MICROCOMPUTER DESCRIPTION \

AND SOFTWARE DEVELOPMENT

by .

Richard S. Gogesch

: Suﬁmitted in Partial Fulfillment of the Requirements
for the Degree of
Master of Science in Engineering
. in the
Electrical Engineering

Program

nofesser’ Jomeat ¥ Mo /|7

Adviser Date

Yo

Dean of the Graduate School "Date

YOUNGSTOWN STATE UNIVERSITY

June, 1976

...,‘.._.-_7.\.---;----..A..

ii

ABSTRACT
MICROCOMPUTER DESCRIPTION

AND SOFTWARE DEVELOPMENT

Richard S. Gogesch
Master of Science in Enéineering

Youngstown State Univérsity, 1976

Basic‘features of some microprocessors are discussed.
Internal operation of a typical microcomputer was investigated.

Special software features of a 4040 microprocessor
are discussed. Part of the family (MCS-40) of peripheral
devices that can be employed with the 4040 microprocessor are
presented. A soft&are system (assembly language + simulator)
was developed. The test prdcedure to verify the operation of
the software is given and a typical application follows.

The software deﬁéloped¢serves to decrease program

development time of a 4040 based microcomputer system.

e 359988

YOUNGSTOWN STAIE UNIVERSITY

iax

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to William
L. Spetz, Applications Engineer, Intel Corporation. Mr. Spetz
was a source of professional advice. He also obtained several
integrated circuits for use in my thesis.

I would also like to express my sincere thanks to
Marlin Rubright, Assistant Field Sales Managér, Pioneer/Cleve-
land. Mr. Rﬁbright helped in the programming of two program-
mable read-only memories.

Sincere thanks are also due to Anna Mae Serrecchio
for her fine work typing this thesis. Thank you, Professor
Samuel J. Skarote for the excellent job you have done as my

adviser.

ABSTRACT. . .

TABLE OF CONTENTS

ACKNOWLEDGEMENIES , olie o5 5 4 % & & w & Jo %l @« ke

TABLE' OF CONTENTS

LIST ‘OF SYMBOLS .« b ot ls o lace. & #5 5 & i "% » yeo g =

LIST OF FIGURES « + v % o v o o o o o o o o .

CHAPTER

To INFRODUCTIONG Sie s & « "6 & =

ITI. FUNCTIONS OF A TYPICAL MICROCOMPUTER.

IITI. THE INTEL 4040 CENTRAL PROCESSING UNIT. .

IV. MCS-40 SYSTEM COMPONENTS. .

V. SOFTWARE AND SIMULATION

VI, TESTING AND BRPLICATIONS, < .s » s & s

VIEs CONCLUSIONS S aMEoNts= o . 3 &y ar s s o s

APPENDIX A.
APPENDIX B.
APPENDIX C.
APPENDIX D.
APPENDIX E.
APPENDIX F

BIBLIOGRAPHY.

Cross-Assembler Program Listing. . .
Cross-Assembler Sample Output. . .
INTEL 4040 Simulator Prograﬁ Listing
Simulator Sample Output,. . . . « =«
Assembler Test Output.

Motor Speed Control Sample Program

iv

PAGE
11
113

iv

vi

13
37
44

50

60
65
69
86
93
100

104

SYMBOL

GPU
DMA
I/0
BCD
ALU
MOS
B1P
CMOS
RAM
ROM
CM-ROM
CM-RAM
€Y

SYNC

OPR
OPA

MCS-40

TTL

LIST OF SYMBOLS

DEFINITION

Céntral processing unit

Direct memory access

Input or output

Binary coded decimal

A:ithmetic Logic unit

Metal oxide semiconductor

Dual inline package

Complementary metal oxide semiconductor
Random access memory

Read only memory

Command line for»read only memory
Command line for random accéss memory
Carry flip-flop

Syncronization signal produced by central process-

ing unit -

High order 4 bits of machine instruction

Lower order 4 bits of machine instruction

Trade mark INTEL Corporation 4040 microcomputer
system : :

Transistor-transistor logic

vi

LIST OF FIGURES

FIGURE PAGE
1. 4040.PIN CONPIGUBRTI IO et o s b '+ L8 - b sdlavelas @n adsenilp
2z, 4040 FUNCTIONAL. PIN. DESERIPLION: G wisracenaises, 15
S v 4 A0ER EIBCULT.BIMINE. ...c0 .chonrn Besanse Bocumsntstids
By, | o ARA0. BLOCE DIREREN 00 | by savatlablee « 6. 0. @ o o L7
5. OPERATION OF THE COMMAND CONTROL: LINES.t ina~aonsumi 21
6. A040- INSTRUCTION BORMATSW: v ~to 'mashine rascuage -pri&d
r 4201 . CLOCK CENBRAR®R o2 okl s v+ Lanauaness whsck age 38
8. 4002-320 BIT RAM AND 4 BIT OUTPUT PORT. 40
9. 40072 BLOCK DIBGIRRar i babels - Withetha usn.nf sssemil

10. 4289 STANDARD MEMORY INTERFACE. 42
1. CROSS-ASSEMBLER INPUT FORMAT. 46
12. CROSS-ASSEMBLER FLOW CHART. . . « « . . « A46
1%, SIMULATOR FLOW DIAGRAM. « 48
i4. CONVENTIONAL DIGITAL PﬁASE—LOCK EOOPemputer, » olsniBl
15. COMPUTERIZED DIGITAL PHESE rLOCK (LOOP «rams .= 5i ne e & 154
16. FLOW CHART OF COMPUTERIZED MOTOR CONTROL. 53
L2 SYSTEM CONFIGURATION WITH SAMPLE LOCK CONDITIONS. 54

18. ALTERNATIVE COMPUTERIZED MOTOR SPEED CONTROL. . . 56

I. INTRODUCTION

The objective of this thesis is to develop an assembly
language and a simulator for the Intel 4040 microcomputer.

The Intel 4040 microcomputer was chosen because documentation
for this microcomputer was readily available,

Machine language programming is a very time-consuming
and tedious process. An alternative to machine language pro-
gramming lies in the use of assembly languages, which are
software systems that allow the use of mnemonic operation
codes and mnemonic statement labels. With the usé of assembly
language, the programmer can program more easily and quickly,
however, once written, there is no assurance that the program
will work properly. ~ One method of tesﬁing a program is to
actually run it on the microcomputer. .An alternative to this
approach is through simulation‘of the microcomputer. Simula-
tion is a very popular method of festing programs, since simu-
lation does not reqﬁire the acquisition of an expensive micro-
computer development system. The use of assembly'languages
and simulators, therefore,-represent a cost effective means
for microcomputer program development.

Chapter II describes the functions of a typical micro-
computer. This chapter gives the reader background informa-
tion on microcomputers. Chapter III describes the features
of the Intel 4040 microcomputer. Chapter IIT also gives a

detailed instruction description for the 4040 instruction set.

Chapter IV gives a basic description of a few of the MCS-40

system components. Chapter V is a discussion of the assembly
language and simulator developed. Chapter VI explains how the
assembly language and simulator were tested. Chapter VI also
presents a sample application of the use of the assembly
language and simulator. The conclusions which were reached are
found in Chapter VII. Appendix A contains a program listing of
the cross-assembler. Sample output of the cross assembler is
seen in Appendix B. Appendix C is a'program'listing of the
simulator. Sample output of the simulator is seen in Appendix
D. Appendix L contains a sample prpgram used to test the assem-
bler. Appendix F contains an example program developed to
implement motor speed control.

A microcomputer is an integrated system of miniaturized
electronic devices capable of performing the functions normally
associated with random logic, minicomputers, and larger central
processing units (CPU'S).1 A microcomputer replaces random
logic by storing program.sequeqces in memory, rather than imple-
menting these logic functions with éates and flip-flops. The
advent of the microcomputer has re;olutionizéd many product
fields and is being designed into many other areas.

Once a microcomputer has been chosen as an integral
part of a design, the design engineer faces tﬁe problem of
choosing the best microcomputer for the given application. With
more than 100 microcomputers available this becomes a tedious
process. The design engineer can, however, minimize this task
by choosing some criteria to eliminate several microcomputers

from consideration. 3

!"Put a complete Microprocessor in your System for
less than $30", INTEL Corporation, 1975, p. 1-4

Some major features of microcomputers are:

Interrupt Structure,

One-Chip CPU Packaging,
Microprogrammability,

DMA (Direct Memory Access) Ability
Arithmetic Modes,

Speed,

Word Size,

and Power Requirements.?

These factors, while not the only important features
of microcomputers, are important enouéh to be amoung the first
to be examined.

Interrupts can be defined as the ability of a micro-
processor to respond to an externa1 event. Interrupts may or
may not be an important feature, depending upon two factors:
1) does the application require real time quick response to
external events, and 2) does the softwafe design étrategy
encourage the use of interrupts? Many applications will not
require interrupts, even some real time applicétions do not
require interrupts. An alternative to.interrupts is software
organization such that .external eventsvare monitored frequently

-

enough to guarantee service.

The next factor to be conéidered is one-chip CPU
packaging. One—chié CPU packaging has a substantial effect
on assembly and repair cost, as well as affecting.the size of
the finished product. Even ahong one-chip CPUs there are a
tremendous variety in the number of integrated circuits which
must be added to achieve a working computer. A CPU which
multiplexes data and addresses through the same pins will
require additional hardware support. Some other areas fre-

2Ogdin, J. and Phillips, S., "Processor Selection",
New Logic Notebook, September, 1974, p. 3.

guently requiring substantial hardware support are state
decoding and input/output (I/0) control. While the cost of
this hardware support circuitry is small, it can double or
triple the manufacturing costs of the computer.
Microprogrammability allows the fine structure of the
microcomputer to be changed while the overall structure remains
the same. An example of this would be the number of registers
and set of instructions available to the programmer. They can
be changed within limited realms, however, gross changes are
not possible. Microprograms are ﬁsually stored in read only
memories, either on the computer's control chip or externally
in standard read only memories connected to the cantrol logic.
Microprogrammability becomes important when a microcomputer is
designed to emulaté some other computer, or to . implement a
specialized set of instructions. Common software routines
such as multiply énd divide can easily be implemented in a
microprogram. Virtuallf all programs can be reduced to a micro-

program.

’

DMA is an abbreviation for direct mémory access. DMA
lets high-speed peripheral devices gain direct access to main
storage without disturbing the CPU; the alternative approach
requires that the CPU readlor write every word between memory
and the péripheral device. 1In order for DMA to work the CPU
must be prevented from interfering with the block of main
storage in which DMA is in progress. Most microcomputers with
DMA capability suspend CPU cycles when DMA is in progress.

Some microcomputers with more sophisticated architectures

allow the CPU to continue operation while DMA is in progress
unless I/0 is attempted in core where DMA is occuring. This
more sophisticated architecture, while more efficient, also
requires substantial hardware support.

Arithmetic is usually performed in two's compliment
form on microcomputers. In addition, some processors have
special instructions which are designed for handling binary
coded decimal (BCD) numbers. Whether these instructions are
important or‘not depends upon whether data must be transferred
in BCD form. If BCD data is presented to the computer, or
required from it, BCD arithmetic is an essential feature of
the microcomputer system.

Speed of a microcomputer may become important if real-
time events must bé handled within specified time limits.

Word size is simply defined as the numher of bits with which
the microcomputer can directly perform arithmetic. Word size
is not an important factor unless speed is required, since
computers with smaller work lengths can perform functions of

a lérger microcomputer in an increased numbér of machine
cycles. Power requirements are also important, since some
technologies require several supply voltages, thereby increas-
ing the cost of the Systeml

Another important consideration when selecting a
microcomputer is vendor commitment; that is, will the vendor
continue making the microcomputer for the entire applications
life. Generally a good measure of vendor commitment is soft-

ware support. If the vendor has a considerable investment in

software support, then chances are the microcomputer will be
around for some time to come. Documentation is another measure
of vendor commitment. A product with skimpy, vague, and ambig-
uous specifications usually connotes a management disinterest
in the product. Products such as these should be avoided.
If large systems are dealt with, software support is
essential. Minimal software support.should include:
1. An assembler that allows use of symbolic operation
. codes and symbolic statement labels.

2. An editor that allows the programmer to easily

change source programs for re-assembly.
3. A simulator that executes machine code for the

microprocessor on a larger computer or mini-
computer. ’

-

0gdin, J. and McPhillips, S., p. 5.

IT. FUNCTIONS OF A TYPICAL MICROCOMPUTER

A typical digital computer consists of the following:

1 A central processing unit (CPU).

2. A memory.

3 Input/Output (I/0) ports."

Primarily the program memory serves as a place to store
instructions, which are the coded pieces of data that direct
all of the activities of the CPU. A group of instructions
logically arfanged in program memory is referred to as a pro-
gram. The CPU fetches each instruction from memory in a logic-
ally determinate sequence, and uses it to initiate processing
actions.

The data memory is used to store the data to be manip;
ulated. The CPU can access all data in the data memory bank.
At times there is_nqt enough data memory to store all of the
data required for the application. The solution to this pro-
blem lies in the use of input ports. The CPU can address these
input ports. Data caa be contained in these input ports.
Ano£her feature of the input ports is that £hey allow the CPU
to receive information from peripheral devices.

Most computers have output ports in addition to input
ports. These output ports'allow the computer to transmit
data outside the computer. The output may go to a display,

to a peripheral device that produces a "hard copy", such as

Raphael Howard A., INTEL "MCS-40 User's Namual for
Logic Designers (Santa Clara, CA: INTEL Corporation, 1974)
P. vii

359988

. __Tm\
YOM\(:SIUNN QIALE UNIVERSITY

a line printer, to a peripheral storage device, such as a mag-
netic tape unit, or the output may constitute process control
signals, such as in an automated assembly line.

The CPU ties the system together. It controls all of
the functions performed by the other devices. The CPU must
be able to fetch instructions from memory, decode the binary
instructions, and execute them. It must be able to reference
memory and I/0 ports. In addition to these functions, some
CPUs can respond to certain control signals. Two examples of
these control signals would be interrupt and stop.

A typical CPU consists of the following interconnected
units.

1. Registers.

2. An Arithmetic/Logic Unit (ALU).

3. Control cCiréuitry.®

Registers are temporary storage units within the CPU.
Some registers, such as the program counter and instruction
register, have dedicatea uses. Other registers, such as the
accumulator, are for mére general purpose use. As a result,
theée registers are usuallf referred to as general purpose
registers.

The accumulator usqally stores operands (numbers)
which are to be manipulated by the arithmetic logic unit. A
typical instruction might direct the ALU to addl to the

accumulator and store the result in the accumulator. This is

-

5Raphael, Howard A., MCS-40, p. viii

an example where the accumulator is both a source (operand)
and a destination (result) register.

Program instructions are stored in the program memory.
The CPU must examine the contents of memory in order to deter-
mine which action is appropriate. This means the CPU must
know which memory location contains the next instruction.

Each of the memory locations is numbered to distinguish it
from all other locations in memory. The number identifying
the memory location is called an address.

The CPU contains a counter ‘which contains the address
of the next program instruction. This register is called the
program counter. The CPU updates the counter by adding "1"
to the counter each time it fetchggvan‘instruction. This
process assures thét the counter is alwayé currents

The programmer theréfore,’stores instructions in
numerically adjacent addresses, such that the instructions in
lower addresses will be executed before instructions in the
higher addresses. The‘only time this general rule is violated
is Qhen a "jump" instruction is ekecuted. ‘

A jump instruction contains the address of the instruc-
tion which is to follow it. The next instruction can be stored
in any address, as long as'the jump instruction specifies the
correct aédress. During the process of a jump instruction,
the CPU replaces the contents of the program counter with the
destination address of the jump.

A special kind of jump occurs when the program
"branches" to a subroutine. This kind of jump requires that

the CPU remember the contents of the program counter before

10

the jump occurs. This process enables the CPU to resume
execution of the main program when the last instruction in the
subroutine has been executed.

A subroutine is a program within a program. It is
usually a set of instructions which must be executed repeat-
edly within a program. Routines which calculate the square,
the sine, or the logarithm of a variable are good examples of
subroutines. Other examples might be prograﬁs designed for
inputting or butputting data to a.peripheral device.

The processor handles subroutines in a special way.
When the processor receives a jump to subroutine instruction,
it increments the program counter and stores the result in a
memory known as thg stack. The processor then stores the
address specified in the jump to subroutine instruction in its
program counter. 'Therefore; the next instruction executed
will be the first instrqction of the subroutine.

The last instrﬁction in a subroutine will be a branch
back instruction. Wheh the processor receives a brénch back
ineruction, it replaces the conténts of the program counter
with the address of the top of the stack.

Subroutines are often nested: that is, one subroutine
will sometimes call a second subroutine. This is an acceptable
procedure, as long as the CPU has enough capacity to store the
return addresses, and the logical provision for implementation.
Therefore, the maximum level of subroutine nesting is deter-
mined by the depth of the stack, If the stack has space for

Storing seven return addresses, then seven levels of subroutine

Ly

nesting may be accomodated.

Every computer has a word length. A computer's word
length is determined by the size of its internal storage
elements and data busses. A computer whose registers and
busses can store and transfer 8 bits of information, has a
word length of 8 bits. The characteritic 8 bit field is
usually referred to as a byte. A 4 bit field is referred to
as a nibble.

Each.operation a computer can perform is specified by
a unique binary code. An 8 bit word used as an instruction
can refer to a maximum of 256 alternative actions. This is
more than adequate for most processors. The eight bits stored
in the instruction register selectiwely activate one of a
number of output lines. In thislcase a maximum of 256 output
lines. Each line rgpresenté a set of activities associated
with execution of a particular instruction code. Timing pulses
develop electrical sigﬁéls which are used to initiate specific
actions. The translation of binary code into a specific
acfion is performed by the instruction decoaer and associated
control circuitry.

A CPU may use a register or a register pair to store
the address of a memory loéation. If the address register(s)
is prograﬁmable, then the programmer can change the contents
of the register prior to execution of a memory reference
instruction.

All processors contain an arithmetic/logic unit. The
ALU must contain an adder capable of combining the contents

Of two registers in accordance with the rules of binary

12

arithmetic. This capability allows the processor to perform
arithmetic manipulations on data it obtains from memory and
other inputs.

Using only the basic adder, a programmer can write
routines which will subtract, multiply, and divide. This
gives the machine complete arithmetic .capabilities. In prac-
tice, however, most ALUs provide other built-in functions,
including hardware subtraction, boolean logié operations, and
shift operations.

The ALU usually contains flag bits which register
certain conditions which arise during arithmetic manipulations.
Generally, it is possible to program jumps which are condi-
tionally dependent upon one or more flag bits. Thus, for
example, the program may be designed to jump to a special
routine, if the carry bit ié zero. The presence of a carry
generally indicates an overflow in the.accumulator.

The control cifcuitry is the primary functional unit
within a CPU. The control circuitry maintains the proper
seqhence of events required for ahy processing task. Some
processors have control circuitry capable of responding to
external signals, such as an interrupt request. An interrupt
request causes the control'circuitry to temporarily interrupt
main program execution, jump to a special routine to service
the interrupting device, then automatically return to the

main program.

13

III. THE INTEL 4040 CENTRAL PROCESSING UNIT

The Intel 4040 is a single chip 4 bit parallel metal
oxide semiconductor (MOS) central processor. The 4040 is
packaged in a 24 pin dual inline package (DIP). The pin con-
figuration is shown in Figure 1. A brief functional descrip-
tion of each pin is given in Figure 2.
Circuit timing for all clocked CPUs is critical; the
4040 is not an exception. Figure 3 shows a timing diagram for
the 4040. Circuit timing is accomplished by a two phase non-
overlapping clock. The start of an instruction cycle is
signaled by a SYNC signal, which is generated by the processor.
The SYNC signal is sent to the various read only memory (ROM),
and random access memory (RAM), and peripheral chips in the
system. An instruction cycle consists .0f the following opera-
tions:
1. The 12 bit contents of the program counter is
sent out to the ROM chips in three 4 bit groups during
Ay, A, A d |

2. The 8 bit instruction’'or data from the addressed
ROM location is received by the processor at My, and M,
at which time the instruction is decoded.

3. Instruction execution occurs during Xj, X3, and

X3. Data or address information may be sent to output

ports or RAM chips; data may be received from input ports

or RAM chips; or data may be operated on within the pro-
6

cessor.

Figure 4 is a block diagram of the 4040 indicating the
major circuit blocks and their interconnections. The follow-
ing major functional blocks are contained in the 4040:

-

®*Raphael, Howard A., MCS-40, p. 1-6

4040 — Central Processor Unit

® Instructions (60 total) including Logical Operations
and Read Program Memory

Large number of family devices

10.8 microsecond instruction cycle standard

2-phase dynamic operation

Instruction set includes conditional branching, jump

to subroutine and indirect fetching 3

Logical instructions

Binary and decimal arithmetic modes .

CPU directly compatible with MCS-4 ROMs and RAMs
Unlimited number of input and output lines

Interrupt capability

Single step operation

8K byte memory addressing capability
and up to 5120 bits of RAM '
24 index registers

Subroutine nesting to 7 levels

Do E 1 u 24 : cy
o [} :] CM ROMy
0, [[] cmromy
D3 E 4 2 :] Voo,
srackffs 20 [] cmramg
s e w0 w[] oM AAMy
wr[]7 18] cmram;
INT ACK [:] A D CM'l“t
Ve O 16] svne
¢, E 10 el 15 : Voos
¢ [n "] voo

neser [z 1n TesT

~
~
a

“
~
N

-

FIGURE 1. 4040 PIN CONFIGURATION

14

Pin Description

Pin No.

Designation

Description of Function

1-4

Do-D3

STPA

STP

INT

INTA

4142

RESET

TEST

Voo2

FIGURE

Bidirectional data bus. All ad-
dress and data communication
between the processor and the
RAM and ROM chips is handled
by way of these 4 lines.

STOP ACKNOWLEDGE out-
put. This signal acknowledges
that the processor has entered
the stop mode. Output is “open
drain'’ requiring pull-down re-
sistor to Vpp.

STOP input signal. A logic 1"
level at this input causes the
processor to enter the STOP
mode.

INTERRUPT input signal. A
logic ““1"" level at this input
causes the processor to enter
the INTERRUPT mode.

INTERRUPT ACKNOWLEDGE
output. This signal acknowl-
edges receipt of an INTER-
RUPT command and prevents
additional INTERRUPTs from
entering the processor. INTER-
RUPT ACKNOWLEDGE re-
mains active until -cleared by
the new BRANCH BACK ‘and
SRC (BBS) instruction. The
output is “open drain”, requir-
ing a pull-down resistor to Vpp.

Circuit GND potential — most
positive supply voltage.

Non-overlapping clock signals -

which determine processor tim-
ing.

RESET input. A “1” lével ap-
plied to this pin clears all flag
and status flip-flops and forces
the program counter to 0. To
completely clear all of the ad-

dress and index registers, RE-

SET must be applied for 96
clock cycles(12machine cycles).

TEST input. The logical state
of this input can be examined
with the JCN instruction.

Main supply voltage to the pro-
cessor. Value must be Vgg
-15.0V 15%.

Supply voltage for output buf-
fers. May be varied depending
on interface conditions.

Pin No,

Designation

15

Description of Function

16

17-20

21

22-23

24

-

SYNC

CM-RAMg-
CM-RAM;

Voo1

CM-ROMg-
CM-ROM,

(4

SYNC output. Synchronization

" signal generated by the proces-

sor and sent to ROM and RAM
chips. Indicates beginning of in-
struction cycle.

CM-RAM outputs. These out-
puts act as bank select signals
for the 4002 RAM chips in the
system.

Supply voltage for timing cir-
cuit. Value must be Vgg -15.0V
*+5%. Allows low power stand-
by operation. Only SYNC will
be generated when this pin is
the only active Vpp.

CM-ROM outputs. These out-
puts act as bank select signals
for the ROM chips in the sys-
tem.

CARRY output buffer. The
state of the CY flip-flop is pre-
sented at this output and is up-
dated "at X;. The output is
“open drain” requiring a pull-
down resistor to Vpp.

2. 4040 FUNCTIONAL PIN DESCRIPTION

*

%2

SYNC

ENABLE DATA OUT

ENABLE DATA IN

LATCH TP OR INT

cy

— A A2 A My My

S

o
! IF SINGLE X_ IF vo!?! _" sac'!
cvcie!! I
ENABLED ‘ 1 INHIBITED ennmwl INHIBITED | ENABLE
[‘ IF1OR!
INHIBITED lENABLEl i ENABLE] INHIBIT ‘ ENABLE l INHIBIT
IF10RM
AR LATCH STP
. INT
)L CY UPDATED HERE
DATA BUS :
CONTENTS ~———— ADDRESS TO MEMORY ———={=— msm:g&nvnon ':ﬁ"cm, mg:c"
: ACCUMULATOR
NOTES: - CONTENTS

1. CM-ROM, RAM SIGNALS WILL BE PRESENT AT My FOR ANY SINGLE CYCLE
INSTRUCTION OR FOR THE FIRST CYCLE QF A DOUBLE CYCLE INSTRUCTION,

2.CM-ROM, RAM SIGNALS WILL BE PRESENT AT M2 FOR ANY OF THE SIXTEEN
1/0 GROUP INSTRUCTIONS. -

3.CM-ROM, RAM SIGNALS WILL BE PRESENT AT X3 DURING EXECUTION OF AN
SRC INSTRUCTION. 4

4. IOR MEANS ONE OF THE 1/O READ INSTRUCTIONS: 88M, ROM, RDR, ADM,
RDy¢, RD1, RD2, RD3. .

i

FIGURE 3. 4040 CIRCUIT TIMING

LS

BI-DIRECTIONAL
DATA BUS

(4 8BIT)
INTERNAL DATA BUS

) v P]
reS P e ey
<y < <
ACCUMULATOR TEMP. INSTRUCTION STACK REGISTER
1) REGISTER () MULTIPLEXER poX
PROGRAM COUNTER LU
12 0 1
LEVEL NO. 1 2 3
INSTRUCTION
rJARITHMETIC DECODER LEVEL NO.2 4 5
v] oaic S «
UNIT MACHINE = M
TV el R CYCLE z LEVEL NO. 3 Y . 6 7
i ENCODING g o .
> | x LEVEL NO. 4 x| 8 9
—v 3] w
< p 5]
5 » LEVELNO.5 2| 10 "
MA|
yrres { LEVEL NO. 6 12 13
LEVEL NO.7 N 15
o 14)
TIMIRG ADDRESS o 1
SUPPLIES AND STACK X
CONTROL : sl 2 3
— =10V SINGLE <
—e +5v | CARRY ROM RAM STEP —] 5
OUT CONTROL CONTROL TEST CONTROL _ SYNC CLOCKS])
dirkba Bld benk do tint 4 1o ‘ e L
A
cv v “—m—" test | sTOP STOP SYNC #1 42 RESET SCRATCH
CM ROM CM RAM PAD
o1 03 INTERRUPT

-

FIGURE 4. 4040 BLOCK DIAGRAM

17

18

. Address register stack and address incremeter.
Index register array.

Instruction register/decoder and control logic.
4 bit adder/accumulator.

. Hardware interrupt and stop control.

Peripheral c1rcu1ts for controlling timing and
external communication.’

CNU'I-QWNF-‘
. . .

The address register is a dynamic RAM array of 8 x 12
bits, operating as a push-down stack. ., One level of this
array is used to store the effective address. This leaves
seven levels available for subroutine nestiné.

The cbntents of the selected address register are
stored in the address buffer and multiplexed to the internal
bus during Al, A2' and A3 in 4 bit nibbles. The contents of
the address buffer are incremented by a 4 bit carry-look-
ahead circuit after outputting each 4 bit nibble. The incre-
mented value is transferred back to the address buffer and
written back into the selecfed address .register. Since the
array is dynamic, internal provision is made for refreshing
the store data. ' -

The index regiéter is a dynamic RAM array of 12 x 8
bitg, orgainzed as three banks of'4 x 8 bité. Two of these
banks have identical address locations, so these banks must
be individually selected with program instructions. The
third bank has unique addrésses; therefore it is always
available.for use.

The index registers can be used two different ways.
They can be used to store 4 bits data for computation. They

can also be used in pairs for addressing ROM, RAM, and I/0

-

’Raphael, Howard A., MCS-40, p. 1-7.

19

por£s or for storing fetched data from ROM.

Index register addressing is provided by the internal
data bus. The addresses are multiplexed to the array decoder.
The content of a selected index register is stored in a tem-
porary register and multiplexed to the internal bus.

The 4 bit adder used in the 4040 is the ripple-through
carry type. The adder buffer/register communicates with the
internal data bus on one side and can transfér the data or
one's complemented data to the adder. The other term of
addition comes from the accumulator and carry flip-flop. The
output of the adder is transferred to the accumulator and
carry flip-flop. The accumulator has the capability to imple-

ment shift-right and shift-left instructions. The accumulator

can communicate with the command register, with special ROMs,
with the condition logic, aﬂd with the <dnternal bus. The
command register contains a 3 bit code ‘used for CM-RAM line
switching and one bit uéed for "CM-ROM switching. The special
ROMs communicate with the internal. bus. The condition logic
sen;eswhen an addition yieids a zero result, when the accum-
ulator is zero, the state of the carry flip-flop, and the
state of an external signal (TEST). These conditions can be
used to implement jump-on-condition and increment and skip
if zero instructions.

The instruction register is loaded with the content
of the internal bus at My and M, . The instructions are decoded
in the instruction decoder and gated with timing signal to

-

Provide the control signals for various functional blocks.

20

The 4040 has interrupt and stop controls which over-
ride normal processor operation. The interrupt logic detects
and acknowledges presence of an external interrupt signal and
forces the processor to execute a jump-to-subroutine to loca-
tion 003 hexadecimal.

The stop control logic detects and acknowledges the
presence of a stop signal. The processor is forced to execute
a no-operation instruction until the stop siénal is removed.

The CPU command lines (CM-ROM, CM-RAM) are used to
control the ROMs and RAMs by indicating how to interpret the
data bus content at any given time.

The command lines allow the implementation of RAM
bank, chip, register, and character addressing. The command
lines also control ROM chip addressing. Operation of the
command control lines is seen in Figure 5.

The 4040 has a set of sixty instructions. The instruc-
tions can by divided into four-groups as follows:

1. Machine Instructions - This group of 16 instruc-

. tions are designated by an OPR code of 0000-1101. Within
this group is cqntained a sectnd group which is designated
the supplemental group.

2. 4040 Group - This group of 14 instructions is
designated by an OPR code .of 0000 and an OPA code of
0001-1110. These are the new instructions which have
been added to the 4040.

3. I/0 Group - This group is designated by an OPR
code of 1110. This group of 16 instructions is used for
transferring data between the processor and the RAM chips
or I/0 circuits.

4. Accumulator Group - This group of 14 instructions

is designated by an OPR code of 1111 and operates only on
the accumulator/carry flip-flop, the special ROMS and the

R L L e A e L) R e e B R R P R R C R C A R B E B
’

syne S

ocL C l 1/0 AND RAM
SR AND RA|
FETCHED s FETCHED INSTRUCTION FETCHED
CM-RAM, CODE IS TRANSFERRED TO
THE COMMAND CONTROL REGISTER

CM.ROM S S \ U] e O g et S

.

CM-RAM, J

l‘———— CM-AAM, IS DEACTIVATED

CM-RAM, | | S\ C
}o——-cmnm, IS ACTIYATED
“
DATA! s y
BUS : | %0 YA
Yoy I
X THE 8.8IT ADORESS THE MCDIFIER (OPA)

SENT BY THE CPU OF THE 1/0 AND RAM

1S RECEIVED BY INSTRUCTION IS RECEIVED

ROM's ANO AAM's BY ROM's AND RAM's

-

I

-

FIGURE 5. OPERATION OF THE COMMAND CONTROL LINES

2%

28]
N

command register.?®

There are 2 types of instructions; they are 1 word
instructions and 2 word instructions. A 1 word instruction
is 8 bits wide and requires 8 clock periods (1 instruction
cycle). A 2 word instruction is 16 bits wide and requires
16 clock periods (2 instruction cycles). Each instruction
word is divided into 4 bit nibbles. -The upper 4 bits is called
the OPR and cqntains the operation code. Thé lower 4 bits is
called the OPA and contains the modifier. For single word
instructions the operation code (OPR) contains the code of the
operation that is to be performed. Examples of this are add,
subract, and load. The modifier (OPA) contains one of 4
things. They are as follows:

1. A register address.

2. A register pair ‘address.

34 -bits. of datii

4. An instruction modifier.?

For a 2-word machine instructién, the first word is
similar to that of the. l-word instrﬁction, however, the
modifier contains one of 4,things; They are as follows:
ot WR regiséer address. :

A register pair address.

The upper portlon of another ROM address
. A condition for jumping.'®

=W N+

The second word contains either the middle portion (in OPR)
and the lower portion (in OPA) of another ROM address or 8

bits of data. 1Instruction formats are shown in Figure 6.

Raphael Howard A., MCS-40, p. 1-18.
Raphael Howard A., MCS-40, p. 1-18.

b Raphael Howard A., MCS-40, p. 1-18.

23

ONE WORD INSTRUCTIONS

o, D Dy, D Dy Dy D, D,
oPR oPA
[0P CODE I MODIFIER J

INDEX REGISTER
X X X X ADDRESS
R R R R
OR

INDEX REGISTER PAIR
X x| x| x ADDRESS
R R RL_X

15t INSTRUCTION CYCLE

* TWO WORD INSTRUCTIONS

2nd INSTRUCTION CYCLE
By § Oy, Dy B D3 0y O5,10¢ 0500 0y Oy

Rl |« (<] Cfxfslajafejafe]u]
OPR oPA OPR . OPA

LN

[OP CODE] MODIFIER] [OP CODE l MOOIFIER l

% UPPER ADORESS MIDDLE ADDRESS LOWER ADORESS
KB 2Ry Ay Ay As Ay Ay Ay Al oAy A A A

OR

gL n

CONDITION
€, C; Cy

"]

MIDOLE ADDRESS LOWER ADORESS
Ay Az Ay Ay Ay Ay M A

oR

INDEX REGISTER
x x X X ADDRESS
X B Rh

MIDOLE ADORESS LOWER ADORESS
Ay Ay Ay Ay A AL A A

on

INDEX REGISTER PAIR
ADORESS

UPPER DATA L LOWER DATA l
AR A 9; 109 Dy

Booon

D, 0; Dy D, 0,

-

FIGURE 6. 4040 INSTRUCTION FORMATS

24

The upper 4 bits of an instruction will always be
fetched before the lower 4 bits of instruction.

Index registers can be addressed in two ways. The
OPA code of an instruction may specify 1 of 16 possible loca-
tions. The bank switch of the 4040 will allow access to 8
more registers. The second way to access registers is by
specifying a pair of registers with the higher order 3 bits
of the OPA code. This will allow direct addfessing of 8 pairs
of registers;' The bank switch of the 4040 will allow access
to 4 more register pairs.

The following is a.detailed description of the_4040

instruction set.

DETAILED INSTRUCTION DESCRIPTION

A. Symbols and Abbreviations

The following symbols and abbreviations will be used throughout the next few sections:

SRCR . SRC Register

() the content of is transferred to

ACC Accumulator (4 bit)

CcY Carry Flip-Flop

ACBR ; Accumulator Buffer Register (4 bit)

RRRR Index register address o

RRR Index register pair address ; ;
P Low order program counter Field (4 bit)

Pm Middle order program counter Field (4 bit)

Pu ~ High order program counter Field (4 bit) .
3; Order i content of the accumulator

c™m; Order i content of the command register

M RAM main character location *

Mg RAM status character i -

DB (T) Data bus content at time T

Stack The 3 or 7 registers in the address register other than the program counter.
CR Command register

IE Interrupt enable

RBO Register bank 0 RRRRg — RRRR, enable

RB1 Register bank 1 RRRRg — RRRR, enable

\Y% . Logical OR

A Logical AND

Throughout the text ‘‘page’” means a block of 256 instructions whose address differs only on the most
significant 4 bits. " '

'

Example: page 7 means all Iocatigns having addresses between 0111 0000 0000 and 0111 1111 1111

B. . Format for Describing Each Instruction

Each instruction will be described as follows: -

(1) Mnemonic symbol and meaning

(2) OPR and OPA code

(3) Symbolic representation of the instruction

(4) Description of the instruction (if necessary) ‘
(5) Example and/or exceptions (if necessary)

C. One Word Machine Instructions

Mnemonic: NOP (No Operation)

OPR OPA: 0000 0000 . :

Symbolic: Not applicable

Description: No operation performed

Mnemonic: LDM (Load Data to Accumulator) 3
OPR OPA: 1101- DDDD

Symbolic: DDDD—*ACC ' .

Description: The 4 bits of data, DDDD stored in the OPA field of instruction word are loaded into the
accumulator. The previous contents of the accumulator are lost. The carry/link bit is
unaffected.

26

Mnemonic: LD (Load index register to Accumulator)

OPR OPA: 1010 RRRR

Symbolic: (RRRR) = ACC

Description: The 4 bit content of the designated index register (RRRR) is loaded into the accumula-
tor. The previous contents of the accumulator are lost. Tha 4 bit content of the index
register and the carry/link bit are unaffected. .

Mnemonic: XCH (Exchange index register and accumulator)

OPR OPA: 1011 RRRR b x

Symbolic: (ACC) - ACBR, (RRRR) = ACC, (ACBR) = RRRR

Description: The 4 bit content of the designated index register is loaded into the accumulator. The
prior content of the accumulator is loaded into the designated register. The carry/link bit
is unaffected. s

Mnemonic:, ADD (Add index register to accumulator with carry)

OPR OPA: 1000 RRRR

Symbolic: (RRRR) + (ACC) + (CY) = ACC, CY,

Description: The 4 bit content of the designated indgx register is added to the content of the accumu-
lator with carry. The result is stored in the accumulator. The carry/link is set to 1 if a sum
greater than 1510 was generated to indicate a carry out; otherwise, the carry/link is set to
0. The 4 bit content of the index register is unaffected.

Example: Augend Addend

(ACC) (CY) . ” (RRRR)
az az ay ag
T AL
+)rzraryrg ~<
CARRY —» 453525150 <¢—SUM
I_.__T_J
(CY) (ACC) B

Mnemonic: SUB (Subtract index register from accumulator with borrow)

OPR OPA: 1001 RRRR 3

Symbolic: (ACC) + (RRRR) + (CY) = ACC, CY

Description: The 4 bit content of the designated index register is complemented (ones complement)
and added to content of the accumulator with borrow and the result is stored in the
accumulator. If a borrow is generated, the carry bit is set to 0; otherwise, it is set to 1.

The 4 bit content of the index register is unaffected. :

Example: Minuend . ; Subtrahend

(ACC) 2 (CY) (RRRR)
5 agaza ag
o

A

+)T3T2 T To

Borrow — ¢4 53 52 51 59 ~¢—Result

(CY) (ACC)

27

Mnemonic:
OPR OPA:
Symbolic:
Description:

INC (Increment index regjster)

0110 RRRR

(RRRR) +1 = RRRR

The 4 bit content of the designated index register is incremented by 1. The index register
is set to zero in case of overflow. The carry/link is unaffected.

1

Mnemonic:
OPR OPA:
Symbolic:
Description:

BBL (Branch back and load data to the accumulator)

1100 DDDD

(Stack) =P, Py, Py; DDDD = ACC

The program counter (address stack) is pushed down one level. Program control transfers
to the next instruction following the last jump to subroutine (JMS3) instruction. The 4
bits of data DDDD stored in the OPA portion of the instruction are loaded to the
accumulator. BBL is used to return from subroutine to main program.

Mnemonic:
OPR OPA:
Symbolic:

Description:

EXCEPTIONS:

JIN (Jump indirect)

0011 RRR1

(RRRO) =P

(RRR1) =P_; Py unchanged

The 8 bit content of the designated index register pair is loaded into the low order 8
positions of the program counter. Program control is transferred to the instruction at that
address on the same page (same ROM) where the JIN instruction is located. The 8 bit
content of the index register is unaffected.

When JIN is located at the address (Py) 1111 1111 program control is transferred to the
next page in sequence and not to the same page where the JIN instruction is located. That
is, the next address is (P4 + 1) (RRRO) (RRR1) and not (Py) (RRRO) (RRR1)

Mnemonic:
OPR OPA:
Symbolic:

Description:

SRC (Send register control)

0010 RRR1

(RRRO) - DB (X2)..

(RRR1) = DB.{X3) .

The 8 bit content of the designated index register pair is sent to the RAM address register
at X2 and X3. A subsequent read, write, or 1/O operation of the RAM will utilize this
address. Specifically, the first 2 bits of the address designate a RAM chip; the second 2
bits designate 1 out of 4 registers within the chip; the last 4 bits designate 1 out of 16
4 bit main memory characters within the register. This command is also used to designate
a ROM for a subsequent RCM 1/0 port operation. The first 4 bits designate the ROM
chip number to be selected. The address in ROM or RAM is not cleared until the next
SRC instruction is executed. The 8 bit content of the index register is unaffected.

-

Mnemonic:
OPR OPA:
Symbolic:

Description:

EXCEPTIONS:

FIN (Fetch indirect:from ROM) ,

0011 *RRRO

(Py) (0000) (0001) = ROM address

(OPR) = RRRO

(OPA) - RRR1

The 8 bit content of the 0 index register pair (0000) (0001) is sent out as an address in
the same page where the FIN instruction is located. The 8.bit word at that location is
loaded into the designated index register pair. The program counter is unaffected; after
FIN has been executed the next instruction in sequence will be addressed. The content of
the O index register pair is unaltered unless index register O was designated.

a. Although FIN is a 1-word instruction, its execution requires two memory cycles (21.6 '

usec).

b. When FIN is located at address (Py) 1111 1111 data will be fetched from the next
page (ROM) in sequence and not from the same page (ROM) where the FIN
instruction is located. That is, next address is (Py + 1) (0000) (0001) and not (Py)
(0000) (0001).

28

Mnemonic: HLT

OPR QPA: 0000 0001

Symbolic: ° 1—=HALT 1 ->STOP

Description: The processor sets the HALT and STOP flip-flops. Program counter incrementer and data
input buffers are inhibited. The processor executes NOP continuously; continuation can

. occur by means of STOP or INTERRUPT control.
In this mode, the Program Counter + 1 is gated out at Aq, A2, and A3, times on the data
bus. My, M2 times will contain the addressed ROM instruction on the data bus. X1, the '
4 bit Accumulator contents, X2 and X3 will contain the 8 bit SRC register.

Mnemonic: BBS

OPR OPA: 0000 0010

Symbolic: (Stack =P, Pm, PHi)

Description:

SRCRO — DB(X2)

SRCR1—DB(X3) :

This instruction is a combination of BRANCH BACK and SRC. The effective address
counter is decremented and program control is returned to the location saved by the
forced JMS which occurred at the beginning of the interrupt routine. In addition, the
content of the SRC register is sent out at X3 and X3 of the instruction cycle, thus
restoring the 1/O port selection. This instruction will also turn off the INTA line re-
enabling the CPU for Interrupt.

The previously selected Index register bank will also be restored during this instruction.

Mnemonic: LCR
OPR OPA: 0000 0011
Symbolic: (CR)—=ACC e
_Description: The 4 bit contents: of the COMMAND REGISTER are transferred to the ACCUMULA-
TOR. This allows saving the command register values before processing the interrupt.
Mnemonic: OR4
OPR OPA: 0000 0100
Symbolic: (RRRR4) V (ACC) = ACC a
Description: The 4 bit contents of index register #4 are logically “OR-ed”” with the ACCUMULATOR.
The result is plated in the ACCUMULATOR and the CARRY flip-flop is unaffected.
Examples: (ACC) 0101 :
(RRRRy) 1001 :
ACC v 1101
(ACC) 0000
(RRRRy) 1000
ACC 1000
Mnemonic: ORS
OPR OPA: 0000 0101
Symbalic: (RRRRg) V (ACC) =+ ACC
Description: The 4 bit contents of index register #5 are logically “OR-ed”’ with the ACCUMULATOR.

Carry flip-flop is unaffected.

29

Mnemonic: ANG6
OPR OPA: 0000 0110
Symbolic: (RRRRg) A (ACC) = ACC
Description: The 4 bit contents of index register #6 are logically “AND-ed” with the ACCUMU-
b LATOR. The result is placed in the ACCUMULATOR and the CARRY is unaffected.
Examples: (ACC) 0110 ¥
(RRRRg) 0100 .
ACC 0100
(ACC) 1111
(RRRRg) 0001
ACC 0001
Mnemonic: AN7
OPR OPA: 0000 0111
Symbolic: (RRRR7) A (ACC) = ACC

Description:

The 4 bit contents of index register, #7 are logically “AND-ed” with the ACCUMU-
LATOR. Carry flip-flop is unaffected.

Mnemonic: DBO

OPR OPA: 0000 1000

Symbolic: Enable = CM-ROMg

Description: DESIGNATE ROM BANK 0. The most significant bit of the COMMAND REGISTER,
CR3, is reset. On the third instruction cycle following its execution, it causes CM-ROMy
to be activated. This Bank is selected with reset.

Mnemonic: DB1

OPR OPA: 0000 1001

Symbolic: Enable = CM- ROM,

Description: DESIGNATE ROM BANK 1. The most SIinflcant bit of the COMMAND REGISTER,
CR3, is set. On the third instruction cycle following its execution, it causes CM-ROM; to
be activated.

Mnemonic: SBO -

OPR OPA: 0000 1010

Symbolic: 1—RB0, 0 ~RB1

Description:

SELECT INDEX REGISTER BANK C. The index register bank select flip-flop is reset.
Index registers 0- 7, 8- 15 will be avallable for program use. This bank is to be selected
with a Rgset.

Mnemonic: SB1 ‘

OPR OPA: 0000 1011

Symbolic: 0—RBO 1—->RB1

Description: SELECT INDEX REGISTER BANK 1. The index register bank select flip-flop is set.
Index registers 0° - 7°, 8 - 15 will be available for program use.

Mnemonic: RPM

OPR OPA: 0000 1110 :

Symbolic: (1111) (SRC) - ROM/RAM address .

Description:

(DDDD) =+ACC

READ PROGRAM MEMORY. This instruction can be used only with the 4289 Standard
Memory and 1/0 Interface Chip. The contents of the previously selected nibble of R/W
Program Memory are transferred to the 4040 and loaded to the ACCUMULATOR.

Mnemonic: EIN .
OPR OPA: 0000 1100

Symbolic: 1-IE

Description: * ENABLE INTERRUPT. Internal interript detection logic is enabled.

Mnemonic: DIN

OPR OPA: 0000 1101

Symbolic: 0 IE

Description: DISABLE INTERRUPT. Internal interrupt detection logic is disabled.

D. Two Word Machine Instruction

Mnemonic:
1st word OPR OPA:
2nd word OPR OPA:

JUN (Jump unconditional)
0100 Az Az Az Aj
A2 A2 A2 Az Ay Ay Ay Ay

Symbolic: Ay Aj AL Ay 2 P, AgAA2A; 2 Py, AzAz A3 A3 = Py

Description: Program control is unconditionally transferred to the instruction locator at the
address Az Az Az Az, Ag Ay Ag Ag, Ay Ay Ay Ay

Mnemonic: JMS (Jump to Subroutine)

1st word OPR OPA:
2nd word OPR OPA:
Symbolic:

Description:

0101 A3 A3 A3 A3

Az Ax Ay A Ay Al Ay

(PH' PM, PL e 2) —’Stack

Ay Ay Ay A] =P, Az Az Az Ap —>Pm. Az Ag'Aa Az —+Py

The address of the next instruction in sequence following JMS (return address) is
saved in the push down stack. Program control is transferred to the instruction
located at the 12 bit address (A3A3A3A3A2A2A2A2A1A1A A). Execution of a
return instruction (BBL) will cause the saved address to be pulled out of the stack,
therefore, program_control is transferred to the next sequential instruction after the
last JMS. e :

The push down stack has 4 registers (8 registers in 4040). One of them is used as
the program counter, therefore nesting of JMS can occur up to 3 levels (7 levels in
the 4040).

Example: (4004) Stack <& Stack
No JMS 2 JMS #1
received > received = > —_—
Program Counter
Program Counter Return address #1
N
Stack Stack
Program Counter
JMS #2 Program Counter JMS #3 Return address #3
received . = received d
Return address #2 Return address #2
Return address #1 Return address #1
Stack
Return address #4 Program Counter
M
: S.#4 Return address #3 BBF v Return address #3
received > > T

Return address #2

Program Counter

The deepest return address is lost.

Return address #2

30

31

Mnemonic:

1st word OPR OPA:
2nd word OPR OPA:
Symbolic:

Description:

Example:

EXCEPTIONS:

JCN (Jump conditional)

0001 Cy3C2C3Cq°

Az Ag Ax Ay Ay Ay Ay Ay

If Cy Co C3 Cyq istrue, Az Ay Ag Apy =Py

Ay Ay Ay Ay =P, Py unchanged

if Cy Cy C3 Cy4 is false,

(PR) =Py, (Pm)—=>Pym, (PL+2)=P_

If the designated condition code is true, program control is transferred to the
instruction located at the 8 bit address Ay Ay Ag Az, Ay Ay Ay Ay on the same
page (ROM) where JCN is located.

If the condition is not true the next instruction in sequence after JCN is executed.

The condition bits are assigned as follqws:

Cy =0 Do not invert jump condition .

Cy =1 Invert jump condition -
Co2 =1 Jump if the accumulator content is zero

Ca =1 Jump if the carry/link content is 1

C4 =1 Jump if test signal (pin 10 on 4004) is zero.

Cx Condition Table for JCN Instruction

G G G G
0 0 0 0 NO OPERATION
0 0 0 1 Jump if test = 0 (High)
) s) Jump if CY =1
0 0 1 1 Jump iftest=0orCY =1
R Jump if AC=0
0 1 0 1 Jump iftest=0or AC=0
I o i 2 JumpifCY=10rAC=0
0 1 1 1 Jumpiftest=0orCY=10orAC=0
1 0 0 0 Jump Unconditionally
1 0 0 1 Jump if test = 1 (Low)
1 01 0 Jump if CY =0
1 0 1 1 - Jump iftest=1and CY =0
I ey e Jump if AC#0
P Ao wige oy Jump if test = 1 and AC # 0
el i, L TG Jump if CY = 0 and AC# 0
1 1 14 4 Jump if test = 1 and CY = 0 and AC % 0
OPR OPA

0001 0110 Jump if accumulator is zero or carry = 1
Several conditions can be tested simultaneously.
The logic equation describing the condition for a jump is given below:

JUMP =Ty + ((ACC=0) * Co + (CY = 1) » C3 + TEST » C4) +

Ci+((ACC=0) - Cz +(CY =1) ~ C3 + TEST + Ca)

If JCN is located on words 254 and 255 of a ROM page, when JCN is executed and
the condition is true, program control is transferred to the 8 bit address on the next
page where JCN is located.

32

Mnemonic:

ISZ (Increment index register skip if zero)

1stword OPR OPA: 0111 RRRR
2nd word OPR OPA: Ay Ay A Ay Ay A AL Ay

Symbolic: (RRRR) + 1 = RRRR, if result =0
(PH) =Py, (Pm)—=>Py, (PL+2)—>PL:
ifresult #0 (Py) =Py,

Az A A Ay =Py, ApAp AL AQ 2P

Description: The content of the designated index register is incremented by 1. The accumulator
and carry/link are unaffected. If the result is zero, the next instruction after ISZ is
executed. If the result is different from 0, program control is transferred to the
instruction located at the 8 bit address Az Az Ay Az, Ay Ay Ay Aq on the same
page (ROM) where the ISZ instruction is located.

EXCEPTIONS: If 1SZ is located on words 254 and 255 of a ROM page, when ISZ is executed and
the result is not zero, program control is transferred to the 8 bit address located on
the next page in sequence and not on the same page where ISZ is located.

Mnemonic:

FIM (Fetched immediate from ROM)

1stword OPR OPA: 0010 RRRO
2nd word OPR OPA: D3 D3 D2 D3 Dy Dy Dy Dy

Symbolic:

Descriptior}:

D) 02 02 Dz—’RRRO

D; Dy Dy Dy = RRR1

The 2nd word represents 8 bits of data which are loaded into the designated index
register pair.

Input/Output Instructions

The following 1/O instructions are described as they relate to ROM and RAM devices. These same instruc-
tions (mnemonics) can be redefined for devices other than ROM and RAM,

Mnemonic: RDM (Read RAM character) .

OPR OPA: 1110 1001

Symbolic: (M) =ACC ;

Description: The content of the previously selected RAM main memory character is transferred to the
accumulator. The carry/link is unaffected. The 4 bit data in memory is unaffected.

Mnemonic: RDO (Read RAM status character Q)

OPR OPA: 1110 1100 i

Symbolic: (Mgg) = ACC

Description: The 4 bits, of status character 0 for the i)reviausly selected RAM register are transferred to
the accumulator. The carry/link and the status character are unaffected.

e

Mnemonic: RD1 (Read RAM status character 1)

OPR OPA: 1110 1101 ’

Symbolic: (Msq) = ACC :

Mnemonic: RD2 (Read RAM status character 2)

OPR OPA: 1110 1110

Symbolic: (Mg2) =+ ACC

Mnemonic: RD3 (Read RAM status character 3)

OPR OPA: 1110 1111

Symbolic:

(Ms3) +ACC

33

Mnemonic:
OPR OPA:
Symbolic:’

Description:

RDR (Read ROM port)

1110 1010

(ROM input lines) = ACC

The data present at the input lines of the previously selected ROM chip is transferred to
the accumulator, The carry/link is unaffected.

If the 1/0 option has both inputs and outputs within the same 4 1/0 lines, the user can
choose to have either 0" or *‘1" transferred to the accumulator for those 1/0 pins coded
as outputs, when an RDR instruction is executed.

Example: Given a port with 1/0 coded with 2 inputs and 2 outputs, when RDR is executed the
transfer is as shown below: 4
1302 04 Ig (ACC)
1 X X0 czo 1 (1or0) (1or0) O
Input Data User can choose
Mnemonic: WRM (Write accumulator into RAM character)
OPR OPA: 1110 0000
Symbolic: (ACC) =M

Description:

The accumulator content is written into the previously selected RAM main memory
character location. The accumulator and carry/link are unaffected.

Mnemonic: WRQ (Write accumulator into RAM status character 0)

OPR OPA: 1110 0100

Symbolic: (ACC) > Mgo _—__.

Description: The content of,the accumulator is written into the RAM status character 0 of the
previously selected RAM register. The accumulatar and the carry/link are unaffected.

Mnemonic: WR1 (Write accumulator into RAM status character 1)

OPR OPA: 1110 0101

Symbolic: (ACC) = Mg, -

Mnemonic: WR2 (Write accurnulator into RAM status character 2)

OPR OPA: 1110 0110

Symbolic: (ACC) = Mgz % '

Mnemonic: WR3 (Write accumulator into RAM status character 3)

OPR OPA: 1110 0111

Symbolic: (ACC) - Mg3

Mnemonic: WRR (Write ROM port)

OPR OPA: 1110 0010

Symbolic: (ACC) = ROM output lines

Description: The content of the accumulator is transferred to the ROM output port of the previously

selected ROM chip. The data is available on the output pins until a new WRR is executed
on the same chip. The ACC content and carry/link are unaffected. (The LSB bit of the
accumulator appears on IIOQ.) No operation is performed on |/O lines coded as inputs.

34

Mnemonic: WMP (Write memory port)

OPR QOPA: 1110 0001 A

Symbolic: (ACC) = RAM output register

Description: The content of the accumulator is transferred to the RAM output port of the previously
selected RAM chip. The data is available on the output pins until 8 new WMP is executed
on the same RAM chip. The content of the ACC and the carry/link are unaffected. (The
LSB bit of the accumulator appears on Og, Pin 16, of the 4002.)

Mnemonic: ADM (Add from memory with carry)

OPR OPA: 1110 1011

Symbolic: (M) + (ACC) + (CY) =+ ACC, CY

Description: The content of the previously selected RAM main° memory character is added to the
accumulator with carry. The RAM character is unaffected.

Mnemonic: SBM (Subtract from memory with borrow)

OPR OPA: 1110 1000

Symbolic: (M) + (ACC) + (CY) = ACC, CY

Description: The content of the previously selected RAM character is subtracted from the accumulator

with borrow. The RAM character is unaffected.

F. Accumulator Group Instructions
Mnemonic: CLB (Clear both)
OPR OPA: 1111 0000
Symbolic: 0—+ACC, 0—»CY
Description: Set accumulator and carry/link to 0.
Mnemonic: CLC (Clear carry)
OPR OPA: 1111 0001 S
Symbolic: 0-CY L
Description: Set carry/link to 0
Mnemonic: CMC (Complement carry)
OPR OPA: 1111 0011 p
Symbolic: (CY)=>CY
Description: The carry/link content is complemented
Mnemonic: STC (Set carry) . i
OPR OPA: 1111 1010 :
Symbolic: 1-CY
Description: Set carry/linktoa 1
Mnemonic: CMA (Complement Accumulator)
OPR OPA: 11110100 -
Symbolic: agazaj ag > ACC
Description: The content of the accumulator is complemented. The carry/link is unaffected.
Mnemonic: IAC (Increment accumulator)
OPR OPA: 1111 0010 '
Symbolic: (ACC)+1 = ACC

Description:

The content of the accumulator is incremented by 1. No overflow sets the carry/link to 0;
overflow sets the carry/link to a 1.

Mnemonic: DAC (decrement accumulator)
OPR OPA: 1111 1000
Symbolic: (ACC)- 1—=ACC
Description: The content of the accumulator is decremented by 1. A borrow sets the carry/link to 0,
no borrow sets the carry/link to a 1.
Example:
(ACC)
agazay ag
L
Csa S35251 So
e
cY ACC
Mnemonic: RAL (Rotate left)
OPR OPA: 1111 0101 >
Symbolic: Co —*ag. a; —>aj_y, ag > CY
Description: The content of the accumulator and carry/link are rotated left.
Mnemonic: RAR (Rotate right)
OPR OPA: 1111 0110
Symbolic: ag 2> CY, a; >a;_q, Cop—>a3
Description: The content of the accumulator and carry/link are rotated right.
Mnemonic: TCC (Transmit carry,and clear)
OPR OPA: 1111 0111 &
Symbolic: 0—ACC, (CY)—>ag, 0—>CY
Description: The accumulator is cleared. The least significant position of the accumulator is set to the
value of the carry/link. The carry/link is set to 0.
Mnemonic: DAA (Decimal adjust accumulator)
OPR OPA: 1111 1011
Symbolic: (ACC) + 0000 -+ ACC -
or
0110 ' ;
Description: The accumulator is incremented by 6 if either the carry/link if 1 or if the accumulator
content is greater than 9. The carry/link is set to a. 1 if the result generates a carry,
otherwise it is unaffected. j
Mnemonic: TCS (Transfer carry subtract)
OPR OPA: 1111 1001 i
Symbolic: 1001 = ACC if (CY)=0
. 1010 —+ACC if (CY)=1
0—-CY
Description: The accumulator is set to 9 if the carry/link Is 0.

The accumulator is set to 10 if the carry/link’is a 1.
The carry/link is set to 0.

35

36

Mnemonic: .

OPR OPA:
Symbolic:
Description:

KBP (Keyboard process)

1111 1100

(ACC) - KBP ROM —ACC
A code conversion is performed on the accumulator content, from 1 out of n to binary
code. If the accumulator content has more than one bit on, the accumulator will be set to
15 (to indicate error), The carry/link is unaffected. The conversion table is shown below.

(ACC) before KBP

(ACC) after KBP

0000 > 000
0001 > 000
0010 > 001
0100 > 001
1000 > 010
0011 > 111
0101 - - 111
0110 > 111
0111 - 111
1001 o 111
1010 > 111
180 @ > 111
1100 > 111
1101 - 111
1110 ey 111
1111 > 111

Mnemonic:
OPR OPA:
Symbolic:
Description:

DCL (Designate command.line)

1111 1101

¢

.

ag >CMg; a; =-CM,, a; —>CMj
The content of the three least significant accumulator bits is transferred to the command
control register within the CPU.

-This instruction ‘provides RAM bank selection when multiple RAM banks are used. (If no

DCL instruction is sent out, RFAM Bank number zero is automatically selected after
application of at least one RESET). DCL remains latched until it is changed.

The selection is made according to the fqllowing truth table.

(ACC) CM - RAM; Enabled Bank No.
X000 CM - RAMg Bank O
X001 | CM-RAM,; Bank 1
X010 CM - RAM, Bank 2
X100 CM - RAM3 Bank 3
X011 | CM-RAM;,CM-RAM, Bank 4
X101 CM - RAM4, CM - RAM3 Bank 5
X110 CM - RAM3, CM - RAM3 Bank 6
X111 CM - RAMy, CM - RAMg, CM - RAM3 Bank 7

£y |

IV. MCS-40 SYSTEM COMPONENTS

A complete microcomputer is composed of several inte-
grated circuits. A working knowledge of the microcomputer
system is not possible unless a basic understanding of the
function of the system components is achieved. The system
components are the set of all integrated circuits designed to
set system timing, store data, perform input)output, and per-
form all funetions which are not gontained within the CPU
chip:.

The first of these peripheral integrated circuits is
the Intel 420l'clock generator. The 4201 is a complementary
metal-oxide-semiconductor (CMOS) integrated circuit. The
integrated circuit is designed to fill the clock requirements
of the MCs-40!! micrpcomputér set. The 4201 contains a
crystal controlled osci;lator (external), clock generation
circuitry, and both twd—phase MOS and transistor-transistor-
logic (TTL) level clock driver circuits.

The 4201 also performs thé reset function required by
the MCS-40 components. It also provides the stop and single-
step function of the 4040 central processing unit.

The 4201 is packagéd in a single 16 pin DIP. The pin
configuration and a functional description of each pin is

seen in Figure 7.

!'Raphael, Howard A., MCS-40, p. iii

Pin Description

Pin No, Designation Description of Function
! 1 GND Circuit ground potential. This
12 RESET IN Input to which RC network is pin can be left floaiing for low
. connected to provide power-on power application. MOS clock
reas mon y * output will be operative, TTL

13 RESET Reset signal output which clock outputs will not.
dlrect.ly connests 15 3l MCS 40 e T Phase 1 TTL level clock output.
reset inputs.

14 1 Phase 1 MOS level clock out- 3 2 Phase 2 MOS level clock out-
put. Directly drives all MCS 40 - put. Directly drives all MCS 40
clock inputs. components.

15 Vss Circuit reference potential — ‘4 VoD Main Power Supply Pin.
most positive supply voltage. VDD = Vss - 15V t 5%.

.18 02T Phase 1 TTL level clock out- & MODE Counter mode control pin.
put. ; Determines whether counter
. divides basic frequency by 8 or
v i
& Mode 1 = Vgs
Mode 2 = Vpp
— ;
ano [16 :] or] ¥ 6 N. OPEN Input of single step circuitry to
regl which normally open contact
w2 i :] Veey of SPDT switch is connected.
e[]a W] X1 External Crystal Connection
Veo [! . 1 [] Reser X2 External Crystal Connection
4201 . o -
o [: k i L___I Lol] N. CLOSED Inp.ut of single step circuitry to
which normally closed contact
n.oeen [6 n [s of SPDT switch is connected.
x []7 10 [ack 10 ° ACK Acknowledge input to single
y step circuitry normally connec-
x2 [9] n.cLoseo : ted to stop acknowledge out-
put of 4040.
1" STOP Stop output of single step cir-

cuitry normally connected to
stop input of 4040.

38

-

FIGURE 7. 4201 CLOCK GENERATOR

39

Another peripheral integrated circuit is the Intel
4002-320 bit RAM and 4 bit output port. The 4002 performs two
functions. As a RAM it stores 320 bits arranged in 4 registers
of twenty 4 bit characters each (16 main memory characters
and 4 status characters). As an output port, the 4002 is
provided with 4 output lines and associated control logic to
perform output operations. The 4002, is a p-channel MOS device
and is compatible with all MCS-40 components;

The 4002 is packaged in a single 16 pin Dip. The pin
configuration and a function description of each pin is shown

in Figure 8. A block diagram of the 4002 is shown in Figure

9

The Intel 4289 standard memory interface is another
peripheral integrated circuit. The 4289 standard memory
interface enables thg CPU dévices to utilize standard memory
components for use as program data memory.

The 4289 also contains-a 4 bit bi-directional I/0 bus
and the necessary logié to multiplex a host of I/0 éources
to £he CPU. The read and write program meméry instructions
implemented with the 4289, allow the usér to store data and
modify program memory. The device directly addresses 4K
bytes of program memory. fhe address is obtained sequentially
during Al.- A3 of the instruction cycle. The 8 bit instruc-
tion is presented to the CPU during Ml and M2 of the instruc-
tion cycle via the four bit data bus.

The 4289 is packaged in a single 40 pin DIP. The pin
configuration and functional describtion of each pin is

shown in Figure 10.

%q il ™ ;‘_‘]o,
0 ? 15[Jo
s | o [
1o °1C) " D°1 LINES
0, 1o,
om0 W[5 12[Voo -¥
MEMORY
cLoeK
PHASE |}“q o " :]:-{:::'-uv'ao\
€0
sadedy e fomm
INI
Hg e 9 [meser

Figure 4-14. 4002 Pin Configuration.

Pin Description

Pin No.

Designation

Description of Function

1-4

67

Dg-D3

Vss

192

SYNC

RESET

Bidirectional data bus. All ad-
dress, instruction and data
commurication between proc-
essor and the RAM MEMORY
or the output port is trans-
mitted on these 4 pins.

Circuit GND potential; most
positive supply voltage.

Non-overlapping clock signals
which are used to generate the
basic chip timing.

Synchronization input signal
driven by SYNC output of
processor. ¥

RESET input. A logic 1" level
applied to* the chip, will cause a
clear of all output and control
static flip-flops and will clear
the RAM array. To completely
clear the memary, RESET

must be applied for at least 32’

instruction cycles (256 clock
periods) to allow the internal

_ Pin No.

Designation -

Description of Function

40

10 °

Chip No.

Po

l 4002 Option

refresh ccunter to scan the
memory. During RESET the
data bus output buffers are
inhibited (floating condition).

For chip selection, the 4002 is
available in two metal options,
4002-1 and 4002-2. An exter
nal pin, Pg is also available for
chip selection. The chip num
ber is assigned as follows:

Po |

WN =

1

12

13-16

-

4002-1
4002-1
4002-2
4002-2

CM

VpD

03-00

GND 0
Voo 0
GND 1

Command input driven by
CM-RAM output of processor.
Used for enabling the device
during the decoding SRC and
instructions.

Main power supply pin. Value
must be Vgg - 15V £ 5%.

Four bit output port used for
transferring data from the CPU
to the, users system. The out
puts are buffered and dat
remains stable after the port
has been loaded. This port an
be made TTL compatible.

FIGURE 8. 4002-320 BIT RAM AND 4 BIT OUTPUT PORT

41

Hho———— |
d TIMING le———0 sYNC

TITTITT e, marsdensny o |

~——0 Vpo . &

Dy O—t—-{ oM
e
D, DATA CONTROL
A BUS LOGIC AND »
|~ e —————C
Dyo—p] INOUT INSTRUCTION)
BUFFER DECODE £
}4«—~—————O
03 o—a— RST Y
ONE OF FOUR REGISTERS
MEMORY OF THE RAM ARRAY
DATA
MUX REGISTER 0
MEMORY CHARACTERO [| | W
)
' - b
DATA \ 2 !
ADDRESS out |
ouTPUT REGISTER y i
PORT AND |
DECODER I
‘ - MAIN MEMORY CHARACTERS
| x 0 THROUGH 18
: ! ADDRESS | 4
|
|
4x18 |
O 0, 0; 0, AE AEG 1 1
i MEMORY CHARACTER 15 2
DATA STATUS REG2 STATUS CHARACTER 0
IN ax4 3
REG3 -
T | [~ STATUS CHARACTERS
STATUS CHARACTER 3 J Dineeind
L L_|:__ . woms

FIGURE 9. 4002 BLOCK DIAGRAM

Pin Description
Pin No. Designation Description of Function

14 Do-D3 Bidirectional data bus. All ad-
dress, instruction and data
communication between proc:
essor and the PROGRAM
MEMORY or I/0O ports is trans-
mitted on these 4 pins.

5-8 OPRg-OPR3 The high order 4 bits (OPR) of
i lect output buffers. The the instruction or data (RPM)
ST fgé?eiz data gepneraied by the ‘ from the PROGRAM MEM:
‘ processor at Az, or during an ORY are transfe.rred to the
SRC are transferred here. 4289 on these pins.
9-12 OPAy-OPA3 The low order 4 bits (OPA) of
5 Vob1 Supply voltage for address arjd : Sl the instruction or data (RPM)

chip select buffers. are transferred to the 4289.

13-14 ¢192 Non-overlapping clock signals
which are used to generate the
basic chip timing.

idi i data bus.

36-39 1/0g-1/03 B.duecnor;al{ro'rlnouoapom o 15° SYNC Synchronization input signal

sa:a mx:nwrite PROGRAM driven by SYNC output of
ata

i MEMORY are transferred via RrOCEs3Or:
these pins. 18 CM Command input driven by

N pownr SDBY pin. Value CM-ROM output of processor.

40 Voo Used for decoding SRC and
- 15V £ 5%.
must be Vss 1/0 instructions.
17 RESET RESET input. A logic ‘1" level
\ 4 applied to this input resets the
e e .CM flip-flop and FIRST/LAST
o, E: 2 30 g Worm—mr flip-flop.
°:[]3 u] 18 IN Output signal generated by
o,]+ 3 +37[] w0y 4289 when the processor exe
oeno [s 36 [7] o . cutes an RDR or RPM instruc:
oert [8 3s ;j Veo,) e
ornz [o :]'c' - 19 ouT Qutput signal generated by the
- . 4289 when the processo
orna [n;]c, executes a WRR or WPW
orao (]9 2[]e . instruction.
ora1 [} 10 il) 20 Vss L Circuit Reference potential,
oraz [| 11 4289 IR L most positive supply voltage
- oeaa [12 $ »] A 21 PM Output signal generated by th
o[]n . [| As 4289 when the processor exe
u[]n T @ c.utes an RPM or WPM instruc
syne [s %[A ; . s
R : - 5[] a w 22 . F/L Output signal generated by the
O o 4289 to indicate which ha
e : 1~ A byte of PROGRAM MEMORY
N [j " n :] Ao is to be operated on.
v [. . , \
it ® b o = Lo 23-30 Ag-Ay \ Address output buffers. The
Vs E 2 n :] ™ demultiplexed address valun

generated by tha 4289 fro~
the address data supplied ty
the processor at Ay and A;.

FIGURE 10. 4289 STANDARD MEI.VIORY INTERFACE

43

In the following chapter, a simulation program is
developed based only upon the components presented in this
chapter. As new components become available, the simulation
program may require minor modification. However, the basic

procedure would remain essentially unchanged.

44

V. SOFTWARI AND SIMULATION

Programming of microcomputers is primarily done in
machine language. This means that programs are written as
sequences of binary numbers. Writing and debuging programs
written in machine code is a tedious process. An assembly
language is a program language which allows mnemonic operation
codes to be used in place of the binary operdtion codes. The
assembler traﬁslates these mnemonics into binary code.

As a part of this thesis a tross-assembler was written
for the Intel 4040 central processing unit. The program is
written in Fortran. A cross-assembler is an assembly language
for a computer which executes on another computer. The cross-
assembler written éxecutes on any IBM computer.., Cross—assem~
blers have become very populér for microcomputers, since most
microcomputers can not directly address. enough program memory
to use a resident assembier. -

A program listing of the cross—-assembler is seen in
Appéndix A. The crogss-assémbler is of the t&pe known as a
two-pass assembler. The first pass assigns an address to
each of the labels used in the program. The second pass of

'

the assembler generates the machine code for the microcompu-

ter. All.syntactical errors are flaged in the second pass.
The cross-assembler is a fixed column assembler.

This means that all operands must reside within certain col-

umns on the input record. There are six input fields that

the assembler recognizes. These input fields are seen in

45

Figure 11. The function of the label parameter is to identify
the address of the assembler statement. The label parameter

is an alphanumeric symbol which can be up to 3 characters

long. The operation code parameter is also an alphanumeric
symbol which can be up to three characters long. The arguments
which can be used as an operation code. are the mnemonic machine
instructions which appear in Chapter .III. One additiohal
instruction may appear in this field. The iﬁstruction is
"end". The ihstruction "end" tells the assembler that this is
the last instruction in the program. The next field is desig-
nated OPT. OPT is a single hexadecimal argument. OPT contains
one of four things. They are as follows:

. A register address.

. A register pair address.

4 bits of data.
A condition for -jumping.

Bw N

The next field is designated branch labél. The field contains
a label which is the same as a label aépearing in the label
field. This field is used for‘branéh instructions.....Lf a
branch occurs, the program will bquirected to the address of
the statement which has a label field identical to the branch
label of the instruction being executed. The lastvtwo fields,
ARGl and ARG2, are only used fbr the FIM instruction. These
two fields contain data in the form of 2 hexadecimal digits.
Input to the cross-assembler must be in the form
specified in Figure 11. The cross-assembler will produce a
pProgram listing and the machine code equivalent of the input

program. The machine code produced.is written as 2 hexadeci-

mal digits in the first 2 columns of a record. Therefore, a

OPERATION BRANCH
LABEL CODE OPT1 LABEL ARG1 ARG2

FIGURE 11. CROSS-ASSEMBLER INPUT FORMAT

Lo Pimps rig : REWIND
INPUT _ INPUT

TAG
LABEL

GENERATE
4040

CODE,

PRINT LIST

PASS 1 PASS 2

FIGURE 12. CROSS-ASSEMBLER FLOW CHART

47

l-word instruction will require 1 record, while a 2-word
instruction will require 2 records. A flow chart of the cross-
assembler logic is seen in Figure 12.

Once 'an assembler program has been written there is
no assurance that the program will work properly. An effec-
tive method of program testing is through simulation. As a
part of this thesis a 4040 system simulator was developed.

The simulator is written in Fortran, and will simulate any
4040 microcomputer system utilizing the MCS-40 system compo-
nents discussed in Chapter 1IV. Tﬁe simulator program listing
is seen in Apprendix C. The simulator requires hexadecimal
machine code as input. This program was designed so that
output of the assembler can be used as input to the simulator
without modificatién.

The simulator first reads the hexadecimal instructions
into an array (COﬁE). The simulator then prints a pseudo-
assembler listing of tHé program. The simulator now begins
simulation of the 4040 program. When the simulator.encounters
a 'OF' hexadecimal instruction, program simﬁlation is ended.
At this point the simulator prints a complete register, stack,
and I/0 port dump. A flow diagram of the simglator is seen
in Figure 13. '

Tﬁe simulator will simulate execution of all 60
instructions described in Chapter III. The only feature of
the 4040 which was not effectively simulated is the external
interrupt. External interrupts were not simulated because
there was not an effective method for implementation on the

IBM 370/145 computer used to run the simulation,

¢ READ
HEX
INSTRUCT

Y
PRINT
LISTING

+

PADD="000"

YES PRINT

INSTR -
ol 12 DUMP

= SIMULATE
PADD= INSTRUCT

BRANCH
AT Rres EXECUTE

T YES

NO

1-WORD :
% PADD=
INSTRUCT Panne 9

PADD=
PADD + 1

FIGURE 13. SIMULATOR FLOW DIAGRAM

49

Sample output of the assembler can be seen in Appendix
B. Sample output of the simulation is found in Appendix D.
The program found in these appendicies inputs 2 four bit
numbers from 2 input ports, one's compleménts the numbers,

then outputs the numbers at two output ports.

50

VI. TESTING AND APPLICATIONS

Testing of assemblers and simulators is necessary. If
an assembler or simulator does not work properly, then a pro-
gram developed with the assembler and simulator will not work
properly when installed on the actual microcomputer. The
assembler was tested by checking the, binary operation codes
produced by all mnemonic operation codes in the 4040 instruc-
tion set. THis was done by assembling a program containing
all mnemonic operation codes in the 4040 instruction set. The
output of this programcan be found in Appendix E. Testing of
the simulator was performed by comparing simulator output of
sample programs with results obtained by hand calculations.
This hand method ig inferior to comparing simulator output
with results obtaingd on a MCS—4O micracomputer development
system. However, MCS-40 microcomputer system hardware was
not available. : -

Thorough invesfigation of the MCS-40 components and
use:of the assembler, and simulator, will siﬁplify system
design of 4040 based microéomputer systems.

Applications for microprocessors range from automated
cash registers to industriél controllers. An interesting
applicatién of a microcomputer is in the area of motor speed
eentrol.

A conventional digital method used in motor speed
control is implemented with the use of a digital phase-lock
loop. This method is seen in Figufelﬁ. The conventional

digital phase-lock loop makes the voltage controlled oscilla-

REFERENCE R CONPRRE or}::{ga £
FREQUENCY FILTER ERROR
SIGNAL
F
[veo
FEEDBACK

FIGURE 14. CONVENTIONAL DIGITAL PHASE-LOCK LOOP

MICROPROCESSOR
1 R
SPEED e
COUNT COMPARE .ORIVER
s ;
e 3
COUNTER v
MOTOR
i TACHOMETER
veco

-

FIGURE 15. COMPUTERIZED DIGITAL PHASE-LOCK LOOP

52

tor frequency track that of the reference. In motor speed
control, the voltage controlled oscillator is actually a motor
tachometer. The loop will correct whenever the feedback
frequency doées not equal that of the reference. Phase and
frequenéy correction is performed by either applying an error
signal to the motor or by applying no signal at all.

With the microcomputer approach, a dedicated series
of micro-instructions implements the strategy of phase and
frequency cofrection.12 Figure 15 shows how a microcomputer
becomes an integral part of a digital phase-lock loop, and
Figure 16 is a flow chart describing one method of microcom-
puter driven motor speed control. As can be seen .in Figure 16,
when the leading edge of the reference frequency is encountered
an interrupt is sehsed. The processor turns on an error signal.
The leading edge of’the feeaback frequency signals the proces-
sor to turn off the error signal. If the motor speed decreases,
the error pulse duratidﬁ increases, thereby speeding up the
motor. Should the motor load decrease, thereby increasing
speéd, error pulse duration would‘decreaée.‘ This would result
in less average power applied. The processor now checks if
an out-of-lock condition exists. This function is performed

‘

by producing a count indicating the feedback frequency. This

»

is compared to the reference frequency. If a gross difference
exists, application or removal of the error pulse will bring

the motor into lock. Figure 17 shows the overall system

-

l2Raphael, Howard A., "Motor Control by PLL",
ELECTRONIC DESIGN, April 26, 1975, p. 54-57

53

COUNT

COMPARE F
COUNT TO R
COMMAND .

e NN /\ R>F
TURNON E

FIGURE

= RNF

16. FLOW CHART.OF COMPUTERIZED MOTOR CONTROL

54

n COUNTER

D XTAL |
[_{ h l— FARADAY
420! ¢'mu' bNF
SYSTEM |
CLOCK |
) |
¢, @, M0s)f |
1
INTERRUPT 2645 ceu : TEST INPUT
COMMON |
BUS 42 1
TO OTHER 777 |
SYSTEM 2 " |
ELEMENTS . |
4308 ROM s
WITH 1/0 |
[
l__ I
—L> MOTOR
ERAGR T DRIVER
"E
REFERENCE "R" | PROGRAMMABLE
DIVIDE BY

OPTICAL
TACHOME TER

FEEDBACK
e

B

L8

IN LOCK

OUT OF LOCK,MOTOR SLOW

ol

iR=at M

=
U

OUT OF LOCK:MOTOR FAST

FIGURE

17

SYSTEM CONFIGURATION WITH SAMPLE LOCK CONDITIONS

58

design with some examples of lock conditions.

To calculate the count, the processor executes a soft-
ware loop while the feedback signal is present. Each execu-
tion of the loop contains a fixed number of instructions, with
fixed ekecution times. Therefore, each execution of the loop
requires a fixed period of time.

The probability of equal feedback and referencé counts
is small. Therefore, a tolerance is used suéh that the feed-
back count mﬁst equal the referenge count plus or minus a
maximum count of n.

The previous motor speed control problem represents a
shortcoming of the simulator, since the example requires an
external interrupt feature and the simulator can not implement
external interrupts.

A modified cpmputerized speed control method is seen
in Figure 18. The method seen in Figure 18 requires that the
motor speed be presentéd to the microcomputer in binary form.
The program developed from the flow. diagram in Figure 18 is
seeﬁ in Appendix F. ,

The program in Appendix F first reads a 4 bit (scaled)
desired motor speed. The program then checks if the motor
speed is greater than the éesired speed. If the motor speed
is greater than the desired speed, the error pulse is turned
off. This results in less average power applied énd a reduc-
tion in speed. The error pulse is a single bit. The error

pulse is off when the output bit is "0". The error pulse is

on when the output bit is "1". If the motor speed is less

READ
DESIRED

SPEED'
! TURN OFF
TS SPEEDS ERROS
DESIRED ¥
SPEED
k4
TURN ON
ERROR
A

-

56

FIGURE 18. ALTERNATIVE COMPUTERIZED MOTOR SPEED CONTROL

51

than the desired speed, the error pulse'is turned on. This
will result in an increase in speed. The program now loops
back to the initial test. This completes the cycle with which

computerized motor speed control can be aéhieved.

58

VII. CONCLUSIONS

The software developed in this thesis is functional.
The cross-assembler generates machine code for the 4040. The
simulator simulates any 4040 microcomputer system. The only
weak point of the software developed lies in the simulator.
External interrupts could not be adapﬁed to the simulator.

Microcomputers are becoming integral‘parts of cash
registers, display panels, industrial controllers, and many
other devices. All applications bf microcomputers require
that a micro-program be developed to implement the strategy
required for the application. This thesis has provided the
4040 microcomputer user with an effective method 5f program-
ming the microcomputer system. This thesis has also provided
for inexpensive program check-out through simuiation of 4040
microcomputer systeﬁs. .

The software developed allows £he user to design
around 4040 microcomputer systems.-Thisnmy represent a limit-
ation to the design engineer, siqée other microcomputers may
be better for a givén application. This limitation is due to
the fact that the software developed is not direc£ly applic-
able to other microcomputer s&stems. The deQeloped software,
however, ‘can be modified such that it will work for another
microcomputer. This modification would mean completely
rewriting all of the software developed, but the rewriting
process would be relatively inexpensive since the program
structure remains basically the same. Only the features of

the microcomputers will differ.

Development of higher order languages is a suggested
extension to this thesis. A higher order language such as
Fortran or PL/1 could be developed. The advantage of a high
order language is that it allows the programmer.to write a
program in fewer source statements then a similar program
written in assembly language. This represents a reduction in
development time and a cost savings.. The software devéloped
in this thesis should be used to develop the.high order lan-
guages, sincé it will simplify development of the high order
languages.

In conclusion optimal microcomputer svstem performance

is only as good as the software developed by the engineer.

APPENDIX A

CROSS-ASSEMBLER PROGRAM LISTING

60

61

)
FILE: ASSEMBLE FORTRAN A} YOUNGSTOWN STATE UNIVERSITY COMPUTER CENTER
) .
IMPLICIT INTEGER (A = 7) ASSCOCIQ
CIMENSION LAREL(2000),LABACD(2000),SYNMBCL(100) ASSCC02C
) CIMENSICN NJCL(72) ' ASSCCCaC
c : ; i : : ASSECC4C
o e W £SSCOCSC
B LABEL IS AN ARRAY CCNTAINING LABELS ' ASSCOCEC
il XA oo ~ - : ASSCCLTC
C LABADD IS AN .ARRAY CONTAINING ACDRESSES CF LABELS ASSCOCRO
b .4t k ASSTCCSC
dowiC SYMBOL IS A!\j__A_R_A_{A. f_ CCNTAINING ASSEMBLER MNEYNONIC SYMBGOLS . | ASSCOLCC
c : ASSCOLLC
R - PACO IS A VARIABLE CONTAINING THE PRCGRAM ACDRESS ASS5C0120
=5 i : ASSCO130
C ASS500140
e ASSCO15C
CATA END/'ENC'/ ASS5C01€0
CATA BLANK /¢ v/ ASSCGLl7¢C
! CATA LABEL /2C00=" nx ASSCO180
CATA LABACD /2CCO%0/ ASSCC1S0
CATA SYMBOL/'NOP*, *HLT*,"BBS*, *LCRY,'CR4',"OR5"', *AN6", 'ANT", ASS5C0z2C0
: #9080, *CELYy"SBC*y*SB1* "EIN, *DIN®, *RPV*, *JCN', "FIN', 9SRC?, AS5C0210
FVFINY g JINY g "JUN®y " UMS , *INC*,*1S2",*ACC",*SUB","'LD", *XCH",*BBL', ASSC0220
SILDM ', ChRM Sy tWMP T P WRR T, TWPN Y, TR0, TWRL Y, 'WR27, ThR3Y, A$5C0230
L 2050y *RCN*, "ROR"y "ADM?*, 'RDC*y *RDOL"y"RD2','RO3*,*CLB", AS5C0240
$'CLC*y ' IAC*,*CMC*,*CNMA®, "RAL ", "RAR",*TCC*,*DAC’, ASSC0250
#YTCS*Yy*'STC', 'DAAY, "KBP +2DCL *y "END*/ AS5SC02¢e0
! BANK =1 " ASSC02170
INFILE=1 : ASSCO280
CFILE=T ; . ASSC02S50
1 g AsscCo3cce
- o e - ASSC0310
c ASS5C0320
9 PACD=~1 E : ASSCO313Q
LABKNT=1 ASSCC34C
1 FORMAT(A3,2X,A3,2X,21,A3,2Z1) ASSC0350
| CONTINUE - ; ASSCO3¢€0
M- REAC(INFILE,7,END=4)RLAB,RSYMB,OPT1,ARSYMB,ARGL,ARG2 ASSC0370
4 . ASSCC380
c ASSC039C
PACO=PACC + 1 ASSC04CO
IF{RLAB.EQ.BLANK)GO TO 2 ASSCO041C
LABEL(LABKNT)= RLAB : AS$C0420
LABACD{LABKNT)=PADD : ASSCO0430
LABKNT=LABKNT + 1 L] ASSC0440
c ASS00450
2 IF(RSYMB.EQ.SYMBOL(16))PACO_= PACD + 1 ASSC0460
IF(RSYMB.EQ.SYVMBOL(17)JPACD = PACD + 1 ASSCOAT0
IF(RSYMB.FQ.SYMBOL(21))PACD = PACD + 1 ASSC0480
IF{RSYMB.EC.SYMECL(22))PACD = PALD + 1 ASSC049C
IF(RSYMB.EQ.SYMBOL(24))PADD = PADD + 1 ASSCOSCO
IF(RSYMB.NE.ENDIGU TO 1 ASSCO510
¢ ASSC0520
$ ASSC053C
c ASSCC540
c THE _FCLLOWING SECTION GENERATES THE CCDE ASSCOSS0

62

‘\ LS 0 (O T $ENY g LS Fon N A {0) $1ve & LA 4 v g ¥ Ay IR 0 e SR
FlLE; ASSEMBLE FORTRAN Al YOUNGSTOWN STATE UNTVERSITY COMPUTER CENTER
2
v i 2 T X ; R =L L)
- 1 1 1 { £ . 3.559_05_'6,0_
C T -l B 2 5ed A a3 A By ASSCCS570
T4 REWIND INFILE ASSCCSBO
PCOLNT=C ASSC05S0
i PABRSLE 5o By fade 8 MW BB o 005, . ASSCO0&00
L STNMT=0 ASSCO61C
PACC=-1 ASSCC&20
WRITE(6,50) : : ASSCC630
- B WRITE(6,901)PAGE | . , e EFae A ASSC064C
WRITE(6,502)BANK ' r ASSCCO65C__
WRITE(6,9C3) i |) g ASSCOEE0
2 1k GO TO 51 ASSCO0670
59 WRITE(OFILE,17)CAT] ASSO0efO__
17 FORMAT(Z22) X ASSC06SC
[F(TWODAT.EQ.1)WRITE(OFILE,17)CAT2 - ASSCOT7CO
51 REAC(INFILE,7)RLAB,RSYNMB,OPT1,ARSYMB,ARG],ARG?2 ASSCO710
C ASSCC720
3 TIE ASSCC730
TWOBAT=C ASSCC74C
PACD= PACD + 1 . ASSCC75C
3 503 FORMAT(38X, "ADDRESS STMT STATEMENT*) ASSCOTEOQ
_ig01 FCRMAT(110X,*PAGE ',13) ; ASSCCT70
5C2 FORMAT(110X, 'BANK *,13) ; ASSCO780
} 504 FORMAT(4CX,23,5X,1445X,72A1) ASSCCT790
CPAGE=MCC(PALC,256) AS500800
IF({CPAGL.NE.C)GC TC 50 ; . ASSCOBI1C
) CPAGE=PALD/256 S ! ASSCO082Z0C
WRITE(6,859)CPAGE i ; ASSC0830
€39 FORMAT(/,10Xy *CCRE PAGE'y13,/) ASSCOB4O
i PCOLNT=PCCUNT + 3 ASSCO0850
£0 IF(PCOUNT.LE.55)G0 TO 83 : ASSCOBEQ
PCCUNT=0 c ASS00870
: WRITE(6,50) 5 ASSCOERO
S0 FORMAT(iHL) : ASSCOBSC
PAGE=PAGE + 1 2 ASSCC9CO
? WRITE(6,501)PAGE s ASSCCG10
WRITE(6,5SC2)BANK - ASSCO0G2C
: ' WRITE(6,9C3) : : ASSC0530
Y 83 PCOUNT=PCOUNT + 1° ASS00940
STMT=STNMT + 1 ASS00550
BACKSPACE INFILE : : ASSCCS6C
: READ(INFILE,84)NJCL ASSCUST7C
84 FORNAT(T2A1) ASSCO0980
WRITE(6,904)PACC,STMT, NJCL) ; ASSCOSSC
i CO 53 J=1,1CC ASSC1CCO
1F(RSYMB.EQ.SYMBCL(J)) GC TC 54 ASSO1C10
€3 CONT INVE v ASSOL1C20
) WRITE(6,941) ASSOL1C30
S41 FORMAT(! #2% SYNTAX #%%7¢) ASSC1C40C
GO TO 99 ASSC1050
) ¢ ASS01060
€ ASSOLCT7C
[ASSC1CEO
} 54 G0 TO (1CcO0,1CCy1C0,100,1C0,1C0,100,100,1C0,100,1C0,100,100, ASS0109C

#100,10041154116,117,118,119,120,121,122,123,124,125,126, ASSQ11C0O

63

b

FILE: ASSEMBLE .FORTRAN A} YCUNGSTCWN STATE UNIVERSITY COMPUTER CENTER
$1274128,1295131,131,131,131,331,131,131-,131,131,131,131, ASSO1110

X %131,1314131,131,131,131,131,131,131,131,131,131,131,131, ASSO112C
*13151315131,4131+131,161,8,8,8¢8+8y8+8,8+8+898+8,8,8,8,8,8,8,8, ASSCl1320
%898, 848,8¢8,8,8+898,8¢87987898,898,8,848)J ASSGC1140
. ¢ : © ASS01150
5 3C ’ . , ASSC116C
160 CAT1l= _J-1 ASSG1170

g GO TO 99 . N ASSCL1180
> 131 DAT1=J + ;q3 ASSO1190
GO .TO 99 ASSC12CQ

116 TWOCAT=1 ASSC1210

A = ASSENMBLER INSTRUCTION IS eee FIM) ASSC1220
CAT1=32 + OPT1 ASS01230

CAT2= 16% ARGl + ARG2 ; ASSC124C

) PACLC= PACD + 1 ! ASSC1250
GO 70 §5% ASSC1260

117 CONTINUE ASS01270

3 sE ASSEMBLER INSTRUCTION IS e« SRC ASSCl28ecC
CATl= UPT1_+ 33 " ASSC12SC

GO T0 95 ASSC13CO

3118 CAT1=0PT1 + 48 ASSO1310
C ASSEMEBLER INSTRUCTICN IS ... FIN ASSC1320

GO TO 93 ASSC133C

5 119 CATl= OPTL + 49 . ASSO01340
(5 ASSEMBLSR INSTRULCTION IS ... JIN ASSO135C

GO TO 99 o 3 ASSCL360

) 115 TWODAT=1 . ASSC1370
. CATL% e lsby 2 20PTE sy ¥ ASSC1380
L 2Y6 ASSEMBLER INSTRLCTIGN IS ... JCN : ASSO013SC
J CALL SUBFND (SUACOR,LABELyARSYMB,LABKAT) 2 ASSC14CC
NUM=LABACO(SUACCR) ASS01410
A=NLM/256 - ASS01420

) B=PACL/2S6 b ASSOl143C
Sy IFIANE.BIWRITE(647TT7T)ARSYMB ASSC1440
T FORMAT(' LABEL ',A3,' CAUSED PAGING-ERRCR JCN INSTRUCTION®') ASSCl450

} CAT2=NOC(NUM,256€) : ASSCLl4€0
" _PACD=PACC_+ 1 v : ASSC1470

_ GO TO 99 . ASSO1480
) 120 CALL SUBFND(SUACOR,LABEL,ARSYMB,LABKNT) , . ASSC1490
R NUM=LABACD(SUACDR) : ASSC15CO
c ASSEMELER INSTRLCTION IS eeo JUN ASSOL1510

¥ CATLl= 64 + NLN/256 : ASS0152C
TWOLCAT=1) : ASS015320
CAT2=NMOC(NUM,256) ’ ASSC1540

} PACD=PACC + 1 ASSC155C
GO _TC 99 _ ASSC15€60

121 CALL SUBFND(SUACDR+LABELsARSYMB,LABKNT) ASS01570

i ASSEMBLER INSTRULCTION IS eee JMS . ASS01580
NUM=LABACD(SUADCR) ASS01590

CATl= 60 + NLM/256 ASSO016CC

: TWOCAT=1 ASSClé10
CAT2=MOC(NUM,256) - A5S501€20
PACD=PACD + 1 ASSO1€30

U GO TO 99 ASSC164C
= 122 CAT1l= OPT1l + S6 ASSC1&5C

I £ e Y« ey %~ ’ . cae g (LA L
FILE: ASSEMBLE FORTRAN Al YOUNGSTCWN $TATE UNIVERSITY COMPUTER CenbER
b, ‘
; o e < g T ; ; : . , ; : .
_ € ashEveLER IRSTRICTION I8 s qnt) it 1 Tl T - ASSC)eo
SR B9 10y goon i W Ry B RPN A ASEE 0 —
> 123 CONTINUE . "o ; s ASSClepo
et | CATLS 112 % GPTL. ASSO1E9
R ASSCMBLER INSTRLCTION IS ... [SZ ASSC17co
o LS JWUCEATS 1. ASSCl71cC
CALL SUBFND (SUACDR,LABEL,ARSYMB »LABKAT) : ASSCl720
i NUM=LAZACC{ SLADDR) ’ ASSGIUBOR
3 CAT2=MOC(NUM,256) ASSC1740
888 FURVAT(flyngL“:,Agg _CAUSEC PAGING ERRCR IN ISZ INSTRUCTION®) ASSC175C
. A=NULNMI2ZSE o . ge o Az A£SSCL7€0
3 B=PACC/256 ; . ASSC1770
IF{ALNE. 8)leTE(6'888)ARS YMB ASSC1780
. GO TQ $9 ASSC1790
J 124 CAT1=128 + OPT1 ASSC18CO
C ASSEMBLER INSTRLCTICN IS ... ACD ASSO1810
) GO 16 99 ASSC1E20
> 125 CATl= l44 + CPT1 ASSU18120
[o _ASSEMBLER_INSTRLCTICN IS ... SUB - ‘ ASSO1R40
" 60 TG 99 ASS01850
Joo126 CAT1=160 + QOPT1 ASS01860
_C ASSEMBLER INSTRUCTION IS es. LD ASSC1H7Q
GO TO $9 : ASS01880
? 127 CAT1=176 + 0OPT1 s ASS01890
SN ASSEMBLER_INSTRUCTICN IS_XCH ASS01GCO.
GO 10 %9 o ASSC191C
Y 128 CAT1=192 + CPT1 d A55C1520
2hie ASSEMBLER INSTRLCTICON IS ... BBL ASSC1930
GO TO 99) ASS01640
3129 CAT1= 208 + CPT1 ’ ASSG1550
_C _ASSEMBLER _INSTRUCTION. IS _as. LDM ASS019¢0
GO 10 99 = : ASS01970
;161 CONT INUE A550138C
oo S e S AL ¢ ASSC1SS0
C THIS SECTION 1S WHERE END 1S ENCCUNTEREC A ASSC2CCO
) " IF(BANK.EQ.2) GO TO 1982 ASS02C10
RANK=2 ; ‘ ASSC2C2C
INFILE=2 ASSC2C30
CFILE=8 ‘ A$S5C2040
e GO TC 9 AS$502050
€ CONTINUE A ASSC2C6C
;1982 sTOP ‘ ASSC2CT70
END) ASSC2080
C 3 ASS$02090
) SUBROUTINE SUBFNC(SUADOR,LABEL yARSYMB,LABKNT) ASS5C21CG0
_ IMPLICIT INTEGER (A = 2) ASS0211C
CIMFENSION LABEL(2CCO) ; ASS502120
! CO 1 J=1,LABKNT : A5502130
IF(ARSYMB.EQ.LABEL(J)) GO TC 2 ASS02140
1 CONTINUE ASSC2150
; WRITE(6,987)ARSYMB ASSC2160
987 FORMAT(' #%% ERROR »%% ¢ ,A3,¢! NOT FCUND FOR BRANCH CESTINATION') ASS0217C
z SUACDR=J ASSC2180

) RETURN AS$S02190
- END ASS022C0

APPENDIX B -

CROSS-ASSEMBLER SAMPLE OUTPUT

TOP

Fim
SRe
RPR
CIA

" PR

You
I P
7.CH
SR
npp
CHA
PR

xXen
“FHD

T 12D YN

1-4

nn

i6

APPRESRS

CORE PARE 0

nnn
nna
nny
nou
nnn
nor
nn7
nne
nnn
nNOA
nnn
nnc
npp
nne

STMT

w4

2 I —d

-)

2

11
19

L B

1h

STATFI'FNT

TOP

eTp

F1p
Ll
PPR
I
Vpp
yeu
Ly

Ve

apr
npp
rrA
vinp
ven
Frn

O AN 4D

67

nn

22
nn

23

"EA.

Fi
E2
po
N1
B3
23
EA
Fh
F2
B1

68

APPENDIX C

INTEL 4040 SIMULATOR PROGRAM LISTING

69

70

H “ DRVISPAPT. P - . SO o . as s e e e O MMl

FILE: SIM FORTRAN Al © YOUNGSTOWN STATE UNIVERSITY CCMPUTER CENTER
IMPLICIT INTEGER (A — Z) SirecoloT-
REAL TME ' s1rC002C
CIME NSICN LCCATE(7),INDEX(2 16),CORE(2,2, 4096). SIMCCC30
BCATRAV(44,4,4,20) DATCUT(4,4) SINMCC040
cxvsnsxon 0(2) ~ SIMCCCSO
COMMON /SUB/CCRE SIMCCC6C
G e spiomn . sivccerce
C LOCATE(T7) IS AN ARRAY CCNTAINING 7 ACCRESSES FOR A SUBROUTINE SIMCCCEO
C WHICH CAN BE CALLED SIMCCCSC
c B, s sIrvCOlCC
c INCEX(2,16) IS A 2 DINENSICNAL ARRAY CCNTAINING THE 4 BIT VALUES SIMCOI11C
c WHICH ARE FOLND IN THE IADEX REGISTERS siMcol2¢C
€ SI~C0130
C CORE(2,2,4096) IS A 3 CINENSIONAL ARRAY CONTAINING lNSTRUCTICNS TCSINCOL140
C BE EXECLTED SIMCC15C
g 1ST POSITION IS CORE BANK NUMBER SIMCO1EC
C 2ND POSITION IS THE NUMBER CF THE HALF BYTE POSITION SIMOG170
¢ 3RC PUSITION IS THE ADDRESS CF THE INSTRUCTICN SINCC1EC
£ A B T e c——— SI¥CO1SC
C CATRAM(4,4,4420) IS A & CIMENSIONAL ARRAY CONTAINING CATA IN SIMCC2CO
¢ THE CATARAM S1¥C021C
g 1ST POSITION SIGNIFIES DATARAM BANK SIMC022C
¢ 2ND POSITICN SIGHIFIES CATARAM NUMHBER sirCcG23C
C 3RC POSITION SIGNIFIES RGW CF DATARAM SIMC0240
c 4TH _PUSITION SIGNIFIES COLUMN NUMBER, LAST 4 NUMBERS ARE SINCO25C
C STATLS PCSITICNS Ay SINCO2€Q
& SI¥C0270
_E CATOUT(4,4) 1S A2 CIVMENSIONAL ARRAY CONTAINING CUTPUT OF THE SIMC0280
C 16 CATARAM CHIPS, FIRST POSITICN IS BANK NUMBER, SECONC SIv¥C026C
C POSITION IS CHIP NUMBER SIvMCC3CC
B o AL J3 B VEAJARLE BpRNPERESINAAIEa. I E ol SIMCO310
c SCYCLE IS A VARIABLE THAT TELLS 1§ THE BANKS ARE TO BE SIMC0320
C SWITCHEC, SwITCh OCCURS [F SCYCLE 1S EQUAL TQ 3 SIrMCO023C
C SIMCG24C
C SBANK IS THE VARIABLE TELLING WHICH BANK IS TO BE SHXTCHED TCy S1MCO35C
C CBO MEANS SBANK=1, CB1 MEANS SBANK=2 SIMCO3€0
C et N s e o s sI¥Cco370
¢ INTEN IS A VARIABLE TELLING IF INTERRUPT IS ENABLED SINGCO280
c IF INTEN=1 INTERRUPT IS ENABLED,IF INTEN=0 INTERRUPT SI¥0C0390
G IS CISABLED — . SIMC04CO
C : SIMCO4IC
C CHIP IS A VARIABLE USED FOR SRC ACDRESSING RAM CHIP NUMBER “SINMC0420
=G ikl e e = ——— : SIMC0430
C REGSTR IS A VARIABLE USED FCR SRC ACCRESSING RAM REGISTER NUMBER SIMC0440
C SIMCC45C
+€ CHAR IS5 A VARIABLE USED FOR SRC ADDRESSING RAM CHARCTER NUMBER SINCO460
C : SIMCC4T0
C PAGE IS A VARIABLE TELLING WHICH PAGE PRCGRAM IS EXECUTING IN SIMCO4EO
G a e bt SIMC04SC
C THE FOLLOWING DATA STATEMENTS WILL INITIALIZE ARRAYS SIMCCS5CO
CATA LOCATE /7%C/ SIMCOS1C
CATA INCEX /32%C/ SIM00520
CATA DATRAM /1280%0/ SIMCCS30
CATA DATGCUT /16%0/ SIMCCS540

£ SIMCOcsC

71
FILE: SIM FORTRAN Al YOUNGSTCWN STATE UNIVERSITY CCMPUTER CENTER
C SIMCOSE0
c SIMCOSTO
€ THE FILLOWING SEGMENT LOADS THE HEXACECIMAL PRCGRAM INTC CORE SI¥MC0580
C THE_PROGRAM 1S LCCATED CN RECORDS WITH THE FCLLCWING FCRMAT SIFCCS90
C FORMAT(32(2Z1,1X)) SI¥Cc0eco
¢ SIMCO610
Lt e A b L SIv¥CCe&2C
[THIS SECTION NEEDS WRITTEN SI¥CC630
CALL CORLD i SIMCO640
C SIMCO6SO
C ; SINMCCEEQ
o PRCGRAM IS NCw LOADED INTO CCRE SIMCCET0
i 3 : SIMCOERD
[p SIFCC6SC
C PSIZE IS A VARIABLE CONTAINING PROGRAM SIZE siycorce
i 1IN NSNS 3 SIMCOTLIO
C THE FCLLOWING SUBRCUTINE CALL WILL PRINT our THE ASSEMBLER LISTIAGSI¥CO/20
c SIMCCT3C
CALL ASMLST . SINMCOT40
4 . SIMCO750
C SIMCOT7&C
19 LA A SIvCC?7C
¢ THE NEXT PART OF THE PROGRAM WILL SIMULATE RUNNING THE PRCGRAM SIMCO7€E0
(THE 4C4C SYSTEM SIM00790
s KRR oy - o SIMCOECQ
C [?28ANK IS A VARIABLE DESIGNATING INCEX REGISTER BANK SELECTEC siyccelo
C BANK IS A VARAABLE WHICH.SIGNIFIES WHICH CCRE BANK IS ACTIVATED sivcceao
G CYCLE IS A_VARIABLE WHICH KEEPS TRACK OF HOW _MANY MACHINE CYCLES SINCOB30___
C THAT IT TAKES TC RUN THE PRCGRAM SI¥COE4LOD
C , S1MC085C
= _PACD IS A VARIABLE WHICH .OESIGNATES THE ACCRESS THE MICRQ IS SI1MCCBEOQ
(PRESENTLY EXECUTING ’ SI¥CGBT0
c NOBANK [S A VARIABLE TELLING WHICH INCEX REGISTER SIMCOEED
%G 1S NCT _ACTIVATEC SI¥COesC
[SIMCOSCQ
WRITE(6,189) 2 _ SIrco9g10
189 ° FORMAT(! ENTER THE STARTIANG POSITICN FCR RAM IN ‘BANK1 THEN BANK SIMN0S20
w20 3 ; SIMC0930
REAC(5,%)B SIMCOS40
FLIP=1 _ SIMCO950
IREANK=1 : SIMCOSEC
NOBANK=2 . SIMCCS70
BANK=1 SIMCOSHO
CYCLE=0 v . SIMC0GS0
PACL=0 SIvCclCCo
__INTEN=0 sirclClC
SEANKZF] SIM01C20
SCYCLE=3 SIMCl03C
et GOMIR TN ; SIMCIC4C
$6G69 CONTINUE SIMCYCSE
PACD=PACD+1 SIMCLCEQ
CYCLE=CYCLE+1 SIMOLCTO____
SCYCLE=SCYCLE+1 SIvCICEO
IF(SCYCLE.EQ.3)BANK=SBANK SIMCLICSO

c SIMC1100

72

ILE: SIM FORTRAN Al YCUNGSTCWN STATE UNIVERSITY CCMPUTER CENTER

INSTR IS A VARIABLE CONTAINING THE FJRST 4 BITS CF THE [NSTRUCTICNSIMQl1lQ

TO BE EXECUTEC sivol12C
SIMC113C

INSTR=CCRE(BANK,1,PADD) + 1 SIMC1140

GO TO (1C0,101,102,103,104,1C5,1C6,107,108,109,11C4111,112,113, SI¥C1150
*114,115), INSTR “SINMOL160

Wor ooy pmpoge) L1 oo i s 9 : SI¥C117Q

3 THE ABCVE GC TO BRANCHES TO THE PART WHERE TKE FIRST 4 BITS OF SIMCL180
g THE INSTRUCTION ARE SIMO11S0
: g aAuRURPAIY B, = sivol2CC
) CUR2=CURE(BANK,2,PACD) + 1 si¥Ccl121C
¢ 10 (?cc.2c1.zoz.203.204.205.206.207.208.209.210 211,212,213, SIMC1220
#214,215), COR2 SINO1230

2C0 CONTINUE " SINC124C
z ASSEMBLER INSTRULCTION IS ... NCP SI¥C125C
GC 10 3559 SIMCLl2¢Q

201 PACD=3 SIMC127C
€ ASSEMBLER INSTRUCTION IS e.. HLT SIMCL12€C
WRITE(6,51) SI¥C125C

<1 FORNAT(* HLT INSTRUCTICN ENCOUNTEREC, INTERRUPT PRCCESSED?') SIMC13C0
GO TO 96659 SIMC131C

202 CONTINUE SIM01320
o ASSEMBLER INSTRLCTION IS ... BBS SIMC1330
PACC=LOCATE(1) SIMC134C

CO 123 KKK=1,6 . SIMC13%0

123 LOCATE(KKK)=LOCATE (KKK+1) —1 SINC13€0
LOCATE(7)=995659 “ SIvo1370

i 60 10 .94sg 4 SIMC1280
203 CONTINUE ; SI¥MC1390
C ASSEMBLER INSTRULCTION IS ... LCR) SIM01400
ACC={CUMLIN=-1)%2 + {BANK=1) SIMG141C

GO TO 9559 1 SsI¥Cl42C

204 CONTINUE - . SIMC1430
C ASSEMBLER INSTRLCTION IS ... OR4 : SIMO1440
CALL BIT(B4,83,82,81INDEX(IRBANK,5)) SIMO145C

el CALL BIT(C4,C3,C2,ClyACC) & : SIVMC1460
‘IF(B4.EQ.l .CR. C4.EQ.1)C4=1 |, . y SIM01470
IF(B3.EC.1l .OR. C3.EQ.1)C3=1 - SIMC1480

Ll BZ.EC.Y <CRs C2.EQ.1LE22Y SIVMC1450
IF(Bl.EG.1 .CR. Cl.EC.1)Cl=1 SI¥CL15CO
ACC=C4%8 + C3%4 + C2%2 + C1 i SIMC1510

GO TO 9569 . SIMO1520

205 CONTINUE Jon . L ML : SI¥C1530
C ASSEMBLER INSTRUCTION IS ... QRS ; SIMC1540
CALL BIT(B4+B3,B2,B1l,INDEX{IRBANK,6)) SIMC1550

GO TO 81 SIMO1560

206 CONTINUE SIMC15170
o ASSEVMBLER INSTRLCTION IS ... AN6 ; SI¥C1580
CALL CIT(B4,B3,B2,B1,INCEX{IRBANK,7)) : SIMC1590

82 CALL BIT(C4,C3,C2,C1,ACC) SIMO1ECC
IF(B4.EQ.0 .CRe C4.EQ.0)C4=C SIMOLELC
IF(B3.EQ.C .CR. C3.EQ.0)C3=C SINO1£20
IF(B2.EQ.0 .CR. C2.EQ.0)C2=0 SIMO16&30
IF(Bl.EC.0 .GR. Cl.EQ.0)C1=0 SIMO1640

ACC= C4%8_+ C3%4 + C2%2 + Cl SIM0165C

-7 .

3

FILE: SIM FORTRAN Al YOUNGSTCWN STATE UNIVERSITY COMPUTER CENTER

GO _T0_9S59 SIMO1€60

207 CONTINUE : SIMCLET0

o ASSEMBLER INSTRLCTION IS ... AN7T : SIMCLlEBC

CALL BIT(B%4,83,B2,B1,INDEX{IRBANK,8)) g SIMC1€S0
GO TO 82 © SIMOLTCO

208 SBANK=1 p SIrCc1710
SCYCLE=0 __ SIMC1720

C ASSEMBLER INSTRLCTION IS ... DBO SIMC1730

GO TO 9659 SIMC1740

209 SBANK=2 SIMCL1T5C
ASSENBLER INS!RLCTION 15 Saee DB SIMCLT7€60

SCYCLE=C ; SirMC1770

o GO TO 9659 SIMCL1T780

210 IRBANK=] SIrMOL17SC

C ASSEMBLER INSTRLCTION IS <.. SBO SINCIBCO
NOBANK=2 SIM01810

GU TG 9559 SIMC1E2C

211 IRBANK=2 SIMC1&3C

C ASSEMOLER INSTRLCTION IS ... SB1 : : SIMO1R4O
NOBANK= 1 SI1¥01850

GG TO 9559 SINOLEEO

12 INTEN=L .., SIv01e70

c ASSEMBLER INSTRLCTION IS ... EIN SIvM01880

GO TO 9659 . SI¥01890

213 INTEN=OQ : SIM01SCO

C ASSEMBLER INSTRLCTION IS nes OIN sirclslc

GO TO SS9 8 SIMO1520

214 CONTINUE | _SIM01920

C ASSEMBLER INSTRUCTICN IS ... RPN . SIFCL1540
ACCRES=256%CATOUT(1,1) + 16*((CHIP-1)%*4 4REGSTR-1) S1MC1550

24+ (CFAR=-1) + 1 i - SIMC19¢0

|, ACC=CCRE(BANK,FLIP,ACDRES) % i SIMCL9T0
\ IF(FLIP.EQ.1)F=2 . SINMOLGEC
_ _IF(FLIP.EQ.2)F=1 ¢ SI1M015S0
. FLIP=F - sivc2cce
i +GO TL 9569) - i SIM02010
215 CONTINUE 4 sir02C2C
WRITE(646875) SI¥C2C20

$876 FORNMAT('1',///,40X,* REGISTER DUMP') SIMC2C40
TME=CYCLE #* 10.8E-6 ; SIMC2CS0
WRITE(6,1987)CYCLE,TME 1 SI¥G206C

1987 FORMAT(///41%X,' SIMULATICN REQUIRED®,19,*'CYCLES',/, SiMg2cTC
___®1X,' THIS IS APPROXIMATELY', E15.7,* SECCNCS CPU TINME') Sirc2C80

9875 FORMAT(///," REGISTER 0O 1 2 3 4 5 6 7 8 9 ABCCEF") SIMC2090
WRITE(6,9875) SINMC21CO
leTE(b.QB?é)(INDEX(l J)ed= l.lb) SIM02110

9874 FURMAT(' BANK 1 1,1622) SIM02120
WRITE(6+,9873) (INDEX(2+J)9J=1,16) : SIM02130

873 FORNMAT(' BANK 2 1,1622) S1¥02140

: WRITE(6,9872)ACC SIMO2150
9872 FORMAT(///,* THE VALUE OF ThE ACCUMULATCR IS «es'y22) SINM0O21€0

. _WRITE(6,98711)CARRY SIVC2170

98711 FORMAT(//,* THE VALUE OF THE CARRY FLIP=FLOP IS eee'922) SIMC2180
WRITE(6,9871) SIMO2190

S871 FORMAT(*1°%,///,40X,* RAM QUTPUT DUMP') SIMC2200

74

TLLE: SIM ECRTIRAN Al YOUNGSTOWN, STATE UNLVERSITY, COMPUTER CENTER
WRITE(6,9870) SLr02210
3870 FORMAT(//,* CHIP NUMBER ',* 0, 172 3¢} SI¥C222¢,
£O S8EB K=1,4, . ., . .. el sivc223C
s RIGEE T SI¥G2240
WRITE(6,9865)KK, (DATCUT (K, J).J 1,4) g SIMC225C
7869 FORMAT(' COMMAND LINE®',12,' ¢,422) SLMC22¢&0
3868 CONTINUE SIMC227G
WRITE(649860) . : SIMC2280
3860 FORMAT(*1',///,35X, "ACORESS, REGISTER DUMP') ' SI¥C225C
e COLBBELER=1 5T SIMC23CQ
RRITE(6,9859)K,LOCATE(K) - — SimM02310C
7859 FORMAT(® ADCRESS STACK LEVEL NUMBER *412,* IS ACCRESS *,23) sIvcz32c
3861 CONTINLE . S1¥c2213Q
WRITE(5,9858) ' SIMO2340
1858 FORMAT(' CO YCU WANT A DATA RAM DUMP?? - 1=YES,0=NC') SING235¢C
o _REAC(5,%*)CON SING21360
[F(CONLNE.1)STOP SIM02370
CO S840 COMLIN=1,4 SIMC2380
o _WRITEl6,585C) : S1¥C2250
3850 FORNAT(*"1',4CX, "CATA RAM DUMF') _ : SIMC24C0
WRITE(6,9845) SIMC2410
3849 _FORMAT(///,*' RAM_ACDRESS 0123456789 ABCDEF*) SINI2420
COM=CCML IN-1 SI¥02420
WRITE(6,9835)C0OV ' SIM02440
7839 FORMAT(* COMMANC LINE NUMBER®,12) : SIM0245C
CO S€40 CHIP=1,4 SIM024€0
CH=CHIP-1 A SI¥02470
CG 9840 RCGIST=1,4 7 ; SINC248C
RE=REGIST-1 S1rC245C
WRITE(6+,98391)CH, RE.(DATRAM(CONLIN CHIP, REGIST I)yI=1,16) SImMC25CO0
78391 FORMAT(* CHIP',12,¢ REGISTER',IZ,leZ) SI¥02510
3840 CONTINUE SI¥C2520
CO 9820 CCMLIN=1,4 ; 4 SI¥C2510
. WRIBEGS9850FL T ; SINC2540
WRITEL6,981C) sivc2ssc
}810 FORMAT(' STATLS CHARACTER G 1 2 3¢) . SIMC25¢€0
COM=COMLIN=1 ‘ : SLpe2s70
WRITE(6,9813)COV . SIM02580
1819 FORMAT(* COMNMAND LINE. NUMBER'.IZ) SI¥0259C
CO 9820 CHIP=1,4 SIMO2600
CH=CHIP-1 : SIMC2€¢10
CO S820 REGIST=1,4 ‘ SINC262C
RE=REGIST~1 SIyc2630
WRITE(6,5809)CH,RE, (DATRAM{CCMLIN,CHIP,REGIST,1)41=17,20) SIN02¢40
1809 FORNAT(' CHIP',12," REGISTER*y12,1X,422) SI1M0265C
7820 CONTINVE __ SIM02¢60Q
sTCP SIM026170
{01 CONTINUE® - SIMO26R0
; ASSEMBLER INSTRLCTION_ IS ... JCN Sivc2¢sce
PAGE =MOC((PACD+2),256) SIr¥Cc27C0
ADDRES=256%PAGE + 16*CORE(BANK,1,PACD+1) + CORE(BANK,2,PACD+1) SIMC27:0
CYCLE=CYCLE_+ 1 Sir02720
SCYCLE=SCYCLE +1 S1vC273C
CORD=CORE(BANK,2,PADD) + 1 SIMC2740

PACD=PACD+1 SIMG2750

/i

’ S P Sl ALY A L, 4 & L S CK I S | 2RO] A 280) EE e prypres e
FilE: sim FORTRAN Al YOUNGSTOWN STATE UNIVERSITY COMPLYER CENYER
43 FOPNATJ_'___INPUT A_VALUE.FQR TEST') SIMO2TE0 -
GO TO (5C0,5014502,503,504,5C5,5C6+,507,5C8¢509551C,511,512,513, SIMC2770
*514,515),C0ORD SI¥02780
—==2Q0L G0 HEIGG9 1 ., i Ll - . SIVE2 760
501 WRITE(6443) i TR VR T ; sIv¥c28co
READ(S,*)TEST ' SIMC2810
IF(TEST.EQ.Q)PACD=ACDRES SIN02820
. GO TO 9999 . e S1v02830
5C2 IF(CARRY.EQ.1)PACD=ADDRES SIvCc2e4C
GO TO 9599 ; SIMC285C
503 WRITE(6,43) .) S ooy . SINC28&0
REAC(S,*)TEST ' SIMC28TC
bl IF(TEST.EC.C_.OR. CARRY.EQ.1)PADD=ACCRES SIMC2E80
GO TO 9659 . SIM02850
504 IF(ACC.EC.O)PACC=ADDRES SI¥026C0
GO TG 9559 SI¥0291C
505 WRITE(6+43) : : SI¥C262C
REAC(S,¢)TEST SIMC2930
IF(TEST.EQ.0 .CR. ACC.EQ.0)PACD=ACDRES SIMO254C
GO TO 9559 SI¥C2655C
5C6 IF(ACC.EC.0 .CR. CARRY.EQ.1)PACO=ADORES SIMC2GEQ
e GO TG RQG GG F FALE & | BTN ; SIMC2570
507 WRITE(6,43) === SIMQ29E0
REAC(S,*)TEST SI¥025SC
IF(ACC.ER __,gg__caaav EQ.l .OR. TEST.EQ.Q)PACD=ACDRES SIMC3CCO
GO TO 9559 SIMC3C10
508 PACD=ADDRES ; SIM03020
____GOILTei19999 ¢ : SI1¥M03C30
509 WRITE(6,43) ! SI¥03C40
REACIS+#)TEST - i SIM03CS0
IF(TEST.EQ.1)PACD=ACORES SIM03C60
GO TO 9569 SIMC3CTC
510 IF{CARRY.EQ.C)PACD=ACDRES 5) S1MC3Ce0
GO TO 9556 ’ s SIM03090
511 WRITE(6,43) . SIMO31CO
REAC(5,%)TEST SIMC311Q
v _IF(TEST.EQ.1l_.AND. CARRY.EQ.O)PADD=ARCRES_ - - SIMC3120
GO TO $5S9 SIMC3120
512 IFIACC.NE.O)PADC=ACDRES SIM03140
GO TO 9$99 : SIMC315¢C
513 WRITEL6443) : 3 SIMC31¢0
REAC(S,*)TEST SIM03170
IF(ACC.NE.O .ANC. TEST.EQ.1)PACD=ADCRES SIMC3180
GO TO 9569 , SIMC3190
S14 IF{ACC.NE.O .AND. CARRY.EQ.C)PACC=ACCRES SIM032CO
. GOLFO 995y L] S1M03210
€15 WRITE(6,43) SIM0322C
REAC(5,%)TEST SI¥0323C
[F(ACC.NE.O .AND. CARRY.EQ.C .AND. TEST.EQ.l)PACC=ACCRES S1¥03240
GO TO 9559 SIM03250
102 CONTINUE SIM0326C
C ASSEMBLER INSTRLCTION IS ... FIM OR SRC S1¥c3270
COMPUT = PACC+1 SIM03280
REG=CORE(BANK,2,PADD) SIMC3290

DECIDE=MOD(CCRE(BANK,2,PADD),2) S1M033C0

FILE: SiM FORTRAN A}

IF(CECICE.NE.C)GO,TO.83 .,

76

YOUNGSTCWN STATE UNIVERSITY COMPUTER CENTER

S{MC3310

c ASSEVMBLER INSTRULCTION .IS ... FIM
INCEX(IRBANK,REG#+1)=CORE (BANK,1,COMPLT)
INDEX (IRBANK yREG+2)=CCRE (BANK,2,CCMPUT)

S{r0332¢C
sirc232g
SIMC3 340

o CYCLESCYCLE®*]
SCYCLE=SCYCLE+L
PACU=PACD+]

SIMC3350
SI¥C3360
SIrC337C

TF((REG+1).LE.81GO TO $599
INCEX(NOBANK sREG+1)=INDEX{ [RBANK,REG+1)
INCEX(HUBANK,REG+2) =INDEX (IRBANK ,REG+2)

GO TO 9559
c ASSEMBLER INSTRLCTION IS ... SRC
€3 CHIP=INCEX(IRBANK,REG)/4 + L __

SIMG33R0
SIM63390
SING34CC
SL¥C3410
SINC3420
SIM03430

REGSTR=MOC(INCEX(IRBANK,REG) 41 + 1
CHAR= INDEX(IRBANK,REG#1) + 1
6Q 70 9559

103 CONTINUE
c ASSEMALER INSTRUCTION IS ... FIN OR JIN
CECIDE=H O (CCRE (BANK,2,PADD) 42)

REGIST=CCRE(BANK,2,PALC)
IF(CECICE.EC.1)IGO TC 84
REGIST=REGIST + 1

SINC3440
SIMC345C
SINC34£0
SIM0347C
SI1C3480
SIMC345C
SIMC35C0
SIN03510
SIVC352C

C ‘ASSEMBLER INSTRUCTICN IS ... FIN
PAGE=PACC/25¢ '

ACCRES=256%PAGE + 16%INDEX(IRBANKy1) +

INDEX(IREANK,2) ¢ 1

SIve353C
SIM03540

SIM0355C

INCEX(IRBANK,REGIST)= CCREI(BANK,1,ACCRES)
INDEX{IRBANK yREGIST+1)=CCRE(BANK,2, ACCRES)

LYLLESCYCLEM] Lt

SCYCAF=SCYCLE+L
IF(REGIST.LE.8)GO TC 6699

INCEX(MCPANK,REGIST)=INDEX(IRBANK,REGIST) _

SINC35¢€0
SIMC35170

SIM03520

$I1r035SC
SI¥C3¢eCO

SIM03€e10

[ST+1)

SIM03620
SIre362C

INDEX(NCBCANK, REGIST*I)-INDEX(IRBANK,REG
GO TO 96659

g4 PAGE=(PACC + 1)/256

C ASSEMBLER INSTRLCTION IS ... JIN

SIMC3¢6EC

ACCRES=256%*PAGE + 16°INDEX(IRBANK REGIST) + XNDEX(IREANK,REGIST*I)SIVO3660

4 PACC=ADCRES

S MO IETE e

GO TC 9559 . d
1Cé4 CONTINUE
C. ASSEYBLER INSTRUCTICN IS <.. JUN

SIMC3e8o
SIMC365SC

CYCLE=CYCLE+1
SCYCLE=SCYCLE#+ 1

SIrvC3TIC
SINMC3720

PACC= CORE(BANKpZ'PADD)‘2560CCRE(BANKolvPACC*l)‘lé*CCRE(BANK.ZoPACDS(MC}730

#01)
GO TO 9999
105 CONTINUE 3
(& ASSEMULER INSTRLCTION IS ... JMS

LOCATE(T)=LOCATE(6)
LOCATE(6)=LOCATE(S)

LOCATE(S)=LCCATE(4)
LUCATE(4)=LCCATE(3)
LOCATE(3)=LOCATE(2)

LOCATE(2)=LOCATE(1)
LOCATE(1)=PACD+1
PACC=CORE(BANK,2,PACD)*256 + CORE(BANK,

1,PACO+1)%16 +

SIM03740
SIMC3750

SINC37¢0

SIMC3770
SIMO3T7EQ

SIMO376C

SIMO3HCO
SIM03810

SI¥03820

SINMC3E30
SIMC3840
SIM03850

SI¥MC3¢4cC

SIM0370C

1%

FILE: STM FORTRAN Al YCUNGSTOWN STATE UNTVERSITY CoMPLYER CEXYER
«CORE (BANK,2,PADD+1)., syvo3ako
CYELEACYCLEMT , 0" L e BT e b SI¥03870
SCYCLE=SCYCLE+1 b ot ' sivc3eeo
T 60 .10-4S59 SIM0385C
106 REGIST=CCRE(BANK,2,PADD) + 1 - S1¥035C0
c ASSEMBLER INSTRULCTION IS w.. INC ~ siro3sic
INCEX(IRDANK,REGIST)=INCEX(IRBANK,REGIST) + 1 S1vC3520
IF (INDE X (IRBANK,REG[ST) .EQ. 16) INCEX (IRBANKREGISTI=0 S1¥C3530
IF(REGIST.LE.8)GO TC 9399 S1¥03640
- INCEX{NGBANK , REGIST)-INDEX(IRBANK.REG!ST) SIM03S5C
GO TO §6G9° SINCISEQ
107 CONTINUE SIMC3970
c ASSEMBLER INSTRCUTION IS .ea ISZ . . SIM039EQ
CYCLE=CYCLE+1 SIMC355C
SCYCLE=SCYCLE+1 3 ST¥C4CCO
REGIST=CCRE (BANK,2,PADD) + 1 : SI1M04010
INDEX (IRBANK,REGIST)=INCEX (IRBANK,REGIST)41 S1¥04C20
IF(REGIST.GT.E) INDEX(NCBANK,REGIST) =INDEX(IRBANK yREGIST) S104C3C
IF(INDEX(IRBANKyREGIST) <EQ.16) INDEX (IRBANK,REGIST)=0 S1MC4C40
IF(REGIST.GT.8) INDEX(NGBANK REGIST)=INDEX(IRBANK,REGIST) | SI¥04G50
PACC=PACC+1 SI¥04CEC
1F(INDEX (TRBANK,REGIST) .EQ.C)GA_TQ §$99 SIN04CTC
PAGE=(PACD + 1)/256 SIMG4CBE ”
ADDRES=256%PAGE + 16¢CORE(BANK,1,PACC) + CORE(BANK,2,PACD) SIM04050
PACC=ADCRES_ SIMC41CO
GO TO 96S9 ' SIFQC4l1lC
108 REGIST=CCRE(BANK,2,PADD) + 1 SI¥04120
T - ASSEMBLER INSTRLCTION IS ... ADD_ . SIMG4120
ACC=ACC + INCEX(IRBANK,REGIST) + CARRY S1M04140 |
1F(ACC.GE.16)CARRY=1 SIN04150
IF(ACC.GE.16)ACC=ACC— 16 5 SivO4le0
GO TO 96%9 SIM04170 ‘
109 CONTINUE - : SIMO41E0
€ T amenmes b Ty o : SIMC41SC
¢ ASSENBLER INSTRLCTION 1S ... SUB S1M042C0
REGIST=CCRE (RANK,2,PADD) + 1 . SIMC421C
CINCX=15 - INCEX(IRBANK,REGIST) : SIM04225
1F (CARRY.EQ.C)CHEK=1 : S1M04230
IF(CARRY.EQ.1)CHEK=0 S1MC4240
ACC=ACC + CHEK +CINCX S1M04250
CARRY=0 ; : S1MC426C
IF(ACC.GE.16)CARRY=1 S1MC4270
ACC=MOD (ACC,1€) SIMC4280
GO TO 9569) : S1M04290C
110 REGIST=CCRE(BANK,2,PACD) + 1 SIM043CC
c ASSEMBLER INSTRUCTION IS eas LD SIMC4310
ACC=1NDEX{ IRBANK REGIST) SIMC4320
GO TG 9599 SIM04330
111 REGIST=CCRE(BANK,2,PACD) + 1 ; SIVC4340
C ASSEMBLER [NSTRLCTION IS «ee XCH SlP’C4350
IHOLD=ACC SIMC43¢€0
ACC= INDEX(IRBANK,REGIST) SIM04370_
INCEX([RBANK,REGIST)=1HOLD SIMC438C
IF(REGIST.GT.8) INDEX(NOBANK,REGIST) =INDEX({ IRBANK yREGIST) S1M04390

GO TO 96S9 SIM044C0

78

FILE: SIM FORTRAN A} YOUNGSTCWA STATE UNIVERSITY CEMRUTER CENTER
)

112 ACC=CGRE[BANK,2,PACD) SIM04410
c ASSEMBLER.INSTRLCTICN IS ... BBL SLNC4420
PACD=LUCATE(]) . SI¥C4420

s N O _L14Cl _JJJ=1.+6 SIMC4a440
1401 LOCATE(JJJ)=LOCATE(JJJ¢L), ‘ . SLM044SC
GO TO 9669 : e : SLF0446C

113 ACC= COR&(HANK.Z.PACD) X ik " SIMC44TQ
' ASSEMBLER | INSIRLCTXQN [S,..q L AT R T SIMC44EQ
GO TO 9399 SIM044S0

114 CCRC=CORE(BANK,2,PACC) + 1 SIMC45CQ
GO TO (3CCs3C14302y3C2+3C493C5,306+307,3C8,309+31Cs311,312,313, SIvC4S10

: #114,315),C0RC SIM04520
115 CORC=CORE(BANK,2,PACD) + 1 SIM04530
GO TO (4C0y4C1y402+403,40494C5, 406'407.408 40994105411,412,413, SING4540
$414,415),CORC : SIMC45S0

400 ACCEONLL.GE.A . SINCA45€0
C ASSEMBLER INSTRUCTION IS ... CLB SIMC4STC
CARRY=0) SIY04SEQ

GO TO 9959 S1¥C4550

401 CARRY=0 : g SI¥046CO
o ASSEMBLER INSTRUCTION IS ... CLC SINO4610
GO TO 9569 SIrC4620

402 ACC=ACC+1 SIMC4E30
o ASSEMBLER INSTRUCTION IS ... IAC SIMC464C
_IF(ACC.LE.15)G0 TO 5999 SIM046SC
ACC=0 i SI¥04eEQ
CARRY=1 o ; SINC46T70

GO TO 9569 . SIM04 680

403 IF(CARRY.EQ.1)C=0 ~ SIM04690C
(i ASSEMELER INSTRLCTION IS ... CMC SIMC4TCO
IF(CARRY.EQ.C)C=1 v SIMC4T10
CARRY=C ; SIM04720

GO TG 9559 -] SIM04 1730

__ 404 ACC=15-ACC _ ; SIMC474C
C ASSEMBLER INSTRUCTION IS ... CMA SIMC4750
GO TO 9569 - , SIMC4TEQC

__40s0 CENCGAMLL _ , : SIM04170C
[ASSEMBLER INSTRLCTION IS <.. RAL 4 SINC4780
ACC=MOD(ACC,8)%2 + CARRY SIMQ4790
CARRY=C/8 SIM04HB00

GO TO 9959 _ . SIM04E10

4C6 C=MOD(ACC,2) ' SIMC4B20
o ASSEMOLER INSTRLCTICN IS ... RAR SI¥04830
ACC=ACC/2 + CARRY#*8 ; SIMO4E4O
CARRY=C : SIN048S5C

GO TO 9559 SIMC48EQ

407 ACC=CARRY SIMC4870
o ASSEMBLER INSTRUCTION IS ee. TCC SIMC4ERD
CARRY=0 : SIM048SC

GO TO 9959 SI¥04SCO

408 CONTINUE - SIM04G10
o ASSEMBLER INSTRLCTION IS ... DAC SIM04G20
ACC=ACC + 15 S1M04SG30
CARRY=0 SIMCGS40

1F(ACC.GE.16)CARRY=1 SIM04650

79

£ &Rt 2281 e Jue N A b, . AR o 2005 O N T A0 I8 R e AF 7 S R) W K
FILE: SIM - FORTRAN Al YOUNGSTOWN STATE UNIVERSITY CCMPLTER CENTER

) T G T O o R T L e R R T i IR

: ACC=MODAACE, 160 (. . $Ir049ED

GO TO 9559, (,, i SIN04ST0

) 409 CONTINUE ,, . SINC4SE0
C..., ASSEMBLER 1nsrRLcronLst3.. 1CS ; SIM04S90
IF(CARRY.EQ.Q)ACC=9 , SIrosCCo

PR N e IFICARRY.EQ.1)ACC=10, . sIrgscl1ce
CARRY=0 ., _ ‘ i g SIrPCSC2C

GO TO 9559 SIMQSC320

} =gl CARRY=1 i SIM05C40
C ASSEMBLER lNSTRLCYICN 8 .. STT ot oW m b g IR T Ty b SIMOSCSC

GO T0O 955§ SIPCS5CEQ

to4l1 [F(CARRY.NE.1l .AND.ACC.LE.9)GO TO. 9999 SIM0O5CT70
-G ASSEMBLER INSTRUCTICON IS ... DAA ; : S s SIMOS5080
ACC=ACC-10 SIMC5CSO

i IF(ACC.GE.6)CARRY=1 ; SIMCS1CO
IF(ACC.LT.0)ACC=ACC+16 SIMCS110

GO TO 9659 ; SIMDS120

i 412 C=ACC SI¥C5130
C ASSEMBLER INSTRULCTION IS ... KBP : ; SIMCS5140
ACC=15 SI¥MCS5150

; IF(C.EQ.C)ACC=0 SIMO5160
IF({C.EQ.1)ACC=] SIMCS1TC
IF(C.EQ.2)ACC=2 S1MCS5180

! IF(C.EQ.4)ACC=3 . S1M05190
IF(C.EQ.BIACC=4 e SIM052CC

GO TO 9559 SIvC5210

413 1F(ACC.GE.8)COMLIN=ACC~7 : SI1vC5220
=6 ASSEMBLER INSTRULCTICON_IS ... DCL .~ SI¥0S5230
IF(ACC.LT.8)CCMLIN=ACC + 1 : SIMC5240

GO TO 9399 y SI¥0525¢C

__ 414 CONTINUE __ - SI¥CS2€Q
= . 415 WRITE(6,95) = ; SIM05270
- ' 95 FORNMAT (! ILLEGAL COMMAND HEXIDECIMAL FE OR FF, EXECUTION TERMINASIM05280
. *¥TING') ’ SIM05290
Y STCP e A . SIM053C0
i ¢ 300 DATRAM(COMLIN,CHIP,REGSTR,CHAR)=ACC SIM05310
s ASSEMBLER INSTRLCTICN IS WRM SI1MC532C
€O TO 9559 S11r05220

201 CATCUT(CCMLIN,ChIP)=ACC : SIM0S340
e WRITE(6,7836)CONLIN,CHIP,DATOUT(COMLIN,CHIP) SIM05350
7869 FORMAT(* THE VALUE FCR RAM PCRT # *,12,% CONMLIN # *,124*% IS *,12) SINMC5360

o ASSEMBLER INSTRUCTICN IS WMP . . SIMC5370

— B0 T0 9559 SIMCS380
302 CONTINUE SIM05390

c ASSEMBLER INSTRLCTION 1S ... WRR SIMC5400Q
ACCRES=16%((CHIP=1)#4 + REGSTR-1) +CHAR-1 SINOS41Q
WRITE(6,21)ACORES,ACC S1MC5420

21 FORMAT(! THE CUTPUT VALUE FOR PORT#®,l4,* IS*,13) SIMC5430
GO B 9659 wp fpt 20N 18 SIMCS5440

203 CONTINUE SIM05450

c ASSEMBLER INSTRLCTION 1S a.. WPM SIM0546C
ACDRES=256%CATOLT(1,1) + 16%((CHIP=1)%4 + REGSTR-1) + CHAR~1+1 SI¥CS470
CHEK=ADCRES-1 SIMC5480
IF(B(BANK).GT.CHEK)GO TQ 33 SIM05450

CORE(BANK,FLIP,ACDRES)=ACC SIMC55C0

—_———

80

FILED SIN FORTRAN 41} YOQUNGSTCWN STATE LNIVERSITY CCMPUTER CENTER
)
IF(FLIPEQ,1]F52 SIMDsSYa.
IF(FLIP.EQ.2)F=1 : SIM05520
FLIP=F. S[¥c551Q
e B0 8 9999 i : SI[MCS5%40
23 WRITE(6,34 BANKyCHEK : : SIM05550
24 FORMAT(* PROGRAM BCMBED WPM TRIED TO WRITE IN RCM BANK',12,' AC SIMC5540
%CRESS ',13) : SIMC5570
ST0P - SIMC5580
204 OATRAM(CCMLIN,CHIP,REGSTR,17)=ACC SIMUS5560
. ASSEMBLER INSTIRLECTIGN 1S ... WRO SINCSECH
GO 10 9699 SIM0561C
209 GATRAM(COMLIN,CHIP,REGSTR,18)=ACC i SIMC5¢2C
c ASSEMBLER INSTRUCTICN 1S WR1 ; SIMOSER0
GO TC 99%9 . SIMCS64C
1C6 CATRAM(CCMLIN,CHIP,REGSTR,1S)=ACC S1”0%¢650
o) ASSEMBLER INSTRLCTION IS e.. WR2 SIMCS5¢EEQ
GO TG 9559 SIM05&70
3107 CATRAM(CCMLINJCHIP,REGSTR,20)=ACC . SIMC568C
& ASSEMALER INSTRLCTION IS ... WR3 SINOSESC
GN 10 9359 . A SIMCS700
208 CONTINUE SIMCS5T710
€ ASSEMOBLER INSTRLCTION IS ... SBM SIr¥cs572¢C
CINDX= 15 = CATRAM(COMLIN,CHIP,REGSTR,CHAR) SIMCST20
[F{CARRY.EQ.O)CHEK=1 SIM05740
IF(CARRY.EQ.1)ChHEK=C SIM0575¢C
ACC=ACC + CHEK + CINCX —— SINMCS5T60
CARRY=0 Y sircsr7C
IF(ACC.GE.16)CARRY=1 ’ SIMOST780
ACC=FUD(ACC,1€) SIMOSTSC
GO T0 9659) sirCsace
309 ACC=DATRAM(CCMLIN,CHIP,REGSTR,CHAR) S1”05410
(5 ASSEMBLER INSTRULCTICN IS «.. RDM SIM0OSB20
GO TO 9669 = . SIMOSE3C
210 CONTINUE it A SIMCS5840
C ASSEMBLER INSTRUCTICN IS RCR SI¥05850
ARCRES=1&%((CHIP-1)%4 + REGSTR-1) *CHAR-I SIMOSBEQ
WRITE(6,20)ACCRES) SIVMCSET70
Z0 FORMAT(* INPUT A4 VALUE FOR INPUT PCRTA *,13) : Sircsaee
REAC(5,%)ACC SIN0SESC
) GO TO 9659 SI¥C55CC
311 ACC=ACC +DATRAM(COMLIN,CHIP,REGSTR,CHAR) + CARRY : SIM05910
& ASSEMBLER INSTRULCTICN IS ... ADM s SIM0592C
IF(ACC.GE.16)CARRY=1 : SIMC5530
IF(ACC.GE.16)ACC=ACC-16 - ; S1MCS5640
GO TC 9559 SIMCSGEQ
312 ACC=CATRAM(CCMLIN,CHIP,REGSTR,17) SIMOS9€0Q
C ASSEMBLER INSTRUCTICN IS <. RCO SIMC557C
GO TO 9569 SIMC5980
213 ACC=DATRAM(COMLIN,CHIP,REGSTR,18) : SINCS5SSC
C ASSEMBLER INSTRLCTICN IS ee. RDl sivcecce
GO TO 9659 SIrC6C10
214 ACC=CATRAM(CCNMLIN,CHIP,REGSTR,19) SI¥C602C
C ASSEMBLER INSTRUCTION I eres RD2 SIMC6C30
GO T0O 9569 SIMC604C
215 ACC=DATRAM(CCMLIN,CHIP,REGSTR,20) SIMC6ECSC

e e T Ay \) Vot 1y

81

SIM . FORTRAN Al YOUNGSTCHN STATE LN!VERSITY COMPUTER CENTER
TR RO T ! L T ET E

G ASSEMBLER | xnsvn;crrcw IS «.. RD3 s}ygggkg
GO, 10 9559 SINC6CTO
ENC, S1vC6CE0

C, : SIMC60SEe

o SUBROUT INE 317184.83.82 Bl'PASS)|. s P EA N g ! N s]
IMPLICIT INTEGER (A - Z) SINO611C

c gk s : SI¥Ce6120

G . THIS SUBROUTINE DISASSEMBLES.A HEXADECIMAL DIGIT 'INTO 4 BITS SIMC6130

C B84 BEING THE MOST SIGNIFICANT SINM06140

(d SIMO615C
B4=0 SINMC61£0
83=0 SIMCELT0
8220, , SIM06180
81=0 SIM061SC |
IF((PASS=T7).GE.1)B4=1 SIMC62CO
CH=PASS - B4*8 SI¥C6210
IF((CH=-3).GE.1)B3=1 SIMC6220
CH=CH —-B3%4 SIM06230 t
IF((CH-1).GE.1)B2=1 SIVC6240 w
Bl=CH-B2%2 SIMC&250
RETURN SIMC6260
END SI1M06270

82

EILES ASMLST FORTRAN Al YOUNGSTOWN STATE UNIVERSITY ¢OMPUTER CENTER
)
SUBROUTINE ASMUST., woiee ot s ASMCOCLG
IMPLICIT INTEGER (A — Z) AsMCCC2C
COMMON /SUB/CCRE ASNMCCC30,
DIMENSICN CORE(2+2,4096) AS¥CCO04Q
CTMENSION: LABEL o0 BT .o - . ASMCCCSC
CATA LABEL/'NCP 'y "HLT', BBS"y*LCR*"y"CR4 ", "0RS","ANG",*ANT", : ASMCCG&C
5'CBC'y'DRL1*,*SBC*,*SBLY, *EIN', 'DIN',*RPNM*, *JCN', *FIN',*SRC", ASMCOCT70
"FlN'.'JXN'.'JUN'.'JNS' TINC*y*ISZ*y*ACC*y*SUB%, LDy *XCH*,*BBL*y ASMCOCSO
EOLCNMY P WRME, TRMP Y, TRRRY, TRPN T, 1RO, *WRL Y, "WR2Y, "hR3 ', ASMCOG90
% 1S3V, ERCMY, PROR Y, YADNM?, 'RDC*, 'ROL','RD2*, *RO3 ', 'CLEB", ASMCOLCO
BICLCYy ' IAC*, *CMC*, *CMAY, "RAL', "RAR",*TCC*,*DAC", ASMCOL10
29TCS*y*STC*, "CAA*, *KBP*, *DCL "/ ASMCOL2C
SCO FORMAT(38X, *ACORESS STMT STATEMENT') ASMCO1130C
SC1 FORMAT(11GX, '"PAGE *,13) . ASNCOL140
5C2 FORNMAT(110X,'BANK ',13) ASMCOLSC
__ 503 FORMAT(4CXs23,5X,14,5X9A3) ASMCOL60
904 FORMAT(4CX923,5%X+s14,5X,A3,2X,'RP*,12) ASMCO170
<C5 FORMAT(4CK9Z395Xy14y5X9A3,2X,'R *,12) ASMCO1R0
_ SC6_ FORVAT(4CXyZ2345Xs14,35X,A3,2X,21,"H?) ASMQO150
T S0T FORMAT(4CX»23,5X,14,5X4A3,21,1X,221) : z ASNMCO02CO
508 FORMAT(4CX9Z315Xs1435XeA3,2X,"RPI,12,9,A00¢,271,%7071) ASMC0210
_S09 FORMAT(4CXsZ345Xs14,5X,A3,2X,321) ASNC0220
7610 FORPMATU{4CXeZ3+5Xs1495XeA342X e R *412,%4A" 0,221,007 0) ASMC0230
911 FORMAT (40X, *#%% ERROR #%#1) ASNMC0240
LASABD=C . ASMCO250
ERRCORS=C e ASMCO2¢€0
PACC=0 5 ASM00270
BARK=L 5 58 5 ASMCO280
STMT=0 . ASMCO2SO
ACCRES=-1 . ASMC03CO
PKCUNT=C : ASMCO31C
1 PAGE=1 ASM”CC320
\ 3 €666 CHEKK=CCRE(BANK,141)%16 4 CCRE(BBANK,2,1) ASMCO230
: IF(CHEKK.EC.15)G0 _TQ 215 ASFC0340
. - WRITE(64,9501L)PAGE ASMCO3SC
‘} WRITE(6,5C2)BANK = . ASMCG3EC
& © WRITE(6,6C0) - ; ASMCC370
6699 CONTINUE & ASMC0380
BRA=0 ASMCO3SC
o CPAGE=MOCI(PALC,256) ASMCC4CO
IFICPAGE.EQ.C .CR. (CPAGE.EC.l .AND. LASACD.EQ.1l))BRA=1 ASMCO0410
. LASACD=C 2 ASMC0420
IF(BRA.EC.0)GO TO 50 , ASMCC430
CPAGE=PACD/256 , : ASMC0440
WRITE(6,859)CPAGE : ASMCO4SC
869 FORMAT(/,10X,*CCRE PAGE*,13,/) ASMC0460
PCOLNT=PCCUNT + 3 ; ASMCO4TO
€0 IF(PCOUNT.LE.55)G0 TO 83 ASMCO4BO
WRITE(6,90)_ ; ASMC04S0
S0 FORMAT(1F1) ASMCOSCO
PAGE=PAGE + 1 ASMCOS10
WRITE(6,901)PAGE ASM00520
WRITE(6,902)BANK ASM0O530
WRITE(6,5C0) ASMC0540

PCOLNT=0 ASMCOS50

83

B ANE 1S N E UL i B A UM AT R OIS 1 I S R ORISR 1) NS 7 L TN I8 2 I (L
FiLE: AsvisT ForRTRAN Al YCUNGSTCWN STATE UNTVERSITY COMPUTER CENTER

! Tl s o LY g Y, CSH 1 AR AR ¢

83 PCCUNT=PCOUNT_+ 1 . - ASMCOS5EQ
ACCRES=ALCCRES+1, ' ASNMOOS5TQ

) PACC=PACC+1 . ASMCOSEO0
IFIPACD.GE. 4097)60 TC 215 : ASMCCSSC

STMT=STMT+] ! k- N el RN L ’ ASMGC6CC

: . CORC=CORE(BANK,1,PACD)*1. . . ° : : t ASNMCCOIC

GO _T0 (1cc.xc1.1u2.103.1ca.1cs.1oe 1C7,1C8,109, lxc.xxxlllz,lxa., ASMCOE2C

#114,115),CCRD - , . ASMCOE30

i 100 COXC=CORE(BANK,2,PACD) + 1 ASMC0640

GO TO (2€0,2CC,2C0, zco.zco oo zoo.zoo 200,200,200,200,2C0, 2COASMCCESC

*,215),CORD ASMCOELC

' 200 WRITE (6,503)ADORES,STMT,LABEL(CORD) ., ASMCCETC

Py GO TO 9569 ASMCOEEO

215 IF(CFEKK.EQ.15)G0 TO 54) ASMCCASC
WRITE(E,977) ASMCOZCO

__STT FORNMAT(59X,*#2% END OF JOB #%%1) ASMCOT710
WRITE(6,53)ERRORS ASMCOT20

i 83 FORMAT(5X,13,* ERRCRS WERE CETECTED THIS PASS') ASMCO730

54 _IF(DANK.EC.2)G0 TO 7777 ¢ ASNCO740C_

TBANK=2 ASMCOT750

' ST¥T=0 ASMOOT60
ACCRES=-1 ASFCO77C

PCCULNT=0 2 ASMCO780

! PAGE=1 - ASNCC790
_PABC=0""" + 9 ASMCOECC

ERRORS=C " : AS¥CO81C

! GO TO 6¢€¢€6 . ASMC0B20

101 LASACD=1 ___ _ % ASMCO08130

WRITE(G, 907)AcoREs,erT.LABEL(16).C0RE(BAAK.2.PACC) CORE(BANK,1 ASMOCBA4C
%,PACL+1)+CORE(BANK,24PACD+1) ASMCGBSC

PADD=PACC+1 _ ASMCOREQ

. . ACDRES=ACCRES+1 - ASMC0O870
| ' GO TU 9559 . : ASNOORAO
 _ 1C2 CHK=MOD (CCRE (BANK,2,PACD),2) ASMCCARSO
4 RP=(CCRE(BANK,2,PADD)/2) %2 - ASMCOSCO
i : ’ IF(CHK.EC.1)GC TO 85 . : ASMCOS10
WRITE(6,SCH)ACDRES,STMT,LABEL(17) ,RP,CORE(BANK,1,PACD+1), ASMCOS2C
*CORE(BANK,2,PACD+1) ASMC0G20
ACCRES=ACCRES+1 ASMCOS4C

PACC=PACC+] ; ASM00650

LASACD=1 . ASM(C0S60

GO TO 9659 ASMCOST0Q

| __85 WRITE(6, 904)ABDRES.STMt.LABEL(ls).RP . ASM00980
GO TO 9959 ASNMCOSSC

103 CHK=MUC (CORE(BANKy24PACD) 42) ASvClCCC

RP={(CORE (BANK,2,PADD)/2) %2 ASM0O1C10

IF(CHK.EG.1)GO TO 86 ASM01020
WRITE(6,504)ACORES,,STMT,LABEL(19),RP - ASMO10C30

GO TO 999 ASMC1C4C

€6 WRITE(6,504)ACDRES ySTMT,LABEL(20) ,RP ASNO1CSO

GO TO S$569 ASMO1CEO

104 WRITE(6,909)ACDRES+STMT,LABEL(21),CCRE(BANK,2,PACC),CORE(BANK,1, ASMOL0O7C

%PACD+1) yCORE(BANK,2,PADD#+1) ASMC1CA0

PADD=PACC+1 ASM0O1090

ACCRES=ACCRES+1 ASMO1100

84

FILE: ASMLST FORTRAN Al YOUNGSTOWN STATE UNIVERSITY COMPUTER CENTER
LASACQ=] . : ASKOIL10 -
cu$ro 9969 " Aswo%xzq

105 WRITE(6,909)ACORES,STMT,LABEL(22) yCORE (BANK,2,PACC),CORE(BANK,1, ASMC1130
°PACD41)-CLRE(BANKLZLPACOOX) ASMCL14C
PACD=PACCH+I ‘ 2 ASMO1150C
ACCRES=ACDRES+l . | ASMO1160
LASACD=1 ' ASFCL1170
GO TO 9569 - i T ASMC1180

106 RlTE(b.905)ACDRES.STMT.LABEL(23) CCRE(BANK.Z'PACC) ASMO1190
GO TO 9559 ASrMO12CC

107 wRITE(G6sSLO)IACDRES,STMT,LABEL(24),CCRE (BANK,2,PACC),CORE(BANK, 1 ASMC121C
%,PACD+1),CCRE(BANK,2,PACG*+1) , by ASMC1220
PACD=PACD+] _ ASMC123C
"ACCRES=ACDRES+1 ' ASNM(124C
LASACuU=1 . ASNMQ125C

. GO TO 95$9 : ASMOL260
108 CONTINUE ASNMO1270C
109 CONTINUE ASMC128C

__ 110 CONTINUE ; ASNMC1260

111 wRITE(6, QOS)ACDRES.STNT.LABEL(CORD*lbi.CCRE(BANK.Z.PACD) ASMC13CO
GO TO 9699 AS¥M0131C

112 WRITE(6+906)ACCRES,STMT,LABEL(2%) ,CCRE{BANK,2,PACC) AS¥G132C
GO 10 9569 ASMC122Q

113 WRITE(6,906)ACDRES,STMT,LABEL(30),CCRE(BANK,2,PACC) ASMC1340

M GO 10 9569 ASPO1350

114 CORC=CORC(BANK,2,PACD)+31 : AS¥C1360
WRITE(6,503)ACORES, STMTFEABEL(CORD) ASNMC1370
GO TO 9559 _ ' ASMC1380

115 IF (CCRE (BANK,2,PADD).LT.14)G0 TO 116 ASMO13SC
WRITE(6,911) ASNCL4CC
ERRORS=ERRORS+1 : ASNMC141C
GO TO 9559 ASM01420

116 CORD= CORE(BANKnZ-PACD)+47 ASNMO1430
WRITE(6+903)ACORES,STMT,LABEL(CCRD) - ASMC1440
GO TO 9569 . ASNCLl450

7777 RETURN : 2 ASMO01460

ENC A ; ASMO1470

85

LAY e ' Nl 20 Al b 3 S SR U) D200 o, 1, 0 T S TR e 8 5" I 7 e 18 5 Y 00 SO S
FILE: CORLD . FORTRAN Al YOUNGSTCWN STATE UNIVERSITY cCvPUTER CENTER
gL ol ko Aot ey '
SUBROUT INE _CORLC _ torcebyo
IMPLICKT INTEGER (A 7. L), .. ., w0 .. ovumers orarts +- suses .y, CORCDC2C
COMMON/SLB/ CCRE . f T coReecao
CIMENSION CCRE(242,4096) - CORCOCA40
00 1 k=1,2 ,, : CCRCOES0
CO 1 J=1,4096) ccrcecec
CORE(Ky1le4)=C CCcrRCCCTC
L, CORE(K,2,J)=15 T Y R S CCRCOCBO
WRITE(6,2) CORCCOSC
o2 FCRMAT(* ENTER UNIT NUMBER, WHERE PROGRAM [S TC BE LOACED!) CORCOLCO
REAC(5,%)INFILE v ' i CCRCO110
00 3 J=1,2 _ CCR0O0120
CO 4 K=1,4096_ CGROO13C
REACIINFILEsS+END=3)CORE(J9lyK)yCORE(JIe2,K) iy CORCO140
£ FORMAT(2Z1) CCRCO15C
4 CONTINUE CORGO1€0
3 INFILE=INFILE + 1 CORCO17C
RETURN) CORCO180

END : CGRCO1SC

APPENDIX D

SIMULATOR SAMPLE OUTPUT

86

87

' APPRESS STMT. STATCMENT

CORE PAGE 0

nnp 1 FIM PP 2 A'ng?
nno 2 err pp o
003 3 pRp
nnn . Iy CMA
nng g 1'op
nne & ver e
007 7 IATERET
nne o ven opoo3
nno a ene pp oo
e DDA 0 prp
5 ‘non 12 CHA
noc ¥ 1np
nnn 13 vY(CH R 1

g * ok k FPh OF JOR %%
D ERRORS V'FRE PETECTEN THIS PASS

)

FHNTFP THE STARTINMe POSITION FOR rAM N BAMKI THEM RAMp 9

n
IMPUT A VALUE FOR IMpPUT popTE g

THE OUTPUT VALI'F Rop PORT# B 15 12
INPHT A VALUF Fap [rpper PORETA 1

THE OUTPU'T vAlUE Epp POPT# 1 -

88

PECISTEP pppep

SIMULATIOM RENIYIREP) 15CYrIre
THIS |8 APPRHXIVATELV N,1R2NDNONF =07 SFroMrs epre TIMFE

REVIRTFR 0 1 9YRGH ERe P A AR R B
PAMK 1 nrnP0001nonnnonnnnnnnnnnnnnnnnno
BAMK, 2 nnoonnoonnnnnnqnnnnnnnnonnnonnnn

THUE VALIIE AF Tup ACCRMILATAR 18 .. . 0N

THE VAII'E OF THF CARRY FLIP-FILOP 1S ...00

89

CIip M'™BLR

COMMAND
COMMAND
COMPAND
COMMAND

Iri*E
i
LR
LINE

NI =D

0 1,2n%
nonnoonno
rnoeoenn
o0nnnnonn

0nonnnno

RAM OUTPI'T Riipp

90

APDPPFSS
APPRESS
ATPPESS
APPRF &S
APPRESS
ADPPRESS
ANPRFESS

PO vou
?
1 .

STACK I.FVFI
STACY LEVFI
STACK LFVEL
STACK LFVEL
STACK LFVFI,
STACK LEVFL
STACK LEVFL

WANT A PATA

HUMRER 1S
NuUpPER 9 1S
MUMPER % |8
MppREDp | S
MUMPER 5 1S
NUMRFR R IS
MUIMRFR 7 IS

. APPRESS RFRISTFR PP
APPPESS

APPRESS
ADDRESS
RODRE 55
APPRESS
APPRE SS
APPRFSS

non
non
non
non
non
nno
nonn

RAM DUMPF2 1=VES,0=MO

-

91

6

u00V00000O0LOVLLOOCULLVLUTDLLLOOLOL
yuouoouooouuobuobeLOCOLULOUULLUOOC
VR RVR RNV RO RV O AVEVEVAVEVRVAVRORVAVRVAVEVAVRVAVAVRTAVAVA N
RV VVIVEVEVAO RV RO NVRVIVEVEORVAVAVEVAVEVAVRVAVAVEGECRONCRVACRVEY]
VEVEVEV AV VRS RVEVRORVRCRVRVEVEVAVAVAVRVACRVAVRS RVECRCAVAVRVEI A
(VLVRVRVAVAVRVEVAVEVRVAVRVECRVEVEVEVECRVAVRVRVAVAVAVRVRVRORVECRVRA

uouluouu0ooLoOUOUUULUUVLULULLLLUULOLUU L

VUuvlOUUUUOsUUUUUULUUYUUUUUUUUO0UL
YUUULUL000ULUOUULUYLLUUUOUUUUUUU
UUUUULY000U00LUVUDOULULLLOUULUGUC
GUULUUUUUV0UYUUUUULUUUOUULLLUL0U0UE
(SRVAVEVEVRVAVACRVEVEVEVACAVRCAVEVECRVAVRVEVES RVAVAVNVAVAVAVRVEVAV]
VAV EVEVAVEVAVAVE G RVEVEVRVEVRVRVAVRVRVRVEVRVAVAVAVAV VR VVEVRVIVES
UuuuuuU0UOLULUUULLULULLULUVLGLLUC
VOUULULOOVOULLLULLULUUUOOUUOLOULU «
VUULLULULUOUULULUUUULUVUULLLYUUOULY

U dauhil

doododde il Vo §e 9 9 i RNET BN

delild WiVy Vivd

d31S 103y
ddLS1odyd
ddLsluad
dalslodd
dalsluad
ddils ludd
ddivluad
ddis lgdd

d4iSluald

ddisludd
ddasload
dal$y U3
ddis1oad
ddislyad
ddislyad
Uddn |

CCCrirdrmr L CIMNM NN

U

dIHI
dlrid
d
dliid
dlid
dliiv
dliid
dld
dHHd
dliid
dlrd
alid
d o
dlnd
d i
dlnd

dul T anvidiiud

SSJdJdV ivd

APPENDIX E

ASSEMBLER TEST OUTPUT

23

94

| ADDRESS STMT STATEMENT
-
RE PAGE O
- 000 1 TOP NOP
001 2 JCN ATOP
ke = 4 003 3 ElM. Q- 00 .
- 005 4 SRC -~ 2
006 5 FIM ©
008 6 FIN & -
4"’ 009 7 JIN 2
00A 8 JUN TOP
00cC 9 _JMS_ TOP
‘f 00E 10 INC. F
00F 11 1S2 ETOP
010 12 — ACD_ 5
o1l 13 sug .7
012 14 LD 9
013 15 XCH 7
014 16 BBL 1
015 17 LOM 9
016 18 cLB
o017 19 . CLE
018 20 [AC
019 21 cMe
- 01A 22 CMA
018 23 RAL
oLC 24 RAR
01D 25 Tcc
OlE 26 CAC
OlF 21 1CS
020 - 28 STC
021 29 CAA
022 30 KBP
023 31 DCL
024 32 HLT
025 33 BBS
026 34 LCR
027 35 OR&
028 36 OR5S
029 37 ANG
02A 38 ANT
028 39 £BO
02cC 40 col
020 41 SBO
02E 42 SB1
02F 43 EIN
030 44 DIN
031 45 RPM
032 46 WRM
033 47 WMP
034 48 . WRR
035 49 WPM
036 50 WRO
037 54 WR L
038 52 WR2
039 53 WR3

95

ADDRESS _ STMT___ STATEMENT
03A 54 SOM
038 55 ROM
03cC 56 ROR
03D 57 ADM
03E 58 RDO
03F 59 RD1 N
040 60 RD2
041 61 RD3
042 62 END

FILE?

10p

___NOP

UATA

DUMMY

A

96

JCN
FIM
SRC

TOP

(@]
o

FIM
FIN
JIN

NO o O >

JUN
JMS
INC

[S2Z
ADD
sSuB

— — —
e as
© © ©

LD
XCH
BBL

LDM
cLs
CLC

Oir- N O/~ mMm™m

IAC
EME
CMA

RAL
RAR
TCC

CAC
ICS
7 -

CAA
KBP
CCL

HLT
gBS
LCR

OR4
OR5
ANG6

ANT
CRO
CB1

SBO
sSel
EIN

DIN
RPM
WRM

WMP
WRR
WPM

WRO
WR1
WR2

WR3
SBM
ROM

FILE:

DATA

RCR

- DUMMY

A

97

ACM
RCO
RD1

RD2
ROC3
END

FILE: DUMMY DU

cn

98

1A
Co
20

o
23
20

co
30
43

40
co
50

co
6F
i=

()
85
G 7

A9
B
Cl

D9 P
FO
EL

F2
F3
Fé

FS
Fb
F7

FR
F9
FA

FB
EC
FD

01
c2
03

04
C5
Cét

cv
ca
09

CA
0B
0C

0D
OE
EO

El
e
E3

99

FILE: DUMMY DU A

E4

ES
£E6
EX

ER
EQ
EA

EB
EC
ED

EE
EF

! 100

APPENDIX F

MOTOR SPEED CONTROL SAMPLE PROGRAM

101

FILE: CATA FILE A

TOPSE M- -0 __CO

SRC O
RCR
XCH 0

FIM 2
SRC 2
LOP__ CLB

0l

ROR
Sud O
S

e
| WRR
a JUN LOP

END

102

ADDRESS STMT STATEMENT
CORE PAGE O
p 000 1 TOP FIM 0 co
002 2 SRC 0
003 3 ROR
B 004 4 XCH 0 :
005 5 FIM 2 cl
007 6 SRt 2
il 008 7 LOP C(CLB
009 8 ROR
00A 9 SUB_ 0
B 008 10 - CMC
00C 11 TEE
00L___ 12 WRR
B 00E 13. JUN Lop

010 14 . END

—— e E— R——

INPHT A VALUE FOR

INPUT A VALUE FOR

INPIT PORTH

INPOUT PORT#

THE OUTPUT YALUE FOR POR#

INPUT A VALUE FOR

INPUT PORTH#

THE OUTPUT VALUE FOR PORT#

INPUT A YALUE FOR

INPUT PORTH#

THE QUTPUT VALU'E FOR POR1#

INPUT A VALUE FQOR

INPUT PORT#

THE OUTPUT VALUE FOR PORT#
INPUT A YALUE FGR INPUT PORI#

-

THE QUTSOT YRLUE ?DR PORTH#

INPUT A VALUE FOR

INPUI PORT#

THE OUTPUT VALUE FOR-PURTH#

INPUT A& VALUE FOR

INPUT PORT#

1

1

|

]

|

1

J

1

1

103

Lo4

BIDLIOGRAPHY
BOOKS

Raphael, Howard A. Intel MCS-40 USER's Manual for Logic
Designs, Santa Clara, CA: Intel Corporation, 1974.

"4040 Assembly Language Programming Manual", Intel Corporation,
1974, ;

"8080 PLM Compiler Operators Manual", Intel Corporation, 1976.

ARTICLES

Ogdin J. and McPhillips S., "Processor Selection", New Logic
Notebook, September, 1974.

Raphael, Howard A., "Motor Control by PLL", ELECTRONIC
[DESIGN, April 26, 1975,

"Put a Complete Microcomputer in your System for Less than
"$30.", Intel Corporation, 1975.

Raphael, Howard A},'"Microcomputers, Computers on a Chip",
Intel Corporation, 1975.

Kildall, Gary A., "High-level Language Simplifies Microcom-
puter Programming", ELECTRONICS, June 27, 1974.

