COMPUTATION OF OPTIMAL WEIGHTS FOR AND SIMULATION OF
A HYBRID DECISION ALGORITHM FOR
PATTERN RECOGNITION AS APPLIED TO TRACK EVENT TIMING
by
David D. Bailey

Submitted in Partial Fulfillment of the Requirements
for the Degree of
Master of Science in Engineering
in the
Electrical Engineering

Program

Wy G S
Bl 1

Adv.ser

d{ /&Z/L// f/?’///'if

Dean of the Graduate School /7 7/ Date

YOUNGSTOWN STATE UNIVERSITY

August, 1978



ii
ABSTRACT
COMPUTATION OF OPTIMAL WEIGHTS FOR AND SIMULATION OF
A HYBRID DECISION ALGORITHM FOR
PATTERN RECOGNITION AS APPLIED TO TRACK EVENT TIMING
David D. Bailey
Master of Science in Engineering

Youngstown State University, 1978

This paper presents the application of a theoretically
derived decisilon algorithm for pattern recognition in the
area of automatic track event timing. The proposed system
will locate (in time and space) a runner near the end of the
course in a track event. A training procedure for determining
a set of optimal weights'essential"tb the algorithm is
presented along with the results of simulation and testing

of the system on an IBM 370 computer.
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CHAPTER T
INTRODUCTION

The realization of theoretical ideas in the form of
practical applications in the physical world is the role
most often taken by the engineer. Maxwell's equations mean
very little to the real world on paper but their applications
in the areas of microwave technology and field theory affect
all of mani#ind. Many fields of study have been developed,
in theory, to a high degree of complexity. However, practical
applications are few and far between. One such area is
pattern recognition.

Real world applications in pattern recognition exist
_ primarily as projects of the future in the minds of today's
mathematicians. Computation time and feature selection are
ma jor road blocks in the implementation of complex decision
algorithms. It is possible, in certain situations to develop
algorithms which are easily implemehted. This paper takes
a theoretically developed pattern recognition decision
algorithm and uses it as a basis for a practical, real time,

automatic track event timing system.



The decision algorithm was developed by Mr. Jeffrey
Taft and the author and was presented in Mr. Taft's Master's
thesis at Youngstown State University.[ﬁ] At that time, it
was suggested that an application in the area of track
timing would be possible. Further investigation by th; author
verified this possibility and a system for implementing the
decision model was proposed. The author's work in feature
selection,weight investigation and the simulation and testing
of the algorithm verified the ability of the algorithm to
identify the runner's position with respect to the finish
line. This ability to locate the runner's position enabled
the system to determine the finish time of the runner.

Chapter 2 presents the mechanics of track timing -
along with the current attempts of providing automatic timing
systems. Chapters 3 and 4 provide some general background in
pattern recognition techniques and the derivation of the
decision algorithm. In Chapter 5 the ‘decision algorithm is
applied to track timing. The training procedure for providing
an optimal set of weights is also presented. The simulation
and testing of the algorithm is presented in Chapter 6.
Chapter 7 presents a system for implementing the decision

algorithm as an automatic track timing system.



CHAPTER II
CURRENT TRACK TIMING PROCEDURES

Track and field has shown tremendous growth in
popularity over the past few years. Prime time telecasts of
the Olympics have resulted in great exposure to the public,
and.jogging for fun and health has created a closer tie to
track and field for many people. With improved performances
by athletes, world class runners differ in finish times by
only hundreths of a second. This intense competition at the
top has created - a need for timing systems with more precision
than can be provided by the hand-held stopwatch.

The use of automatic timing systems is constrained
by the definition of the finish of the race as given by the
National Federation Track and Field Committee. The finish
line is a vertical plane extending from the surface of the
track located at the end of the course. The white line marked
on the track is there as an aid to the finish judges only.

A runner has successfully completed the race when the leading
edge of his torso has broken the vertical finish plane. The

torso is defined as the trunk of the body excluding the head,
arms and legs.[Z] This definition differs from that of other

sports like swimming and horse racing where it is the first



part of the participant’'s body which breaks the finish plane
that constitutes the end of the race. In figure 1, the
runner is seen approaching the finish plane and actually
breaking the plane with his hand. The race is not over,
however, until the leading edge of the torso breaks the

finish plane.(figure 2)
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Fig. 1. Illegal finish of runner
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Fig. 2. Valid finish of runner



The basic problem then, in timing a track event, is
one of precisely locating the leading edge of the torso, also
called the chestline, with respect to the finish line. The
timing systeﬁ must also be able to satisfy the following:

1. Each runner must be timed to an accuracy of .0l seconds.

2. The system must be capable of timing more than one
runner, regardless of the closeness of the finish.

3. Results from the race must be available immediately
following each race.

b, The cost must be in the range affordable by most
high schools and small colleges.

The most common method of track event timing is the
human observer with the hand—hela‘gégpwatch. The human eye
is able to distinguish between the torso and the rest of the
body thus eliminating the danger of mremature timing of the
runner. However, in races involving 8 participants, 25
judges and timers are required to handle the timing duties.
(Appendix A) This crowd creates a confusion at the finish
line and some error can be introduced into the results. The
problem of reaction time also becomes significant when

accuracy to hundreths of a second is needed.



Automatic electronic timing systems havé been
designed to remove the human element from the actual timing.
The most common system on the market is one which employs
light beams to sense the presence of the runner. This system
can be triggered prematurely by an outstretched arm or
leg (as shown in figure 1) alloWing the runner to illegally
improve his time and place. It is also necessary for the
system to be able to time more than one runner in a race.

In an optically triggered system it is possible for one
runner to cast a shadow on other participants which restricts

the system to timing only that runner. In figure 3, runner A

Fig. 3. Runner A shadows runner B



crosses the finish line ahead of runner B. A's shadow on B
prohibits the system from timing B. These two problems make
the optically triggered system unreliable in situations which
are not uncommon in a race.

Other systems on the market handle these reliability
problems but as reliability increases so does the cost, with

some price tags exceeding $150,000.
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CHAPTER III
STANDARD APPROACHES IN PATTERN RECOGNITION

Evefy runner has one and only one chestline. The
problem is to locate this chestline with respect to the
finish line. The chestline, however, is often camouflaged
in a constantly changing pattern of arms,legs and head. The
precise location of the chestline in a constantly changing
shape suggests a solution through pattern recognition
techniques. However, standard pattern'recognition techniques
fall short of providing the needed accuracy in the system as
will be explained later. A brief_ty@prial on pattern
recognition is presented here as awbasis for the derivation
of the decision algorithm in Chapter 4.

A pattern can be defined as an ordered set of
measurements arranged in vector form. This vector must allow
reconstruction of the original image from the measurements

taken. This vector is called the feature vector X. Thus

,‘:1
m;,

LB
1

(1)

5.-.

n

th

where my is the k measurement in the vector. n is refered



to as the dimension of the feature space and corresponds to
the total number of measurements. The measurements taken for
the feature vectér may be obtained in se&eral ways. The
vector may be assembled from a series of samples on a
waveform or from measurements as diversified as the wéight,
color and length of a runner's body. A vector, composed

of a series of components which indicate whether a particular
characteristic is present or not, is refered to as =2 binary
vector. Vectors of this type are used in automatic
classification schemes for information retrieval.[}]

The n-dimensional feature vector is said to lie in
an orthogonal pattern space. A basis set of orthogonal unit
vectors corresponding to unit measures of the features
defines the pattern space. Patterns which are classified
together form "clusters" in the pattern space. These
"clusters" are known as pattern classes, denoted w.. If
a region of pattern space is defined so the entire cluster
is included in the area, then the pattern class may be
defined in terms of the boundaries of the region.

A wide variety of pattefn recognition techniques
have been developed to classify sample patterns in terms of
known pattern classes. However, no one technique has been

developed that will work on all possible patterns.
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Statistical Methods

It is possible to compute the probability or
likelihood that pattern x belongs to ClaSS(Uj . This
probability acts as an aid in guessing which class the pattern
belongs. A loss function can be defined as follows: L(Y,Z)
is the payoff or loss for player A when A chooses Y and B
chooses Z. If A wins, then his payoff is L(Y,Z). If A loses,
his loss is L(Y,Z). A classifer which minimizes loss in
making the guess is a Bayes classifer. The decision proceés
is considered a two person zero sum game. In this case, the
person providing the samples selects at random rather than
trying to optimize strategy. ek

In a two person game between nature and.a classifier,
nature selects a classwi and from this class produces a'k
vectof ?. If the classifier incorrectly selects wj as the
class from which X originated then the classifier has a

loss Lij' The expected risk in any classification may be

defined as

rs(x) = g_L L;; Plw;/ X) (2)

M is the total number of possible pattern classes and

P(wi/ X) is the likelihood or probability that x came from



w; . The Bayes classifier formula is given by

P(w. )P(x/ )
4y Plugde) = & ™) (3)

P(x)

where P(x/, ) is the probability function of classw, and
i
Bﬂui) is the a‘priori probability of occurence of CIaSS(bE'Eﬂ

The risk function may now be rewritten as
M
x) = . P(X/w . )P (w
ry(5) = 2 1y R/ )R (ey) (1)

with the classifief now assigning the pattern to the class
with the lowest risk. |

Many other methods are possible which are based on
the same probability functions. They differ in the forms

of threshholds used in making the final classification.

Distance Measurements

One method of solving the patiern recognition
problem is to measure the distance between the sample and
thée pattern class. The'sample is then classified %o the class
which has the minimum distance from the sample. In the case
where the patterns can be treated as vectors in an

orthogonal space the measure of the distance can be found
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by the Euclidean distance

i
D = |(xy-w)2e(x,mw0) % toie(x ~w)?] " (5)
e T | e o ¥AX 0
where xl,xz....xn are elements of the sample vector and

w. .UJZ...dbh are elements of a pattern W. This can be

rewritten in vector form as

N 4
- =T,— —| 2
Deuc1ia = [(x-w) (x-wﬂ . (6)
A_more general distance measure is defined as )
yi
- oy |m o, |m _ m| ‘m
Dminkowski i le uil +|x2 “@I +'°'+|xn “hl (7)

where m is an integer 2 1.Pq

In the case where the pattern classes are not roughly
hyperspherical in shape or are not well seperated other
distance measure techniques are needed. The Mahalanobis
distance may be effective when statistical properties are

being used. This measure is defined as

Dy = (X-m) g-l(sz-a) (8)

=3z 3 X (9)
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and C is the covariance matrix estimated by

J

- g;; (xk kM k) (10)

|[e!
H

-

whefe Ek are training set samples and J is the number of
training samples.[B]
The Tanimoto.measure is useful in problems dealing
with binary vectors. It is defined by .
_T.'_

D —_— F (11)
T xTx+t”T - :

The quantity §T.; is the number of common attributes between

the sample x and the pattern protype w .

Discriminant Functions

Strongly relafed to the distance methods are the
discriminant functions. These functions act as partitions
between the pattern clusters. The pattern sample is classified
depending on which side of the partition the sample falls.

The most efficient of the functions is the linear
discriminant fﬁnction or hyperplanes.

To create general hyperplane functions, the patterh

vector is augmented in the following'way

|
)

AV o

(12)

I
1]
EIVAVEY.
=

~~~~~



The product of the sample vector and a weight vector forms

the linear discriminant function d(x).

a(x) = W'x (13)
- dh

where w = [?I'WZ’WB""'Wn'Wn+i] . In the two-class case,
the sample is classified by

a(x) = wEnonAt 6 : (14)

€0, 1T X€ W,

d(x) represents a hyperplane which divides the pattern space
into two parts with one cluster on each side of the
partition. [5]

The two-class case is straightfoward. However, the
multi-class problems may not be as simple. In the case of
multiple clusters, linear combinations of the disériminant
functinons may be neccessary. This combination may result in
indeterminant regions in the pattern space. Figure 4 shows

the two-class case along with a multi-class case.

S He

Indeterminant
Region

Fig. 4 Discriminant functions (a) two class
and (b) multi-class case



The problem of indeterminant regions creates a need
for higher-order functions to perform more complex decisions.
The clustering properties of the sample sets of pattern
classes dictates the need for these functions. With the
higher-order functions, the computation involved in
classification of the samples becomes much greater than with

the linear functions.

Other Methods

The methods discussed so far in no way cover the entire
range of pattern recognition techniques. A method which has
received growing. attention in the past few years is syntax
analysis or.the structural method.[lq] Other methods have been
developed and it is left for the interested reader to see
references[B] - {7] for more details.

In the particular application of track timing these
standard methods failed for a variety of reasons. The statis-
tical methods involved tremendous computation time and the
reliability of this method seemed to fall short of what was
needed. The inability to determine the pattern clusters was
the downfall of both the distance measures and the discriminant
functions. The need for a computationally fast decision

algorithm lead to the hybrid algorithm of Chapter 4.
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CHAPTER IV
A HYBRID DECISION ALGORITHM

The types of pattern recognition problems handled
in Chapter 3 may be stated as follows: Given a set of
pattern classes and given a new sample, determine to which
class the sample pattern belongs. In certain applications
this problem is changed slightly to read; Given a set of
candidate samples and given that one and only one of the
samples belongs to a particular pattern class and the rest
do not, determine which of the candidate samples belong
to the pattern class. LA )

The solution to this classwgf problemé can be
handled by a hybrid method, that is, the decision model makes
use of both probabilistic and deterministic techniques. First
it is unecessary to develope a set of probability density
functions (PDF). Each PDF will give the probability, X
that the sample belongs to the pattern class, giyen
measurement m; . The PDF's are obtained by carefully
determining the statistical properties of the features

in interest.[l}
|
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Measurements are made on each candidate. The

probabilities are obtained from
x; = PW/my) . (15)

The probabilities are arranged in a feature vector Xx.

X = [%l x2...xA]T (16)
where n is the number of features. :
If J candidates are to be used as samples, then J
probability feature vectors must be found. These vectors

are arranged in a C matrix called the candidate matrix.

]
1
c= | (17)

s
[

where J is the number of candidates and 23 is given by (2).

"To indicate the relative importance of each feature
in determining the class membership, a weight vector W is

formed. The weight vector postmultiplies C to yield an

—_—

evaluation vector E.

CW=E (18)
The E vector repfesents the relative probability that the
correbponding candidate is a member of W, By selecting the
)

candidate for which ey is a maximum a decision can be made

[ S . I



th

about the membership of the k candidate inWw,

Ir e >e; 8k 184, k€T
(19)

then Ek is a member of W.

(18) represents a system with more equations than
unknowns. An exact solution therefore, cannot be expected.
In order to solve for the values of the weights it is
necessary to use a least-squared-error approach. An error

signal r can be defined as

with E defined as a constant by
e; = 5 S & 4 xi€.uj tai)
e, = -1 if x, W

That is in the ideal case, any candidate Ei that is a member
of the ideal pattern class W shall have a corresponding e
equal to 1 énd any candidate that is not a member shall

have an es equal to -1.

Souaring (20) gives

T

rr =2 B-E QW-d C E+W C CW (22)

Taking the derivative with respect to W

§7W_;T? =0 - g E - g B o+

(P

cu +CCu (23)

|



Setting §7W?T? = 0

T+ 20Tc W (24)

and solving for W gives

W= (C°C)TCE . . (25)

This equation can also be determined geometrically.[{l

- Equation (25) now allows the direct calculation of
the weights from a set of training samples. Once the PDF’'s
are found and the weights calculated, the evaluation of the
E vector and the subsequent classification of the candidates
can be accomplished in a straightfoward manner.[l]

It can be seen from (25) that a new matrix multiply
and inversion is needed every time the weights are to be
updated. For a large training set these calculations become
time consuming. The form of the equations allows for an

interesting training procedure. Defining ij as

P; = (g*gy (26)
and
T 1 R O (27)
j+l - = = j+l j+l

a simpler approach can be devised. Using (26) and (27) the

updated version of W may be written as

-1
u - = = =i w= L W
Jj+l = Jj + ijj+1[kj+l}jxj+l + ;] (e. Xj+1Nj) (28)
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Since [§j+l§jzj+l - l} is a ;calar the inversion is a scalar
inversion not a matrix inversion. This allows very simple
computations to update W.

It is now possible to take a small set of candidates
and find the initial matrix inverse. Once accomplished, a
large data base may be used to train the weights without
the need for large, time .consuming matrix operations. The

interested reader should see references[{] and [9] for

more detaills.



CHAPTER V
THE DECISION ALGORITHM APPLIED TO TRACK TIMING

If the runner is viewed from overhead as he approaches
the finish line, it is possible to draw a line through the
body of the runner parallel to the finish line that‘
corresponds to the chestline. If a series of lines are
drawn, the body is segmented in such a way that a series of

body segments are produced. (figure 5) Since a runner can

Chest Line

;,\/?O
WAL AT
o

Fig. 5. Segmented body

have one and only one chestline, the problem becomes one of
identifying the chestline from the set of body segments.
This is very similar to the problem handled by the decision

algorithm in Chapter 4.
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To implement the algorithm it is necessary to select
a set of features which will allow the decision model to
classify the candidates as either chestlines or nonchestlines.
Rather than work with a multiple gray level image, 2 high
contrast image ({igure 6) was generated with the body‘of
the runner classified as a digital "1" and the background

classified as a digital "0".

0000000000000000000DO0O0O0O
0 Tt ihir1111111111 00
ot 1 12 AT LT 3o 1aLeX 1eleddor0i0i0 0:0
0Do0OOJ]lL1111111111p0000000
000000000]11111111000000
000000000(11111111TI100000
00000000[T11111111[000000
00000000Ji 1111 000000
0000000[(L11111/0000000000
0000000000[LJ00O000000O0O0OO
0000000000000000D000O0O0OO

Fig. 6. High contrast image

The initial selection of the features must be done
on a trial and error basis. Five features were selected after

considerable testing (Appendix B) as providing sufficient
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information to classify the candidates. They are:

Magnitude (M) et The total length of the body segment;
This corresponds to the width of the runner at that
scan.

Delta Magnitude (dM) -- The change in magnitude between
two consecutive body segments.

Total Trapped Zeros (Z) -- Using a high contrast image
(two gray levels) it is possible to define the
runner's body as a digital "1" and the background
as a digital "0". A set of zeros with ones on both
sides indicated the scan was in the region about the
neck. This was later determined to be a consistantly
important feature.

Total Change (Tot) -- The sum of the absolute value of
the change in magnitude and the absolute value of
the sum of the change in magnitude and the change
in trapped zeros.

Distance From End Of Body (Beta) -- The shape of the
runner's body was found to be roughly diamond like
when viewed from overhead. It was also known that
once the body began to narrow the chest line had

already been scannz2i. 1t was therefore convenient
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to define a practical enq of the body. The end of
the body was defined syntactically as the candidate
following 3 consecutive decreases in magnitude or
a siﬁgle décrease of 3 uﬁits or more in any one
candidate. The distance from the practical end of
the body to the candidate in question was defined
as beta.

These features are further illustrated in figure 7.

Magnitude

+

e

L T
SRR Y
Change

in
Magnitude

Trapped Zeros

U

L___——L_______ [:¥_f
End of Body_l | A

(Beta)

. [t
Fig. 7. Five features selected for chest line
identification.

—
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The probability that the candidate Xy is a member of
the class of chest lines w given measurement m is given'
as the definition of the probavbility density functions. This
can be written as

P(xiEuJ/mi) (29)

Using the Bayes Formula as given in (3) and rewriting, the

PDfs may be expanded into known terms.

P(x;ew/m;) = P(Xiewpzp(%“i/xie“” (30)
m.
L

where P(xieuu) is the probability that any candidate is a
member of the élass of chest lines Ww. This is a constant
given by the inverse of the total number of candidates to be
clasgified. P(mi/xiEuf) is the probability of occurance of
a measurement given that candidate xi'is a chest line.

P(mi) is the probability of occurance of a measurement

for any candidate, chest line or non-chest line.

To determine the PDFs, it is necessary to extract
data from a training set composed of actual images of
runners as they appreoach the finish line. A standard video
camera was mounted over a track surface (figure8 ) and a

video tape of runners as they passed underneath the camera

was made. From the video tape, high contrast images were



created by hand one frame at a time. These images were
arranged into 35 x 25 matrices (Appendix C) and placed in

the IBM 370 computer.
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Fig. 8. Camera scaffolding and scanning area

To extract the measurements for the five features
defined earlier, two computer programs were created. (Appendix D)

These programs later serve as the simulation model for the
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circuitry used to extract data in the total system
simulation. With the feature measurements now available, it
is possible to determine the two probability functions,
P(mi/xiexu) and P(mi).(Appendix F) Using the Bayes Formula

the final PDFs can be determined.(Figure 9)

P(M) P(dM)
L —_‘ 1001 —_—
Magnitude ] Change in
.75; + .75€ Magnitude
. .5 { -
255 .25 L

- L ﬂ’\ -

.O ey ‘4~rx'l_:‘g | Rk Bk m .o e T T Py m
5 10 15 20 E 16 1§ Bo
1.01;('2) Bo0nt 9T "

/ Trapped Zeros : Total
<754 '75? Change
5 5 jﬁ
.25 .25

il sl i iondi
.O rTl'ltf’lrl TF'T "_Y‘UI m .O r"-‘"“’.Tl ‘F‘: r"l m

5 10 itS 20 5 10 15 20
1.0 ,
P(BETA).
05 l—l-ﬂ
] Sl
ﬁiﬁ‘;..rrf‘t"rr--‘ m

. 10 15 20
Fig. 9. Probability density functions for
five features
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The actual PDFs were determined from a data base
composed of 20 images of runners. Featuxe measurements weré
made on the 9 nearest candidates to the chest line and the
chest line itself. This provided 200 data points for the PDFfs.
It was found that determining continuous functions for the
PDFs based on such a small data set introduced considerable
error into the system performance. Expansion of the data set
proved to be too time consuming due to the necessity of
creating the high contrast images by hand. To reduce the
error caused by the continuous function representation of
the PDFs, the PDFs were realized as discrete functions and
were implemented in the simulatignuin the form of look-up
tables.

With the probability density functions available,

the weights can now be determined from equation (25)

W = )-l

na

v} Mg el (31)

The C matrix is a 200 x 5 matrix where each row contains

the results from the 5 PDFs. The E vector is a 200 element

- .

vector composed of i's and -1's, a 1 corresponding to

acn

D

chest line and a -1 for each nonchest line candidate. Since
20 images are used for training the weights and each image

has one and only one chest line the E vector will contain
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20 1's and 180 -1's. The order in which the chest lines and
non-chest lines are arranged in the C matrix and E vector
makes no difference in the calculations of the weilghts
provided each chest line set of measurements in C has a
corresponding E vector entry of 1 and each non-chest’line
has an E entry of -1. The training of the weights was
accomplished on the IBM 370 computer. The weight training
program is presented in Appendix G .
Investigation into the significance of the weights
lead to the following conclusions:
1. A positive weight indicates a feature which is a
good chest line classifier.
2. A negative weight indicateé:;:feature which is a
good non-chest line classifier.
3. A weight which tends toward zero indicates a feature
which provides little or no information to help in
. " .classifying a candidate as a chest line-or non-chest
line.
These conclusions are discussed further in Appendix R.
As a result of these conclusions it is possible to use the
weight training program as a means of £ liminating features

which provide little or no information in the classification

of the candidates. Since the features must be selected .on
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a hueristic basis, this type of goodness test on a feature
is necessary. Removal of a feature with a zero weight does
not effect the performance of the algorithm but does reduce
the size of the matrix operations performed in the
calculation of the E vector. Since the original intent was
to implement the algorithm in real time on a microprocessor,
the size of the matrix operations is a critical factor.
Minimal threshholds necessary for acceptance or rejection
of a feature cannot be generalized but must be determined

in terms of the algorithm"s application.
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CHAPTER VI
.. ALGORITHM SIMULATION AND TESTING

In ordar to verify the decision algorithm's ability
to classify chest lines,a simulation of the algorithm was
performed on the IBM 370 computer. The simulation program
accepted as input the high contrast images found in
Appendix C. The necessary feature measurements were made
and the C matrix was formed from the discrete PDFs. The
algorithm generated an E vector based on the g matrix and
the largest element inAE was selected as the predicted chest
line. The simulation progrém appears in Appendix I.

Noise introduced into the system due to the sampling
rate prohibited the algorithm from exactly identifying the
chest line in every image. The size of the data set used in
generatirg %he PDFs and in training the weights also added
to the problem. It was determined, however, that in the
particular application of track event timing it was not
necessary to exactly identify the chest line to maintain
a timing accuracy of .0l seconds.(Appendix J ) In a worst
case example (runners competing in the 100yd. dash) it was
only necessary to be within ¥ 4 inches of the actual
chest line. This corresponds to identifying the predicted
chest line in a 5 candidate bandwidth centered about the

actual chest line.(figure 10)
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Fig. 10. Acceptable bandwidth of
candidates

Wwith this bandwidth as an gpceptable tolerance, the
algorithm correctly classified the images in every case.
(figure 11) The algorithm ideally classified the chest line
(that is the predicted chest line and the actual chest line
were the same) in 13 out of 20 images and missed by 1
candidate in 5 out of 20 images.

This testihg procedure verified the decision algorithm
by testing it on the same images the weights were trained
on. The results, therefore, were biased in favor of the
algorithm. To further establish the credibility of the
system 10 images were selected at random and the welghts

trained on these images. The algorithm was then tested on




the entire set of images. The results indicated that the

smaller data set could not pick the chest line as well

as the laféer set but the results were still within the

5 candidate bandwidth with only one exception.(figure 11)
With the algorithm now verified it was possible to

propose an automatic track timing system which makes use

of this decision process.

Difference Between Predicted and
: Actual Chest Line

Image No. Simulation Using Simulation Using
20-Image Weights 10-Image Weights
) 0 0 il
2 i3 =1 *
3 0 0 *
L 0 0 ¥
5 -0 0 *
6 -1 -2 *
7 0 0 *
8 0 0 *
9 -1 -1 *
10 0 0 *
11 0 0
12 0 0
13 0 -2
i -1 -1
15 C 0
16 2 3 *%
b 2 1
18 -1 -1
19 0 0
20 0 0

ind Images used in training weights
**¥Predicted chestline outside of tolerance
Fig. 11 Simulation Results
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CHAPTER VII
A MICROPROCESSCR BASED AUTOMATIC TIMING SYSTEM

A system which makes use of the decision algorithm
is shown in figure 12. This system provides both the precision
and reliability needed in track timing. Through the use of
the microprocessor and standard video camera it is possible
to avoid large price tags on the system.

The camera is mounted over the track and scans an
area beginning 8 feet before the: finish line. It is oriented
so the scan is parallel to the finish line. This, in a sense,
slices the body into a series of segments where one of the
segments corresponds to the chest line. These segments are
regrouped and processed into the high contrast image from
which the feature measurements are made. From these .
measurenents, the decision algorithm will determine which
body segment corresponds to the chest line.

The decision algorithm provides only the location
of the chestline with respect to the finish line. The actual
finish time would be calculated by the microprocessor in .
the following way

1 Locate the chest line with respect to the finish line
,
and record the elapsed time since the start of the

race.,
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2. Repeat Step 1 to obtain a second data point of time
and location.

3. Knowing the elapsed time and the distance traveled,
determine the average velocity.

L, If the location of the runner is determined close to
the finish line, he will be unable to change his
velocity significantly before the end of the race.
Using his average veloclity, it 1s possible to determine
the time it will take to finish the race and from

this information, the final finish time is obtained.

%

IMAGE FEATURE
PROCESSING EXTRACTION

P

o CONTROL

[:4>wmz>o

Fig. 12. System Block Diagram
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The system will always provide a finish time because
the algor;ﬁhm will always predict a chest line. However, some
images afe more difficult to classify than others. The camera
frame rate provides six complete images of a runner in the
worst case. Since only two images are needed to calculate the
finish time, it allows the system to throw out images which
are difficult to classify.

The combination of video camera, microprocessor and
interfacing logic pfovides a real time, microprocessor based
automatic timing system.[9]'Through the use of the micropro-
cessor it is possible *to provide an accurate and reliable
system at a cost affordable by most high schools and small
colleges. The system will provide accurate times of runners
in any type of race. The ability of the system to place runners
has not yet been investigated enough to verify its
reliability. Further investigation into this area should be
done, ‘particularly in the area of lane races versus non-lane
races. Until then, howéver, the present system will serve

as an accurate timing system.



CHAPTER VIII
CONCLUSION

The algorithm presented provides a simple yet
powerful means of handling a variety of pattern recognition
applications. It is capable of handling highly non-linear
features with versatility and speed. The implementation
of the algorithm may be accomplished in a variety of ways
depending on the complexity of the application. |

In regards to track event timing, the algorithm
is capable of providing the necessary accuracy in the
classification of the chestline within the specified
tolerances. Implementation'of the algorifhm can be accom-
plished at low cost and in real time through the use of a
microprocessor and intelligent prbgraming.

Success of the algorithm in future applications
depends primarily on selection of the features and proper
generation of the probability density functions. Since
feature selection for this algorithm, as in all other pat-
tern recognition applications, must be done on a trial-
and-error basis, more research into the area of feature
selection employing the weight training program must be done.
The necessity of a large data base also requires the investi-
gate into a self adaptive system using the update scheme

Proposed in Chapter 3.
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APPENDIX A

Track Timing Personnel

In order to maintain the needed precision with the
hand-held stopwatch method of timing track events, it is
necessary to have as many as 25 individuals at the finish
line. This is due to the check and counter-eheck system used.
That is, each duty of importance is performed by more than
one individual with the results being compared after each
race. A list of officials need for an 8-lane 100yd dash

race is presented below.

Head Finish Judge

2 Assistant Judges for every place scored
1 Assistant Judge for every'other place
Head Timer 2

2 Assistant Timers for every place scored
1 Assistant Timer for every.other place

1 Substitute Timer

Finish Line Recorder

Nind Gauge Poerator



APPENDIX B

Feature Selection

Feature selection represents the biggest problem
in the implementation of most pattern recognition algorithms.
Proper selection of optimal features must be done on a trial
and error basis. In the.particular application of chest line
identification it was possible to select hundreds of possible
features. However, limited research time and the need for
a computationally fast algorithm restricted the number of
features which could be implemented into the system.

Six features originally were selected as containing
enough information to classify the chest line of the runner.
Théy weres Magnitude, Change in Magnitude, Trapped Zeros,
Change in Trapped Zeros, Totai Change and Distance from the
End of the Body of the thesis. The change in trapped zeros
was discovered to be linearly dependent with the other features,
tl.us it provided no useful information. This problem of linear
dependency is one which is often disguised by noise. It is
important, however, to recognize these features as providing
no information thus reducing the amount of computation needed
to execute the algorithms.

Total change was originally defined as the absolute
sum of the change in magnitude plus the change in trapped

zeros. However, due to an error in programing the feature
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was redefined as given in the main body of the thesis. Upon
testing, it was discovered this feature provided more

informatién than when implemented with the original definition. .
In pattern recognition it must be understood that optimal
features are often stumbled upon and must be obtained any

way possible.
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APPENDIX C

High Contrast Images

Multiple gray level images created a problem in
extracting the feature measurements. Circuitry and
simulation programs quickly blew out of proportion when
attempts were made to work with the more complex patterns.

In order to simplify programs and computation, high
contrast images were produced. The resulting images
sacrificed detail for simplicity. 20 images were produced
and are presented on the following pages. The images are

oriented so the runner is moving left to right across the

page. The body segment identified by the broken lines

corresponds to the runner's chest line.
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APPENDIX D

Feature Extraction Computer Simulation

The calculation of the PDFs and the training of the
weights were based on feature measurements performed on the
20 images of appendix C. To obtain the feature measurements
two‘computer programs were written. Flow diagrams and

possible fortran implementations are presented.



Subroutine STAT1

Flow Diagram

( START )

)
CALCULATE

MAGNITUDE

[

CALCULATZ
CHANGE IN
NMAGNITUDE

N

CALCULATE
TRAPPED
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Subroutine STAT1
Computer Program

SUBROUTINE STAT1 FOR OBTAINING M,DELM,XNZ AND DELZ
SUBROUTINE ST™AT1(NCAND,M,DELM,XNZ,DELZ)
DIMENSION NDATA(70,70),NZ(50)

CONMMON NDATA

JO=NCAND

M=0

DOl 10 K=1.,25

NM=M+NDATA(K,JO)

M1=0

K=J0+1

DO 20 L=1,25

M1=NM1+NDATA(L,K)

DELNM=M-M1

DO 30 J=J0,K
L=0

L=L+1

IDATA=NDATA(L,J) | 4
IF(IDATA.EQ.1) GO TO 41
T7(L.EQ.25) GO TO 43

GO TO 40
INDEX1=L
L=26 -
L=L-1

IDATA=NDATA(L,J)
IF(IDATA.EQ.1) GO TO 44
IF(L.EQ.1l) GO TO 43

GO TO 42 E
NZ(J)=0 e

GO TO 30

INDEX2=L
NZ(J)=(INDEX2-INDEX1+1)-M
CONTINUE
DELZ=NZ(J0)-NZ(K)
XNZ=Nz(JO)

RETURN

END



Subroutine STAT2

Flow Diagram

START

CALCULATE
MAGNITUDE

1

CALCULATE
CHANGE IN
MAGNITUDE

DELM > 0
DELM=-1,| -2
INCREMENT
COUNT
COUNT < 3 COUNT 2 3

FLAG
END OF
BODY

|

CALCULATE

DISTANCE

STOP
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Subroutine STAT2

Computer Program

SUBROUTINE STAT2 FOR OBTAINING BETA
SUBROUTINE STAT2(NCAND,KBETA)

DIMENSION XM(50),NDATA(70,70), KDﬁLM(EO)
COMMON NDATA

“JO=NCAND

KSAVE=0

NCHEST=J0

DO 10 J=2,35

K=36-J

XM(35)=0

TEST=0

XM(K)=0

DO 20.1%52,25
XM(K)=XM(K)+NDATA(I,K)

KO=K+1

XDELVM(K ) =XM(K) -XM(KO)
IF(XDELN(K).LT.0) TEST=TEST+1
IF(KSAVE.NZ.0) GO TO 10
IF(TEST.GE.3.0R.XDELM(K).LE.-3) KSAVE=K
CONTINUZ

KBETA=NCHEST-KSAVE

RETURN -

END
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APPENDIX E

Feature Measurements

The following data provides a complete listing of
the feature measurements made by subroutines STAT1 and STAT2.
The data is oriented with the first set of measurements
corresponding to the candidate farthest from the finish line
but still within the band of possible chest lines. The
underlined set of measurements is the chest line data. From:

this data the PDFs were created and the weights trained.
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CHANGE IN TRAPPED
MAGNITUDE  MAGNITUDE ZEROS S OF BETA
FIGURE 1
16 0 0 0 3
16 0 0 0 L
. 16 2 0 L 5
14 2 0 L 6
12 2 0 L 2
10 2 0 L 8
8 1 0 2 9
7 1 0 2 10
6 0 0 0 11
6 3 0 6 12
3 3 0 3 13
FIGURE 2
14 0 0 0 3
14 -Y. 0 2 L
15 -1 0 &2 5
16 0 0 0 6
16 0 0 0 7
16 1 0 2 8
15 0 0 0 9
15 3 0 2 10
14 3 0 6 11
11 3 0 L 12
8 3 2 ' d 13
FIGURE 3
18 0 0 0 3
18 -1 0 2 L
19 -1 0 2 5
20 0 0 0 6
20 2 0 L i
18 3. | 0 14 8
2 1 8 2 9
6 2 8 3 10
L 1 9 11 11
3 2 0 L 12
"1 = 0’ 2 13
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APPENDIX F

Formulation of the PDFs

Using the Bayes Expansion, two probability functions
are generated for each PDF to be used in the algorithm.
Each of these can be easily realized once the feature
measurements have been made on the training set. The
following graphs present the information needed in gener-
ating the PDFs. The top graph in each case gives the number
of times a particular measurement occurs if the measurement
is made on a non-chest line candidate. The bottom graph
shows occurrences for measurements made on-chest line
candidates. The probability of getting a particular measure-
ment given the candidate is a chest line or non-chest line
can be calculated by dividing the graphs by the total pos-
sible occurrences of any measurement. However, this term
drops out in the calculation of the final PDF thus allowing

the use of these curves in evaluating the PDF performances.
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APPENDIL G

Jeight Training FProcedure

Fresented nere is a flow diagram and possible fortran
implementation of the weight traing procedure used to‘
determine the algorithm weights. The PDFs are placed in
tne vngram in the form of look-up tables. The program is
written in such a way that the weights can be easily studied.
The weights are trained on the 20 images presented in

Appendix 3. Subroutines STAT1 and STAT2 are the programs

presented in Appendix OJ.



Weight Training Procedure

Flow Diagram
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Weight Training Procedure
Computer Program

MAIN PROGRAM FOR EXECUTING TRAINING PROCEDURE OF
WEIGHTS
DIMENSION C(200,5),%(200,5),4AVEC(S, 5) XTRA(S5,1),
P(5,5)RiX,5), SCA(l 1), J(5 l) G(1, 1) H(5 1),
CTRAN(5,200),TEM(5,200),E(ZOO,l),PCPY(S,S),DENT(5,5),
L(5),M0(5),NDATA(70,70)
DIMENSION CURVA(50),CURVB(50),CURVC(50),CURVE(50)
CCMMON NDATA
LT gk 7 Lo s s R, T SO DRE » DS« DU o N TR PR ¢ O s RO . . (0
Ous0650000:50es06500 500 00atsnyalonly 0 U0, Des
LG OLATEOB . GO BB 0% 050, . 0., 06 3l 5 10y 006, 0.,0, .04,
0501, Bl0800, 510,00 00y0¢s0600305506305300,350:,
sOTRRELN 300 . . 0us00 13006400 05,80000u,00 0.0,
..o..o..o.,o.,o.,o B TR 5 AT, o, S Ty, N T« SR
00 0 O 0 0 o D B0 B T o By B s
o.,o.,l.,o..o..o..o.,o..o..o.,o.,o.,
s T S SO TG TN - N D P T T
G TN T T T O O T T T T
1.,o.,o..o.,o.,o..o.,o.,o..o.,l..
0.,0 ,o..o.. Ol D g O o Yo o D55 50wy 0 8 o)
CREATE DISCRZTE PDF CURVES
DATA CURVA/26%*0.0,.167,.059,2%¥0.0,.1,.778,.182,.167,
.2135,.048,.059,13%0.0/
DATA CURVB/19*0.0,.021,.069,.151,.176, .429,.25,.25,
1.0,2%0.0,.5,20%0.0/
DATA CURVC/19*O Oy 155125, <13, .13.0:0,.077 ,2%0.0,
2125,22%0, 3/
DATA CURVD/19%0.0,.034,.061,.079,.133,.2,.182,.111,
.25,4%0.0,1.0,6%0.0,.5,11%0.0/
DATA CURVU/ZZ*O 0,.15%,.118,0.0,.05,.273,.111,.25,
.067,.071,0.0,.143,17*0.0/

w N

0.

(o8 VYoM e LN WoNW, T~ WO IR U o

OOOOOI—’

0.

O.,
0.,
O.,

e i e

DO 1 N=1,20

READ(5,101) "JO
101 FORMAT (1I2)

READ( 5,100) ( (NDATA(I,J),J=1,35),I=1,25)
100 FORMAT(35I1)



aa

DO 2 I=1,10
NCAND=J0+5-I
K=((N-1)*10)+I
CATI, STATY(NCAND,M,DELM,XNZ, DHLZ)
CALL STAT2(NCAND,KBx1TA)
TOT:ABS(DELM)+ABS(DELZ)
X(K,1)=M
X(K,2)=DELM
X(K, 3)=XN2Z
X(K,4)=T0T
X(K, 5)=KBETA
IF(E(K,1).EQ.0.) E(K,1)=-1.0

2 CONTINUZ
1l CONTINUE
CALCULATION OF MATRIX P=(C(TRANS)C)*%*-1

DO 501 I=1,200
IA=X(I,1)+20
IB=X(1,2)+20
IC=X(I,3)+20
ID=X(I,4)+20
IE=X(I,5)+20
C(I,1)=CURVA(IA)
C(I,2)=CURVB(IB)
Cc(I,3)=CURVC(IC)
C(I,L4)=CURVD(ID)
Cc(I,5)=CURVE(IE)

501 CONTINUE

CALL NMTRA(C,CTRAN,200,5,0)

CALL MPRD(CTRAN,C,P,5,200,0,0,5)

CALL MINV(P,5,DET,L,NO)

PRINT 622,DET

IF(DET.EQ.0) GO TO 502

CALCULATION OF VECTOR W=P*CTRAN¥E

CALL MPRD(P,CTRAN,TEM,5,5,0,0,200)

CALL MPRD(TQ”,E.1,5,200,0,0.1)

PRINT 601
601 FORMAT (10X, *WEZIGHTS')

PRINT 611,W(1,1),%W(2,1),4(3,1),w(s,1),W(5,1)
611 FORMAT(SGlO.B) -

PRINT 603
603 FORMAT (10X, 'P MATRIX')



622

502
605
503

PRINT 622,((P(1,J),J=1,5),I=1,5)
FORMAT(5G10.3)

GO TO 503

PRINT 605

FORMAT (10X, *DETERMINANT EQUAL ZERO')
STOP .

END

85



APPENDIX H

Weight Investigation

Before the simulation of the algorithm could begin
it was necessary to determine the significance of the
weighting ccefficiants and their effects on the accuracy
and reliability of the algorithm. A series of 3 tests were
run on the weights using the training program in which the
results of the PDFs were controlled. These tests showed the
relationship between the weights and the PDFs. The tests are
explained below and the resulting conclusions given.

Test 1 One of the PDFs was modified to giVe a result of 1
every time a chest line measurement was takén and a -1 for
every non-chest line measurement. This indicated that the
feature for the modified PDF ideally selected the chest line
in every case. The resulting set of weights for this test
went to 0 for every feature except that which corresponded
to the modified PDF. In the case of the modified PDF, the
weight went to 1. The coefficient of 1 for the weight was a
result of the definition of the ideal E vector. Since, for
a chest line the resulting E vector valve must be 1 and the
PDF had been modified as given the weight valve was forced
to equal 1. If the PDF had been modified to give a result

of .5 in the case of a chest line and -1 otherwise the
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corresponding weight value would have been a 2. The signifi-
cance of this test was in the driving to '0' of all weights
for features which did not ideally select the chest line. This
result held true for all features. If two features were mod-
ified to ideally select the chest line the corresponding weight
values were 0.5 with all other weights driven to 0.
Test 2 In this case the PDF was modified so the feature ideal-
ly selected non-chest lines. The PDF gave a result of 1 for
every non-chest line measurement and a -1 for all chest line
measurements. The resulting set of weights for this test also
went to 0 for every case except that which corresponded to
the modified PDE. However, the weight value instead of being
1 had a value of -1.
Test 3 The PDF for 2 particular feature was replaced with a -
rapdom number generator. In this case the weights were
determined to have finite values with the exception of the
modifieq PDF which tended toward 0.

From these tests, it can be seen that the weights
are well behaved with respect to the PDFs. It is also pos-
sible to use the weight training procedure as a form of
feature selection algorithm. If the weight for a particular
feature tends toward 1, the feature is a good chest line
indicator. If the weights tend toward -1, the feature is a
good non-chest line indicator. A weight which tends toward

zero indicates a feature which provides little or no
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useful information in the classification of the chest line.
If the weight is significantly close to zero, the feature
may be removed from the algorithm with no effect on the
results.

The weight training procedure is not a convergence
method. However, as the number of images is increased the
weights continue to react to the new images. At some point
in time no new data can be presented to the weight trainer.
Only images already seen by the trainer will be possible.

At this time the Weights will be stable at their values.
this is true the‘weights should be well behaved, that is the
there should be little or no oscillation as the weights ap-
proach their final value.

To test this a random sample of 10 images was
selected and the weights determined. It can be seen that the
weights have already approacﬁed the values obtained from 20
images. As more samples are added to the training set, the
weights will appear to converge on é set of values which
will contain all possible data relating the PDFs to one
another. More work in this area is needed to understand the

effect of the training set size on the weights.



This is a table listing the weight values for the

two training sets.(20 and 10 images)

WEIGHTS
FEATURE 10 IMAGES 20.,IMAGES
MAGNITUDE 1.57 1.51
CHANGE IN MAGNITUDE .621 1.07
TRAPPED ZEROS -9.92 -9.77
TOTAL CHANGE -.498 -.735

END OF BODY(Beta) .760 «517
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Presented here is the flow diagram and a possible
fortran program implementing the decision algorithm
simulation. The simulation was developed to test the
algorithm only and in no way attempts to simulate the

microprocessor software or the feature extraction circuitry.
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Algorithm Simulation
Computer' Program -

SIVMULATION OF TRACK TIMER ALGORITHM

DIMENSION NDATA(70,70),%M(50),XDELM(50),C(11,5),
W€(5,1),E(11,1),N2(50)

COMMON NDATA

DIMENSION CURVA(50),CURVB(50),CURVC(50),CURVD(50)
CURVE(50)

CREATE DISCRETE PDF CURVES

DATA CURWAZ26%050%,167,.059,2%0.0,.1,.778, 182, .167,
.235,.048,.059,13%0.0/

DATA CURKBA19#0u0,:081,.069,.151,.176,.429, .25, .25,
1.0,2%¥0.0,.5,20%¥0.0/

DATA CUBNCYN9%0.0,.1,.125,.13,.13,0.0,.077,2%0.0,
«125,22%0.0

DATA CURVD/19%*0.0,.034,.061,.079,.133,.2,.182,.111,
«25:5%0+0,%:0,6%0.0,.5,11%0.0/

DATA, CURYENZ2*0.0,; «15%,.118,0,0, .05, .273, +111, +25,
.067,.071,0.0, .143,17*0.0/

DO 1 N=1,20

READ(5,101) JO

FORNAT(112)

READ(5,100) ( (NDATA(I,J),J=1,35),I=1,25)
FORMAT(35I1)

DETERMINZ END OF BODY
NLINZ=0
DO 10 J=2,35

TEST=0

DO 20 I=1,25

XM(K)=XM(K)+NDATA(I,K)

KO=K+1

ADELI(K) =XV.(K) -X1(K0)

IF(XDELM(K).LT.0) TEST=TEST+1
IF(NLINE.NE.O) GO TO 10
IF(TEST.GE.3.0R.XDELM(K) .LE.-3) NLINE=K
CONTINUE
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103

104
106
107
108
109
105

SETTING THE BAND OF CANDIDATES
NCAND=NLINLZ+2
PO 102, K=hyid
NCAND=NCAND+1
FILLING THE C MATRIX
CALL: ‘STATI{NCAND,M,DELM, XNZ,DELZ)
CALL STAT2(NCAND,KBETA)
TOT:ABS(DELM)+ABS(DELZ)
IA=M+20
IB=DELNM+20
IC=XNZ+20
ID=TOT+20
IE=KBETA+20
C(K,1)=CURVA(IA)
C(K,2)=CURVB(IB)
C(K,3)=CURVC(IC)
C(K,4)=CURVD(ID)
C(K,5)=CURVE(IE)
CONTINUE

SPECIFICATION OF WEIGHTS
W{l,1)=1.51

Ww(2,1)=1.07
W(3,1)=-9.77
W’(U»,l)=--735

W(5,1)=0.517

CALCULATION OF E VECTOR
CALL MPRD(C,W,E,11,5,0,0,1)
LOCATION OF CHEST LINE
BIG=-99.0
NCHEST=1
DO 103 I=1,11
IF(BIG-E(I,1)) 105,104,103
CONTINUE
GO TO 112
IF(c(I,1)-C(NCHEST,1)) 103,106,105
Ir(C(I 2)-C(NCHEST,2)) 103,107,105
F{CLI,3)= C(NCHuST 3)) 103,108,105
IF(C(I L)-C(NCHEST,4)) 103,109,105
IF(C(I,5)-C(NCH‘ 5)) 103,111,105
HCHEST=I .
BIG=£(I,1)
GO TO 103



111
113

112
114
115
116

117

PRINT 113,I,NCHEST
FORMAT(10X, 'THE FOLLOWING LINES ARE TIED',2I4)

GO TO 105

PRINT 11L

FORMAT(10%, 'E VECTOR')
PRINT 115,(E(I,1),I=1,11)

FORMAT(11G10.3)

NCHEST=NCHEST+NLINE+2

PRINT 116,NCHEST

FORMAT (10X, *PREDICTED CHEST LINE IS',1I4)
NDIFF=NCHEST-JO

PRINT 117,HDIFF

FORMAT(10X, 'DIFFERENCE FROM ACTUAL',1I4)
CONTINUE

STOP

END

9k
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APPENDIX J

Accuracy Requirements In Locating The Chest Line

Due to the injection of noise into the system it is
not possible for the algorithm to exactly identify the chest
line in every case. However, in the particular application
of track event timing it is not necessary to exactly
identify the chest line. The following derivation shows
the developement of the tolerances needed for the system.

Given the following diagram,

to : tl t2
e — A .
A B ! : C
- xl -

assume the velocity is constant from points & to C. “7 -z
Let the velocity at B equal the average velocity from A to B.
That is
t, -t
1 "0
vV, =———— (32)
B Xp~%3
The finish time can then be calculated to be(if the finish
line is at point C)

From (32), equation (33) can be rewritten as



ct
n

Lraie saon, ML iote) (34)
or
T ..v2'| i+ _+ ) (35)
S - e Ll T i
The accuracy with which toand tl are measured is
determined by the accuracy of the timer clock. Therefore,
error in t2 can enter equation (35) only in the measurement
and X..

0 1
Taking the derivitive of s with respect to

of x

change in X, gives
: & e d
dt, = 71 (tl-to) dx (36)

Similarly, the change in t, with respect to the change in

Xy is
: (XO—ZXl)/
dtz = (tl—to) dxl (3?)

0 and xl will be

the same because the techniques used are the same in both

Errors introduced in the measurement of x

cases. Therefore, (36)and (37) can be added together to give

the total change in t2 due to error in locating the runners.

= 1—t0 dx (38)

diy = [l/v%J dx (39)



From (39), it is seen that the total error in t2 is
given by the error in locating the runner times the inverse
of the velocity of the runner. In order to maintain a
timing accuracy of .0l seconds the error in the finish time
must be less than .005 seconds. Using this value and a
worst case velocity for the hundred yard dash, it ié possible
to calculate the maximum allowable error in locating the
chest line. The maximum error in dx was calculated to be
L,2 inche;. This corresponds to missing the actual chest line
by two scans on either side. From this, it is possible to
establish a bandwidth of body segments which if selected
~as the chest i1ine would still allow the runner to be timed

to an accuracy of .0l seconds.
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