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This p a p e r presents the a pplic a tion of a theoretically 

derived decision alg orithm for patte rn r e cognition in the 

area of a utomatic tra ck event timing . The propos ed system 

will locate (in time and space) a runne r ne a r the end of the 

course in a tra ck event. A training p rocedure for determining 

a set of optimal weights es s entia l :·t o the alg orithm is 

presente d along with the results of simulation and testing 

of the system on an IBM 370 compu t er; 
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CHAPT.l£R I 

INTRODUCTION 

The realization of theoretical ideas in the form of 

practical applications in the physical world is the role 

most often taken by the engineer. Maxwell's equations mean 

very little to the real world on paper but their applications 

in the areas of microwave technology and field theory affect 

all of m~nlt ind . ~ any fields of study have been developed, 

in theory, to a high degree of complexity. However, practical 

applications are few and far between. One such area is 

pattern recognition. 

Real world applications in pattern recognition exist 

primarily as projects of the future in the minds of today's 

mathematicians. Computation time and feature selection are 

major road blocks in the impJ_ementation of complex decision 

algorithms. It is possible, in certain situations to develop 

algorithms which are easily implemented. This paper takes 

a theoretically developed pattern recognition __ decision 

algorithm and uses it as a basis for a practical, real time, 

automatic track event timing system. 
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The decision algorithm was developed by Mr. Jeffrey 

Taft and the author and was presented in Mr. Taft's Master's 

thesis at Youngstown State University.[1] At that time, it 

was suggested that an application in the area of track 

timing would be possible. Further investigation by the author 

veri~ied this possibility and a system for implementing the 

decision model was proposed. The author's work in feature 

selection,weight investigation and the simulation and testing 

of the algorithm verified the ability of the algorithm to 

identify the runner's position with respect to the finish 

line. This ability to locate the runner's position enabled 

the system to determine the finish time of the runner. 

Chapter 2 presents the mechanics of track timing 

along with the current attempts of providing automatic timing 

systems. Chapters J and 4 provide some general background in 

pattern··recognition techniques and the derivation of the 

decision algorithm. In Chapter 5 the -decision algorithm is 

a~plied to track timing. The training procedure for providing 

an optimal set of weights is also presented. The simulation 

and testing of the algorithm is presented in Chapter 6. 

Chapter 7 presents a system for implementing the decision 

algorithm as an automatic track timing system. 
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CHAPTER II 

CURRENT TRACK TIMING PROCEDURES 

Track and field has shown tremendous growth in 

popularity over the past few years. Prime time telecasts of 

the Olympics have resulted in great exposure to the public, 

and jogging for fun and health has created a closer tie to 

track and field for many people. With improved perfonnances 

by athletes, world class runners differ in finish times by 

only hundreths of a second. This intense competition at the 

top has created-a need for timing systems with more precision 

than can be provided by the hand-held stopwatch. 

The use of ~utomatic timing systems is constrained 

by the definition o°f the finish of the ra~e as given by the 

National Federation Track and Field Committee. The finish 

line is_ a vertical plane extending from the surface of the 

track located at the end of the course. The white line marked 

on the track is there as an aid to the finish judges only. 

A runner has successfully completed the race when the leading 

edge of his torso has broken the vertical finish plane. The 

torso is defined as the trunk of the body excluding the head, 

arms and legs.[2] This definition di£fers from that of other 

sports like swimming and hor~e racing where it is the first 
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part of the participant's body which breaks the finish plane 

that constitutes the end of the race. In figure 1, the 

runner is seen approaching the finish plane and actually 

breaking the plane with his hand. The race is not over, 

however, until the leading edge of the torso breaks the 

finish plane.(figure 2i 

!Finish Plane 

I 
I 

Fig. 1. Il:legal finish of runner 

Fig. 2. Valid finish of runner 

!Finish Plane 
I 
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The basic problem then , in timing a track event, is 

one of precis e ly locating the leading edge of the torso, a lso 

c a lled th e chestlin_e, with re spect to th e finish line. The 

timing system mus t also be abl e to satisfy the following: 

1. Each runner must b e time d to an accuracy of oOl seconds. 

2. The s ystem must be c apabl e of timing more than one 

runne r, r egardless of the closeness of the finish. 

J. Re s ults from the race must b e availa ble immediately 

following each rac e . 

4. The cost must be in the rang e affordable by most 

high schools and small colleges . 

The most common method of tracl,;: event timing is the 
- ·· ., . _.. .. •.· .. , . 

human obs e rver with the hand-he ld stop~atch. The human eye 

is able to distinguish betwe en the torso and the rest of the 

body thus eliminating the dang e r of~emature timing of the 

runner. However, in races involving 8 participants, 25 

judges and timers are r e quired to handle the timing duties. 

(Appendix A) This crowd creates a confusion at the finish 

line and some error can be introduced into the results. The 

problem of reaction time also ' becomes significant when 

accuracy to hundreths of a second is needed. 
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Automatic electronic timing systems have been 

de s i gned to r emove the human element from the actual timin~. 

The most com.man system on the market is one which employs 

light beams to sense the presence of the runner. This system 

can be triggered prematurely by an outstretched arm or 

leg (as shown in fi gure 1) allowing the runner to illegally 

improve his time and place. It i s also necessary for th e 

system to be able to time more than one runner in a race. 

In an optic a lly triggered system it is possible for one 

runner to cast a shadow on othe r participants which res tricts 

the system to timing only tha t runner. In fi gure 3, runner A 

B 

Q. __ _ 

A 

I ttt1t 
Fig. J. Runner A shadows runner B 
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crosses the finish line ahead of runner B. A's shadow on B 

prohibits the system from timing B. These two problems make 

the optically triggered system unreliable in situations which 

are not uncommon in a race. 

Other systems on the market handle these reliability 

problems but as reliability increases so does the cost, with 

some price tags exceeding $150,000 . 

• 



CHAPTER III 

STANDARD APPROACHES IN PATTERN RECOGNITION 

Every runner has one and only one chestline. The 

problem is to locate this chestline with respect 0 to · the· 

finish line. The chestline, however, is often camouflaged 

8 

in a constantly chang ing pattern of arms,legs and head. The 

precise location of the chestline in a constantly changing 

shape sugg ests a solution through pattern recognition 

techniques. However, standard pattern recognition techniques 

fall short of providing the needed accuracy in the system as 

will be explained later. A brief tutorial on pattern 

recognition is presented here as a basis for the derivati on 

of the decision a lgorithm in Chapter 4. 

A pattern can be defined as an ordered set of 

measurements arranged in vector form. This vector must allow 

reconstruction of the orig inal image from the measurements 

taken. This vector is called the feature vector x. Thus 

X = ( 1) 

where mk is the k th measuremerit in the vector. n is refered 
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to as the dimension of the feature space and corresponds to 

the total number of measurements. The measurements taken for 

the feature vector may be obtained in several ways. The 

vector may be assembled from a series of samples on a 

waveform or from measurements as diversified as the weight, 

color and length of a runner's body. A vector, composed 

of a series of components which indicate whether a particular 

characteristic is present or not, is refered to aa ~ binary 

vector. Vectors of this type are used in automatic 

classification schemes for i~formation retrieva1.[3J 

Then-dimensional feature vector is said to lie in 

an orthog0nal ·pattern space. A basis set of orthogonal unit 

vectors corresponding to unit measures of the features 

de f ines the pattern space. Patterns which are classified 

together form "clusters" in the pattern space. These 

"cluste;.:-s" are known as pattern classes, denoted u.J , . If 

a region of pattern space i~ defined so the entire cluster 

is included in the area, then the pattern class may be 

defined in terms of the boundaries of the region. 

A wide variety of pattern recognition techniques 

have been developed to classify sample patterns in terms of 

known p~ttern classes. However, no one technique has been 

develope d that will work on all pos s ible patterns. 
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Statistical Methods 

It is possible to compute the probability or 

likelihood that pattern x belongs to class LUj • This 

probability acts as an aid in guessing which class the pattern 

belongs. A loss function can be .defined as follows: L(Y,.Z) 

is the payoff or loss for player A when A chooses Y and B 

chooses z. If A wins, then his payoff is L(Y,Z). If A loses, 

his loss is L(Y,Z). A classifer which minimizes loss in 

making the guess is a Bayes classifer. The decision process 

is considered a two person za;r-o sum game. In this case, the 

person provi~ing the samples selects at random rather than 

trying to optimize strategy. -··. ... ,~ ~-...... . •· .:. 

In a two person game between nature and a classifier, 

nature selects a classw. and from this class produces a 
l. 

vector x. If the classifier incorrectly selects wj as the 

class from which x originated then the classifier has a 

loss Lij. The expec.ted risk in any classification may be 

defined as 

rJ.(x) = t L •• P(1.v
1
./ x) 

i=l l.J 

Mis the total number of possible pattern classes and 
I 

(2) 

P(t.vi/ x) is the likelihood -or probability that x came from 



Lu .• The Bayes classifier formula is g iven by 
l 

P(w./-) = 
l X 

P(x) 

J.l. 

( 3) 

where P(x/w) is the probability function 
i 

of class w. and 
l 

E(w.) is the a priori probability of occurence 
- l 

The risk function may now be rewritten as 

r. (x) = t L . . P(x/w. )P (u.1.) 
J i=l lJ l l 

of class Wi ·r] 

( 4) 

with the classifier now assigning the pattern to the class 

with the lmwest risk. 

Many otr1er methods are possible which are based on 

the same probability functions. They differ in the forms 

of threshholds use d in making the final classification. 

Distance Measurements 

One m~thod of solving the patte rn recognition 

problem is to measure the distance between the sample and 

th e pattern class. The sample is then classified ~o the class 

which has the minimum distance from the sample. In the case 

where the patterns can be treated as vectors in an 

orthog onal space the measure of the d istance can be found 



by the Euclidean distance 

where x1 ,x2 , ••• xn are elements of the sample vector and 

w1 ,w2 , •.• wn are elements of a pattern W. This can be 

rewritten in vector form as 

[
- - T - -~ ½ D • = (x-w) (x-w) euclid • 

A __ more general distance measure is defined as 

12 

(6) 

0minkowski = ~x1-Wi_lm+lxz-w2lm+ ••• + lxn-wnlm]l/m (?) 

where m is an integer ~ 1. [ 4] 
In the case where the patte.~n classes are not roughly 

hyperspherical in shape or are not well seperated _other 

distance measure techniques are needed. The Mahalanobis 

distance may be effective when statistical properties are 

being used. This measure is defined as 

- - T -1 - -Drll = (x-m) C (x-m) 

where vector mis defined as a mean vector 

J · 1, 
m=JL xk 

k=l 

•- .. .. 

(8) 

(9) 
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and C is the covariance matrix estimated by 

(10) 

--where xk are training set samples and J is the number of 

training samples.[J] 

The Tanimoto measure is useful in problems dealing 

with binary vectors. It is defined by 

-T.:... 
D = X UJ 

T xTx+ WT~ - XT~ 
(11) 

The quantity xT w is the number of common attributes between 

the sample x and the pattern protypew. 

Discriminant Functions 

Strongly related to the distance methods are the 

discriminant functions. These functions act as partitions 

between the pattern cl~sters. The pattern sample is classified 

depend_ing on which side of the partition the sample falls. 

The most efficient of the functions is the linear 

discriminant function or hyperplanes. 

To create general hyperplane functions, the pattern 

vector is augmented in the following way 

xl 

X 
~2 = • (12) 
• X 
ln 

a-.,.,, 
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The product of the sample vector and a weight vector forms 

the linear discriminant function d(x). 

d(x) = ;Ti c13> 
where w = [w1 ,w2 ,w

3
, ••• , wn ,wn+l]T. In the two-class case, 

the sample is classified by 

d(x) = WTX ho, if xE ½ 
<.O, if X€ W.-

c 

( 14) 

d(x) represents a hyperplane which divides t~e pattern space 

into two parts with one cluster on each side of the 

partition. [s] 
The two-class case is straightfoward. However, the 

multi-class problems may not be as simple. In the case of 

multiple clusters, linear combinations of the distriminant 

functi0ns may be neccessary. rhis combination may result in 

indetermJnant regions in the pattern space. Figure 4 shows 

the two-class case along with a multi-class case. 

Q 
CS) d(x) 

a b 

Indeterminant 
Region 

dl 

Fig. 4 . Discriminant functions (a) two class 
and (b) multi-class case 
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The problem of indeterminant regions creates a need 

for higher-order functions to perform more complex decisions. 

The clustering properties of the sample sets of pattern 

classes dictates the need for these functions. With the 

higher-order functions, the computation involved in 

classification of the samples becomes much greater than with 

the linear functions. 

Other Methods 

The methods discussed so far in no way cover the entire 

range of pattern recognition techniques. A me~hod which has 

received growing. attention in the past few years is syntax 

analysis or the structural method.[10] Other methods have been 

developed and it is left for the interested reader T.o see 

re!erences[J] - [7] ·for more details. 

In the particular application of track timing these 

standard methods failed for a variety of reasons. The statis­

tical methods involved tremendous computation time and the 

reliability of this method seemed to fall short of what was 

needed. The inability to determine the pattern clusters was 

the downfall of both the distance measures and the discriminant 

functions. The need for a computationallj fast decision 

algorithm lead to the hybrid algorithm of Chapter 4. 
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CHAPTER IV 

A HYBRID DECISION ALGORITHN1 

The types of pattern recognition problems handled 

in Chapter J may be stated as follows: Given a set of 

pattern classes and given a new sample, determine to .which 

class the sample pattern belongs. In certain applications 

this problem is changed slightly to read1 Given a set of 

candidate samples and given that one and only one of the 

samples belongs to a particular pattern class and the rest 

do not, determine which of the candidate samples belong 

to the patterri class. 
-- ., ~ - r- l: • V ' .. •• .: . . 

The solution to this class of problems can be 

handled by a hybrid method, that is, the decision model makes 

use of both probabilistic and deterministic techniques. First 

it is 1,ecessary to develope a set of probability density 

functions (rDF). Each PDF will give the probability, 

that the sample belongs to the pattern class, given 

X. ' l. 

measurement mi. The PDF's are obtained by carefully 

determining the statistical properties of the features 

in interest.[1] 

-- .. ~. 



Measurements are made on each candidate. The 

probabilities are obtained from 

x. = P(W/m.) 1 __ 1 • 

The probabilities are arranged in a feature vector x. 

x = [x1 x2 • ~ • xn] T 

where n is the number of features. 
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(15) 

(16) 

If J candidates are to be used as samples, then J 

probability feature vectors must be found. These vectors 

are arranged in a C matrix called the candidate matrix. 

-T 
xl 
-T -X , . o -> · 

C .2 · (17) = • = . 
-T 
XJ 

where J is the number of candidates and xj is given by (2). 

· '. · To indicate the relative importance of each feature 

in determining the class membership, a weight vector~ is 

formed. The weight vector postmultiplies C to yield an 

evaluation vector E. 
~ ~v = E (18) 

The E vector represents the relative probability that the 

corresponding candidate is a member ofW. By selecting the 
I 

candidate for which ek is a maximum a decision can be made 

j. ·" ·' •-.... -



about the membership of the k th candidate inu.r. 

If ek>ei i#k 1~ i, k~J 

then xk is a member of W. 

.LO 

(19) 

(18) represents a system with more equations than 

unknowns. An exact solution therefore, cannot be expected. 

In order to solve for the values of the weights it is 

necessary to use a least -squared-error approach. An error 

signal r can be defined as 

r = E- C W (20) 

With E defined as a con~tant by 

e. = 1 - if x. E. w 
l l 

e. = -1 if x:.fw 
l l 

( 21 ) 

That is in the ideal case, any candidate x. that is a member 
l 

of the ideal pattern class W shall have a corresponding e. 
l 

equal to 1 and any candidate that is not a member shall 

have an e. equal to -1. 
l 

SQuaring (20) g~ves 

-T- _ vT~ nTc-1,1 7rTCT~ -WTCTC~ r r - ~ ~-~ ,v - ,v ~+ vv 
= = = = 

Taking the derivative with respect to W 

(22) 

( 2J) 



V -T­
Setting Wr r = O 

and solving for W gives 

This equation can also be de termined geometrically. [91 

( 24) 

(25) 

Equation (25) now allows the direct calculation of 

the we i ghts from a se t of training samples. Once the PDF ' s 

are fo und and the weights calculated , the evaluation of the 

E vector and the subsequent classification of the candidates 

can be accomplished in a straightfoward manner.[1] 

It can be seen from (25) that a new matrix multiply 

and inversion is nee ued every time the weigh ts are ·co be 

upn ated. For a large training set these calculations become 

time consuming . The form of the equations allows for an 

interes t ing training procedure. De f ining P. as 
J 

(26) 

and 

(27) 

a simpler approach can be devised. Us in6 (26) and (27) the 

updated version of W ma y be writt en a s 

Iv. l 
J>+ l

·-1 -T -
+ 1 (e. 1-x. 1N.) (28) 

~ J+ J+ J 



Since x. lP.x. l + 1 1---T ] 
J+ J J+ 

inversion not a matrix 

computations to update 

20 

is a scalar the inversion is a scalar 

inversion. This allows very simple 

W. 

It is now possible to take a small set of candidates 

and find the initial matrix inverse. Once accomplished, a 

large data base may be used to train the weights without 

the need for large, . time .consuming matrix operations. The 

interested reader should see references [i] and [ 9] for 

more details. 

- . :.~~ --;:·. 
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CHAPTER V 

THE DECISION ALGORITHM APPLIED TO TRACK TI MI NG 

If the runner is viewed from overhead as he approaches 

the finish line, it is possible to draw a line through the 

body of the runner parallel to the finish line that 

corresponds to the chestline. If a series of lines are 

drawn, the body is segmented in such a way that a series of 

body segments are produced . (figure 5) Since a runner can 

Chest Line 

- .. . . 
•.. ~ p . ' 

Fig. 5. Segmented body 

have one and only one chestline, the problem becomes one of 

identifying the chestline from the set of body segments . 

This is very similar to the problem handled by the decision 

algorithm in Chapter 4 . 
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To implement the algorithm it is necessary to select 

a set of features which will allow the decision model to 

classify the candidates as either chestlines or nonchestlines. 

Rather than work with a multiple gray level image, a high 

contrast image (figure 6) was generated with the body of 

the runner classified as a digital "l" and the background 

classified as a digital "O". 

0 0 0 - O JO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 ·1 1 1 1 1 0 
0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 l 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
·u 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 ·1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 
0 0 0-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fig. 6. High contrast image 

The initial selection of the features must be done 

on a tri a l a nd error basis . Five fea tures were selected after 

considerable testing (Appendix B) as providing sufficient 
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information to classify the candidates. They are: 

Magnitude (M) -- The total length of the body segment. 

This corresponds to the width of the runner at that 

scan. 

Delta Magnitude (dM) -- The change in magnitude between 

two consecutive body segments. 

Total Trapped Zeros (Z) -- Using a high contrast image 

(two gray levels) it is possible to define the 

runner's body as a digital "l" and the bac kground 

as a digital "O". A set of zeros with ones on both 

sides indicated the scan was in the region about the 

neck. This was later determined to be a consistantly 

important feature. 

Total Change (Tot) -- The sum of the absolute value of 

the change in magnitude and the absolute value of 

the sum of the change in magnitude and the change 

in trapped zeros. 

Distance From End Of Body (Beta) -- The shape of the 

runner's body was found to be roughly diamond like 

when viewed from overhead. It was also known that 

once the body began to narrow the chest line had 

already been scann8d . lt was therefore convenient 
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to define a practical end of the body. The end of 

the body was defined syntactically .as the candidate 

following J consecu tive d ecreases in magnitude or 

~ sing l e decrease of J units or more in any one 

cand i date . The distance from the practical end of 

the body to the cand idate in question was defined 

as beta. 

These fe~tures are further illustrated in fi gu re 7. 

Magni°tude 

t 

1,-------------,? 
~-t 

End of Body 
( Beta) 1 

Change 
in 

Magnitude 

LJ 

I . 

iTrapped Zeros 

·I 

Fig. 7. Five features selected for chest line 
identificati,,on. 
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The probability that the candidate x. is a member of 
l 

the class of chest lines W given measurement m. is g i ven 
l 

as the definition of the probability density functions . This 

can be written as 

P(x .2w/m .) 
l ·1 (29) 

Using the Bayes Formula as given in (J) and rewriting , the 

PD.2's may be expanded into known terms. 

P(x.(:w/m.) 
l l 

P(x.E w )P(m./x.c w) = l l l~ 
P( m.) 

l 

( JO) 

where P(x .Ew) is the probability that any candidate is a 
l 

member of the class of chest lines Lv . This is a constant 

given by the inverse of .the total'--riumber of candidates to be 

classified. P(m . /x-Ew·) is the probability of occurance of 
l l 

a measurement given that candidate x . · is a chest line. 
l 

P(m. ) is the probability of occurance of a measurement 
l 

for any candidate, chest line or non-chest line . 

To determine the PDFs, it is necessary to extract 

data from a training set composed of actual images of 

r11nners as the~,r approacr1 the finish line. P~ standa.rd video 

camera was mounted over a track syrface (figure$) and a 

video tape of runners as they passed underneath the camera 

was made . From the video tape , high contrast images were 
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created by hand one frame at a time . These images were 

arranged into 35 x 25 matrices ( Appendix C) and plac ed in 

the IBM 370 computer . 
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Fig. 8. Camera scaffolding and scanning area 

To extrac t the measu r ements for the five features 

defined earlier , two computer programs were created . ( Appendix b) 

Th ese prog rams later serve as the simulation mode l for the 
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circuitry used to extract d a ta in the total system 

simulation. With the feature measurements now available, it 

is possible to determine the t wo probability functions , 

P(m . /x .E, w) and P(m.). (Appendix F,) Using the Bayes Formula 
l l l · 

the fi nal PD?s can be determined . ( F igure 9 · ) 
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Fig. 9. Probability density functions for 

five features 
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The actual PDFs were determined from a data base 

composed of 20 images of runners. Featu~e measurements were 

made on the 9 nearest cand i dates to the chest line and the 

chest line itself. This provided 200 data points for the PDFs. 

It was found that determining continuous functions for the 

PDFs based on such a small data set introduced considerable 

error into the system performance. Expans ion of the data set 

proved to be too time consuming due to the 1neGessity of 

creating the high contrast images by hand. To reduce the 

error caused by the continuous function representation of 

-the PDFs, the PDFs were realized as discrete functions and 

were implemented in the simulation.}µ the form of look-up 

tables. 

With the probability density functions available , 

the weights can now be determined from eq_uation (25) 

'J'I = ( \;? g_) -lg TE ( Jl) - - -
The C matrix is a 200 x 5 matrix where each row contains 

the results from the 5 PD?s . The E vector is a 200 element 

veGtor composed of l;s and -l's, al corresporidlng to each 

chest line and a -1 for each nonchest line candidate. Since 

20 i mage s are used for trainipg the weights and each image 

has one and only one ches t line the~ vector will contain 



29 

20 l's and 180 -l's. The order in which the chest lines and 

non-chest lines are arranged in the Q matrix and E vector 

makes no difference in th~ calculations of the weights 

provided each chest line set of measurements in Chas a 

corresponding E vector entry of 1 and each non-chest 7 line 

has an E entry of -1. The training of the weights was 

accomplished on the IBM 370 computer. The weight training 

program is presented in Append.ix G . 

Investigation into the significance of the weights 

lead to the following conclusions: 

1. A positive weight indicates a feature which is a 

good chest line classifier. 
- • V' . _ ,... • ...... -·· 

2. A negative weight indicates a feature which is a 

good non-chest line classifier. 

J. A weight which tends toward zero indicates a feature 

which provides little or no information to help in 

. classifying a candidate as a chest line-or non~chest 

line. 

ThBse conclusions are discussed further in Appendix g. 

As a result of these conclusions it is possible to use the 

weight training program as a means of e ·,_].iminating features 

whic h provide little or no information in the classification 

of the candidates. Since the features must be selected .on 
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a hueristic basis, this type of g oodness test on a feature 

is necessary. Removal of a feature with a zero weight does 

not effect the performance of the algorithm but does reduce 

the size of the matrix operations perf ormed in the _· · 

calculation of the E vector. Since the original intent was 

to implement the algorithm in real time on a microprocessor, 

the size of the matrix operations is a critical factor . 

Minimal threshholds necessary for acceptance or rejection 

of a feature cannot be generalized but must be determined 

in terms of the algorithm"s application. 
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CHAPTER VI 

ALGORITHM SI MULATION AND TESTING 

In ord3r to verify the decision algorithm's ability 

to classify chest lines,a simulation of the algorithm was 

perfo~med 0n the I BM 370 compu ter. The simulation program 

accepted as input the h i gh contrast images found .in 

Appendix g. The necessary feature measurement~ were mad e 

and the g matrix was formed from the discrete PDFs. The 

~lgorith~ generated an E vector based on the~ matrix and 

the larg est element i n E was selec ted as the predicted chest 

line. The simulation prog ram appears in Appendix J. 

Noise introduced into the system due to the sampling 

rate prohibited the algorithm from exactly identifying the 

chest line in every i ma g e. The size of the dat~ set used in 

generati~g th e PDFs and in training the weights · also added 

to the problem . It was determined, however, that in the 

particular application ·uf track event timing it was not 

necessary to exactly i dentify t he chest line to maintain 

a timing accuracy of .01 seconds .( Appendix J) In a worst 

case example (runners competing in the 100yd. dash) it was 

on ly necessary to be within ± 4 inches of t he actual 

chest line . This corresponds to identifying th e predicted 

chest line in a 5 c and idate bandwidth centered about the 

actual chest line .( f i gure 10) 
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With this bandwidth as ao ~cgeptable tolerance, the 

algorithm correctly classified the images in every case. 

( figure l 'l) The algorithm ideally classified the chest line 

(that is the predicted chest line and the actual chest line 

were the same) in 13 out of 20 images and missed by J.- · 

candidate i n 5 out of 20 images. 

This test:rngprocedure verified the decision algorithm 

by testing it on the same images the weights were trained 

on . The results, therefore , were biased in favor of the 

algorithm. To further establish the credibility of the 

system 10 images were selected at random and the weights 

trained on these images. The algorithm was then tested on 
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the entire set of i mages . The results indicated that the 

smaller data set could not pick the chest line as -well 

as the larger set but the results were still within the 

5 cand-idate bandwidth with only one exception. ( figure 11) 

With the algorithm now verified it was possible to 

propose an automatic t rack timing syste'.11 ·:i~-- ich ma,.kes use 

of this decision process . 

Difference Between Predicted and 
Actual Chest Line 

Image No. Simulation Using Simulation Using 
20-Image Weights 

1 0 
2 -1 
J 0 
4 0 
5 0 
6 -1 
7 0 
8 0 
9 -1 

10 0 
11 0 
12 0 
lJ 0 
l4 -1 . 15 C 
16 2 
17 2 
18 -1 
19 0 
20 0 

* Images used in training weights 
**Predicted chestline outside of tolerance 

Fig. 11 Simulation Results 

10-Image Weights 
0 * 

-1 * 0 * 
0 * 
0 * 

-2 * 
0 * 
0 * 

-1 * 
0 * 
0 
0 

-2 
-1 

0 
J ** 
1 

-1 
0 
0 
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CHAPTER VII 

A MICROPROCESSOR BASED AUTOMATIC TI MI NG SYSTEM 

A system which makes use of the decision algorit~~ 

is shown in figure 12. This system provides both the precision 

and reliability nee~ed in track timing. Through the use of 

the microprocessor and standard video camera it is possible 

to avoid large price tags on the s ystem: 

The camera is mounted over the track and scans an 

area beginning 8 feet before the· finish line. It is oriented 

so the scan is parallel to the finish line. This, in a sense, 

slices the body into a series of segments where one of the 

segments corresponds to the chest line. These segments are 

regrouped and processed i nto the high contrast image from 

which the feature measurements are made. From these _ 

meas urE: inents , the decision algorithm will determine which 

body segment corresponds to the chest line. 

The decision algorithm provides only th e location 

of t he ches tline with respect to the finish line . The actua l 

finish time would be calculated by the microprocessor i n . 

the following way 

1 i Locate the chest line wi th respect to the finish line 

and record th e elapsed time since the start of the 

race, 



35 

2. Repeat Step 1 to obtain a second data point of time 

and location. 

3. Knowing the elapsed time and the distance traveled, 

determine the a verage veloci ty . 

4 . If the location of the runn er is determined close to 

the finish line, he will be unable t o change his 

veloci ty significantly before the end of the race . 

Using h is average ve locity , it i s pos sible t o determine 

th e time it will take to finish the race and from 

C 
A 
M 
E 
R 
A 

t h is information, the fina l finish time is obtained . 

IMAGE 
PROCESSING 

FEATURE 
EXTRACTION 

CONTROL 

/.vP 

Fig. 12. System Block Diagram 
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The system will always provide a finish time because 

the algorithm will always predict a chest line. However, some 

images are more difficult to classify than others. The- camera 

frame ·rate provides six complete images of a runner in the 

worst case. Since only two images are needed to calculate the 

finish time, it allows the system to throw out images which 

are difficult to classify. 

The combination of video camera, microprocessor and 

interfacing logic provides a real time, microprocessor based 

automatic timing system.[9] Through the use of the micropro­

cessor it is possible T-o ~rovide an accurate and reliable 

system at a cost affordable by most high schools and small 

colleges. The system will pr0vide accurat~ times of runners 

in any type of race. The ability of the system to place runners 

has not yet .been investigated enough to verify its 

reliability. Farther investigation intQ this area should be 

done, 'particularly in the ~rea of lane races versus non-lane 

rac~s. Until then, however, the present system will serve 

as an accurate timing system. 
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CHAPTER VIII 

CONCLUSION 

The algorithm presented provides a simple yet 

powerful means of handling a variety of pattern recognition 

applications. It is capable of handling highly non-linear 

features with versati:.lity and speed. The implementation 

of the algorithm may be accomplished in a variety of ways 

depending on the complexity of the application. 

In regards to track event timing. the algorithm 

is capable of providing the necessary accuracy in the 

classification of the chestline within the specified 

~olerances. Implementation of the algorithm can be accom­

plished at low cost and in real time through the use of a 

microprocessor and intelligent programing. 

Success of the algorithm in future applications 

depends primarily on s~lection of the features and proper 

generation of the probability density functions. Since 

feature selection for this algorithm. as in all other pat­

tern recognition applications, must be done on a trial­

and-error basis, more research into the area of feature 

selection employing the weight training program must be done. 

The necessity of a large data base also requires the investi­

gate into a self adaptive system using the update scheme 

proposed in Chapter). 
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APPENDIX A· 

Track 'riming Personnel 

In order to maintain the needed precision with the 

hand-held stopwatch me~hod of timing track events, it is 

necessary to have as many as 25 individuals at the finish 

line. This is due to the check and counter-eheck system used. 

That is, each duty of importance is p erformed by more . than 

one individual with the results being comp a re d after each 

race. A list of officials need for an B~lane 100yd dash 

race is presented below. 

Head Finish Judg e 

2 i\.ssistant Judg es for 

1 Assistant Judg e for 

Head Timer • 

2 Assistant Timers for 

1 Assistant 'rimer for 

1 Substitute rr imer 

Finish Line Recorder 

~ ind Gauge Poerator 

every place s cored 

every other pla ce 

every place scored 

every . other place 



APPENDIX B 

Feature Selection 

Feature selection represents the biggest probiem 

in the implementation of most pattern recognition algorithms. 

Proper selection of optimal features must be done on a trial 

and error basis. In the ,particular application of chest line 

identification it was possible to. select hundreds of possible 

features. However, limited research time and the need for 

a computationally fast algorithm restricted the number of 

features which could be implemented into the system. 

Sioc featu~es originally were selected as containing 

enough information to classify the chest line of the runner. 

They weres Magnit~de, Change in Magnitude, Trapped Zeros, 

Change in Trapped Zeros, Total Change and Distance from the 

End of the Body of the thesis. The change in trapped zeros 

was discovered to be linearly dependent with the other features, 

t:-.us it pro?id.ed no useful information. This problem of linear 

dependency is one which is often disguised by noise. It is 

important, however, to recognize these f 0 atures as providing 

no information thus reducing the amount of computation needed 

to execute the algorithms. 

,Total change was originally defined as the absolute 

sum of the change in magnitude plus the change in trapped 

zeros. How~ver, due to an error in programing the feature 
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was redefined as given in the main body of the thesis~ Upon 
, 

testing, it was discovered this feature provided more 

information than when implemented with the original definition·. _ 

In pattern recognition it must be understood that optimal 

features are often stumbled upon and must be obtained any 

w~y possible. 
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APPENDIX C 

High Contrast Images 

Multiple gray level images created a problem in 

extracting the feature measurements. Circuitry and 

simulation programs quickly blew out of proportion when 

attempts were ~ade to work with the more complex patterns. 

In order to simplify programs and computation, high 

contrast images were produced. The resulting images 

sacrificed detail for simplicity. 20 images were produced 

and are presented on the following pages~ The images are 

oriented so the runner is moving left to . right across the 
- · :-!. .... :--; •. , 

page. The body segment identified by the broken lines 

corresponds to the runner's chest line. 
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APPENDIX D 

Feature Extraction Computer Simulation 

The calculation of the PDFs and the training of the 

weights we~e based on feature measurements performed o'n the 

20 images of appendix C. To obtain the feature measurements 

two computer programs were written~ Flow diagrams and 

possible fortran implementations are ~resented. 



Subroutine STATl 

Flow Diagr:?-.m 

START 

CALCULATE 

MAGNITUDE 

CALCULAT.ri: 
CEANGE IN 
lfiAG_I~I TUDE 

CALCULATE 
TRAPPED 

ZEROS 

CALCULATE 
TOTAL 

CHANGE 

STOP 
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10 

20 

40 

41 

42 

43 

44 

30 

Subroutine STATl 

Computer Program 

SUBROUTINE STAT l FOR OBTAINING M,DELM,XNZ 
SUBROUTINB S~ATl( NCAND, rri , DELM, XNZ, DELZ) 
DIMENSION NDATA (70,70),NZ(50) 
COl.lfiMON NDATA 
JO=NCAND 
M=O 
DO 10 K=l,25 
M=M+HDATA(K,JO) 
Ml=O 
K=JO+l 
DO 20 L=l,25 
Ml=IV:l+NDATA(L, K) 
DELfvi=M-Ml 
DO 30 J=JO,K 
L=O 
L=L+l 
IDATA=NDATA(L,J) 
IF(IDATA.EQ.1) GO TO 41 
I?(L.EQ.25) GO TO 4J 
GO TO 40 
INDEXl=L 
L=26 · 
L=L-1 
IDATA=NDATA(L,J) 
IF(IDATA.EQ.l) GO TO 44 
IF(L.EQ.l) GO TO 43 
GO TO 42 
NZ(J)=O 
GO TO JO 
INDEX2=L 

,, 1' .. . 

NZ(J)=(INDEX2-I NDEX1+1)-M 
CONTINUE 
DELZ=NZ(JO)-NZ(K) 
XNZ=NZ(JO) 
RETURN 
END 

64 

AND DELZ 



Subroutine STAT2 

DELM > O 

COUNT< J 

Flow Diagram 

START 

CALCULATE 
MAGNITUDE 

CALCULATE 
CHANGE IN 
MAGNITUDE 

·DELM=-1, -2 

INCREMENT 

COUNT 

FLAG 
END OF 

BODY 

CALCULATE 

DISTANCE 

STOP 
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20 

16 

Subroutine STAT2 

Computer ·Program 

SUBROUTINE STAT2 FOR OBTAINING BETA 
SUBROUTINE STAT2(NCAND,KBETA) . 
DIMENSION XM(50),NDATA(70,70),XDELM(50) 
COMMON NDATA 

. -JO=NCAND 
KSAVE=O 
NCHEST=JO 
DO 10 J=2,35 
K=J6-J 
XM(J5)=0 
TEST=O 
)G.'I ( K) =O 
DO 20 I=l,25 
XM(K)=XM(K)+NDATA(I,K) 
KO=K+l 
XDELM(K)=XM(K)-XM(KO) 
I~(XDELM(K).LT.O) TEST=TEST+l 
IF(KSAVE.NE.O) GO TO 10 
IF (TEST. GE. J. OR. XDELrli(K). LE. -J) KSAVE=K 
CONTINUE 
KBETA=NCHEST-KSAVE 
RETURN · 
END 

C>b 
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APPENDIX E 

Feature Measurements 

The following data provides a complete listing of 

the feature measurements made by subroutines STATl and STAT2. 

The data is oriented with the first set of measurements 

corresponding to the candidate farthest from the finish line 

but still within the band of possible chest lines. The 

underlined set of measurements is the chest line data. From : 

this data the PDFs were created and the weights trained~ 
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CHANGE IN TRAPPED 
l\1AG NI TU DE MAGNITUDE ZEROS TOT BETA 

FIGURE l 

16 0 0 0 3 
16 0 0 0 4 
16 2 0 4 5 
14 2 0 4 6 
12 2 0 4 7. 
10 2 0 4 8 

8 1 0 2 9 
7 1 0 2 10 
6 0 0 0 11 
6 J 0 6 12 
3 J 0 3 13 

FIGURE 2 

14 0 0 0 3 
14 -1 0 2 4 
15 -1 0 2 5 
16 0 0 0 6 
16 0 0 0 7 
16 1 0 2 8 
15 0 0 0 9 

i4 1 0 2 10 
J 0 6 11 

11 J 0 4 12 
8 J 2 7 lJ 

FIGURE J 

18 0 0 0 J 
18 -1 0 2 4 
19 -1 0 2 5 
20 0 0 0 6 
20 2 0 4 7 
18 11 0 14 8 

? 1 8 2 9 
6 2 8 J 10 
4 1 9 11 11 
J 2 0 4 12 

·.1 -1 0 2 lJ 



M dM z TOT BETA 
FIGURE 4 

15 -1 0 2 J 
16 -1 0 2· 4 .. , ~ .. ·=; ~ . , ti V -, .., 
. 9 1 7 1 6 

8 4 8 4 2 
5 10 18 8 
1 -1 0 2 9 
2 1 0 2 10 

.1 1 0 1 11 
0 0 0 0 12 . 
0 0 0 0 lJ 

FIGURE 5 

22 1 0 2 J 
21 2 0 4 4 
19 2 0 4 5 
17 J 0 6 6 
14 2 0 4 7 
12 1 0 2 8 
11 4 0 8 9 

7 2 0 4 10 
5 2 0 4 11 

. 3 1 0 1 12 
2 2 1 J lJ 

FIGURE 6 

21 1 0 2 J 
20 1 0 2 4 
19 0 0 0 ~ 19 J 0 4 
16 J 2 2 ~ . 1.3 1 J 2 
12 1 J 1 9 
11 2 4 J 10 

9 6 5 17 11 
J T 0 J 12 
0 0 0 0 13 
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M dM z TOT BETA 

FIGURE 7 

16 0 . 0 0 J 
16 2 0 4 4 
14 2 0 4 5 
12 0 0 0 6 
12 2 0 4 z 
10 0 0 0 8 
10 1 0 2 9 

9 1 0 2 10 
8 .J 0 6 11 
5 1 0 2 12 
4 2 0 4 lJ 

FIGURE 8 

21 0 0 0 J 
21 0 0 0 4 
21 5 0 10 5 
16 J 0 6 6 
lJ 1 0 2 7 
12 J 0 2 8 

9 1 1 ·J 9 
8 2 0 4 10 
6 J 0 6 11 
J 1 0 2 12 
2 2 0 2 1.J 

FIGURE 9 

17 4 0 7 J 
1) 2 1 2 4 
11 1 2 2 5 
10 1 2 2 6 

9 2 2 J 7 
7 1 J 2 8 
6 5 3 lJ 9 
1 ·-1 0 2 10 
2 0 0 0 11 
2 0 0 0 12 
2 0 0 0 lJ 



M dM z TOT BETA 
FIGURZ 10 

16 -1 1 1 3 
17 0 0 0 4 
17 0 ("\ "' 

,, 
V V ") 

17 0 0 0 6 
17 2 0 4 7 
15 2 0 4 8 
l~-~ 7 0 9 9 

2 5 J 10 
ls- -1 6 l 1:1.. 
5 

, 5 7 1 ') 
- .L ~!.... 

6 - ' l~ 1 : -~ - .,. 

FIGURE. 11 

11 -2 0 4 3 
lJ 0 0 0 4 
lJ 1 0 2 5 
12 2 0 J 6 
10 1 1 2 7 

9 2 1 5 8 
7 1 0 2 9 
6 l 0 2 10 
5 2 0 4 11 
J J 0 J 12 
0 0 0 0 lJ 

FIGURE 12 

12 -2 1 J 3 
14 0 0 0 4 
14 0 0 0 5 
14 -1 0 2 6 
15 0 0 0 7 
15 -2 0 4 8 
17 1 0 2 9 
16 0 0 0 10 
16 0 0 0 11 
16 4 0 8 12 
12 2 0 4 lJ 



, ... 

. ~ 

M dM z TOT BETA 

FIGURE lJ 

17 0 0 0 J 
l? 1 0 ·2 4 
16 0 0 0 

,, ., ..., 
16 l 0 2 6 
15 1 0 2 7 
14 0 0 0 8 
14 4 0 8 2 
10 1 0 2 10 

9 1 - 0 1 11 
8 -o 1 0 12 
8 J 1 7 lJ 

FIGURE 14 

19 o - 0 0 J 
19 1 0 2 4 
18 1 0 2 5 
17 2 0 2 6 
l,2 6 1 11 7 

9 0 2 0 8 
9 0 2 ; l 9 
9 0 l. 0 10 
9 1 1 2 11 
8 0 1 0 12 
8 0 1 0 lJ 

FIGURE 15 

12 4 0 6 4 11 J 2 J 
8 5 5 9 5 
3 1 6 4 6 
2 1 4 6 7 
1 0 0 0 8 
1 0 0 0 9 
1 1 0 1 10 
0 0 0 0 11 
0 0- 0 0 12 
0 0 0 0 lJ 
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M dM z TOT BETA 
FIGURE 16 

17 0 0 0 3 
lZ 0 0 0 4 
17 4 0 8 5 
lJ 2 0 4 6 
11 5 0 10 7 

6 1 0 2 8 
5 2 0 4 9 
J 0 0 0 10 
J 0 0 0 11 
J 2 0 4 12 
1 1 0 1 lJ 

FIGURE 17 

14 11 0 l] a J 0 9 1 
_·. J 2 8 12 5 

1 -1 0 2 6 
2 0 0 o. 7 
2 0 0 0 8 
2 0 0 0 9 
2 2 0 2 10 
0 0 0 0 11 
0 0 0 0 12 
0 0 0 0 lJ 

FIGURE 18 

17 -1 0 2 J 
18 -1 0 2 4 
19 -1 0 2 5 
20 1 0 2 6 
19 J 0 6 7 
16 1 0 2 . 8 
15 J 0 6 9 
12 1 0 2 10 
11 2 0 4 11 

9 1 0 2 12 
8 0 0 0 lJ 
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M dM z TOT BETA 
FIGURE 19 

12 -2 0 4 1 
ll:- 0 C 0 4 
14 -1 0 2 5 
15 0 0 0 6 
15 2 0 4 7 
lJ 1 0 2 8 
12 1 0 2 2 
11 1 0 2 10 
10 1 0 2 11 

9 1 0 2 12 
8 1 0 2 lJ 

FIGURE 20 

19 0 0 0 J 
19 1 0 2 4 
18 J 0 4 5 
15 J 2 8 6 
12 4 0 8 

· ~ 8 0 0 0 
8 0 0 0 9 
8 6 0 9 10 
2 2 J 5 11 

.0 0 0 0 12 
0 0 0 0 lJ 



APPENDIX F 

Fonnulation of the PDFs 

Using the Bayes Expansion, two probability functions 

are generated for each PDF to be used in the algorithm. 

Each of these can be easily realized once the feature 

measurements have been made on the training set. The 

following graphs present the infonnation needed in gener­

ating the PDFs. The top graph in each case gives the number 

of times a particular measurement occurs if the measurement 

is made on a non-chest line candidate. The bottom graph 

shows occurrences for measurements made on·chest line 

candidates. The probability of getting a particular measure­

ment given the candidate is · a chest line or non-chest line 

can be calculated by dividing the graphs by the total pos­

sible occurrences of any measurement. However, this term 

drops out in the calculation of the final PDF thus allowing 

the use of these curves .in evaluating the PDF performances. 
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APPENDI, G 

,Jei 6ht Training Procedure 

Presented h ere i s a flow d iagram and possible f ortran 

i mplement ation of t he we ight traing procedure used to 

determi ne the alg orithm weights . The PDFs are placed in 

th e ~r;g-ram i n the form of look - u p t a b les. The progra m is 

written i n such a vay that the weigh t s can be eas ily studied. 

The weights are t rained on the 20 i mages presented in 

Appendix J. Subrou tines STATl and S1r .::..T2 are the programs 

presented in Appendix J . 
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Weight Training Procedure 

.Computer Program 

C MAIN PROGRAM FOR EXECUTING TRAINING PROCEDURE OF 
C WEIGHTS 

DIMENSION C(200,5), X(200,5),,(VEC(5,5),XTRA(5,l), 
1 P(5,5),R(l,5),SCA(l,1), N(5,l),G(l,1),H(5,1), 
2 CTRAN(5,200),TEM(5,200),E(200,1),PCPY(5,5),DENT(5,5), 
J L(5), M0(5),NDATA(70,70) 

DI MENSION CURVA(50),CURVB(50),CURVC(50),CURVE (50) 
COfv'1M ON NDATA 
DATA E/o. ,O. ,o. ,o. ,1. ,O. ,O. ,O. ,O. ,0. ,o. ,O. ,0. ,O. ,1., 

1 o. ,o. ,o. ,o. ,o., o. ,o. ,o. ,o. ,1. ,o. ,o., o. ,o. ,o. ,o. ,o., 
2 0,,0.,1.,o.,o.,o.,o.,o.,o.,o.,o.,o.,1.,o.,o.,o.,o., 
3 o.,o;,o.,o.,0.,1.,0.,o.,o.,o.,o.,o.,o.,o.,o.,1.,o., 
4 o. ,o. ,o. ,o. ,o. ,o. ,o. ,o. ,1. ,o. ,o. ,o. ,o. ,o. ,o. ,o. ,o., 
50 . , 1 . , 0 • , 0 • , 0 • , 0 • , O • , 0 . , 0 • , O . , O • , 1 • , O . , O . , O • , O • , O . , 
6 o.,o.,o.,o.,1.,o.,o.,o.,o.,o.,o.,o.,o.,0.,1.,o.,o., 
7 o. ,o. ,o. ,o. ,o. ,o. ,o. ,1. ,o. ,o. ,o. ,o. ,0. ,o. ,o. ,o. ,o., 
8 1 • , 0 •. , 0 • , 0 • , 0 • , 0 . , 0 • , 0 . , 0 • , 0 • , 1·. , 0 • , 0 • , 0 . , 0 • , 0 • , 0 . , 
9 o.,o.,0.,1.,0.,o.,o.,o.,o.,o.,o.,o.,o.,1.,o.,o.,o., 
a o.,o.,o.,o.,0.,0.,1.,o.,o.,o.,o.,o.,o.,o.,o.,o.,1., 
b O. ,O. ,O. ,o. ,O. ,O. ,O. ,o. ,O. ,1. ,O. ,O. ,O. ,O. ,o./ 

C CREATE DISCRETE PDF CURVES 

C 

DATA CURVA/26*0.0,.167,.059,2*0.0,.1,.778,.182,.167, 
1 .235,.048,.059,lJ*O.O/ 

DATA CURVB/19*0.0, .021,.069,.151,.176,.429,.25,.25, 
1 l.0,2*0.0,,5,20*0.0/ 

DATA CURVC/19*0.o,.1,.125,.13,.13,0.0,.077,2*0.o, 
1 .125,22*0.0/ 

DATA CURVD/19*0.0, .OJ4, .061, .079, .lJJ, .2, .182, .111, 
1 .25,4*0.0,l.0,6*0.0,.5,ll*O.O/ 

DATA CURVE/22*0~0,.154, .118,0.0, .05,.27J,.lll,.25, 
1 .067,.071,0.0,.143,17*0.o/ · 

DO . l N=l,20 
READ(5,10l) · Jo 

101 FORMAT(1I2) 
READ(5,100)((NDATA(I,J),J=l,J5),I=l,25) 

100 FORMAT(J5Il) 



C 

DO 2 I=l,10 
NCAND=J0+5-I 
K=((N-l)*lO)+I . 
CALL STATl( NCAND, M;DELM~XNZ,DELZ) 
CALL STAT2(NCAND,KB~tA) 
TOT=ABS(DELM)+ABS(DELZ) 
X(K,l)=M 
X(K,2)=DELM 
X(K,3)=XNZ 
X(K,4)=TO'r 
X(K,5)=KBETA 
IF(E(K,l).EQ.O.) E(K,l)=-1.0 

2 CONTINUE 
1 CONTINUE 

C CALCULATION OF IV:ATRIX P=(C(TRANS)C)**-1 

C 

DO 501 I=l,200 
IA=X(I,1)+20 
IB=X(I,2)+20 
IC=X(I, 3)+20 
ID=X(I ,4)+20 
IE=X(I, 5) +20 
C(I,l)=CURVA(IA) 
C(I,2)=CURVB(IB) 
C(I,3)=CURVC(IC) 
C(I,4)=CURVD(ID) 
C(I,5)=CURVE(IE) 

501 CONTINUZ 
CALL fliTRA(C,CTRAN,200,5,0) 
CALL r:1PRD( CTRAN, c ;P, 5,200, o, o, 5) 
CALL r:iINV(P,5,DET,L, MO) 
PRINT 622,DET 
IF(DET.EQ.O) GO TO 502 

C CALCULATION OF VECTO~ ·,l=P*CTRAN*E 
CALL MPRD(P,CTRAN,TEM,5,5,0,0,200) 
CALL MPRD( TEr,1, :c:, ':1, 5,200, o, o, 1) 
PRINT 601 

601 FOROCAT(lOX,A ~EIGHTS') 
PRINT 611,W(l,l), W(2,l),j(3,l),W(4,l),W(5,l) 

611 FORl'ilAT(5Gl0.3) 
PRINT 603 

60J FOR~AT(lOX,'P MATRIX') 

84 
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PRINT 622,((P(I,J),J=l,5),I=l,5) 
622 FORMAT(5Gl0.J) 

C 
GO TO 503 

502 PRINT 605 
605 FORMAT(lOX,'DETERMINANT EQUAL ZERO') 
503 STOP 

END 



AP.PENDIX H 

Weight Investigation 

Before the simulation of the algorithm could begin 

it was necessary to determine the significance of the 

weighting coefficiants and their effects on the accuracy 

and reliability of the algorithm. A series of J tests were 

run on the weights using the training program in which the 

results of the PDFs were controlled. These tests showed the 

relationship between the weights and the PDFs. The tests are 

explained below and the resulting conclusions given. 

Test 1 One of the PDFs was modified to give a result of 1 

every time a chest line measurement was taken and a -1 for 

every non-chest line measurement. This indicated that the 

feature for the modified PDF ideally selected the chest line 

in every case. The resulting set of weights for this test 

went to O for every feature except that which corresponded 

to the modi.i'ied PDF. In the case of the modified PDF, the 

weight went to 1. The coefficient of 1 for the weight was a 

result of the definition of the ideal E vector. Since, for 

a chest line the resulting E vector valve must be 1 and the 

PDF had been modified as given the weight valve was forced · 

to equal 1. If the PDF had been modified to give a result 

of .5 in the case of a chest line and -1 otherHise the 
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corresponding weight value would have been a 2. The signifi­

cance of this test was in the driving to 'O' of all weights 

for features which did not ideally select the chest line. This 

result held true for all features. If two features were mod­

ified to ideally select the chest line the corresponding weight 

values were 0.5 with all other weights driven too. 

Test 2 In this case the PDF was modified so the feature ideal­

ly selected non-chest lines. The PDF gave a result of 1 for 

every non-chest line measurement and a -1 for all chest line 

measurements. The resulting set of •;,eights for this test also 

went to O for every case except that which corresponded to 

the modified PDE. However, the weight value instead of being 

1 had a value of -1. 

Test 3 The PDF' for ?. particular feature was replac~d with a 

random number generator. In this case the weights were 

determined to have finite values with the exception of the 

modified rnF which tended toward O. 

From these tests, it can be seen that the weights 

are well behaved with respect to the PDFs. It is also pos­

sible to use the weight training p1·ocedure as a form of 

feature selection algorithm. If the weight for a particular 

feature tends toward 1, the feature is a good chest line 

indicator. If the weights tend toward -1, the feature is a 

good non-chest line indicator. A weight which tends toward 

zero indicates a feature which provides little or no 
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useful information in the classification of the chest line. 

If the weight is significantly close to zero, the feature 

may be -removed from the algorithm with no effect on the 

results. 

The weight training procedure is not a convergence 

method. However, as the number of images is increased the 

weights continue to react to the new images. At some point 

in time no new data can be presented to the weight trainer. 

Only images already seen by the trainer will be possible, 

At this time the weights will be stable at their values. 

this is true the weights should be well behaved, that . is the 

there should be little or no oscillation as the weights ap­

proach their final value. 

To test this a random sample of 10 images was 

selected and the weights determined. It can be seen that the 
0 

. weights have already approached the values obtained from 20 

images. As more samples are added to the training set, the 
' 

weights will appear to converge on a set of values whjch 

will contain all possible data relating the PDFs to one 

another. More work in this area is needed to understand the 

effect of ·the training set size on the weights. 



This is a table listing the weight values for the 

two training sets.(20 and 10 images) 

WEIGHTS 

89 

FEATURE 10 IMAGES 20~IMAGES 
MAGNITUDE 1.57 1.51 

CHANGE IN MAGNITUDE .621 1.07 

TRAPPED ZEROS · -9-92 -9-77 

TOTAL CHANGE -.498 --7)5 

END OF BODY(Beta) .760 .517 
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APPENDIX I 

Presented here is the flow dia~ram and a possible 

fortran program implementing the decision algorithm 

simulation. The simulation was developed to test the 

algorithm only and in no way attempts to simulate the 

microprocessor software or the feature extraction circuitry. 
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Algorithm Simulation 

Computer· Program ·. 

G Srtv'!T__TLATION OF TRACK TIMER ALGORITHM 
DIMENSION NDATA(70,70) ,XM(50) ,Xr>ELM(50) ,C(ll,5), 

1 ~ (5,l),E(ll,l),NZ(50) 
cor,D/iON NDATA 
DI MENSION CURVA(50),CURVB(50),CURVC(50),CURVD(50) 

1 CURVE(50) 
G CREATE DISCRETE PDF CURVES 

C 

DATA CURVA/26*0.0, .167, .059,2*0.0,.1,.778,.182~.167, 
1 .235, .048,.059,13* 0.0/ 

DATA CURVB/19*0.0,.021,.069,.151,.176,.429, .25,.25, 
1 l.0,2*0.0,.5,20*0.0/ · 

DATA CURVC/19*0.0,.1,.125,.13,.lJ,0.0,.077,2*0.0, 
1 .125, 22*0. o/ 

DATA CURVD/19*0.0, .034, .061,.079,.133,.2,.182,.lll, 
1 .25,4*0.o,1.o,6*0.0,.5,11*0.o/ 

DATA CURVE/22*0.0, ~154, .118,0.0,.05, .273,.111,.25, 
1 .067, .071,o.o,.14J,17*0.o/ 

DO 1 N=l,20 . 
READ(5,101) JO 

101 FO R~AT(lI2) 
READ(5,lOO)(( NDATA(I,J),J=l,J5),I=l,25) 

100 FORMAT(J5Il) 

C DETERMIN.2: END OF BODY 
NLIN.2:=0 

C 

DO 10 J=2,J5 
K=J6-J 
XM(35)=0 
XM(K)=O 
TEST=O 
DO 20 I=l,25 

20 XM(K)=XM (K)+NDATA(I,K) 
KO=K+l 
XD.2LI•1; ( K ) =XN: ( K ) - :Gr; (KO) 
IF(XD.ELlfi (K) .LT.O) TEST=TEST+l 
IF(NLI NE . NE.O) GO TO 10 
IF( T2ST. GE. J. OR. XDELlVi (K). LE. -J) NLINE=K 

10 CO NTINUE 



C SETTING THE BAN!J OF CANDIDATES 
NCAND=HLIN.C:+2 
DO 102 K=l,11 

NCAND=NCAND+l 
C FILLING THE C MATRIX 

C 

r\/\TT ('""fm ,,m, /l\Tf""\f\l\':'T"\ l\ r.' T"\::'T,,,,. VT\Tr"7 n"G"T ,.,, 
V.ti.J.JJ.J u .L~.l. .L \ .11vn.1,u 1 1,1, u~.u1•1, .1"-'' u, LJ~.1...11.J 1 

CALL STAT2(NCAND,KBETA) 
TOT=ABS(DELlVl )+ABS(DuZ) 
IA=f.'1+20 
IB=DELM+20 
IC=XNZ+20 
ID=TOT+20 
IE=KBETA+20 
C(K,l)=CURVA(IA) 
C(K,2)=CURVB(IB) 
C(K,J)=CTIRVC(IC) 
C(K,4)=CURVD(ID) 
C(K,5)=CURVE(IE) 

102 CONTINUE 

C SPECIFICATION OF ~EIGHTS 
W(l,1)=1.51 
W(2,l)=l.07 
w(J,l)=-9.77 
,J( 4, 1) =-. 7 35 
w'/( .5, 1) =0 • .517 

C 
C CALCULATION OF E VECTOR 

CALL r,iPaD( c, )I, E, 11, .5, o, o, 1) 
C LOCATION OF CHEST LINE 

BIG=-99.0 
NCHEST=l 
DO 103 I=l,11 

IF(BIG-E(I,l)) 10_5,104,lOJ 
10.3 CONTINUE 

GO TO 112 
104 IF(C(I,1)-C(NCHEST,l)) 103,106 1 10_5 
106 IF(C(I,2)-C(NCHEST,2)) lOJ,107,10_5 
107 IF(C(I,J)-C(NCHEST,J)) lOJ,108,105 
108 IF(C(I,4)-C( NCHEST,4)) lOJ,109,10_5 
109 IF(C(I,5)-C( NCHEST,_5)) 103,111,105 
10 .5 lJi.:;Hi:ST=I 

BIG=E(I, 1) 
GO TO 10.3 



-~ 

111 PaINT 113,I,NCHEST 
113 FORMAT(lOX,'THE FOLLO~ING LINES ARE TIED',2I4) 

GO TO 105 
112 PRINT 114 
114 FO?JliAT ( 10;{, 'E ~:ECTOR' ) 

PRINT 115,(E(I,l),I=l,ll) 
115 FORYiAT(llGlO.J) 

NCHEST=NCHEST+NLINE+2 
PRINT 116,NCHEST 

116 FORMAT(lOX,'PREDICTED CHEST LINE IS',1I4) 
NDIFF=NCHEST-JO 
PRINT 117, HDIFF 

117 FORMAT(lOX,'DIFFERENCE FROM ACTUAL',1I4) 
1 CONTINUE 

STOP 
END 

94 
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APPENDIX J 

Accuracy Requirements In Locating The Chest Line 

Due to the injection of noise into the system it is 

not possible for the algorithm to exactly identify the chest 

line in every case. However, in the particular application 

of track event timing it is not necessary to exactly 

identify the chest line. The following derivation shows 

the devel~pement of the tolerances needed for the system. 

Given the following diagram, 

r~ It~ 1:2 

I < xl • r 
I 

XO ~ I 
assume the velocity is constant from points A to C. ·- - . -·--- - -.-~ . .-.. ·-- -

Let the velocity at B equal the average velocity from A to B. 

That is 

( J2) 

The finish time can then be calculated to be(if the finish 

line is at point C) 

( JJ) 

From (32), equation (33) can be rewritten as 



( 34) 

or 

i ":> ~} 
\ .,1..,; 

The accuracy with which t 0and t 1 are measured is 

determined by the accuracy of the timer clock. Therefore, 

error in t
2 

can enter equation (J5) only in the measurement 

of x0 and x1 . 

Taking the derivitive of t 2 with respect to 

change in x
0 

gives 

( 36) 

Similarly, the change in t
2 

with respect to the change in 

x1 is 

(37) 

Errors introduced in the measurement of x0 and x1 will be 

the same because the techniques used are the same in both 

cases. Therefore, (J6)and (J?) can be added together to give 

the total change in t 2 due to error in locating the runners. 

Using (J2), equation_ (JS) can be simplified to read 

dt = [ 1/v J- dx 2 B · 

( J8) 

( 39) 



?rom (J9), it is seen that the total error in t 2 is 

given by the error in locating the runner times the inverse 

of the velocity of the runner. In order to maintain a 

timing accuracy of .01 seconds the error in the finish time 

must be less than .005 seconds. Using this value and a 

worst case velocity for the hun dred yard dash, it is possible 

to calculate the maximum allowable error in locating the 

chest line. The maximum error in dx was calculated to be 

4.2 inches. This correspon_ds to missing the actual chest line 

by two scans on either side. From this, it is possible to 

establish a bandwidth of bbdy segments which if selected 

as the chest line would still allow the runner to be timed 

to an accuracy of .01 seconds. 
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