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A method for the calculation of wall interference in a subsonic wind­

tunnel was developed. A rectangular windtunnel with slotted and solid 

wall elements was used. A lifting model, represented by horse shoe vor­

tices, was placed symmetrically about the center inside windtunnel. 

The total velocity potential for the flow inside the windtunnel 

is expressed as the summation of perturbation potential and the velocity 

potential at free stream velocity. The perturbation potential is the 

contribution from the model and the boundaries of the windtunnel. The 

model potential is assumed known and the interference potential, which 

is due to the walls of the tunnel, is calculated. 

A non-dimensional Laplace equation for the interference poten­

tial is fourier transformed and solved. The particular solution is a 

Bessel function. This solution is used to obtain an expression for the 

interference potential due to any slotted or solid wall element. The 

expression is multiplied by the influence coefficient of each element. 

The influence coefficients are obtained by satisfying the boundary con­

ditions. The total interference potential due to each element is cal­

culated. The sum of the contribution due to all elements ~gives us the 
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interference potential due to the wall. The interference potential is 

used to obtain the upwash and the streamline curvature in the transformed 

plane. This is inverted to obtain the upwash and the streamline curvature 

in the physical plane. 
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CHAPTER I 

INTRODUCTION 

Windtunnels are used extensively to obtain information regard­

ing lift, drag, center of pressure etc. In order for the data to be 

accurate it is important that free-air conditions are duplicated while 

testing the model in the windtunnel. To simulate free air conditions 

corrections for wall interferences must be used. This thesis consists 

of a method to determine wall interference in a slotted wall subsonic 

windtunnel. 

In earlier years of the development of windtunnel mostly solid 

wall wind tunnels were used. The· size of the model tested, was usually 

1% or less in size as compared to the test section area, to avoid the 

problem of blockage. In recent years it has become necessary to test 

large scale models with unprecedented accuracy. Ventilated windtunnels 

avoid the problem of blockage and full size models could be tested in 

them. Several studies have been conducted to determine the effect of 

the various parameters on the types of interferences for ventilated wall 

windtunnels. Different types of interferences may be classified as 

solid blockage, wake blockage, lift interference or upwash and the 

streamline curvature. Pindzola and Lo [ 9] have studied interferences 

in circular, two dimensional, and rectangular windtunnels with com­

pletely solid, completely open, slotted and perforated boundaries. 

A basic difficulty in obtaining the wall interference cor­

rections is in determing the correct boundary conditions. In ear­

lier developments, the correct wall loss characteristics for porous 



walls could not be determined for use in the boundary conditions. 

Hence, a linear wall loss characteristic was assumed [Ref (1 )]. 

Several studies conducted later [Ref (3), (7)] showed how the boun­

dary conditions for the slotted wall windtunnel can be obtained. 

It was noted that the normal velocity component for the slotted wall 

windtunnel would be zero at the solid portions of the wall. Across 

the open portions the local static pressure must be constant and 

equal to the upstream ambient static pressure. Initially no effect 

of viscosity in the flow through the slots was taken into account. 

Later, Baldwin, Turner and Knechtel [31 and Wood [11] derived boundary 

conditions where the viscous loss effect was taken into consideration. 

Later the boundary conditions were derived with a new concept. It was 

assumed that the real slotted wall could be replaced by ~n equivalent 

homogeneous boundary whose influence near the model would be very 

similar to that of the real wall. · Several other investigators [Ref (5) 

(11), 110),(B}]have derived boundary conditions for equivalent wall by 

using different methods. 

Another problem in finding the interferences is the proper 

representation of the model. In most previous investigations the model 

was mathematically simulated by placing a velocity potential singular­

ity in the center of the tunnel. The inviscid flow field induced by 

the walls was then calculated, subject to the satisfaction of the wall 

boundary conditions. In recent years several investigators, [Ref. 

Davis and Moore (4), Holder (5), Wright and Bager (12), Kraft (6)] have 

presented results ·for finite span models. 

In this thesis, the upwash and the streamline curvature are 

determined for a slotted wall rectangular windtunnel. The model was 
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represented by a finite set of horseshoe vortices along the span. The 

procedure used to obtain upwash and the streamline curvature is dis­

cussed in the following chapters. The thesis is mathematical in nature 

and most of the work is shown in the appendices. 
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CHAPTER II 

WIND TUNNELS 

The history of the windtunnels and their types are discussed 

in this chapter. The boundary conditions for each type of windtunnel 

are also discussed. 

History 

Wind tunnels have been used for the simulation of data for free 

flight since the beginning of this century. Wright Brothers used a 

crude model of a windtunnel. Since their invention, attempt has been 

made to produce windtunnels with more uniform flow, less 

turbulence and more precise measuring equipment so that the information 

obtained may be used to produce aerodynamically clean aircrafts. 

The aircrafts tested upto 1930's had a Mach number of less 

than 0.5 In late 1930's it became necessary to construct windtunnels 

in which aircrafts of higher speeds could be tested. These aircrafts 

were still subsonic. Drastic changes in measurements were observed at 

a Mach number more than 0.6 since the density of air changes appreciably 

at such high speeds. This led to the possibility of developing open jet 

windtunnels. 
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In late 1930 1 s windtunnels with slotted walls were tested. It 

was observed that the velocity correction is reduced by using slotted 

wall windtunnels. Supersonic speeds were obtained in the slotted wall 

wind tunnels without any choking. For subsonic testing, these windtunnels 

are used even today. At supersonic speeds, shockwaves developed in the 

slotted wall windtunnels and hence the result obtained was in error~ 



In 1950's perforated wall windtunnels were introduced which were able 

to cancel the shockwaves over a considerable range of Mach number. The 

hole size in perforated wall windtunnels should be approximately equal 

or larger than the thickness of the boundary layer for effectively 

canceling the shockwaves. To minimize the hole size the boundary layers 

were thinned by suction into the plenum chamber. The perforated wall 

windtunnels have been greatly modified since their invention and are 

used even today for supersonic range testing. 

Types of Windtunnels 

5 

Windtunnels are basically classified as Open circuit windtunnels 

and Closed circuit windtunnels. In open circu f t windtunnels there is no 

guided return of the air and the tunnel draws fresh air from the atmos­

phere. In closed circuit windtunnels the air is recirculated. Wind­

tunnels are often also identified by their crossectional shape. The 

classification used in this chapter is such that boundary conditions 

may be discussed. The three types of windtunnels classified here, are: 

1) Open Jet Windtunnels 

2) Closed Wind tunnels 

3) Ventilated Windtunnels 

Open Jet Windtunnel 

In an open jet windtunnel there is a free jet which is sur­

rounded by a plenum chamber at a static pressure. The pressure along 

the free jet boundary is also constant and equal to the undisturbed 

pressure upstream of the model. In equation form this can be written 

as: 

6'P - 0 ( l ) 



where, 'P is the pressure at the boundary of the free jet and "P is 
cO 

pressure upstream of the model. In terms of velocit~ the equation can 

be written as, 

V~ - Voo = b.V = o 
X. 

where, V~: velocity at the jet boundary in x direction 

V : undisturbed free stream velocity. 
co 

(2) 

The velocity potential,~, of any flow can be divided into, 

(a) Velocity potential, q> , due to the free stream velocity and (b) 
CD 

Velocity potential, q>, due to the changes in velocity. At the boun­

dary of an open jet we get, 

=o (3) 

Hence, the above equation gives us the boundary condition for 

an open jet windtunnel. 

Closed Windtunnels 

In a closed windtunnel there are solid walls through which 

there can be no flow. Hence, the velocity component normal to the wall 

is zero. The boundary condition for a closed windtunnel is given by: 

where, 

and 

o<1> - = 0 ?)n 

1\ - is the direction normal to the wall 

( 4) 

the velocity potential due to the change in the velocity 

Ventilated Windtunnels 

The interferences obtained in an open jet windtunnel and a 

closed wall windtunnel give re~ults .with oppo~ite signs. Venti-

lated wall were introduced to take advantage of this and obtain windtun­

nels with less interference. Not only the interference was minimized 

it also functioned at speeds which choked in closed windtunnels. This 
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enabled the use of larger models. Walls can be ventilated by making 

slots normal toy, z or both directions, as well as by perforations. 

For boundary conditions in a slotted windtunnel the wall is of­

ten assumed at a distance different from its actual one and a homogen­

eous boundary condition is obtained. This equation applies along the 

entire length of the tunnel and for subsonic flow it is given by, 

~ ~ + \(. 0:2. q> =- 0 ( 5 ) 
~ o-:x.an 

where, 

= d. 
1T 

and has the dimensions of length. 

(6) 

Equation (5) was derived for inviscid flow [Ref 9] and has been 

corrected since then. The average boundary condition [Ref (l)] for a 

porous wall is derived by assumin~ the average velocity normal to the 

wall as being proportional to the pressure drop across it. This gives 

the boundary equation at the wall as, 

-0 
(7) 

In the above equation R is the porosity parameter and is defined by, 

R = ! V 'bet> 
AP "'C)-n. 

where, 6P = the pressure drop through the wall 

f = the stream density 

V = the stream velocity 

(8) 

Combining equations (5) and (7) we get a boundary equation 

for a slotted wall windtunnel with viscous effects within the slots. 

The equation is given by, 

=o 
(9) 

w I LUA F. AAG LI BRA RY 
WU GSJOV\ N STATE UNIVERSII~ 
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The last term in equation (9) is due to the viscous effects 

and it goes to zero when "R • a:, . Such walls are known as ideal 

slotted walls. When l< • c.o or 'R:.o we get ~ct> 
~=-o from equation {9) 

which is a special case for closed walls. For l<.=- o and 'R • c0 

we get 

where, 

~ ::.o , which is the boundary condition for open jet. 
1)-X. 

For circular tunnel equation {9) reduces to, 

( oct> o':2.~ -+- ..L oct> 
) "': ,a,Q 

- 0 
~ + ~ o-x. 'h9-L 'R 091 -

:x. = free stream direction 

h = cyclindrical coordinate perpendicular to x 

and Ao = radius of the tunnel. 

(10) 

The special cases for closed, ideal and open jet circular wind­

tunnel can be obtained from equation (10) by varying I<. and '"R as was 

done previously. 

The difference between slotted and perforated wall windtunnels 

8 

is in the number of openings. Perforated walls consist of numerous 

openings making it extremely difficult to find the interference due to 

each solid or slotted element. Hence a fictitious homogeneous wall is 

assumed to find the boundary conditions. A uniform pressure change across 

the wall is assumed which for -the homogeneous wall is approximately. given 

by, 

where, 

( 11 ) 

9J = dynamic pressure of the flow 

G = angle between the flow and the wall 

and k = constant depending upon geometry of the wa 11 and 

mach number. 

For the boundary condition of perforated wall the pressure 

drop across the wall should be equal and opposite to the change in 



pressure due to the model. 

Hence, 

A'P""ocu.L + 6-P~ :. o ( 12) 

In terms of velocity potential this can be written as, 

( l 3) 

The equation derived by Baldwin [Ref 3] is similar to equa­

tion (13), but it is derived in terms of porosity parameter. This 

equation is, 

( 14) 

When R = 0, we obtain the special case of closed wall. Equation (14) 

can be obtained from equation (9) for K = 0. 

Perforated walls do not match the disturbances that occur in 

free flight as well as the slotted walls, for subsonic flow. Hence they 

are never used for subsonic testing. 

9 



CHAPTER III 

WALL INTERFERENCE 

To obtain data for a free flight condition, we must account 

for the interferences in the data taken in a windtunnel. Interference 

10 

may arise due to the walls of the windtunnel, presence of measuring equip­

ment and model support, and due to the unsteadiness or small scale tur­

bulence of the flow. We are mainly concerned here with the wall inter­

ference. The wall interference can be divided into three parts. 

parts are, 

1) Blockage interference 

2) Streamline curvature 

3) Upwash 

Blockage Interference 

Blockage interference can be divided into two parts. These 

1) Solid Blockage, caused by the presence of the model in 
the windtunnel. 

2) Wake Blockage, the blockage due to the wake of the model. 

Solid Blockage 

The presence of the model inside a windtunnel reduces the 

area through which the flow must pass. The reduction in area changes 

the flow velocity above the model. This change in velocity due to the 

model is known as 'Solid Blockage'. 

Fig. l shows 'Solid Blockage' in a closed windtunnel. The 
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--------,--~ --------------

Fig. l . Solid Blockage in a Closed Tunnel. 
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velocity of the flow increases above the model due to the reduction in 

area through which the flow must pass. A positive solid blockage factor 

is obtained in a closed windtunnel. 

In a free flight, the undisturbed pressure is attained after 

an infinite lateral distance. In an open jet [fig. 2A] this pressure 

build up between the model and jet boundary occurs considerably faster. 

This is due to the fact that in an open jet the pressure 

along the free jet boundary is constant and equal to the pressure up­

stream of the model in an undisturbed free jet. Hence, in an open jet 

the undisturbed free stream pressure is already established at a finite 

distance. The faster pressure build up causes the streamlines to 

bulge out more in an open jet as compared to free flight. Consequently, 

the area between adjacent streamlines increases. This results in a de­

crease in the velocity and a negative solid blockage factor for an open 

jet windtunnel. 

The development of ventilated wall wind tunnel was the result 

of the oppos ~te sign interference obtained for solid wall and open jet 

windtunnels. The subsequent attainment of transonic test speed was mere­

ly a coincidence. 

Wake Blockage 

Whenever there is flow over an object, a distinct region of 

high turbulence and low pressure developes behind it. This region, 

known as wake, is casued by the spearation of boundary layer. 

Figure 3 shows the wake blockage in a closed windtunnel. 

The velocity of the fluid in the wake region is less than its velocity 

upstream of the model . This increases the velocity between the wall and 
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- --------------- :-.:.:.:.:.:-.:-_-_:-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_ -- --================ uO'.) _ -- ---- -
A. Free Flight 

----- --------------- - ---_:-:,;.,--:~~~-~~~~---------
- - - ~~~ --- - _____ __:_:;_ ______ _ ---- --------------

B. Closed Tunnel 

Fig. 2. Comparison Between Streamlines in a Free Flight 
and a Closed Windtunnel. 



Fig. 3. 

Velocity > V 

~-Velocity< V 
/ -Wake 

Wake Blockage in a Tunnel. 
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wake boundary to satisfy the continuity equation. The change in the 

flow velocity due to the presence of the wake is known as Wake blockage. 

The higher velocity also induces lowered pressure, which im­

poses a longitudinal pressure gradient. The pressure gradient induces a 

drag force for which correction has to be made. 

Streamline Curvature 

The streamlines in a free flight, open jet windtunnel and a 

closed wall windtunnel are shown in figure 2. The curvature of the 

streamlines in the three cases are different due to different boundary 

conditions. In a free flight, the streamlines bulge out to an infinite 

lateral distance creating a pressure gradient from low values at the sur­

face to higher values in the undisturbed flow. In an open jet the undis­

turbed pressure must be attained in a finite distance. Hence the curva­

ture of the streamlines is much more pronounced in an open jet as com­

pared to the curvatures in a free flight : The change in the Streamline 

curvature results in a steeper pressure gradient in an open jet windtun­

nel. In a closed wall windtunnel the Streamline curvature is reduced 

due to the presence of the wall where the streamline must be straight. 

Hence the pressure gradient in a closed wall windtunnel is less as compared 

to the free fljght. This shows that the streamline curvature obtained 

in a windtunnel is different from the streamline curvature obtained in a 

free flight and a correction should be made to the windtunnel data. 

Upwash 

The component of the velocity normal to the free stream vel­

ocity gives the lift to the model. This component is also called upwash. 
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The lift determined in a windtunnel is not the same as in a free flight 

condition. The discrepancy is due to the different boundary conditions 

in the two cases. Hence, to simulate the free flight condition it is 

necessary to apply the upwash correction in the windtunnel data. 
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CHAPTER IV 

METHOD OF ANALYSIS 

Introduction 

A method of determining the upwash and the streamline curvature is 

discussed in this chapte~A rectangular slotted windtunnel of height 2h, 

and width 2b is shown in figure4. The slot width and the slot spacing 

of the windtunnel could be varied. A lifting model is placed symmetri­

cally about the center inside the windtunnel. The model is represented 

by infinite horse shoe vortices. Since it is a lifting model, there will 

be circulation associated with it. 

For mathematical convenience we will express the velocity po­

tential of the horse shoe vortex into x-dependent and x-independent parts. 

The interference potential due to both the parts have to be determined 

to obtain the lift interference. To determine the interference potential, 

the differential equation, the boundary conditions and the velocity 

potentials are transformed by fourier transformation. The differential 

equation is given by the Laplace equation. The fourier transformation 

of the x-independent part of the velocity potential gives a delta 

function. Hence, this method is also referred to as the Delta method. 

The slotted and the solid segments of the windtunnel wall are divided 

into small elements. Since the effect of the ~element on the inter­

ference potential depends upon the location of the element, we represent 

the total interference potential as a sum due to each element. In the 

transformed plane, the contribution of each wall element is expressed 

as a function with an unknown coefficient. A set of algebraic equations 
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Fig. 4. Cross Section of The Windtunnel 
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with these unknown coefficients is obtained by satisfying a slotted or 

a solid wall boundary condition at each wall element. The unknown co­

efficients are determined from these equations. The interference poten­

tial is now obtained by transforming back to the physical plane. Once 

the interference potential is known, the upwash and the streamline 

curvature can be obtained. 

Laplace Equation for the Interference Potential 

Let ~ represent the total velocity potential. The velocity 

of the flow in any direction can be obtained by differentiating the 

velocity potential in that direction. In equation form this is given 

by' 

-+ 
=- V ( 15) 

The total velocity potential for the flow inside the windtunnel 

can be expressed as , 

~ :. ucox + ~1". (16) 

In equation (16),½ is the perturbation potential. The perturbation 
p 

potential is composed of,½ , the contribution of the model and the 
"' 

interference potential,~ . , induced by the boundaries of the windtunnel. 
"' 

Hence equation (16) can be written as, 

(17) 

The linearized form of the differential equation of a steady, 



isentropic and irrotational compressible flow in .terms of the velocity 

potential, ~ , is given by, 

+ :.0 ( 18) 

where,~ - compressibility factor. 

In normalized coordinates, equation (18) reduces to the non­

dimensional Laplace equation, 

( 19) 

where, 

2 
, -:. tr (20) 
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If cl> is assumed known, by representing the model by a suitable 
ff\ 

potential function, the solution of Laplace equation subject to. a boun­

dary condition on~ would enable us to calculate the interference poten­

tial, ct>. . The non-dimensional Laplace equation for the interference po-
4 

tential is given by, 

( 21 ) 

Fourier Transformation 

The Laplace equation for the interference potential given by 

equation (21) is fourier transformed according to, 

-F C'i,) (22) 
-co 



The fourier transformation of equation (21 ) is, 

t 4>L. 
2- -

1 2.-

+[ ~ ct>i. 
- ci, ~i + =o 06a. 6 i:..2. (23) 

In cyclindrical coordinates, equation (23) can be written as, 

(24) 

When the rand e parts of equation (24) are separated, the 

r part becomes a modified Bessel's equation of order m. A particular 

solution of equation (24) is, 

where, K
0 

is a modified Bessel function of order zero. 

General Solution 

An approximate general solution can now be constructed by 

satisfying the boundary conditions at discrete points on the boundary. 

Interference potential is determined for each solid and slotted wall 

element on the tunnel boundary. The summation of the interference po­

tential due to all the elements gives us the total intereference 

potential. 

Wall Element at y = ± l 

For any general wall element k, on the wall at y = ±. l, 

the contribution to the interference potential is, 

~k+I 

( 4>i) ~ - er~~ tc.o (\'ii\ J (1; -'$ )i. + (~-a.)a. ) cl~ (25) 

21 



22 

where, a=+ l for the element on the wall at y = l 

a= - l for the element . on the wall at y - - l 

zk = lower z coordinate of the kth element 

and zk+l = upper z coordinate of the kth element. 

The element k is divided into subelements of lengthd.l. The 

argument of the modified Bessel function in equation (25) is q times 

the distance from each subelement to any field point. The determination 

of the distance is shown in figure (5). The integrated effect of the 

subelements times the coefficient G~ gives the interference due to the 

element k. The value of~ has to be determined for each wall element. 
IC. 

h 
Wall Element at z = ±. b 

Similarly, for a general wall element k, on the wall z = ±_ ~ 

between yk and Yk+l' the contribution to the interference potential is, 

'61t~, 

( ~ i ) 1<. ::. G"._ ~ Ko ( \ '1, \ j ( 1; -e. )2. + ( 'il- ~ )2· ) d S ( 2 6) 

""' where, e =~for the wall element at z = h/b and e =-~ for the wall 
h element at z =-b. 

Total Interference Potential 

Equation (25) and equation (26) are evaluated in Appendix A. 

The value of the interference potential obtained for an element k on 

the wally=+ l is, 



23 

I .., 

(i -~) 

llt.+I 

d.~ 

l (Q.-'t) 

·ilt.. 

l 
~ 

l >'it 
a. 
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where, a=+ 1 for the wall element at Y= + 1 

a= - 1 for the wall element at y = 1. 
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The interference potential obtained for an element k on the wall 

at z = + h/b is, 

[c 4>, )"" \ ~:1:i_ ,_,..1< Gr_ tq,1 (~ -e ), I'll\ l 't -~~ .. ,), 1q,1 ( ~ -~ ~ )} (28 ) 

b 

where, e = + h/b for the wall element at z = h/b 

e = - h/b for the wall element at z - - h/b 

The function G1 (E-, u, 1) is given by equation U\-23) in 

Appendix A. The interference potential for any wall element can be 

obtained by substituting the proper value of <J for that wall element 

in equation (25) or equation (26). The value of er for the wall element 

is obtained by satisfying the boundary conditions for that element. 

These boundary conditions are given in Chapter 5. The summation of 

the interference potential due to each solid and slotted element on 

the wall at y = ± 1 and z = ± h/b will give us the total interference 

potential. With the interference potential known, we can determine 

the upwash and the streamline curvature. 

Determination of Upwash 

The upwash can be obtained in the transformed plane by 

differentiating the interference potential with respect to the com­

ponent z. The equation is given by, 

w. 
t. (29) 



25 

The upwash in the physical plane is obtained by taking the 

reverse transform. Hence, the upwash in the physical plane is 
-+ (0 - -i.,, :x:. 

-'- ( c) <t>, w. = - e. d.'I, 
L J2.1t oc (30) -co 

In equation (30) the term ~di. is the sum of ~(d>,).,.for all the elements 
"b~ oc-

h on the wally=±. land z = ±. b" Fig. 6 shows the distribution of 

elements on the tunnel boundary. The number of elements on the top 

half of the left wall is K1.There are K2-K1 elements on the right half 

of the top wall. The number of elements on the other sections of the 

wall are also shown in the figure 6. The word 'section' is used here 

as half of the wall on any side of the tunnel. In Appendix B the total 

upwash is obtained by determining the contribution of each section of 

the wall. 

0 q> . 
-L oc 

The equation for upwas·h can be written as, 

I( 

~ Ci._ F,_ G,, ( 'a +I)' l'l,1 (~-.~I<+•). l'!JI ( ~ ·1: 1<3 
~::.f -t <r "- F,_ t'I, I ('\+I) , 1'1, I ( .Z + 1' 1<), l'!JI (H z,1<+~ 

~: I 

+ t. er.._ F.._ ['1,1 ('4·1), l'bl (i! .·i!><+•)• l'lil (f.·f."i] 
I<.:\ -t. rs-"- F,_ ~'l, I ( 1-1)' l'bl (Hi!._)' l'l,I (i! + i!.I<+~ 

I(.:\ 

+ ~ II"._ F, §1 (i! • t,_/b), l'l,\ .( 'a +'t.), l'l,\ ( '4+'tl<+~ 

+ ~:._ f'; ~'!,\ (i! • "-fb) • l'bl ('t·'a,. .. ), i'l,I ('f'!J 
f(.: IC,-\-\ 
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lea, 

-L er"' t=,cq,, (~+"-tb),IC?J\ (~+~ic)dtl Ca+1tc.+~ 
\C.: K,+l 

\u 
-~ er\< F,~t\ (e +t/b) ,l'f.,\ (~-~ic. ... ,),\'tJl(1·~"'21 . (31) 

K~tc.,+1 

In equation (31) the terms are due to the contribution from 

the section top half of left wall, bottom half of left wall, top half of 

right wall, bottom half of right wall, left half of top wall, right half 

of top wall, left half of bottom wall and the right half of' bottom wall 

respectively. Equation (31) is a function of q, y and z and can be 

written as , 

1', ( 'u , 't , ~ ) . ( 32) 

' If the influence coefficient, <r , has a real part, er and an 

imaginary part CS"", then P1 (q, y, z) will also have a real and an 

imaginary part. The real part is, 

The imaginary part is, 

" l "f>, C.ci,, 't • c) = ["P, ( q,, 'a, c )J " 
er: CS" 

Therefore, the upwash is, 

Equation (35) can also be written as, 
+ciO 

Wi. = ~ i[f(<9t,'a,~)Co!>ci,-x. -i.'r: t9',~,i)S~9,:t..J 
-ti> 

(33) 

(34) 
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The upwash, Wi, is real. Hence, .Q. ~t 
~z,. 
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must be even in q for 

the real part and odd in q for the imaginary part. Equation (36) can now 

be written as, 

d> 

W, = kn { ['l''. ('I,, 'a-, i!.) Ccs'I,"- - ~ t'I, •'t, i!.) Sin 'l, x} d'l., . ( J7) 

0 

Upwash is obtained from equation (37), after determining the 

real and imaginary parts of the function P1 (q, y, z). 

Determination of Streamline Curvature 

If W
1
. is the upwash, ~ Wi. gives us the streamline curvature. 

'b:Z:. 

Hence, the streamline curvature is obtained from the interference po-

tential by the equation , 
"r tJ> - . 9, :x. 

~ _}_g>~ 
-'-

ow. 0 e. cl.CV - ~ - '1.x. ol . 
"bx -(I:) 

(38) 

Differentiating the right hand side we get, 
+d> 

-i.t'X. 
~ Wi, ) (.-LC\,) E.,..4,L d.<t, e 
0~ ~~ 

-rP 

(39) 

Equation (39) can be written as 
d) 

:: :t J (-i.1,)[-r:c,,1.i)+ i. '?:'c'lJ.~,i:)jlCos\x.-~s"''ti~ci-t.(4o) 
0 

Since, we must obtain a real term for the streamline curvature, equation 

( 40) becomes, 
d) 

- ~ ~(9, ~•• Co! <t, x - ~ 'P: S"' ~ 'X..) d9J . ( 41 ) 
0 

The above equation is used to determine the streamline curva­

ture once the real and the imaginary parts of the function P1 (q, y, z) 

are known. 
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CHAPTER V 

THE INFLUENCE COEFFICIENTS 

The influence coefficient, u, of an element is obtained by sat­

isfying the boundary condition of that element. The boundary condition 

is obtained, depending on whether the element is slotted or solid. The 

influence coefficient of the element depends upon the location of the 

element on the boundary. Hence a different value of o is obtained for 

each wall element. 

Bo~ndary Condition For Slotted Wall 

The normal velocity to the wall is proportional to the pres­

sure drop through the slot. This leads to the boundary condition for 

a slotted wall element. The boundary condition is given by, 

[}"' + ~ ;~ ~. + q,.,J = 0 

where, n = Normal coordinate to the wall±. y or±. z 

R = Porosity parameter 

Rearranging and fourier transforming equation (42), 

- ~ "c ..._ 
;:;- - 't'"' 
... C)I'\ 

Equation (43) is a general equation for any slotted element on the 

boundary of the tunnel. 

Wall Element on y = 1, D<z<h/b 

(42) 

(43) 

Figure 7 shows the portion of the wall which is represented 

by Y = 1, 0 <. z < h/b. If the slotted wall element is located on this 
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wall, the equation for a representative nth wall element is, 

-L9t""1~(-n,9,) ;- \ -:'t (W~Crn,9,,">)= {.9,[M,,a.+(c.,+c1 )&'t,,) 

+iMii.] - { L M.:a.R.. + G bt'\,I) + i. M2.J • (44) 

The value of ct>l was obtained from Appendix A and of 4\.,/rom Appendix C . 

Since,~~ i.Jl is represented by w1 from the notations used in Appendix D, 

equation (44) can be written as, 

- t.9_, W~('Tt,'t,) + t ~,(--n,C\,) = L9,(ti1,R+(c.,+c2.)ot~) 

-+ i. M,L) - t (t-\~R ~ ~ S<.<t,) + i M2.i.J • (45) 

Expressing the complex influence coefficient as, 
I I\ 

tr~ = er~ + er"- (46) 

and letting the primes and the double primes on the functions w1 and w3 

represent their real and imaginary parts respectively, the real part of 

equation (45) is, 

\I Q. I 

'ti w~ (.'Tl,C\,) + ;_ loJ, (rn,<u) = -cit M,i. - t M.a.R.- t ~&civ)(47) 

and the imaginary part of equation (45) is, 
I ~ II 

-9, wl '""•91) + 'i l-J, ("',CJ/)= 9, M,R + 1 (c.,+·c.2.) Sect,) 

:-t_ M.,., (48) 
p. •lo 

Wall Element on z = h/b, 0< y<.. 1 

Figure (8) shows the portion of the wall represented by 

z = h/b, 0 < y < 1. Equation (43) is evaluated for a representative n
th 

wall element on this wall. Substituting the values of 4>., 1) 'ci>. , ~-~ °l)"'°\ " "f' . ' ' 

and ! ¢ in equation (43) we get, 
01'\ l'Y'\ 

- 1.1, ~l.t (."n.,C\,) + e, W~(-n,9,) = i.9.t L '-"ut. ~ L M ,l 
R (49) 

+ cc,+c.,_)Sci,~ - t[M:!IP. + ""at i. + ~&~J. 
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Let primes and double primes represent the real and imaginary parts of 

functions w4 and w2. Separating the real and the imaginary parts of the 

equation (49); 

Real part: 

_Q. M. - ~ -
V 11. R q ~R 

-!_ V ~('t,) 
R. 

(50) 

Imaginary part: 

( 51 ) 

Boundary Condition for Solid Wall 

There is no flow across a solid wall element, hence the boundary 

condition is given by, 

~ (<1>• + ct>"') = 0 . "'bn. ~ (52) 

Fourier transforming equation (52), 

(53) 

Equation (53) is a general equation for any solid element on the tunnel 

boundary. 

Wall Element on y = 1, 0< '!- <. h/b 

Fugure (6) shows the position of the wall on which the element 

is located. In equation (53), the value of q:>. is substituted from Appen-
~ 

dix A and of c\> from Appendix C. For the nth wall element equation (53) 
"' 

reduces to, 

(54) 



33 

Using the notations from Appendix D, equation (54) can be written as, 

= - M - q S (Q. ) - i.. M · 2. ll,. V .2.l • (55) 

The real and the imaginary parts of w1(n,q) are substituted in equation 

(55). The real part is denoted by a prime and the double prime de­

notes the imaginary part. Equation (55) is then separated into the real 

and the imaginary parts. The real part of equation(55) is, 

' - 'i .Sc~) w, ( 'n , 9,) = - M :>.R (56) 

and the imaginary part is given by, 

II w, ('Tl,'t,) : - Mit (57) 

Wall Element on z = h/b, 0 ~ y..:::. 1 

Figure (7) shows the position of the wall on which the element 

is located. Substituting the values of cpl andcp~,equation (53) for this 

element can be written as, 

Separating the real and imaginary parts of equation (58) we get, 

Real part: 

' W,,._("n,ct,) =--MaR. - ~ &c<v) 

Imaginary part: 

:: -M• 'al 

(59) 

(60) 

To find the influence coefficient we have to satisfy the bound­

ary condition equations (47)., (48), (50), (51), (56), (57), (59) and 

(60). Appendix D defines the terms w1, w2, w3, w4, M1, M3, 1, (c, + C~) 

and '\) . 
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System of Equations 

A set of equations is developed for all the wall elements. Each 

equation has a real and an imaginary part. Thus the total number of 

equations is twice the number of the wall elements. These equations are 

described below. 

Slotted Wall Elements at y = l 

Real Part of the Equation 

The real part of the boundary condition equation for the $lotted 

wall elements located at y = l is given by equation (47). Equation (47) 

can be written as a matrix equation for all the (K1 - N1) slotted ele­

ments on the wally= l by using Appendix D. Equations (D-4), (D-17), 

(D-25), (D-31) and equation (D-48) are substituted in equation (47). The 

matrix equation thus obtained is given by, 

1, t c. \ \. ~" i + ~ 1 , \ 'i s Qot" t ~' ! = - u t MIL, ~ 1 

- !_ 5 M ~ - ~ S 'i?. Scci,) (61) 
R l :>..R •'a~ R l J 

where, 

(62) 

and 

The subscript n 

t M ~R. 'alt\ : [ M1aj 'a:,_ 
~ = A" 

represents the index of the slotted wall elements on the 

(63) 

wally= 1. Equation (61) represents (K1 - N1) equations with 2K2 un­

knowns for N1 solid elements on the wall at y = 1. 
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Imaginary Part of the Equation 

The imaginary part of the boundary equation for the slotted wall 

elements at y = l is given by equation (48). By substituting equations 

(D-5), (D-16), (D-28) and (D-34), we can write equation (48) in matrix 

form. This matrix equation is, 

-ci,lc:\la-'~ + t lTL-,sQctlcr"j = 71 lM,a.,1-\ 

where, 
_ ~ { Ml.~, 't \ t- 'lt l ~ j b c 91 ) 

(64) 

(65) 

and 

l M 2.i., 't ) = [M.2J 'a• l ( 66) 
~=~" Equation (64) represents (K1 - N1) equations with 2~ unknowns. 

Slotted Wall Elements at z = h/b 

Real Part of the Equation 

The real part of the boundary condition equation for a slotted 

wall element at z = ~ is given by equation (50). By using equations 

(D-9 ), (D-2~), (D-25) (D-37) and (D-43) we write equation (50) in mat­

rix form for all the slotted elements on the wall z = ~- This equation is, 

(67) 

where, 

[M,J (68) 



and, 

(69) 

Imaginary Part of the Equation 

The imaginary part of the boundary condition equation for slot­

ted elements on the wall z = h/b is given by equation (51). By using 

equations (D-21), (D-10), (D-28), (D-43) and (D-40) we write equation 

(51) into a matrix form. This matrix equation is given by, 

-t 1. M !i. , !; l t- '1, t ~ ~ 6 C 1, ) ( 7 o) 

where, 

and 

~ = l/b 
'!- ~ ~n. 

l M~·1.,'f;\ = [ M!J ~: "-It, 

'a :. ~" 
Solid Elements at y = 1 

Real Part of the Equation 

(71) 

(72) 

The real part of the boundary condition equation for a solid 

element on the wally= 1 is given by equation (56). Using equations 

(D-4 ), (D-31) and (D-48) we can express equation (56) by the matrix 

equation, 

36 
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Imaginary Part of the Equation 

The imaginary part of the boundary condition equation for a solid 

wall element is given by equation (57). By using equations (D-5) and 

(D-34) we can express equation (57) by the matrix equation, 

• (74) 

Solid Elements at z = ~ 

Real Part of the Equation 

The real part of the boundary condition equation for a solid 

wall element at z = ~ is given by equation (59). By using equations 

(D-9 ), (D-37) and (D-43) we can express equation (59) in matrix form 

for all the solid elements on the wall z = ~. This matrix equation is, 

where, 

Imaginary Part of the Equation 

[ M ~RJ f. = "-lb 

'a:~" 
(76) 

The imaginary part of the boundary condition equation for a solid 

wall element at z =~is given by equation (60). By substituting equat­

ions (D-10) and (D-40)in equation (60) a matrix equation is obtained for 

all the solid elements at z = ~. This equation is given by, 

(77) 

Hence, a set of 2K2 equations is obtained for all the slotted 
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and the solid elements with 2K2 unknowns. The unknowns are the real and 

the imaginary part of the influence coefficients. These equations can 

be written as one matrix equation in the form, 

l ~ 1 la-"' ! = { M ! + l B j E; (.'ii) • {78) 

The left hand side of the equation (78) is, 

' 
l T \ 'I Sol.\ 'l> 

0 ~ 
I 

Ci"2,, 

l u ! ~ SOL\']) 
0 

I 
I 

I ' 

¼ \ T ! 'I S l.O T 'Ill'-! er~ 
' I 

I 

' 1. {"ti .- ~{c~ I I 

{A~\ er'"! St '( SLo1 G"' "- :I. 

~ t U! !: SLOT ~l'J)! " er, 
" 

¾ tu!~ SLoT 
--~ 

-9, {b~ I 
I 
I .. 

0 l ,J 't SoLll) 
er. 
I~, 
I 

0 \ U\ J: T.OLI~ 
I II 

cs-.:.1.. 
The right side of equation (78) is, 

-lM2.1:t.,v\ $ol.\l> - l ~ \'i S•Lll) 

- l MlR. I I.' k)LI']) -l ')J~! S•Lll> 

-ci,{M · \ -! l"" ' "·•'I 6L~'t R a.l,'I ,aLo'T 
_f. -\.i\ 

It. .., SLo'T 

«t, l 1~1i •. ..,\ ~l.Ol - t llW'l:ai.,..,\ SLOT + \ \'I•\.., SLo'T t><LI) 
_,,lM·' -tlM ~ h. t $\.Ol ,. !f:l,~ $LOT -~ \"i ,: & $U'T 

9, \t11R 1 a!~I.O'T-t \l"\1t,~\ 
SL.OT 

~ l "'i ! SLC)T 

-l M:a.~. 'f i SOL\ 1) 0 

- { t1 a·1.. , ~ \ s.o L 1 :D 0 

The matrix given by equation (78) is solved to obtain the values 

of the influence coefficients. Once the influence coefficients are 
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determined, the interference potential can be obtained by using equation 

(25) and equation (26) . 
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CHAPTER VI 

SUMMARY 

Results 

A method for the calculation of wall interference in a wind­

tunnel has been presented in this thesis. Equation (37) was derived to 

evaluate the upwash. The streamline curvature is determined by equation 

(41). These equations contain unknown values of the influence coeffic­

ients of the wall elements. The influence coefficients are determined 

using equation (78). 

A computer program was used to calculate the lift interference 

and the streamline curvature. The calculations were performed for one 

case only. Figure 9 shows the arrangement of the solid and slotted 

wall elements for the test case. The porosity parameter of the slotted 

wall element was taken as one, and the porosity parameter of the solid 

wall element was taken as zero. The lift was evaluated at an element 

located at the center of the tunnel. The upwash determined at this 

point was 0.1056 and the streamline curvature was 0.1825. These cal­

culations compared favorably with the results of Pejack and Steinle,1 

and Kraft [6]. Various values of the upwash and the streamline curva­

ture can be obtained at different locations on the wing for different 

tunnel size, porosity parameter and wall element sizes. This can 

enable us to compare the data for different variables. These calcula­

tions can be used not only in correcting the data obtained in a wind-

1Publication pending. 
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tunnel test, but also in designing windtunnels with minimum interference. 

Conclusion 

Theories for predicting the i~terference effects in windtunnel 

have been available for more than 25 years. The methods used in most 

of the previous studies for investigating the wall interference used a 

homogeneous wall boundary. The homogeneous wall is an approximation 

with several limitations. Methods based on the homogeneous wall con­

ditions become less exact as the lifting model span becomes larger. 

For large slot spacing als~ the solution obtained using homogeneous wall 

is not very accurate. The method described in this thesis uses an exact, 

non-homogeneous boundary condition. A set of equations was solved to 

calculate the interfering influence of each small segment on the wall. 

Since the effect of each of these segments is different on the total 

interference,a much more accurate result is obtained. The variables, 

such as the location of the solid and the slotted elements and the poros­

ity parameter can be changed and the interference could be obtained by 

this method without any difficulty. The delta function obtained in the 

equations poses no problem. If the model function is divided into x -

dependent and x ~ independent parts, the result obtained due to the delta 

part of the equations is the same as the result due to the x - indepen­

dent part of the model potential. Hence, this method avoids the prob­

lem of splitting the problem into x - dependent and x - independent parts 

to obtain the total interference potential. 
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Recommendations 

The method described in this thesis should be studied further 

to find its accuracy over other methods. The results obtained were 

only for one case in which there were very few slotted and solid 

elements. In such a case, the results obtained are not expected to vary 

much as compared to the results obtained by using homogeneous wall meth­

ods. This method is long and further study should indicate when the 

use of this method becomes important. 

It is also recommended to investigate the wall interference ob­

tained by changing the size and the locations of the solid and the slot­

ted elements. A study of this kind will be useful in modifying the de­

sign of the windtunnel. 





is. 

where 

.. ciO 

= L K "+ '1. <~) I.,._ l 1) Cc$ h 8 
Ji:. -oO 

't Sin e :. R Sil'\ ~ 

For 8 = T'i /2 and _)) = 0 equation (A-5) can be written as, 
<:P 
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(A-5) 

(A-6) 

(A-7) 

K Jb:i t e.:a.. = L \<"'(,01) I,._(~) Cm ~JI . (A-a) 
0 9'.:-cD .2. 

In the above equation x and y were replaced by e> and E:. respectively. 

Since, 

k"-(S) = K_,._ (6) 

'I1L CE:) = I ... ,._ Cf:) 

equation (A-8) can be written as, 
tP IC. 

K0 (Jb~+f:.3.) = ~L_C.-\) K (\&\) I. ..... (c) 
... 2"- ... ... .,.: \ 

+ ~0(161) 'J:.C) (E:) • 

Substituting equation (A-11) in equation (A-4), 
tP K. u. 

I, = - :l L(-\) I1~(~) ~ K2K (\61) d.S 
,,\ ~= \ l&. t 

- :I:a(~) ( K0 (\6\) cl6 
~ -l 

Using power series expansion we can write, 
.2 K-\ t 

Kl.K (16\): 1: L { (-\) {.2K-t:-1)\ 
t=o t ! 

(A-9) 

(A-10) 

(A-11) 

(A-12) 

d> I"> ':I.II- -t2t- [i 
ati.+I """ { ( ~/2..) fn \&l 

+ (-I) L (t~) (.2k.~t )\ ~ 
t :.o . 

.. ½ '¥ (1:+\)-l 'I' ( 4K-+t ;J] 
(A-13) 

where, 
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(A-14) 

'IS' is the Euler's constant equal to 0.5772157. From mathematical tables 

we have, 

Substituting the value of IC&)which is given by 
0 

tJ> &. ~t 
:r C 6 ) = ~ ( l".2.) 

o t~o (t!f 

in equation (A-15) and rearranging terms we get, 

(A-15) 

(A-16) 

o> ( & )2 t d:> b' 2.t 
KJ\cS\) = ~z:. 12- 2. en,~, + L < i.,,_l ('-"ct-t,)+is) 

t:o ( t q t:.o (.t!) 

o ,s, (S ).2t 
- ( 

01.2.) ["' (I) -t- ,r] - ~ {i. "t 
( 0! )2. t:o (t! ~ (A-17) 

Substituting the value of 'l'(l) in equation (A-17) we get, 

dl S )2.t' d> b. ::l.t 

tc.o(,&,) = - L ( '/2. ~ ~ + ~ < v~) ('i'<t+1)+..-) 
t : 

0 
( t ! ):a. .2. t = o ( t l ):a. 

tP )2.t 
~ (&/:A. "" 
"t' :10 ( t ~ ):a. (A-18) 

The values of K2k(\S\) and K
0

( \6\) are substituted in equation (A-12). 

Rearranging the terms, 

,9 & 21<-+::a.t-\-l 
S -2.1<. + it -\- 1 ~ :2 ( Y.:a..) 

( -::-) + L--~---
- (t.\)(.2.1<,+t)\ {!2.K+:2.t+\) 

t:.o • 

c~ '1-(t+I) + -½:. 't-(2.IC.+ -It" +1) 
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+ _\ __ =n 
~K+ ~t +\ dJ 

+ 
\ 

olt + \ 

(A-19) 

The values of b have an upper and lower limit in the above equation. 

Putting the limits, 

u = \ct,\ ( l- l.1<-+,) 

l= lct/1(2-i!I(.) 

in equation (A-19), 

cP .:2. IC.-\ t 
~ IC. {~ (-1) (.:2.~-t-1)1 I

1 
= -- ~t-1) :r. (~) L . 

l'i,I L .2.IC, - (t!)(-2.K+At+I) 
K:\ t-o 

I, LL -.:2. K °" Qt + \ e_ )-.21(. + :>.t + '1 
~1) -(a:, J 
cP [ ( !:!:.)2.ir.+~t: +I e. )2.1(. +.at +IJ G 

+ L 2. ~ -("3:. _ i '+' ct+,) + 
t::o (t!)(.:2.K+t)! (.l.K+.2.t+l) .2. 

·V.2.'V('-l<-+'-t+1)+ 1 J 
otK+~t +\j 



:I. Io (E:) f [ ( '¾. ):tt + I - (t;._ ):tt "J [ '1/ (t +1) + t-,,] 
\<iJ\ t :o ( t ~ i· ( :l.. t "' \ ) 

+ A. ,~, G' 

10 l E:) LJ Co/,. )"-t •, ~ -¥ _ t-k )"t ., en 1i!-] 
t ~o ( t ~ ) ( 2. t + \ ) 

By noting that the value of I (.6)is, 
0 

tS> ( b/2-)it 
I c6) = ~ -

o t =o ( t ~ )a.. 

which can be expanded into, 

+ + - - - -
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(A-20) 

(A-21 ) 

(A-22) 

we obatin 1
0 

(0) = 1 for b = 0. Similarly the value of I2k(0) can be 

obtained as zero. The values of IJ0}and I2k(0) can be substituted in 

equation (A-20) to obtain the value of 11. 

From equation (A-20), we can see that 11 is a function of c, u 

and 1. Hence we can write, 

(A-23) 

Since the values of~, u and 1 are different for each element, the val­

ue of 11 depends upon the location of the element. The expressions for 

11 for different locations of the elements are shown below. 
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Element On the Right Wall 

The va 1 ue of 6 tends to \C\,\ { Zn - ~ } as z tends to zn 

If zk and zk+l are the lower and the upper limits of the element lo­

cated on the right wall and zn is outside the interval zk to zk+l then, 

(A-24} 

In the above equation y tends to a, hence E: tends to zero. 

Element on the Left Wall 

For a wall element on the left wall, z tends to zn and y tends 

to -a. Hence, 

~ = - ;t.n, \'i,\ 

ll = \C\,I ( 2:n - z """') 

t = 1<1,\ <zn - e"') . 
Therefore, 

Element on the Upper Wall 

For the wall element on the upper wall, z tends to h/b and y 

tends to yn . Therefore, 

~ = 

u. = 

= 

\C\, \ l 1 n - Q. ) 

l q,\ ( "°lb - l ~"'') 

\ t\, \ ( ~/ b - i: "-) 

Using the above expressions for E, u and 1 we can write equation (A-23} 

as, 

J:1 = G, (lct,\ (~"-Cl.),l<t,\("-;b-e"_.,),\1,\(';,-!j)(A-26} . 
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Element On the Lower Wall 

For an element on the lower wall z tends to - h/b and y tends 

The value of I for these elements is given by, 
l 

I,=~, (lctJ\(~1\-a.),lC\/\(-~ -2ic:+,),\ct,1(-l-i!"')) {A-27) 
b • 

Expression for 11 when zn is midway between zk and zk+l 

If z u + l n is midway between zk and zk+l, then z is equal to 2 
The expression for 11 is given by, 

\'l,\ (i!-lA.) 

j K J s:a. + '=.a. I - - ~ ' - --c----
l Cj, \ ( l. · l) \tl 

Substituting the value of z we get, 
( l-l-1.) 

d6 

,,, -r J 6:1. :L 

I : ~ - "-o _ -+ E: d 6 
1 

\\\ li,l) \~ \ 

(A-28) 

(A-29) 

If we write (u - l) equal to AZ., then equation 
let, I 6a 

(A-29) can be written 

as, ( a.. . Ko j 6.2. + E..a. I· _ ) ...... _ __,,_ ____ d6 
' - Iii,\ B \'f, \ 

i (A-30) 

By changing the limits and reversing the sign of the upper limit we can 

write the above equation as, s 
\~\ b-c/~ 

I : ~ ~ \(.~ j b& + £.a. 
I O \'f.,\ 

do 
(A-31) 

For a wall element at y equal to a, the value of t is equal to zero. 

Now, putting the limits 

ll = \9,\ ~ 
2-

t = 0 

E = o 

in equation (A-23), we get 

I, = -.2.~, (o, \1,\ 6 f , o) . 
(A-32) 



Evaluation of Equation (A-2) 

The solution of equation (A-2) is analogous to the solution of 

equation (A-1). The expression for 12 is given by, 
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~k-,., 

~ Ko (\91\ J (a- c. ')1. + C 1-~ )>- ) d ~ = I.~ · (A-33) 
't1e. 

The value of 12 can be obtained for any wall element by replacing z with 

y, a withe and y with z. The solutions obtained after these replace­

ments are given below. 

When yn is midway between the interval yk to Yk+l the solution 

is analogous to equation (A-32). It is given by, 

I.2. = - olG- 1 (o, l'v\ ( LL _ t.t. ) o) 
T 4 k+l ,-"- ' • 

(A-34) 

If yn is outside the interval yk to Yk+l, then the value of r2 
depends upon the location of the element. For an element located on the 

upper wall, the expression is given by, 

If the element is located on the bottom wall the value of 12 is 

given by, 

If the element is on the right wall, y tends to l and the ex­

pression for 12 is given by, 

For the element on the left wally tends to -1 and 12 is obtained from 

the express ion, 

I.a.= G, (1~\ (i ... -e), IC\,\ (-t-'t ), 1~1 (-,-4- )) (A-38) "'+I a "- • 



Total Interference Potential 

The general expression for the interference potential expressed 

as the sum of the contributions from each element is giwen by, 
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ct,i. = ~ J (;"" \<. 0 (CV /a.' ) d ~ • (A-39) 
l!NT1A6"" t>ol>Y 

I 

In the above equation r is the distance from each element to the point 

in space where the value of ¢>. is desired. The equation is summed over 
L 

the entire body because the total interference due to any element, is 

the sum of the interference of each element evaluated at this element. 

The total interference potential of an element, for the two different 

cases, is given below. 

Element Located At y = 1, 0 < z < h/b 

Figure 10 shows the location of this element. 

I £LE ME.NT 

I 
-----+----

1 

Figure 10. Element located at y = 1 and 0 < z < h/b 

For this element n, equation (A-39) can be expanded into, 

K, 

4t =-L er._ G-, (:t\'lll, I'll\ an - i! .. +,), \<bl ci>~ .. ")) 
K:' 



I<, -L cr~ G-, c~\91\, \CV\ (ii"\+ l-~~,', \C\JI c'in + c")) 
IC.:\ 

+ r:_ G"._&, (o, \'!JI (in -r><••), l'!JI tin -r._)) 

": 'l\+l -n-, 
+ L (fl<. G, (o, l'u\ (in - ~1C+1J' IC\,\ (in-J?\<. J) 

K= \ 

-. ·- :,. crT\. G1 ( o, 4L ( ~~+, - ~ ic.), o) 

~ -L cr~G, (o, \'t,\ (in-+ ZK+,'), \q,\ (in+~~) J 
"'=' 
~~ 

+ L G""-G, (\ti (an-~lb), \ci,\ (\-'tk.,.,~, \'IJl(•-'t~)) 

IC.=~, .... , 
~ 

+ L erk~, (1cv1 tin- t/b)., \<tJ\( \'\"~~), I'll\ (\+~IC.-\'\)) 

IC;: IC: 1 "" \ 

~.a. -L ..... &, (1q,1 (i. ~ ... ,b ):, \'\,\ (,-'tH,) '\'!,\ (,-~ • .)) 

l<-=lc:,+\ 

K.2. -L er~ G-, ( lib\ (in+ "-lb), ltl (\ + 't1<. '), \Cb\ (\+'aK+,)) . 
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(A-40) 

In the above equation the order of the summation is left wall top half, 

left wall bottom half, right wall top half, element n, right wall bottom 

half, top wall right half, top wall left half, bottom wall right half 

and bottom wall left half. To simplify equation (A-40) we can write the 

total interference potential due to element n as, 

(A-41) 



The function w3(n,q) has a real and an imaginary part since the 

influence coefficient, <I"~, in equation (A-40) is a complex function. 

Let prime and double prime represent the real and imaginary part of 

the interference potential. Then, the real part is, 

w~ t"",t) = [;1 c~.,,~ , 
"t er~ = \r ic. 

(A-42) 

and the imaginary part is, 

w~· '"" , Cf!) = ~~c'\"\,et,-;-7 " L ~ Al:. G""-= r_,_ • (A-43) 
• I \I In the above equations ~k and G"~ are the real and the imaginary parts 

of the influence coefficient. 

Element Located At z = h/b, 0 < y <. 1 
E\.EMENT 

-, -. _----'------•~, 
+ 

Figure 11. Element located at z = h/b, 0 <. y <. 1 

For this element n, equation (A-39) can be expanded into, 

~, 
q,i. = L er._&, ( l'I,\ ( 'l-n +I) , l'bl ( 1-,b - Z ... ,), 19,\ ( .. ,b-a,)) 

l{:1 
t -L .,.._ "· (1'1, I <i ... +I)> l'I,\ ( tyb + i! 1<+1)• l't,\ ( ~ +i!._ )) 

I(.=' 
K., 

+ > cr ._ G, (I'!,\ ( 'tn -1) • l'I,\ ( e._/b-i! K+I) • \'1,1 ( "'b -i!._)) 
l(.:q 

- ""i:._ cr ._ Ei, ( 1'iil ( i.-, ), 1'1il ("-lb+ i!,:.,,) • l'l,I ( \ + z._~ 
I<: I 

+ L. G"K G, ( o, \<t,\ (;" - 't~-..\), \~l (~n- 't\C)) 
I'=~-+\ 
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'Y\~\ 

+ L cric. ~,(o, \CV\ (~n- 1"-"''), \tl (~n-'t"->J 
!(..:):.,~\ 

; unG\ (o, 'l' ('t1c:+,-'t~),o) 

"-a. 
+ Lcr._G,( o, I'!,\ (in+'t._.,.,), l'l,l('/r.,-1-'t,,)) 

I<: IC 1+\ 

l<.4 -L er .. e,' ( ll \'I, I ~ , l'l,\ ( '1;,, - 't 1<+1)' l'bl ('I-.,-'!._)) 
K:K,-t\ 

Ka. 

- ~ G",._~,c-~l'l,li • I'!,\ ('itn.-1- 'tk+l),1'!,l(it.,T't.,.)) • 

\(: ~,'\-\ 

(A-44) 

In the above equation the order of the summation is left wall 

top half, left wall bottom half, right wall top half, right wall bottom 

half, top wall right half, element n, top wall left half, bottom wall 

right half, and bottom wall left half. The right hand side of equation 

(A-44) can be given by, 

(A-45) 

For a complex influence coefficient the real and the imaginary 

parts of w4(n,q} are, 

(A-46) 

(A-47) 

55 



APPENDIX B 

For any wall element on the boundary, the expression 

;"- s k~ ( \t\ h ) ct { (B-1 ) 

is evaluated in this appendix. In the above equation n is the normal 

coordinate y or z. Then, the above integral is expressed for the en­

tire boundary, evaluated at any nth wall element on z = h/b, y~ 1 (top 
th wall, right half) and for any n wall element on y = 1, z~ h/b (right 

.\'la 11 , top ha 1 f). 

General Expression for 13 

1
3 

is given by equation (B-1) when the normal coordinate is 
I 

y and the distance, Ji, is measured from an element on the right or 

the left wall to any point in the windtunnel. The expression for 13 

is, 

(B-2) 

where, a= 1 for elements on the right wall and a= -1 for elements on 

the left wall. 

(B-4) 
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Substituting, 

in equation (B-4) 

where, 

Noting that, 

~ = \q,\ (2- ~) 

E- =- \'ll \ t d - a. ) 

db= -\ct,\cl~ 

l = \q, \ ( e - i w:. ") 

- b K, (J 62.-t- ~a. ) 

J 62.+ ~2.. 

and integrating equation (B-6) by parts, 
u. 

-::r.. ~ = - t Ko ( J & 2. 4- l: -a. J j l 
LL -~s ) d. S 

• 
l 

(B-5) 

(B-7) 

(B-8) 

Substituting the value of 1(0 Jsa.+l:• from equation (A-33) in appen­

dix (A~ in equation (B-7), and evaluating the integral, 
d> 

- E- 1 K. ( J ta.+ E:-2.. ) d.6 ~c.-n' k. (I~\){ :i~t:(6) clS 
~ - -.2 ~ ~t- ~ 

a. - s-6 t-~, 
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Substituting, 

.h\ (~t-+.h)l (B-10) . . 

( B- 11 ) 

in equation (B-9) and integrating the right hand side, 
c/) tP ~ .:tt + .:lfl.-\ 

) o.6 :: - E: L (.-\) K.2. (\E\) L_-:( __ :;:;-:;_i.) ___ _ 
-t:=I t "-.:.c. .h~ (.~t-+h.)!(~t-t.2)t-1) 

<P ( b/.2.. )l.\.-, 
- ~I<(\€-\)~---

2- o 7L~o (?t.n(.2.1i,.-,) • (B-12) 

Inserting equation (B-12) into equation (B-8) and putting the upper 

and the lower limit in the equation, 

( B-13) 

From equation (B-13), 13 can be shown to be a function c , u 

and l . Hence, 

I = F (E,u., e.) 
~ \ 

(B-14) 

where, the function F1 is defined by equation (B-13) and the values 

of E: , u and t are given by, 

t:::: \<v\ (~-a.) 

U. - \q,\ ( ~-elr;H) 

t - \'lJI (~ -c~ ') ( B-15) 
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Equations (B-13) and (B-14) give the general expression for 13. 

Evaluation of 13 for y = a and z = zn 

zn Midway Between Zk and Zk+l on y = a 

The value of 13 for an element at y = a can be obtained by 

substituting equation (B-5) in equation (B-4), if zn lies between the 

limits Zk and Zk+l of the element . When Zk< zn<.zk+l' we assume that 

zn lies in the middle of the element. The equation for 13 is, 

u. J f::, K I ( J E;.2. + E:.2.. 

l J Sl. + E:a. 

) d.h 
( B-16) 

The 1 i mits u and 1 are defined by equation ( 8-15). The term 1\0 sa.-\-E:a.) 

in equation (B-16) can be expanded into [Ref. ( 2 )], .---- ~'1.+\ 

a. 2. - ~ l ;- k J65.+ E-a. i ~ l [J6)..-t- ~·=i 
K, ( J 6 -t- E: ) - l .2. . ) (;-

0 
l h ~ )( 1l + 1 ) ~ .l. j 

cf:> . :i.hl A. 

~ l [Js2.+ E-2- } [~ ..L + 2-- J L l... Ls ~t1t.+l) 
k:o (..Pq) ( h+l)'. ~:q • {B-17) 

(B-18) 

Substituting equation (B-18) in equation (B-16), 

u. 

J 
l 

db . 
( 8-1 9) 
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All the other terms of equation (B-18) can be neglected as t: tends to 

zero. Integrating equation (B-19), 

(B-20) 

The above equation gives the value of 13 for an element on the 

side walls. The value of 13 for the left and the right wall are shown 

below. 

13 For the Left Wall 

For the left wall a is equal to -1. In this case when y tends 

to -a, the value of~ which is given by equation (B-5) tends to a+. 

Putting these limits in equation (B-20), 

( B-21 ) 

Evaluating the right hand side of equation (B-21), 

I'!,= TT (B-22) 

If zn is not between Zk and Zk + 1; 

I.:!, = 0 • (B-23) 
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13 For the Right Wall 

The value of a is equal to l for the right wall. Hence the 

value of e- tends to 0- as y tends to a. Putting these limits in 

equation (B-20), 

Evaluating the right hand side of equation (B-24), 

(B-25) 

If zn is not between Zk and Zk+l, 

:r.~ = 0 • (B-26) 

z;n Midway Between Zk and Zk+l on y = -a 

-The value of 13 for y = a and -i = z , where z is midway be-
n n 

tween Zk and Zk+l at the nth wall element on y = -a, can be obtained 

from equation (B-14) . From equation (B-15) the value of~ for the 

element at y = -a is, 

E: :: -2.q_\<t,\ . (B-27) 

Using equation (B-27) and equation (B-14), the value of 13 is, 

I'!»= ~ [-.2.Q.\'t,l., l'l,\ (~n.-cK-+1'),l<fJ\(l:"-i:"'~ .(B-28) 
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General Expression For 14 

Equation (8-1) is denoted by 14 when the normal coordinate is 

z and~ is the distance between the side walls and any point in the 

tunnel. Therefore, 

Differentiating equation (8-29), 

s 
i: IC. 

Substituting 

K, ( I i I j (i~. - ~ )a. + ( '! -a. )2. 

Jct:. -s. )2- + { 'a -o.. )a. 

£=- \'b\(c-~) 

(:- = \ct,\ t1-o..) 

o.b = -\'bl d £ 

in equation (8-30) the value of 14 can be written as, 

Using ref (2), we note that, 

d. [ ----)~ -- -_b--;::K==, :;:::( J==ti'==-+===E a.=-- ) 
__.<'.' K0 (j6 2

+e, 2 

Q,0 J 62 + E:.2.. 

Hence the integral of equation (8-32) is given by, 

(8-29) 

(8-30) 

( 8- 31 ) 

( 8-32) 

• (8-33) 
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(B-34) 

Putting the limits in equation (B-34), 

(B-35) 

From equation (B-35) I4 is a function of E:-, u and 1. Therefore we can 

express I4 as a function of these three variables. That is, 

I 4 = F,_ (E:, u, t) . (B-36) 

The function F2 is defined by equation (B-35) and the arguments ~, u 

and 1 are, 

E: = l't,\ ( 'i - o..) 

u. = l'vl Cc- !k+\) 

t \'v \ ( ~ - ! "') . 
(B-37) 

Evaluation of I4 For z = e and y = Yn 

For z = e and y = yn, the value of I4 can be obtained by using 

equation (B-36) and (B-37). The expression e is h/b for the top wall 

and e is -h/b for the bottom wall. If y is the center of the nth 
n 

wall element on z = e, then I4 is given by, 

I.~ = ~ E'lll ('a',,_ -Cl.), l'l,I ( e. - i! I<.,), l'l,I ( e-i!~~ (B-38) 

General Expression For I5 

I 

If the normal coordinate is z and r is the distance from the 



top or the bottom wall to any point in the windtunnel, then equation 

( B-1 ) is denoted by r5 . Therefore, 
'h . ..-, 

15 =: oo: ~ Ko (\t\Jci. ... e)a.+ ('1-i).2.)d~. 
'tK 

( B-39) 

Comparing equation (B-39) with equation (B-2), we see that if y 
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and z are interchanged and if e and a are interchanged, the result given 

by equation (B-13) can be used. Therefore, 

I5' = ~~Cfll(l-e),\~1(1-'tic-\-,),1<i,\('a-'t~~ .(B-40) 

Evaluation of r5 For z = e Andy= yn 

yn At The Center of nth Wall Element On The Wall z = e 

Using the result in equation (B-22) and equation (B-25) the value 

of r5 for z = e and y = Yn is, 

( B-41 ) 

when yk < Yn < Yk+l. Here, yk and Yk+l are the limits of the element for 

which the value of r5 is being calculated. If yn does not lie between 

yk and Yk+l, then from equation (B-23) and equation (B-26) the value of 

15 is given by, 

(B-42) 

yn At The Center of nth Wall Element On The Wall z = -e 

The value of r5 for z = e and y = yn can be obtained by using the 

result given by equation (B-28). Here, yn is the center of the nth wall 

element on the wall z = -e. Replacing z and a in equation (B-28) with 

y and e respectively, we get, 
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I.5 = F, ~~e\~1, \~I{~"- 1~-tl~,ICf,\('tn-1~~-(B-43) 

General Expression For 16 

I 

If the normal coordinate is y and the distance, r , is measured 

from the top or the bottom wall, then equation (B-1) is denoted by 16. 

Therefore, 't "'"'' 

:r., = "-4) Ko (1'111} (1.-e)' + t--a-"1)• )cl~ . 

't"' 
(B-44) 

Comparing equation (B-44) with equation (B-29), we see that if 

y and z are interchanged and e and a are interchanged, the result given 

by equation (B-36) can be used as the solution of equation (B-44). That 

is, 

Evaluation of 16 For y = a and z = zn 

Zn At The Center of nth Wa 11 Element 01 The Wa 11 y = a 

The value of 16 for y = a and z = zn , where zn is the center 

of the nth element on the wally= a, is obtained by putting the limits 

in equation (B-45). Therefore, 

~ I, = ~ ~\ (i"-e), \~\ (~-'a ), 1ci,\ (a.-4. -;i (B-46) 
1~Q. L~ k+\ Cl~ • 

e-.in 

Expression For the Entire Boundary 

Equation (B-1) multiplied by the influence coefficient of the 

elements is , 



~ f G ~0 ( \t,l /a.' ) d £ 
on) "-

Equation (B-47) is expressed below for the entire wall boundary. 

expression depends upon the location of the element. 

Wall Element At y = l, O<z< h/b 
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( 8-47) 

The 

Expressing equation (B-47) for the entire boundary, evaluated 
th at then element on the wall y = l, O< z<h/b, 

L 6'" I(. .f'a- ~ K0 ( I 't, \ A' ) d ~ . 
Entire Boundary 

Expanding equation (8-48), 
K 

~ .-" P, ~\'l,\ ' 

~=I 

\C, r: -L er._ i=, L: l'l,I , l'tr\ 

K=I 

+ C>n ( TI" ) 

+ t u._ •d~\ ( in - ~), l'l,l (1-1.,.,), l'l,I (•--a-._~ 
~= ", .. , 

-~ er._ f'i ~'I,\ (in+ "-lb), I'll\ ('-'a-1<+,), I'll\ (\-'a-.J] 

\I:.= ",+I 

(B-48) 



IC.:a, -L <>._ F,_~,,, (i., ~ ... ,b) , 1'1,\ (I+ 't .. ), 

K: ~,~\ 
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(B-49) 

The terms in the above equation are due to the left wall top 

half, left wall bottom half, right wall, top wall right half, top wall 

left half, bottom wall right half and the bottom wall left half. Equation 

(B-49) is a function of q and the location of the element, n. Therefore 

the above equation can be expressed as, 
2 er¥- ~'t ~ ~, ( \'tJ \ >,.' ) d ~ = W, (-n ,<\/ ) • 

Entire Boundary (B-50) 

For a complex i.nfluence coefficient we get a real and an imagin­

ary value of w1(n,q). The real value is, 

( B-51) 

and the imaginary value is, 

" w, ('Y\,9.,) - (B-52) 

The primes and the double primes indicate the real and the imaginary 

values respectively. 

Wall Element At z = h/b, 0 C:::: y<.. 1 

Expressing equation (B-47) for the entire boundary, evaluated 

at the nth element on the wall z = h/b, 0 < y < 1, 

(B-53) 



Expanding equation (B-53), 
I(. I L ..... F.._~'l, \ ( 't" +I) > \'l, \ ( .. ,b - i!, k+1) > \'!, \ ( "'b -i!.._~ 

K = \ 

-t er._ F.._ ~\ ( 'tn +I) , 1'11\ ( 1'/b + e. ._, ,) , l'b I ( l/b + i!.._ ~ 
K= I 

+ un (TI) 

ic:. 

-t f .-._ F,_ ~'lJI ( '!-., -I) ' \'vi ( f,/b - i!.1<.,_,') • 19,\ ( lyb - i!,,_2] 
~ = \ 
K, 

-~ d" I<. F~'l, I ( ft., -1) , l'l, \ ( fvb + ;!. ._ .,) , \'fl I ( i.,b + i!. ._ )] 

~=, 
~.2. -I:= .-._ Fi[_~- l'tr I ~ , 1'11\ t 'i,., - '! •+.) , l'l, I ( it., - 't ._ 2] 

k="\+\ 

K.2,. -L <I"._ F, [!:! I'll\ ~ , I'll I ( 'tn + 't K+,") , l'li I (~., + 't .. ~ . 

\<. = 1e,+ I 
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(B-54) 

The terms in the above equation are due to the left wall top 

half, left wall bottom half, top wall, right wall top half, right wall 

bottom half, bottom wall right half and the bottom wall left half. 

Equation (B-54) is a function of q and the location of the element, n. 

Therefore, the above equation is expressed as, 
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L <f._ -.-\ j "'· ( 1'1,I "-') cl i = W.:,_ ('lc, ~) • 

Entire Boundary (B-55) 

For a complex influence coefficient we get a real and an imag­

inary value of w2(n,q). The real value is, 

~~ ( 'n. ✓ ~) = ~l. ('l\ }})] - ' 
c:r IC. - C5'"' (B-56) 

w~ ('"'f\., '1/) -=- fw:i.(rr\1qvY _ ,, (B-57) L:' ·~ cr... - c:r IC. • 

The primes and the double primes indicate the real and the imaginary 

values respectively. 



APPENDIX C 

In this appendix the transform of the velocity potential of the 

model, and its y and z derivatives are evaluated. The velocity potential 

of the horse shoe vortex at the origin is given by, 

where Sis the half span. 

If we consider the model as made up of pairs of elements, then 
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for an element pair j of span 6yj which is located at x=!:_ xj, y=yj the model 

potential is given by equation (C-2). The lifting element is shown in Fig. 12. 

In normalized form this model potential can be written as, 

-----~- --- ~ 
-ir 4 6J\ - [ t 

~lT (,f:a.-rl.~) 

+ 1Sa A "6 · c===;:====~~1=~-~----.-
4 n a- I J-::c.,.1. + C. 'a':a. + ca.) ' ( 'A'2.;. c~) + 

J ,o••+ l'j".: •·)' ( '!"·+•·~ i!. X 
where, the above equation was normalized by using, 

and I 

:x. -

'l-'J· - a-
b 

'I-_..,.. . 
t,. @ 6-

( ~mJ~_ 
UGO b 

"i + °'j· -a-
b 

• 

6'dt.= 
6'f · , .,;-c\-

~ 
z - b 

( C-3) 

( C-4) 
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Uao 

----'--;>'( 

'' l. 

T 
t 

b 

Fig. 12. Location of The Lifting :Element 



Taking the transform of (<t>rn)· according to, 
l 

T(S} \ J (A,.'\ ·~,-:ed. 
r.:-;;: ..., "' , . e -x.. 

J2.'TI' 6 
- (I:) 

we obtain, 

t:P . • 

~ 1. et.\ -x. d:x.' 

-rP 

( c-5) 

( C-6) 

Integrating the first two terms on the right side of equation (C-6), 

The model potential, (ct>"').,given by equation (C-3) has an x­
~ 
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dependent part and an x-independent part. By taking the transform of the 

x-dependent part, ( 4>"'2.). ,according to , 
6 

L• Q.~ 

e u d.11 

( C-8) 
-o:, 

dx' 

d.:x:.' ( C-9) 

is an odd function 



I 
of x . By using the relation, 

cl. X. 

equation (C-9} can be written as, 

= 

~ 
1911 ( C-10) 

+ \<, (\~IJ ~"a.-t c:a. ) • (C-11) 

Noting that, 

which can be written as, 

Hence, (¢rn 2) . is given by 
~ 

( cj,m,.) cl - ~ 'I, -:r. cl + i. Su, 'l, ;J (cl>.,._)~ 

Using the above relation, equation (C-7) becomes, 

where, 

c., = 1S~ ~~~ i! 
c:2 j :l. it ( 0 ,5. "T ~:a.) 

C. .l. - ""Ga '°''aa r 
~ l2 '1\ t 'o''2.+~:a.) 

( C- 12} 

( C-13) 

( C-14) 

( C-15) 

( C-16) 

(C-17} 
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Substituting the value of (ct:>"'2.J· from equation (C-11) in equation (C-15) 
d-

we get, 

(4>"') . = (c,t><.'l,) ~c.~&<t>) -
k r~, (\Cf!IJ«-r.2.~~.2.) + K, (\~I j 'a":a. ~ i:~ )7 

[ J '0'°2. -t' ~2. j 'a'':a.;, !~ J 
+ ~~6'a•2.~Ccsq,-x~ ~K1(\<t,\J'ci'a.+z:i...) + K,(1~\J'o''~+c2.2l· 

2.rrJ2.tt \~\ L- J~·2..+a2.. f'a• 4 -+~a. JJ. .(C-18) 

In the above equation, if the real part which is independent of b(\)is 

denoted by MlR and the imaginary part by M1i then equation (C-18) becomes, 

(~"') · = M11~. + (c,~c2.)f>Ct) + i.M,i 
~ • ( C-19) 

Derivatives of the Model Potential 

The derivatives of the transform of the model potential, (c:t>rn) , 

with respect toy and z are given below. The derivatives of the real and 

the imaginary part are taken separately. 

Derivative With Respect Toy 

Real Part 

The derivative of the real part of equation (C-19) is given by, 
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The above equation can be represented by, 

~[Mu~~ (c.,+ci)Sc,i~ = M2.~ -t- q t('f.,) (C-21) 

where, M2R represents the part of the equation (C-21) which is indepen­

dent of 6:ct,). The coefficient of &C\)part of equation (C-21) is repre­

sented by ~ 

Imaginary Part 

The derivative of the imaginary part of equation (C-19) is given 

by, 
o M . -

- IL -"b'c1 

;-

"1• 6'tA z i,eo.sci,xJ 
i-rr J.2,r l<tl 

I \Cf, I "d' Ko ( \'b \ J 'a ' 2. .,. .l:L) 
l < 'a'2..,. ~:L) 

) 

( C-22) 

If the right hand side of the above equation is represented by M2i, 

then, 

( C-23) 

Combining the real and the imaginary part, they derivative of 

the transform of the model potential of an element j is given by, 

(C-24) 

Derivative With Respect to z 

Real Part 

The derivative of the real part of equation (C-19) is given by, 



(C-25) 

If M3R represents the part of the equation (C-25) which is independent 

of 6C\)and the coefficient of the f>Ccr,)part of the equation is, 

~~[M ,R. + cc,+c.2.') &(Ci,~ = M 2>R ~ v6c~) . (C-26) 

Imaginary Part 
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The derivative of the imaginary part of equation ((C-19) is given 

by, 

- °"' A A~ 4 'ti Cos 9, :x.ci 
.l-~ .BF \'f,\ 

Representing the right hand side of the above equation by M3i' 

( C-27) 
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- M . - !L 
(C-28} 

Combining the real and the imaginary part, the z-derivative of the trans­

form of the model potential of an element j is given by, 

(C-29} 
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APPENDIX D 

The terms used in the boundary condition equations are described 

in this appendix in a matrix form. These terms are given below. 

I II ) Matrix Expression for W] (n,g) and W1 (n,g 

The term w1(n,q) is given by equation (8-50) in appendix 8. 

The value of W 1(n,q) is different for each of the wall elements and for 

each value of q. These values of w1(n,q) can be expressed by a column 

matrix, 

( 0-1 ) 

For k~k,, the nkthelement of matrix {Ti is obtained by using 

equation (8-49) in appendix 8. The matrix tTJ for this case is, 

{'ii\~= r: ~ \9,\ , l'i,\ ( Zn - Z k~) , \Cf,\ (i"' - 2tr-~ 

- ~,[:..,ci,, , ,,,, ci ... + e~) , lil (i"' +cic.,~ 

[: IF K=n] + (D-2) ,~ K ¢n • 

The terms in the above equation are for the 1 eft wal 1 top half, left 

wall bottom half and the right wall. 

For Kfk~K
2 

the value of the nk
th

element of matrix{T\is 

given by , 



- F2. f"iq,1 ( i,.. +~lb)" \'vi (1- 't ) , 1~1 (1- 't )7 L IC+I IC. 'J 

(D-3) 

The terms in the above equation are for the top wall right half, top 

wall left half, bottom wall right half and the bottom wall left half 

respectively. In equation (D-2) and equation (D-3), n may take on 

index values from l to k
1 

• Some values of n correspond to the solid 

elements and others to slotted wall elements. It is convenient to 

define { T~ Y slot and {T\ Y solid such that the former is { T \ for the 

set of slotted wall element indices and the latter isl Ti for the set 
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of solid element indices located at y = 1. The matrices lw',! arid {w•.i\ 
can be obtained by putting the real and the imaginary values of<r. Thus, 

tw: \ = \_-r\ \er'! ( D-4) 

lw:' ! :: t,~ \o-"i (D-5) 

I II 

Matrix Exeression For w2(n,g} and w2 (n,g} 

The term ~ (n,q) is given by equation (B-65) in appendix B. 

The value of w2(n,q) is different for each wall element and for each 

value of q. These values can be expressed in a matrix form by 

putting, 

( D-6) 



th For K
1
<k~ K.a.the nk element of the matrixlUi is given by, 

~\CL\ \ '\~\ (~h -'tk+,), \'t,\ (~h -11e.J 
~ \<i,\ ~b , 1911 ( ~ ... -+ 'c\-1J, \~I(~._;.~"_..)] 

\F 

\f 

K= -nl 
K -1= n_J ( D-7) 
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The first two terms in the above equation are due to the bottom wall and 

the last two terms are due to the top wall. 

Fork~ K1 the nlth element of matrix tu\ is, 

tu~"~=~ 0'vl (1"'+1), \~I (~/b- ~~-+ 1'),l'iJt(l/b-~~)J 

- F2. [\~I ( ~"+1) '\Cf/\ ( ~/b+ l:ic.) 'l~I ( '3/b-ti!tc-+,)] 

+ F.2.. [ I 9, \ ( ~"' - 1 ) , I 1, I ( 'yb - ~ ~-H) , I \ii ( ~ - ~ 11:) J 
[ 

_ ~ (D-8) 
- Fl. l'vl (~ ... -•), l<t/1 ( ~,b~l:k),ltl('Yb+ z!k+1)J. 

The terms in the above equation are due to the left wall top half, left 

wall bottom half, right wall top half and the right wall bottom half 

respectively. 

In equation (D-7) and equation (D-8), n takes on values from 

K 
1 

+ l to Ki. Some values of n correspond to solid elements and some 

to the slotted elements. We define matrices {u3 
2 

slot and {U~ 
2 

solid 

such that the former matrix is for the set of slotted element and the 

latter matrix is for the set of solid elements. The value of {w; ~ 
and {w~~ can be obtained by putting the real and the imaginary values of 

the influence coefficient in equation (D-6). Hence, 

l w~ ~ =- ~_u i ta-' l ( D-9) 

l w~ ~ = l u ~ l er'' j . ( 0- JO) 
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I II 

Matrix Expression for w3(n,g) and w3 (n,g) 

The function Wln,q) is defined by equation (A-41) in appendix 

A. W 3 (n,q) has a different value for each nth wall element and for each 

value of q. For each q, it is convenient to express the values of 

W 3 (n,q) as elements of a column matrix. 

( D-11) 

The matrix l a-i is a column matrix of K 2 elements and {c ! is 

a (K1 - N1) by K2 matrix. The nkth element of{clcan be found by using 

equation (A-40) and equation (A- 41) of appendix A. For k~k 
I 

the 

kth l . . b n e ement 1s given y, 

le!_,,~='-, Gl'i,l,1•1,1 ti,-~ •• ,), 1'1,1 tli.,-i!~)J 

- ~. ~ l<f,J, \'t,1 (ZI'\+ ~"'), \'id (Z"'-t ~"+I~ 

- -\ [ 0 t \q,\ (a_l"\,t ~")' \CJ.,\ (ih+ ~~+~ 
Gi, [ O • \'I,\ (i!n-~~.,), \'I,\ 0.,-i!"~ IF n,e~ 

--<G,[ o, '1' ( ~k,_,-l~), o] IF n=.::. J ( D-12) 

The terms on the right hand side of equation (D-12) are for the left wall 

top half, left wall bottom half, right wall bottom half and the right 

wall top half. 

The nk
th 

element of matrix { ci for K1< k,K2 is given by, 

le.ink='-, ECl,I (~,.. - f./b), \'I, l (\- ~k+I)' \If,\ (\-'t") J 
+ '-, D<f,t (i" - ~-lb), \'l,\ (\+'tar.)• \CV\(\-+ '<tk+.)J 

- bl ~~ \ (in+ ~)' \'f,\ (\- 'alC+I)' \Cf,\ (\-'ti() J ( D-13) 

- ~, [ 1 ,,, ( jn + "1b), It I ( \ 1- 'tk.)' \\,\ (I+ 1ir,+,il 
• 



The terms on the right hand side of the above equation are for the top 

wall right half, top wall left half, bottom wall right half and the 

bottom wall left half. In equation (D-12) and equation (D-13), n takes 

on values only corresponding to the slotted element index numbers on 

y = 1. If prime and double prime denotes the real and the imaginary 

part of the influence coefficient, then we can express it as, 

I • ,1 
<r = CT + A. CS'" ( D-14) 

Therefore, 

{W~i = lc.![lcr'i1- ilo-"D ( D-15) 

Hence the real and the imaginary part of l w3 \ are, 

( D-16) 

(D-17) 

I II 

Matrix Expression For w4(n,g) and w4 (n,g) 

The function ~(n,q) is defined by equation (A-45) in appendix 

A. The value of W4(n,q) is different for each n
th

wall element and for 

each value of q. For each value of q, the column matrix can be ex­

pressed as, 

(D-18) 

For k~Kl the nk th element of the matrix \o} is given by, 

l1> ~f\tc. =- G, ~CL\ C ~" +') , \~\ ( "lb - e"""'), IC\JI ( ~,'o -lk~ 
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",[\'Lilt~ .... -,), \9,\ ( R.;b+ r.~"''', \<t,\ C ~/n+e"-l] 
• 

( D-19) 

The right hand terms in the above equation are due to the left wall top 

half, left wall bottom half, right wall top half and the right wall 

bottom half respectively. 

For K1 < k~ K2 the n~h elemen't of the matrix {o l is given by, 

l 'llln._ = G, 1 [ 0 • l'I,\ t ~~ + 'trn) , 11,\ ( 't,. ~ ~ .. iJ 
- G, [~ Jyb \q,\' \'v\ (~n-'t1e.,._,)' \9,\ <\n-1ir.~ 

- Gs, [ :l ~/b \'i,\ J ~\q,I (~nt 't~+\) '\9,I (ltn+~~il 

+ ~ '-• G • :q,\ ( ii~-'t-..,), 1'1,I tit,. --a.]" n*J 
-:tS, [o, ~ ('c\~+,-~tc.) • ~ \F n: K. (D-20) . 
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The terms in the above equation are due to the top wall left half, bottom 

wall right half, bottom wall left half and the top wall right half 

respectively. In equation (D-19) and equation (D-20) n takes on values 

only corresponding to the slotted element index numbers on z = h/b. The 

matrices l W ~\and { w; i are obtained by putting the real and the 

imaginary values of the influence coefficient. Thus, 

I 

{ wa. l = l J) ~ { <l9' j 

lw:\ = l:1)~\_cr"\. 

( D-21 ) 

(D-22) 



Matrix Expression For M1i and Mlr 

The term Mli is the imaginary part of equation (C-18). It is 

given by, 

M,i. = _-r~.6'11 !. 'ti Cas9,:x:A 5 t::., (\'fl\}'"a'~+ a.a.) 
~" J2.n \i:t, l L J 'a':.i.. + .,2.. 
+ K, < \c:t,\ 1 ~,.a..-+ .:a. l 

j 'a'':i. T°A:a... J 
( D-2 3) 

The above equation is a function of q and n. Therefore, 

( D-24) 

The function M. (n,q) has a different value for each wall 
I&. 
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element and for each value of q. For a fixed q, we can represent M . (n,q) 
I"-

by a (!<zX 1) matrix. l<.z is the total number of wall elements. Therefore, 

(M,i. )" 

(t\i. )~, 

(M,,) 
I ~\ . . 

The term ~¾R is the real part of equation (C-18 ). 

not contain the O (q) part and is given by, 

M -is• A"A.z '\tSin11-_:c.a { ~. c,1,1J'i\·1 + ~2.. 
tR. = -

:l T\ J .2. Tl 'Cf, l J 'a' 'a. + i:2-

) j + K, ( IC(il J 'a"L"'" ~'a. 

J 1a"2. + i:a. 

The above equation is a function of q and n. Therefore, 

(D-25) 

It does 

(D-26) 

( D-27) 



The value of n varies for each wall element. For ~ wall 

elements and a fixed q the function ~R(n,q) can be represented by a 

(~ x 1) matrix. Hence the matrix tM\R.\ is, 

' I 

Matrix Expression for M2R and M2i 

(0-28) 

The term r~R is the b (q) independent part of equation (C~2 ). 

~R is given by, 

Ys- A'h L C\t S1.nC\,X. 
.Qn Jirr \CJ,\ 

S \C\, \ "4-
1 

l<.o ( l'i, I J 'a' 1 + 'l::a. ) 

L ( ~,a + ca) -t 

\Cf,\ '·{ K0 ( \C\, \j ':a" :a. T ~ ~ ) :t'fl' K, (\'I,\ j j1'2+~2..)-+ 
( ~,.a. "T i::a.) l>/.2. t 1':a.+ c:a.) 

+ ~ 'a" K, ( \ ct, l j_'a_"_:a._+_t._::i.._ ) < 
C 'a"l. + i:2. )•ta. J • (0-29) 

Since z is a function of n, M 2.R. is also a function of n. Hence, the 

above equation can be written as, 

( 0-30) 

For a fixed q, the values of "2R (n,q) for each wall element 

can be expressed by a matrix { Mu~· If~ is the total number of wall 

element, the matrix 1M:i.R.\is a column matrix of the order (K 2 x 1). 
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(M.2.it.).a, 

' I 
' I 
I 

(Mi~) 
Ii:'\ 
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( D-31 } 

The function M 2i is obtained by differentiating :M1 i with respect 

toy. The equation for M2i is, 

- '!Si 0 '!:t ~' Co:')1, :r." [ l~I 'a
1 

IC.Cl ( \<l, I J 'a'i. ~ ...... ) + 
M2.i. -= - -

~TI h.n \~\ ( 'a'~ -\-- ~~) 

~~• K, (\'1,I J ~• 2 +c:a. ) i- \'v\ 411 

\::. 0 (lCf,I j ~"2.?t::t.. ) 

(~' ~ T ·z:2· t't:A.. ,--~-- ( ~ •1 .:i. "" &' :a. ) 

-t- i~•· "-, < \ct,l l 4'1
& +~2.. J (D-32} c ~r,~ ~ I:.~ ).s,2.. 

The above equation is a function of z and q. Since z is a function of 

n, we can express equation (D-32} as, 

(D-33} 

M2i(n,q} has a different value for each of the wall elements 

and for each value of q. For a constant q and all the K2 elements we 

can represent the values of M2i(n,q} by a column matrix {M.ai.!· 

(D-34} 



Matrix Express ion for M.:u, and M 1,i. 

The term M.3Ris the t,(q) independent part of equation (C-25). 

It is given by, 

M~Q. = "f~ A'ti CJ, S(n 'l,:X.~ re:_ .c~ - \) f', (\Cf!\ J 'a':>..-+ c~ ) 
:2. TI h.:n \ ~ \ ~ 'a' -t- i:..2. J 'a'a. + ~:i... 

+ \~\ i° KoQCfll J 'a'2. + i-1. ) 

(~•2. + .!.l..) 

\'bl i2. K0 (l-VI J 't\"a-t- c~ 
( 'a"2 + ~1..) ( D-35) 

The above equation is a function of n and q. Therefore we can express 

it as, 

(D-36) 

The function l~R (n,q) has a different value for each wall 

element and for each value of q. For each q we can express~ values 

of ~R by a column matrix l M~R~. Where, 

(M3~" 

(MaR.)l.\ 

{M~ll~ - I - I 

(MoR\c:~, (D-37) 

The function M3i is obtained by differentiating Mli with 

respect to z. It is given by, 

- °'A A J 6 V ~ 'i, ~. 
~ lT J 2.n' \1, \ 

87 



I<, (1<v1 J~·J.+ i?:2.) 
J a·2. ;. 1:.2. 

+ \Cf/ l ~2. l<o ( \'v iJ A,.a. + c2. ) 

( 'a'2. ;- ~2.) 

l<' ( \«tr l J 1i''2. +- ?:2. ) 

.1'6"2.+a2. 
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( 0-38) 

The above equation can be expressed as a function of .n and q. That is, 

( 0-39) 

The functionM3i (n,q) has a different value for each wall 

element and for each value of q. For each q, we can express K2 values 

of :M3i by a column matrix, lM!»l~· Where, 

(Mll\, 

\. t12.d 
(M:?,i.)~, 

= I 
I 
I 

( 0-40) 
(Ma.:) 

~.a.I 

Matrix Expression For'\) 

The term )) is the coefficient of b(q) in equation (C-25) 

and is given by, 



'\) 

( D-41 ) 

In the above equation, all terms are constant except z. Since z is a 

function of n, we can write, 

: "\.) ( "r'\. ) . (D-42) 

We can express the values of -v for all the wall elements by 

the matrix tv~. Where, 

" .a., 
I 
I · 

\) .,. 
"'.a.\ 

Matrix Expression For ( CJ + 9.2 ) 

(D-43) 

Equation (C-16) and equation (C-17) give the expressions for 

c1 and c2 respectively. If 'IJ represents the summation of c
1 

and C 
2 

then, 

"; A'tj ~ 
cQ l i.TI ( 'a'2.+ i:'a.) + ( D-44) 

The above equation can be expressed as a function of z. Since z is a 

function of n, we can write, 

(D-45) 
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The function 4'(n) has a different value for each wall element. 

For all the ~ elements we can represent the values of 4J(n) by a col­

umn matrix, l'+'! , of the order(~ x 1). 

'+' ,, 

'f ~, 
I 

I 

Matrix Expression For 'z 

(0-46) 

The term lz is the coefficient of b(q) in equation (C-22). 

That is, 

'I - - "¥ d 6 ~ J c. 2 't' 
~ J 2.. Tt ( 'c! ,2. + 1:"" t 

" + "'A 6 "ta '2: 
2 ~ 

~J.2.n t o"'l.+'i='l.)'a. 
( 0-47) 

90 

The above equation indicates that '2 is a function of z. All other 

terms in equation (0-47) are constant. Since the value of z changes for 

each element on the wall, '2 .can be expressed by a column matrix,lii, 

of the order ( K 
2 

x l ) . 

<z" 
'i.2., 

{'i.1 I 
I 

'l 
".1' (D-48) 



Matrix Expression For The Influence Coefficient 

The influence coefficient, u , has a different value for 

each wall element. Hence the values of the influence coefficient for 

all the~ wall elements can be expressed by a matrix t~!-

er, 
G"'"i, 

{ er~ 
I 

= I 

I 

G"~ 
(D-49) 

:a.. 

The influence coefficient for each element in the above equation has a 

real part, <r.' , and an imaginary part, ~". 
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