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ABSTRACT
CRITICAL BUCKLING LOADS

FOR HYDRAULIC ACTUATING CYLINDERS

Pramote Decha-umphai
Master of Science in Engineering

Youngstown State University, Year 1977.

The objective of this thesis is to formulate and
verify buckling equations that are applicable for various
types of hydraulic actuating cylinders. Particular
attention was focused on the variation of these equations
for their apblication to both fluid filled plunger rod and
fluid unfilled plunger rod. The equations were formulated
based on the moment equations and the differential equations
of the simple beam theory. The analysis was made with a
consideration of the effect of various types of assumptions
that were included in the study. Because of the complexity
of the solutions, the computer programming was necessary.
The actual dimensions were taken into the solutions and the
characteristic result of‘each solution was plotted for
comparison.

To verify the analytical approach and results obtained,
experiments were performed using an unfilled plunger rod.

Satisfactory experimental agreement was obtained.
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CHAPTER I

INTRODUCTION

Baiind ]

cylinder are the main cylinder, plunger rod and piston.

==

T

The essential components of a hydraulic actuating

There

are many types of application, two of the most widely used are
fluid filled plunger rod and fluid unfilled plunger rod as

shown by the drawing in figure 1(a) and 1(b), respectively.

_—

=1 v

Figure 1(a)

Fluid Filled Plunger

Rod

Figure 1(b)

Fluid Unfilled Plunger Rod

series as shown by the drawing in figure 2,

Other possible application is the telescopic type

which consists of more than one plunger rod connected in




Figure 2 Telescopic Type Cylinder

As the load is applied, the compressive force or the
tensile force is transmitted over part of the column length
by the fluid pressure as shown by the drawing in figure 3(a)
and 3(b), respectively. When the diameters of a hydraulic
cylinder and rod are small in comparison with the extended
length of the cylinder and rod, failure under compressive
load is likely to be by column buckling. Since the compres-
sive force is transmitted over a part of the cylinder by
fluid pressure, such a device may appropriately be called a
“fluid column." Common example of the fluid column are
hydraulic jacks; hydraulic actuating cylinders used in dump
trucks, airplanes, service station hydraulic jacks for auto

repairing purposes, etc.
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Figure 3(a) Hydraulic Actuating Cylinder Under
: Compressive Load.
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Figure 3(b) Hydraulic Actuating Cylinder Under
Tensile Load.
In making a column buckling analysis of a hydraulic
cylinder, three conditions must be recognized:
1. The axial load is transmitted over part of the
length of the column by fluid pressure.
2. The column is stepped; that is its length is

divided into two parts of different moments of inertia.
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3. These two parts are joined as shown by the drawing
in figure 4, and thee is the initial deflection resulting
from the required clearance and manufacturing tolerances
at this point that will cause the hydraulic cylinder to take
the deformed position when a compressive load is applied.
Whereas, in the ideal case the deformation shown in figure

3(a) is caused only by eccentricities in the pin eye locations.

Figure 4 The Initial Deflection Resulting from the Required
Clearance and Manufacturing Tolerances.

In practice, there is an initial deflection angle
between the cylinder and rod for the reason mentioned above,
the deflection will increase gradually with increasing com-
pressive loads. When the loads approach the critical point,
the deflection becomes increasingly greater and finally
reaches the point where the column buckles. The compressive
load at this point is called the critical bucklingz load.

For any comprecssive load applied greater than the critical
buckling load, the applied bending moment will always be
greater than the resisting moment and the deflection will

increase until failure results.




CHAPTER II

FORMULATION OF THE BUCKLING EQUATION

FOR THE FLUID UNFILLED PLUNGER ROD

2.1 Free Body Diagrams and Moment Equations

The hydraulic actuating cylinder with fluid unfilled
plunger rod as shown by the drawing in figure 5 is shown
in a vertical position with cylinder end fixed, free and
pinned at the upper end, and subjected to a vertical force P.
Due to the machining tolerances and clearances, there is an
initial deflection angle between the cylinder and rod, and
the hydraulic cylinder will take the deformed position shown

when the vertical force P is applied.

| i |
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Figure 5 Hydraulic Cylinder Subjected to a vertical force P




Assuming that the shearing deformations and shortening

compression of the hydraulic cylinder are negligible compared
to those caused by the bending moment, the double-integration
equation based on simple beam theory can be applied to obtain

the column's deflection: i.e.,

E1dY M (2) (2-1)

oz’

where E is the modulus of elasticity, I is the moment of
inertia of area, the quantity EI is generally defined as the
flexural rigidity of the column, x and y are the coordinate
axes as shown in figure 5, and M(x) is the applied bending
moment at any arbitrary section x.

To obtain the differential equation for the deflection
of the cylinder, the cylinder and rod are cut at sections
S-S and T-T respectively and free body diagrams are drawn as

shown by the drawings in figures 6(a) and 6(b), respectively.

2z P
—

~ -

s + s

(a) (b)

Figure 6 Free Body Diagrams at any Section on
the Cylinder and Rod Portion.




When the coordinate axes are taken as indicated in
figure 5, the bending moments at the arbitrary cross sections

T-T and S-S are

M - P(8-4) X {2-2]

I

and Mq_s P($-4,) , (2-3)

where & 1is the total deflection at the pin end of the rod
consisting of the deflection §, (tolerances and clearances),
and the deflection SP caused by the applied force P, both of

which are measured at the pin end of the rod; i.e.,

Assuming o« is the small initial deflection angle between

the cylinder and rod, and L, is the length of the

1
rod portion (see figure 5), then,

§$, = L dmoe = L& . (2-5)

2.2 Solutions of the Differential Equations

To determine the relationship between the applied
force P and the total deflection § at the pin end of the rod
and, thereby establish the critical value of the applied
force P, it is necessary to write separate differential
equations for the deflection of each portion of the column;

e.g. at sections T-T and S-S. Substituting equations (2-2)

and (2-3) into equation (2-1) gives:




E,I,% = P(s-y,) 5 (2-6)
and Egaéﬁg . P($-1Y,) g (2-7)
s

where ElIl and E212 are the flexural rigidity of the rod and
cylinder, respectively.

Using the notations:

' i

¢ A and }i: = _P p (2-8)
E,L Ezlz

Equations (2-6) and (2-7) become ¢

dy, . Aty T VAN, (2-9)
oLt
! 19: " /&:'y‘z o /&;s § (2-10)
o}

Equations (2-9) and (2-10) are second order linear differential
equations with constant coefficients whose general solutions

can be shown to be (see Appendix A):
y, = Acos oz, + B bin b, +5 (2-11)
Yy, = Crot bz, +Dbin by, s (2-12)

where A, B, C and D are arbitrary constants that are determined

by satisfying the boundary conditions of the problem,

2.3 Boundary Conditions

There are five boundary conditions that are needed
and must be applied to the hydraulic cylinder to obtain the
required solution. Referring to figure 5, the following
boundary conditions are seen to apply:

(1) y,z(o) = o)




O

(2) 4y, (0 = o
(3) Y (L) = $

(4) Y, (L) = Y, (Ly)

(5) At the connection point between the cylinder and
rod (Xl=X2=L2). the deflection angle on the rod is equal to
the summation of the deflection angle on the cylinder and
the initial deflection angle as shown by the drawing in

figure 7.

Cylinder

Rod

Figure 7 The Change in Angle at the Connecting
Point Between the Cylinger and Rod.

Applying the first two boundary conditions into

equation (2-12) gives the constant values:
C s -$ and D == O
and equation (2-12) becomes:

5 (1~ o0 ;) : (2-13)

&2

Applying the second two boundary conditions into equation

(2-11) gives the constant values:
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A == —éMAzLZM/an
din KL,
B - SM'&szM}"L
Aim AL,

Substituting for A and B as given above into equation (2-11)

gives the following:

y, = 5 008 Ryl bim AL ot b, + 5 o8 als <08 Bl Sim Fem, + S
: o AL, Ak L

(2-14)

Equations (2-13) and (2-14) can be related by applying the

last boundary condition. Referring to figure 7, since
A A A
f == ¢ +0(, ;)

it follows that

,&m}é\ - AR RS fang + fam &
|- @ Lo &
or dv‘ 5 (2-15)
d%. dz, L, "
> |- dw 5
dzt Ly
where %21 and éZL are obtained by differentiating equations
Z' dvxz

(2-14) and (2-13), respectively;

-

L Shicoshol, bon kL dindels | sk oot eyls oot Rt <ot KL,

=

) M}z‘L‘ Bim, }ZIL,

Y sk, sin AL, (2-16)
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Simplifying the equation obtained by substituting equation
(2-16) into equation (2-15), and applying equation (2-4)
yields the actual deflection at the pin end of the rod

caused by the applied force P;

P

§, = [["Ll(’&zmzsz—}znmAzl—zwt”@l,'l) _{L?(ﬁzMﬂasza

%
!%.wde,tzwtﬂe.L.)z—(48iﬂe.ﬁzzmieztzmﬁeztzmﬂem} ]

U b, dim oy st e, et B b i

To show the performance of the derived formula *
(equation (2f17». actual dimensions were taken from a presently
designed and.fabricated hydraulic actuating cylinder with a
fluid unfilled plunger rod as shown in figure 18. The equa-
tion was evaluated by using the various arbitrary values of
initial deflection angle. A computer program was written for |
convenience in making the required calculations and is shown ‘
on page 52 as computer program no. 1. The characteristic
results of each initial deflection angle are shown in figure 19,
which is a plot of load vs deflection for the various trial

calculations that were made using program no. 1.
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CHAPTER III

FORMULATION OF THE BUCKLING EQUATION
FOR THE FLUID FILLED PLUNGER ROD

3.1 Analysis of the Major Effect in the Fluid Filled Plunger Rod

3.1.1 Free Body Diagrams and Moment Equations,

The hydraulic actuating cylinder with fluid filled
plunger rod, as shown by the drawing in figure 8, is in a
vertical position with cylinder end fixed, free and pinned at

the upper end, and subjected to a vertical force P.

7777777777777 v

Figure 8 Hydraulic Cylinder with Fluid Filled Plunger Rod
Subjected to a Vertical Force P.
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To analyze the bending characteristics and the

performance of the hydraulic cylinder shown in figure 8 to
resist buckling, the free body diagram of the rod and its
cross-sectional area are drawn as shown in figures 9(a)

and 9(b), respectively.

P
L P .
e— e
P O Y As
le— e AR
-o—?—-—
« X o
C‘T*T"r‘j %ZZZ/
Pl

(a) (b)
Figure 9 Free Body Diagram of the Fluid Filled Plunger Rod.

Assuming a small deflection at the pin end of the rod
when the vertical force P is applied, static equilibrium
in the vertical direction of the rod, as shown in figure 9(a),

can be expressed as:

P = o ’ (3"1)
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where P and P’ are the summation of the force due to fluid
pressure acting on the cross-sectional area of the rod A,
~and the internal area at the rod end A, , as shown in figure
9(b), respectively. Both forces P and P’ can be determined
in term of the applied force P which depends on the area
over which the pressure acts:

’ ” (3-2)

where‘f is the fluid pressure corresponding to the applied

force P, and A, is the total cross-sectional area of the rod.

P
©
‘_é *
_.s’._
4
” P
P
(<)
—,6\»
| B
P.
I
P
S " - $ T 4 T
i

% k- 7 v
VMs-s \/MT_T
(a) (b)
Figure 10 Free Body Diagrams of the Fluid Filled Plunger

Rod at any Section on the Cylinder and Rod Portion.
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To obtain the differential equation for the deflection

of the cylinder, the cylinder and rod are cut at arbitrary

sections S-S and T-T and free body diagrams are drawn as

shown by the sketches in figures 10(a) and 10(b), respectively.
When the coordinate axes are taken as indicated in

figure 8, the bending moments at the arbitrary cross sections

T-T and S-S, as shown in figure 10, are:
Mrr = (P-Plecs)(s-y,) ; (3-3)

and M (P-P"c080)( 5~ ,) ; (3-4)

S-S
Using equation (3-1) and by assuming © is a small deflection
angle at the. pin end of the rod, equations (3-3) and (3-4)

become:

<
I

P(8-1y,) , (3-5)

I

and Mq_s P($-14,) . (3-6)

3.1.2 Solutions of the Differential Equations

To determine the relationship between the applied
force P and the total deflection § at the pin end of the
rod, thereby establishing the critical value of the applied
force P, it is necessary to write separate differential
equations for the deflection of each portion of the column;

e.g. at sections T-T and S-S.




Substituting equations (3-5)

gives:

2

E’II é_l =
2

z,
and £l & ==

de,
respectively.

Using the notations:

16

and (3-6) into equation (2-1)

‘Jg = . and

3 %
EIII

Pks—yg

P'(é‘“;,/‘z)

4

equations (3-7) and (3-8) become:

C(iz; + j‘;’?n

2 2
___-d “‘t‘ + 5 yz
da’

AR

R

(3-7)

(3-8)

(3-9)

(3-10)

Equations (3-9) and (3-10) are second order linear differential

equations and their forms are the same as equations (2-9)

and (2-10) for which the general solutions can be shown to be:

y,l = A,coo,ﬂeaael +E>sz3z,+s

Y, = C,coojzsaezi—DM}%xz-ks

° (3"11)

; (3-12)

where A, B, C, and D are arbitrary constants that are determined

by satisfying the boundary conditions of the problems.
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3.1.3 Formulation of the Buckling Equation

Referring to figure 8, the same five boundary
conditions as described in section 2.3 can be applied to the
hydraulic cylinder with fluid filled plunger rod. Since the
general solutions of the differential equations obtained,
given by equations (3-11) and (3-12), are of the same form
as equations (2-11) and (2-12) of the previous case (chapter
II), the actual deflection at the pin end of the rod caused

by the applied force P can be determined as:

P

5, o= [[ —L, (g bim Ry, - ey oot e, cob kL) —{ 2 (g bim K1, -

%

B, oot de . LedbUB 1LY — (a5 %sﬂzSMﬁstmﬁ{stwUzsL,)}

/(2 S&’ga’g‘sm’zstm’gstmtﬁsLl)} T8, o (3-13)

The performance of the derived formula (equation
(3-13)) was illustrated by using the same actual dimensions
of the hydraulic actuating cylinder as the previous case.
The equation was evaluated by using various arbitrary values
of initial deflection angle. The computer program of this
equation is shown on page 53 as computer program no. 2. The
characteristic results, i.e. plots of load vs deflection,
for the various initial deflection angles, are shown in

figure 20.
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3.2 Analysis Concerning the Moment Effect of the Horizontal

Force Component at Rod End

3.2.1 Free Body Diagrams and Moment FEquations.

Considering the F. B.D.of the hydraulic cylinder with
a deformed position & at the pin end of the rod when the
vertical force P is applied, the resisting force P’ caused
by the fluid pressue at the rod end area A, remains acting
in a direction perpendicular to the internal surface of the

rod end as shown by the drawing in figure 11.

(a) (b)

Figure 11 Moment Effect of Force Component at Rod End.

Although the force component P sine is small according

to the small deflection angle (8) at the pin end of the rod, as
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shown in figure 11 (b), the moment effect produced by this
force must be considered due to the long length of the
hydraulic cylinder,

In this case, considering the moment effect produced
by the force component Péine , the free body diagrams of
the cylinder and rod cut at sections S-S and T-T are drawn

as shown in figures 12(a) and 12(b), respectively.

(a) (b)

Figure 12 Free Body Diagrams of the Fluid Filled Plunger Rod
at any Section on the Cylinder and Rod Portion.
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When the coordinate axes are taken as indicated in
figure 8, the bending moments at the arbitrary cross sections

T-T and S-S as shown in figure 12 are:

Mo = [(P—P”A:oae)(s—'g.l)]+[(PIIMG)(L*&)] : (3-14)

I

M s-5

{(P—P"me)(s— njz)]+[(P"Me)(L—zz)] . (3-15)

Assuming © is a small deflection angle at the pin end of the
rod (925%) and using equation (3-1), equations (3-14) and

(3-15) become:

Mry = —-[P'.y,l]—-[P".%.a&,]+[P-é] . (3-16)

rlo~
8
s e
+
| i
o
o
| S

and Mg O a2 —[ P'-yz] % [ P. (3-17)

3.2.2 Solutions of the Differential Equations.

To determine the relationship between the applied force
P and the total deflection ¢ at the pin end of the rod, and
thereby establishing the critical value of the applied force P,
it is necessary to write separate differential equations for
the deflection of each portion of the column; e.g. at sections
T-T and S-S. Substituting equations (3-16) and (3-17) into

equation (2-1) gives:

E.I\% — -—[P’.%J —[P".%.acl]+[P.§] : (3=18)
and Ezlzf_‘i:z — —[ P 101,2] - [P"._E_.aaz] ¥ [P.s] : (3-19)




21

Using the notations:

}Qf R }zj BT, Yﬁ;" ol

ET, E,l, BI, (3-20)
’&: = P_” ’ ’&: = P ’ }i: - ’

E1, E‘aIa E‘212

equations (3-18) and (3-19) become:

2 . 2 3
i%; = 'pq'sg’l —— —’24'%‘&1 i ’&1'8 ) (3-21)
zl
and O;'w: . /2‘:'5,2 o —,Qz:.%.acz-s— /&Z.s % (3-22)
®

Equations (3-21) and (3-22) are second order differential
equations with constant coefficients whose general solutions

can be shown to be (see Appendix B):

2 2
y,| = Améﬂzaz‘+BMn/zsx,—£4_.i.l,+£.§ ’ (3-23)
kS A
Y, = Emﬁ5z2+FM,@5zz—_:_.}_.aez+’_&_:_.s ; (3-24)
A 2
S )

where A, B, E and F are arbitrary constants that are determined

by satisfying the boundary conditions of the problem.

3.2.3. Formulation of the Buckling Equation.

Referring to figure 8, the same five boundary
conditions as described in Section 2.3 can also be applied
to the hydraulic cylinder with fluid filled plunger rod.
Substituting the first two boundary conditions into equation -

(3-24) gives the following constant values:

= b gk - and F - s .

o
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Substituting the above values for E and F into equation

(3-24) gives:

2 2
- '& S,cooﬁ'z +'ﬂi S.Mje.saez
y’ .ﬁt ‘As
SR ¥ SRR
2
hy - 4
Applying the second two boundary conditions to equation

(3-23) gives the following values for constants A and B:

5 e -S.M}‘aLr'p‘zmﬂiL—‘p‘z M/&L "
MA,L. Rl I 19
. . (3-26)
B = s.»coé!‘a‘—w‘ x,oo/ezl_—’e‘ AunzgzL )
Airdo, L, | Rt &L

Substituting for A and B as given in equation (3-26) into

equation (3-23) gives the following:

Ao (K A .
y, = { ﬁﬁt(#m}’z; &’.LMA&LQ}MAI

{s MKL( ot Ay sm,ﬁL)}Amjﬂzaa

Aim o\, ,p;' £
R : (3-27)
L E

Equations (3-25) and (3-27) can be related by applying the

last boundary condition. Referring to equation (2-15),

J*& Su

d% ng l

== (2-15)
de, vk dy, s,

dzz L-|

where éﬁlandﬁéglare obtained in this case by differentiating
2, L

€quations (3-27) and (3-25), respectively; i.e.,
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dy,  _ —/stAMnﬁsL2+ﬂesbmé¥¢3Lz—§_._‘; :
de, kS
(3-28)
Sfproance. offH e BT + R (m%L—n)
dﬁz »9%5 ’gzz Y —

By simplifying the equation obtained by substituting equation
(3-28) into equation (2-15), and by applying equation (2-4),
the actual deflection SP at the pin end of the rod can be
related to the applied force P through the following equation:

—JksAmﬂa.aLszssmﬂaLz— R (5,08) (s +5,) Ao AL,
AN

3°

__k’i_<sp+8“)(x:oéﬂe5L2—l) - %H-&Amﬁagwﬂzsamﬂ@z
£i L '

3 ﬁzi el )}{f(sp+s“)/&m}’zsLﬁés.L(sﬁs.,‘)(m}’cst—')}

5

(3-29)

+
ok
I
O

where the constants A and B have the values given by
equations (3-26),

The derived formula (equation (3-29)) can be solved
by a trial and error method, and a computer program is
very helpful in making the necessary calculations. The
alphabetic letters used in the derived formula, (3-29),
correspond to those used in the computer program for

convenience and clarity as shown on page s4 as computer
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program no. 3. The same actual dimensions of the hydraulic
actuating cylinder used in the previous case were taken to

show the performance of the derived formula. The equation

was evaluated by using various arbitrary values of initial
deflection angle and the characteristic results are shown

by a plot of load vs deflection in figure 21. The calculations
required for the results given by the plofs of figure 21

were obtained from program no. 3.°
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3.3 Analysis Concerning the Moment Effect of Fluid Pressure

on_the Column Wall.

3.3.1 Free Body Diagrams and Moment Equations.

When a vertical force P is applied at the pin end

of the rod, the hydraulic cylinder will take a deformed
position as shown in figure 8, The fluid pressure is of

course normal to the tube's inner surface at all points.

(a)

(b)

pess-Lss R G-
Figure 13 Rod Portion of Hydraulic Cylinder in Deflected
Position.
In the hollow rod section of the cylinder, as shown by the
drawing in figure 13, the horizontal component of the fluid

Pressure balances itself out and is not shown. However, the
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vertical component of the fluid pressure, as shown in the
hollow section, figure 13, produces a bending moment.

Figure 13(b) shows the projection on the horizontal plane

of the chosen cross-section R-R, of the areas upon which

the vertical component of the fluid pressure acts. The
vertical force is seen to be upward in the left-hand shaded
area., The moment of the vertical force system is easily
found by assuming that the upward and downward vertical
pressures each act over a circular area, canceling out the
co-shaded area as shown in figure 13(b). The downward force
on the circular right-hand shaded area is equal to the
component ofﬁﬁhe fluid pressure at that point)pAbne times
the internal cross-sectional area A, of the rod. Since the
center distance between the two circular shaded areas is 4 ,
the moment exerted at the center of the circle on section
R-R by the vertical component of the fluid pressure on the
circular right-hand shaded area is 70M6.AR.7L ’

In this case, with the moment effect of the fluid
pressure on the column wall being considered, the free body
diagrams of the cylinder and rod cut at section S-S and T-T
are drawn as shown in figures 14(a) and 14(b), respectively.

When the coordinate axes are taken as indicated in
figure 8, the bending moment produced by the fluid pressure
acting on the rod wall at an arbitrary cross section T-T as

shown in figure 14(b) is:

Mt — (fAOneAAR)(s—y,,) . (3-30)
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X VNA X *\
DN
N
8, Y
e—— -y~
(a) (b)

Figure 14 Free Body Diagrams of Fluid Filled Plunger
Rod at any Arbitrary Section with Fluid
Pressure Acting on the Column Wall,
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Assuming © is a small deflection angle at the pin end of

the rod (6 = %) and, substituting for the fluid pressure]o
"~ times the internal cross section area of the rod AR "

the force P’ which acts on the internal surface area of

the rod end as shown in figure 11(a), equation (3-30) becomes:
— P” é - : . ( - 1)
o (£)(5-%) e

Referring to figure 1l4(a), ¥ is the deflection angle
at the contact point between the cylinder and rod in the
deformed position and is always less than the small deflection
angle © at the pin end of the rod. Assuming the increasing
of the deflection angle along the hydraulic cylinder in the
deformed position is linear, the déflection angle § can be

written in term of 6 as:

¥ = Lie i (3-32)
L
Then, the bending moment produced by the fluid pressure acting

on the column wall at any arbitrary cross section S-S as

shown in figure 14(a) is:

Ms-s - Hf'&”"(Ac'An)}(sz_yz)]‘*'[(fme"d‘a)(‘"yz) ’ (3-33)

where A, is the internal cross-sectional area of the cylinder
and §, is the deflection at the cylinder end.

By simplifying the equation obtained (equation (3-33)) and
applying equation (3-32) gives:

s = |°F (%%)(%S—yz) +

"ﬁ%-("yz)] , (3-34)
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where P” represents the result of the fluid pressure f)times
the difference in area between the cylinder and rod; i.e.,
A.- A,

To obtain the total bending moment at the arbitrary
cross section T-T caused by the fluid pressure at the rod
end as described in section 3.2, and the fluid pressure on

the rod wall, equations (3-14) and (3-31) are combined:
w = [Feple el fmen] - oo

By combining equation (3-15) with equation (3-34) yields
the total bending moment at the arbitrary cross section S-S;

s = [P [0k~ )

+[P”.;L.(s-«jz)] ‘ g (3-36)

3.3.2 Solutions of the Differential Equations.
To determine the relationship between the applied

force P and the total deflection § at the pin end of the
rodyand‘ thereby establish the critical value of the applied
force P, it is necessary to write separate differential
equations for the deflection for each portion of the column;

€.g. at sections T-T and S-S.
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Substituting equations (3-35) and (3-36) into equation (2-1)
and simplifying the terms on the right-hand side of the

equations gives:

®,

E|1‘_’«_;_,2 & _’(p'«»P’f%)y.'l—[P'f%.z,]+[(P+P'.%).s] s (3-37)

i O AL AN A bR e [
an F_,!Izdza (P+PT.+P L_:r)yz P _S_L z,
( " w2
+ (P+P.%+P LI._.S).S] . (3-38)

L

Using the notations:

oo g = K P , ko= .
E|I'| EZI! ElII
oo, KA AR X, (3-39)
s E. I, E,l,
and ' /&27 PR AR
% & J

equations (3-37) and (3-38) become:

_c;%}+[(£;+ﬁ{.%)%] » -[Ej.%.z,]+[(ﬂf+ﬂ{.7s__).s] »  (3-40)

and T:f +[(/¢25+/g,6.%+x&7.}_-_é_3_) y;z]

2
6"

i _[L

rlo~

.z2]+[(£:+/ﬁ:.%+ﬂ¢§.%§).s] . (3-81)
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Equations (3-40) and (3-41) are second order differential
equations with constant coefficients whose general solutions
can be shown to be (see Appendix C):
2 2 2
y = Acohmrosmha-Ksa (K Ky ()
: 4 L RERE L

: 2 2 .'zz
Y, = Em£9z2+r=mkszz /—&:7--3—'3‘2 " Tz;_*_jz_t:z.%_’.
E_._L_’a).s ; (3-43)
Ay b
where}
,.,’Q: = »&:+}¢:§L_ y
BR i BB Rl o RURNS. (3-L4)
9 5 (] _L_ 7 ?— > J

and A, B, E, F are arbitrary constants that are determined

by satisfying the boundary conditions of the problem..

3.3.3 Formulation of the Buckling Equation.
Referring to figure 8, the same five boundary

conditions as described in section 2.3 can be applied to

the first two boundary conditions to equation (3-43) gives

the constant values: !

E = —(§+£_-i+ﬁ.~'f‘$>'s ’
LR

kg A o

L3

the hydraulic cylinder with fluid filled plunger rod. Applying
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and substituting these values into equation (3-43), the

following is obtained:

e s
_’_ﬁi;,s.zz+(£_ ’Qz +£72_.|:22_§_).$

T &2 /gzz l. X e (3-45)

Applying the second two boundary conditions to equation

(3-42) gives the constant values:

B — «odRL (92 ﬂ‘is '&_La)s,ooéﬂu_
Bim e, b Ko iy

& sk, +£,_s U, ( Y ﬁ’.L’,_s).s

A " S v T TR,

coshyly (s Fy g RL ¢y KL
+M¢k5L( jgs E‘) fz%“z (3-46)
+ fiﬁs +-£§_“i

Roi longiry)

N A - ' s—BAm,%L—'ei g -k ¢
m&aL /ez! E": ’ J

or equation (3-42) can be written as:

2

y, == /AA%M/&GE + Blwmﬂz.z —‘z e

1 ,&ll_
2 2
-+(:“1n_+*“e 5).3 : (3-47)
kR L
where A and B are the constant values expressed by equations
(3-46), |
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Equations (3-47) and (3-47) can be related by applying the

last boundary condition. Referring to equation (2-15):

dy, s

% at’ d=, _l.

dz, l-'dyz S
de, L, : (2-15)

where 9(_“3'_._ and dy,
da, 2,

(3-47) and (3-45), respectively;

are obtained by differentiating equations

dy,  _ —LAM,QL+£BM»‘2¢L—__:_E :
de, ok
dithe ) s (32 ke s ﬁi.L%).s.mﬂest (3-48)
d=, &,
+k_§.1(mk9»_2—u>
AT L i

By cimplifying the equation obtained by substituting equation
(3-48) into equation (2-15), and applying equation (2-4),
yields the actual deflection SP at the pin end of the rod as

related to the applied force P; i.e.:

—}z AAm]zL +¥z Bmﬂzl_ — ki (s;s,) [ﬁ‘z K (s +85)
A2l N
%2
6 (8,+% ,coéjest-
g (et ')

‘_“H ~ ke, Abin b L, + Ko Bm/ﬂeLs—.&z <s+s>}{(£

k
' gk

2l g :
> .&7__::?2‘_( 5+ SP)](S“+ 5p) Bin ﬁ.et_z—

9

%(s +s)+}¢ L,(s +9.)) (S )M/&L

I

O (3-49)

2
g

i (s+sP)(mﬁzL—\)}+t]

Where A and B are the constant values expressed in equation (3-46).




34

The derived formula (equation (3-49}) can be solved

by a trial and error method, and a computer program is very
helpful in making the necessary calculations required for

a solution. The alphabetic letters used in the derived
formula, (3-49), correspond to those used in the computer program
for convenience and clarity as shown on page 55 as computer
program no. 4. The same actual dimensions of the hydraulic
actuating cylinder used in the previous case were taken to

show the performance of the derived formula. The equation

was evaluated by using various arbitrary values of initial
deflection angle and the characteristic results are shown

by a plot of load vs deflection in figure 22. The calculations
required for.the results given by the plots of figure 22 were

obtained from program no. 4.
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CHAPTER IV

EXPERIMENTAL STUDY

4,1 Experimental Procedure

An experimental study of the hydraulic actuating
cylinder behavior was conducted at the Cylinder Division
of the Commercial Shearing Inc. plant by using a fluid
unfilled plunger rod with both ends pinned. The important

dimensions of the hydraulic test cylinder are shown by the

drawing in figure 15. The pinned end of the cylinder

-

Figure 16 Photograph of Experimental Set-up for Hydraulic
Cylinder with Fluid Unfilled Plunger Rod.
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(bottom pin) was connected by a 1.0 inch bolt to a horizontal
circular steel base, 9.0 inches diameter, which was capable
of moving in a vertical direction by pumping fluid through

a special fitting and line connected to a hydraulic pump.

The upper end of the hydraulic test cylinder was connected by
a 1.0 inch bolt to a pineye that was fixed to a steel column.,
The cylinder portion was filled with a fluid to keep the

A

hydraulic test cylinder extended to its full stroke.

dial gauge was placed at the wall close to the connecting

Figure 17 Photograph of Experimental Measurements.
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Figure 15 Dimensions of the Testing Hydraulic Cylinder
with Fluid Unfilled Pl

unger Rod.
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line of the pineyes to measure the deflection at the mid-

point of the hydraulic test cylinder. The applied loads

were accurately indicated by a 30,000 1b., gauge in front

of the testing machine as shown by the photograph of figure 16.
The three trials were conducted by increasing the

applied load by 1,000 1lbs. in order to obtain each test

poeint. The deflections at the middle of fhe hydraulic test'

cylinder were recorded for each 1,000 1lb..load increment.

The dial gauge was adjusted for zero deflection at 0 and

2,000 1lbs. of applied load for the first and the last two

trials, reépectively. In these trials, the deflections

increased gradually with load, then suddenly became greater

near failure. A number of the tests showed that the direction

of deflection near failure was different from the direction

of the initial deflection, i.e..the hydraulic test cylinder

had a small initiai deflectian angle between the cylinder

and rod resulting the required clearances and manufacturing

tolerahces and it did not always correspond (direction-wise)

to the deflection induced by loading.

4.2 Experimental Test Cylinder Results and Comparison

with Analytical Results.

The relations between the applied loads and deflections
at the mid-point of the test cylinder for three experimental
trials are shown in table 1. The load-deflection curves
were plotted using the data on table 1 as shown in figure 24,

The formulation of the buckling equation for the hydraulic
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cylinder with fluid unfilled plunger rod (equation (2-17))
was used to calculate analytical values in order to compare
the derived formula with the experimental results. Since
the clearances and manufacturing tolerances of the test
cylinder and rod were found to be very small, 0.10 degree

of the initial deflection angle was assumed in performing
this calculation. The double precision method was used in
the computer program in order to obtain the required
precision. The calculated results were obtained using
computer program no. 5. Since the deflection obtained

from the calculated results are for the pinned end of

the rod as shown in figure 8, it reasonable for comparison
purposes to approximate the values obtained at the mid-point
as being equivalent to twice their measured value. The
calculated and experimental results of the deflections at
the various applied load were compared as shown in figure 24
and the agreement shown in this figure is sufficient to
verify the analytical method. Most of the differences
between the calculated and experimental load-deflection
curves occurred from the initial deflection angle assumption.
The calculated results from the previous chapter showed

that the load-deflection curve varied with the given initial
deflection angle and, it is difficult, from a practical
standpoint, to specify the exact value of the initial deflection

angle between the cylinder and rod.
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CHAPTER V

CONCLUSIONS AND DISCUSSION

5.1 Conclusions.

There are two ways in which a hydraulic actuating
cylinder can be constructed, either with a fluid-filled plunger
rod or a fluid-unfilled plunger rod. In the analysis of the
two types, the double-integration method based on simple
beam theory was applied, and many different effects were
considered particularly in the case of the fluid-filled
plunger rod. The main effect of the ipternal pressure for
the fluid-filled plunger rod case was introduced in section
3.1. The effect of the small force component at the rod
end which produced a significant moment was added to the
bending equation as described in section 3.2. In the last
section 3.3, the moment effects of all the previous sections
were combined with the moment effect produced by the fluid
pressure acting on the column wall in the deflected
position in order to obtain the complete final résult.

Since the final formulations of the buckling equations
obtained for each case were complicated, computer programs

were written for convenience in performing the required

calculations.
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The initial portion of the deflection-curves for any

given initial deflection angle, o« , which amount to the plotting
of the applied load vs the deflection at the pinned end of
the rod, tends to increase in slope as the initial deflection
angle decreases.(refer to figures 19 to 22). If the initial
deflection angle were assumed to be zero, each formulation
gives the characteristic result that theré is no deflection
at the pinned end of the rod as the applied load is increased
until it reaches the critical buckling load value at which
point.the deflection suddenly increases to infinity (buckles).
In the ﬁnalysis, the deflection angle at the pinned
end of the rod was assumed to be small, i.e. sin® = © and
cos® = 1, which gives fairly accurate results (within 0.4%),
for deflection angles not exceeding five degrees. In practice,
the deflection angle at pinned end of the rod should not
exceed this limit.and this coupled with the mathematical

simplifications resulting from the assumption, justify its use.

5.2 Discussion

For the given actual dimensions of a representative
cylinder taken from one presently designed and fabricated as
shown in figure 18, the analytical results are compared for
the fluid-filled plunger rod and fluid-unfilled plunger rod
for each case as described in sections 2.1, 3.1, 3.2 and 3.3.
Each characteristic result, i.e. a plot of the applied load
Vs deflection at the pinned end of the rod, were determined -

and plotted for an initial deflection angle of three degrees
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as shown in figure 23, Here, it is shown that the fluid-
filled plunger rod, in the first case of the analysis (line
no. 2), has a buckling load of almost twice that of the
fluid-unfilled plunger rod (line no.1) for the same given
dimensions. When the effect of the bending moment produced
by the small component of force at the rod end was considered,
the capability of the hydraulic cylinder to support the
applied load was reduced about 20% (line no. 3) from the
previous case which neglected this effect (compare line no. 2
with line no. 3). When the bending moment produced by the
fluid pressure acting on the column wall at the deflected
position was included in the analysis, the capability of the
hydraulic cylinder to support the applied load was reduced
again but to a lesser extent than what occurred for the
previous'effect (compare line no. 3 with line no. 4).

The final result of the fluid-filled plunger rod
which includes all the moments (line no. 4, figure 23) is
seen to have a higher buckling load than that for the
fluid unfilled plunger rod (line no. 1). Furthermore, it
should be noted that in the typical cases discussed in
sections 3.1 and 3.2, as shown by the lines no. 2 and no. 3
in figure 23, the procedure of neglecting some forces that are
destabilizing leads to an unsafe rather than an over

designed cylinder.
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5.3 Comment of Further Work

The hydraulic actuating cylinder with both pinned
ends can be analysed by applying the double integration
method based on the simple beam theory. Some boundary
conditions as described on section 2.3 must be changed in
order to satisfy the new conditién. The analysis of many
different effects that occur in both types of the fluid filled
and unfilled plunger rod can follow the method described in
chapters II and [IT.

The results of the experimental study described in
chapter IV are compared with the theoretical values obtained
for the fluiq unfilled plunger rod. An experimental study
using a fluid.filled plunger rod can be conducted, and
compared to theoretical results obtained by using equation

(3-49) and computer program no. 4.
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Figure 18 Dimensions of the Hydraulic Cylinder for
the Theoretical Calculation




4s
LOAD P (LBS.)
A
300,000
250,000
o =0
200,000 L
o= 2°
o« =9
150,000 e
o = 5.
100,000
50,000
0 il + + —+ + + > §_ (INCHES)
o 5 10 15 20 25 30 35 40 P

Figure 19 Load-Deflection Curves for the Fluid Unfilled
Plunger Rod.
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Figure 20 Load-Deflection Curves for the Fluid Filled
Plunger Rod when the Main Effect of the
Fluid Pressure was considered.
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Figure 21 Load-Deflection Curves for the Fluid Filled
Plunger Rod when the Bending Moment Produced
by Force P sin® was considered.




48
LOAD P (LBS)
A
400,000 +
350,000 1
300,000
250,000
L
o =0
% = l.
200,000 &
o = 2
o = 3.
°
o = 4
150,000 =5
100,000
50,000
(o] o b

> 85 (INCHES)

Figure 22 Load-Deflection Curves for the Fluid Filled
Plunger Rod at the Final Result.
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Figure 23 Theoretical Results Comparison at Three
Degrees of Initial Deflection Angle.
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TABLE 1
EXPERIMENTAL DATA OF THE TESTING CYLINDER

Deflection at the Middle Point
Load of the Testing Cylindef (inches)
(1bs.) S p
Trial #1 Trial #2 Trial #3
1000 0 Adjust for Adjust for
0 @ 2000 lbs. 0 @ 2000 1bs.
2000 0 0 0
3000 .0050 .0035 .0050
4000 .0095 . 009 .011
5000 .0135 .014 .017
6000 +0175 ©.019 .024
7000 .011 .026 .031
8000 .028 032 .039
9000 032 .038 . 047
10000 .0375 .OL4h 0535
11000 . 0435 .052 ,.062
12000 .051 .060 .071
13000 .060 .070 .083
14000 .078 .081 .096




LOAD P (LBS)

17,000 ¢
) CALCULATING CRITICAL BUCKLING LOAD.
16,000 %- ________________________________
15,000
14,000
13,000
12,000 TRIAL N |
TRIAL No 2
11,000
TRIAL NO. 3
e CALCULATING RESULT.
(Peg = 16,157 LBS.)
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000 4
(,000 A1
DEFLECTION AT
o + + ' + ' N = + - ' _»> MID-POINT OF
o o2 04 o6 .08 10 12 14 16 18 20 HYD. CTL. CHHES)
rL . - . ; . . o > DEFLECTION AT
o .04 .08 2 .18 .20 .24 2% .32 36 .40

ROD END (INCHES)
(APPROX.)

Figure 24 Experimental and Analytical Results
Comparison




Computer Program Number 1,

20

REAL I1,12,11,L2,K1,K2
P=10000.0

READ(5,7) DEG
E=30000000,
11=56,98451
12=274,5979

1.1=98,

L2=96,

FORMAT(F4,1)
THE=3,14159*DEG/180.
DELT=L1*THE
K1=SQRT(P/(E*I11))
K2=SQRT(P/(E*12))
D=K2%*(SIN(K2%*12))

G=K1*(COS(K2*L2))*(COS(K1*L1))/(SIN(K1*L1))

B=11*(G-D)
A=DELT*D*G

DEL=(B-(SQRT((B*#*2, )-(4,*A*DELT))))/(2.%A)

DELP=DEL-DELT
WRITE(6,10) P,DEG,DELP
FORMAT(3E20.10)

IF(((B**2, )-(4,*A*DELT)).LE.O0.) GO TO 20

P=10000.0+P
GO TO 1
STOP

END

52




Computer Program Number 2,

20

REAL I1,I2,11,L2,K3,K5
P=10000.0

READ(5,7) DEG

E=30000000.

11=56,98451

12=274.5979

L1=98,

L2=96,

FORMAT(F4.1)

THE=3.14159*DEG/180.

DELT=L1*THE

K3=SQRT((0.33608%P)/(E*11))
K5=SQRT( (0. 33608*p)/(E*12))
D=K5*(SIN(K5%L2))
G=K3#*(COS(K5%L2))*(COS(K3*L1))/(SIN(K3*L1))
B=11*(G-D)

A=DELT*D*G

DEL=(B-(SQRT((B®*%*2, )-(4.*¥A*DELT))))/(2.*%A)
DELP=DEL-DELT

WRITE(6,10) P,DEG,DELP

FORMAT(3E20.10)
IF(((B**2, )-(4 . *A*DELT)).LE.0.) GO TO 20
P=10000.0+P

GO TO 1

STOP

END
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Computer Program Number 3

12
13

20

REAL I1,12,L,L1,12,K1,K2,K3,K4,K5,K6,DELP
P=10000,0

READ(5,7) DEG

E=30000000.

11=56.98451

12=274,5979

L=194,

11=98,

L2:96.

DELP=1.0

FORMAT(F4.1)
THE=3.14159*DEG/180.
DELT=L1*THE
DEL=DELP+DELT
K1=SQRT(P/(E*I1))
K2=SQRT(P/(E*I2))
K3=SQRT((0.33608*P)/(E*I1
K4=SQRT((0.66392%P)/(E*I1
K5=SQRT((0.33608%P)/(E*12
K6=SQRT((0.66392*P)/(E*12
F=( ((K2#*#*2, )*(COS(K5*L2))
1K5%L2)) ) /((K5**3, )*L) ) ) *(
B=F*(COS(K3*L))
A=F#*(SIN(K3*L))
C=(A*K3*(SIN(K3*L2)))+(B*K3*(COS(K3*L2)))-( ((Ku**2,)
1*DEL)/((K3%#2,)*L))

D=( (K2%*2, )*DEL*(SIN(K5*L2))/K5) +( (K6**2, )*DEL*( (COS
1(K5%L2))-1.)/((K5%*2,)*L))

H=C-D-( (DELT*( (C*D)+1.))/L1)

FORMAT(3E20.10)

IF(H.LE.0.) GO TO 12

P1=P

DEG1=DEG

Hi=H

GO . T0 13

WRITE(6,10) P1,DEG1,H1

WRITE(6,10) P,DEG,H

IF(H.LE.0.) GO TO 20

P=10000.0+P

GO TO 1

STOP

END

))
))
)
/(K5*#2 ) )~ (((K6*#*2, )*(SIN(
DEL/(SIN(K3*L1)))
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Computer Program Number 4,

iz

REAL I1,I12,L,L1,L2,K1,K2,K3,K4,K5,K6,K7,K8,K9,DELP

P=10000.0

READ(5,7) DEG

E=30000000.

11=56.98451

12=274.5979

L=194,

L1=98,

L2=96,

DELP=1.0

FORMAT(F4.1)

THE=3.14159*DEG/180.

DELT=L1*THE

DEL=DELP+DELT

K1=SQRT(P/(E*I1))

K2=SQRT(P/(E*I2))

K3=SQRT((0.33608*P)/(E*I1))

K4=SQRT((0.66392%P)/(E*I1))

K5=SQRT((0.33608*P)/(E*12))

K6=SQRT((0.66392%P)/(E*12))

K7=SQRT((1.11385%*P)/(E*12))

K8=SQRT( (K3**2, ) +( (K4**2, )*DEL/L))

K9=SQ§§§(K5**2.)r((K6**2.)*DEL/L)+((K7**2.)*LZ*DEL/(
1L#%2,

F=((K2%%*2,)/(K9**2,))+(((K6*%*2, )*DEL)/( (K9#*#2, })*L))+
1(((K7*#2, )+(L2%**2, )*DEL)/((K9**2, )*(L**%3,)))

B=( (F*DEL*( (COS(K9*L2))=-1.)) +((K6**2, )*DEL*(12-( (SIN
1(K9*L2))/K9))/((K9*#2, )*1,) ) +( (K4**2, )*DEL*(DEL- (DEL*
1(COS(K8%L2))/(COS(K8*L)))-L2)/((K8**2, )*L))+(((COS(K
18*L2) )*DEL*(1.-((K3*#*2,)/(K8%%*2,))))/(COS(K8*L)))+((
1(K1**2, )*DEL)/(K8%*2,)))*(COS(K8*L))/(SIN(K8*L1))

A=(DEL-(B*(SIN(K8%*L)))-((K3##%2, )*DEL/(K8%**2,))-( ( (K4
1#%2 )#(DEL#**2,))/((K8**2,)*L)))/(COS(K8*L))

C=(K8*B*(COS(K8*%L2)))-(K8*A*(SIN(K8*L2)))-(((Ku**2,)
1*DEL)/((K8%*%*2, )*L))

D=(F#*K9*DEL*(SIN(K9*L2))) +( ((K&**2, )*DEL*( (COS(K9*L2
1))-1.))/((K9**2, )*L))

H=C-D~( (DELT#( (C*D)+1.))/11)

FORMAT(3E20.10)

IF(H.LE.0.) GO TO 12

P1=P

DEG1=DEG

Hi=H

GO TO 13

WRITE(6,10) P1,DEG1,H1

WRITE(6,10) P,DEG,H
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13 IF(H.LE.O0.) GO TO 20
P=10000.0+P
GO TO 1

20 STOP
END
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Computer Program Number 5,

20

DOUBLE PRECISION P,E,I1,I2,11,12,DA,DB,DDELT,DTHE
DOUBLE PRECISION DK1,DK2,DD,DG,DDEG,DDEL,DDELP
P=1000.0

READ(5,7) DDEG

E=30000000,

11=0.12866

I12=4,23072

11=27,625

L2=37.37

FORMAT(D4,1)

DTHE=3,14159*DDEG/180,

DDELT=L1 *DTHE

DK1=DSQRT(P/(E*I1))

DK2=DSQRT(P/(E*12))

DD=DK2*(DSIN(DK2*L2))

DG=DK1*(DCOS(DK2#*L2) )*(DCOS(DK1*L1))/(DSIN(DK1*L1))
DB=L1#*(DG-DD)

DA=DDELT#*DD*DG
DDEL=(DB-(DSQRT( (DB*#*2, )-(4,*DA*DDELT))))/(2.%DA)
DDELP=DDEL-DDELT

WRITE(6,10) P,DDEG,DDELP

FORMAT(3D20,10)

IF(((DB**2, )-(4,*DA*DDELT)).LE.0.) GO TO 20
P=1000,0+P

GO TO 1

STOP

END
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APPENDIX A

General Solutions of the Second Order Linear Differential

Equations with Constant Coefficients. (Equations (2-9) and
(2-10))

Referring to equations (2-9) and (2-10):

%oy Ky = A , (2-9)
da?

fd_g_y% 3 /P‘:’sz o }’-:5 . (2-10)
e}

To determine the complementary solution of the differential

equation in the form shown above, equation (2-9) can be

written as:

o+ Ky, = o ’ (A-1)

assuming the complementary solution of the differential

equation (A-1) is:

e = i : (A-2)

2 hz|

then; Y, == AL 2 . (A-3)

Substituting equations (A-2) and (A-3) into equation (A-1l)

gives the non-trivial solution:

/"2 + ]‘T . o ’ (A-u)




for which the roots of equation (A-4) are:

B A o= xhi : LS

where A is the imaginary unit, i.e. 4 = /-1 .

The complementary solution of the differential equation
(A-1) is:

" -~ Amiz‘z‘ +B,64'm}z,az. ’ (A-6)

where A and B are arbitrary constants.
Assuming the particular solution of the differential equation

(2-9) is:

P = i : (A-7)

then R 0 . (A-8)

Substituting equations (A-7) and (A-8) into equation (2-9)

gives the constant value:

and equation (A-7) becomes:
yln —_ ) . (A-9)

By combining equations (A-6) and (A-9), yields the general
solution of the differential equation (2-9):




60
y" = Amé/‘)t@.l + BM]«.,Z, + 9 2 (A-10)

Since the differential equation (2-10) is the same form as
equation (2-9), then the general solution of the differential

equation (2-10) can be shown to be:

Yy, = C a0t Km0 sim Ris, + § (A-11)
2 e 2 272

where C and D are arbitrary constants.
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APPENDIX B

General Solutions of the Second Order Differential Equations

with Constant Coefficients.

(Equations (3-21) and (3-22))
Referring to equations (3-21) and (3-22):

W CPMIRIG S S
‘2—'&—2’*"&3?' . 9 z,+ﬂz‘.s d (3-21)
%2'9_: + Ky, = -Apm ks (3-22)
z,

To determine the complementary solution of the differential

equation as the form shown above, equation (3-21) can be

written as:

- "

Y, + /&3 Y, - 0 » (B-1)
and the complementary solution is obtained: (see Appendix A)

Y, = A cod oo, + B Bin oy, (B-2)
CF

where A and B are arbitrary constants..

Assuming the particular solution of the differential equation
(3-21) is:

Cx, + D,$

-2
I

’ (B-3)

then; 'g,l o 0 ; (B-4)
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Substituting equations (B-3) and (B-4) into equation (3-21)

gives the constant values:

C‘ = - ’&: .9 3 Dl = :éi ’ (B'S)
IR &,

and equation (B-3) becomes:

y'l o ‘&Z_.L.’X-,+£.s s (3-6)
Pl /%: L k"

3
By combining equations (B-2) and (B-6), yields the general

solution of the differential equation (2-9):

y,l = AM'&*‘*‘BM/&&F’&‘Z iac +i22 . (B=7)

3

Since the differential equation (3-22) is the same form as

equation (3-21), then the general solution of the differential

equation (3-22) can be shown to be:

2

, &
y’z = EMLSaZ+FM£5zz—&: S.2 +'ﬁz s (B-8)

where E and F are arbitrary constants.
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APPENDIX C

General Solutions of the Second Order Differential Equations

with Constant Coefficients. (Equations (3-40) and (3-41))

Referring to equation (3-40):

(ﬁ}ﬁ%}yﬁ] - —[,&i.%.z,]+[(ﬁf+/¢e:.%).s} . (9l

2
=V g

da

To determine the complementary solution of the differential

equation as shown above, equation (3-40) can be written as:

I
o

yl+(zgz§+/£{:%) 'y,' , (C-1)

and the complementary solution is obtained: (see Appendix A)

'y,cr i Am(,/%}}{i%) 2 + E’A"”‘(V'&:*K-%)”. . (t-2)

where A and B are arbitrary constants.

Assuming the particular solution of the differential equation

(3-40) is:
y¥1 . C.%2, + D5 g (C-3)

then; ﬁwx = 0 . (C-4)
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Substituting equations (C-3) and (C-4) into equation (3-40)

gives the constant values:

C = N jiz .i )
: }ia }22 3 1=
,&2 }iz (C-5)

Dl = & S-S ’
J T T T

o~

I—V‘

and equation (C-3) becomes:

'g“ - __%_:‘___._S_. Z| +( /&: e lgf .i) o . (0—6)
i B st R ks hadis -

By combining equations (C-2) and (C-6), yields the general
solution of the differential equation (3-40):
. «ez' 2 2
y‘ = Am/&'z,+BM£5zl-_4.§.m'+ ‘z_l_,_ﬂ'_t.i)-s

LR T
(8~7)

where; j% - 1/}§-+Jﬁ-% . (c-8)

Referring to equation (3-41):

d«,, +[(£§+£;.%+Lj.%s_)%]

x

g [L:.s.xz]Jr[(ﬁuﬁ:.s JJ.LZS).s] . (3-41)

To determine the complementary solution of the differential-

equation as shown above, equation (3-41) can be written as:
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y,2+(/£z§+}z:._ﬁ_ +iz’7_l:é5_) Y,

I
o

, (c-9)
and the complementary solution is obtained: (see Appendix A)
B - E ,coﬁ/pesuz + F don l%saez " (C-10)

where E and F are arbitrary constants, and

b 1/14;+;4;.%+k;.%_s S

Assuming the particular solution of the differential equation

(3-41) is:

y'zn = G, %, + H:$ ’ (C-12)
then; %/izn = 0 ‘ (C-13)

Substituting equations (C-12) and (C-13) into equation (3-41)

gives the constants values:

G| == —ﬁ.-_s_. ’
I
(C-14)
H' == «&:-*—/ei: __§_+’Z:.L223 .
2 3
i |
and equation (C-12) becomes:
2 ..
Y, —ﬁ.é.zz+(£+£_.g+£.£).s : (C-15)
A e

;
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By combining equations (C-10) and (C-15), yields the general
solution of the differential equation (3-41):

y,z = Em£9z2+F&mk9zz—%{._ﬁ__zz
+(£+_§_._§_+ _27@_8)3 | : (C-16)

O R
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