips Aw 3 4n.*

g, 3 _
‘B= 30x10° psi ) ks

6
K.= K5, = 3 (30x10”) = 1500 kips/in.
12 T

The equilibrium equation matrix is
[2){v}+[1500]{v}={0}
The natural frequency of the system is

A= 54,78 cyl./sec. .




