METHOD OF MOMENTS CAPACITANCE MODEL FOR MULTICONDUCTOR SYSTEMS

by

WILLIAM T. PHILLIPS, JR.

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Electrical Engineering Program

itortion, system stability, radiated emissions, passive filtering, I crosstalk (electromagnetic coupling). These parameters need t

re R. Fan 6/22/89

Advisor

25, 1989

Dean of the Graduate School

Date

Date

YOUNGSTOWN STATE UNIVERSITY June, 1989

ABSTRACT

METHOD OF MOMENTS CAPACITANCE MODEL FOR MULTICONDUCTOR SYSTEMS

WILLIAM T. PHILLIPS, JR.

YOUNGSTOWN STATE UNIVERSITY, 1989

Industry would like an analytical model that can predict various electrical parameters to characterize the performance of their components rather than building prototypes and testing. Of importance are parameters such as capacitive loading effects, inductance, delay characteristics, characteristic impedance, signal bandwidth and distortion, system stability, radiated emissions, passive filtering, and crosstalk (electromagnetic coupling). These parameters need to be evaluated for various geometries such as multiconductor ribbon cables, wire bundles, coax cables, shielded wire bundles, twisted pairs, and wire bundles over a ground plane. Also of importance is how to handle all of the above conditions with discontinuities in geometry.

The primary objective of this discussion is to develop a mathematical model which will determine the capacitance of various multiconductor systems, the model being a FORTRAN program. It can be shown that once the capacitance is known all other parameters can be obtained.

The capacitance model developed in this document uses a

Fourier series approximation for the charge density on the conductor and dielectric surface. Using the charge density described above a near field potential function is developed for cylindrical conductors. The potential function is descritized and place in matrix form using the "method of moments", which was first introduced by R. F. Harrington.

When the wires are coated with a dielectric it is necessary to determine the electric field intensity. The electric field intensity is needed to completely specify or determine all the unknown charge densities on the conductor and dielectric surfaces. This is accomplished by using the potential function developed above and using Laplace's equation.

The capacitance matrix models which are presented in this document include dielectric coated multiconductor ribbon cables, dielectric coated multiconductor wire bundles with different radii and permittivities, shielded multiconductor wire bundles, multiconductor coax cables, and dielectric coated multiconductor wire bundles over a ground plane.

This report contains a discussion of the theory for the determination of the capacitance for the various configurations discussed above as well as some of the anomalies associated with various models and the FORTRAN program itself. Wherever possible, comparison of the capacitance model using the method of moments is made to that of the closed form solution, specifically, that of an uncoated (bare) 2-wire system, coax cable, shielded wire, and one bare wire over a ground plane. When discussing the capacitance of dielectric coated wires and those over a ground plane, the model is compared with results that are obtained from testing.

ACKNOWLEDGEMENTS

I wish to acknowledge Craig Reeves for acquiring test data for dielectric coated ripcord, Test Labs for test data on a dielectric coated wire over a ground plane, and Dave Bailey for his comments and time.

I also wish to thank my thesis advisor Dr. S. R. Pansino for his advice and comments in preparing this thesis and Dr. M. Siman and professor R. E. Kramer for being on my thesis committee and their comments.

	PAGE
ABSTRACT	ii
ACKNOWLEDGEMENS	iii
LIST OF SYMBOLS	vi
LIST OF FIGURES	vii
LIST OF TABLES	ix
CHAPTER	
1. INTRODUCTION	1
2. APPLICATION OF THE METHOD OF MOMENTS IN DETERMINING THE CHARGE DENSITY OF A CYLINDRICAL CONDUCTOR.	7
3. APPLICATION OF THE METHOD OF MOMENTS IN DETERMINING THE CAPACITANCE OF A BARE 2-CONDUCTOR SYSTEM.	12
4. APPLICATION OF THE METHOD OF MOMENTS IN DETERMINING THE CAPACITANCE OF A BARE MULTICONDUCTOR SYSTEM.	22
5. DETERMINATION OF THE TRANSMISSION LINE CAPACITANCE MATRIX FROM THE GENERALIZED CAPACITANCE MATRIX	32
6. APPLICATION OF THE METHOD OF MOMENTS IN DETERMINING THE CAPACITANCE OF A DIELECTRIC COATED MULITCONDUCTOR SYSTEM.	40
7. APPLICATION OF THE METHOD OF MOMENTS IN DETERMINING THE CAPACITANCE OF A MULTICONDUCTOR COAX CABLE	59
8. APPLICATION OF THE METHOD OF MOMENTS IN DETERMINING THE CAPACITANCE OF A SHIELDED MULTICONDUCTOR WIRE BUNDLE	67
9. APPLICATION OF THE METHOD OF MOMENTS IN DETERMINING THE CAPACITANCE OF A DIELECTRIC COATED MULTICONDUCTOR WIRE BUNDLE OVER A GROUND PLANE	75
10. CONCLUDING REMARKS	98

TADIC	OF	CONTENTE	1 . 1
IABLE		UNIFNIS	(cont.)
	U .	00	(00.10.)

APPENDIX A	Elimination Of Reference At Infinity102
APPENDIX B	Capacitance Tables For A Bare 4-Wire Wire Bundle
APPENDIX C	Capacitance Tables For 3-Wire Dielectric Coated Wire Bundle
APPENDIX D	Capacitance Tables For Ribbon Cable And Wire Bundle
APPENDIX E	Cable Data From Belden115
APPENDIX F	Capacitance Tables For Multiconductor Coax Cable With $\epsilon_r = 3.5119$
APPENDIX G	Capacitance Tables For 3-Wire Dielectric Coated Wire Bundle
APPENDIX H	Capacitance Tables For Multiconductor Coax Cable With $\epsilon_r = 1.0128$
APPENDIX I	Capacitance Tables For Dielectric Coated Wire Bundle Over A Ground Plane
APPENDIX J	Listing of Subroutine Descriptions Along With Their Associated Variables
APPENDIX K	Method Of Moments Capacitance Model
REFERENCES	S

,

V

LIST OF SYMBOLS

SYMBOL	DEFINITION	
Δ	small displacement	mm.
σ_{0}	avg. charge density	Coulombs/sq. area
σm	charge density associated with cosine terms of the Fourier series expansion	Coulombs/sq. area
σ _m	charge density associated with sine terms of the Fourier series expansion	Coulombs/sq. area
	integral over a surface	
#	integral over a closed surface	
]] i Muitic []2 Single	matrix or vector	
Σ ³ Multie	summation of all terms	
φ	absolute potential	Volts
λ	line charge	Coulombs/unit length
r - r'	measured distance between source matchpoints and potential matchpoints	meters
€o	permittivity in air	pF/meter
Er	relative permittivity	none
β _c	source angle of match- point with respect to horizontal	radians
θ	potential angle of match- point with respect to horizontal	radians
∇	del operator	

LIST OF FIGURES

PAGE
3
5
7
12
23
37
40
52
53
53
55
59
61
65
67
69
71

WILLIAM F. MAAG LIBRARY YOUNGSTOWN STATE UNIVERSITY LIST OF TABLES

TABLE		PAGE
3.1	Bare 2-wire Capacitance Computed By The Method Of Moments vs Closed Form Capacitance	21
7.1	Approximate vs Closed Form Solution For Coax Cable	62
7.2	Calculated Capacitance Verses Measured Capacitance For Coax Cable	64
9.1	Approximate vs Closed Form Solution Of Capacitance And Inductance For One Bare Wire Over A Ground Plane	93
9.2	Test vs Bare Approximation vs Dielectric Approximation	on. 94
B.1	Output Data For Generalized Capacitance Matrix With 1 Harmonic Or 3 Fourier Terms For A 4-wire System (Values In F/m)	105
B.2	Output Data For Transmission Line Capacitance Matrix With 1 Harmonic or 3 Fourier Terms For A 4-wire System (Values In F/m)	105
B.3	Output Data For Generalized Capacitance Matrix With 3 Harmonics Or 7 Fourier Terms For A 4-wire System (Values In F/m)	106
B.4	Output Data For Transmission Line Capacitance Matrix With 3 Harmonics Or 7 Fourier Terms For A 4-wire System (Values In F/m)	106
B.5	Output Data For Generalized Capacitance Matrix With 5 Harmonics Or 11 Fourier Terms For A 4-wire System (Values In F/m)	107
B.6	Output Data For Transmission Line Capacitance Matrix With 5 Harmonics Or 11 Fourier Terms For A 4-wire System (Values In F/m)	107
B.7	Output Data For Generalized Capacitance Matrix With 7 Harmonics Or 15 Fourier Terms For A 4-wir System (Values In F/m)	108

1	ABLE	PAG	Έ
	B.8	Output Data For Transmission Line Capacitance Matrix With 7 Harmonics Or 15 Fourier Terms For A 4-wire System (Values In F/m)108	3
	B.9	Output Data For Generalized Capacitance Matrix With 9 Harmonics Or 19 Fourier Terms For A 4-wire System (Values In F/m)	9
	B.10	Output Data For Generalized Capacitance Matrix With 9 Harmonics Or 19 Fourier Terms For A 4-wire System (Values In F/m)	9
	C.1	Output Data For The Generalized Capacitance Matrix With 1 Harmonic Around The Conductor (3 Fourier Terms) and 1 Harmonc Around The Dielectric (3 Fourier Terms) For A 3-wire System (Values In F/m)110	כ
	C.2	Output Data For The Transmission Line Capacitance Matrix With 1 Harmonic Around The Conductor (3 Fourier Terms) And 1 Harmonic Around The Dielectric (3 Fourier Terms) For A 3-wire System (Values In F/m)	2
	C.3	Output Data For The Generalized Capacitance Matrix With 3 Harmonics Around The Conductor (7 Fourier Terms) And 3 Harmonics Around The Dielectric (7 Fourier Terms) For A 3-wire System (Values In F/m)	2
	C.4	Output Data For The Transmission Line Capacitance Matrix with 3 Harmonics Around The Conductor (7 Fourier Terms) And 3 Harmonics Around The Dielectric (7 Fourier Terms) For A 3-wire System (Values In F/m)	1
	C.5	Output Data For The Generalized Capacitance Matrix With 5 Harmonics Around The Conductor (11 Fourier Terms) And 5 Harmonics Around The Dielectric (11 Fourier Terms) For A 3-wire System (Values In F/m)	1

ix

TABLE PAGE C.6 Output Data For The Transmission Line Capacitance Matrix with 5 Harmonics Around The Conductor (11 Fourier Terms) And 5 Harmonics Around The Dielectric (11 Fourier Terms) For A 3-wire System (Values In F/m).....111 Output Data For The Generalized Capacitance Matrix With C.7 7 Harmonics Around The Conductor (15 Fourier Terms) And 7 Harmonics Around The Dielectric (15 Fourier C.8 Output Data For The Transmission Line Capacitance Matrix with 7 Harmonics Around The Conductor (15 Fourier Terms) And 7 Harmonics Around The Dielectric (15 Fourier Terms) For A 3-wire System C.9 Output Data For The Generalized Capacitance Matrix With 9 Harmonics Around The Conductor (19 Fourier Terms) And 9 Harmonics Around The Dielectric (19 Fourier Terms) For A 3-wire System (Values In F/m)......112 C.10 Output Data For The Transmission Line Capacitance Matrix with 9 Harmonics Around The Conductor (19 Fourier Terms) And 9 Harmonics Around The Dielectric (19 Fourier Terms) For A 3-wire System D.1 D.2 F Cable data from Belden Handbook...... 115 F.1 Output Data For The Generalized Capacitance Matrix With 1 Harmonic Or 3 Fourier Terms For A F.2 Output Data For The Transmission Line Capacitance Matrix With 1 Harmonic Or 3 Fourier Terms For

TABLE P.			PAGE
	F.4	Output Data For The Transmission Line Capacitance Matrix With 3 Harmonics Or 7 Fourier Terms For A Multiconductor Coax Cable	121
	F.5	Output Data For The Generalized Capcitance Matrix With 5 Harmonics Or 11 Fourier Terms For A Multiconductor Coax Cable	121
	F.6	Output Data For The Transmission Line Capacitance Matrix With 5 Harmonics Or 11 Fourier Terms For A Multiconductor Coax Cable	121
	F.7	Output Data For The Generalized Capcitance Matrix With 7 Harmonics Or 15 Fourier Terms For A Multiconductor Coax Cable	122
	F.8	Output Data For The Transmission Line Capacitance Matrix With 7 Harmonics Or 15 Fourier Terms For A Multiconductor Coax Cable	122
	F.9	Output Data For The Generalized Capcitance Matrix With 9 Harmonics Or 19 Fourier Terms For A Multiconductor Coax Cable	122
	F.10	Output Data For The Transmission Line Capacitance Matrix With 9 Harmonics Or 19 Fourier Terms For A Multiconductor Coax Cable	123
	G.1	Output Data For Generalized Capacitance Matrix With 1 Harmonic On The Conductor And 2 Harmonics On The Dielectric (Values In F/m) For Shielded Ripcord	124
	G.2	Output Data For Transmssion Line Capacitance Matrix With 1 Harmonic On The Conductor And 2 Harmonics On The Dielectric For A Shielded 3-wire Ripcord	124
	G.3	Output Data For Generalized Capacitance Matrix With 3 Harmonic On The Conductor And 4 Harmonics On The Dielectric (Values In F/m) For Shielded Ripcord	124
	G.4	Output Data For Transmssion Line Capacitance Matrix With 3 Harmonic On The Conductor And 4 Harmonics On The Dielectric For A Shielded 3-wire Ripcord	125

1	ABLE	I	PAGE
	G.5	Output Data For Generalized Capacitance Matrix With 5 Harmonics On The Conductor And 6 Harmonics On The Dielectric (Values In F/m) For Shielded Ripcord	. 125
	G.6	Output Data For Transmssion Line Capacitance Matrix With 5 Harmonics On The Conductor And 6 Harmonics On The Dielectric For A Shielded 3-wire Ripcord	125
	G.7	Output Data For Generalized Capacitance Matrix With 7 Harmonics On The Conductor And 8 Harmonics On The Dielectric (Values In F/m) For Shielded Ripcord	126
	G.8	Output Data For Transmssion Line Capacitance Matrix With 7 Harmonics On The Conductor And 8 Harmonics On The Dielectric For A Shielded 3-wire Ripcord	126
	G.9	Output Data For Generalized Capacitance Matrix With 9 Harmonics On The Conductor And 10 Harmonics On The Dielectric (Values In F/m) For Shielded Ripcord	126
	G.10	Output Data For Transmssion Line Capacitance Matrix With 9 Harmonics On The Conductor And 10 Harmonics On The Dielectric For A Shielded 3-wire Ripcord	127
	H.1	Output Data For Generalized Capacitance Matrix With 1 Harmonic Or 3 Fourier Terms	128
	H.2	Output Data For Transmission Line Capacitance Matrix With 1 Harmonic Or 3 Fourier Terms	.128
	H.3	Output Data For Generalized Capacitance Matrix With 3 Harmonics Or 7 Fourier Terms	128
	H.4	Output Data For Transmission Line Capacitance Matrix With 3 Harmonics Or 7 Fourier Terms	129
	H.5	Output Data For Generalized Capacitance Matrix With 5 Harmonics Or 11 Fourier Terms	129
	H.6	Output Data For Transmission Line Capacitance Matrix With 5 Harmonics Or 11 Fourier Terms	.129
	H.7	Output Data For Generalized Capacitance Matrix With 7 Harmonics Or 15 Fourier Terms	130

xii

1	ABLE	PAGE
	H.8	Output Data For Transmission Line Capacitance Matrix With 7 Harmonics Or 15 Fourier Terms
	H.9	Output Data For Generalized Capacitance Matrix With 9 Harmonics Or 19 Fourier Terms
	H.10	Output Data For Transmission Line Capacitance Matrix With 9 Harmonics Or 19 Fourier Terms
	I.18	Ouptut Data For Transmission Line Capacitance Matrix With 1 Harmonic Around The Conductor And 1 Harmonic Around The Dielectric For 3-wire Dielectric Coated Configuration Over A Ground Plane
	I.2	Ouptut Data For Transmission Line Capacitance Matrix With 3 Harmonics around The Conductor And 3 Harmonics Around The Dielectric For 3-wire Dielectric Coated Configuration Over A Ground Plane
	I.3	Ouptut Data For Transmission Line Capacitance Matrix With 5 Harmonics Around The Conductor And 5 Harmonics Around The Dielectric For 3-wire Dielectric Coated Configuration Over A Ground Plane
	J.1	Variables Used In Subroutine Main
	J.2	VAriables Used In Subroutine Winfo
	J.3	Variables Used In Subroutine Dinfo
	J.4	Variables Used In Subroutine Rpinfo141
	J.5	Variables Used In Subroutine Size
	J.6	Variables Used In Subroutine Difstd
	J.7	Variables Used In Subroutine Samstd142
	J.8	Variables Used In Subroutine Difrad
	J.9	Varialbles Used In Subroutine Samrad
	J.10	Variables Used In Subroutine Rgenxy
	J.11	Variables Used In Subroutine Bgenxy
	J.12	Variables Used In Subroutine Czenxy

TABLE	PAG	E
J.13	Variables Usede In Subroutine Pgenxy144	4
J.14	Variables Used In Subroutine Nwref	5
J.15	Variables Used In Subroutine Cap	5
J.16	Variables Used In Subroutine Ofdia	7
J.17	Variables Used In Subroutine Dia	3
J.18	Variables Used In Subroutine Place	Э
J.19	Variables Used In Subroutine Sum)
J.20	Variables Used In Subroutine P1	L
J.21	VAriables Used In Subroutine Plane	L
J.22	Variables Used In Subroutine Minv	2
J.23	Variables Used In Subroutine Mprt	2

formed to determine the charge density from the known potential boundary conditions. Once the charge density is determined, the capacitance is approximated from the area under the charge density curve. This procedure, however, has the drawback that it requires a large number of sides of the polygon to get a capacitance value which is only accurate to one significant digit. Mathematically this procedure will give a capacitance value but for large multiconductor systems is impractical.

Another attampt was to eliminate the error due to the polygon approximation. This was done by subdividing the cross-sectional area of the conductor into circular pie sections where the surface was continuous from one subsection to another.² This procedure also ran into difficulties since the integrals had to be approximated by numerical integration. Again, comparing the capacitance value found by this proceedure to that of the closed form solution for a bare 2-wire

CHAPTER 1 INTRODUCTION

The capacitance of cylindrical conductors with or without dielectric coating is one of the principal parameters to be determined when calculating the electromagnetic coupling (crosstalk) of multiconductor systems. Few attempts have been made to predict the capacitance of multiconductor systems which contain cylindrical conductors. The capacitance for a bare 2-wire system is well documented but little effort has gone into determining the capacitance of dielectric coated multiconductor systems. One attempt by Higgins and Black uses the concepts of Maxwell's "method of subareas".¹ In this procedure the cylindrical conductor is subdivided into an n-sided polygon which is infinitely long and each side is assumed to have an unknown constant charge density of σ_i . A set of matrix equations is formed to determine the charge density from the known potential boundary conditions. Once the charge density is determined, the capacitance is approximated from the area under the charge density curve. This procedure, however, has the drawback that it requires a large number of sides of the polygon to get a capacitance value which is only accurate to one significant digit. Mathematically this procedure will give a capacitance value but for large multiconductor systems is impractical.

Another attempt was to eliminate the error due to the polygon approximation. This was done by subdividing the cross-sectional area of the conductor into circular pie sections where the surface was continuous from one subsection to another.² This procedure also ran into difficulties since the integrals had to be approximated by numerical integration. Again, comparing the capacitance value found by this procedure to that of the closed form solution for a bare 2-wire system showed that it required a large number of subsections to approximate the capacitance to one significant digit.

Another attempt by Clayton Paul, as suggested by Arlon Adams, was to use a Fourier series approximation for the charge density and then apply this approximation using the "method of moments" to calculate the capacitance. The "method of moments" was first used to calculate electromagnetic problems by R. F. Harrington.^{3,4}

The method of moments is used to express a function as a matrix from which available matrix techniques can be employed to solve for the unknown quantities, namely the charge densities σ 's. Clayton Paul demonstrated that this technique gave extremely good results when using a small number of terms of the Fourier series. This application, however, was only used to determine the capacitance of dielectric coated multiconductor ribbon cables where the solid conductors had the same conductor and dielectric radii as well as the same relative permittivity for all wires.

The procedure which Clayton Paul used is also the one which is used to calculate the capacitance in this document. The procedure is extended to calculate the capactance of not only ribbon cables but multiconductor wire bundles with conductors having different radii and dielectrics having different permittivities. This procedure is also used to determine the capacitance of a multiconductor coaxial cables, shielded dielectric coated multiconductor wire bundles and multiconductor wire bundles over a ground plane.

Once the parasitic shunt capacitance is determined, other important parameters can be calculated such as inductance and characteristic impedance. Also a multitude of questions can be answered such as the effect capacitance has on signal bandwidth, delay characteristics of transmission lines, stability, radiated emissions, and electromagnetic coupling (crosstalk). The determination of the capacitance matrix is easily understood using an example. This example is illustrated in Arlon Adam's book and is reproduced here to show the basic procedure. ⁵ The example is a parallel plate capacitor as shown in figure 1.1.

FIG. 1.1 PARALLEL PLATE CAPACITOR

First the plates are broken into 2n subsectional areas (n subsections for each plate) where S_1 is the total surface area of plate one and S_2 is the total surface area of plate two. The surface areas are subdivided as follows

$$\begin{split} & S_1 = \Delta s_1 + \Delta s_2 + \Delta s_3 + \ldots + \Delta s_n & \text{eq.} (1.1) \\ & S_2 = \Delta s_{n+1} + \Delta s_{n+2} + \Delta s_{n+3} + \ldots + \Delta s_{2n} & \text{eq.} (1.2) \end{split}$$

where the total surface area S is given as follows

$$S = S_1 + S_2$$
 eq. (1.3)

Now the potential function which describes the system is given by the

З

following

$$v = \frac{1}{4\pi\epsilon_0} \iint \frac{\sigma(\mathbf{r}') \, \mathrm{ds}'}{|\mathbf{r} - \mathbf{r}'|} \qquad \mathrm{eq.}(1.4)$$

where $\sigma(\mathbf{r}')$ is the surface charge density, \mathbf{r} is the positional field vector, \mathbf{r}' is the positional source vector from an arbitrary reference point, ϵ_0 is the permittivity of air, and the integration is carried over the total surface area of the source which is indicated by ('). Next the potential is set to a positive 1 volt on the upper plane and a negative 1 volt on the lower plate. It is assumed that the potential is constant over each subsection and each subsectional area has unit area. The potential v_i at the center of a typical subsection is given by

$$v_{i} = \frac{1}{4\pi\epsilon_{0}} \iint \frac{\sigma(r') ds'}{|r_{i} - r'|} \qquad eq. (1.5)$$

where the center of a typical subsection has coordinates (x_i, y_i, z_i) and is located by the position vector r_i . The variables in eq.(1.5) are described below

$$r_{i} = x_{i} + y_{i} + y_{i} + z_{i} z$$

$$r' = x' + y' + y' + z' z$$

$$ds' = dx'dy'$$

$$|r_{i} - r'| = \sqrt{(x_{i} - x')^{2} + (y_{i} - y')^{2} + (z_{i} - z')^{2}}$$

$$r_{i} = \sqrt{(x_{i} - x')^{2} + (y_{i} - y')^{2} + (z_{i} - z')^{2}}$$

$$r_{i} = \sqrt{(x_{i} - x')^{2} + (y_{i} - y')^{2} + (z_{i} - z')^{2}}$$

A typical subsectional area Δs_j in which the charge density is integrated over is shown in figure 1.2.

FIG. 1.2 SUBSECTIONAL AREA

The total potential of the i-th subsection due to the j-th unit surface charge density from each of the 2n subsections is given below

$$v_{i} = \sum_{j=1}^{2n} \sigma_{j} \frac{1}{4\pi\epsilon_{0}} \iint \frac{ds'}{|r_{i} - r'|} eq.(1.6)$$

$$\cdot \underbrace{\Delta s_{j}}_{D_{ij}}$$

where D_{ij} is a dummy variable used to discretize the function so that it can place in matrix form, thus the potential function can be written as follows

$$v_{i} = \sum_{j=1}^{2n} D_{ij} \sigma_{j} \qquad \text{eq.} (1.7)$$

where $D_{ij}\sigma_j$ represents the potential at a point i due to a source on subsection j and i=1,2,3,...,2n. The system has 2n equations with 2n unknowns, thus the equation above can be place in matrix form as follows

Solving the above matrix equation for the surface charge density, the matrix equation becomes

$$\sigma$$
] = [D]⁻¹ [v] eq.(1.10)

Since it was assumed that each subsection is of unit area the charge on one plate, say the upper plate, is given by

$$q = \sum_{j=1}^{n} \sigma_{j} \qquad eq.(1.11)$$

From the definition of capacitance which is the ratio of charge on one plate to the potential difference of the plates, the capacitance is obtained as follows

$$r = \frac{q}{v_1 - v_2} = \frac{1}{2} \sum_{j=1}^{n} \sigma_j$$
 eq.(1.12)

where $v_1 = 1$ volt, $v_2 = -1$ volt, and $\sigma_j = coulombs/unit area$ $It should be noted that <math>v_1$ and v_2 are the voltages over the surface of plates one and two respectively and the voltages shown in eq.(1.8) are the same voltages only at discrete points.

FIG 2.1 CYLINDRICAL CONDUCTOR WITH MATCHPOINTS Before developing the model for the capacitance, it is necessary to determine the near field potential function due to a Fourier series approximation of the charge around a single cylindrical conductor as based on Clayton Paul's work.²

Recall the potential from an infinitely long, infinitesimally thin wire

$$\phi(\mathbf{r},\theta) - \phi(\mathbf{r}_0,\theta) = \frac{1}{2\pi\epsilon_0} \lambda \ln(\mathbf{r}/\mathbf{r}_0) \qquad \text{eq.}(2.1)$$

where r is the distance to a field point in space from a source and r $_{0}$ is the distance from an arbitrary reference point in space.⁵ It can be shown that if the total charge of a system is zero and the reference point is at infinity the potential can be expressed without the reference vector r_{0} as shown in appendix A. Thus the potential from an infinitesimally thin wire is expressed as

$$\phi(\mathbf{r},\theta) = -\frac{1}{2\pi\epsilon_0}\lambda \ln(|\mathbf{r}-\mathbf{r}'|/1 \text{ meter}) \qquad \text{eq. (2.2)}$$

where |r - r'| is the distance from the field point given by the positional vector r and the source point given by the positional vector

r'. Using the law of cosines, the distance between the source point and the potential point can be expressed as

$$|\mathbf{r} - \mathbf{r}'| = (\mathbf{r}^2 + \mathbf{r}'^2 - 2\mathbf{r}\mathbf{r}'\cos(\beta_c - \theta))^{\frac{1}{2}}$$
 eq. (2.3)

Substituting eq.(2.3) into eq.(2.2), the equation for the potential becomes

$$\phi(\mathbf{r},\mathbf{r}^{\prime},\beta_{c},\theta) = -\frac{1}{2\pi\epsilon_{0}}\lambda \ln(\mathbf{r}^{2}+\mathbf{r}^{\prime}-2\mathbf{r}\mathbf{r}^{\prime}\cos(\beta_{c}-\theta))^{\frac{1}{2}} \text{ eq. (2.4)}$$

Using the property of logarithms the potential function can be expressed as

$$\phi(\mathbf{r},\mathbf{r}',\boldsymbol{\beta}_{c},\boldsymbol{\theta}) = -\frac{1}{4\pi\epsilon_{0}}\lambda \ln(\mathbf{r}^{2}+\mathbf{r}'^{2}-2\mathbf{r}\mathbf{r}'\cos(\boldsymbol{\beta}_{c}-\boldsymbol{\theta})) \quad \text{eq. (2.5)}$$

If an infinite number of infinitesimally thin line charges are place around the conductor surface, the charge becomes a surface charge. Thus summing all λ_n 's, the potential function can be expressed as follows

$$\phi(\mathbf{r},\mathbf{r}',\boldsymbol{\beta}_{c},\theta) = -\frac{1}{4\pi\epsilon_{0}} \sum_{n=1}^{\infty} \lambda_{n} (\ln(\mathbf{r}^{2} + \mathbf{r}'^{2} - 2\mathbf{r}\mathbf{r}'\cos(\boldsymbol{\beta}_{c} - \theta))$$
eq. (2.6)

The infinite number of line charges is now replaced by the surface charge σ . Since these line charges are infinitely long, the surface area would be infinite so the integration will be done on a per unit length bases. This reduces the 3-dimensional problem to a 2-dimensional problem. Thus, replacing the sigma sumation with an integral and λ_{n} with σ , the potential function becomes

$$\phi(\mathbf{r},\mathbf{r}',\boldsymbol{\beta}_{c},\boldsymbol{\theta}) = -\frac{1}{4\pi\epsilon_{0}} \int \sigma \ln(\mathbf{r}^{2} + \mathbf{r}'^{2} - 2\mathbf{r}\mathbf{r}'\cos(\boldsymbol{\beta}_{c} - \boldsymbol{\theta})) \, \mathrm{ds}_{eq.}$$

Assuming that the charge distribution on the surface of the conductor can be expressed as a Fourier series the surface charge distribution σ

in eq. (2.7) becomes

$$\sigma(\beta_{c}) = \sigma_{0} + \sum_{m=1}^{k} (\sigma_{m} \cos(m\beta_{c}) + \hat{\sigma}_{m} \sin(m\beta_{c})) \qquad \text{eq. (2.8)}$$

Substituting eq. (2.8) into eq. (2.7) and integrating around the conductor surface the potential ϕ becomes

$$\phi = -\frac{1}{4\pi\epsilon_{o}} \int_{S} \left[\sigma_{o} + \sum_{m=1}^{k} (\sigma_{m} \cos(m\beta_{c}) + \sigma_{m} \sin(m\beta_{c})) \right] \ln(r^{2} + r^{2} - 2rr^{2} \cos(\beta_{c} - \theta)) ds$$
eq. (2.9)

or

$$\phi = -\frac{1}{4\pi\epsilon_0} \iint_{00}^{12\pi} \left[\sigma_0 + \sum_{m=1}^{k} (\sigma_m \cos(m\beta_c) + \hat{\sigma}_m \sin(m\beta_c)) \right] \ln(r^2 + r^2 - 2rr^2 \cos(\beta_c - \theta)) r^2 d\beta_c dl$$
eq. (2.10)

Separating eq. (2.10) into three integrals and assuming the charge density is uniform for a small subarea the potential ϕ can be expressed as

 $\phi = -\frac{1}{4\pi\epsilon_{o}}\sigma_{o} \int_{0}^{1} \int_{0}^{2\pi} \ln(r^{2}+r^{2}-2rr^{2}\cos(\beta_{c}-\theta)) r^{2}d\beta_{c}dl$ $-\frac{1}{4\pi\epsilon_{o}}\sum_{m=1}^{k}\sigma_{m} \int_{0}^{1} \int_{0}^{2\pi} \cos(m\beta_{c}) \ln(r^{2}+r^{2}-2rr^{2}\cos(\beta_{c}-\theta)) r^{2}d\beta_{c}dl$ $-\frac{1}{4\pi\epsilon_{o}}\sum_{m=1}^{k}\hat{\sigma}_{m} \int_{0}^{1} \int_{0}^{2\pi} \sin(m\beta_{c}) \ln(r^{2}+r^{2}-2rr^{2}\cos(\beta_{c}-\theta)) r^{2}d\beta_{c}dl$ eq.(2.11)

With a change of vairables, let the integrals equal the following

$$D_{o} = -\frac{1}{4\pi\epsilon_{o}} \int_{0}^{1} \int_{0}^{2\pi} \ln(r^{2} + r^{2} - 2rr^{2}\cos(\beta_{c} - \theta)) r^{2}d\beta_{c}dl \quad eq. (2.12)$$

$$\hat{D}_{m} = -\frac{1}{4\pi\epsilon_{o}} \int_{0}^{1} \int_{0}^{2\pi} \cos(m\beta_{c}) \ln(r^{2}+r^{2}-2rr^{2}\cos(\beta_{c}-\theta)) r^{2}d\beta_{c}dl \\ eq.(2.13)$$

$$\hat{D}_{m} = -\frac{1}{4\pi\epsilon_{o}} \int_{0}^{1} \int_{0}^{2\pi} \sin(m\beta_{c}) \ln(r^{2}+r^{2}-2rr^{2}\cos(\beta_{c}-\theta)) r^{2}d\beta_{c}dl \\ eq.(2.14)$$

Substituting equations (2.12-2.14) into equation (2.11) the potential ϕ can be rewritten as

$$\phi = D_0 \sigma_0 + \sum_{m=1}^{k} D_m \sigma_m + \sum_{m=1}^{k} \hat{D}_m \hat{\sigma}_m \qquad \text{eq.} (2.15)$$

Using Dwight (handbook of integral tables) the solutions for eqs. (2.12-2.14) when $r \ge r$, become ⁶

$$D_{o} = - \frac{r' \ln(r)}{\epsilon_{o}} \qquad r \ge r' \qquad eq. (2.16)$$

$$D_{m} = \frac{(r')^{m+1} \cos(m\theta)}{2\epsilon_{0} mr^{m}} \quad r \ge r' \qquad \text{eq.} (2.17)$$

$$\hat{D}_{m} = \frac{(r')^{m+1} \sin(m\theta)}{2\epsilon_{o} mr^{m}} \quad r \ge r' \qquad eq. (2.18)$$

When r<r' the solution for eqs. (2.12-2.14) become

$$D_{o} = - \frac{r' \ln(r')}{\epsilon_{o}} \qquad r < r' \qquad eq. (2.19)$$

$$D_{m} = \frac{(r')^{m-1} \cos(m\theta)}{2\epsilon_{o} mr^{m}} \quad r < r' \qquad eq. (2.20)$$
$$\hat{D}_{m} = \frac{(r')^{m-1} \sin(m\theta)}{2\epsilon_{o} mr^{m}} \quad r < r' \qquad eq. (2.21)$$

11

Substituting eqs(2.16 - 2.18) into eq.(2.15) the solution for the potential ϕ for one bare wire when r≥r' becomes

$$\phi = -\frac{\mathbf{r}' \ln(\mathbf{r})}{\epsilon_0} \sigma_0 + \frac{1}{2\epsilon_0} \sum_{m=1}^k \frac{(\mathbf{r}')^{m+1} \cos(m\theta)}{m\mathbf{r}^m} \sigma_m + \frac{1}{2\epsilon_0} \sum_{m=1}^k \frac{(\mathbf{r}')^{m+1} \sin(m\theta)}{m\mathbf{r}^m} \hat{\sigma}_m + \frac{1}{2\epsilon_0} \sum_{m=1}^k \frac{(\mathbf{r}')$$

Substituting eqs. (2.19-2.21) into eq. (2.15) the solution for the potential ϕ for one bare wire when r<r' becomes

$$\phi = -\frac{r'\ln(r')}{\epsilon_0}\sigma_0 + \frac{1}{2\epsilon_0}\sum_{m=1}^k \frac{(r')^{m-1}\cos(m\theta)}{mr^m}\sigma_m + \frac{1}{2\epsilon_0}\sum_{m=1}^k \frac{(r')^{m-1}\sin(m\theta)}{mr^m}\hat{\sigma}_m + \frac{1}{2\epsilon_0}\sum_{m=1}^k \frac{(r')^{m-1}\cos(m\theta)}{mr^m}\hat{\sigma}_m + \frac{1}{2\epsilon_0}\sum_{m=1}^k \frac{(r')^{m-1}\cos(m\theta)}{mr^m}\hat{\sigma}_m + \frac{1}{2\epsilon$$

Equations 2.22 and 2.23 are the near field potential functions due to a Fourier series representation of the charge around a cylindrical conductor.

In the Fourier serves representation of the charge density expression It is done here to maintain continuity for developing the multiconductor system. Using the sine terms allows non-restricted orientation of the wires as will become more evident when deriving the multiconductor wire bundle system.

A note about metation, for the remainder of this report superscripts are indices used to indicate whether the source or potential is place on a perticular, work and not exponents. For example σ^2 indicates the charge is placed on the surface of wire 2. Powers are expressed by using peretheness such as $(\sigma)^2$. Subscripts are used to indicate the 1-th potential metablesist or the j-th source point. The charge distribution or match wire (see firms 2.1) are to

CHAPTER 3

APPLICATION OF THE METHOD OF MOMENTS IN DETERMINING THE CAPACITANCE OF A BARE 2-CONDUCTOR SYSTEM

FIG 3.1 BARE 2-CONDUCTOR SYSTEM

Observing the plane of symmetry, (Figure 3.1), the charge distribution on wire 2 for a 2-conductor system is the image of that on wire 1 thus the contribution of the sine terms will be identically equal to zero. Even though it is not necessary to keep the sine terms in the Fourier series representation of the charge density expression it is done here to maintain continuity for developing the multiconductor system. Using the sine terms allows non-restricted orientation of the wires as will become more evident when deriving the multiconductor wire bundle system.

A note about notation, for the remainder of this report superscripts are indices used to indicate whether the source or potential is place on a particular wire and not exponents. For example σ^2 indicates the charge is placed on the surface of wire 2. Powers are expressed by using parentheses such as $(\sigma)^2$. Subscripts are used to indicate the i-th potential matchpoint or the j-th source point.

The charge distribution on each wire (see figure 3.1) can be

expressed as follows

$$\sigma^{1} = \sigma_{0}^{1} + \sum_{j=1}^{k} (\sigma_{j}^{1} \cos(j\beta_{c1}) + \hat{\sigma}_{j}^{1} \sin(j\beta_{c1})) \qquad \text{eq. (3.1)}$$

$$\sigma^{2} = \sigma_{o}^{2} + \sum_{j=1}^{k} (\sigma_{j}^{2} \cos(j\beta_{c2}) + \hat{\sigma}_{j}^{2} \sin(j\beta_{c2})) \qquad \text{eq. (3.2)}$$

where β_{c1} is the angle between source matchpoints on the conductor surface of wire 1, its' center, and the horizontal

- $\beta_{\rm c2}$ is the angle between source matchpoints on the conductor surface of wire 2, its' center, and the horizontal
 - σ^1 is the source charge density on the surface of conductor one

 σ^2 is the source charge density on the surface of conductor two

Matchpoints are corresponding points of source and potential points on each conductor and the number of matchpoints depends on the number of harmonics that are used in the Fourier series. For example, if one harmonic is used there will be 3 unknowns σ_0 , σ_j , $\hat{\sigma}_j$ for each conductor. Therefore, to solve for the unknowns uniquely there must be 3 matchpoints around each conductor. If k (number of harmonics) is 2 then there will 5 unknowns so 5 matchpoints must be selected around each conductor. In other words discrete points are selected to represent the source and potential distribution around each conductor. Equations 3.1 and 3.2 can be rewritten in short form sigma notation as follows

$$\sigma^{n} = \sigma_{0}^{n} + \sum_{j=1}^{k} (\sigma_{j} \cos(j\beta_{cn}) + \hat{\sigma}_{j} \sin(j\beta_{cn})) \qquad \text{eq.} (3.3)$$

The variable 'n' is used to denote the wire on which the charge is

placed. Since the system is linear, superposition can be applied, thus the total potential at a point 'P' (see figure 3.1) from a source on wires one and two is given by

$$\phi_{p}^{t} = \phi_{p}^{1} + \phi_{p}^{2} = \sum_{n=1}^{2} \phi_{p}^{n} \qquad \text{eq. (3.4)}$$
where ϕ^{t} = total potential at point 'P'

 ϕ_p^1 = the potential a point 'P' due to a source on wire 1

 ϕ_p^2 = the potential a point 'P' due to a source on wire 2

Calculating the potential from a source charge from wire one as defined in eq.(3.1), the potential ϕ_p^1 (using eq.(2.22) becomes

'P

$$\phi_{p}^{1} = -\frac{r_{1}^{*}\ln(r_{1})}{\epsilon_{o}}\sigma_{o}^{1} + \frac{1}{2\epsilon_{o}}\sum_{j=1}^{k}\frac{(r_{1}^{*})^{j+1}\cos(j\theta_{1})}{jr_{1}^{j}}\sigma_{j}^{1} + \frac{1}{2\epsilon_{o}}\sum_{j=1}^{k}\frac{(r_{1}^{*})^{j+1}\sin(j\theta_{1})}{jr_{1}^{j}}\tilde{\sigma}_{j}^{1} + \frac{1}{2\epsilon_{o}}\sum_{j=1}^{k}\frac{(r_{1}^{*})^{j+1}\sin(j\theta_{1})}{jr_{1}^{j}}\tilde{\sigma}_{j}^{1} + \frac{1}{2\epsilon_{o}}\sum_{j=1}^{k}\frac{(r_{1}^{*})^{j+1}\sin(j\theta_{1})}{jr_{1}^{j}}\tilde{\sigma}_{j}^{1}$$
eq. (3.5)

The potential ϕ_p^2 from a source charge on wire 2 as defined in eq.(3.2) is expressed as

$$\phi_{p}^{2} = -\frac{r^{2}2^{\ln(r_{2})}}{\epsilon_{o}}\sigma_{o}^{2} + \frac{1}{2\epsilon_{o}}\sum_{j=1}^{k}\frac{(r^{2}2)^{j+1}\cos(j\theta_{2})}{jr_{2}^{j}}\sigma_{j}^{2} + \frac{1}{2\epsilon_{o}}\sum_{j=1}^{k}\frac{(r^{2}2)^{j+1}\sin(j\theta_{2})}{jr_{2}^{j}}\tilde{\sigma}_{j}^{2} + \frac{1}{2\epsilon_{o}}\sum_{j=1}^{k}\frac{(r^{2}2)^{j+1}\sin(j\theta_{2})}{jr_{2}^{j}}\tilde{\sigma}_{j}^{2} + \frac{1}{2\epsilon_{o}}\sum_{j=1}^{k}\frac{(r^{2}2)^{j+1}\sin(j\theta_{2})}{jr_{2}^{j}}\tilde{\sigma}_{j}^{2}$$

- where θ_1 is the angle between potential point 'P', the center of source wire 1, and the horizontal
 - θ_2 is the angle between potential point 'P', the center of source wire 2, and the horizontal
 - r_1 is the vector from center to source matchpoints on wire 1
 - r'2 vector from center to source matchpoints on wire 2
 - r vector from center of source wire 1 to point 'P'
 - r2 vector from center of source wire 2 to point 'P'

Substituting eqs.(3.5-3.6) into eq.(3.4), the total potential at a point 'P' can be written in sigma notation as

$$\phi_{p}^{t} = \sum_{n=1}^{2} \left[\frac{r_{n}^{n} \ln(r_{n})}{\epsilon_{o}} \sigma_{o}^{n} + \frac{1}{2\epsilon_{o}j=1} \sum_{j=1}^{k} \frac{(r_{n}^{i})^{j+1} \cos(j\theta_{n})}{jr_{n}^{j}} \sigma_{j}^{n} + \frac{1}{2\epsilon_{o}j=1} \sum_{j=1}^{k} \frac{(r_{n}^{i})^{j+1} \sin(j\theta_{n})}{jr_{n}^{j}} \hat{\sigma}_{j}^{n} \right]$$
where $r \geq r^{*}$, eq. (3.7)

Now the potential function can be descritized using the following change of variables

$$D_{i1}^{1} = -\frac{r_{i}^{2} \ln(r_{i})}{\epsilon_{0}}$$
eq. (3.8)
$$D_{i1}^{2} = -\frac{r_{2}^{2} \ln(r_{2})}{\epsilon_{0}}$$
eq. (3.9)

$$D_{i(j+1)}^{1} = \frac{(r_{i}^{*})^{j+1} \cos(j\theta_{i})}{2\epsilon_{o} jr_{i}^{j}} \qquad \text{eq. (3.10)}$$

$$\hat{D}_{i(j+1)}^{1} = \frac{(r'_{1})^{j+1} \sin(j\theta_{1})}{2\epsilon_{o} jr_{1}^{j}} \qquad eq.(3.11)$$

$$D_{i(j+1)}^{2} = \frac{(r_{2}^{2})^{j+1} \cos(j\theta_{2})}{2\epsilon_{o} jr_{2}^{j}} \qquad \text{eq. (3.12)}$$
$$\hat{D}_{i(j+1)}^{2} = \frac{(r_{2}^{2})^{j+1} \sin(j\theta_{2})}{2\epsilon_{o} jr_{2}^{j}} \qquad \text{eq. (3.13)}$$

The problem now becomes one of bookkeeping, since it is necessary to keep track of the potential points as well as the source points on the surface of each conductor and which wire has the source points and which one has the potential points. Substituting equation (3.8-3.13)

into eq.(3.7) the total potential at each matchpoint 'i' due to corresponding unit sources from each matchpoint 'j' on wires one and two is given by

$$\phi_{i}^{t} = D_{i1}^{1} \sigma_{o}^{1} + \sum_{j=1}^{k} (D_{i(j+1)}^{1} \sigma_{j}^{1} + \hat{D}_{i(j+1)}^{1} \hat{\sigma}_{j}^{1}) + D_{i1}^{2} \sigma_{o}^{2} + \sum_{j=1}^{k} (D_{i(j+1)}^{2} \sigma_{j}^{2} + \hat{D}_{i(j+1)}^{2} \hat{\sigma}_{j}^{2})$$
eq. (3.14)

or in shorthand sigma notation

$$\phi_{i}^{t} = \sum_{n=1}^{2} \left[D_{i1}^{n} \sigma_{o}^{n} + \sum_{j=1}^{k} (D_{i(j+1)}^{n} \sigma_{j}^{n} + \hat{D}_{i(j+1)}^{n} \hat{\sigma}_{j}^{n} \right] \quad \text{eq.} (3.15)$$
where $i = 1, 2, \dots, (2k+1)$

Let 'm' designate the wire on which the potential points are evaluated then eq.(3.15) becomes

$$\phi_{i}^{m} = \sum_{n=1}^{2} \left[D_{i1}^{mn} \sigma_{o}^{n} + \sum_{j=1}^{k} (D_{i(j+1)}^{mn} \sigma_{j} + \widehat{D}_{i(j+1)}^{mn} \widehat{\sigma_{j}}) \right] \text{ eq. (3.16)}$$
where m=1,2
$$i=1,2,3,..,(2k+1) \text{ for each wire}$$

$$\phi_{.}^{m} \text{ is defined as the potential on wire}$$

m at matchpoint i

The term D_{ij}^{mn} is defined as the potential at matchpoint 'i' on wire m due to a unit source charge at matchpoint 'j' on wire n. Since the number of wires in the system is 2, n = m = 2, eq.(3.16) has 2(2k+1) unknowns which implies 2k+1 matchpoints should be selected around each wire to solve for the unknowns, namely σ_0 , σ_j , σ_j . The set of matrix equations that represent eq.(3.16) is shown in eq.(3.17) in partitioned form.

$ \mathbb{D}_{11}^{11} \dots \mathbb{D}_{1(k+1)}^{11} \hat{\mathbb{D}}_{12}^{11} \dots \hat{\mathbb{D}}_{1(k+1)}^{11} \Big \mathbb{D}_{11}^{12} \dots \mathbb{D}_{1(k+1)}^{12} \hat{\mathbb{D}}_{12}^{12} \dots \hat{\mathbb{D}}_{1(k+1)}^{12} \Big $	- b0	$\phi_{\underline{1}}^{i}$
$ D_{21}^{11} \cdots D_{2(k+1)}^{11} \hat{D}_{22}^{11} \cdots \hat{D}_{2(k+1)}^{11} D_{21}^{12} \cdots D_{2(k+1)}^{12} \hat{D}_{22}^{12} \cdots \hat{D}_{2(k+1)}^{12} \hat{D}_{22}^{12} \cdots \hat{D}_{2(k+1)}^{12} $	σ_{1}^{i}	ϕ_2^i
$\hat{D}_{(k+1)1}^{11} \cdots \hat{D}_{(k+1)(k+1)}^{11} = \hat{D}_{(k+1)1}^{12} \cdots \hat{D}_{(k+1)(k+1)}^{12}$	σk	$\phi^{(k+1)}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{\sigma}_{1}^{i}$	φ ¹ (k+2)
$\hat{D}_{(2k+1)1}^{11} \cdots \hat{D}_{(2k+1)(k+1)}^{11} \hat{D}_{(2k+1)1}^{12} \cdots \hat{D}_{(2k+1)(k+1)}^{12}$	σk	$- \phi^{i}_{(2k+1)}$
$ D_{11}^{21} \cdots D_{1(k+1)}^{21} \hat{D}_{12}^{21} \cdots \hat{D}_{1(k+1)}^{21} D_{11}^{22} \cdots D_{1(k+1)}^{22} \hat{D}_{12}^{22} \cdots \hat{D}_{1(k+1)}^{22} $	2 0 0	$-\phi_1^2$
$ D_{21}^{21} D_{2(k+1)}^{21} \hat{D}_{22}^{21} \hat{D}_{2(k+1)}^{21} D_{21}^{22} D_{2(k+1)}^{22} \hat{D}_{22}^{22} \hat{D}_{2(k+1)}^{22} \hat{D}_{22}^{22} \hat{D}_{2(k+1)}^{22} $		¢2
$\hat{D}_{(k+1)1}^{21}$ $\hat{D}_{(k+1)(k+1)}^{21}$ $\hat{D}_{(k+1)1}^{22}$ $\hat{D}_{(k+1)(k+1)}^{22}$	°² ¢k	φ ² (k+1)
$D^{21}_{(k+2)1} \dots \hat{D}^{21}_{(k+2)(k+1)} D^{22}_{(k+2)1} \dots \hat{D}^{22}_{(k+2)(k+1)}$		¢(k+2)
$ \begin{array}{c} D_{(2k+1)1}^{21} \cdots & D_{(2k+1)(k+1)}^{21} \\ D_{(2k+1)1}^{22} \cdots & D_{(2k+1)(k+1)}^{22} \end{array} \\ \end{array} $	~2 Jk	¢(2k+1)

eq. (3.17)

Rewriting equation (3.17) as a single matrix equation the potential becomes

$$[D][\sigma] = [\phi]$$
 eq. (3.18)

Taking the inverse of the 'D' matrix, the solution of the charge density can be found using equation (3.19)

$$[\sigma] = [D]^{-1}[\phi]$$
 eq. (3.19)

Recall the charge density around conductor 1 was given by

$$\sigma^{1}(\beta_{c1}) = \sigma_{0}^{1} + \sum_{j=1}^{k} (\sigma_{j}^{1} \cos(j\beta_{c1}) + \hat{\sigma}_{j}^{1} \sin(j\beta_{c1})) \qquad \text{eq. (3.20)}$$

where
$$\beta_{c1}$$
 is the angle between source matchpoints on the conductor surface of wire 1, its' center, and the horizontal

Integrating over the total surface of the conductor 1 (2π radians) the cosine and sine terms vanish, thus the total charge on the conductor surface is given by

$$q_{1} = \int_{s} \sigma^{1}(\beta_{c1}) ds = \int_{0}^{1} \int_{0}^{2\pi} \sigma^{1}(\beta_{c1}) r_{c1} d\beta_{c1} dl = 2\pi r_{c1} \sigma_{0}^{1}$$
eq. (3.21)

where r_{c1} is the radius of conductor 1

By definition the capacitance is the ratio of static charge on one conductor divided by the potential between the conductors, thus

MUY THE AVERY

$$C = \frac{q_1}{\phi^1 - \phi^2} = \frac{2\pi r_{c1}\sigma_0^1}{\phi^{1 - \phi^2}} = 2\pi r_{c1}\sigma_0^1 \text{ eq. (3.22)}$$

where it has been assumed that ϕ^1 is equal to one volt and ϕ^2 is at ground potential or zero.

The value of capacitance derived for a two wire system using the method of moments compares favorably with the closed form solution eq.(3.23).⁷

$$C = \frac{\pi \epsilon_0}{\cosh^1(d/2r)} \qquad \text{eq. (3.23)}$$

where d is defined as the distance between wire centers r is defined as the radius of the conductor ϵ_0 is defined as the permittivity of air which is equal to 8.85 pFm⁻¹

The tabulated results of the transmission line capacitance computed by the method of moments vs the closed form solution is shown in table 3.1. Analysis of the table indicates that the ratio of center-tocenter separation to conductor radius (d/r) requires more Fourier terms or harmonics when the ratio is small. For larger separations fewer harmonics are required to approximate the closed form solution. The table also indicates that only a few harmonics are required before the approximate method (the method of moments) converges to that of the closed form solution. Table 3.1 also shows the difference in the number of Fourier terms and the CPU time requirements when the system under consideration is a ribbon cable (R) or a wire bundle (B). The reason for this difference will become clearer when multiconductor systems are studied in the next section but for now the reason for the difference is in the number of Fourier terms.

Since there is symmetry about the line shown in figure 3.1, the sine terms cancel out. Therefore, when working with ribbon cables only the average terms plus the cosine terms are used in evaluating the charge density around the conductor. To be more precise 2k+1 terms (matchpoints) are used around the conductor when working with wire bundles whereas only k+1 terms (matchpoints) of the Fourier series are used when working with ribbon cables. Using this symmetry reduces the number of terms as well as the amount of CPU time required to calculate the capacitance.

The input data requirements to run the FORTRAN program for a 2-wire ribbon cable or ripcord with no dielectric insulation surrounding the conductors are listed below.

- 1. Type of configuration [R]
- 2. Option [2]
- 3. Number of wires [2]
- 4. Number of harmonics NHC = [1,2,3,...,19]
- 5. Are all wires solid ? [y]
- 6. Do all wires have the same radius [y]
- 7. Enter the radius of the conductors XRC = [1.0E-3]
- 8. Enter the center-to-center wires separation [XSEP]

The input data requirements to run the FORTRAN program for a 2-wire wire bundle with no dielectric insulation surrounding the conductors is listed below

- 1. Type of configuration [B]
- 2. Option [2]
- 3. Number of wires [2]
- 4. Number of harmonics NHC = [1,3,5,...,15]
- 5. Are all wires solid ? [y]
- 6. Do all wires have the same radius [y]
- 7. Enter the radius of the conductors XRC = [1.0E-3]
- 8. Enter the horizontal distance between wire (1) and wire (2) y(1,2) = (0,0)
- 9. Enter the vertical distance between wire(1) and wire (2) y(1,2) = (0,0)
- 10. Is the reference number the same as the ground reference conductor? Enter y/n, PROMPT = [y]

Inside the brackets [] requires user input in the form of a value or response to the program.

			10 30 80 172 322	36.918 39.934 40.119 40.130 40.130	
4:1					

TABLE 3.1

at lo of							by the	
ratio sep. to cond. radius (d/r)	closed form cap value pF/m	no. of harm.	# o Fou Ter B	of r. ms R	trans. line cap. wire bundle (pF/m)	CPU time (sec)	trans. lin cap. ribbon cable (pF/m)	CPU time (sec)
2.02:1	196.85	1 3 5 7 9 11 13 15 17 19	3 7 1 15 19 23 27 31 35 39	2 4 6 8 10 12 14 16 18 20	76.658 144.04 176.99 189.77 194.34 195.95 196.52 196.73	10 30 80 172 322 541 872 1229	60.055 103.98 137.41 160.44 175.19 184.20 189.54 192.66 194.45 195.48	10 15 25 43 70 106 152 216 300 384
2.5:1	40.133	1 3 5 7 9	3 7 11 15 19	246 810	38.514 40.081 40.128 40.130 40.130	10 30 80 172 322	36.918 39.934 40.119 40.130 40.130	10 15 25 43 70
3:1	28.902	1 3 5	3 7 11	346	28.602 28.899 28.902	10 31 82	28.245 28.890 28.902	10 15 25
4:1	21.122	1 3 5	3 7 11	346	21.082 21.121 21.122	10 31 82	21.032 21.121 21.122	10 15 25
5:1	17.754	1 3 5	3 7 11	346	17.743 17.754	10 32	17.730 17.754 17.754	10 15 25
6:1	15.780	1	3	3	15.776	10	15.772	10

Bare 2-wire ribbon cable capacitance computed by the method of moments vs closed form capacitance

formine the charge on an n-conductor system i
CHAPTER 4

APPLICATION OF THE METHOD OF MOMENTS IN DETERMINING THE CAPACITANCE OF A BARE MULTICONDUCTOR SYSTEM

Recall the definition of capacitance for a bare 2-wire system, i.e., the ratio of static charge on one conductor divided by the potential difference between the conductors

$$C = q/V$$
 eq. (4.1

This is true provided the charge on conductor 1 (q_1) and the charge on conductor 2 (q_2) are equal in magnitude but opposite in sign, i.e.,

$$q_1 = -q_2$$
 eq. (4.2)

If however q_1 and q_2 are arbitrary, the charge on each conductor is described in the following matrix equation

$$\begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \qquad \text{eq. (4.3)}$$
$$q_1 = c_{11}\phi_1 + c_{12}\phi_2 \qquad \text{eq. (4.4)}$$
$$q_2 = c_{21}\phi_1 + c_{22}\phi_2$$

or

where ϕ is the absolute potential with respect to infinity. Equation (4.3) can be expanded to the bare multiconductor case as shown in eq.(4.5)

$$\begin{bmatrix} q_{1} \\ q_{2} \\ \vdots \\ \vdots \\ q_{N} \end{bmatrix} = \begin{bmatrix} C_{11}C_{12} \cdots C_{1N} \\ C_{21}C_{22} \cdots C_{2N} \\ \vdots \\ \vdots \\ C_{1N}C_{2N} \cdots C_{NN} \end{bmatrix} \begin{bmatrix} \phi_{1} \\ \phi_{2} \\ \vdots \\ \vdots \\ \phi_{N} \end{bmatrix} eq. (4.5)$$

where C_{ij} are the terms of the generalized capacitance matrix. Equation (4.5) can be written as a matrix equation as follows

$$[q] = [C][\phi]$$
 eq. (4.6)

To determine the charge on an n-conductor system the

procedure is similar to that of chapter 2, where the n-conductor system is described in figure 4.1

FIG. 4.1 BARE MULITICONDUCTOR SYSTEM As before, assume a Fourier series representation of the charge distribution around each of the n conductors as described below

$$\sigma^{n}(\beta_{cn}) = \sigma_{o}^{n} + \sum_{j=1}^{k} (\sigma_{j}^{n}\cos(j\beta_{cn}) + \hat{\sigma}_{j}^{n} \sin(j\beta_{cn}))$$
eq. (4.7)
where n=1,2,3,...,N

The potential at point 'P' from a source charge from each wire as described by equation (4.7) can be written as follows

$$\begin{split} \phi_{p}^{1} &= -\frac{r^{*}_{1}\ln(r_{1})}{\epsilon_{o}} \sigma_{o}^{1} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \frac{(r^{*}_{1})^{j+1}\cos(j\theta_{1})}{jr_{1}^{j}} \sigma_{j}^{1} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \frac{(r^{*}_{1})^{j+1}\sin(j\theta_{1})}{jr_{1}^{j}} \hat{\sigma}_{j}^{1} \\ \phi_{p}^{2} &= -\frac{r^{*}_{2}\ln(r_{2})}{\epsilon_{o}} \sigma_{o}^{2} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \frac{(r^{*}_{2})^{j+1}\cos(j\theta_{2})}{jr_{2}^{j}} \sigma_{j}^{2} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \frac{(r^{*}_{2})^{j+1}\sin(j\theta_{2})}{jr_{2}^{j}} \hat{\sigma}_{j}^{2} \end{split}$$

: eq. (4.9)

$$\phi_{p}^{N} = -\frac{\mathbf{r}^{\prime} \mathbf{N}^{\ln(\mathbf{r}_{N})}}{\epsilon_{o}} \sigma_{o}^{N} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \frac{(\mathbf{r}^{\prime} \mathbf{N})^{j+1} \cos(j\theta_{N})}{j\mathbf{r}_{N}^{j}} \sigma_{j}^{N} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \frac{(\mathbf{r}^{\prime} \mathbf{N})^{j+1} \sin(j\theta_{N})}{j\mathbf{r}_{N}^{j}} \hat{\sigma}_{j}^{N}$$

eq.(4.10)

where ϕ_p^1 is the potential a point 'P' due to a source one wire 1 ϕ_p^2 is the potential a point 'P' due to a source one wire 2 ϕ_p^N is the potential a point 'P' due to a source one wire N θ_1 is the angle between potential point 'P', center of source wire 1, and the horizontal θ_2 is the angle between potential point 'P', center of source wire 2, and the horizontal θ_N is the angle between potential point 'P', center of source wire 2, and the horizontal

 r'_{1} vector from center to source matchpoint on wire 1 r'_{2} vector from center to source matchpoint on wire 2 r'_{N} vector from center to source matchpoint on wire N r_{1} vector from center of source wire 1 to point 'P' r_{2} vector from center of source wire 2 to point 'P' r_{N} vector from center of source wire N to point 'P'

Using superposition, the potential at point 'P' due to sources from all n conductors is

$$\phi_p^t = \phi_p^1 + \phi_p^2 + \dots + \phi_p^N = \sum_{n=1}^N \phi_p^n$$
 eq. (4.11)

where ϕ_p^t = total potential at point 'P' from each source wire Summing the contributions to the potential from all wires, as described in eqs.(4.8-4.10), the total potential at a point 'P' can be as follows

$$\phi_{p}^{t} = \sum_{n=1}^{N} \left[\frac{r_{n}^{t} \ln(r_{n})}{\epsilon_{o}} \sigma_{o}^{n} + \frac{1}{2\epsilon_{o}^{t} j=1} \sum_{j=1}^{k} \frac{(r_{n}^{t})^{j+1} \cos(j\theta_{n})}{jr_{n}^{j}} \sigma_{j}^{n} + \frac{1}{2\epsilon_{o}^{t} j=1} \sum_{j=1}^{k} \frac{(r_{n}^{t})^{j+1} \sin(j\theta_{n})}{jr_{n}^{j}} \hat{\sigma}_{j}^{n} \right]$$

$$eq. (4.12)$$

The potential function can be descritized in terms of 'D' by the following change in variables

the sources

$$D_{11}^{1} = -\frac{r^{*}_{1} \ln(r_{1})}{\epsilon_{o}} \qquad eq. (4.13)$$

$$D_{11}^{2} = -\frac{r^{*}_{2} \ln(r_{2})}{\epsilon_{o}} \qquad eq. (4.14)$$

$$D_{11}^{N} = -\frac{r^{*}_{N} \ln(r_{N})}{\epsilon_{o}} \qquad eq. (4.15)$$

$$D_{1}^{1}(j+1) = \frac{(r^{*}_{1})^{j+1} \cos(j\theta_{1})}{2\epsilon_{o} jr^{j}} \qquad eq. (4.16)$$

$$D_{1}^{2}(j+1) = \frac{(r^{*}_{2})^{j+1} \cos(j\theta_{2})}{2\epsilon_{o} jr^{j}} \qquad eq. (4.17)$$

$$\vdots$$

$$D_{1}^{N}(j+1) = \frac{(r^{*}_{1})^{j+1} \sin(j\theta_{2})}{2\epsilon_{o} jr^{j}} \qquad eq. (4.19)$$

$$\hat{D}_{1}^{2}(j+1) = \frac{(r^{*}_{2})^{j+1} \sin(j\theta_{2})}{2\epsilon_{o} jr^{j}} \qquad eq. (4.20)$$

$$\hat{D}_{i(j+1)}^{N} = \frac{(r'_{N})^{j+1} \sin(j\theta_{N})}{2\epsilon_{o} jr^{j}} \qquad \text{eq.}(4.21)$$

26

Substituting equations (4.13-4.21) into equation (4.12) the total potential at the i-th matchpoint due to a source on the j-th matchpoint is given by

$$\phi_{i}^{t} = \sum_{n=1}^{N} \left[D_{i1}^{n} \sigma_{o}^{n} + \sum_{j=1}^{k} (D_{i(j+1)}^{n} \sigma_{j}^{n} + \hat{D}_{i(j+1)}^{n} \hat{\sigma}_{j}^{n}) \right] \quad \text{eq.} (4.22)$$

Again letting 'm' designate the wire on which the potential matchpoints are to be evaluated equation (4.22) becomes

$$\phi_{i}^{m} = \sum_{n=1}^{N} \left[D_{i1}^{mn} \sigma_{o}^{n} + \sum_{j=1}^{k} (D_{i(j+1)}^{mn} \sigma_{j}^{n} + \hat{D}_{i(j+1)}^{mn} \hat{\sigma}_{j}^{n}) \right] eq.(4.23)$$

Looking at eq.(4.23) there are Nx(2k+1) unknowns, therefore (2k+1) distinct matchpoints must be selected on each conductor to uniquely determine the charge density. A set of n matrix equations can be written for the n-conductor system as follows

$$\begin{bmatrix} D^{11} D^{12} & \dots & D^{1N} \\ D^{21} D^{22} & \dots & D^{2N} \\ \vdots & \vdots & & \vdots \\ D^{N1} D^{N2} \dots & D^{1N} \end{bmatrix} \begin{bmatrix} \sigma^{1} \\ \sigma^{2} \\ \vdots \\ \sigma^{N} \end{bmatrix} = \begin{bmatrix} \phi^{1} \\ \phi^{2} \\ \vdots \\ \phi^{N} \end{bmatrix} eq. (4.24)$$

Where each D^{mn} submatrix is a (2k+1)(2k+1) matrix which relates the sources on wire n to the potential matchpoints on wire m. A typical submatrix is given below

$$D^{mn} = \begin{bmatrix} D_{11}^{mn} & D_{12}^{mn} & \cdots & D_{1(k+1)}^{mn} & \hat{D}_{12}^{mn} & \cdots & \hat{D}_{1(k+1)}^{mn} \\ D_{21}^{mn} & D_{22}^{mn} & \cdots & D_{2(k+1)}^{mn} & \hat{D}_{22}^{mn} & \cdots & \hat{D}_{2(k+1)}^{mn} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ D_{(2k+1)1}^{mn} & \cdots & D_{(2k+1)(k+1)}^{mn} & \hat{D}_{(2k+1)2}^{mn} & \cdots & \hat{D}_{(2k+1)(k+1)}^{mn} \end{bmatrix}$$

eq. (4.25)

where

 D_{ij}^{mn} is defined as before and vectors σ^n and ϕ^m are

$$\sigma^{n} = \begin{bmatrix} \sigma_{0}^{n} \\ \vdots \\ \sigma_{k}^{n} \\ \hat{\sigma}_{1}^{n} \\ \vdots \\ \hat{\sigma}_{k}^{n} \end{bmatrix} eq. 4.26) \qquad \phi^{m} = \begin{bmatrix} \phi_{1}^{m} \\ \vdots \\ \phi_{k+1}^{m} \\ \phi_{k+2}^{m} \\ \vdots \\ \phi_{2k+1}^{m} \end{bmatrix} eq. (4.27)$$

where n = 1,2,3,...,N and m = 1,2,3,...N Rewriting eq. (4.24), the matrix equations in shorthand notation becomes $[D][\sigma] = [\phi] \qquad \text{eq. (4.28)}$

Solving for the charge density, eq. (4.24) becomes

$$[\sigma] = [D]^{-1}[\phi]$$
 eq. (4.29)

Now let $T = D^{-1}$, then eq.(4.29) can be expressed as

$$\begin{bmatrix} \sigma^{1} \\ \sigma^{2} \\ \vdots \\ \sigma^{N} \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1N} \\ T_{21} & T_{22} & \cdots & T_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NN} \end{bmatrix} \begin{bmatrix} \phi^{1} \\ \phi^{2} \\ \vdots \\ \phi^{N} \end{bmatrix} \quad eq. (4.30)$$

where the T_{mn} submatrix is a $(2k+1)\times(2k+1)$ matrix. Recall the charge per unit length distribution on the i-th conductor as

$$\sigma^{i}(\beta_{ci}) = \sigma_{o}^{i} + \sum_{j=1}^{k} (\sigma_{j}^{i}\cos(j\beta_{ci}) + \hat{\sigma}_{j}^{i}\sin(j\beta_{ci})) \quad \text{eq. (4.31)}$$

The total charge per unit length on the i-th conductor is given as

$$q_{i} = \int_{s} \sigma^{i}(\beta_{ci}) ds = \int_{0}^{1} \int_{0}^{2\pi} \sigma^{i}(\beta_{ci}) r_{ci} d(\beta_{ci}) dl \qquad eq. (4.32)$$

where r_{ci} = radius of the i-th conductor σ^{i} = charge density of the i-th conductor β_{ci} = angle between source matchpoints on the conductor surface, its center, and the horizontal

Substituting eq.(4.31) into eq.(4.32) and integrating around the conductor surface, the charge per unit length on the i-th conductor becomes

$$q_{i} = \int_{0}^{1} \int_{0}^{2\pi} \left[\sigma_{o}^{i} + \sum_{j=1}^{k} \left(\sigma_{j}^{i} \cos(j\beta_{ci}) + \hat{\sigma}_{j}^{i} \sin(j\beta_{ci}) \right) \right] r_{ci} d(\beta_{ci}) dl$$

$$eq. (4.33)$$

When the charge density is integrated around the conductor, the sine and cosine integrals drop out leaving the average charge density term in the Fourier series, thus the charge per unit length around the conductor is given by

$$q_{i} = \int_{0}^{12\pi} \int_{0}^{1} \sigma_{o}^{i} r_{ci} d\beta_{ci} dl = 2\pi r_{ci} \sigma_{o}^{i} \qquad eq. (4.34)$$

$$0 \quad 0 \qquad \text{where } i = 1, 2, 3, ..., N$$

Thus the charge per unit length on each n conductors is given by

$$q_{1} = 2\pi r_{c1} \sigma_{0}^{1} \qquad eq. (4.35)$$

$$q_{2} = 2\pi r_{c2} \sigma_{0}^{2} \qquad eq. (4.36)$$

$$\vdots$$

$$q_N = 2\pi r_{cN} \sigma_0^N \qquad eq. (4.37)$$

Looking at equation (4.30) the charge density on the surface of the i-th conductor can be expressed in terms of T as follows

$$\sigma^{i} = T_{i1}\phi^{1} + T_{i2}\phi^{2} + ... + T_{iN}\phi^{N}$$
 eq. (4.38)

Since only the average charge density is requred to describe the charge on each wire, eqs. (4.35-4.37), only the first term of the σ^{n} vector is used, see eq.(4.26). Thus, only the first row of the T matrix is needed to determine the average charge density of the i-th conductor. Rewriting eq.(4.38), the average charge density is is expressed in terms of T as follows

$$\sigma_{0}^{i} = T_{i1}^{i} \phi^{1} + T_{i2}^{i} \phi^{2} + T_{i3}^{i} \phi^{3} + \dots + T_{iN}^{i} \phi^{N} \qquad \text{eq.} (4.39)$$

where T_{ij} is defined as a 1xn vector whose elements consist of the first row of the T_{ij} submatrix. Substituting eq.(4.39) into eq.(4.34) the charge per unit length on the i-th conductor becomes

$$q_i = 2\pi r_{ci} \sum_{j=1}^{N} T_{ij}^1 \phi^j$$
 eq. (4.40)
where i=1,2,3,....,N

Since there are (2k+1) matchpoints on each conductor, the charge per unit length on each conductor can be expressed as

$$q_{1} = 2\pi r_{c1} \left[\sum_{m=1}^{2k+1} T_{11}^{im} \phi^{1} + \sum_{m=1}^{2k+1} T_{12}^{im} \phi^{2} + \dots \sum_{m=1}^{2k+1} T_{1N}^{im} \phi^{N} \right] eq. (4.41)$$

$$q_{2} = 2\pi r_{c2} \left[\sum_{m=1}^{2k+1} T_{21}^{im} \phi^{1} + \sum_{m=1}^{2k+1} T_{22}^{im} \phi^{2} + \dots \sum_{m=1}^{2k+1} T_{2N}^{im} \phi^{N} \right] eq. (4.42)$$

$$\vdots$$

$$q_{N} = 2\pi r_{cN} \left[\sum_{m=1}^{2k+1} T_{N1}^{im} \phi^{1} + \sum_{m=1}^{2k+1} T_{N2}^{im} \phi^{2} + \dots \sum_{m=1}^{2k+1} T_{NN}^{in} \phi^{N} \right] eq. (4.43)$$

or the charge per unit length on the i-th conductor can be expressed in sigma notation as

$$q_{i} = 2\pi r_{ci} \sum_{j=1}^{N} \left[\sum_{m=1}^{2k+1} T_{ij}^{1m} \phi^{j} \right] \qquad \text{eq. (4.44)}$$

where T_{ij}^{pq} is an element of T_{ij} in the p-th row and q-th column

i = 1,2,3,...,N Recall the matrix equation for determining the charge of an n-

conductor system

$$\begin{bmatrix} q_{1} \\ q_{2} \\ \vdots \\ q_{N} \end{bmatrix} = \begin{bmatrix} C_{11}C_{12} & \cdots & C_{1N} \\ C_{21}C_{22} & \cdots & C_{2N} \\ \vdots & \vdots & & \vdots \\ C_{N1}C_{N2} & \cdots & C_{NN} \end{bmatrix} \begin{bmatrix} \phi^{1} \\ \phi^{2} \\ \vdots \\ \phi^{N} \end{bmatrix} eq. (4.45)$$

Rewriting eq. (4.45) in sigma notation the equation for the charge becomes

$$=\sum_{j=1}^{N} C_{ij} \phi^{j}$$
 eq. (4.46)

where i = 1, 2, 3, ..., N

Equating the two series, eqs.(4.46 and 4.44), term by term and assuming the potential is the same at all matchpoints for all nconductors the expression becomes

qi

$$\sum_{j=1}^{N} C_{ij} \phi^{j} = \sum_{j=1}^{N} \left[2\pi r_{ci} \sum_{m=1}^{2k+1} T_{ij}^{1m} \right] \phi^{j} \quad \text{eq. (4.47)}$$
$$= 1, 2, 3, ..., n$$

Thus each term in the generalized capacitance matrix is found by

 $C_{ij} = 2\pi r_{ci} \sum_{m=1}^{2k+1} T_{ij}^{1m}$ eq.(4.48)

Simply stated, the elements of the generalized capacitance matrix C_{ij} can be found by adding all the terms in the first row of the ij-th submatrix of T.

CHAPTER 5

DETERMINATION OF THE TRANSMISSION LINE CAPACITANCE FROM THE GENERALIZED CAPACITANCE MATRIX

To determine the terms of the transmission line capacitance matrix from the generalized capacitance matrix, recall the matrix equation to determine the free charge (q_f) on each conductor for an n-conductor system.

$$\begin{bmatrix} q_{1} \\ q_{2} \\ \vdots \\ q_{N} \end{bmatrix} = \begin{bmatrix} q_{1f} \\ q_{2f} \\ \vdots \\ q_{Nf} \end{bmatrix} = \begin{bmatrix} C_{11} C_{12} \cdots C_{1N} \\ C_{21} C_{22} \cdots C_{2N} \\ \vdots \\ \vdots \\ C_{N1} C_{N2} \cdots C_{NN} \end{bmatrix} \begin{bmatrix} \phi^{1} \\ \phi^{2} \\ \vdots \\ \phi^{N} \end{bmatrix} \qquad eq. (5.1)$$

where C is defined as the generalized capacitance matrix, q_{if} denotes the free charge on conductor i, and ϕ^i indicates the potential on on conductor i with respect to infinity. For this discussion, the n-th conductor will be chosen as the reference conductor and the transmission line voltages will be defined by 8,9,10

$$V_i = (\phi^i - \phi^N)$$
 $i=1,2,3,...,N$ eq. (5.2)

Therefore the free charge in terms of transmission line voltage is given by

$$\begin{bmatrix} q_{1f} \\ q_{2f} \\ \vdots \\ q_{(N-1)f} \end{bmatrix} = \begin{bmatrix} c_{11}c_{12}\cdots c_{1(N-1)} \\ c_{21}c_{22}\cdots c_{2(N-1)} \\ \vdots \\ \vdots \\ c_{(N-1)1}\cdots c_{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} V_{1} \\ V_{2} \\ \vdots \\ V_{(N-1)} \end{bmatrix} eq. (5.3)$$

Where c is defined as the transmission line capacitance matrix and it is assumed that the reference conductor satisfies the following constraint

$$q_{Nf} = -\sum_{i=1}^{N-1} q_{if}$$
 eq. (5.4)

To express the charge on the i-th conductor in terms of transmission line voltages, subtract and add terms of eq.(5.1) as follows

$$q_{if} = (C_{i1}\phi^{1} - C_{i1}\phi^{N}) + (C_{i2}\phi^{2} - C_{i2}\phi^{N}) + \dots + (C_{iN}\phi^{N} - C_{iN}\phi^{N}) + (C_{i1}\phi^{N} + \dots + C_{iN}\phi^{N})$$

eq. (5.5)

Factoring out like terms equation (5.5) becomes

$$q_{if} = C_{i1}(\phi^{1} - \phi^{N}) + C_{i2}(\phi^{2} - \phi^{N}) + \dots + C_{iN}(\phi^{N} - \phi^{N}) + \sum_{m=1}^{N} (C_{im})\phi^{N}$$
eq.(5.6)

Subsituting eq. (5.2) into eq. (5.6) the free charge on the i-th conductor can be found as follows

$$q_{if} = C_{i1}V_1 + C_{i2}V_2 + \dots + C_{i(N-1)}V_{(N-1)} + (\sum_{m=1}^{N} C_{im}\phi^N)_{eq.(5.7)}$$

To solve for ϕ^N express eq.(5.7) for each conductor and use eq. (5.4) as a constraint, thus

$$q_{1f} = C_{11}V_1 + C_{12}V_2 + \dots + C_{1(N-1)}V_{(N-1)} + \sum_{m=1}^{N} C_{1m}\phi^N \quad eq. (5.8)$$

$$q_{2f} = c_{21}v_1 + c_{22}v_2 + \dots + c_{2(N-1)}v_{(N-1)} + \sum_{m=1}^{N} c_{2m}\phi^{N}$$
 eq. (5.9)

$$q_{3f} = c_{31}v_1 + c_{32}v_2 + \dots + c_{3(N-1)}v_{(N-1)} + \sum_{m=1}^{N} c_{3m}\phi^N$$
 eq. (5.10)

$$^{(N-1)} = ^{C} ^{(N-1)} ^{V_{1}} + ^{C} ^{(N-1)} ^{V_{2}} + \dots + ^{C} ^{(N-1)} ^{(N-1)} ^{V_{(N-1)}} + \sum_{m=1}^{N} ^{C} ^{(N-1)} m^{\phi^{N}} eq. (5.11)$$

$$\sum_{i=1}^{N} q_{if} = q_{Nf} = C_{N1} V_1 + C_{N2} V_2 + \dots + C_{N(N-1)} V_{(N-1)} + \sum_{m=1}^{N} C_{Nm} \phi^{N} = q.(5.12)$$

Adding eqs. (5.8-5.12) and grouping like terms yields

$$0 = \left[\sum_{m=1}^{N} C_{m1}\right] \vee_{1} + \left[\sum_{m=1}^{N} C_{m2}\right] \vee_{2} + \left[\sum_{m=1}^{N} C_{m3}\right] \vee_{3} + \dots + \left[\sum_{m=1}^{N} C_{m(N-1)}\right] \vee_{(N-1)} + \left[\sum_{m=1}^{N} C_{1m} + \sum_{m=1}^{N} C_{2m} + \sum_{m=1}^{N} C_{3m} + \dots + \sum_{m=1}^{N} C_{Nm}\right] \phi^{N} \quad \text{eq. (5.13)}$$

Solving for
$$\phi^{N}$$
 yields

$$\phi^{N} = -\frac{\sum_{k=1}^{N-1} \left[\sum_{m=1}^{N} C_{mk} V_{k}\right]}{\sum_{p=1}^{N} \left[\sum_{m=1}^{N} C_{pm}\right]} \quad eq. (5.14)$$

To determine the terms of the transmission line capacitance matrix, see eq. (5.3), from the generalized capacitance matrix, see eq. (5.1), substitute eq.(5.14) into eq.(5.7)

Let
$$A_i = \sum_{m=1}^{N} C_{im}$$
 and $D = \sum_{p=1}^{N} \left[\sum_{m=1}^{N} C_{pm} \right]$ in eqs. (5.7 and 5.14)

respectively. Upon substituting D, A_i , and the value of ϕ into eq.(5.7), the charge on conductor one becomes

$$q_{1f} = C_{11}V_1 + C_{12}V_2 + \dots + C_{1(N-1)}V_{(N-1)} - \frac{A_1N^{-1}}{D}\sum_{k=1}^{N-1} \left[\sum_{m=1}^{N} C_{mk}V_k\right]$$
eq. (5.15)

Expanding the last term of eq. (5.15) the free charge on conductor one becomes

$$q_{1f} = C_{11} V_1 + C_{12} V_2 + \dots + C_{1(N-1)} V_{(N-1)} - \frac{A_1}{D} \left[\sum_{m=1}^{N} C_{m1} V_1 + \dots + \sum_{m=1}^{N} C_{m(N-1)} V_{(N-1)} \right]$$
eq. (5.16)

Grouping like terms in eq.(5.16) the charge on conductor one is

$$q_{1f} = (C_{11} - \frac{A_1}{D} \sum_{m=1}^{N} C_{m1}) V_1 + (C_{12} - \frac{A_1}{D} \sum_{m=1}^{N} C_{m2}) V_2 + \dots + (C_{1(N-1)} - \frac{A_1}{D} \sum_{m=1}^{N} C_{1(N-1)}) V_{(N-1)}$$
eq. (5.17)

Equation (5.17) can be expanded for the remaining conductors in matrix form as follows

$$\begin{bmatrix} q_{1f} \\ \vdots \\ q_{(N-1)f} \end{bmatrix} \begin{bmatrix} (C_{11} - \frac{A_1}{D} \sum_{m=1}^{N} C_{m1}) & \dots & (C_{1(N-1)} - \frac{A_1}{D} \sum_{m=1}^{N} C_{m(N-1)} \\ \vdots & A_{(N-1)} \sum_{m=1}^{N} C_{m(N-1)} & \vdots & A_{(N-1)} \sum_{m=1}^{N} C_{m(N-1)} \\ (C_{(N-1)1} - \frac{A_{(N-1)}}{D} \sum_{m=1}^{N} C_{m(N-1)} \cdots & (C_{(N-1)(N-1)} - \frac{(N-1)}{D} \sum_{m=1}^{N} C_{m(N-1)} \\ \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_{N-1} \end{bmatrix}$$
erg. (5, 18)

In order for the matrix equations, eqs. (5.18 and 5.3), to be equal each term of the transmission line capacitance matrices must be equal, therefore

$$c_{ij} = C_{ij} - \frac{A_i}{D} \sum_{m=1}^{N} C_{mj}$$
 where $i, j=1, 2, 3, ..., (N-1)$

Substituting the values of A_i and D into eq. (5.19) produces the final equation for determining the terms of the transmission line capacitance matrix from the generalized capacitance matrix as shown in eqs (5.20).

In other words, c_{int} actually describes the capacitance between wires, one and five and c , describes the self capacitance of wire S, etc.,

(5.20)ea. where i, j=1,2,...,(N-1)

It should be pointed out that the above development was based on the fact that the last wire in the system was selected as ground reference. The program, however, allows the user to start with another ground reference or to change the ground reference. <u>Caution</u> should be taken in interpreting the results of the transmission line capacitance matrix. For example, if the system consists of 10 wires and wire 4 is selected as reference, the elements of the transmission line capacitance matrix whose row and/or column indices (subscripts). are equal to or greater than that of the reference number must be increased by one. Those indices which are less than the reference number remain unchanged. In this example the position of the elements in the transmission line capacitance matrix are described as follows

position -> actual capacitance value

$c_{i,i} \rightarrow c_{i,i}$	$c_{1,2} \rightarrow c_{1,2}$	$c_{2,1} \rightarrow c_{2,1}$
$c_{2,2} \rightarrow c_{2,2}$	$c_{1,3} \rightarrow c_{1,3}$	$c_{3,1} \rightarrow c_{3,1}$
c _{3,3} -> c _{3,3}	$c_{1,4} \rightarrow c_{1,5}$	$c_{4,1} \rightarrow c_{5,1}$
C4,4 -> C5,5	$c_{1,5} \rightarrow c_{1,6}$	$c_{5,1} \rightarrow c_{6,1}$
S are present but	mandel 11 The	Itarroal barrow w
C9,9 -> C10,10	$c_{1,9} \rightarrow c_{1,10}$	$c_{9,1} \rightarrow c_{10,1}$

In other words, $c_{1,4}$ actually describes the capacitance between wires one and five and $c_{1,4}$ describes the self capacitance of wire 5, etc..

36

An actual run of the program where wire one is selected as reference is shown in appendix B tables(B.1-B.6). Table B.1 shows the generalized capacitance matrix for the four wire system and table B.2 shows the transmission line capacitance matrix. In this example, c_{11} in the transmission line capacitance matrix actually describes the self capacitance of wire 2. Element c_{12} of the transmission line capacitance matrix is actually the capacitance between wires 2 and 3, and element c_{13} is the capacitance between wires 2 and 4. The data listed in appendix B tables (B.1-B.6) are base on a bare wire system as shown in figure 5.1.

FIG 5.1 BARE 4-WIRE WIRE BUNDLE

The diagonal terms of the generalized and transmission line capacitance matrices are called the self-capacitance terms which is the ratio of charge to potential of the i-th conductor when the other conductors are present but grounded.¹¹ The diagonal terms will always be positive since the potential and the charge have the same sign. The off-diagonal terms are called mutual capacitance or

coefficient of induction terms which are defined as the ratio of the induced charge on the i-th conductor to the potential of the j-th conductor when all conductors, except the j-th, are grounded. The induced charge is always opposite in sign to that of the inducing charge so the off-diagonal terms will always be negative or zero.

The reader may also note that the off-diagonal terms are not equal at first but converge to the same value when more harmonics are selected. The reason for this will be shown in chapter 6. It should be pointed out that the capacitance matrix should be and is symmetric and positive definite, thus according to W. L. Brogan the eigenvalues of the D matrix will be all positive and Cholesky's decomposition can be used to find the inverse of the D matrix. ¹⁶ Even though the inverse can be quickly found in this manner, the inverse of the D matrix is found using Newton-Raphson method with maximum pivot. This inverting technique is copied from IBM software library. Even though this technique is slower it is used because when the diagonal terms converge to a common value it implies that the user has a good representation of the charge distribution around the conductor surfaces.

The input data requirements for running the Fortran program for this wire bundle configuration are as follows

- 1. Select Configuration [B]
- 2. Enter Option [2]
- 3. Enter # of wires [4]
- 4. Enter # of cosine or sine terms around the conductor, i.e., the # of harmonics around the conductor NHC) = [1,5,9]
- 5. Are all wires solid ? [y]
- 6. Do all wires have the same radius [n]
- 7. Enter wire # no.= [1]
- 8. Enter radius of wire (1) RC(1)= [1.5E-3]
- 9. Enter wire # no.= [2]
- 10. Is RC(2)=RC(1)? Enter y/n [y]
- 11. Enter wire # no.= [3]

- 12. Is RC(3)=RC(2)? Enter y/n [n]
- 13. Enter radius of wire (3) RC(3)= [2.0E-3]
- 14. Enter wire # no.= [4]
- 15. Is RC(4)=RC(3)? Enter y/n [n]
- 16. Enter radius of wire (4) RC(4) = [1.0E-3]
- 17. Enter the horizontal distance between wire (1) and wire (2)

X(1,2) = 0.0 (meters)

18. Enter the vertical distance between wire (1) and wire (2)

Y(1,2) = -4.0E-3 (meters)

19. Enter the horizontal distance between wire (1) and wire (3)

X(1,3) = 4.0E-3 (meters).

20. Enter the vertical distance between wire (1) and wire (3)

Y(1,3) = 0.0 (meters)

21. Enter the horizontal distance between wire (1) and wire (4)

X(1,4) = 4.0E-3 (meters)

22. Enter the vertical distance between wire (1) and wire (4)

$$Y(1,4) = -4.0E-3$$
 (meters)

23. Is the reference number the same as the ground reference conductor? Enter y/n, PROMPT = [y]

Note that all relative distances are measured from the reference wire, wire(1). The brackets [] indicate the actual value or response which must be entered in the FORTRAN program. It should be pointed out that the CPU time given in tables (B.3,B.5,B.7,B.9) are based on a VAX 750.

The variables in Figure 6. CHAPTER 6

APPLICATION OF THE METHOD OF MOMENTS IN DETERMINING THE CAPACITANCE OF A DIELECTRIC COATED MULITCONDUCTOR SYSTEM

When working with dielectric coated wires, additional boundary conditions are needed to solve for the unknown charge density residing on the conductor surface as well as the dielectric surface. When a dielectric is introduced into an electric field, it causes an additional charge to be present on the conductor surface. This charge is a results of the electric field passing through the dielectric. The charge on the dielectric, known as "bound charge", induces a charge on the conductor surface of equal magnitude but opposite in sign. This additional induced charge plus the "free charge" residing on the conductor surface must be taken into account when calculating the potential and electric fields from a dielectric coated wire. It is assumed that the dielectric coated conductor system is shown below.

FIG. 6.1 DIELECTRIC COATED MULTICONDUCTOR SYSTEM

The variables in Figure 6.1 are defined as follows:

- r_{ci} = radius of the i-th conductor
- r_{di} = radius of the dielectric of the i-th conductor
- β_{ci} = angle between matchpoints on the conductor surface, its' center, and the horizontal
- β_{di} = angle between matchpoints on the dielectric surface, its' center, and the horizontal θ_i = angle between point 'P', the center of source wire i,
 - and the horizontal
 - P = potential field point
- $\sigma(\beta_{\rm di})$ = surface charge density from bound charge on the dielectric surface
- $\sigma(\beta_{ci})$ = surface charge density from bound and free charge on the conductor surface
 - q; = the total static charge on the i-th conductor
 - ϕ_i = the absolute potential of the i-th conductor

 ϵ_{ri} = the relative permittivity of the dielectric on the i-th wire

Based on the knowledge gained from the development of a bare multiconductor system the following boundary conditions are assumed to exist on each wire.

- 2k+1 term Fourier series around the conductor surface and 21+1 term Fourier series around the dielectric surface
- 2. 2k+1 matchpoints around the conductor surface and 2l+1 matchpoints around the dielectric surface
- 3. A constant potential is placed on each conductor surface and it is assumed that the potential at each matchpoint is the same.
- 4. The potential on the dielectric surface is equal to zero volts.
- Note: 1. The term conductor surface denotes the conductordielectric interface and the term dielectric surface denotes the dielectric-free space interface.
 - 2. 21+1 matchpoints are placed on the dielectric surface, where 1 k. The increase in the number of terms is needed to compensate for the decrease in accuracy since the dielectric boundaries are closer to each other than those of the conductor surfaces.

The matrix equation which describes a dielectric coated multiconductor system is of the following form

$$\begin{bmatrix} D^{mn} & D^{mn'} \\ D^{m'n} & D^{m'n'} \end{bmatrix} \begin{bmatrix} \sigma^{n} \\ \sigma^{n'} \end{bmatrix} = \begin{bmatrix} \phi^{m} \\ 0^{m'} \end{bmatrix} eq.(6.1)$$

where m,n,m',n'=1,2,...,N

The variables in equation (6.1) are defined as follows

σn

σ^Π

\$^m

0^m

- D^{mn} is defined as a submatrix which contains the potentials at
 - (2k+1) matchpoints on conductor m due to a unit charge at
 - (2k+1) matchpoints on conductor n.
- D^{mp²} is defined as a submatrix which contains the potentials at (2k+1) matchpoints on conductor m due to a unit charge at (2L+1) matchpoints on dielectric surface on wire n.
- D^{m'n} is defined as a submatrix which contains the difference in the normal component of the displacement vector at (21+1) matchpoints "just inside" and "just outside" the dielectric surface of wire m due to a unit charge at (2k+1) matchpoints on conductor surface n.
- D^{m'n'} is defined as a submatrix which contains the difference in the normal component of the displacement vector at (21+1) matchpoints "just inside" and " just outside" the dielectric surface of wire m due to a unit charge at (21+1) matchpoints on dielectric surface of wire n.
 - is defined as a vector containing the surface charge density (from free and bound charge) at (2k+1) matchpoints on conductor n
 - is defined as a vector containing the surface charge density (from bound charge) at (21+1) matchpoints on the dielectric surface of wire n.
 - is defined as a vector containing the potentials at (2k+1) matchpoints on conductor surface m
 - is defined as a vector containing the difference of the normal component of the displacement vector at (21+1) matchpoints on the dielectric surface of wire m.
 - It is assumed that the charge density on the i-th conductor

surface is defined mathematically by the Fourier series as follows

$$\sigma^{i} = \sigma_{o}^{i} + \sum_{j=1}^{k} \sigma_{j}^{i} \cos(j\beta_{ci}) + \sum_{j=1}^{k} \hat{\sigma}_{j}^{i} \sin(j\beta_{ci}) \quad \text{eq.} (6.2)$$

and the charge density on the i-th dielectric surface is described by

$$\sigma^{i'} = \sigma_{o}^{i'} + \sum_{j=1}^{l} \sigma_{j}^{i'} \cos(j\beta_{di}) + \sum_{j=1}^{l} \hat{\sigma}_{j}^{i'} \sin(j\beta_{di}) \quad \text{eq.} (6.3)$$

The submatrices D^{mn} and D^{mn'} in the upper portion of eq.(6.1) denote the potentials on conductor m due to a unit magnitude charge on boundary n. The submatrices D^{m'n} and D^{m'n'} in the lower portion denote the difference between the normal component of the displacement vector just inside and just outside boundary m due to a unit charge on boundary n. The boundary condition denoting the difference between the normal component of the displacement vector just inside is described mathematically as follows

$$D_n^i - D_n^o = 0$$
 eq. (6.4)

The displacement vector 'D' can be expressed in terms of the electric field intensity by the following equation.

$$D = \epsilon E \qquad eq. (6.5)$$

Substituting equation (6.5) into equation (6.4) the difference in the normal component of the displacement vector in terms of electric field intensity is

$$\epsilon E_n^i - \epsilon_0 E_n^o = \epsilon_r \epsilon_0 E_n^i - \epsilon_0 E_n^o = 0 \qquad \text{eq. (6.6)}$$
$$\epsilon_r E_n^i - E_n^o = 0 \qquad \text{eq. (6.7)}$$

or

where

D¹_n = normal component of the surface charge density "just inside" the dielectric

D^o = normal component of the surface charge density "just outside" the dielectric

 ϵ = dielectric constant of the dielectric

 $\epsilon_{o} = \text{dielectric constant of air and equal to 8.85 \times 10^{-1}$

 $\epsilon_{\rm r}$ = relative dielectric constant

 E_n^i = normal component of the electric field intensity "just inside" the dielectric

 $E_n^o = normal component of the electric field intensity "just outside" the dielectric$

To determine the electric field from the potential function when a dielectric is present, recall that when $r \ge r'$ the potential is given by

$$\phi(\mathbf{r},\theta) = -\sigma_0 \frac{\mathbf{r}^2 \ln(\mathbf{r})}{\epsilon_0} + \frac{1}{2\epsilon_0} \sum_{j=1}^{k} \sigma_j \frac{(\mathbf{r}^2)^{j+1} \cos(j\theta)}{j\mathbf{r}^j} + \frac{1}{2\epsilon_0} \sum_{j=1}^{k} \hat{\sigma_j} \frac{(\mathbf{r}^2)^{j+1} \sin(j\theta)}{j\mathbf{r}^j}$$
eq. (6.8)

The electric field intensity is obtained from the potential function using Laplace's equation, i.e,

$$E(\mathbf{r},\theta) = -\nabla\phi(\mathbf{r},\theta)$$
 eq. (6.9)

The del operator 'abla' can be expressed in cylindrical coordinates as follows

$$\nabla = \frac{\partial(\phi)}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial(\phi)}{\partial \theta}\hat{\theta} \qquad \text{eq.}(6.10)$$

Applying eq. (6.9-6.10) to eq. (6.8) the equation for the electric field intensity when $r \ge r'$ is as follows 4,8,9,10,12

$$E(\mathbf{r},\theta) = \sigma_0 \frac{\mathbf{r}'/\mathbf{r}}{\epsilon_0} \hat{\mathbf{r}} + \frac{1}{2\epsilon_0} \sum_{j=1}^k \sigma_j (\mathbf{r}'/\mathbf{r})^{j+1} \left[\cos(j\theta) \hat{\mathbf{r}} + \sin(j\theta) \hat{\theta} + \frac{1}{2\epsilon_0} \sum_{j=1}^k \hat{\sigma_j} (\mathbf{r}'/\mathbf{r})^{j+1} \left[\sin(j\theta) \hat{\mathbf{r}} - \cos(j\theta) \hat{\theta} \right] \right]$$

When r < r' the equation describing the potential is given as

$$\phi(\mathbf{r},\theta) = -\sigma_0 \frac{\mathbf{r}' \ln(\mathbf{r}')}{\epsilon_0} + \frac{1}{2\epsilon_0} \sum_{j=1}^k \sigma_j \frac{(\mathbf{r})^j \cos(j\theta)}{j(\mathbf{r}')^{j-1}} + \frac{1}{2\epsilon_0} \sum_{j=1}^k \hat{\sigma}_j \frac{(\mathbf{r})^j \sin(j\theta)}{j(\mathbf{r}')^{j-1}} \quad \text{eq. (6.12)}$$

Applying eqs. (6.9-6.10) to eq. (6.12) the equation for the electric field intensity when r<r' is a follows

$$E(\mathbf{r},\theta) = 0 - \frac{1}{2\epsilon_0} \sum_{j=1}^{k} \sigma_j (\mathbf{r}/\mathbf{r}')^{j-1} \left[\cos(j\theta) \,\hat{\mathbf{r}} - \sin(j\theta) \,\hat{\theta} \right]$$
$$- \frac{1}{2\epsilon_0} \sum_{j=1}^{k} \hat{\sigma_j} (\mathbf{r}/\mathbf{r}')^{j-1} \left[\sin(j\theta) \,\hat{\mathbf{r}} + \cos(j\theta) \,\hat{\theta} \right]$$

eq.(6.13)

Rewriting equation (6.1) for all N-conductors, the matrix equation, in partitioned form becomes

Where the vectors in equation (6.14) are described below

Where a typical submatrix in eq. (6.10) is defined as

 $D_{1(2L+1)}^{mn'}$ $D_{2(2L+1)}^{mn'}$ $D_{11}^{mn'}$ $D_{21}^{mn'}$ $11^{mn} D_{12}^{mn} \dots D_{1(2k+1)}^{mn}$ 2(2k+1)D^{mn} D^{mn}C nmn = Dmu, D'mn' $D_{(2k+1)1}^{mn'}$ Dmu mn (2k+1)(2k+1)(2k+1)(2L+1)eq.(6.18) eq.(6.19) $D_{11}^{m'n} D_{12}^{m'n} \dots D_{1(2k+1)}^{m'n}$ $D_{21}^{m'n} D_{22}^{m'n} \dots D_{2(2k+1)}^{m'n}$ $\vdots \qquad \vdots \qquad \vdots$ $D_{(2L+1)1}^{m'n} \dots D_{(2L+1)(2k+1)}^{m'n}$ $D^{m'n} =$: D^{m'n'} (2L+1)(2L+1) D^{m'n'} eq. (6.21) eq.(6.20)

Rewriting eq. (6.14) in shorthand matrix notation the potential becomes

$$[D][\sigma] = [\phi]$$
 eq. (6.22)

The solution for the charge density in eq.(6.22) becomes

$$[\sigma] = [D]^{-1}[\phi]$$
 eq. (6.23)

Let $T = D^{-1}$, then the partitioned set of matrix equations for finding the charge density for n-dielectric coated conductors becomes

 T_{11} T_{11} , $|T_{12}$ T_{12} , |..., $|T_{1N}$ T_{1N} $\frac{T_{1,1} T_{1,1}, T_{1,2} T_{1,2}}{T_{1,2}} \dots |T_{1,N} T_{1,N}|$ T_{21} T_{21} , T_{22} T_{22} , T_{2N} T_{2N}

eg. (6.24)

It should be noted that the charge densities in eq. (6.24 and 6.14) are the charge densities from "bound" and "free" charges. This combination of charges produces the potential and electric fields. Since the potential is not removed from the conductors the electric field intensity remains approximately the same.⁵ Since the E-field remains the same Poisson's equation in integral form must be modified to incorporate the total charge enclosed. Thus, when a dielectric is present Poisson's equation becomes

 $\stackrel{\frown}{\bigoplus} E \cdot \hat{n} ds = \frac{q_{tot enc}}{\epsilon_0} eq. (6.25)$

What this means is the free charge densities are increased, bound surface charges of opposite sign are induced, and the total surface charge densities remains unchanged. This also means that the potential and electric-field functions given by equations 6.8, 6.11, 6,12, and 6.13 are valid BOTH inside and outside the dielectric. In other words, the dielectric is replaced with an equivalent surface distribution.⁵

The relationship between the total charge on the i-th conductor surface and "free" and "bound" charge is given in eq. (6.26).

$$q_i = q_f - q_b$$
 eq. (6.26)

Recall the set of matrix equations which relates the free charge on a conductor to that of the potential, i.e.,

$$\begin{bmatrix} q_{1f} \\ q_{2f} \\ \vdots \\ q_{Nf} \end{bmatrix} = \begin{bmatrix} C_{11} C_{12} \cdots C_{1N} \\ C_{21} C_{22} \cdots C_{2N} \\ \vdots \\ C_{N1} C_{N2} \cdots C_{NN} \end{bmatrix} \begin{bmatrix} \phi^{1} \\ \phi^{2} \\ \vdots \\ \phi^{N} \end{bmatrix} eq. (6.27)$$

Rewriting eq.(4.34), the equation for the "free" charge on the i-th conductor is given by

$$q_{if} = \int_{0}^{1} \int_{0}^{2\pi} \sigma_{ci}^{i} \sigma_{ci}^{j} d\beta_{ci} dl = 2\pi r_{ci} \sigma_{0}^{i} \quad eq. (6.27)$$

$$0 \quad 0 \quad \text{where } r_{ci} = \text{radius of the i-th conductor}$$

$$\sigma_{0}^{i} = \text{average charge density of}$$

$$\sigma_{0}^{i} \text{ is the angle between match-points on the conductor}$$

$$\beta_{ci} \text{ is the angle between match-points on the conductor}$$

$$surface, \text{ its center, and the}$$

$$horizontal$$

Similarly, the bound charge on the i-th dielectric boundary is given by $1 - 2\pi$

$$q_{b} = q_{ib}^{*} = \int_{0}^{1} \int_{0}^{1} \sigma_{o}^{i} r_{di} d\beta_{di} dl = 2\pi r_{di} \sigma_{o}^{i} eq. (6.29)$$

Where the variables in eq. (6.29) are defined as follows

 r_{di} = the radius of the dielectric of the i-th wire measured from the center of the wire σ_0^i = the average charge density on the dielectric surface of the i-th wire β_{di} = the angle between matchpoints on the dielectric surface, the center of the conductor, and the horizontal

The total charge at the conductor interface is shown in eqs. (6.30-6.32)

$$q_1 = 2\pi r_{c1} \sigma_0^1$$
 eq. (6.30)

$$q_2 = 2\pi r_{c2} \sigma_0^2$$
 eq. (6.31)

$$q_{\rm N} = 2\pi r_{\rm cN} \sigma_{\rm o}^{\rm N}$$
 eq. (6.32)

The bound charge arising on each dielectric boundary is given by eqs. (6.33-6.35)

 $q_{1b}^{*} = 2\pi r_{d1} \sigma_{0}^{1}$ eq. (6.33)

$$q_{2b}^2 = 2\pi r_{d2} \sigma_0^2$$
 eq. (6.34)

$$q_{Nb}^{*} = 2\pi r_{dN} \sigma_{o}^{N^{*}}$$
 eq. (6.35)

Thus the free charge on each conductor is

 $q_{1f} = q_1 + q_{1b}$ eq. (6.36) $q_{2f} = q_2 + q_{2b}$ eq. (6.37)

$$q_{\rm Nf} = q_{\rm N} + q_{\rm Nb} \qquad \text{eq.} (6.38)$$

or in general terms, the free charge on the i-th conductor is given by

$$q_{if} = q_i + q_{ib} = 2\pi r_{ci} \sigma_0^i + 2\pi r_{di} \sigma_0^{i'}$$
 eq. (6.39)

Looking at equation (6.24), the charge density on the i-th conductor can be written as

$$\tau^{i} = T_{i1}\phi^{1} + T_{i1}, 0 + T_{i2}\phi^{2} + T_{i2}, 0 + \dots + T_{iN}\phi^{N} + T_{iN}, 0$$

eq. (6.40)

or

$$\sigma^{i} = T_{i1}\phi^{1} + T_{i2}\phi^{2} + \dots + T_{iN}\phi^{N}$$
 eq. (6.41)

50

Similarly, the charge density on the dielectric of the i-th conductor is found by

$$\sigma^{i'} = T_{i'1}\phi^{1} + T_{i'2}\phi^{2} + \dots + T_{i'N}\phi^{N}$$
 eq.(6.42)

Since only the average term of either σ^i or σ^i ' vector is needed it is only necessary to look at the first row of either vector, thus the charge density on the i-th conductor is

$$\sigma_{0}^{i} = T_{i1}^{1}\phi^{1} + T_{i2}^{1}\phi^{2} + \dots + T_{iN}^{1}\phi^{N} \qquad \text{eq.} (6.43)$$

Similarly, the charge density on the dielectric of the i-th conductor is found by

$$\sigma_{0}^{i'} = T_{i',1}^{1}\phi^{1} + T_{i',2}^{1}\phi^{2} + \dots + T_{i',N}^{1}\phi^{N} \qquad \text{eq.} (5.44)$$

Substituting equations (6.43 and 6.44) into equation (6.39), the total charge of the i-th wire can be found by

$$q_{if} = 2\pi r_{ci} \left[T_{i1}^{1} \phi^{1} + T_{i2}^{1} \phi^{2} + \dots + T_{iN}^{1} \phi^{N} \right] + 2\pi r_{di} \left[T_{i,1}^{1} \phi^{1} + T_{i,2}^{1} \phi^{2} + \dots + T_{i,N}^{1} \phi^{N} \right]$$

Equation (6.45) can be rewritten in sigma notation as

$$A_{if} = 2\pi r_{ci} \sum_{j=1}^{N} T_{ij}^{1} \phi^{j} + 2\pi r_{di} \sum_{j=1}^{N} T_{i'j}^{1} \phi^{j}$$
 eq. (6.46)

Since 2K+1 matchpoints were selected around the conductor and 2L+1 matchpoints around the dielectric equation, (6.45) becomes

$$q_{if} = 2\pi \sum_{j=1}^{N} \left[r_{ci} \sum_{p=1}^{2k+1} T_{ij}^{1p} \phi^{j} + r_{di} \sum_{q=1}^{2l+1} T_{i'j}^{1q} \phi^{j} \right] eq. (6.47)$$

Equation (6.47) can be expanded to a set of matrix equations as follows

eq. (6.48)

Recall the matrix equation for determining the charge density of an n-conductor system

$$\begin{bmatrix} q_{1f} \\ q_{2f} \\ \vdots \\ q_{Nf} \end{bmatrix} = \begin{bmatrix} C_{11}C_{12} \cdots C_{1N} \\ C_{21}C_{22} \cdots C_{2N} \\ \vdots \\ \vdots \\ Q_{N1}C_{N2} \cdots C_{NN} \end{bmatrix} \begin{bmatrix} \phi^{1} \\ \phi^{2} \\ \vdots \\ \phi^{N} \end{bmatrix} eq. (6.49)$$

In order for equation (6.48) to be equal to equation (6.49), each term of the [C] matrix must be equal to the corresponding term in eq.(6.48). Thus, the terms in the generalized capacitance matrix can be found as follows

$$C_{ij} = 2\pi \left[r_{ci} \sum_{p=1}^{2k+1} T_{ij}^{ip} + r_{di} \sum_{q=1}^{2l+1} T_{ij}^{iq} \right] eq. (6.50)$$

i, j = 1,2,3,...,N

Where T_{ij}^{1p} is an element of T_{ij} submatrix in the first row and p-th column and T_{ij}^{1q} is an element of T_{ij} submatrix in the first row and

q-th column. Note also that the first summation is around the conductor surface and the second summation is around the dielectric surface. To determine the actual capacitance between each wire, the transmission line capacitance, substitute eq.(6.50) into eq.(5.20).

To show some of the anomalies of wire bundles an example is given in figure 6.2. Tabulated results of the wire configuration are shown in Appendix C tables C.1, C.2, and C.3. Table C.1 uses one harmonic when determining the capacitance, table C.2 uses 3 harmonics, and table C.3 uses 5 harmonics. The capacitance matrix should be symmetric but when only a small number of harmonics are used the off-diagonal terms are not the same as can be observed in tables C.1, C.2, and C.3. This dilemma is due to the matchpoint selection as shown in figures 6.3a and 6.3b. Recall that the potential and electric field intensity functions developed earlier are based on vectors r and r', where r' is the vector from the center of the source wire to the source matchpoint and r is the vector from the center of the source wire to the potential matchpoint on the potential wire. In these figures only the conductor surface is shown but the same analogy applies to the dielectric surface as well.

FIG. 6.2 3-WIRE WIRE BUNDLE

The wire data for figure 6.2 is given below

- 1. 18 AWG, 16 strands using 30 AWG wire
- 2. Relative permittivity 3.5 to 6.5 3. Equivalent conductor radius 0.6 mm
- 4. Dielectric radius 1.235 mm
- 5. Wire separation 2.59 mm

FIG. 6.3A MATCHPOINT SELECTION OF WIRE BUNDLES

FIG. 6.3B MATCHPOINT SELECTION OF WIRE BUNDLES

From figures 6.3a and 6.3b, the horizontal wires (1 and 2) will be considered a ribbon cable and the vertical wires (1 and 3) will be considered a wire bundle. In ribbon cables, the matchpoint selection is such that when evaluating the charge the off-diagonal terms will be the same because the distance is the same as is evident from figures 6.3a and 6.3b, i.e.,

 $r_{12}^{1} = r_{21}^{2}$ $r_{12}^{2} = r_{21}^{1}$ $r_{12}^{3} = r_{21}^{3}$ However when looking at wires 1 and 3 $r_{13}^{1} = r_{31}^{2}$ $r_{13}^{2} = r_{31}^{2}$ $r_{13}^{2} = r_{31}^{2}$

Recall that the sum of the first row of the inverted D matrix, the T matrix gives the capacitance values C_{ij} as was described in equations (6.40-6.50). These coefficients are based on r and r' and since r is different for wires 1 and 3, the coefficients of the charge densities will be different. This explains why the values of the capacitance matrix are different at first but when sufficient number of harmonics are taken around the conductor and dielectric surfaces a better representation of the charge densities is obtained when more harmonics (or matchpoints) are used.

Figure 6.2 is broken up into two parts to show how a ribbon cable and wire bundle converge and how they both compare to test results. Figure 6.4 shows each configuration whose properties are

the same as those shown in figure 6.2.

Ribbon cable

Wire bundle

FIG. 6.4 RIBBON CABLE AND WIRE BUNDLE CONFIGURATIONS

There are many varieties of dielectric coatings; polyvinyl chloride (PVC) is just one of them. According to Belden typical dielectric constant or permittivity of PVC can vary from 3.5 to 6.5.¹⁵

The measured value of capacitance was obtained using an HP 3577a network analyser and a 3 meter length of 2-wire ripcord as described above. The capacitance measurement was taken at 1 mHz. The calculated values for the ribbon cable and wire bundle are shown in Appendix D tables D.1 and D.2. These values are graphically shown in figure 6.5, page 56..

There are a lot of variables which contribute to the range of capacitance values beside the variance in permittivity. The manufacturing process itself, the thickness of the dielectric, and the actual pattern of the strands of wires are just a few examples.

The input data requirements for running the FORTRAN program for the dielectric coated 3-wire wire bundle shown in figure 6.2 are listed below

- 1. Enter type of configuration: [B]
- 2. Enter option (IOPT) = [1]
- 3. Enter # of wires in the system NW = [3]
- 4. Enter # of cosine or sine terms around the conductor i.e. the # of harmonics around the conductor NHC = [1,3,5,7,9]
- 5. Enter # of cosine or sine terms around the conductor i.e. the # of harmonics around the dielectric NHD = [1,3,5,7,9]
- 6. Are all wires solid? Enter y/n. [Y]
- 7. Do all wires have the same radius? Enter y/n [Y]
- 8. Enter radius of the conductor XRC = [.6E-3]
- 9. Are all dielectric radii the same? Enter y/n [Y]
- 10. Enter radius of dielectric RD = 1.235E-3
- 11. Is the relative permittivity the same for all wires? Enter y/n [Y]
- 12. Enter relative permittivity of dielectric ER = 3.5 or 6.5
- 13. Enter the horizontal distance between wire(1) and wire(2) X(1,2) = 2.59E-3
- 14. Enter the vertical distance between wire(1) and wire(2) Y(1,2) = 0.0E-3
- 15. Enter the horizontal distance between wire(1) and wire(3) X(1,3) = 0.0E-3
- 16. Enter the vertical distance between wire(1) and wire(3) Y(1,3) = -2.59E-3
- 17. Is the reference number the same as the ground reference conductor? Enter y/n, prompt = [Y]

The input data requirements for running the FORTRAN program

for the dielectric coated 2-wire wire bundle shown in figure 6.6 are listed below

- 1. Enter type of configuration: [B]
- 2. Enter option (IOPT) = [1]
- 3. Enter # of wires in the system NW = [2]
- 4. Enter # of cosine or sine terms around the conductor i.e. the # of harmonics around the conductor NHC = [1,3,5,7,9]
- 5. Enter # of cosine or sine terms around the conductor i.e. the # of harmonics around the dielectric NHD = [1,3,5,7,9]
- 6. Are all wires solid? Enter y/n. [Y]
- 7. Do all wires have the same radius? Enter y/n [Y]
- 8. Enter radius of the conductor XRC = [.6E-3]
- 9. Are all dielectric radii the same? Enter y/n [Y]
- 10. Enter radius of dielectric RD = 1.235E-3
- 11. Is the relative permittivity the same for all wires? Enter y/n [Y]
- 12. Enter relative permittivity of dielectric ER = 3.5 or 6.5
- 13. Enter the horizontal distance between wire(1) and wire(2) X(1,2) = 0.0

$$X(1,2) = 0.0$$

- 14. Enter the vertical distance between wire(1) and wire(2) Y(1,2) = -2.59E-3
- 15. Is the reference number the same as the ground reference conductor? Enter y/n, prompt = [Y]

The input data requirements for running the FORTRAN program

for the dielectric coated 2-wire ribbon cable shown in figure 6.6 are

listed below

- 1. Enter type of configuration: [R]
- 2. Enter option (IOPT) = [1]
- 3. Enter # of wires in the system NW = [2]
- 4. Enter # of cosine or sine terms around the conductor i.e. the # of harmonics around the conductor NHC = [1,3,5,7,9]
- 5. Enter # of cosine or sine terms around the conductor i.e. the # of harmonics around the dielectric NHD = [1,3,5,7,9]
- 6. Are all wires solid? Enter y/n. [Y]
- 7. Do all wires have the same radius? Enter y/n [Y]
- 8. Enter radius of the conductor XRC = [.6E-3]
- 9. Are all dielectric radii the same? Enter y/n [Y]
- 10. Enter radius of dielectric RD = 1.235E-3
- 11. Is the relative permittivity the same for all wires? Enter y/n [Y]
- 12. Enter relative permittivity of dielectric ER = 3.5 or 6.5
- 13. Is the reference number the same as the ground reference conductor? Enter y/n, prompt = [Y]

wires are care and that they are surroutled by a cu

siden is linear, homogeneous, and isotropic, with a relative

- multivity of entry see figure 7.1.

the capacitance is found in the same manner as that describe

FIG.7.1 MULTICONDUCTOR COAX CABLE

In determining the capacitance for a multiconductor coax cables it is assumed that the charge on the shield is described by

$$q_{1} = q_{s} = -\sum_{i=2}^{N} q_{i}$$
 eq.(7.1)
where q_{s} = the charge on the shield
 q_{i} = the charge on the i-th conductor
inside the shield
where i=2,3,4,...,N

In the program that determines the capacitance, it is assumed that the inner wires are bare and that they are surrounded by a dielectric which is linear, homogeneous, and isotropic, with a relative permittivity of ϵ_{r1} , see figure 7.1.

The capacitance is found in the same manner as that described

in chapter 4 for bare multiconductor systems with one exception, that being, when the charge is on the shield the potential on the inner wires is found using eq. (7.2). The implication here is that r < r', i.e., the magnitude of the radius vector of source matchpoints is larger than the magnitude of the radius vector of the potential matchpoints, thus eq.(7.2) is used.

$$\phi(\mathbf{r},\theta) = -\sigma_0 \frac{\mathbf{r}' \ln(\mathbf{r}')}{\epsilon_0} + \frac{1}{2\epsilon_0} \sum_{j=1}^k \sigma_j \frac{(\mathbf{r})^J \cos(j\theta)}{j(\mathbf{r}')^{j-1}} + \sigma_j' \frac{(\mathbf{r})^J \sin(j\theta)}{j(\mathbf{r}')^{j-1}}$$
eq. (7.2)

When the source matchpoints are on one of the inner conductors, the magnitude of the potential vector is greater than that of the source vector, i.e. $r \ge r'$ thus, equation (7.3) is used to determine the potential

$$\phi(\mathbf{r},\theta) = -\sigma_0 \frac{\mathbf{r}' \ln(\mathbf{r})}{\epsilon_0} + \frac{1}{2\epsilon_0} \sum_{j=1}^k \sigma_j \frac{(\mathbf{r}')^{j+1} \cos(j\theta)}{j\mathbf{r}^j} + \frac{1}{2\epsilon_0} \sum_{j=1}^k \tilde{\sigma_j} \frac{(\mathbf{r}')^{j+1} \sin(j\theta)}{j\mathbf{r}^j}$$
eq.(7.3)

Once the exception is implemented, the generalized capacitance and the transmission line capacitance are found as that described in chapters 4 and 5. The closed form solution for the capacitance of a coax cable with a single wire at the center of the shield, see figure 7.2, is given by eq.(7.4).¹³

$$C/1 = \frac{55.6\epsilon_{r}}{\ln(b/a)}$$
 eq. (7.4)

where	b =inside radius of outer conductor
	a =radius of the inner conductor
	$\epsilon_{relative permittivity of dielectric$
	between conductors
	C/1= per unit length capacitance (pF/m)

60

FIG. 7.2 SINGLEWIRE COAX CALBLE

The transmission line capacitance computed by the method of moments compares favorably with the closed from solution in eq. (7.4). The tabulated results of the transmission line capacitance matrix computed by the method of moments vs the closed form solution is shown in table 7.1. The dielectric is assumed to have a permittivity of 3.5.

Another important parameter in the discussion of winter at insu

TABLE 7.1

Approximate vs closed form solution for coax cable

	ratio b/a	closed form cap. (pF/m)	closed form Ind. (nH/m)	no. of harmonics /Fourier terms	Approx Cap. (pF/m)	Approx Ind. (nH/m)	Approx CPU time (sec)
	1.25:1	872.16	44.63	1/3 3/7	872.59 872.59	44.63 44.63	010 030
	1.5:1	479.94	81.09	1/3 3/7	480.22 480.22	81.09 81.09	010 030
	2.0:1	280.75	138.63	1/3 3/7	280.91 280.91	138.63 138.63	010 030
	3.0:1	177.13	219.72	1/3 3/7	177.24 177.24	219.72 219.72	010 030
What the	4.0:1	140.37	277.26	1/3 3/7	140.46 140.46	277.26	010 030
	5.0:1	120.91	321.89	1/3 3/7	120.98 120.98	321.89 321.89	010 030

Another important parameter in the discussion of wires is the inductance. The closed form solution for inductance can be found in many texts and is reproduced here for comparative analysis.¹³

$$L/1 = \frac{\mu_0}{2\pi} \ln(b/a) = .2 \ln(b/a)$$
 eq. (7.5)

where b = inside diameter of the outer shield a = the radius of the inner conductor μ_0 = permeability of dielectric

L/l = per unit length inductance (nH/m)

It is assumed in equation 7.5 that the dielectric is non-ferrous. Therefore the permeability is independent of the medium and has the value of that in air, that is, $4\pi \times 10^{-7}$ Henries. The approximate values

of inductance are based on the development of W. T. Weeks, from IBM.¹⁴ It was found that the matrices [C], [G], and [L], for a homogeneous medium are related to a matrix [K] which is independent of the medium and depends only on the geometry of the configuration. Stated mathematically, the matrices are related to the [K] matrix as follows

$[C] = \epsilon [K]$	eq. (7.6)
$[G] = \sigma[K] = (\sigma/\epsilon)[C]$	eq.(7.7)
$[L] = \mu[K]^{-1} = (\mu\epsilon)[C]^{-1}$	eq.(7.8)
where $\mu =$ permeability of air 0.	4π nH/m
ϵ = permittivity of medium	m (pF/m)
σ = conductivity of medium	$n (\Omega^{-1}/m)$
C = capacitance/meter (p	F/m)
$G = conductance/meter (\Omega)$	/m)
L = inductance/meter (n	H/m)

What this means is to calculate the inductance simply remove the dielectric and calculate the capacitance of the bare wires, take the inverse and multiply by $\mu\epsilon$, where ϵ is actually ϵ_0 for bare wires.

Due to the symmetry of the coax configuration in figure 7.2, the values of capacitance and inductance remain unchanged for any number of harmonics.

To test whether or not the coax model using the method of moments compares favourably with known test results, various samples were taken from Belden.¹⁵ Comparisions were done on the following types of cables

- 1. Broadcast and computer cables type 9889 with cellular polyethylene as a dielectric
- 2. Broadcast and computer cables type 9259 with cellular polyethylene as a dielectric

- 3. MATV cables type 8212 with cellular polyethlene as a dielectric
- 4. Broadcast and computer cables type 8267 with solid polyethylene as a dielectric

64

Cellular polyethylene has a relative permittivity of 1.6 and solid polyethylene has a relative permittivity of 2.3. The pertinent data for the above examples is shown in Appendix E. A comparision of the test data from Belden and that using the method of moments is shown in table 7.2.

TABLE 7.2

Calculated capacitance verses measured capacitance for coax cable

Type coax	measured cap. pF/m	calculated cap. pF/m	% error
9889	85.3	85.487	.22
9259	56.8	57.425	1.1
8212	56.8	58.626	3.2
8267	101	109.93	8.8

When dealing with multiconductor coax cables which do not exhibit this symmetry it becomes necessary to use more terms of the Fourier series. An example of a simple multiconductor coax cable which does not exhibit this symmetry is shown in figure 7.3.

FIG. 7.3 MULTICONDUCTOR COAX CABLE

The output data for this configuration is shown in tables (F.2-F.11) in appendix F. Note that at first that the off-diagonal terms are not equal but with the addition of more Fourier terms the offdiagonal terms converge to a common value. This convergence is due simply to the increase in the number of matchpoints which more precisely represents the charges on the conductor and dielectric surfaces. The difference in the off-diagonal terms is compounded because of the relative closeness between the wires. To compensate for this condition more terms of the Fourier series will be required.

The input data requirements for running the Fortran program for this coax cable configuration are as follows

- 1. Configuration [C]
- 2. Option [2]
- 3. Number of wires [4]
- 4. Number of harmonics [1,3,5,7]
- 5. Are all wires solid ? [y]
- 6. Do all wires have the same radius [y]
- 7. Enter inside radius of coax shield RCX [3.76E-3] (meters)

- 8. Enter radius of the conductor XRC [.5775E-3] (meters)
- 9. Enter relative permittivity of dielectric CER [3.5]
- 10. Enter the horizontal distance of conductor (2) with respect to the center of the coax cable X(1,2) = 0.0 (meters)
- 11. Enter the vertical distance of conductor (2) with respect to the center of the coax cable Y(1,2) = 0.0 0.0 (meters)
- 12. Enter the horizontal distance of conductor (3) with respect to the center of the coax cable X(1,3) = 2.59E-3 (meters)
- 13. Enter the vertical distance of conductor (3) with respect to the center of the coax cable Y(1,3) = 0.0 (meters)
- 14. Enter the horizontal distance of conductor (4) with respect to the center of the coax cable X(1,4) = -2.59E-3 (meters)
- 15. Enter the vertical distance of conductor (4) with respect to the center of the coax cable Y(1,4) = 0.0 (meters)
- 16. Is the reference number the same as the ground reference conductor? Enter y/n, prompt = y

Note, in item 16 above it is ALWAYS assumed that the shield is the reference wire and the answer to the question is always 'y' when working with coax cables. Note also that all relative distances are measured from the reference wire, that being the shield. The brackets [] indicate the actual value or response which must be entered in the FORTRAN program.

It should be pointed out that the CPU time given in tables (F.3, F.5, F.7, F.9) are based on a VAX 750.

APPLICATION OF THE METHOD OF MOMENTS IN DETERMINING THE CAPACITANCE FOR A SHIELDED MULTICONDUCTOR WIRE BUNDLE

FIG. 8.1 SHIELDED MULTICONDUCTOR WIRE BUNDLE The determination of the capacitance and inductance for a shielded multiconductor wire bundle is similar to that of a multiconductor coax cable. It is however, a little more complex. It is assumed that the charge on the reference wire, the shield, is that which is described in eq.(7.1). To complete the matrix for the shielded multiconductor case, it is assumed, in the program, that there is a dielectric on the shield having the same radius and a relative permittivity of 1. The program also requires the user to assume one more harmonic on this fictitious dielectric than that of the shield. This is done to insure that the matchpoints on the dielectric do not fall onto the same position as that of the conductive shield. Equation (7.2) is used when determining the MN and the MN' terms of the D submatrix when the source is on the shield. Equation (8.1) is required to satisfy the boundary condition at the dielectric to air interface, i.e., the difference in the normal component of the flux density when the source is on the shield. Equation 8.1 is used in

determining the M'N and the M'N' terms of the D submatrix when the source is on the shield. Equation 8.1 was obtained from eq.(6.13).

$$0 = 0 \hat{r} - \frac{(\epsilon_{r}^{-1})}{2\epsilon_{o}} \sum_{m=1}^{k} \sigma_{m} (r/r')^{m-1} (\cos m\theta \hat{r} - \sin m\theta \hat{\theta}) - \frac{(\epsilon_{r}^{-1})}{2\epsilon_{o}} \sum_{m=1}^{k} \hat{\sigma}_{m} (r/r')^{m-1} (\sin m\theta \hat{r} + \cos m\theta \hat{\theta}) eq. (8.1)$$

The diagonal M'N and M'N' terms of the D submatrix can be shown to be those obtained from eq.(8.2). Equation (8.2) was obtained from eqs.(6.13 and 6.11), here again r < r'

$$0 = -1 \frac{\sigma_0}{\epsilon_0} - \frac{(\epsilon_r - 1)}{2\epsilon_0} \sum_{j=1}^k \cos(j\theta_i) \sigma_j^i + \sin(j\theta_i) \hat{\sigma}_j^i \qquad \text{eq.} (8.2)$$

When the source is on the inner wires eq. (8.3) is used, equation (8.3) was obtained using eq. (6.11), here $r \ge r'$.

$$0 = ((\epsilon_{r}^{-1})/\epsilon_{0}) \sigma_{0}(r/r') \hat{r} + \frac{(\epsilon_{r}^{-1})}{2\epsilon_{0}} \sum_{m=1}^{k} \sigma_{m}(r'/r)^{m+1} (\cos m\theta \hat{r} + \sin m\theta \hat{\theta})$$
$$\frac{(\epsilon_{r}^{-1})}{2\epsilon_{0}} \sum_{m=1}^{k} \hat{\sigma}_{m}(r'/r)^{m+1} (\sin m\theta \hat{r} - \cos m\theta \hat{\theta})$$
eq. (8.3)

Once the above considerations have been implemented, the generalized and the transmission line capacitance matrices can be found using the same techniques developed in chapters 4 and 5.

To verify that the program works an example is used to compare the approximate method, the method of moments, with that of a closed form solution. The configuration is shown in figure 8.2

A a radius b from the center of the conductor becomes

68

The equation which describes the charge on the conductor is given by Gauss's law which states that the surface integral of the normal component of the electric flux density D over any closed surface equals the charge enclosed. Mathematically this is written as follows

$$\overline{D} \cdot \overline{ds} = Q$$
 eq. (8.4)

where \overline{D} = the flux density $d\overline{s} = r \cdot d\phi \cdot dz \hat{r}$

therefore

$$\int_{0}^{1} \frac{2\pi}{(\overline{D})} \cdot (r d\phi dz \hat{r}) = Q \qquad \text{eq.} (8.5)$$

The solution becomes

$$\overline{D} = \frac{Q}{2\pi r} \hat{r} \qquad \text{eq. (8.6)}$$

Applying eq. (8.6) to the boundary shown in figure (8.2) the flux density at a radius b from the center of the conductor becomes

$$\overline{D}_{b} = \frac{Q}{2\pi b} \hat{r} \qquad \text{eq.} (8.7)$$

but the flux density can be expressed in terms of electric field intensity using eq.(8.8)

$$\overline{D} = \epsilon \overline{E}$$
 eq. (8.8)

Thus, inside the boundary at r = b, E becomes

$$E_1 = \frac{Q}{2\pi\epsilon_1 b} \hat{r} \qquad r < b \qquad eq. (8.9)$$

and outside the boundary at r = b E becomes

$$E_2 = \frac{Q}{2\pi\epsilon_2 b} \hat{r} \qquad r > b \qquad eq. (8.10)$$

The potential is given by

$$\int_{V}^{0} dV = -\int_{a}^{c} \overline{E} \cdot d\overline{l} = -\left[\int_{a}^{b} \frac{Q}{2\pi\epsilon_{1}r} \hat{r} \cdot dr \hat{r} + \int_{b}^{c} \frac{Q}{2\pi\epsilon_{2}r} \hat{r} \cdot dr \hat{r}\right]$$
eq. (8.11)

Solving eq. (8.11) the potential becomes

$$V = \frac{Q}{2\pi\epsilon_1} \ln(\frac{b}{a}) + \frac{Q}{2\pi\epsilon_2} \ln(\frac{c}{b}) \qquad \text{eq.}(8.12)$$

By definition the capacitance is defined as follows

$$C = \frac{Q}{V} \qquad \text{eq.} (8.13)$$

Substituting eq. (8.12) into eq. (8.13) and assuming the charge is 1 coulomb the capacitance can be found as follows

$$C = \frac{1}{\frac{1}{2\pi\epsilon_{1}} \ln(b/a) + \frac{1}{2\pi\epsilon_{2}} \ln(c/b)}}$$
eq. (8.14)

or in terms of relative permittivity the capacitance C becomes

 $C = \frac{2\pi\epsilon_o}{(1/\epsilon_{r1})\ln(b/a) + (1/\epsilon_{r2})\ln(c/b)}$

The following values for the variables shown in figure 8.2 are listed below

$$a = 1 mm$$

$$b = 2 mm$$

$$c = 3 mm$$

$$\epsilon_{r1} = 3.5$$

$$\epsilon_{r2} = 1.0$$

The resulting capacitance value for this configuration is

C = 92.18198 pf

Using the program results in the same value with just one harmonic selected.

An example of a shielded multiconductor system is shown in figure 8.3. This configuration is simply a 3-wire ripcord or ribbon cable placed inside a piece of convoluted conduit which was wrapped with aluminum backed cellophane to form the shield. The output data for this configuration is shown in tables (G.1-G.8) in appendix G.

FIG. 8.3 SHIELDED 3-WIRE RIPCORD

Again note, the off-diagonal terms are not equal but with additional

eq.(8.15)

Fourier terms, they will converge to a common value. Note also in tables (G.2,G.4,G.6,G.8) the CPU time requirements for running the shielded multiconductor configuration.

The input data requirements for running the Fortran program for the shielded multiconductor configuration in this example are listed below

- 1. Enter type of configuration: [S]
- 2. Enter option (IOPT) = [1]
- 3. Enter # of wires including shield NW= [4]
- 4. Enter # of cosine or sine terms around the conductor i.e. the # of harmonics around the conductor NHC = [1,3,5,7]
- 5. Enter # of cosine or sine terms around the dielectric i.e. the # of harmonics around the dielectric NHD = [2,4,6,8]
- 6. Are all wires solid inside shield? Enter y/n [y]
- 7. Do all wires have the same radius? Enter y/n [y]
- 8. Enter inside radius of shield RCX = [3.76E-3]
 - 9. Enter radius of the conductor XRC = [.5775E-3]
- 10. Are all dielectric radii the same? Enter y/n [N]
- 11. Enter wire # NO.= 1
- 12. Enter radius of dielectric of wire (1) RD(1) = [3.76E-3]
- 13. Enter wire # NO = [2]
- 14. Is RD(2) = RD(1)? Enter y/n [N]
- 15. Enter radius of dielctric of wire (2) RD(2) = [1.11E-3]

13. Enter wire
$$\# NO = [3]$$

14. Is
$$RD(3) = RD(2)$$
? Enter y/n [Y

15. Enter wire
$$\# NO = [4]$$

- 16. Is RD(4) = RD(3)? Enter y/n [Y]
- 17. Is the relative permittivity the same for all wires? Enter y/n [N]
- 18. Enter wire # NO.= 1
- 19. Enter the relative permittivity of wire(1) ER(1) = [1.00]

20. Enter wire
$$\# NO = [2]$$

- 21. Is ER(2) = ER(1)? Enter y/n [N]
- 19. Enter the relative permittivity of wire(1) ER(2) = [3.5]
- 20. Enter wire # NO = [3]
- 21. Is ER(3) = ER(2)? Enter y/n [Y]
- 22. Enter wire # NO = [4]
- 23. Is ER(4) = ER(3)? Enter y/n [Y]
- 24. Enter the horizontal distance of conductor(2) with respect to the center of the shield X(1,2) = [0.0]

- 25. Enter the vertical distance of conductor(2) with respect to the center of the shield Y(1,2) = [0.0]
- 26. Enter the horizontal distance of conductor(3) with respect to the center of the shield X(1,3) = [2.59E-3]
- 27. Enter the vertical distance of conductor(3) with respect to the center of the shield Y(1,2) = [0.0]
- 28. Enter the horizontal distance of conductor(4) with respect to the center of the shield X(1,4) = [-2.59E-3]
- 29. Enter the vertical distance of conductor(4) with respect to the center of the shield Y(1,4) = [0.0]
- 30. Is the reference number the same as the ground reference conductor? Enter y/n, PROMPT = [Y]

Note in item 30 the shield is considered ground as well as the reference conductor. The answer to item 30 will always be Y for shielded multiconductor wire bundles. <u>Caution</u>, when interpreting the data in tables (G.2,G.4,G.6,G.8,G.10) the reference wire is the shield which is wire 1 so C_{11} is actually the self capacitance of wire two, C_{22} , and C_{12} is the transmission line capacitance between wires 2 and 3, i.e., C_{23} . The remaining transmission line capacitance terms must be interpreted accordingly.

A simple test to see if the capacitance terms of the shielded 3wire ripcord are within the proper limits is to check it against the coax model using $\epsilon_{\rm p}$ equal to 1.0 and 3.5. The results using the coax model when $\epsilon_{\rm p} = 1.0$ are shown in appendix H and those results using $\epsilon_{\rm p} = 3.5$ in appendix F. The output data files for the shielded 3-wire ripcord are in appendix G. Comparing the results of all three appendices shows that the capacitance values of the shielded 3-wire ripcord are within the limits of the coax model when $\epsilon_{\rm p} = 1.0$ and $\epsilon_{\rm p} = 3.5$. In other words

$$C_{ij}^{1.0} < C_{ij}^{s} < C_{ij}^{3.5}$$

where $C_{ij}^{1,0}$ are the capacitance terms of the coax model when $\epsilon_r = 1$.

 C_{ij}^{s} are the capacitance terms of the shielded 3-wire ripcord $C_{ij}^{3.5}$ are the capacitance terms of the coax model when $\epsilon_r = 3.5$

It should also be pointed out that the program can only handle shield which are circular. To handle elliptical shields or other types of geometries the program would have to be modified.

CHAPTER 9

APPLICATION OF THE METHOD OF MOMENTS IN DETERMINING THE CAPACITANCE MATRIX FOR A DIELECTRIC COATED WIRE BUNDLE OVER A GROUND PLANE

FIG. 9.1 DIELECTRIC COATED MULTICONDUCTOR SYSTEM OVER A GROUND PLANE

To determine the capacitance of dielectric coated wires over a ground plane requires the use of the "method of images". This method replaces the ground plane with image wires which are the same distance below the ground plane as those wires above the ground plane. There are however some subtleties which must be taken into account. The charge density on the image wires is defined as $-\sigma(-\beta_{ci})$ and $-\sigma(-\beta_{di})$, depending on whether the charge is on the surface of the conductor or dielectric respectively, see figure 9.1. Note, however, the source angle β has the same orientation on the image wires as the wires above the ground plane. Finally, the potential on the wires above the ground plane has an absolute potential of ϕ , whereas the absolute potential of its image is given by $-\phi$. The total difference between the potential of a wire above ground with its image is 20. Noting the symmetry of the system, the voltage of the i-th conductor with respect to the ground plane is V, which is equal to ϕ_i . Since there are 2n conductors in the system (n above the ground plane and n image wires below the ground plane) the matrix equation which determines the charge density of the system is defined as follows

$$\begin{bmatrix} D^{\overline{mn}} & D^{\overline{mn}'} \\ D^{\overline{m}'n} & D^{\overline{m}'n'} \end{bmatrix} \begin{bmatrix} \sigma^{\overline{n}} \\ \sigma^{\overline{n}} \\ \sigma^{\overline{n}} \end{bmatrix} = \begin{bmatrix} \phi^{\overline{m}} \\ 0^{\overline{m}'} \end{bmatrix} eq.(9.1)$$

where $\overline{m}, \overline{n} = 1, 2, 3, ..., 2N$ and the variables in eq. (9.1) are defined as follows:

Dmu

is defined as the potential at 2k+1 matchpoints on the conductor surface of wire \overline{m} above and below the ground plane due to 2k+1 source charges on the conductor surface of wire \overline{n} Dmu,

is defined as the potential at 2k+1 matchpoints on the conductor surface of wire \overline{m} above and below the ground plane due to 2l+1 source charges on the dielectric surface of wire \overline{n} .

- D^{m'n} is defined as the difference in the normal component of the flux density "just inside" and "just outside" at 21+1 matchpoints on the dielectric surface of wire m above and below the ground plane due to 2k+1 source charges on the conductor surface on wire n.
- D^{m'n'} is defined as the difference in the normal component of the flux density "just inside" and "just outside" at 21+1 matchpoints on the dielectric surface of wire m above and below the ground plane due to 21+1 source charges on the dielectric surface of wire n.
- σ^{n} is defined as the charge density a 2k+1 matchpoints on the conductor surface of wire n above and below the ground plane
 - is defined as the charge density at 21+1 matchpoints on the dielectric surface of wire n above and below the ground plane
 - is defined as the absolute potential with respect to infinity at 2k+1 matchpoints on the conductor surface of wire m above and below the ground plane
- 0^m'

σⁿ'

d^m

is defined as a vector containing the difference of the normal component of the displacement vector at (21+1) matchpoints on the dielectric surface of wire \overline{m} above and below the ground plane The submatrices $D^{\overline{mn}}$, $D^{\overline{mn'}}$, $D^{\overline{m'n}}$, and $D^{\overline{m'n'}}$ in eq.(9.1) are given more precisely as follows

	$[0^{(1)}(1)]$		D ⁽¹⁾⁽ⁿ⁾	$D^{(1)(n+1)}$		$D^{(1)(2n)}$
	(2)(1) :		D ^{(2) (n)} :	D ⁽²⁾⁽ⁿ⁺¹⁾ :		D ⁽²⁾⁽²ⁿ⁾ :
	$D^{(n)(1)}$		$D^{(n)}(n)$	$D^{(n)(n+1)}$		$D^{(n)(2n)}$
$D^{\overline{mn}} =$	$D^{(n+1)(1)}$		D ^{(n+1) (n)}	$D^{(n+1)(n+1)}$		$D^{(n+1)(2n)}$
	D ⁽ⁿ⁺²⁾⁽¹⁾ :		D ^{(n+2) (n)} :	D ⁽ⁿ⁺²⁾⁽ⁿ⁺¹⁾ :		D ⁽ⁿ⁺²⁾ (2n)
	$D^{(2n)(1)}$		D ^{(2n) (n)}	$D^{(2n)(n+1)}$		$D^{(2n)}(2n)$
	ົດມາເມາ					eq. (9.2)
	$D^{(1)(1)}$		$D^{(1)(n)}$	D ⁽¹⁾⁽ⁿ⁺¹⁾	•••	D ⁽¹⁾⁽²ⁿ⁾
	ر(2)(1)' :		D ⁽²⁾⁽ⁿ⁾ '	D ⁽²⁾⁽ⁿ⁺¹⁾ '		.D ⁽²⁾⁽²ⁿ⁾
	$D^{(n)(1)}$		D ^{(n) (n)}	D ^{(n) (n+1)}		$D^{(n)(2n)}$
D ^{mn'} =	D ⁽ⁿ⁺¹⁾⁽¹⁾		D ⁽ⁿ⁺¹⁾⁽ⁿ⁾	D ⁽ⁿ⁺¹⁾⁽ⁿ⁺¹⁾		$D^{(n+1)(2n)}$
	D ⁽ⁿ⁺²⁾⁽¹⁾ '	•••	D ⁽ⁿ⁺²⁾⁽ⁿ⁾ '	D ⁽ⁿ⁺²⁾⁽ⁿ⁺¹⁾ '		.D ⁽ⁿ⁺²⁾⁽²ⁿ⁾
	D ⁽²ⁿ⁾ (1)'		D ⁽²ⁿ⁾ (n)'	D ⁽²ⁿ⁾⁽ⁿ⁺¹⁾		D ⁽²ⁿ⁾ (2n)'
						eg. (9.3)

 $D^{\overline{m'n'}} = \begin{bmatrix} D^{(2)'(1)'} & \cdots & D^{(2)'(n)'} & D^{(2)'(n+1)'} & \cdots & D^{(2)'(2n)'} \\ \vdots & \vdots & \vdots & \vdots \\ D^{(n)'(1)'} & \cdots & D^{(n)'(n)'} & D^{(n)'(n+1)'} & \cdots & D^{(n)'(2n)'} \\ D^{(n+1)'(1)'} & \cdots & D^{(n+1)'(n)'} & D^{(n+1)'(n+1)'} & \cdots & D^{(n+1)'(2n)'} \\ D^{(n+2)'(1)'} & \cdots & D^{(n+2)'(n)'} & D^{(n+2)'(n+1)'} & \cdots & D^{(n+2)'(2n)'} \\ \vdots & \vdots & \vdots & \vdots \\ D^{(2n)'(1)'} & \cdots & D^{(2n)'(n)'} & D^{(2n)'(n+1)'} & \cdots & D^{(2n)'(2n)'} \\ \end{bmatrix}$ eq. (9.5)

Each term in the submatrices described in eqs. (9.2-9.5) is also a submatrix which contains the matchpoints around a particular boundary illustrated below

$$D^{mn} = \begin{bmatrix} D_{11}^{mn} D_{12}^{mn} \dots D_{1(2k+1)}^{mn} \\ D_{21}^{mn} D_{21}^{mn} \dots D_{2(2k+1)}^{mn} \\ \vdots & \vdots & \vdots \\ D_{(2K+1)1}^{mn} \dots D_{(2k+1)(2k+1)}^{mn} \end{bmatrix} D^{mn'} = \begin{bmatrix} D_{11}^{mn'} \dots D_{2(2L+1)}^{mn'} \\ D_{21}^{mn'} \dots D_{2(2L+1)}^{mn'} \\ D_{21}^{mn'} D_{22}^{mn'} \dots D_{(2k+1)(2k+1)}^{mn'} \\ eq. (9.6) & eq. (9.7) \end{bmatrix}$$

$$p^{m'n} = \begin{bmatrix} D_{11}^{m'n} D_{12}^{m'n} \dots D_{1(2k+1)}^{m'n} \\ D_{21}^{m'n} D_{22}^{m'n} \dots D_{1(2k+1)}^{m'n} \\ D_{21}^{m'n} D_{22}^{m'n} \dots D_{2(2k+1)}^{m'n} \\ \vdots & \vdots \\ D_{21}^{m'n'} D_{22}^{m'n'} \dots D_{2(2k+1)}^{m'n'} \\ \vdots & \vdots \\ D_{21}^{m'n'} D_{22}^{m'n'} \dots D_{2(2k+1)}^{m'n'} \\ \vdots & \vdots \\ D_{21}^{m'n'} D_{22}^{m'n'} \dots D_{2(2k+1)}^{m'n'} \\ \vdots & \vdots \\ D_{21}^{m'n'} D_{22}^{m'n'} \dots D_{2(2k+1)}^{m'n'} \\ \vdots & \vdots \\ D_{21}^{m'n'} \dots D_{2(2k+1)}^{m'n'} \\ D^{m'n'} = \begin{bmatrix} D_{11}^{m'n'} \dots D_{1(L+1)}^{m'n'} \\ D_{21}^{m'n'} \dots D_{2(L+1)}^{m'n'} \\ D_{21}^{m'n'} \\ D_{21}^{m'n'} \dots D_{2(L+1)}^{m'n'} \\ D_{21}^{m'n'} \dots D_{2(L+1)}^{m'n''} \\ D_{21}^{m'n''} \dots D_{2(L+1)}^{m'n''} \\ D_{21}^{m'n''} \dots D_{2(L+1)}^{m'n''$$

The charge density on the i-th conductor surface above the ground plane is given by the Fourier series in equation (9.10) and that of its image in eq.(9.11)

$$\sigma_{c}^{i} = \sigma_{co}^{i} + \sum_{j=1}^{k} \sigma_{cj}^{i} \cos(j\beta_{ci}) + \sum_{m=1}^{k} \hat{\sigma}_{cj}^{i} \sin(j\beta_{ci}) \qquad \text{eq.} (9.10)$$

$$\tilde{\sigma}_{c}^{i} = -\tilde{\sigma}_{co}^{i} - \sum_{j=1}^{k} \tilde{\sigma}_{cj}^{i} \cos(-j\beta_{ci}) - \sum_{j=1}^{k} \tilde{\sigma}_{cj}^{i} \sin(-j\beta_{ci}) \quad eq. (9.11)$$

Using the properties of even and odd functions eq. (9.11) becomes

$$\widetilde{\sigma}_{c}^{i} = -\widetilde{\sigma}_{co}^{i} - \sum_{j=1}^{k} \widetilde{\sigma}_{cj}^{i} \cos(j\beta_{ci}) + \sum_{j=1}^{k} \widetilde{\sigma}_{cj}^{i} \sin(j\beta_{ci}) \quad eq. (9.12)$$

In a similiar manner, the charge density on the i-th dielectric surface and its image is given by eqs. (9.13-914) respectively

$$\sigma_{d}^{i} = \sigma_{do}^{i} + \sum_{j=1}^{l} \sigma_{dj}^{i} \cos(j\beta_{di}) + \sum_{j=1}^{l} \hat{\sigma}_{dj}^{i} \sin(j\beta_{di}) \quad eq. (9.13)$$

$$\tilde{\sigma}_{d}^{i} = -\tilde{\sigma}_{do}^{i} - \sum_{j=1}^{l} \tilde{\sigma}_{dj}^{i} \cos(j\beta_{di}) + \sum_{j=1}^{l} \tilde{\sigma}_{dj}^{i} \sin(j\beta_{di}) \quad eq. (9.14)$$

The vectors σ^n , σ^n , ϕ^m , and 0^m can now be expanded as shown below

Equations(9.15-9.18) have incorporated the fact that the charge on the

81

image wire is the negative of that of the wire above ground and the potential of the image wire is the negative of that of the wire above the ground plane. Mathematically this is expressed in eqs. (9.18-9.24).

$$\sigma^{N+1} = -\sigma^1 \qquad \text{eq.}(9.19)$$

$$\sigma^{N+2} = -\sigma^2 \qquad (9.29)$$

- eq. (9.20)
- $\sigma^{2N} = -\sigma^{N}$ eq. (9.21) $\phi^{N+1} = -\phi^{1} = -V^{1}$ eq. (9.22)

$$\phi^{N+2} = -\phi^2 = -V^2$$
 eq. (9.23)

$$\phi^{2N} = -\phi^{N} = -V^{N}$$
 eq. (9.24)

The potential at a point 'P' due to a unit source charge at 2k+1 matchpoints on the i-th conductor surface above the ground plane is described by eq. (9.25)

$$\begin{split} \phi_{p}(\mathbf{r}_{i},\theta_{i}) &= -\sigma_{o}^{i} \frac{\mathbf{r}_{i}^{*} \ln(\mathbf{r}_{i})}{\epsilon_{o}} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \sigma_{j}^{i} \frac{(\mathbf{r}_{i}^{*})^{j+1} \cos(j\theta_{i})}{j\mathbf{r}_{i}^{j}} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \hat{\sigma}_{j}^{i} \frac{(\mathbf{r}_{i}^{*})^{j+1} \sin(j\theta_{i})}{j\mathbf{r}_{i}^{j}} \\ \text{where } i=1,2,3,\dots N \qquad \mathbf{r}_{i} \geq \mathbf{r}_{i}^{*} \qquad \text{eq. (9.25)} \\ \mathbf{r}_{i}^{*} &= \mathbf{r}_{ci} \text{ or } \mathbf{r}_{di} \text{ depending on the boundary the unit source} \\ \text{ is residing} \\ \mathbf{r}_{i} &= \text{vector length from center of source wire to potential} \\ \text{point 'P'} \end{split}$$

whereas the potential at point 'P' due to a unit source charge at 2k+1 matchpoints on the conductor surface of the i-th image wire is given by eq. (9.26)

$$\widetilde{\Phi}_{p}(\mathbf{r}_{i},\theta_{i}) = +\widetilde{\sigma}_{0}^{i} \frac{\mathbf{r}_{i}^{\prime} \ln(\mathbf{r}_{i})}{\epsilon_{0}} - \frac{1}{2\epsilon_{0}} \sum_{j=1}^{k} \widetilde{\sigma}_{j}^{i} \frac{(\mathbf{r}_{i}^{\prime})^{j+1} \cos(j\theta_{i})}{j\mathbf{r}_{i}^{j}} + \frac{1}{2\epsilon_{0}} \sum_{j=1}^{k} \widetilde{\sigma}_{j}^{i} \frac{(\mathbf{r}_{i}^{\prime})^{j+1} \sin(j\theta_{i})}{j\mathbf{r}_{i}^{j}}$$
eq. (9.26)

where
$$i=N+1, N+2, ..., 2N$$
 $r_i \ge r_i'$
 $r_i' = r_{ci}$ or r_{di} depending on the boundary the unit source
is residing

83

In a similar manner the potential at a point 'P' due to unit source charges at 21+1 matchpoints on the i-th dielectric surface above the ground plane is described by eq. (9.25) and those of its image by eq. (9.26) after substituting 1 for k.

When $r_i < r_i^{i}$ the potential due to a unit charge on the i-th wire above the ground plane is described as follows

$$\phi_{p}(\mathbf{r}_{i},\theta_{i}) = -\sigma_{o}^{i} \frac{\mathbf{r}_{i}^{i} \ln(\mathbf{r}_{i}^{2})}{\epsilon_{o}} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \sigma_{j}^{i} \frac{(\mathbf{r}_{i})^{j} \cos(j\theta_{i})}{j\mathbf{r}_{i}^{2}j^{-1}} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \sigma_{j}^{i} \frac{(\mathbf{r}_{i})^{j} \sin(j\theta_{i})}{j\mathbf{r}_{i}^{2}j^{-1}}$$
eq. (9.27)

where i=1,2,3,...N r < r' $r'_i = r_{ci}$ or r_{di} depending on the boundary the unit source is residing

When $r_i < r'_i$ the potential function of the i-th image wire is described as follows

$$\Phi_{p}(\mathbf{r}_{i},\theta_{i}) = + \overline{\sigma_{0}^{i}} \frac{\mathbf{r}_{i}^{i} \ln(\mathbf{r}_{i}^{i})}{\varepsilon_{0}} - \frac{1}{2\varepsilon_{0}} \sum_{j=1}^{k} \overline{\sigma_{j}^{i}} \frac{(\mathbf{r}_{i})^{j} \cos(j\theta_{i})}{j\mathbf{r}_{i}^{j-1}} + \frac{1}{2\varepsilon_{0}} \sum_{j=1}^{k} \overline{\sigma_{j}^{i}} \frac{(\mathbf{r}_{i})^{j} \sin(j\theta_{i})}{j\mathbf{r}_{i}^{j-1}}$$

$$eq. (9.28)$$

r'_i = r_{ci} or r_{di} depending on the boundary the unit source is residing

r_i = vector length from center of source wire to potential point 'P'

The electric field intensity can be obtained from the potential functions using Laplace's equation shown in eq.(9.29)

$$E(\mathbf{r},\theta) = -\nabla \phi(\mathbf{r},\theta)$$
 eq. (9.29)

The del operator (∇) in a cylindrical coordinate system is expressed in eq.(9.30)

$$\nabla = \frac{\partial}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial}{\partial \theta}\hat{\theta}$$
 eq. (9.30)

Applying eq. (9.29) to eq. (9.25), the electric field intensity from the i-th wire above the ground plane when $r \ge r'$ is given by eq. (9.31)

$$E(\mathbf{r}_{i},\theta_{i}) = \sigma_{0}^{i} \frac{\mathbf{r}_{i}^{2}/\mathbf{r}_{i}}{\epsilon_{0}} \hat{\mathbf{r}}_{i} + \frac{1}{2\epsilon_{0}} \sum_{j=1}^{k} \sigma_{j}^{i} (\mathbf{r}_{i}^{2}/\mathbf{r}_{i})^{j+1} \left[\cos(j\theta_{i}) \hat{\mathbf{r}}_{i} + \sin(j\theta_{i}) \hat{\theta}_{i} \right] \\ + \frac{1}{2\epsilon_{0}} \sum_{j=1}^{k} \hat{\sigma}_{j}^{i} (\mathbf{r}_{i}^{2}/\mathbf{r}_{i})^{j+1} \left[\sin(j\theta_{i}) \hat{\mathbf{r}}_{i} - \cos j\theta_{i}) \hat{\theta}_{i} \right] \\ \text{where } i=1,2,3,\ldots,N \qquad \text{eq. (9.31)}$$

When r < r' the equation describing the electric intensity from i-th wire above the ground plane is described by eq. (9.32)

$$E(\mathbf{r}_{i},\theta_{i}) = 0 - \frac{1}{2\epsilon_{0}} \sum_{j=1}^{k} \sigma_{j}^{i} (\mathbf{r}_{i}/\mathbf{r}_{i}^{\prime})^{j-1} \left[\cos(j\theta_{i}) \hat{\mathbf{r}}_{i} - \sin(j\theta_{i}) \hat{\theta}_{i} \right]$$
$$- \frac{1}{2\epsilon_{0}} \sum_{j=1}^{k} \hat{\sigma}_{j}^{i} (\mathbf{r}_{i}/\mathbf{r}_{i}^{\prime})^{j-1} \left[\sin(j\theta_{i}) \hat{\mathbf{r}}_{i} + \cos(j\theta_{i}) \hat{\theta}_{i} \right]$$
$$where i=1,2,3,..,N = eq.(9.32)$$

The electric field intensity from the i-th image wire when $r \ge r'$ is described by eq. (9.33)

84

$$\begin{split} \widetilde{\mathsf{E}}(\mathbf{r}_{i},\theta_{i}) &= -\widetilde{\sigma_{0}^{i}} \frac{\mathbf{r}_{i}^{\prime}/\mathbf{r}_{i}}{\epsilon_{0}} \,\widehat{\mathbf{r}}_{i} - \frac{1}{2\epsilon_{0}} \sum_{j=1}^{k} \widetilde{\sigma_{j}^{i}}(\mathbf{r}_{i}^{\prime}/\mathbf{r}_{i})^{j+1} \left[\cos(j\theta_{i}) \,\widehat{\mathbf{r}}_{i} + \sin(j\theta_{i}) \,\widehat{\theta}_{i} \right] \\ &+ \frac{1}{2\epsilon_{0}} \sum_{j=1}^{k} \widehat{\sigma_{j}^{i}}(\mathbf{r}_{i}^{\prime}/\mathbf{r}_{i})^{j+1} \left[\sin(j\theta_{i}) \,\widehat{\mathbf{r}}_{i} - \cos j\theta_{i}) \,\widehat{\theta}_{i} \right] \end{split}$$

where i=N+1,N+2,...,2N eq. (9.33) When r<r', the equation describing the electric intensity from the i-th image wire is given by eq. (9.34)

$$\begin{split} \widetilde{E}(\mathbf{r}_{i},\theta_{i}) &= 0 + \frac{1}{2\varepsilon_{0}} \sum_{j=1}^{k} \widetilde{\sigma}_{j}^{i} (\mathbf{r}_{i}/\mathbf{r}_{i}^{\prime})^{j-1} \left[\cos(j\theta_{i}) \, \widehat{\mathbf{r}}_{i} - \sin(j\theta_{i}) \, \widehat{\theta}_{i} \right] \\ &- \frac{1}{2\varepsilon_{0}} \sum_{j=1}^{k} \widetilde{\sigma}_{j}^{i} (\mathbf{r}_{i}/\mathbf{r}_{i}^{\prime})^{j-1} \left[\sin(j\theta_{i}) \, \widehat{\mathbf{r}}_{i} + \cos(j\theta_{i}) \, \widehat{\theta}_{i} \right] \\ & \text{where } i=N+1, N+2, \dots, 2N \qquad \text{eq. (9.34)} \end{split}$$

Knowing the above information, the various terms of the D^{mn} , D^{mn} , $D^{\overline{m'n}}$, and $D^{\overline{m'n'}}$ submatrices can be determined. The terms of the $D^{\overline{mn}}$ submatrix in eq.(9.2) are obtained from the coefficients of the charge densities of the potential function described in eq.(9.25), if the wire is above the ground plane, and eq.(9.26) if it is the image wire. The following substitutions are for the diagonal terms

$$r_i^2 = r_i = r_{ci}$$
 eq. (9.35)

and for the off-diagonal terms

 $r'_i = r_{ci}$ and r_i to be determined eq. (9.36)

The variable r_i is calculated using the Pythagorean theorem where the sides are determined from the wire separation and the radius of the

Т

conductor of the potential wire. The potential wire is the wire in which the terms of the potential function are evaluated.

The terms of the D^{mn} ' submatrix in eq.(9.3) are obtained in a similar manner. The diagonal terms are obtained using eq.(9.27) when the wire is above the ground plane and eq.(9.28) when the wire is an image wire. To calculate the diagonal terms, substitute the following into the appropriate equation

$$r'=r_{di}$$
 and $r_i=r_{ci}$ eq. (9.37)

The off-diagonal terms, however, are determined by using eq. (9.25) (for wires above the ground plane) and eq. (9.26) (for image wires) after substituting the following change of variables

 $r'_i = r_{di}$ and r_i to be determined eq. (9.38)

The variable r_i is calculated using the Pythagorean theorem where the sides are determined from the wire separation and the radius of the of the dielectric of the potential wire.

The off-diagonal terms of the $D^{\overline{m'n}}$ submatrix in eq.(9.4) are obtained by substituting eq.(9.31) into eq.(6.7) which is rewritten here as eq.(9.39) the results of which are shown in eq.(9.40)

$$\epsilon_r E_n^i - E_n^o = 0 \qquad \text{eq.} (9.39)$$

where $E_n^i = normal \text{ component of the electric}$ intensity vector just inside the boundary $E_n^o = normal \text{ component of the electric}$ intensity vector just outside the boundary $\epsilon_r = \text{relative permittivity of the dielectric}$

$$0 = \frac{(\epsilon_{r}^{-1})}{\epsilon_{o}}(r_{i}^{*}/r_{i})\sigma_{o}^{i}\hat{r}_{i} + \frac{(\epsilon_{r}^{-1})}{2\epsilon_{o}}\sum_{j=1}^{k}(r_{i}^{*}/r_{i})^{j+1} \left[\cos(j\theta_{i})\hat{r} + \sin(j\theta_{i})\hat{\theta}_{i}\right]\sigma_{i}^{i}$$
$$+ \frac{(\epsilon_{r}^{-1})}{2\epsilon_{o}}\sum_{j=1}^{k}(r_{i}^{*}/r_{i})^{j+1} \left[\sin(j\theta_{i})\hat{r}_{i}^{-}\cos j\theta_{i})\hat{\theta}_{i}\right]\hat{\sigma}_{j}^{i}$$
$$eq. (9.40)$$
where ϵ_{r} is the relative permittivity of the dielectric $i=1,2,3,...,N$

87

The off-diagonal image terms of the $D^{m'n}$ submatrix are obtained by substituting eq.(9.33) into eq.(9.39) the results of which are shown in eq.(9.41)

$$0 = -\tilde{\sigma}_{0}^{i} \frac{(\epsilon_{r}^{-1})(\frac{r_{1}^{i}}{r_{1}^{i}})}{\epsilon_{0}} \hat{r}_{i} - \frac{(\epsilon_{r}^{-1})k}{2\epsilon_{0}} \sum_{j=1}^{k} \tilde{\sigma}_{j}^{i} (r_{i}^{i}/r_{1})^{j+1} \left[\cos(j\theta_{i})\hat{r}_{i} + \sin(j\theta_{i})\hat{\theta}_{i} \right] \\ + \frac{(\epsilon_{r}^{-1})k}{2\epsilon_{0}} \sum_{j=1}^{k} \tilde{\sigma}_{j}^{i} (r_{i}^{i}/r_{1})^{j+1} \left[\sin(j\theta_{i})\hat{r}_{i} - \cos(j\theta_{i})\hat{\theta}_{i} \right] \\ \text{where } i = N+1, N+2, N+3, \dots, 2N \quad \text{eq. (9.41)}$$

where i=N+1,N+2,N+3,...,2N eq. (9.41) Thus the off-diagonal terms are obtained by using eq.(9.41) replacing the variables as shown below

$$r'_i = r_{ci}$$
 and $r_i = to be determined eq. (9.43)$

The variable r_i is calculated using the Pythagorean theorem where the sides are determined from the wire separation and the radius of the of the dielectric of the potential wire.

To obtain the diagonal terms of the $D^{\overline{m'n}}$ submatrix replace the variables shown in eqs.(9.40-9.41) with those shown in eq.(9.42).

$$r'_i = r_{ci}$$
 and $r_i = r_{di}$ eq. (9.42)

then take the dot product with respect to a unit normal vector to the boundary.

The diagonal terms of the $D^{\overline{m'n'}}$ submatrix in eq.(9.5) are obtained by substituting eqs(9.31 and 9.32) into eq.(9.39). Equation (9.32) is used for E_n^i and eq.(9.31) is used for E_n^o . The results are shown in eq.(9.44)

$$0 = -\frac{(r_{i}^{2}/r_{i})}{\epsilon_{o}}\sigma_{o}^{i}\hat{r}_{i} + \frac{1}{2\epsilon_{o}}\sum_{j=1}^{k} \left\{ \left[-\epsilon_{r}(r_{i}/r_{i}^{2})^{j-1} - (r_{i}^{2}/r_{i})^{j+1} \right] \cos(j\theta_{i})\hat{r}_{i} \right. \\ \left. + \left[\epsilon_{r}(r_{i}/r_{i}^{2})^{j-1} - (r_{i}^{2}/r_{i})^{j+1} \right] \sin(j\theta_{i})\hat{\theta}_{i} \right\} \sigma_{i}^{j} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \left\{ \left[-\epsilon_{r}(r_{i}/r_{i}^{2})^{j-1} - (r_{i}^{2}/r_{i})^{j+1} \right] \sin(j\theta_{i})\hat{r}_{i} + \left[-\epsilon_{r}(r_{i}/r_{i}^{2})^{j-1} + (r_{i}^{2}/r_{i})^{j+1} \right] \cos(j\theta_{i})\hat{\theta}_{i} \right\} \hat{\sigma}_{i}^{j}$$

eq. (9.44)

This expression, eq. (9.44), can further be simplified by noting the fact that at the boundary, the source, and potential matchpoints have the same radius, i.e.

$$r_i^{*} = r_i^{*} = r_{di}^{*}$$
 eq. (9.45)

Substituting eq. (9.45) into eq. (9.44) reduces the equation to the following

$$0 = -1 \frac{\sigma_{0}}{\epsilon_{0}} \hat{r}_{i} + \frac{1}{2\epsilon_{0}} \sum_{j=1}^{k} \left[-(\epsilon_{r}+1) \cos(j\theta_{i}) \hat{r}_{i} + (\epsilon_{r}-1) \sin(j\theta_{i}) \hat{\theta}_{i} \right] \sigma_{j}^{i}$$

$$+\frac{1}{2\epsilon_{o}}\sum_{j=1}^{k}\left[-(\epsilon_{r}+1)\sin(j\theta_{i})\hat{r}_{i}-(\epsilon_{r}-1)\cos(j\theta_{i})\hat{\theta}_{i}\right]\hat{\sigma}_{j}^{i}$$

89

Since only the normal component is desired, i.e. $n = r_i$, the dot product of of the unit normal vector with eq.(9.46) results in a further simplification as shown in eq.(9.47)

$$0 = -i \frac{\sigma_0}{\epsilon_0} - \frac{(\epsilon_r + 1)}{2 \epsilon_0} \sum_{j=1}^k \cos(j\theta_i) \sigma_j^i + \sin(j\theta_i) \hat{\sigma}_j^i \qquad \text{eq.} (9.47)$$

The off-diagonal $D^{\overline{m'n'}}$ terms, however, are obtained by using eq.(9.40) by replacing the following variables

 $r'_i = r_{di}$ and $r_i = to be determined$ eq. (9.48)

Again r_i is found by using the Pythagorean theorem where one side is the center-to-center separation of the wires and the other side is the dielectric radius of the potential wire.

The diagonal image wire terms, of the $D^{m'n'}$ submatrix are found by substituting eqs. (9.33 and 9.34) into eq. (9.39) where eq. (9.33) is E_n^i and eq. (9.34) is E_n^o . The results are shown in eq. (9.49)

$$0 = \frac{(r_{i}^{*}/r_{i})}{\epsilon_{o}} \tilde{\sigma}_{o}^{i} \hat{r}_{i} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \left\{ \left[+\epsilon_{r} (r_{i}/r_{i}^{*})^{j-1} + (r_{i}^{*}/r_{i})^{j+1} \right] \cos(j\theta_{i}) \hat{r}_{i} \right. \\ \left. + \left[-\epsilon_{r} (r_{i}/r_{i}^{*})^{j-1} + (r_{i}^{*}/r_{i})^{j+1} \right] \sin(j\theta_{i}) \hat{\theta}_{i} \right\} \tilde{\sigma}_{i}^{j} + \frac{1}{2\epsilon_{o}} \sum_{j=1}^{k} \left\{ \left[-\epsilon_{r} (r_{i}/r_{i}^{*})^{j-1} - (r_{i}^{*}/r_{i})^{j+1} \right] \sin(j\theta_{i}) \hat{r}_{i} + \left[-\epsilon_{r} (r_{i}/r_{i}^{*})^{j-1} + (r_{i}^{*}/r_{i})^{j+1} \right] \cos(j\theta_{i}) \hat{\theta}_{i} \right\} \tilde{\sigma}_{i}^{j} \\ \left. (r_{i}^{*}/r_{i})^{j+1} \right] \sin(j\theta_{i}) \hat{r}_{i} + \left[-\epsilon_{r} (r_{i}/r_{i}^{*})^{j-1} + (r_{i}^{*}/r_{i})^{j+1} \right] \cos(j\theta_{i}) \hat{\theta}_{i} \right\} \tilde{\sigma}_{i}^{j} \\ \left. \exp(9.49) \right\}$$

The variables r_i and r'_i in eq. (9.49) for the image wires of the diagonal $D^{\overline{m'n'}}$ are replaced by the following change of variables $r_i = r_{di} = r'_i = r_{di}$ eq. (9.50)

Substituting eq.(9.50) into eq.(9.49) results in the following reduction.

$$0 = i \frac{1}{\epsilon_0} \tilde{\sigma}_0^j \hat{r}_1 + \frac{1}{2\epsilon_0} \sum_{j=1}^k \left[(\epsilon_r + 1)\cos(j\theta_i) \hat{r}_i - (\epsilon_r - 1)\sin(j\theta_i) \hat{\theta}_i \right] \tilde{\sigma}_i^j$$
$$\frac{1}{2\epsilon_0} \sum_{j=1}^l \left[-(\epsilon_r + 1)\sin(j\theta_i) \hat{r}_i - (\epsilon_r - 1)\cos(j\theta_i) \hat{\theta}_i \right] \tilde{\tilde{\sigma}}_i^j$$
eq.(9.51)

Since only the normal component is needed in eq. (9.51), $n = r_i$, eq.(9.51) finally reduces to

$$0 = 1 \frac{1}{\epsilon_0} \tilde{\sigma}_0^j + \frac{(\epsilon_r + 1)}{2\epsilon_0} \sum_{j=1}^k \cos(j\theta_i) \tilde{\sigma}_j^j - \sin(j\theta_i) \tilde{\sigma}_j^j \quad \text{eq.}(9.52)$$

The off-diagonal image wire terms of the $D^{\overline{m'n'}}$ submatrix are found by using eq. (9.53)

$$0 = \frac{-(\epsilon_{r}-1)}{\epsilon_{o}}(r_{i}^{\prime}/r_{i})\tilde{\sigma}_{o}^{i}\hat{r}_{i} - \frac{(\epsilon_{r}-1)}{2\epsilon_{o}}\sum_{j=1}^{k}(r_{i}^{\prime}/r_{i})^{j+1}(\cos(j\theta_{i})\hat{r} + \sin(j\theta_{i})\hat{\theta}_{i})\tilde{\sigma}_{j}^{i}$$
$$+ \frac{(\epsilon_{r}-1)}{2\epsilon_{o}}\sum_{j=1}^{k}(r_{i}^{\prime}/r_{i})^{j+1}(\sin(j\theta_{i})\hat{r}_{i} - \cos j\theta_{i})\hat{\theta}_{i})\tilde{\sigma}_{j}^{i}$$
eq. (9.53)

where $r'_i = r_{di}$ and r_i to be determined by using the Pythagorean thereom where one side is the center-to-center separation of the wires and the other side is the dielectric radius of the potential wire.

Now that all the elements of the matrix equation, eq.(9.1), have been identified and defined, the charge density can be determined by first rewriting the set of equations described in eq.(9.1) in matrix notation as follows

$$[D][\sigma] = [\phi]$$
 eq. (9.55)

then, as before, invert the D matrix to obtain the charge density from which the generalized capacitance matrix can be determined as described in chapter 6. Before inverting the D matrix, symmetry can be used to reduce the order of each of the submatrices to an NxN submatrix, i.e., an NxN submatrix around the conductor and an NxN submatrix around the dielectric-air interface. This can be accomplished by using the equations described in eqs. (9.19-9.24) which takes into account all the charges of the system but reduces the the number of equations needed to describe it to only N equations and and N unknowns. The elements of the new D matrix are determined by adding the coefficients of like terms of the image wire from its counterpart above the ground plane. Thus the new matrix equation is of the form shown in eq. (9.55)

What has been shown in the above analysis is that the number of unknowns has been reduced from 2N(2k+1) to N(2k+1), a significant reduction of the order of the matrix which is to be inverted. The reduction of the order of the potential matrix D to D reduces the CPU time to invert substantially. Placing all these terms in the D matrix and inverting produces the generalized capacitance matrix from which transmission line capacitance matrix can be found as described in chapters 4 and 5. Since there exists a closed form solution for one bare wire over a ground plane, it is compared here to the approximate method developed above. The capacitance model for one bare wire over a ground plane is well known. The formula for calculating it is shown in eq.(9.85).

$$C = \frac{2\pi\epsilon}{\cosh^{-1}(d/2r)} eq. (9.85)$$

A comparison of the closed form solution and the approximate solution using the method of moments is shown in table 9.1.

TABLE 9.1 Approximate vs closed form solution of capacitance for one bare wire over a ground plane

ratio of height to conductor radius	closed form Cap. (pF/m)	no. of harmonics /Fourier terms	Approx. Cap. (pF/m)
1 5.1	57 80 5	1/2	54.791
1.5.1	57.605	5/6	57.803
2 0.1	42 243	1/2	41.666
2.0.1	42.245	5/6	42.243
2 0.1	21 560	1/2	31.477
5.0.1	51.500	5/6	31.560
4.0.1	26 961	1/2	26.937
4.0.1	20.901	5/6	26.961
5.0.1	24.269	1/2	24.258
5.0.1	27.200	5/6	24.268
Since a closed form solution for a dielectric coated wire is not available, the method of moments approximation is compared to results obtained from testing. The results of this comparison are shown in table 9.2 and figure 9.3, page 95. Table 9.2 also shows a comparison of the method of moments to that of test results using a bare wire approximation.

TABLE 9.2

Test vs bare apprpoximation vs dielectric approximation

height	test	bare	dielectric
above	. cap/m	cap/m	cap/m
gnd.	value	value	value
(mm)	(pf/m)	(pf/m)	(pf/m)
3.5	70.0	27.344	65.666
12.5	25.7	16.819	23.801
19.5	21.4	14.826	19.945
28.5	18.5	13.464	17.542
53.5	14.4	11.683	14.629
103.5	10.8	10.261	12.465
153.5	8.4	9.5659	11.453

The test setup is shown in figure 9.2

Fig. 9.2 TEST SETUP TO MEASURE CAPACITANCE

S

The dielectric coated wire under test had the following parameters

$$r_d = 3.5 \text{ mm}$$

 $r_c = 0.915 \text{ mm}$
 $\epsilon_r = 3.5$

height = varied from 3.5 mm to 153.5 mm From figure 9.3, it is shown that the method of moments approximation for determining the capacitance of a dielectric coated wire over a ground plane is favorable to that of test results.

The capacitance model when there are more wires in the configuration is now investigated. Figure 9.4 shows the parameters which are used for this configuration. Again as with other multi-conductor configurations, the diagonal terms of the capacitance matrix are not equal but with additional terms will converge to one value as seen in appendix J, tables(J1-J5).

FIG 9.4 DIELECTRIC COATED MULTICONDUCTOR SYSTEM OVER A UNIFORM GROUND PLANE 96

The input data requirements for running the Fortran program for the dielectric coated multiconductor configuration of the above example are listed below

- 1. Enter type of configuration: [P]
- 2. Enter option (IOPT) = [1]
- 3. Enter # of wires in the system NW = [3]
- 4. Enter # of cosine or sine terms around the conductor
- i.e. the # of harmonics around the conductor NHC = [1,3,5,7,9]5. Enter # of cosine or sine terms around the dielectric
- i.e. the # of harmonics around the dielectric NHD = [1,3,5,7,9]6. Are all wires solid? Enter y/n [y]
- 7. Do all wires have the same radius? y/n [y]
- 8. Enter radius of the conductor XRC = [.2E-3]
 - 9. Are all dielectric radii the same? Enter y/n [y]
- 10. Enter radius of dielectric RD = [.4E-3]
- 11. Is the relative permittivity the same for all wires? Enter y/n [Y]
- 12. Enter relative permittivity of dielectric ER = [3.5]
- 13. Enter height of wire(1) above ground plane H(1) = [1.0E-3]
- 14. Enter height of wire(2) above ground plane H(2) = [2.0E-3]
- 15. Enter height of wire(3) above ground plane H(3) = [1.0E-3]
- 16. Enter horizontal distance between wire(1) and wire(2)

$$((1,2) = [1.0E-3])$$

17. Enter horizontal distance between wire(1) and wire(3) X(1,3) = [2.0E-3]

CONCLUDING REMARKS

An approximate solution for finding the capacitance of multiconductor systems such as ribbon cables, wire bundles, multiconductor coax cables, shielded wire bundles, and dielectric coated wire bundles over a ground plane has been developed based on the method of moments. The results show that for known solutions as well as some test data that this method gives a good approximation. It has been shown that several computer runs may be necessary before the desired degree of accuracy becomes apparent. The speed of convergence is dependent on the configuration, the fastest being a single wire coax cable. The more symmetrical the configuration, the faster it will converge. Convergence also depends highly on the relative closeness of the conductors. The closer the conductors are to one another the more terms of the Fourier series will be needed before convergence is realized. The configuration which converged the slowest was the shielded dielectric coated wire bundle. This was due to the fact that all terms of the Fourier series were required, i.e., the average, cosine, and sine terms. Convergence of the shielded wire bundles was slow also due to the relative closness of the conductors.

The following is a list of observations and conclusions made for the various types of systems discussed in this report.

- 1. A computer model has been developed for the computation of the capacitance for a closely spaced multiconductor system in a linear, homogeneous or nonhomogeneous, isotropic medium assuming TEM mode of propagation.
- 2. The method of moments approach for a bare 2-wire system is a very good approximation to that of the closed form solution.
- 3. The method of moments using a Fourier series approximation for the charge distribution around a conductor converges rapidly for only a few matchpoints (or terms of the Fourier series).

- Care must be taken in selecting matchpoints so as not to destroy the symmetry of the matrix or to cause one of its rows or columns to become dependent.
- 5. A larger number of Fourier series terms (or matchpoints) should be used around the dielectric surface than around the conductor surface in order to maintain the same degree of accuracy.
- 6. The speed of convergence is directly proportional to the geometry of the configuration. Those geometries which possess a high degree of symmetry converge faster than those systems which do do not. The speed of convergence is also directly related to the relative closeness of the conductors. The closer the conductors are to one another the more harmonics are needed to have the off-diagonal terms of the capacitance matrix converge to the same value. The speed of convergence of configurations which have wires that do not all lie in a horizontal plane converge slower than those that do due to the matchpoint selection around the conductors and dielectrics.
- 7. A larger matrix is necessary to describe multiconductor wire bundles, coax cables, shielded wire bundles, and wire bundles over a ground plane than those describing ribbon cables. The order of the matrix for coax cables, etc, is n(2k+1) compared to n(k+1) for ribbon cables. "n" is the number of wires in the system and k is the number of harmonics around the conductor or dielectric surface.
- 8. The method of moments approach for determining the capacitance of a coax cables compares extremely well to that of the closed form solution.
- 9. The method of moments approach for determining the capacitance of a shielded wire compares extremely well to that of the closed form solution.
- 10. The method of moments approach for determining the capacitance of one bare wire over a ground plane compares favorably to that of the closed form solution.
- 11. The method of moments approach for determining the capacitance of one dielectric coated wire over a ground plane compares favorably to that of test results.
- 12. The program presented in this report runs in quad precision on a VAX-750. CPU times are presented in tables along with output data for the respective configurations. Also along with the CPU

time is the elapsed time. This time is the actual time required before results are avaliable and depends on the number of users on the system. The VAX-750 is also limited as to the size matrix it can invert. The dimensions in the program are set to these limits, the limits being 15 wires and 10 harmonics around the conductor and 10 around the dielectric. Ten harmonics implies that 21 Fourier terms are used around the conductor as well as 21 Fourier terms around the dielectric. These dimensions are based on configurations which contain wire bundles, coax, and shielded wire bundles. Using the above limitation implies that the largest matrix the VAX-750 can invert is a 630x630 matrix. Any combination which does not exceed this limit will work. For example, if the configuration contains 30 dielectric coated wires then the user will have to redimension the program. If for example 5 harmonics are selected around the conductor and dielectric surfaces the order of the potential matrix, "D1" in the the program, will be described as follows.

no. of harmonics around conductor NHC=5 no. of harmonics around dielectric NHD=5 no. of Fourier terms around conductor = NFC = 2xNHC+1=11 no. of Fourier terms around dielectric = NFD = 2xNHD+1=11 total no. of Fourier terms = NF = NFC + NFD = 22 order of the D1 matrix = NWxNF= 30x22=660

Notice in this example the size of the matrix is 660x660 which is too large for the VAX-750 to invert. If the user attempts to dimension the variables in the program an error message will appear when a link is attempted. The message will be "insufficient virtual address space to complete the link, image file not created". To run a 30 wire configuration that has a dielectric coating on the wires requires the user to limit the number of harmonics selected to only 4, ~ i.e., NHC and NHD cannot exceed 4 in this example.

A program listing of the capacitance model is given in appendix K and a listing of the subprograms, their function, and description of the variables in each subroutine is given in appendix J.

Some topics for future interest involve obtaining valid models of the structures which contain discontinuities in the geometry, noncylindrical conductors, as well as determining other system parameters such as: system stability, signal bandwidth, delay characteristics, radiated emissions, and crosstalk for PC boards and connectors. Also crosstalk due to various sources such as: high frequency sinusoidal, pulsed, transients, and impluse signals, and various loads containing not only resistive loads but combinations of capacitve and inductive loading as well.

Another point of interest would be to compare the results obtained by the method of moments to that using finite element analysis. Finite element codes can be obtained from MacNeal-Schwendler Corporation in Milwaukee, Wisconsin or from Ansoft Corporation in Pittsburgh, Pennsylvania. These are just two of of the finite element codes that are available today.

APPENDIX A

ELIMINATION OF REFERENCE AT INFINITY

Recall eq.(1.1) for determining the potential at an arbitrary point in space from an arbitrary reference point.

$$\phi(\mathbf{r},\theta) - \phi(\mathbf{r}_{0},\theta) = -\frac{1}{2\pi\epsilon_{0}}\lambda \ln(\mathbf{r}/\mathbf{r}_{0}) \qquad \text{eq.}(A.1)$$

If the charges add up to zero, then the system is balanced. That is for every positive charge in the system there is an equal an opposite charge. Now consider the balanced system shown in figure A.1, where the reference point is denoted by r_0 and r_p is the potential point from sources $+\lambda$ and $-\lambda$.

FIG. A.1 ELIMINATION OF REFERENCE VECTOR The potential from the positive line charge $+\lambda$ is given by

$$\phi_1(r_1) - \phi(r_1) = -\frac{1}{2\pi\epsilon_0} \lambda \ln(r_1/r_1)$$
 eq. (A.2)

and the potential from the negative charge $-\lambda$ is given by

$$\phi_2(r_2) - \phi(r_2) = + \frac{1}{2\pi\epsilon_0} \lambda \ln(r_2/r_2)$$
 eq. (A.3)

The total potential at point r is found by using superposition as follows

$$\phi_{t}(r) = \phi_{1}(r) + \phi_{2}(r)$$
 eq. (A.4)

Substituting eqs(A.2-A.3) into A.4 , the equation for the potential function becomes

$$\phi_{t} = -\frac{1}{2\pi\epsilon_{o}}\lambda\ln(r_{1}/r_{1}) + \frac{1}{2\pi\epsilon_{o}}\lambda\ln(r_{2}/r_{2}) + \phi(r_{1}) + \phi(r_{2})$$
eq(A.5)

or

$$\phi_{t} = -\frac{1}{2\pi\epsilon_{0}}\lambda \left[\ln(r_{1}/r_{1}^{*}) - \ln(r_{2}/r_{2}^{*}) \right] + \phi(r_{1}^{*}) + \phi(r_{2}^{*}) eq(A.6)$$

$$\phi_{t} = -\frac{1}{2\pi\epsilon_{o}}\lambda \left[\ln(r_{1}/r_{2}) - \ln(r_{2}/r_{1}) \right] + \phi(r_{1}) + \phi(r_{2}) = \exp(A.7)$$

If the reference point is placed at infinity the ratio of r_2^2/r_1^2 approaches 1 and by definition the potential at infinity is equal to zero. Thus the potential function can be expressed as follows

$$\phi_{t} = -\frac{1}{2\pi\epsilon_{o}} \lambda \ln(r_{1}/r_{2}) \qquad \text{eq.} (A.8)$$

eq. (A.9)

Adding and subtracting r_0 from eq. (A.8) and regrouping

$$\phi_{t} = -\frac{1}{2\pi\epsilon_{0}} \lambda \left[\ln(r_{1}) - \ln(r_{0}) - \ln(r_{2}) + \ln(r_{0}) \right]$$

or

$$\phi_{t} = -\frac{1}{2\pi\epsilon_{0}} \lambda \left[\ln(r_{1}/r_{0}) - \ln(r_{2}/r_{0}) \right] \quad \text{eq.} (A.10)$$

Now let r_0 equal 1 meter since r is measured in meters the result is

 $\phi_{t} = -\frac{1}{2\pi\epsilon_{0}}\lambda \quad \ln(r_{1}) - \ln(r_{2})$ Octour data for the gener

-1.9404E-11 5.3082E-11 -4.5056E-12 -1.3299E-11

eq.(A.11)

APPENDIX B

Tables (B.1-B.10) are output files for a 4-wire bare wire bundle.

TABLE B.1

Output data for the generalized capacitance matrix with 1 harmonic on the conductor and 1 harmonics around the dielectric (units F/m)

column		1	2	3	4
row	**	*********	*********	********	********
1	*	6.5948E-11	-2.3354E-11	-3.5531E-11	-4.1886E-12
2	*	-1.9404E-11	5.3082E-11	-4.5056E-12	-1.3299E-11
3	*	-3.3532E-11	-5.1901E-13	7.7349E-11	-2.5548E-11
4	* *	-4.1925E-13	-1.4337E-11	-2.0169E-11	4.5547E-11

TABLE B.2

Output data for the transmission line capacitance matrix with 1 harmonic on the conductor and 1 harmonic around the dielectric (units (F/m)

column		4 95455-11	2	3
row	**	*********	**********	********
1	*	4.8766E-11	-9.6929E-12	-1.6253E-11
2	*	-4.5899E-12	7.1209E-11	-2.9044E-11
3	*	-1.7225E-11	-2.3640E-11	4.3570E-11

CPU time 00:00:30.39 elapsed time 00:00:01.74

TABLE B.3

Output data for the generalized capacitance matrix with 3 harmonics on the conductor and 3 harmonics around the dielectric (units F/m)

column		1	2	3	4
row	**	*********	*********	*********	********
1	*	7.2839E-11	-2.1440E-11	-3.8113E-11	-3.0190E-13
2	*	-2.1795E-11	5.3714E-11	-2.3643E-12	-1.3922E-11
3	*	-3.8101E-11	-2.6032E-12	8.0868E-11	-2.1175E-11
4	*	-5.8883E-13	-1.4030E-11	-2.1359E-11	4.5260E-11

TABLE B.4

Output data for the transmission line capacitance matrix with 3 harmonics on the conductor and 3 harmonics around the dielectric (units (F/m)

column		1	2	3
row	**	4 9546E-11	-7 43525-12	-1 67105-11
2	*	7 66526 12	7.43020-12	-2.45625.11
2	*	-7.6652E-12	7.4708E-11	-2.4362E-11
3	×	-1.6819E-11	-2.4/52E-11	4.3395E-11
CPU	ti	me 00:02:37.0	8 elapsed tim	e 00:05:40.20

TABLE B.5 Output data for the generalized capacitance matrix with 5 harmonics on the conductor and 5 harmonics around the dielectric (units F/m) 2 3 4 column 1 7.3299E-11 -2.1740E-11 -3.8552E-11 -5.6686E-13 1 2 -2.1754E-11 5.3737E-11 -2.3847E-12 -1.3972E-11 * 3 -3.8527E-11 -2.4053E-13 8.1161E-11 -2.1220E-11 * 4 -5.5029E-13 -1.3964E-11 -2.1212E-11 4.5079E-11

TABLE B.6

Output data for the transmission line capacitance matrix with 5 harmonics on the conductor and 5 harmonics around the dielectric (units (F/m)

column		1	2	3
row	**	*********	**********	******
1	*	4.9574E-11	-7.4491E-12	-1.6757E-11
2	* *	-7.4693E-12	7.5000E-11	-2.4608E-11
3	*	-1.6749E-11	-2.4600E-11	4.3216E-11

CPU time 00:08:25.83 elapsed time 00:19:08.79

	TABLE B.7						
		(Output data for	the generalize	d		
		cap	acitance matri	x with 7 harmo	onics		
		on	the conductor	and 7 harmonic	CS		
		ar	ound the dielec	tric (units F/n	n)		
colum	٦	1	2	3	4		
row	**	*******	*********	*********	*******		
1	*	7.3339E-11	-2.17454-11	-3.8566E-11	-5.4859E-13		
2	*	-2.1752E-11	5.3741E-11	-2.3951E-12	-1.3966E-11		
3	*	-3.8568E-11	-2.3936E-12	8.1166E-11	-2.1191E-11		
4	*	-5.4966E-13	-1.3966E-11	-2.1192E-11	4.5062E-11		

TABLE B.8

Output data for the transmission line capacitance matrix with 7 harmonics on the conductor and 7 harmonics around the dielectric (units (F/m)

column		on the con	2	3-
row	*	*********	**********	******
1	*	4.9578E-11	-7.4601E-12	-1.6751E-11
2	*	-7.4588E-12	7.5004E-11	-2.4579E-11
3	*	-1.6751E-11	-2.4580E-11	4.3199E-11
		the state of styles had		AN THE FORT TH

CPU time 00:19:35.63 elapsed time 00:52:07.33

108

TABLE B.9

Output data for the generalized capacitance matrix with 9 harmonics on the conductor and 9 harmonics around the dielectric (units F/m)

column		1	2	3	4
row	**	*********	*********	*********	********
1	*	7.3343E-11	-2.1754E-11	-3.8572E-11	-5.4969E-13
2	*	-2.1753E-11	5.3741E-11	-2.3943E-12	-1.3966E-11
З	*	-3.8572E-11	-2.3940E-13	8.1171E-11	-2.1191E-11
4	*	-5.4967E-13	-1.3966E-11	-2.1191E-11	4.5060E-11

TABLE B.10

Output data for the transmission line capacitance matrix with 9 harmonics on the conductor and 9 harmonics around the dielectric (units (F/m)

colu	mn		1 4.13	2	3 3
r	wo	**	********	**********	********
	1	*	4.9578E-11	-7.4595E-12	-1.6751E-11
	2	*	-7.4592E-12	7.5008E-11	-2.4579E-11
	3	*	-1.6751E-11	-2.4579E-11	4.3198E-11

CPU time 00:36:02.26 elapsed time 00:40:46.02

APPENDIX C

Tables (C.1-C.10) are output files for a 3-wire wire bundles as shown in figure 5.2

TABLE C.1

Output data for the generalized capacitance matrix with 1 harmonic on the conductor and 1 harmonic around the dielectric (units F/m)

column			1	2	3	
row	***	***	******	*******	******	
	1	*	5.1479E-11	-3.0863E-11	-3.7512E-11	
	2	*	-3.7212E-11	3.2074E-11	-2.0561E-11	
	3	*	-3.3288E-11	-2.6090E-11	3.3236E-11	

TABLE C.2

CPU time 00:00:54.42 elapsed time 00:01:19.43

TABLE C.3

Output data for the generalized capacitance matrix with 3 harmonics on the conductor and 3 harmonics around the dielectric (units F/m)

colu	mn		*	2	3
row	***	**	*********	*******	*******
	1	*	5.6586E-11	-3.7982E-11	-3.7227E-11
	2	*	-3.7924E-11	3.5010E-11	-2.1848E-11
	3	*	-3.7187E-11	-2.1806E-11	3.4311E-11

TABLE C.4

TABLE C.5

Output data for the generalized capacitance matrix with 5 harmonics on the conductor and 5 harmonics around the dielectric (units F/m)

colu	Imn		1	2	3
row	***	***	*******	*******	******
	1	*	5.6842E-11	-3.7827E-11	-3.7582E-11
	2	*	-3.7758E-11	3.4912E-11	-2.1922E-11
	3	*	-3.7628E-11	-2.1849E-11	3.4741E-11

TABLE C.6

CPU time 00:25:21.92 elapsed time 00:35:19.43

TABLE C.7

Output data for the generalized capacitance matrix with 7 harmonics on the conductor and 7 harmonics around the dielectric (units F/m)

TABLE C.8

CPU time 00:59:20.96 elapsed time 01:25:47.86

TABLE C.9

Output data for the generalized capacitance matrix with 9 harmonics on the conductor and 9 harmonics around the dielectric (units F/m)

colu	Jmn		1	2	3
row	***	**	*********	*******	*****
	1	*	5.6847E-11	-3.7697E-11	-3.7689E-11
	2	*	-3.7697E-11	3.4851E-11	-2.1920E-11
	3	*	-3.7690E-11	-2.1920E-11	3.4844E-11

APPENDIX D

This is a list of output data files for the ribbon cable and wire bundle shown in figure 6.4

TABLE D.1

OUTPUT DATA FOR RIBBON CABLE

	cap.	cap.	CPU
no. of	€_=3.5	€ _r =6.5	time
harmonics	(Pf/m)	(Pf/m)	(sec.)
1	33.108	38.149	15
3	37.704	46.951	44
5	38.734	49.684	108
7	38.962	50.448	220
9	39.015	50.655	400
11	39.027	50.711	644

TABLE D.2

OUTPUT DATA FOR WIRE BUNDLE

	cap.	cap.	CPU
no. of	€_=3.5	€_=6.5	time
harmonics	(Pf/m)	(Pf/m)	(sec.)
1	36.548	44.198	24
3	38.238	48.352	88
5	38.630	49.622	480
7	38.706	49.919	1142
9	38.721	49.988	2187
11	38.724	50.005	3602

Cable data from Belden

Broadcast and Computer Cables

Description	Trade & U.L.	Stan Len	dard gths	Std. Unit	AWG (Stranding)	Insula Nom	tion &	Nam O.	ninal .D.	No. of Shields &	Nom.	Nom. Vel.	Nom Capac	ninal stance	At	tenuati	it ion
	Type Number	ft.	m	Lbs. ca.	Nom. D.C.R.	Inch	mm	Inch	mm	Nom. D.C.R.	11112.	of Prop.	pF/ft.	pF/m	MHz	db/ 100 ft.	db/ 100 m

	9889 %1.1354 60C	500 1000 2000	152.4 304.8 609.6	15.6 29.6 60.5	18 (Solid) .041 bare copper	Cel Po ethy	iular Xy- riene	.216	5.49	Duotoil® with 4:24 AWG tinned	50	78%	26	85.3	50 100 300	3.3 4.9 9.3	10.8 16.1 30.5
RG-58/U Type	1920	to mil	395.5	ini.	6.5Ω/M' 21.3Ω/km	.116	2.95			copper drain wres 25Ω/M' 82Ω/km	Black	PVCjac	xet.		500 1000	13.6 18.8	44.6 61.7
	9555	100	30.5 152.4	8.1 39.0	23 (Solid) .023 bare	Po	tene	.238 X	6.04 X	Bare copper 2.60/M'	75	66%	. 20.5	67.3	100	3.4 5.1	11.5
Dual RG59/U Type	300V 80C	1000	304.8	74.7	copper covered steel 470/M* 154.20/km	.146	3.71	.478	12.14	8.50/km 95% shield coverage	Black For F	PVC jac	kat. Versie In page	132.	400 700 900 1000	7.5 11.4 12.0 12.7	24.8 37.4 39.4 41.7
	9259 94 1354 80C	50 100 U-500	15.2 30.5 U-152.4	2.0 4.0 18.4	22 (7x30) .031 bare copper	Cet Po ethy	kular xiy- riene	.242	6.15	Bare copper 2.611/M' 8.511/km	75	78%	17.3	56.8	50 100 200	2.1 3.0 4.5	6.9 9.8 14.8
RG-59/U Type		500 U-1000 1000	152.4 U-304.8 304.8	19.1 35.7 36.7	15.012/M* 49.212/km	.146	3.71			95% shield coverage	Black For C 100% 5-300 For F	PVC jac CTV app Sweep MHz Menum 89259 c	ket. Nications Tested	n, 131.	400 700 900 1000	6.6 8.9 10.1 10.9	21.7 29.2 33.1 35.8
	8241	25	7.6	1.3	22 (Solid)	Pc	ty-	.242	6.15	Bare copper	73	68%	21.0	68.9	50	24	7.9
RG-59/U JAN-C-17A	1354 60C	100 U-500 500 U-1000 1000 5000	30.5 U-152.4 152.4 U-304.8 304.8 1524.0	4.3 18.5 19.2 36.0 36.9 192.0	copper covered steel 55Ω/M* 180.5Ω/km	.146	3.71	242 6.15 Bare copper 2.70/M* 73 60% 71 95% shield coverage Black PVC (ac Fer Fleman ace 68241 e	kol. Versie In page	131.	200 400 200 100 100 100 100 100 100 100 100 1	4.9 7.1 9.5 10.9 12.0	16.1 23.3 31.2 35.6 39.4				

Broadcast Cables

Description	Trade & U.L.	Stan Len	dard gths	Std. Unit	AWG (Stranding)	Insula Nom	tion &	Norr O.	ninal D.	No. of Shields &	Nom.	Nom. Vel.	No n Capac	inal itance	Att	lomination	ii Ion
Description	Type Number	ft.	m	Lbs. ea.	Nom. D.C.R.	Inch	mm	Inch	mm	Nom. D.C.R.	Ω	ot Prop.	pF/ft.	pF∕m	MHz	db/ 100 ft.	db/ 100 m

				-					-		1			-		_	
	8263† 80C	U-500 500	U-152.4 152.4	18.1 18.8	23 (Solid) .023 bare	Po	tene	242	6.15	Bare copper 2.60/M*	75	68%	20.5	67.3	50 100	24	7.9 11.2
		U-1000 1000	U-304.8 304.8	35.2 38.1	copper	.146	3.71		<u> </u>	8.5Ω/km 95% shield	Black	non-con acket.	teminet	ing	200 400	7.0	16.1 23.0
RG-598/U MIL-C-17D					47Ω/M" 154.2Ω/km	and being									900 1000	11.1 12.0	38.4 39.4
	9204† 80C	U-500 500	U-152.4 152.4	18.1 18.7	23 (Solid) .023 bare	Po	xiy- tiene	.242	6.15	Bare copper 2.611/M'	75	66%	20.5	67.3	50 100	2.4 3.4	7.9 11.2
MIL-C-17F M17/25-RQ59 GPL		U-1000 1000	U-304.8 304.8	35.2 36.0	copper covered steel 47(1/M* 154.2(1/km	.146	3.71			8.5Ω/km 95% shield coverage	Black PVC	non-con acket.	taminat	ing	200 400 700 900 1000	4.9 7.0 9.7 11.1 12.0	16.1 23.0 31.8 36.4 39.4
	New 96591	U-500 500 U-1000	U-152.4 152.4 U-304.8	17.0 17.5 32.6	22 (7x30) .031 bare copper	Cell Po ethy	lular Xy- tione	.242	6.15	Bare copper 2.60/M' 8.50/km	75	78%	17.3	56.8	50 100 200	2.1 3.0 4.5	6.9 9.8 14.8
RG-SB/U Type	800	1000	304.8	33.6	15.0Ω/M* 49.2Ω/km	.146	3.71			95% shield coverage	Black PVC For C 100%	non-con acket. CTV app Sweep	taminat lications fested	ing IL	400 700 900 1000	6.6 8.9 10.1 10.9	21.7 29.2 33.1 35.8

†Passes the VW-1 Vertical Wire Flame Test. Request quotations of RG U cables not listed

MATV Cables

Description	Trade&	Star	ndard Igths	Std. Unit	AWG (Stranding)	Nor	ation &	Nan	minal D.	No. of Shields &	Norr.	Nam. Vel.	Nor Capa	ninal citance	At	Vormina terruat	al ICIT
Description	Type Number	ft.	'n	ea.	Nam. D.C.A.	Inch	mm	Inctr	mm	Norr. D.C.R.	12	of P rop .	pF/ft.	pF/m	MHz	db/ 100 ft	db/ 100 m
	9100 Replaces 9282 80C	U-500 • Black White Lt. Beige	152.4	11.2	20 (Solid) .032 copper covered	Cell Po etitty	iular hone	.242	6.15	Duobond II* + 40% alumnum braid	75	78%	17.3	56.8	50 100 200 500	1.8 2.6 3.8 6.2	5.9 8.5 12.5 20.3
		1000+ Black	304.8	22.3	steel					100% shield coverage	5-450	MHz			900	8.4	27.5
1	1034 15.004 605	U-1000+ Black White Lt. Beige	U-304.8	21.3	on Degelo Jord Dece Contractor Contractor			.091	1.56	Toronkel 1	80 (5-5)		•				
RG-59/U Type		2000+ 8lack	609.6	48.2	1000												
	9101 Replaces 9377	1000+	304.8	40.4	20 (Solid) .032 copper	Cel Po ethy	lular Xy- Nene	.242 x .385	6.15 x 9.78	Duobond II - 40% aluminum	75	78%	17.3	56.8	50 100 200	1.8 2.5 3.8	5.9 8.5 12.5
	800				covered steel	.146	3.71			braid 100% snield coverage	Black 100% 5-450 Messe (1.3 m	PVC jac Sweep MHz engered im) galva	xet. Tested 051 ⁻	teel	500 900	6.2 8.4	20.3
RG-59/U Type	8212	U-500+	11-152.4	15.5	20 (Solid)	Cel	line	242	6.15	Bare	75	78%	173	58.8	50	18	59
- Second	80C	500+ U-1000+	152.4 U-304.8	16.3 30.0	.032 bare copper	Po	tene			copper braid .					100 200	2.6	85
RG-69/U Type		1000+ 2000+	304.8 609.2	30.9 65.5	covered steel 34.50/M* 113.20/km	.146	3.71			2.6Ω/M [*] 8.5Ω/km 95% shield coverage	Black 100% 5-450	Sweep MHz	Nene jac Tested	sket.	500 900	82 84	20.3 27.6
	9274 80C	500+ U-1000+ 1000+	152.4 U-304.8 304.8	16.4 30.3 31.2	20 (Solid) .032 bare copper	Cel	lular hy-	.242	6.15	Bare copper braid	75	78%	17.3	56.8	50 100 200	1.8 2.6 3.8	5.9 8.5 12.5
RG-65/U Type	1000 AC	2000+	609.6	66.1	covered steel 61.5Ω/M' 201.8Ω/km	.146	3.71			3.512/M" 11.512/km 95% shield coverage	Black 100% 5-450	PVC jac Sweep MHz	Ket. Tested		500 900	6.2 8.4	20.3 27.5
Transford -	9590 80C	1000+	304.8	22.2	20 (Solid) .032	Cel	lular Xy-	.242	6.15	Ducioil® + 53% aluminum	75	78%	17.3	58.8	50 100 200	1.8 2.6 3.8	5.9 8.5 12.5
Flooded Burial Cable RG-58/U Type				2863	covered steel 61.5Ω/M* 201.8Ω/km	.146	3.71	275	3.35	braid + flooding 12.5Ω/M* 41.0Ω/km 100% shield coverage	Black 100% 5-450	polyethy Sweep MHz	riene jan Tested	cicat.	500 900	6.2 8.4	20.3 27.6

 Φ Spoots are one piece, but length may vary \pm 10% from length shown. Request quotations of RG/U cables not listed.

Broadcast and Computer Cables

	Trade &	Sta	ndard: ngth s	Std. Unit	AWG. (Stranding)	No	ation &	No	mina) I.D.	No.of Shields&	Non.	Nam. Vet.	No Capa	minali	A	Nomin	al lio n
Cescription	Type Number	ft.	m	ea.	Nom. D.C.R.	Inctr	mm	Inch	mm	Nom: D.C.R.	12	ot Prop	pF/ft	. pF/m	MHz	db:/ 10011	db/ 100 m
	9252 91 1354	100 U-500	30.5 U-152.4	2.1 9.7	22 (27x36) .028	Po	ly-	.160	4.06	Tinned	50	66%	30.8	101.0	50 100	4.5	14.81
MIL-C-17F M17/157-00001 (RG122/U) QPL	60C	500 U-1000 1000	152.4. U-304.8 304.8	9.4 18.4 19.0	tinned copper 17.112/M' 56.112/km	.096	2.44			5.21)/M' 17.11)/km 97% shield coverage	Black PVC j	non-co acket.	ontami	nating	200 400 700 900 1000	10.0 15.2 21.2 25.0 26.5	32.8 49.9 69.6 82.0 87.0
	8216 70 1354	100 500	30.5 152.4	.8 4.4	28.(7x34) .019 bare	Po	iy-	.101	2.58	Tinned copper	50	66%	30.8	101.0	50 100	6.6 8.9	21.7
RQ-174/U MIL-C-17D	60C	1000	304.8	8.1	copper covered staei 97Ω/M' 318.3Ω/km	.060	1.52	·		10.3Ω/M ⁺ 33.8Ω/km 88% shield coverage	Black	PVC	cket.		200 400 700 900 1000	12.0 17.5 24.1 28.2 30.0	39.4 57.4 79.1 92.5 98.4

Broadcast Cables

Description	Trade & U.L	Stan Len	dard gths	Std. Unit	AWG (Stranding)	Insula Non	tion &	Nа л (7.	nina) D.	No. of Shields &	Nam.	Nom. Vet.	Non Capac	ninal sitance	At	Nomina tenuati	al ion
Description	Type Number	ft.	m	Lbs. ea.	Dia. In In. Nom. D.C.R.	Inch	mm	Inch	mm	Nom. D.C.R.	12	of Prop.	pF/ft.	pF/m	MHz	db/ 100 ft.	db/ 100 m

	8267†	500 1000	152.4 304.8	55.0 108.0	13 (7x21) .089 bare	Po	iene	.405	10.29	Bare copper	50	66%	30.8	101.0	50 100	1.6	5.2
RG-213/U MIL-C-17D	60C				copper 1.87Ω/Μ* 6.1Ω/km	.285	7.24			1.2Ω/M' 3.9Ω/km 97% shield coverage	Black	k non-ci jacket.	ontami	nating.	200 400 700 900 1000 4000	3.2 4:7 6.9 8.0 8.9 21.5	10.5 15.4 22.6 26.3 29.2 70.5
Renter	8268†	500 1000	152.4 304.8	67.5 133.0	13 (7x.0296)	Po	iy-	.425	10.80	2 silver coated	50	66%	30.8	101.0	50 100	1.6 2.2	5.2
MIL-C-17F M17/164-00001 (RG214/U) GPL	60C	90 17 10			.089 silver coated copper 1.73Ω/M' 5.7Ω/km	.285	7.24			copper .7(1)/M* 2.3(1)/km 98% shield coverage	Black PVC	iacket.	ontami	nating	200 400 700 900 1000 4000	3.2 4.7 6.9 8.0 8.9 21.5	10.5 15.4 22.6 26.3 29.2 70.5
Real Providence	9273	100 U-500	30.5 U-152.4	3.9 18.5	19 (Solid) .035	Po	niene	.212	5.38	2 silver coated	50	66%	30.8	101.0	50 100	3.1 4.5	10.1 14.8
MIL-C-17F M17/167-00001 (R0223/U) QPL	60C	500: U-1000 1000	152.4 U-304.8 304.8	19.1 35.9 36.7	silver coated copper- 8.05Ω/M* 26.4Ω/latr	.116	2.95		18.99	copper 2.5Ω/M' 8.3Ω/km 97% shield coverage	Black PVC	k non-ci jacket.	ontami	nating	200 400 700 900 1000	6.4 9.2 12.5 14.3 16.3	21.0 30.2 41.0 46.9 53.5

†Passes the VW-1 Vertical Wire Flame Test. Request quotations of RG/U cables not listed.

Gage (AWG) or (B & S)	Nominal Dlameter		Circular	Weight	Resistance
	inches	mm	Mil Area	Pounds per M'	at 68° P Oh ms per M
			10000		
10	.1019	2.60	10380.	31.43	.998
11	.0907	2.30	8234.	24.92	1.260
12	.0808	2.05	6530.	19.77	1.588
13	.0720	1.83	5178.	15.68	2.003
14	.0641	1.63	4107.	12.43	2.525
15	.0571	1.45	3260.	9.858	3.184
16	.0508	1.29	2583.	7.818	4.016
17	.0453	1.15	2050.	6.200	5.064
18	.0403	1.02	1620.	4.917	6.385
19	.0359	.912	1200.	3.899	8.051
20	.0320	.813	1020.	3.092	10.15
21	.0285	.724	812.1	2.452	12.80
22	.0253	.643	640.4	1.945	16.14
23	.0226	.574	511.5	1.542	20.36
24	.0201	.511	404.0	1.223	25.67
25	.0179	.455	320.4	.9699	32.37
26	.0159	.404	253.0	.7692	40.81
27	.0142	.361	201.5	.6100	51.47
28	.0126	.320	159.8	.4837	64.90
29	.0113	.287	126.7	.3836	81.83
30	.0100	.254	100.5	.3042	103.2
31	.0089	.226	79.7	.2413	130.1
32	.0080	.203	63.21	.1913	164.1:
33	.0071	.180	50.13	.1517	206.9
34-	.0063	.160	39.75	.1203	260.9
35	.0056	.142	31.52	.09542	331.0
35	.0050	.127	25.00	.07568	414.8
37	.0045	.114	19.83	.0613	512.1
38.	.0040	.102	15.72	.04759	648.6
39	.0035	.089	12.20	.03774	847.8

Information from National Bureau of Standards Copper Wire Tables-Handbook 100.

AWG	Stranding	Nominal nding O.D. of - Strand	Approxim	Approximate O.D.		Weight p er	Ohms pe
Size	Stranuing		Inch	mm	Mil Area	1000	1000
W. Artest	the second second	*****	*****	*****	******	the states	R.W.
36	7/44	.002	.006	.153	28.00	.085	371.0
34	7/42	.0025	.0075	.191	43.75	.132	237.0
32	7/40	.0031	.008	.203	67.27	.203	164.0
32	19/44	.002	.009	.229	76.00	.230	136.4
30	7/38	.004	.012	.305	112.00	.339	103.2
30	19/42	.0025	.012	.305	118.75	.359	87.3
28	7/36	.005	.015	.381	141.75	.529	64.9
28	19/40	.0031	.016	.406	182.59	.553	56.7
27	7/35	.0056	.018	.457	219.52	.664	51.47
26	7/34	.0063	.019	.483	277.83	.841	37.3
26	10/36	.0050	.021	.533	250.00	.757	41.48
26	19/38	.0040	.020	.508	304.00	.920	34.43
24	i 7/32	.008	.024	.610	448.00	1.356	23.3
24	10/34	.0063	.023	.584	396.90	1.201	26.09
24	19/36	.0050	.024	.610	475.00	1.430	21.08
24	41/40	.0031	.023	.584	384.40	1.160	25.59
22	7/30	.0100	.030	.762	700.00	2.120	14.74
22	19/34	.0063	.031	.787	754.11	2.28	13.73
22	26/36	.0050	.030	.762	650.00	1.97	15.94
20	10/30	.0100	.035	.890	1,000.00	3.025	10.32
20	19'32	.0080	.037	.940	1.216.00	3.68	8.63
20	26/34	.0063	.036	.914	1.031.94	3.12	10.05
20	: 41.36	.0050	.036	.914	1.025.00	3.10	10.02
18	7/26	.0159	.048	1.22	1,769.60	5.36	5.86
18	16:30	.0100	.047	1.20	1.600.00	4.84	6.48
18	19/30	.0100	.049	1.24	1,900.00	5.75	5.46
18	41/34	.0063	.047	1.20	1.627.29	4.92	6.37
18	65/36	.0050	.047	1.20	1,625.00	4.91	6.39
16	7:24	.0201	.060	1.52	2.828.00	8.56	3.67
16	19/29	.0113	.058	1.47	2.426.30	7.35	4.27
15	: 26/30	.0100	.059	1.50	2.600.00	7.87	4.00
16	65/34	.0063	.059	1.50	2,579.85	7.81	4.02
16	105.36	.0050	.059	1.50	2.625.00	7.95	3.99
14	7/22	.0253	.073	1.85	4.480.0	13.56	2.31
14	19.27	.0142	.073	1.85	3.830.4	11.59	2.70
14	41/30	.0100	.073	1.85	4,100.0	12.40	2.53
14	105 34	.0063	.073	1.85	4.167.5	12.61	2.49
12	7/20	.0320	.096	2.44	7.168.0	21.69	1.45
12	19 25	.0179	.093	2.36	6.087.6	18.43	1.70
12	65/30	.0100	.095	2.41	6.500.0	19.66	1.75
•2	165 34	.0063	.095	2.41	6.548.9	19.82	1.58
10	37/26	.0159	.115	2.92	9,353.6	28.31	1.11
	49 27	.0142	.116	2.95	9.878.4	29.89	1.09
10 .	105/30	.0100	.116	2.95	10,530.0	31.76	.98

at an trom National Bureau of Standards Copper Wire Tables-Handbook 100.

APPENDIX F

Tables (F.1-F.10) are output data files for a multiconductor coax cable TABLE F.1

Output data for the generalized capacitance matrix with 1 harmonic or 3 Fourier terms							
column	1	1	2	3	4		
row	XX	**********	*********	**********	********		
1	*	1.3876E-10	-6.5517E-11	-1.1013E-10	-1.1013E-10		
2	*	-6.4507E-11	1.2015E-10	-2.7824E-11	-2.7824E-11		
3	*	-1.0903E-10	-2.7548E-11	1.4515E-10	-8.5744E-12		
4	*	-1.0903E-10	-2.7548E-11	-8.5744E-12	1.4515E-10		

TABLE F.2

CPU time 00:00:26.42 elapsed time 00:00:30.21

TABLE F.3

Output data for the generalized capacitance matrix with 3 harmonics or 7 Fourier terms (units F/m) column ************* row **** ***** 1 1.8661E-10 -5.9798E-11 -1.3692E-10 -1.3692E-10 * 2 1.2140E-10 -3.0758E-11 -3.0758E-11 -5.9880E-11 3 -1.3687E-10 -3.0810E-11 1.7015E-10 -2.4647E-12 4 -1.3687E-10 -3.0810E-11 -2.4647E-12 1.7015E-10

TABLE F.4

Output data for the transmission line capacitance matrix with 3 harmonics or 7 Fourier terms (units F/m) column 3 1.2140E-10 -3.0758E-11 -3.0758E-11 1 * 1.7015E-10 -2.4647E-12 2 -3.0810E-11 -3.0810E-11 -2.4647E-12 1.7015E-10 3 * CPU time 00:02:32.78 elapsed time 00:04:08.32 TABLE F.5 Output data for the generalized capacitance matrix with 5 harmonics or 11 Fourier terms (units F/m) 2 3 column ***** -1.4152E-10 1.9523E-10 -5.9212E-11 -1.4152E-10 * -3.1116E-11 -5.9218E-11 1.2145E-10 -3.1116E-11 * -1.4152E-10 -3.1119E-11 1.7387E-10 -1.2294E-12 * -1.4152E-10 -3.1119E-11 -1.2294E-12 1.7387E-10

1

2

3

4

TABLE F.6

Output data for the transmission line capacitance matrix with 5 harmonics or 11 Fourier terms (units F/m)

column row *** 1.2145E-10 -3.1116E-11 -3.1116E-11 1 * -3.1119E-11 1.7387E-10 -1.2294E-12 2 * -3.1119E-11 -1.2294E-12 3 1.7387E-10

CPU time 00:07:57.40 elapsed time 00:09:46.38

TABLE F.7

Output data for the generalized capacitance matrix with 7 harmonics or 15 Fourier terms (units F/m) column ****** ******* row 1.9690E-10 -5.9155E-11 -1.4238E-10 -1.4238E-10 * 1 -5.9154E-11 1.2145E-10 -3.1149E-11 -3.1149E-11 2 3 1.7452E-10 -9.9034E-13 -1.4238E-10 -3.1148E-11 * -1.4238E-10 -3.1148E-11 -9.9034E-13 1.7452E-10 4 TABLE F.8 Output data for the transmission line capacitance matrix with 7 harmonics or 15 Fourier terms (units F/m) column 3 1.2145E-10 -3.1149E-11 -3.1149E-11 × 1 2 -3.1148E-11 1.7452E-10 -9.9034E-13 -3.1148E-11 -9.9034E-13 1.7452E-10 3 CPU time 00:19:13.63 elapsed time 00:37:55.38

TABLE F.9

Output data for the generalized capacitance matrix with 9 harmonics or 19 Fourier terms (units F/m) column 4 1 row *** ******* ****** -1.4256E-10 1.9726E-10 -5.9151E-11 -1.4256E-10 1 * 2 -5.9151E-11 1.2145E-10 -3.1150E-11 -3.1150E-11 3 -1.4256E-10 -3.1150E-11 1.7465E-10 -9.4112E-13 * 4 -1.4256E-10 -3.1150E-11 -9.4112E-13 1.7465E-10

TABLE F.10

Output data for the transmission line capcitance matrix with 9 harmonics or 19 Fourier terms (units F/m) 3 column ****** row 1.2145E-10 -3.1150E-11 -3.1150E-11 1 * 2 -3.1150E-11 1.7465E-10 -9.4112E-13 -3.1150E-11 -9.4114E-13 1.7465E-10 3 * CPU time 00:37:27.85 elapsed time 01:23:50.15

APPENDIX G

Tables (G.1-G.10) are output files for a shielded 3-wire ripcord.

TABLE G.1

		cap on ar	Output data for acitance matrix the conductor ound the dielec	the generalized x with 1 harmonic and 2 harmonic tric (units F/m	i onic cs n)
column		1	2	3	4
row	**	*******	*********	*********	*****
1	*	7.2590E-11	-2.2850E-11	-4.5873E-11	-4.5873E-11
2	*	-2.2992E-11	5.8842E-11	-1.7925E-11	-1.7925E-11
3	*	-4.5298E-11	-1.8167E-11	6.8645E-11	-5.1797E-12
4	*	-4.5298E-11	-1.8167E-11	-5.1797E-12	6.8645E-11

TABLE G.2

TABLE G.3

Output data for the generalized capacitance matrix with 3 harmonic on the conductor and 4 harmonics around the dielectric (units F/m)

					-/
column		1 1 97	2	3	4
row	**	*********	********	*********	*******
1	*	1.2038E-10	-1.9746E-11	-7.1318E-11	-7.1318E-11
2	*	-1.9791E-11	5.9705E-11	-1.9957E-11	-1.9957E-11
3	*	-7.1458E-11	-1.9980E-11	9.3560E-11	-2.1218E-12
4	*	-7.1458E-11	-1.9980E-11	-2.1218E-12	9.3560E-11

CPU time 01:12:26.54 elapsed time 02:17:40.03

125

		TABLE G.7 Output data for the generalized capacitance matrix with 7 harmonic on the conductor and 8 harmonics					
		ar	ound the dielec	tric (units F/r	n)		
column		1	2	3	4		
row 7 1 7 2 7 3 7 4 7	* 1.4 * -1.9 * -8.2	163E-10 499E-11 106E-11 106E-11	-1.9518E-11 5.9700E-11 -2.0091E-11	-8.2061E-11 -2.0101E-11 1.0269E-10 -4.8951E-13	-8.2061E-11 -2.0101E-11 -4.8951E-13		
• 7	e ce) time 05	TAD		1.02052 10		
		-	IAB	LE G.8			
		Outr cap on arc	out data for the acitance matri the conductor ound the dielec	a transmission x with 7 harmo and 8 harmoni tric (units (F/r	line onic cs n)		
	column		1	2	3		
	row	******	105-11 -2 01	**************************************	****** 015-11		
	2	* _2 00	002-11 -2.01	69E-10 -4 89	515-13		
	2	* -2.00	912-11 1.02	51E-13 1 02	59E-10		
		+ime 02.	45.09 82 212	512-15 1.02	20.15.67		
	Cr0	time 02.	TAD		.0.10.07		
		C	und National form	the concernition	4		
		cap on ar	acitance matri the conductor round the diele	x with 9 harmor and 10 harmor ctric (units F/	nic nics m)		
column	Ann 4 4 4 4	1	2	3	4		
1	* 1.4	322E-10	-1.9529F-11	-8.2847E-11	-8.2847E-11		
2	* -1.9	524E-11	5.9700E-11	-2.0088E-11	-2.0088E-11		
3	* -8.2	864E-11	-2.0085E-11	1.0331E-10	-3.6071E-13		
4	* -8.2	864E-11	-2.0085E-11	-3.6071E-13	1.0331E-10		

TABLE G.10

Output data for the transmission line capacitance matrix with 9 harmonic on the conductor and 10 harmonics around the dielectric (units (F/m)

matrix with 1 harmonic or 3 Fourier terms (units F/m) 1 2 3 * 3.4330E-11 -7.9497E-12 -7.9497E-12 -7.8709E-12 4.1472E-11 -2.4498E-12 -7.8709E-12 -2.4498E-12 4.1472E-11 U time 00:00:28.70 elapsed time 00:00:39.86

Output data for the generalized opportance matrix with 3 hermonics or 7 Fourier terms

3.3313E-11 -1.7085E-11 -3.9119E-11 -3.9119E-11
-1.7105E-11 -3.4685E-11 -8.7880E-12 -8.7880E-12
-3.9107E-11 -8.8029E-12 4.8614E-11 -7.0421E-13
-3.9107E-11 -8.8029E-12 -7.0421E-13 4.8614E-11

APPENDIX H

Tables (H.1-H.10) are output data files for a multiconductor coax cable when $\epsilon_{1} = 1.0$

TABLE H.1

	Output data for the generalized capacitance matrix with 1 harmonic or 3 Fourier terms						
			(units F/	m)			
column	1	1	2	3	4		
row	**	*********	*********	*********	******		
1	*	3.9647E-11	-1.8719E-11	-3.1466E-11	-3.1466E-11		
2	*	-1.8431E-11	3.4330E-11	-7.9497E-12	-7.9497E-12		
3	*	-3.1152E-11	-7.8709E-12	4.1472E-11	-2.4498E-12		
4	*	-3.1152E-11	-7.8709E-12	-2.4498E-12	4.1472E-11		

TABLE H.2

Output data for the transmission line capacitance matrix with 1 harmonic or 3 Fourier terms (units F/m) column 1 -7.9497E-12 -7.9497E-12 3.4330E-11 1 2 -7.8709E-12 4.1472E-11 -2.4498E-12 -7.8709E-12 -2.4498E-12 4.1472E-11 3 CPU time 00:00:28.70 elapsed time 00:00:39.86 TABLE H.3 Output data for the generalized capacitance matrix with 3 harmonics or 7 Fourier terms (units F/m) column 4 1 row to ******* ----3.3318E-11 -1.7085E-11 -3.9119E-11 * -3.9119E-11 -1.7109E-11 3.4685E-11 -8.7880E-12 -8.7880E-12

3 * -3.9107E-11 -8.8029E-12 4.8614E-11 -7.0421E-13 4 -3.9107E-11 -8.8029E-12 -7.0421E-13 4.8614E-11

1

2

TABLE H.4

Output data for the transmission line capacitance matrix with 3 harmonic or 7 Fourier terms (units F/m) column ****** row -8.7880E-12 3.4685E-11 -8.7880E-12 1 * 2 -8.8029E-12 4.8614E-11 -7.0421E-12 3 -8.8029E-12 -7.0421E-13 4.8614E-11 CPU time 00:02:32.59 elapsed time 00:03:35.64 TABLE H.5 Output data for the generalized capacitance . matrix with 5 harmonics or 11 Fourier terms (units F/m) 4 1 column **** row 5.5780E-11 -1.6918E-11 -4.0434E-11 -4.0434E-11 * 1 3.4700E-11 -8.8903E-12 -8.8903E-12 2 -1.6919E-11 4.9677E-11 -3.5127E-13 -4.0435E-11 -8.8912E-12 3 * -4.0435E-11 -8.8912E-12 -3.5127E-13 4.9677E-11 4

TABLE H.6

Output data for the transmission line capacitance matrix with 5 harmonic or 11 Fourier terms (units F/m) column ****** row ** 3.4700E-11 -8.8903E-12 -8.8903E-12 1 * 2 4.9677E-11 -3.5127E-13 -8.8912E-12 3 -8.8912E-12 -3.5127E-13 4.9677E-11 × CPU time 00:08:04.68 elapsed time 00:11:52.35

	Output data for the generalized capacitance matrix with 7 harmonics or 15 Fourier terr (units F/m)	ns
column	1 2 3	4
row 1	* 5.6256E-11 -1.6901E-11 -4.0680E-11 -4.0	680E-11
2	-1.6901E-11 3.4700E-11 -8.8996E-12 -8.8	996E-12
3	* -4.0681E-11 -8.8996E-12 4.9863E-11 -2.8	295E-13
4	* -4.0681E-11 -8.8996E-12 -2.8295E-13 4.9	863E-11
	TABLE H.8	
	Output data for the transmission line capac matrix with 7 harmonic or 15 Fourier to (units F/m)	itance erms
	column 1 2 3	*
	1 * 3.4700E-11 -8.8996E-12 -8.8996E-1	.2
	2 [*] -8.8996E-12 4.9863E-11 -2.8295E-1	.3
	3 * -8.8996E-12 -2.8295E-13 4.9863E-1	.1
	CPU time 00:18:51.82 elapsed time 00:52:19.	69
	TABLE H.9	
	Output data for the generalized capacitance	
	matrix with 9 harmonics or 19 Fourier terr	ns
column	1 2 3	4
row 1	* 5.6359E-11 -1.6900E-11 -4.0732E-11 -4.0	732E-11
2	* -1.6900E-11 3.4700E-11 -8.9001E-12 -8.90	001E-12
3	* -4.0732E-11 -8.9000E-12 4.9901E-11 -2.6	889F-13
4	* -4.0732E-11 -8.9000E-12 -2.6889E-13 4.90	901F-11

TAR
TABLE H.9

Output data for the transmission line capacitance matrix with 9 harmonic or 19 Fourier terms (units F/m) 1 column 3 3.4700E-11 -8.9001E-12 -8.9001E-12 × 1 * 4.9901E-11 2 -8.9000E-12 -2.6889E-13 3 -8.9000E-12 -2.6889E-13 4.9901E-11 * CPU time 00:37:24.70 elapsed time 00:54:05.02

APPENDIX I

Tables (I.1-I.5) are output data files for a dielectric wire bundle over a ground plane.

TABLE I.1

Output data for the transmission line capacitance matrix with 1 haromonic around the conductor and 1 haromonic around the dielectric for a 3-wire diectric coated configuration over a ground plane

CPU time 00:01:56.48 elapsed time 00:02:36.43

TABLE I.2

Output data for the transmission line capacitance matrix with 3 haromonics around the conductor and 3 haromonics around the dielectric for a 3-wire diectric coated configuration over a ground plane

column 1		2	3
row	********	******	*****
1 3	* 3.7027E-11	-1.0970E-11	-2.4675E-12
2	* -1.0970E-11	3.1089E-11	-1.0970E-11
3 ,	* -2.4675E-12	-1.0970E-11	3.7027E-11

CPU time 00:12:11.77 elapsed time 00:15:47.50

TABLE I.3

Output data for the transmission line capacitance matrix with 5 haromonics around the conductor and 5 haromonics around the dielectric for a 3-wire diectric coated configuration over a ground plane

column	1	1	2	3
row	*	*********	*******	*******
1	*	3.7029E-11	-1.0969E-11	-2.4685E-12
2	*	-1.0969E-11	3.1087E-11	-1.0969E-11
3	*	-2.4685E-12	-1.0969E-11	3.7029E-11

CPU time 00:36:21.29 elapsed time 00:49:50.18

APPENDIX J

The following is a listing of the individual subprograms which make up the program for the capacitance model. A program flow diagram is provided in figure J.1 to show which subroutines are called by the calling program or subroutines.

- Main The main program is used in controlling the input from the terminal and the output to data files.
- Winfo Subroutine which allows the user to input wire data while minimizing the input requirements from the user.
- Samstd Subroutine which allows the user to input stranded wire information while minimizing the input requirements and then calculates and equivalent conductor radius when the strands have the same radius.
- Difstd Subroutine which allows the user to input stranded wire information while minimizing the input requirements and then calculates and equivalent conductor radius when the wires have a different strand radii.
- Samrad Subroutine which allows the user to input wire radius information while minimizing the input requirements when the conductors have the same radius.
- Difrad Subroutine which allows the user to input conductor information while minimizing the input requirements when the conductors have different radii.
 - Dinfo Subroutine which allows the user to input various dielectric radii.
 - Rpinfo Subroutine which allows the user to input various permittivities for the dielectric coating around conductors.
 - Size Subroutine which multiplies all pertinent variables by a constant to minimize computational errors when inverting the D matrix.
 - Rgenxy Subroutine which allows the user to input x,y coordinate information based on the ground reference wire and then calculates all remaining pertinent reference data for ribbon cables.

- Bgenxy Subroutine which allows the user to input x,y coordinate information based on the ground reference wire and then calculates all remaining pertinent reference data for a wire bundle
- Cgenxy Subroutine which allows the user to input x,y coordinate information based on the ground reference wire in this case the shield and then calculates all remaining pertinent reference data for a coax cable or shielded wire bundle
- Pgenxy Subroutine which allows the user to input x,y coordinate information based on the ground reference plane and then calculates all remaining pertinent reference data for a wire bundle over a ground plane
- Newref Subroutine which allows user to change ground reference wire and then calculates all x,y coordinate information based on the new reference wire (not used when a ground plane is present)
 - Cap Subroutine which calculates the generalized capacitance matrix
 - Dia Subroutine which calculates the diagonal terms of the D submatrix
 - Ofdia Subroutine which caluclates the off-diagonal terms of the D submatrix
 - Place Subroutine which places the calculated values of the various D submatrices into the large D1 matrix
 - Sum Subroutine which calculates the generalized capacitance matrix by summing certain rows of the large D1 matrix
 - Trans Subroutine which calculates the transmission line capacitance matrix from the generalized capacitance matrix.
 - Plane Subroutine which places the values of the generalized capacitance matrix into the transmission line capacitance matrix when a ground plane is present
 - P1 Subroutine which used to reduce the order of the D1 matrix from 2N(2k+1) to N(k+1)
 - Minv Subroutine which is a canned IBM program for inverting a matrix using Gauss illimation with max pivoting. The program has been modified to run in quad precision

Mprt - Subroutine which places all output data in matrix form

A list of variable names which are passed from and to the various subroutines is shown in tables (J1-J23). The tables consist of variable names and descriptions of variable names, and their type, i.e., integer, character, or real. The tables also tell if the variable is an input and/or output variable from or to other subroutines, screen, or file.

The various abbreviations used in the tables are listed below

- 1. TO Terminal output to screen
- 2. TI Terminal input from screen
- 3. PO Program output to screen
- 4. PI Program input from screen
- 5. PV Program variable that is not passed to other subroutines
- 6. PC Program counter which is used only in that program or subroutine
- 7.PI/O- Program input variable which is from another subroutine and then passed to another
- 9. FO- Program output to a file

TABLE J.1 Variables used in Subroutine Main

variable name	description	variable type	input output type
Conf	Type of wire configuration, bundle 'B' ribbon cable 'R', multiconductor coax cable 'C', wire bundle over a ground plane 'P'	Char*1	TI/O PI/O
Iopt	option for either dielectric coated wires bare wires lopt = 1 refers to dielectric coated wires lopt = 2 refers to bares wires and is used when inductance or coax cable is selected	I	TI/O PI/O
Nw	Number of wires in the system		TI/O PI/O
Nhc	# of harmonics evaluated around conductor	I	TI/O PO
Nhd	# of harmonics evaluated around dielectric	I	TI/O PO
Nfc	# of Fourier terms around conductor		PO
Nfd	# of Fourier terms around dielectric	1	PO
Nf	Total # of Fourier terms, for bare wire Nf=Nfc, for dielectric coated wires Nf=Nfc+Nfd	I	PO
Md1	dimension for C (generalized cap. matrix)	I	PO
Md2	dim. for C1 (transmission line cap. matrix)	I	PO
_Md3	dim. for D submatrices	Ι	PO
Md4	dim. for D1 matrix (all D submatrices)	I	PO
Md5	dim. for Lt vector (working vector)	I	PO
Md6	dim. for Scr vector (working vector)	I	PO
Md7	dim. for Pctl & Rpl (Cap. & Ind. matrix when ground plane is present respectively)	I	PO
Md8	dim. for D1 matrix in some subroutines	Ι	PO
_Md9	dim. for RD1 matrix in some subroutines	I	PO
_Md10	dim. for RD1 matrix in some subroutines	I	PO
Cer	Rel. permittivity of die. inside coax	R*16	PO
Prmpt2	Y/N response to Ref. # = Gnd. ref.	R*16	TI
Rc	Conductor radius measured from center	R*16	TI/O PO
Rd	Dielectric radius measured from center	R*16	TI/O PO
tr	Relative permittivity of dielectric	R*16	TI/O PO
Nw1	# of wires in system less reference wire	I	PO
	Generalized capacitance matrix	R*16	PI/O FO
	Transmission line capacitance matix	R*16	PI/O FO
KI	Transmission line inductance matrix	R*16	PI/O FO

la contra de la co			
variable name	description	variable type	input output type
NWH	wires above gnd. when gnd. plane present	I	ŚV
PCTL	Transmission line Cap. matrix when gnd. plane is present	R*16	PI/O FO
D	submatrices making up the potential matrix	R*16	PI/O FO
D1	large matrix comprised of D submatrices	R*16	TO PI/O
· SCR	working vector	R*16	TI/O PO
SAC1	saved transmission line cap. matrix	R*16	PO FO
LT	working vector	R*16	PO FO
RD1	reduced D1 matrix when ground present	R*16	PO FO
PCG	generalized capacitance matrix gnd present	R*16	PO FO
SAPCTL	saved transmission line matrix gnd present	R*16	PO FO
PD1	D1 matrix when gnd plane is present	R*16	PO FO
NS	number of strands in a wire	Ι	PI/O
NX	number of remaining solid wires in sys.	I	PI/O
RCL	Inductance matrix for coax cable	R*16	PO FO
SMRC	smallest conductor radius in system	R*16	PO FO
WRC	conductor radius before sizing	R*16	PO FO
AA1	sizing constant to reduce inversion error	R*16	PO FO
X	relative horizontal distance between wires	R*16	PO FO
Y	relative vertical distance between wires	R*16	PO FO
SEP	wire-to-wire sep. measured from center	R*16	PO FO
IREF	reference wire number	R*16	PO FO
H	vertical height from ground plane	R*16	PO FO
ON	integer program counter	I	PC
KO	integer program counter	I	PC
KU	integer program counter	II	PC
KP	integer program counter	I	PC
MN	integer program counter	I	PC
KR	integer program counter	I	PC
KT	integer program counter	I	PC
KS	integer program counter	I	PC
L KV	integer program counter	II	PC

TABLE J.1 Variables used in program Main (continued)

variable name	description	variable type	input output type
Prmpt1	Y/N response to all wires solid	char*1	TI
Prmpt2	Y/N response to all wires stranded	char*1	TI
Ns	# of wires that are strand	char*1	TI PO
Prmpt3	Y/N response to all wires have same rad.	char*1	TI
Nx	Remaining solid wires in system	I	PO
Nw	Total no. of wires in the system	I	PI
Smrc	Smallest conductor radius in system	R*16	PI/O
Rc	Conductor radius	R*16	PI/O
Conf	Type of configuration selected	char*1	PI/O
WRC	conductor radius before sizing	R*16	PI/O
Prmpt4	Y/N response to remaining wires have the same conductor radius	char*1	TI
Prmpt5	Y/N response to all strands have the same conductor radius	char*1	TI
Prmpt6	Y/N response to all wires have the same conductor radius	char*1	TI

TABLE J .2 Variables used in Subroutine Winfo

TABLE J .3 Variables used in Subroutine Dinfo

variable name	description	variable type	input output type
Prmpt8	Y/N response to are all dielectric radii the same	char*1	TI
Xrd	Radius of the dielectric	R*16	TI
Nw	Total number of wires in the system	I	PI
Rd	Dielectric radius measured from center	R*16	TI/O PO
No	no. of particular wire in system	I	TIPV
Ino	Previous wire number	II	PV
Prmpt9	Y/N response to previous dielectric radius = to present dielectric radius	char*1	TI
LWRD	dielectric radius before sizing	R*16	PO

•

and a second second	•		
variable name	description	variable type	input output type
Prmpt10	Y/N response to is relative permittivity of the wires the same	char*1	TI
Xer	Relative permittivity of the dielectric	R*16	TI
Er	Relative permittivity of the dielectric	R*16	TI/O PO
Nw	No. of wires in the system	II	PI
No	no. of particular wire in the system	II	TI PV
Ino	Previous number of wire in system	II	PV
Prmpt11	Y/N response to previous relative permittivity = to present value	char*1	TI

TABLE J .4 Variables used in Subroutine Rpinfo

TABLE J .5 Variables used in Subroutine Size

variable name	description	variable type	input output type
Smrc	Smallest strand or conductor radius	R*16	PI
Nj	Power of sizing factor to min. error	II	PV
_AA1	Sizing factor to minimize error	R*16	PO
Iref	# of reference wire set to 1	II	PO
Nw	Total no. of wires in the system	II	PI
Rc	Conductor radius	R*16	PI/O
Rd	Dielectric radius measured form center	R*16	PI/O
Iopt	Option as to either dielectric coated wires or bare wires selected for system	I	PI

IAELE J.6					
Variables	used	in	Subroutine	Difstd	

variable name	description	variable type	input output type
Nw	Total no. of wires in the system	I	ΡĪ
Ns	No. of wires that are stranded in system	I	PI
Smrc	Smallest stand or conductor radius	R*16	PO
Rc	Conductor radius	R*16	PO
Conf	Configuration selected	char*1	PI
N	Dummy variable for no. of stranded wires	I	PV
Rcx	Inside radius of shield of coax cable	R*16	TI PO
No	Current wire no.	I	PV
Ino	Previous wire no.	I	PV
Rstd	Radius of one strand of wire	II	TI
Nstd	No. of strands comprising the wire	I	TI
Prmpt7	Y/N response to previous wire radius equal present wire radius	char*1	TI
WRC	conductor radius before sizing	R*16	Po
XRC	equivalent conductor radius	R*16	PV

TABLE J .7 Variables used in Subroutine Samstd

variable name	description	variable type	input output type
Nw	Total no. of wires in the system	II	PI
Ns	No. of wires that are stranded in system	II	PI
Smrc	Smallest stand or conductor radius	R*16	PI
Rc	Conductor radius	R*16	PO
_Conf	Configuration selected	char*1	PI
К	Dummy wire counter when coax or shielded wire bundle configuration is selected	I	PV
Rcx	Inside radius of shield of coax cable	R*16	TI PO
Rstd	Radius of one strand of wire	R*16	TI
Nstd	No. of strands comprising the wire	I	TI
Xrc	Equivalent conductor radius	R*16	PV
N	dummy variable for no. of stranded wires	II	PV
I_WRC	conductor radius before sizing	R*16	PV

TABLE J .8 Variables used in Subroutine Difrad

variable name	description	variable type	input output type
CONF	configuration selected	char*1	PI
NX	number of wires that are solid	I	PI
NW	number of wires in the system	I	PI
RCX	inside radius of coax shield	R*16	TI/O
N	dummy counter	I	PV
K	dummy counter	I	PV
RC	radius of conductor	R*16	TI/O PO
WRC	radius of conductor before sizing	R*16	PO
SMRC	smallest conductor radius in system	R*16	PO
NO	present wire number	I	TI
INO	previous wire number	I	PV

TABLE J.9					
Variables	used	in	Subroutine	Samrad	

variable name	description	variable type	input output type
CONF	configuration selected	char*1	ΡĪ
NX	number of wires that are solid	II	PI
NW	number of wires in the system	I	PI
RCX	inside radius of coax shield	R*16	TI/O
N	dummy counter	I	PV
K	dummy counter	I	PV
RC	radius of conductor	R*16	TI/O PO
WRC	radius of conductor before sizing	R*16	PO
SMRC	smallest conductor radius in system	R*16	PO

TABLE J . 10 Variables used in Subroutine RGENXY

variable name	description	variable type	input output type
SEP	wire-to-wire separation	R*16	TI/O
NW	number of wires in the system	I	PI
X	horizontal cntr-to-cntr wire separation	R*16	PO
Y	vertical cntr-to-cntr wire separation	R*16	PO
L_AA1	sizing constant	R*16	PI

variable name	description	variable type	input output type
NW	number of wires in the system	I	PI
X	horizontal entr-to-entr wire separation	R*16	TO PO
Y	vertical cntr-to-cntr wire separation	R*16	TO PO
XVALUE	horizontal cntr-to-cntr wire separation	R*16	TI
YVALUE	evertical cntr-to-cntr wire separation	R*16	TI
IREF	number given to reference wire	I	PI
AA1	sizing constant	R*16	PI

TABLE J . 1 1 Variables used in Subroutine BGENXY

TABLE J.12

Variables used in Subroutine CGENXY

variable name	description	variable type	input output type
NW	number of wires in the system	. I I	PI
X	horizontal cntr-to-cntr wire separation	R*16	TO PO
Y	vertical cntr-to-cntr wire separation	R*16	TO PO
IREF	number given to reference wire	I	PI
XVALUE	horizontal cntr-to-cntr wire separation	R*16	TI
YVALUE	vertical cntr-to-cntr wire separation	R*16	TI
AA1	sizing constant	R*16	PI

TABLE J.13 Variables used in Subroutine PGENXY

variable name	description	variable type	input output type
NWH	number of wires in the system above gnd	I	PV
NW	number of wires in the system	I	PI
H	vert. height of wire measured from cntr	R*16	TI
X	horizontal cntr-to-cntr wire separation	R*16	TO PO
YVALLI	vertical cntr-to-cntr wire separation	R*16	TO PO
AVALUE IDEE	horizontal entr-to-entr wire separation	R*16	TI
INCEP	number given to reference wire	I	PI

TABLE J.14 Variables used in Subroutine NEWREF

variable name	description	variable type	input output type
IGREF	ground reference wire number	R*16	TI
NW	number of wires in the system	I	PI
X	horizontal cntr-to-cntr wire separation	R*16	PO
Y	vertical cntr-to-cntr wire separation	R*16	PO
IREF	number given to reference wire	I	PO

TABLE J.15

Variables used in Subroutine CAP

variable name	description	variable type	input output type
PI	variable assigned to value of pi	R*16	PV
NW	number of wires in the system	I	PI
NW1	no. of wires in system less ref. wire	I	PO
NW12	NW! squared	I	PO
NFC	number Fourier terms around conductor	I	P1
NFC1	no. of Fourier trms around cond. +avg.term	I	PI/O
NFD	number of Fourier terms around dielectric	I	PI
NFD1	no. of Fourier trms around die. + avg term	I	PI/O
LD	total trms around cond & die.*no. of wires	I	PI/O
NF	total Fourier terms around cond & die	Ι	PI/O
AC	angle of matchpoint on conductor surface	R*16	PI/O
AD	angle of matchpoint on dielectric surface	R*16	PI/O
DELTC	offset angle of matchpoint on conductor	R*16	PI/O
DELTD	offset angle of matchpoint on dielectric	R*16	PI/O
NSW	present source wire	I	PI/O
NPW	present potential wire	I	PI/O
XSEP	hoizontal wire separation	R*16	PO
YSEP	vertical wire separation	R*16	PO
X	horizontal wire separation	R*16	PI
Y	vertical wire separation	R*16	PI
ER1	permittivity of dielectric - 1	R*16	PI/O
ER2	permittivity of dielectric + 1	R*16	PI/O
LER	permittivity of dielectric	R*16	PI/O

TABLE J .15 (cont.) Variables used in Subroutine CAP

variable name	description	variable type	input output
CONE	configuration selected	char*1	PI/O
RC	conductor radius	R*16	PI/O
TREE	number of reference wire	T	PI/O
NHC	number of harmonics around conductor	Ī	PI/O
TOPT	option either hare or dielectric coated	Ī	PI/O
NHD	number of harmonics around dielectric	Ī	PI/O
RD	dielectric radius measured from center	R*16	PI/O
	potential submarix	R*16	PI/O
MD1	dim, of generalized cap, matrix	I	PI/O
MD2	dim, of transmission line cap, matrix	I	PI/O
MD3	dim. of D submarices	I	PI/O
MD4	dim. of large D1 matrix(potential matrix)	I	PI/O
MDS	dim. of Lt vector (working vector)	I	PI/O
MD6	dim. of SCR vector (working vector)	I	PI/O
MD7	dim. of transmission line cap matrix plane	I	PI/O
MD8	dim. of D1 matrix in some subroutines	I	PI/O
MD9	dim. of reduced RD1 matrix	I	PI/O
MD10	dim. of reduced RD1 matrix	I	PI/O
MM	dummy variable (same as NPW)	I	PI/O
MN	dummy variable (same as NSW)	I	PI/O
D1	large potential matrix(contains D's)	R*16	PI/O
NWH	number of wires above the ground plane	I	PO
MLD	order of RD1 matrix for sub. MINV	I	PO
RD1	reduced D! matrix when gnd. plane present	R*16	PI/O
LT	working vector	R*16	PO
ISTP	number given to step where MINV fails	I	PI/O
CG	generalized cap. matrix	R*16	PI/O
PCG	generalized cap. matrix when gnd. present	R*16	PI/O
CER	permittivity of dielectric inside coax	R*16	PI/O
PCTL	transmission line cap. matrix gnd. present	R*16	PI/O
NRC J1 J2 B2 B3	no. of harmonics around conductor program counter (matrix index) dummy variable dummy variable orogram counter	R*16 R*16	

TAELE J.16

Variables used in Subroutine OFDIA

variable name	description	variable type	input output type
BETA	angle matchpts makes with cntr.+offset	R*16	PV
MPP	program counter max=NFC	I	PC
AC	angle matchpoint makes with wire cntr	R*16	PI
DELTC	offset angle matchpoints make with cntr	R*16	PI
CANG	cosine of BETA	R*16	PV
SANG	sine of BETA	R*16	PV
Q1	total horiz. dis between potential wire matchpoint and cntr of source wire	R*16	PV
XSEP	cntrto-cntr. distance between wires	R*16	PI
RC	conductor radius measured from center	R*16	PI
NPW	no. of present potential wire	I	PI
Q12	Q1 squared	R*16	PV
Q2	total vert. dis. between potential wire matchpoint and cntr of source wire	R*16	PV
022	O2 squared	R*16	PV
RO	dis. to matchpt. from cntr. of source wire	R*16	PV
THETA	angle matchpt, source wire and horizontal	R*16	PV
B1	dummy varialble	R*16	PV
CONF	variable used for type of configuration	char*1	PI
NSW	present source wire	I	PI
IREF	no. of wire that is selected as reference	I	PI
RC	conductor radius measured from center	R*16	PI
IOPT	option either bare or dielectric coated	I	PI
NFC1	no. of Fourier terms less avg. term	I	PI
RD	dielectric radius measured from center	R*16	PI
D	small potential submatrix	R*16	PO
_A1	dummy variable	R*16	PV
_A3	dummy varialble	R*16	PV
NHC	no. of harmonics around conductor	I	PI
1	program counter (matrix index)	I	PC
_J2	program counter (matrix index)	I	PC
<u>B2</u>	dummy variable	R*16	PC
B3	dummy variable	R*16	PV
	program counter	I	PV

variable name	description	variable type	input output type
NHD	no. of harmonics around dielectric	I	PI
AD	angle of matchpt, cntr, and horizontal	R*16	PI
DELTD	of set of matchpt. cntr. and horizontal	R*16	PI
GMA	angle E normal makes with r direction	R*16	PV
RHATN	unit normal vector in r directon	R*16	PV
THETN	unit normal vector in theta direction	R*16	PV
JJ	program counter (matrix index)	I	PC
ER1	permittivity of dielectric - 1	R*16	PI
J4	program counter (matrix index)	I	PC
B4	dummy variable	I	PV

TABLE J . 16 (cont) Variables used in Subroutine OFDIA

TABLE J.17 Variables used in Subroutine DIA

variable name	description	variable type	input output type
CONF	variable used for type of configuration	char*1	PI
NPW	present potential wire	II	PI
B1	dummy variable	R*16	PV
RC	conductor radius	R*16	PI
NSW	present source wire	I	PI
J	program counter	II	PC
NFC	no. of Fourier terms around dielectric	I	PI
	small potential submatrix	R*16	PO
<u>IOPT</u>	option either bare or dielectric coating	II	PI
BB1	dummy variable	R*16	PV
RD	dielectric radius measured from center	R*16	PI
NFC1	no. of Fourier tmrs + avg. term	I	PI
BBB1	dummy variable	R*16	PV
ER1	permittiviyt of dielectric + 1	R*16	PI
L_BBB5	dummy variable	R*16	PV

TABLE J.17 (cont) Variables used in Subroutine DIA

variable name	description	variable type	input output type
J1	program counter (matrix index)	I	PC
J2	program counter (matrix index)	II	PC
A1	dummy variable	R*16	PV
NHD	no. of harmonics around dielectric	I	PI
J3	program counter (matrix index)	I	PC
J4	program counter (matrix index)	I	PC
A12	A1 squared	R*16	PC
AD	angle of matchpt. cntr. & horizontal	R*16	PI
DELTD	offset angle of matchpt, cntr, & horizontal	R*16	PI
B2	dummy variable	R*16	PV
B3	dummy variable	R*16	PV
ER2	permittivity of dielectric +1	R*16	PI
B4	dummy variable	R*16	PV

TABLE J.18

Variables used in Subroutine PLACE

variable name	description	variable type	input output type
NP	program counter (matrix index)	I	PC
NF	total number of Fourier terms	II	PI
MM	no. of present potential wire	II	PI
NN	no. of present source wire	I	PI
LD	prod of NF * no. of wires	II	PI
D1	large potential matrix comprised of D's	R*16	PO
J	program counter (matrix index)	I	PC

TABLE J . 19 Variables used in Subroutine SUM

variable name	description	variable type	input output type
PI	variable assigned to pi	R*16	PV
EPS	variable assinged to value of permittivity	R*16	PV
<u>A3</u>	dummy variable	R*16	PV
NWH	no. of wires above the gnd. plane	II	PV
CONF	variable assigned to type of configuration	char*1	PI
MNW	dummy var. for wires (depends on conf)	II	PV
NW	number of wires in the system	II	PI
IROW	dummy variable assigned to row	II	PC
NF	no. of Fourier terms	II	PI
IL	program counter (matrix index)	II	PV
J	program counter (matrix index)	I	PV
LD	no. of Fourier terms * no. of wires	I	PI
A1	dummy variable	R*16	PV
A2	dummy variable	R*16	PV
K	program counter (matrix index)	II	PC
NFC	no. of Fourier terms around the conductor	I	PI
RD1	reduced D1 matrix (gnd. present)	R*16	PI
D1	potential matrix	R*16	PI
IOPT	variable assigned to type of configuration	char*1	PI
PCG	general capacitance matrix (gnd. present)	R*16	PO
CER	permittivity of dielectric in coax cable	R*16	PI
RC	conductor radius	R*16	PI
RD	dielectric radius	R*16	PI
MSUM	used to add certain terms in matrix	R*16	PV
I	program counter(matrix index)	II	PC
CG	generalized capacitance matrix	R*16	PO
II	program counter (matrix index)	II	PC
IREF	variable assigned to reference wire	II	PI
A3	dummy variable	R*16	PV
PD1	potential matrix when gnd, plane is presnt	R*16	PV
J	program counter (matrix index)	I	PC
NW12	NW1 squared	II	PI
_NW1	no. of wires less reference wire	Ī	PI
CTL	transmission line capacitance matrix	R*16	PO
JJ	program counter (matrix index)	I	PC

variable name	description	variable type	input output type
NWH	no. of wires above ground plane	I	PV
NW	no. of wires (real and image)	I	PI
NP	program counter (matrix index)	II	PC
NF	total no. of Fourier terms	II	PI
NK	program counter (matrix index)	II	PC
NN	program counter (matrix index)	I	PC
N	program counter (matrix index)	I	PC
MP	program counter (matrix index)	·I	PC
I	program counter	I	PC
J	program counter	I	PC
RD1	reduced D1 matrix when gnd plane present	R*16	PO
D1	potential matrix comprised of D's	R*16	PI

TABLE J .20 Variables used in Subroutine P1

TABLE J .21 Variables used in Subroutine PLANE

variable name	description	variable type	input output type
K	program counter (matrix index)	II	PC
I	program counter (matrix index)	I	PC
J	program counter (matrix index)	II	PC
NWH	no. of wires above the gnd. plane	I	PI
PCTL	transmission line cap matrix gnd. present	R*16	PO
PCG	generalized cap. matrix gnd. present	R*16	PI

literal input of title (hollerith form) no. of characters in 8

variable name	description	variable type	input output type
D	resultant of determinant	R*16	PO
NK	negative of the order of input matrix	I	PC
N	order of input matrix	I	PI
K	program counter	I	PC
L	vector storing indices	I	PI
M	vector storing indices	I	PI
A	input matrix which inverted then outputed	R*16	PI/O
BIGA	largest value in matrix (pivot)	R*16	PV
IZ	program counter (matrix index)	II	PC
IJ	program counter (matrix index)	I	PC
J	program counter	I	PC
KI	program counter (maltrix index)	I	PC
HOLD	temporarily hold term of input matrix	R*16	PV
JI	program counter (matrix index)	I	PC
I	program counter (matrix index)	I	PC
JK	program counter (matrix index)	I	PC

TABLE J .22 Variables used in Subroutine MINV

TABLE J .23 Variables used in Subroutine MPRT

variable name	description	`variable type	input output type
A	input matrix to be printed	R*16	PI FO
M	number of rows in A	I	PI
N	number of columns in A	II	PI
B	literal input of title (hollerith form)	CHAR	PV
J	no. of characters in B	II	PC
I	program counter	II	PC
	program counter (matrix index)	II	PC
	max values of program counter	I	PC
K	program variable (matrix counter)	I	PC

APPENDIX K

The following is a listing of the FORTRAN capacitance model.

0001		
0002		
0003	,	
0004		
0005	~	CONSTRUCTIONS CONSIDERED IN THIS PROCENT ARE REPORT
0006	00	CONFIGURATIONS CONSIDERED IN THIS PROGRAM ARE RIBBON
0007	C	CABLES, WIRE BUNDLES, RIBBON AND WIRE BUNDLES OVER A
0008	C	GROUND PLANE, MULTICONDUCTOR COAX CABLES, AND SHIELD
0009	C	WIRE BUNDLES
0010	č	C(NW++2) SIZE OF THE GENERALIZED CARACITANCE VECTOR
0011	č	FOR ALL CONFIGURATIONS OF THE THAN HUR A CROWN AND
0012	C	TO DESEMB
0013	č	15 FRESEN1
0014	Ċ	C1((NW-1)**2) SIZE OF TRANSMISSION LINE CAPACITANCE
0015	č	VECTOR FOR EVERY CONFIGURATION OTHER THAN WHEN A
0017	č	GROUND PLANES
0018	C	
0019	С	NHC EQUALS THE NUMBER OF HARMONICS AROUND THE
0020	С	CONDUCTOR SURFACE
0021	C	NHD EQUALS THE NUMBER OF HARMONICS AROUND THE
0022	С	DIELECTRIC SURFACE
0023	С	NFC EQUALS THE TOTAL NUMBER OF FOURIER TERMS AROUND
0024	C	THE CONDUCTOR SURFACE
0025	C	NFD EQUALS THE TOTAL NUMBER OF FOURIER TERMS AROUND
0026	C	THE DIELECTRIC SURFACE
0027	C	NOTE, NEC MUST BE LESS TUNN OF FOUNT TO NED
0020	č	NOTE. NEC MOST BE LESS THAN OR EQUAL TO NED
0030	č	NF EQUALS THE TOTAL NUMBER OF FOURIER TERMS AROUND
0031	c	BOTH THE CONDUCTOR AND DIELECTRIC, I.E., NF=NFC+NFD
0032	С	IS DIELECTRIC IS PRESENT OTHERWISE NF+NFC
0033	С	
0034	С	D(NF,NF) SIZE OF SUBMATRIX OF THE LARGER D1 MATRIX
0035	C	
0036	C	D1(NW*NF,NW*NF) LARGE MATRIX DIMENSION IN MAIN PROGRAM
0038	C	BUT IS DIMENSIONED AS DI((NW*NF)**2) IN SUBROUTINE CAP
0039	č	TT (2 *NE*NW) STTE OF WORKING VECTOR
0040	č	SCR((NF*NW+1)/2) SIZE OF SCRAFTCH VECTOR
0041	č	SCR AND LT ARE SCRATCH VECTORS OF DIFFERENT TYPE BUT
0042	c	CAN SHARE STORAGE LOCATIONS
0043	C	
0044	C	X(NW.NW) CNTR-TO-CNTR SEPARATION IN X DIRECTION
0045	С	Y(NW, NW) CNTR-TO-CNTR SEPARATION IN Y DIRECTION
0046	С	
0047	С	RPL(NW**2) SIZE OF TRANSMISSION LINE INDUCTANCE MATRIX
0040	С	WHEN A GROUND PLANE IS PRESENT WHERE NW IS THE NUMBER
0050	C	OF WIRES ABOVE THE GROUND PLANE
0051	C	
0052	0	PCTL(NW**2) SIZE OF THE TRANSMISSION LINE CAPACITANCE
0053	c	MATRIX WHEN A GROUND PLANE IS PRESENT
0054	0	POPPORT // 25% (INCORDER THOUR SECTION AND THE
0055	č	RL((NW-1)**2) SIZE OF THE TRANSMISSION LINE
0056	č	INDUCTANCE MATRIX FOR ALL CONFIGURATIONS OTHER THAN
	1.20	WHEN A GROUND PLANE IS PRESENT.

С 0057 C NOTE: THE DIMENSIONS OF X, Y, RC, RD, ER, H, AND WILL BE 0058 C FOR 0059 DOUBLED WHEN WHEN A GROUND PLANE IS PRESENT. C 0060 EXAMPLE IF THERE ARE ARE FIVE WIRES ABOVE A GROUND CC PLANE THEN THE DIMENSIONS WILL BE AS FOLLOWS: 0061 X(10, 10), Y(10, 10), RC(10), RD(10), ER(10), H(10)0062 C 0063 С THE DIMENSIONS PROVIDED IN THIS PROGRAM FOR THE 0064 С VARIOUS MATRICES AND VECTORS ARE FOR UP TO 8 WIRES 0065 C WITH UP TO 10 HARMONICS ON THE CONDUCTOR AND 10 0066 C HARMONICS ON THE DIELECTRIC. ANOTHER WAY OF SAYING 0067 С IT IS 8 WIRES WITH 42 FOURIER TERMS ON THE CONDUCTOR 0068 C AND 42 FOURIER TERMS ON THE DIELECTRIC. ANY NUMBER OF 0069 C WIRES OR FOURIER COEFFICIENTS GREATER THAN THOSE 0070 C PROVIDED REQUIRE A CHANGE IN THE DIMENSION STATEMENTS 0071 č 0072 C 0073 REAL*16 C(64), C1(49), D(82, 82), D1(496, 496) 0074 REAL*16 RL(49), RPL(64), X(8,8), Y(8,8), PD1(8) 0075 REAL*16 ER(8), H(8), PCTL(64), WRD(8) 0076 REAL*16 RC(8), RD(8), CER, DET, WRC(8) 0077 REAL*16 SAC1(49),Z(49),RLB(49),ZB(49),SAPCTL(64),ZP(64) 0078 REAL*16 RPLB(64), ZPB(64), RCL(49), ZC(49), ZCB(49), RCLB(49) 0079 REAL*16 RCB(49), RD1(88,88), PCG(8,8) 0080 DIMENSION LT(992), SCR(248) 0081 CHARACTER*1 CONF 0082 EQUIVALENCE (SCR(1), LT(1)) 0083 C 0084 C FOLLOWING ROUTINE INPUTS PARAMETERS TO THE PROGRAM FROM THE 0085 C 0086 SCREEN C 0087 C THIS ROUTINE ENTERS CONFIGURATION OPTIONS 0088 C 0089 5 0090 WRITE(6,10) 10 0091 FORMAT(/,15X,'SELECT WIRING CONFIGURATION FROM 0092 + THE FOLLOWING LIST', 0093 +/,5X,'WIRE BUNDLE (B)' 0094 +/,5X,'MULTI-CONDUCTOR COAX CABLE (C)' 0095 +/,5X,'WIRE BUNDLE OR RIBBON CABLE OVER A GROUND PLANE (P).' 0096 +/,5X,'RIBBON CABLE (R)', 0097 +/,5X,'SHIELDED RIBBON CABLE OR WIRE BUNDLE (NOT YET AVAILABLE 0098 + (S)' 0099 +/,5X,'TWISTED PAIR (NOT YET AVAILABLE) (T)', 0100 +/,5x, 'ENTER TYPE OF CONFIGURATION: (B),(C),(P),(R),(S),OR,(T) 0101 CONF= ',\$) READ(5,15)CONF 0102 0103 15 FORMAT(A1) 0104 WRITE(6,20)CONF 0105 20 FORMAT(//,25X,'CONF= ',A1) 0106 IF (CONF.EQ.'B'.OR.CONF.EQ.'C'.OR.CONF.EQ.'P'.OR. 0107 0108 0109 0110 0111 &CONF.EQ.'R'.OR.CONF.EQ.'S'.OR.CONF.EQ.'T') THEN GO TO 30 ELSE WRITE(6,25) 25 0112 FORMAT(//,25X,'INCORRECT INPUT SELECT AGAIN') 0113 GO TO 5 0114 END IF 30 0115 WRITE(6,35) 35 FORMAT(/,15X,'NOTE: SELECT FROM THE FOLLOWING OPTIONS',//

0116		+,10X,'IOPT=1 IMPLIES DIELECTRIC COATED WIRES',/,10X,'NOTE:
0117		+ SELECT THIS OPTION IF', /17X, '(B), (P), (R), (S), OR (T) WAS
0118		+SELECTED',//
0119		+, IUX, 'IOPT=2 IMPLIES BARE WIRES', /, IUX, 'NOTE: SELECT THIS OPTION
0120		WRITE(6 40)
0121	40	FORMAT(5X, 'ENTER OPTION (IOPT) = $(.S)$
0122	40	READ(5,*)IOPT
0125		IF(IOPT.LT.1.OR.IOPT.GT.2) THEN
0125		WRITE(6,45)
0126	45	FORMAT(//,25X,'INCORRECT INPUT SELECT AGAIN')
0127		GO TO 30
0128		END IF
0129	50	IF(CONF.EQ.'C'.OR.CONF.EQ.'S') THEN
0130	==	WRITE(0,55) FORMAT(/ 25% (NOTE: THE SHIFLD OF THE COAN CARLE OF MIDE BUNDLE
0131	30	L'. / 25X. 'IS ASSUMED TO BE A WIRE THAT IS NOT STRANDED()
0132		WRITE(6.60)
0134	60	FORMAT(//,5X,'ENTER # OF WIRES INCLUDING SHIELD NW= ',S)
0135		READ(5,*)NW
0136		ELSE
0137		WRITE(6,65)
0138	65	FORMAT(//,5X,'ENTER # OF WIRES (NW)= ',\$)
0139		READ(5,*)NW
0140		TR(CONF FO (P)) NW=2*NW
0141		IF(CONF.NE.'P', AND, NW, LE.1) THEN
0143		WRITE(6,70)
0144	70	FORMAT(/, ' ***ERROR*** NUMBER OF WIRES LESS THAN TWO.
0145		+ ENTER AGAIN.',/)
0146		GO TO 50
0147		ELSE
0140		IF(NW.GT.IU) THEN
0150	75	FORMAT(57 /NUMBER OF WIRES SELECTED OUT OF RANGE / / 57
0151		&'PROGRAM DIMENSION STATEMENTS MUST BE MODIFIED.')
0152		GO TO 50
0153		END IF
0155		END IF
0156	80	WRITE(6,85)
0157	05	FORMAT(5X, 'ENTER # OF COSINE OR SINE TERMS AROUND THE CONDUCTOR
0158		+',/,5X,'(I.E. THE # OF HARMONICS AROUND THE CONDUCTOR NHC) = ',5)
0159		IF(NHC GT 20) THEN
0160		WRITE(6.90)
0162	90	FORMAT(//.15X.'INCORRECT INPUT, VALUE SELECTED EXCEEDS
0163		& PROGRAM DIMENSIONS.',/,
0164		<pre>&15X, 'PROGRAM DIMENSION STATEMENTS MUST BE MODIFIED')</pre>
0165		GO TO 80
0166		END IF
0160	100	WRTTP(6 105)
9169	105	FORMAT(5% (FNTER # OF COSINE OF SINE TERMS ADDIND THE
0170		+DIELECTRIC'. /. 5X. '(I.E. THE # OF HARMONICS AROUND THE DIELECTRIC
0171		+NHD)= ',S)
0172		READ(5, *)NHD
-413		IF(CONF.EQ.'S') THEN
		IF(NHD.EQ.NHC) THEN

0174		WRITE(6,106)
0175	106	FORMAT(5X, 'NOTE: IF NHC IS AN ODD NUMBER THEN NUD SHOULD' / 5Y
175		S'BE EVEN AND ONE GREATER THAN NHC. REENTER NEW VALUES()
0170		a be when this one cheater that the the there we values)
01//		60 10 80
0178		END IF
0179		END IF
1190		IF(NHD,GT,20) THEN
0100		WPTTF(6, 110)
0181	110	
0182	TTO	FORMAT(//, ISX, INCORRECT INPUT, VALUE SELECTED EXCEEDS
0183		&DIMENSION.',/,15X, PROGRAM DIMENSION STATEMENTS MUST BE MODIFIED')
0184		GO TO 100
0185		END IF
0105		END IF
0180	C	
018/	-	WEAL NO. OF COCTURE & COURT REPART & NUCLEARING ADDRESS
0188	C	NFC=NO. OF COSINE + SINE TERMS + AVG. TERM AROUND CONDUCTOR
0189	С	NFD-NO. OF COSINE + SINE TERMS + AVG. TERM AROUND DIELECTRIC
0190	С	
0191		IF(CONF.EO.'R') THEN
0191		NFC=NHC+1
0192		
0193		NFD=NHD+1
0194		ELSE
0195		NFC=2*NHC+1
0196		NFD=2*NHD+1
0107		FND IF
0197		
0198		IF(IOPT.EQ.I) THEN
0199		NF=NFC+NFD
0200		ELSE IF(IOPT.EQ.2) THEN
0201		NF=NFC
0202		END TE
0202	~	
0203	-	
0204	C	MDI=DIMENSION FOR C MATRIX
0205	C	MD2=DIMENSION FOR C1,RL,SAC1,Z,RLB,ZB,RCL,ZC,ZCB,RCLB,
0206	C	RCB MATRICES
0207	C	MD3=DIMENSION FOR D SUBMATRIX
0208	č	MD4-DIMENSION FOR DI MATRIX NOTE: THAT DI IS ALSO
0209	č	DIMENSION DE (MULANE)++2 WUICH IS MOS
0210	č	DIMENSION AS (NW-NF) 2 WHICH IS MDG
0211	C	MD5=DIMENSION FOR LT VECTOR
0212	C	MD6=DIMENSION FOR SCR VECTOR
0212	C	MD7=DIMENSION FOR RPL, PCTL, CAPCTL, ZP, RPLB, ZPB MATRICES
0213	C	MD8-DIMENSION OF D1 MATRIX IN SOME SUBROUTINES
0214		MD1=NWa+2
0215		
0216		
0217		MD3=NF
0219		MD4=NW*NF
8210		MD5=2*MD4
8220		MD6 = (MD4 + 1)/2
0420		
0421		$MD = (NW/2) \times 2$
9222		MD8=MD4**2
1223		MD9=(NW/2)*NF
1224		MD10=MD9**2
1225		NWH=NW/2
1226		CALL WINEO/ DC DD NW CONF NS NY SMPC MPC MPD)
\$227		CEP-1 000
\$224		
8234		IF(IOPT.EQ.1) THEN
100		CALL DINFO(NW, RD, WRD)
1230		CALL RPINFO(NW.ER)
-431		END TE
432		
Contraction of the local division of the loc		LI (CONF.EQ. C') THEN
		WKITE(6,115)

0233	115	FORMAT(5X,'ENTER THE RELATIVE PERMITIVITY OF THE DIELECTRIC', $+/,5X,$ 'INSIDE THE COAX CABLE. CER= ',\$)
0235		READ(5,*)CER
0236		CALL STTE (SMPC AA1 NW PC PD TOPT TPET)
0237		LF(CONF EO 'R') THEN
0230		CALL RGENXY(NW.AA1.X.Y.SEP)
0235		ELSE IF(CONF.EQ.'B') THEN
0241		CALL BGENXY(NW, AA1, X, Y, IREF)
0242		ELSE IF(CONF.EQ.'C'.OR.CONF.EQ.'S') THEN
0243		CALL CGENXY(NW, AA1, X, Y, IREF)
0244		ELSE IF(CONF.EQ.'P') THEN
0245		CALL PGENXY(NW,AAI,X,Y,IREF,H)
0246		END TP TF(CONF FO, 'P') GO TO 130
024/		WRITE(6.120)
0248	120	FORMAT(5X,'IS THE REFERENCE NUMBER THE SAME AS THE GROUND'./
0249		+,5X,' REFERENCE CONDUCTOR? ENTER Y/N, PROMPT= '.S)
0251		READ(5,125)PRMPT2
0252	125	FORMAT(A1)
0253		IF(PRMPT2.EQ.'N') THEN
0254		CALL NEWREF(NW,X,Y,IREF)
0255		END IF
0256	130	IF(IOPT.EQ.1) THEN
0257	175	WRITE(0,135)NW,NHC,NHC,NHC,NHC,NFD
0258	132	LACITANCE MATRIX PARAMETERS! // 6X. CONDITIONS ·/ /
0255		+.11X.I3.' WIRES './
0261		+.11X.13.' COSINE TERMS AROUND THE CONDUCTOR'./
0262		+.11X.I3.' COSINE TERMS AROUND THE DIELECTRIC'./
0263		+,11X,13,' SINE TERMS AROUND THE CONDUCTOR',/
0264		+,11X,13,' SINE TERMS AROUND THE DIELECTRIC',/
0265		+,11X,I3,' FOURIER COEFFICIENTS AROUND THE CONDUCTOR',/
0266		+,11X,13,' FOURIER COEFFICIENTS AROUND THE DIELECTRIC',/)
0269	140	IF(NFD-NFC)140,150,150
0269	140	WKITE(0,145)NFC FORMAM(/// tttFFBODttt NUMBER OF COFFFICIENTS ABOUND CONDUCTOR (
0270	145	TIVEN GREATER THAN NUMBER ADOIND DIFLECTRIC / / 14X / BOTH SET FOU
0271		+AL TO (.13.(.(.))
0272		NFD=NFC
0273	150	WRITE(6,155)
0274	155	FORMAT(/,24X,'PHYSICAL CHARACTERISTICS:',//,10X,'CONDUCTOR
0275		+',15X,'DIELECTRIC',19X,'RELATIVE',/,12X,'RADIUS',19X,'RADIUS
0277		+',20X,'DIELECTRIC',/,63X,' CONSTANT',/)
0278		DO 165 J=1,NW
0279	160	WRITE(6,160)J,WRC(J),J,WRD(J),J,ER(J)
0280	200	FORMAT(3X, 'RC(', I2,') = ', 1PE10.3,' (METERS)', 1X,
0281		+' RD(', 12, ') = ', EIU.3, ' (METERS)', IX, +' FP(', 12, ') = ', IX, FIO.3, ')
0282	165	
0204		ELSE IF(IOPT.EO.2) THEN
0285		WRITE(6,170)NW.NHC.NHC.NFC
0286	170	FORMAT('1',80('*'),//,6X,'GENERALIZED AND TRANSMISSION LINE
0287		+CAPACITANCE MATRIX PARAMETERS', //, 6X. 'CONDITIONS:'./
0288		+,11X,I3,' WIRES ',/
0289		+,11X,13,' COSINE TERMS AROUND THE CONDUCTOR',/
8200		+,11X, I3,' SINE TERMS AROUND THE CONDUCTOR',/
-435		", 11X, 13, ' FOURIER COEFFICIENTS AROUND THE CONDUCTOR')
		WRITE(6,175)

0292	175	FORMAT(/,24X, 'PHYSICAL CHARACTERISTICS:',/,10X, 'CONDUCTOR RAD
0293		+IUS',/) DO 185 J=1 NW
0294		WRITE(6.180)J.WRC(J)
0295	180	FORMAT(3X, 'RC(', 12, ')= ', 1PE11.4, ' (METERS)'./)
0297	185	CONTINUE
0298		END IF
0299 0300 0301	-	CALL CAP(NW,NFC,NFD,NF,RC,RD,ER,IREF,IOPT,C,C1,D,D1,SCR,LT +,NHC,NHD,X,Y,MD1,MD2,MD3,MD4,MD5,MD6,MD7,MD8,MD9,MD10,PCTL +,CONF,PD1,CER,RD1,NWH,PCG)
0302	C	PESHITS HAVE BEEN CALCHLATED - MATRICES ARE DELATED OUT
0303	č	RESOLIS HAVE BEEN CALCOLAIED - MAINICES ARE PRINTED OUT
0304	•	NW1=NW-1
0306		IF(CONF.EQ.'R'.OR.CONF.EQ.'B') THEN
0307		IF(IOPT.EQ.1) THEN
0308		CALL MPRT(C,NW,NW, 'GENERALIZED CAPACITANCE',23)
0309		CALL MPRT(CI,NWI,NWI, 'TRANSMISSION LINE CAPACITANCE', 29)
0310		DO 190 T=1.NW1
0311		DO 190 J=1.NW1
0313		SAC1(KN) = C1(KN)
0314		KN=KN+1
0315	190	CONTINUE
0316		ELSE
0317		CALL MPRT(C, NW, NW, GENERALIZED CAPACITANCE FOR BARE WIRES , 38)
0319		BARE WIRES'.44)
0320		ON-1
0321		DO 205 I=1,NW1
0322		DO 205 J=1,NW1
0323		SAC1(ON)=C1(ON)
0324	205	
0326	205	CALL MINV(C1.NW1.DET.LT(1).LT(NW1+1))
0327		MN=1
0328		DO 210 I=1,NW1
0329		DO 210 J=1,NW1
0331		RLB(MN) = 1.1126497Q - 17*C1(MN)
0332	210	
0333		CALL MPRT(RLB.NW1.NW1. TRANSMISSION LINE INDUCTANCE'.28)
0334		END IF
0335		ELSE IF(CONF.EQ.'P') THEN
8117		NWH=NW/2
0338		IF(IOPT.EQ.1) THEN
0339		CALL MPRT(PCTL, NWH, NWH, 'TRANSMISSION LINE CAPACITANCE
0340		KI_=1
0347		DO 220 I=1.NWH
0343		DO 220 J=1, NWH
0344		SAPCTL(KL)=PCTL(KL)
0345	220	KL=KL+1
0347		ELSE IR (IONE DO D)
0348		NWH=NW/2
0349		CALL MPRT (PCTI, NWH NWH 'TRANSMISSION LINE CAPACITANCE OF BARE
1350		WIRES OVER A GND. PLANE', 61)

351		DO 235 I=1,NWH				
352		DO 235 J=1,NWH				
353		SAPCTL(KP)=PCTL(KP)				
354		KP=KP+1				
355	235	CONTINUE				
356		CALL MINV(PCTL, NWH, DET, LT(1), LT(NWH+1))				
357		K O =1				
258		DO 240 I=1,NWH				
259		DO 240 J=1, NWH				
260		RPLB(KO) = 1.1126497Q - 17*PCTL(KO)				
1300		KO=KO+1				
1301	240	CONTINUE				
0302		CALL MPRT(RPLB, NWH, NWH, 'BARE WIRE INDUCTANCE OVER A GROUND				
0363		SPLANE (40)				
0364						
0365		FICE TE(CONE FO (S()) THEN				
0366		CALL MODE (C. NW NW (CENEDALIZED SHIFLDED WIDE CADACITANCE) 27)				
0367		CALL MEDRICCI NUL MAL (SUPERDED MIDE DA CARACITANCE , 3/)				
0368		TELEDRE O 1 MEN MIL SHIELDED WIKE CAPACITANCE MAIRIX', 54)				
0369		IF(IOPT.EQ.I) THEN				
0370						
0371		DO 250 I=1, NWI				
0372		DO 250 J=1, NW1				
0373		SAC1(KR)=C1(KR)				
0374		KR=KR+1				
0375	250	CONTINUE				
0376		ELSE				
0377		KS=1				
0378		DO 251 I=1,NW1				
0379		DO 251 J=1,NW1				
0380		SAC1(KS) = C1(KS)				
0381		KS=KS+1				
0382	251	CONTINUE				
0383		CALL MINV(C1,NW1,DET,LT(1),LT(NW1+1))				
0384		KT=1				
0385		DO 252 I=1.NW1				
0386		DO 252 J=1.NW1				
0387		$C_1 (km) = C_1 (km)$				
0388		$P(r_1(x_1) = 1, 11) = 1, 1264970 = 17*c1(x_1)$				
0389						
0390	252					
0391	232	CONTINUE CALL WROM / RCL NW1 NW1 / CULEIDED MEANS I INE INDUCTANCE NAMELY/				
0392		CALL MERI(RCL, NWI, NWI, SHIELDED IRRNS. LINE INDUCTANCE MAIRIN				
0393		¢,30)				
0394						
0395		ELSE IF(CONF.EQ.'C') THEN				
0396		CALL MPRT(C, NW, NW, 'GENERALIZED COAX CAPACITANCE', 28)				
0397		CALL MPRT(CI,NWI, COAX CAPACITANCE MATRIX', 23)				
0398						
0399		DO 265 I=1,NW1				
0400		DO 265 J=1,NW1				
0401		SAC1(KU) = C1(KU)				
0402	265	KU=KU+1				
	205	CONTINUE				

CALL MINV(C1,NW1,DET,LT(1),LT(NW1+1)) 0403 0404 KV=1 DO 270 I=1,NW1 0405 DO 270 J=1,NW1 0406 C1(KV) = C1(KV) * CER0407 RCLB(KV)=1.1126497Q-17*C1(KV) 0408 KV=KV+1 0409 270 CONTINUE 0410 CALL MPRT(RCLB, NW1, NW1, 'COAX TRANS. LINE INDUCTANCE MATRIX', 34) 0411 END IF 0412 END 0413

POINTARY / SECTARE LLL WITES SOLID'S ROLLIN & THINKS

С 0001 0002 C THIS SUBROUTINE ALLOWS THE USER TO ENTER INFORMATION CONCERNING С THE VARIOUS TYPES OF WIRES TO THE PROGRAM FROM THE SCREEN 0003 С 0004 SUBROUTINE WINFO(RC, RD, NW, CONF, NS, NX, SMRC, WRC, WRD) 0005 REAL*16 SMRC, AA1 0006 REAL*16 RC(NW), RD(NW), WRC(NW), WRD(NW) 0007 CHARACTER*1 PRMPT1, PRMPT2, PRMPT3 0008 CHARACTER*1 PRMPT5, PRMPT6, CONF 0009 IF(CONF.EQ.'S'.OR.CONF.EQ.'C') THEN 0010 WRITE(6,5) 0011 FORMAT(/5X,'ARE ALL WIRES SOLID INSIDE SHIELD? ENTER Y/N ',\$) 5 0012 READ(5,6)PRMPT1 0013 6 FORMAT(A1) 0014 ELSE 0015 WRITE(6,10) 0016 FORMAT(/5X,'ARE ALL WIRES SOLID? ENTER Y/N ',S) 10 0017 READ(5,20)PRMPT1 0018 20 FORMAT(A1) 0019 END IF 0020 IF(PRMPT1.EQ.'N') THEN 0021 WRITE(6,30) 0022 FORMAT(5X, 'ARE ALL WIRES STRANDED? ENTER Y/N ', S) 0023 30 0024 READ(5,40)PRMPT2 0025 40 FORMAT(A1) 0026 IF(PRMPT2.EQ.'N') THEN 0027 WRITE(6,50) FORMAT(5X,'ENTER # OF WIRES THAT ARE STRANDED NS= ',S) 0028 50 0029 READ(5,60)NS0030 60 FORMAT(12) 0031 WRITE(6,70) 0032 70 FORMAT(5X,'DO ALL STRANDS HAVE SAME RADIUS? ENTER 0033 &Y/N ', \$) 0034 READ(5,80)PRMPT3 0035 80 FORMAT(A1) 0036 IF(PRMPT3.EQ.'N') THEN 0037 CALL DIFSTD(NW,NS,SMRC,RC,CONF,WRC) 0038 ELSE 0039 CALL SAMSTD(NW,NS,SMRC,RC,CONF,WRC) 0040 END IF 0041 NX=NW-NS 0042 IF(NX.EQ.NW) GO TO 130 0043 WRITE(6,90) 0044 90 FORMAT(5X, 'DO REMAINING SOLID WIRES HAVE THE SAME 0045 &RADIUS? ENTER Y/N ', \$) 0046 READ(5,100)PRMPT4 0047 100 FORMAT(A1) 0048 IF(PRMPT4.EQ.'Y') THEN 0049 CALL SAMRAD(NW, NX, NS, RC, SMRC, CONF, WRC) 0050 ELSE 0051 0052 CALL DIFRAD(NW, NX, RC, SMRC, CONF, WRC) END IF 0053 0054 ELSE WRITE(6,110)

 0055
 WRITE(6,110)

 0056
 110
 FORMAT(5X,'DO STRANDS HAVE THE SAME RADIUS? ENTER Y/N ', \$)

 0057
 120
 READ(5,120) PRMPT5

 0058
 120
 FORMAT(A1)

 0058
 120
 FORMAT(A1)

 0059
 NS=NW

 0060
 IF(PRMPT5.EQ.'Y') THEN

 CALL SAMSTD(NW,NS,SMRC,RC,CONF,WRC)

0061		ELSE			
0062		CALL DIFSTD(NW, NS, SMRC, RC, CONF, WRC)			
0063		END IF			
0064		END_IF			
0065		ELSE			
0066		WRITE(6,140)			
0067	140	FORMAT(5X,'DO ALL WIRES HAVE THE SAME RADIUS? ENTER Y/N ', \$)			
0068		READ(5,150)PRMPT6			
0069	150	FORMAT(A1)			
0000		NX=NW			
0070		IF(PRMPT6.EO.'Y') THEN			
0071		CALL SAMBAD (NW.NX.NS.BC.SMBC.CONF.WBC)			
0072		ELSE			
00/3		CALL DIFRAD (NW NY PC SMPC CONF WPC)			
0074	CALL DIFRAD(NW,NA,RC, SMRC, CONF, WRC)				
0075					
0076	3.44	END IF			
0077	130 RETURN				
0078		END			

MALTELL.CO) PORMANY 1. SNYDA WIRE # MO.- ...

```
0001
        C
        С
                  SUBROUTINE FOR INPUTING THE DIELECTRIC RADIUS
0002
        C
0003
                  SUBROUTINE DINFO(NW, RD, WRD)
0004
                  CHARACTER*1 PRMPT8, PRMPT9
0005
                  REAL*16 RD(NW), WRD(NW)
0006
                  INTEGER NW, NO, INO
0007
                  REAL*16 XRD
0008
                 WRITE(6,10)
0009
                  FORMAT(/, 5X, 'ARE ALL DIELECTRIC RADII THE SAME?
        10
                                                                          ENTER Y/N ',S)
0010
                  READ(5,20)PRMPT8
0011
        20
                  FORMAT(A1)
0012
                  IF(PRMPT8.EQ.'Y') THEN
0013
        С
0014
                 ROUTINE FOR ENTERING DIELECTRIC RADII IF THEY ARE THE SAME
        С
0015
        С
0016
                 WRITE(6,30)
0017
        30
                 FORMAT(/,15X,'NOTE: THE RADIUS OF DIELECTRIC IS THE
0018
              +',/,21X,'RADIUS FROM THE CENTER OF THE
0019
              +',/,21X,'CONDUCTOR TO THE OUTER EDGE OF
0020
              +',/,21X,'THE DIELECTRIC',/)
0021
                 WRITE(6,40)
0022
                 FORMAT(5X, 'ENTER RADIUS OF DIELECTRIC (RD)=
        40
                                                                      1,$)
 0023
                 READ(5,*)XRD
 0024
                 DO 60 I=1,NW
 0025
                 RD(I)=XRD
 0026
                 WRD(I)=XRD
 0027
 0028
                 WRITE(6,50)I,RD(I)
                 FORMAT(5X, 'RD(', I2, ') = ', E11.4)
 0029
        50
 0030
        60
                 CONTINUE
 0031
                 ELSE
 0032
        C
 0033
                 ROUTINE ENTERING DIELECTRIC RADIUS IF THEY ARE DIFFERENT
        C
 0034
        C
 0035
                 DO 160 II=1,NW
 0036
                  IF(II.EQ.1) THEN
 0037
                   WRITE(6,70)
 0038
        70
                   FORMAT(/,5X,'ENTER WIRE # NO.= ',$)
 0039
                   READ(5,80)NO
 0040
        80
                   FORMAT(12)
 0041
                   WRITE(6,90)NO,NO
 0042
        90
                   FORMAT(5X,'ENTER RADIUS OF DIELECTRIC OF WIRE(',12,')'
  0043
              £,/,25X,' RD(',I2,')= ',$)
  0044
                   READ(5,*)RD(NO)
  0045
                   WRD(NO) = RD(NO)
  0046
                  ELSE
  0047
  2048
0049
0050
0051
0052
0053
0054
0055
0056
                    INO=NO
                   WRITE(6,100)
         100
                   FORMAT(5X,'ENTER WIRE # NO.= ',$)
                   READ(5,110)NO
         110
                   FORMAT(12)
                   WRITE(6,120)NO, INO
         120
                   FORMAT(5X,'IS RD(',I2,')=RD(',I2,') ?',/,5X,'
               ENTER Y/N ',$)
                   READ(5,130)PRMPT9
         130
                    FORMAT(A1)
                    IF (PRMPT9.EQ.'Y') THEN
                    RD(NO)=RD(INO)
                    ELSE
                    WRITE(6,140)NO,NO
```

		TOTAL OF VENTER PADIUS OF DIELECTRIC OF WIRE(', I2,')'
0061	140	FORMAT(SX, ENTER MADIOS $(1, 25)$
0062		$k_{1}/(25K, KD(122)) = 147$
0063		WED(NO) = RD(NO)
0064		END IF
0005		END IF
0067		WRITE(6,150)NO, RD(NO)
0068	150 160	FORMAT(5X, 'RD(', I2, ') = ', E10.3)
0069		CONTINUE
0070		END IF
0071		RETURN
0072		END

THIS ROLVING FOR SUPERING RELATIVE PERALITIVETY IN IT TH

READ(S. *15x100)

165

```
С
0003
                 SUBROUTINE RPINFO(NW, ER)
0004
                 REAL*16 ER(NW)
0005
                 INTEGER INO, NO
0006
                 CHARACTER*1 PRMPT10, PRMPT11
0007
                 REAL*16 XER
0008
                 WRITE(6,10)
0009
                 FORMAT(/, 5X,'IS THE RELATIVE PERMITIVITY THE SAME
        10
0010
              + FOR ALL WIRES?
                                  ENTER Y/N ',$)
0011
                 READ(5,20)PRMPT10
0012
        20
                 FORMAT(A1)
0013
                 IF(PRMPT10.EQ.'Y') THEN
0014
        С
0015
                 THIS ROUTINE FOR ENTERING RELATIVE PERMITTIVITY IF IT IS
        C
0016
        C
                 THE SAME
0017
        C
0018
                 WRITE(6,30)
0019
        30
                 FORMAT(5x,'ENTER RELATIVE PERMITIVITY OF DIELECTRIC ER= ',$)
0020
                 READ(5,*)XER
0021
                 DO 50 I=1,NW
0022
                 ER(I) = XER
0023
                 WRITE(6,40)I,ER(I)
0024
                 FORMAT(5X,'ER(',I2,')= ',E11.4)
        40
 0025
                 CONTINUE
 0026
        50
                 ELSE
 0027
        C
 0028
                 THIS ROUTINE FOR ENTERING THE RELATIVE PERMITTIVITY IF DIFFERENT
        C
 0029
 0030
        C
                 DO 150 II=1,NW
 0031
 0032
                  IF(II.EQ.1) THEN
 0033
                   WRITE(6,60)
 0034
                   FORMAT(/, 5X, 'ENTER WIRE # NO.= ',$)
        60
 0035
                   READ(5,70)NO
 0036
        70
                   FORMAT(12)
 0037
                   WRITE(6,80)NO,NO
 0038
        80
                   FORMAT(5X,'ENTER THE RELATIVE PERMITIVITY OF ',/,5X,'
 0039
              &WIRE(',I2,') ER(',I2,')= ',$)
 0040
                   READ(5,*)ER(NO)
 0041
                  ELSE
 0042
                   WRITE(6,90)
 0043
         90
                    FORMAT(5X,'ENTER WIRE # NO.= ',$)
 0044
 0045
                   READ(5,100)NO
         100
                    FORMAT(12)
  9946
                   WRITE(6,110)NO, INO
  0047
         110
                   FORMAT(5X,'IS ER(',I2,')=ER(',I2,') ?',/,5X,'
  0048
              & ENTER Y/N ',$)
  0049
                   READ(5,120)PRMPT11
  0050
         120
  0051
0052
0053
0054
                    FORMAT(A1)
                    IF(PRMPT11.EQ.'Y')THEN
                     ER(NO) = ER(INO)
                     WRITE(6,125)NO,ER(NO)
         125
                     FORMAT(5x, 'ER(', I2, ') = ', E10.3)
  0056
                    ELSE
                     WRITE(6,130)
         130
  0054
                 FORMAT(5x,'ENTER RELATIVE PERMITIVITY OF WIRE(',12,')
  0059
              & ER(',I2,')= ',$)
                     READ(5, *)ER(NO)
```

C

C

С

OF EACH WIRE

0001

0060		WRITE(6,140)NO,ER(NO)
0061	140	FORMAT(5X, 'ER(', I2, ') = ', E10.3)
0062		END IF
0063		END IF
0064		INO=NO
0065	150	CONTINUE
0066		END IF
0067		RETURN
0068		END
0001 C 000 0002 SUBROUTINE SIZE SIZES THE RELATIVE MEASUREMENTS TO THAT OF THE SMALLEST RADIUS OF THE CONDUCTORS TO MINIMIZE COMPUTATIONAL 0003 0004 ERRORS C 0005 SUBROUTINE SIZE(SMRC, AA1, NW, RC, RD, IOPT, IREF) 0006 INTEGER NW, NJ 0007 REAL*16 SMRC, AA1, RC(NW), RD(NW) 0008 NJ=-1.0Q0*QLOG10(SMRC) 0009 AA1=10**NJ 0010 IREF=1 0011 DO 10 K=1,NW 0012 RC(K) = RC(K) * AA10013 RD(K) = RD(K) * AA10014 10 CONTINUE 0015 RETURN 0016 END 0017

LF(NATD.EQ.7, CS.NETD.EQ. 1). CR. NST. ...

· 281 MA 28. EQ. 371

001	С	
002	С	SUBROUTINE SAMSTD IS USED FOR ENTERING STRANDED WIRE
003	С	INFORMATION IF THE STRANDS HAVE THE SAME DIMENSIONS
004	C	
005		SUBROUTINE SAMSTD(NW,NS,SMRC,RC,CONF,WRC)
006		REAL*16 RSTD,RC(NS),SMRC,XRC,WRC(NS)
007		INTEGER NS, NO, INO, NW, NSTD
008		CHARACTER*1 CONF
009		WRITE(6,10)NW,NS
010	10	FORMAT(//.5X.'TOTAL NUMBER OF WIRES NW= '.12./.
011		\$5X, TOTAL NUMBER OF STRANDED WIRES NS= (.12)
0012		IF(CONF.EO.'C') THEN
0012		WBITE(6,20)
0011	20	FORMAT(/.5%, 'ENTER INSIDE BADIUS OF COAX SHIELD BCX= '.5)
0014	20	READ(5,*) BCX
0015		
0010		LECONE FO (S() THEN
0017		WETTER (6.21)
0018	21	FORMAT(/ SY /FNTED INSIDE DADIUS OF SUITID BCY_ / S)
0019	21	PEAD(5 *) PCV
0020		
0021		
0022		
0023	20	PORMACLE FRANCES STRANDED MIDE INFORMATION()
0024	30	NDTRP/(AQ)
0025		WRITE(0,40)
0026	40	PORMAT(/, 5x, 'ENTER RADIUS OF ONE STRAND OF WIRE
0027		& RSTD= (7,3)
0028	50	READ(3,*)KSTD
0029	50	WRITE(6,50)
0030	60	FORMAT(5X, ENTER # OF STRANDS NSTD= ',S)
0031		$\operatorname{READ}(5, *)\operatorname{NSTD}$
0032		IF (NSTD.EQ. /.OR.NSTD.EQ.10.OR.NSTD.EQ.19.
0033		&OR.NSTD.EQ.26.OR.NSTD.EQ.37.OR.NSTD.EQ.41.
0034		&OR.NSTD.EQ.65) THEN
0035		GO TO 80
0036		ELSE
0037		WRITE(6,70)
0038	70	FORMAT(//,20X,'INCORRECT INPUT FOR THE NUMBER OF STRANDS.',/
0039		&20X,'INPUT SHOULD BE 7,10,19,26,37,41,OR 65. IF VALUE',/,
0041		<pre>&20X,'ENTERED IS DIFFERENT TRY AGAIN, OTHERWISE PRGRAM',/,</pre>
0042		<pre>&20X,'MUST BE MODIFIED.',//)</pre>
0042		GO TO 50
0044		END IF
0045	80	IF(NSTD.EQ.7) XRC=3.0*RSTD
0046		IF(NSTD.EQ.10) XRC=4.0*RSTD
0047		IF(NSTD.EQ.19) XRC=5.0*RSTD
0048		IF(NSTD.EQ.26) XRC=6.0*RSTD
0040		IF(NSTD.EQ.37) XRC=7.0*RSTD
0050		IF(NSTD.EO.41) XRC=8.0*RSTD
0051		IF(NSTD.EO.65) XBC=9.0*RSTD
0052		IF((NW-NS), EO, 0) THEN
0053		N=NW
0054		ELSE
0055		N=NS
1956		ENDIF
0857		IF CONF FO (C) OF CONF FO (SI) THEM
458		RC(1)-PCV
1159		WRC(1)-DCY
		IF(CONF FO (CI) THEN
		WRITE(6 90) DC(1)
		(0, 90) RC(1)

0061	90	FORMAT(/,5X,'INSIDE RADIUS OF COAX CABLE RC(1) = ' F10 3
0063		WRITE(6 01)pc(1)
0064	91	
0065		FORMAT($/, 5x$, INSIDE RADIUS OF SHIELD RC(1) = $(.E10, 3)$
0066		END IF
0067		
0007		
0068		IF(CONF.EQ.'C'.OR.CONF.EO.'S') THEN
0069		K=JJ+1
0070		ELSE
0071		K=JJ
0072		END IF
0073		RC(K) = XRC
0074		WRC(K)=XRC
0075		WRITE(6,100)K, BC(K)
0076	100	FORMAT(5X, $(BC(1, T2, 1)) = (F10, 2)$
0077		SMRC=RC(K)
0078	110	CONTINUE
0079		RETURN
0080		END

001	С	
002	С	SUBROUTINE DIFSTD IS USED FOR ENTERING STRANDED WIRE
1003	С	INFORMATION IF THE DIMENSIONS OF THE STRANDS APP OF
004	С	DIFFERENT DIMENSIONS
005	C	
006	-	SUBROUTINE DIESTD(NW.NS.SMBC.BC.CONF WPC)
0000		BFALX16 BSTD BC(NS) SMBC WEC(NS)
0007		
0000		
0009		LEANNING DO ANNING
0010		IF((NW-NS).EQ.0) THEN
0011		
0012		ELSE
0013		N=NS
0014		ENDIF
0015		DO 170 JJ=1,N
0016		IF(JJ.EQ.1) THEN
0017		IF(CONF.EQ.'C'.OR.CONF.EQ.'S') THEN
0018		IF(CONF.EQ.'C') THEN
0019		WRITE(6,10)
0020	10	FORMAT(5X,'ENTER INSIDE RADIUS OF COAX CABLE RCX= ',\$)
0021		READ(5,*)RCX
0022		ELSE
0023		WRITE(6,11)
0024	11	FORMAT(5x,'ENTER INSIDE RADIUS OF SHIELD RCX= '.S)
0025		READ(5,*)RCX
0026		END IF
0027		BC(JJ) = BCX
0028		WBC(JJ) = BCX
0029		WRITE(6,20)JJ, BC(JJ)
0030	20	FORMAT(5X, (BC((, T2, f)) = (E10, 3))
0031		
0032		
0032	20	POPMAT(2, 50) = POPTATE WIDE + NO - (\$)
0034	20	PERF (//, JA, ENTER WIRE # NO ,)
0035	10	
0036	40	FICE
0037		
0038		
0039	50	WRITE($(0, 50)$
0040	50	FORMAT($5x$, 'ENTER WIRE # NO.= ',3)
0041	60	READ(5,60)NO
0042	00	FORMAT(12)
0043	70	WRITE(6, /U)NO, INO
0044	10	FORMAT(5x, 'IS THE CHARACTERISTICS OF WIRE(',12,')=
0045		+WIRE(', 12, ').', /, 5X, 'ENTER Y/N ', \$)
0046	00	READ(5,80)PRMPT7
0047	80	FORMAT(A1)
0048		IF(PRMPT7.EQ.'Y') THEN
0049		RC(NO) = RC(INO)
0050		WRC(NO)=RC(INO)
0051		GO TO 130
0052		END IF
0053		END IF
0054	00	WRITE(6,90)NO
0055	90	FORMAT(5X, 'ENTER RADIUS OF ONE STRAND OF WIRE(', 12, ')
0056		&RSTD= ',\$)
0057	100	READ(5,*)RSTD
0058	110	WRITE(6,110)NO
0059	110	FORMAT(5X, 'ENTER # OF STRANDS OF WIRE(', 12, ') NSTD=
0060		& ',\$)
		READ(5 *)NSTD

1	-	1
T.	1	T.

1.

BUCKINGLI THEM BUCKINGER WRCIKINGER DFICORF.SS.C.I THEF WALTES.SSIK.BUCKI

0001	С	
0002	С	ROUTINE DIFRAD IS USED FOR ENTERING SOLID WIRE INFORMATION
0003	C	WHERE THE WIRES HAVE THE SAME RADIUS
0004	C	
0004	-	SUBBOUTTINE DIFEAD (NW NY BC SMEC CONF MEC)
0005		DEAL+16 DCY YDC SMDC DC(NM) WDC(NW)
0000		INDECED NW
0007		
0008		CHARACTER*I CONF
0009		IF(CONF.EQ.'C'.OR.CONF.EQ.'S') THEN
0010		IF((CONF.EQ.'C'.OR.CONF.EQ.'S').AND.NX.LT.NW) THEN
0011		NX=NX-1
0012		WRITE(6,10)NW,NX
0013	10	FORMAT(//,5X,'TOTAL NUMBER OF WIRES NW= ',12,
0014		&/,5X,'TOTAL NUMBER OF SOLID WIRES NX= ',12)
0015		GO TO 40
0015		ELSE
0010		WRITE(6,20)NW NX
0017	20	FORMET(// SV / TOTAL NUMBER OF WIDES NW- / 12
0018	20	$f_{\rm ex}$ (module number of windle Number (12)
0019		TRANSPORT IN COMPARING SOLID WRIES NA- (12)
0020		IF (CONF. EQ. (C)) THEN
0021		WRITE(6,30)
0022	30	FORMAT(/,5x, ENTER INSIDE RADIUS OF COAX SHIELD RCX= ',S)
0023		READ(5,*)RCX
0024		ELSE
0025		WRITE(6,31)
0026	31	FORMAT(5X,'ENTER INSIDE RADIUS OF SHIELD RCX= ',\$)
0027		READ(5,*)RCX
0028		END IF
0029		END IF
0030		END IF
0031	10	TE((NU-NY) FO () THEN
0032	40	M_NT
0032		
0033		
0034		N=NX
0035		END IF
0036		IF(CONF.EQ.'C'.OR.CONF.EQ.'S') THEN
0037		DO 150 I=1,N
0038		IF(NX.LT.NW) THEN
0039		K=I+NX+1
0040		ELSE I PERMITELAQUETTI TARA
0041		K=I CONCISCINCI INCO
0042		END IF
0043		IF(K, EO.1) THEN
0044		
0045		
0046		
0047		NETRICE THEN
0048	50	
0049		FORMAT(/, 5x, INSIDE RADIUS OF COAX SHIELD = RC(', 12,')=
9050		«', E10.3)
0051		ELSE
0052	E 1	WRITE(6,51)K,RC(K)
0053	31	FORMAT(/,5X,'INSIDE RADIUS OF SHIELD = RC(',12,')= ',E10.3)
0054		END IF
0055		WRITE(6,60)I,RC(I)
0056	00	FORMAT(1, 37x, 2RC(1, 12, 2)) = (1, E10, 3)
0057		ELSE
1458	-	WRITE(6,70)
1059	70	FORMAT(S, / ENTER WIDE $+$ NO $-$ / C)
460		BED(5.90)NO
	80	FORMAT(T2)

061		WRITE(6,90)NO,K
062	90	FORMAT(5X,'IS RC(',I2,')=RC(',I2,')? ENTER Y/N ',\$) READ(5,100)PRMPT8
0064	100	FORMAT(A1)
0065		IF(PRMPT8.EQ.'Y')THEN
0066		RC(NO) = RC(K)
0067		WRC(NO) = RC(K)
0068		ELSE
0069		WRITE(6,110)NO,NO
0070	110	FORMAT(5x, 'ENTER RADIUS OF WIRE(', 12 ,') RC(', 12 ,') = ', s)
0071		READ(5,*)RC(NO)
0072		WRC(NO)=RC(NO)
0073		END IF
0074		
0075		MU=R
0076	120	WRITE(0, 120) MO, RC(NO) FORMAT(5% (PC(1 T2 1) - 1 F10 2)
0077	120	FORMAT(SA, RC(1, 12, 1) = 1, E10.5) FF(PC(K) = PC(NO)) 120 120 140
0078	130	SMPC=PC(K)
0079	140	
0080	150	CONTINUE
0082	100	ELSE
0083		DO 250 I=1.N
0084		IF(I.EQ.1) THEN
0085		WRITE(6,160)
0086	160	FORMAT(/,5X,'ENTER WIRE # NO.= ',\$)
0087		READ(5,170)NO
0088	170	FORMAT(12)
0089		ELSE
0090		INO=NO
0091	5.0	WRITE(6,180)
0092	180	FORMAT(5X,'ENTER WIRE # NO.= ',\$)
0093		READ(5,190)NO
0094	190	FORMAT(12)
0095		WRITE(6,200)NO,INO
0090	200	FORMAT(5x, 'IS $RC(', I2, ') = RC(', I2, ')$? ENTER Y/N ', \$)
0099	21.0	READ(5,210)PRMPT8
0099	210	FORMAT(AI)
0100		PC(NO) = PC(TNO)
0101		RC(NO) = RC(TNO)
0102		WRC(NO)=RC(INO)
0103		
0104		WRITE(6,220)NO,NO
0105	220	FORMAT(5X, 'ENTER RADIUS OF WIRE(', 12 , ') $BC(', 12$, ')= ', S)
104		READ(5, *) RC(NO)
1107		WBC(NO) = BC(NO)
0100		WRITE(6,230)NO.RC(NO)
0110	230	FORMAT(5X, 'RC(', 12, ') = ', E10, 3)
0111		IF(RC(INO) - RC(NO)) 240, 240, 250
0112	240	SMRC=RC(INO)
0113	250	CONTINUE
1114		END IF
115		RETURN
		END
and the second		
		•

1001	С	
1002	С	ROUTINE SAMRAD IS USED TO ENTER SOLID WIRE INFORMATION IF THE
003	С	SOLID WIRES HAVE THE SAME RADIUS
004	С	
005		SUBROUTINE SAMRAD(NW.NX.NS.RC.SMRC.CONF.WRC)
0005		BEAL*16 BCX XBC SMBC BC(NW) WBC(NW)
0000		TARE TO NO.
0007		
0008		CHARACTER*1 CONF
0009		IF(CONF.EQ.'C'.OR.CONF.EQ.'S') THEN
0010		IF((CONF.EQ.'C'.OR.CONF.EQ.'S').AND.NX.LT.NW) THEN
0011		NX=NX-1
0012		WRITE(6,10)NW,NXB
0013	10	FORMAT(//,5X,'TOTAL NUMBER OF WIRES NW= ',12,
0014		<pre>\$<!--,5X,'TOTAL NUMBER OF SOLID WIRES NX= ',12)</pre--></pre>
0015		GO TO 40
0015		ELSE
0010		
0017	20	PORNAW(// EV / MOTAL NUMBER OF MIDES NUL / 12
0018	20	FORMAT(//, SX, TOTAL NUMBER OF WIRES NW= ',12,
0019		2/, 5X, TOTAL NUMBER OF SOLID WRIES NX= ', 12)
0020		IF(CONF.EQ.'C') THEN
0021		WRITE(6,30)
0022	30	FORMAT(/,5X,'ENTER INSIDE RADIUS OF COAX SHIELD RCX= ',\$)
0023		READ(5,*)RCX
0024		ELSE
0025		WRITE(6.31)
0025	31	FORMAT(/. 5X. 'ENTER INSIDE RADIUS OF SHIELD BCX= '.S)
0020		
0027		
0028		
0029		END IF
0030		ENDIF
0031	40	WRITE(6,50)
0032	50	FORMAT(5X,'ENTER RADIUS OF THE CONDUCTOR XRC= ',\$)
0033		READ(5,*)XRC
0034		IF((NW-NX).EQ.0) THEN
0035		N=NW
0036		ELSE
0037		N=NX
0038		
0039		TP/COMP PO /C/ OP COMP PO /S/) TUPN
1040		PO 80 T-1 V
0041		
0042		IF(NX.EQ.NW) THEN
0042		R=1
1044		ELSE
2045		K=I+NS+1
1045		END IF
0046		IF(K.EO.1) THEN
1947		BC(K)=BCX
1048		WPC(K)=PCY
3049		
0050		Tr (CONF. 20. C) TREN
0051	60	WRITE(0,00)K,RC(K)
1452	00	FORMAT(/, 5X, 'INSIDE RADIUS OF COAX SHIELD = RC(', 12, ')=
0053		&',E10.3)
1454		ELSE
1455	<i>c</i> .	WRITE(6,61)K,RC(K)
MSG	01	FORMAT(/,5X,'INSIDE RADIUS OF COAX SHIELD = RC(',12.')=
1057		&',E10.3)
MSa		END TF
1150		
Inco	70	ROBMM(I = 274 12 12 12 12 12 12 12 1
		FORMAT(/, S/A, RC(', 12, ')= ', E10.3)
		ELSE

0061		RC(K) = XRC
0062		WRC(K)=XRC
0063		SMRC=XRC
0064		WRITE(6,75)K,RC(K)
0065	75	FORMAT(/, 37X, 'RC(', 12, ') = ', E10, 3)
0066		END IF
0067	80	CONTINUE
0068		ELSE
0069		DO 90 I = 1.N
0070		K = (NW + 1) - T
0071		BC(K) = XBC
0072		WRC(K) = XRC
0073		SMRC=RC(K)
0074	90	CONTINUE
0075		ENDIF
0075		RETURN
0070		FND
0077		BND

.

0001	С	
0002	C	THIS SUBROUTINE AUTOMATICALLY GENERATES THE X AND Y
0003	C	DISTANCES BETWEEN WIRES FOR A RIBBON CABLE
0004	С	
0005		SUBROUTINE RGENXY(NW, AA1, X, Y, SEP)
0006		REAL*16 X(NW,NW),Y(NW,NW),AA1,SEP
0007		INTEGER NW
0008		WRITE(6,10)
0009	10	FORMAT(5x, 'ENTER CNTR-TO-CNTR SPACING OF CONDUCTORS (SEP)
0010		k = (1, 5)
0011		READ(5,*)SEP
0012		DO 20 I=1, NW
0013		DO 20 J=1, NW
0014		IF(I.LT.J) THEN
0015		$X(I,J) = -1.0Q0 \times SEP \times AA1$
0016		Y(I,J) = 0.000
0017		X(I,J) = X(I,J) + X(I,J-1)
0018		ELSE IF(I.EQ.J) THEN
0019		X(I,J) = 0.000
0020		Y(I,J) = 0.000
0021		ELSE
0022		X(I,J)=SEP*AA1
0023		Y(I,J) = 0.000
0024		X(I,J) = X(I,J) + X(I-1,J)
0025		END IF
0026	20	CONTINUE
0027		RETURN
0028		END

0001 С THIS SUBROUTINE AUTOMATICALLY GENERATES THE X AND Y C 0002 DISTANCES BETWEEN WIRES FOR A WIRE BUNDLE CONFIGURATION C 0003 C 0004 SUBROUTINE BGENXY (NW, AA1, X, Y, IREF) 0005 REAL*16 X(NW, NW), Y(NW, NW), AA1, XVALUE, YVALUE 0006 WRITE(6,10) 0007 FORMAT(/,15X, 'NOTE: ARBITRARILY SELECT FROM THE WIRE BUNDLE',/ 10 0008 +,21X,'A COUNTING SEQUENCE WHERE WIRE ONE IS',/,21X,'ASSIGNED + COORDINATES(0,0). ENTER ALL',/,21X,'OTHER "X" AND "Y" 0009 0010 +COORDINATES WITH',/,21X,'RESPECT TO WIRE ONE',// 0011 +,21X,'X(I,J) REPRESENTS THE CENTER-TO-CENTER DISTANCE',/ 0012 +,21X,'IN THE X DIRECTION BETWEEN WIRES I AND J',// 0013 +,21X,'Y(I,J) REPRESENTS THE CENTER-TO-CENTER DISTANCE',/ 0014 +,21X,'IN THE Y DIRECTION BETWEEN WIRES I AND J',// 0015 +,21X, 'NOTE: LATER IN THE PROGRAM THE USER WILL BE PROMPTED',/ 0016 +,28X,'TO SELECT A GROUND REFERENCE WIRE',//) 0017 DO 40 I=1,NW 0018 DO 40 J=1,NW 0019 IF(I.EQ.J) THEN 0020 X(I,J) = 0.0000021 Y(I,J)=0.000 0022 ELSE IF(I.GT.1.AND.J.LT.I) THEN 0023 X(I,J) = -1.0Q0 * X(J,I)0024 Y(I,J) = -1.0Q0 * Y(J,I)0025 ELSE IF(I.GT.1.AND.J.GT.I) THEN 0026 X(I,J)=X(IREF,J)-X(IREF,I)0027 Y(I,J)=Y(IREF,J)-Y(IREF,I)0028 0029 ELSE WRITE(6,20)I,J,I,J 0030 FORMAT(/, 5X, 'ENTER THE HORIZONTAL DISTANCE BETWEEN 0031 20 0032 &WIRE(',12,') AND WIRE(',12,')',/,25X,'X(',12,',',12,') 0033 &= ',\$) 0034 READ(5,*)XVALUE X(I,J)=-1.000*AA1*XVALUE 0035 0036 WRITE(6,30)I,J,I,J FORMAT(/, 5X, 'ENTER THE VERTICAL DISTANCE BETWEEN 0037 30 0038 &WIRE(',12,') AND WIRE(',12,')',/,25X,'Y(',12,',',12,' 0039 &)= ',\$) 0040 READ(5, *)YVALUE Y(I,J) = -1.0Q0 * AA1 * YVALUE0042 0043 0044 END IF 40 CONTINUE RETURN 0045 END

0001	С	
0002	C	THIS SUBROUTINE AUTOMATICALLY GENERATES THE X AND Y
0003	C	COORDINATES OF CONDUCTORS INSIDE A COAX CABLE
0004	C	
0005		SUBROUTINE CGENXY(NW.AA1.X.Y.IREF)
0005		BEAL *16 X (NW NW) Y (NW NW) AAL XVALUE VALUE
0000		WETTER (10)
0007	10	FORMARY (15Y (NOME, ADDIMPADILY SELECT) CONVERSE A
0008	10	FORMAT(/, ISX, NOTE: ARBITRARILI SELECT A COUNTING SEC
0009		+,/, ZIX, FOR THE CONDUCTORS INSIDE THE COAX SHIELD.
0010		+,/,21X,'THE CENTER OF THE COAX SHIELD IS ASSIGNED'
0011		+,/,21X,'COORDINATES(0,0). ENTER ALL OTHER "X"'
0012		+,/,21x,'AND "Y" COORDINATES WITH RESPECT TO THE'
0013		+,/,21X,'CENTER OF CENTER OF THE COAX CABLE',//
0014		+,21X,'X(I,J) REPRESENTS THE CENTER-TO-CENTER DISTANCE',/
0015		+,21X,'IN THE X DIRECTION BETWEEN CONDUCTOR I AND'./
0016		+.21X.'CENTER OF THE COAX CABLE'.//
0017		+.21X. (Y(I.J) REPRESENTS THE CENTER-TO-CENTER DISTANCE! (
0018		+ 21X, IN THE Y DIRECTION BETWEEN CONDUCTOR I AND'
0010		+ 21X CENTER OF THE COAX CABLES ()
0019		
0020		
0021		
0022		IF(I.EQ.J) THEN
0023		x(1, 3) = 0.000
0024		Y(I, J) = 0.0Q0
0025		ELSE IF(I.GT.1.AND.J.LT.I) THEN
0026		X(I,J) = -1.0Q0 * X(J,I)
0027		Y(I,J) = -1.0Q0 * Y(J,I)
0028		ELSE IF(I.GT.1.AND.J.GT.I) THEN
0029		X(I,J)=X(IREF,J)-X(IREF,I)
0030		Y(I,J)=Y(IREF,J)-Y(IREF,I)
0031		ELSE
0032		WRITE(6,20)J,I,J
0033	20	FORMAT(/ .5% . / ENTER THE HORIZONTAL DISTANCE OF CONDUC
0034		S(1, T2, 1)1, 1, 5X, WITH RESPECT TO THE CENTER OF THE COAX CAN
0035		$5/25 \times (1/25) \times (1/22) \times (1/$
0036		$(\gamma, 2)$ $($
0037		$Y(T_1) = 1$
0037		$\mathbf{A}(1,0) = -1 \cdot 0 0 \cdot \mathbf{A} \mathbf{A} + \mathbf{A} \mathbf{V} \mathbf{A} 0 \mathbf{E}$
0030	20	
0039	20	FORMAT(), 5X, ENTER THE VERTICAL DISTANCE OF CONDUCTO
0040		a(',12,')',',',',',',',',',',',',',',',',',',
0041		$\epsilon/, 25x, \gamma(\gamma, 12, \gamma, 12, \gamma) = \gamma, s)$
0042		READ(5,*)YVALUE
0043		Y(I,J) = -1.0Q0 * AA1 * YVALUE
0044		END IF
0045	40	CONTINUE
0046		RETURN
0047		END

1001	С	
1002	č	THIS SUBROUTINE COMPUTES THE BELATIVE DISTURDED DETERMINED
0002	č	WIRES ABOUT A GROUND BLANK IT ALSO DESERVICES BETWEEN
0003	č	BETWEEN THE IMAGES OF THOSE WIRES AND THE CROWN RELATIONS
0004	č	BETWEEN THE THAGES OF THOSE WIRES AND THE GROUND PLANE
0005	C	CURROUTINE REPAYA NA V TREE IN
0006		SUBROUTINE PGENXY(NW, AAI, X, Y, IREF, H)
0007		REAL*16 X(NW,NW),Y(NW,NW),H(NW),AAI,XVALUE,YVALUE
0008		NWH=NW/2
0009		DO 20 I=1, NWH
0010		WRITE(6,10)I,I
0011	10	FORMAT(/,5X,'ENTER HEIGHT OF WIRE(',12,') ABOVE GROUND PLANE'
0012		+,/,25x,'H(',12,')=',5)
0013		$READ(5, \star)H(I)$
0013		$H(T + NWH) = -1.000 \times H(T)$
0014		
0015	222	$\mathbf{POPM}(\mathbf{T}_{1}, \mathbf{T}_{2}, \mathbf{T}_{$
0016	202	
0017	20	
0018		DO 40 1=1, NW
0019		DO 40 J=1,NW
0020		IF(I.EQ.J) THEN
0021		X(I,J) = 0.000
0022		Y(I,J) = 0.000
0023		WRITE(6, 334)I, J, X(I, J), I, J, Y(I, J)
0024	334	FORMAT(5x, 'x(', 12, ', ', 12, ') = ', E13, 4, 3x, 'y(', 12, ', ', 12, ') = '
0024		+. E13.4)
0025		ELSE IF (I.EO. 1. AND J.L.E. NWH) THEN
0020		
0027	20	POBMER(/ 52 / FINTED THE HORIZONTAL DISTANCE DETUDEN WIDE(/ 12
0028	30	AND REPERT OF A STATE AND
0029		(+, +) AND WIRE $(+, +2, +), (-, +2, +), (-, +2, +) = (-, +3)$
0030		READ(5,*)XVALUE
0031		X(1,J)=AAI*XVALUE
0032		Y(I,J) = AAI * (H(J) - H(I))
0033	1	WRITE(6,335)I,J,X(I,J),I,J,Y(I,J)
0034	335	FORMAT(5x,'x(',12,',',12,')= ',E13.4,3x,'Y(',12,',',12,')= '
0035		+,E13.4)
0036		ELSE IF(I.EQ.1.AND.J.GT.NWH) THEN
0037		X(I,J)=X(I,J-NWH)
0039		$Y(I,J) = AA1 \star (H(J) - H(I))$
0040		WBITE(6, 336) I.J.X(I.J), I.J.Y(I.J)
0041	336	FORMAT(5X $(X(1, 12, 1, 12, 1) = 1, E13, 4, 3X (Y(1, 12, 1, 12, 1) = 1)$
0042		+ F13 A)
0043		TIGLET TRATE AND T TE MUH AND T TE TA MUEN
0044		ELSE IF(I.GI.I.AND.J.LE.NWH.AND.J.LE.I) THEN
0045		X(1, J) = -X(J, 1)
0046		Y(I,J) = -Y(J,I)
0047		WRITE(6,337)I,J,X(I,J),I,J,Y(I,J)
0049	337	FORMAT(5x,'X(',12,',',12,')= ',E13.4,3x,'Y(',12,',12,')= '
0040		+,E13.4)
0050		ELSE IF(I.GT.1.AND.J.LE.NWH.AND.J.GT.I) THEN
0051		X(I,J) = X(IREF,J) - X(IREF,I)
0051		Y(I,J) = AA1 * (H(J) - H(I))
0052		WRITE(6, 338)T, J, X(T, J), T, J, Y(T, J)
0053	338	FORMAT(5Y / Y / T2 / / T2 / J / F12 / 2Y / V / T2 / / T2
0054		+1 = 1 = 12 = 1
0055		
0056		THEN
		A(1, J) = X(I, J - NWH)

T 1 2

1	0	0
T.	a	U
_	_	-

0057		Y(I,J)=AA1*(H(J)-H(I)) WRITE(6,339)I,J,X(I,J),I,J,Y(I,J)
0050	339	FORMAT(5x, 'X(', 12,',', 12,') = ', E13.4, 3x, 'Y(', 12,',', 12,')
0060		+,E13.4) ELSE IF(I.GT.NWH.AND.J.GT.NWH) THEN X(I_I)=X(I_NWH.J-NWH)
0062		Y(I,J) = AA1*(H(J)-H(I)) WRITE(6,340)I,J,X(I,J),I,J,Y(I,J)
0064	340	FORMAT(5x,'x(',12,',',12,')=',E13.4,3x,'Y(',12,',',12,')= +,E13.4)
0066		END IF
0068	40	CONTINUE RETURN
0070		END

0001	С	
0002	С	THIS SUBROUTINE ALLOWS THE USER TO CHANGE THE REFERENCE
0003	С	NUMBER THAT HAS BEEN SELECTED TO A NEW REFERENCE PREFERABLY
0004	C	THE GROUND WIRE. WHEN THE CONFIGURATION (P) IS SELECTED THE
0004	č	REFERENCE IS THE GROUND PLANE
0005	č	
0006	C	CURROUTINE NEWDER/NU V V IDER)
0007		SUBROUTINE NEWREF(NW,X,Y,IREF)
0008		REAL*16 X(NW,NW),Y(NW,NW)
0009		WRITE(6,10)
0010	10	FORMAT(5X,'ENTER REFERENCE GROUND CONDUCTOR IGREF= ',\$)
0011		READ(5,20)IGREF
0011	2.0	FORMAT(12)
0012	20	DO 30 I=1 NW
0013		
0014		
0015		IF(J.EQ.I) THEN
0016		$\mathbf{X}(1,3) = 0$
0017		Y(I,J)=0
0018		ELSE
0019		X(I,J) = X(IGREF,J) - X(IGREF,I)
0020		Y(I, J) = Y(IGREF, J) - Y(IGREF, I)
0020		END IF
0021	20	CONTINUE
0022	30	
0023		
0024		RETURN
0025		END

0001	С	
0002	С	SUBROUTINE CAP IS USED TO CALCULATE THE GENERALIZED CARDON
0003	c	MATRIX AND FROM THAT THE TRANSMISSION LINE CARACITANCE
0005	č	FOR THE UNBILING CONFICUENTIONS SELECTED IN THE CAPACITANCE MATRIX
0004	č	FOR THE VARIOUS CONFIGURATIONS SELECTED IN THE MAIN PROGRAM
0005	C	REALALS DOLLARS, SOLARS, CASS, SAME, NO, TERTA
0006	С	DESCRIPTION OF PARAMETERS:
0007	С	NW - NUMBER OF WIRES SELECTED
0008	С	NHC - NUMBER OF COSINE OR SINE TERMS AROUND THE CONDUCTOR
0000	ĉ	NHD - NUMBER OF COSINE OF SINE TERMS ABOUND THE CONDUCTOR
0009	č	NEC - NUMBER OF COURTER TERMS ALLOND THE DIELECTRIC
0010	5	NFC - NUMBER OF FOURIER TERMS SELECTED AROUND THE CONDUCTOR
0011	C	WHERE NFC = 2*NHC+1
0012	С	NFD - NUMBER OF FOURIER TERMS SELECTED AROUND THE
0013	С	DIELECTRIC WHERE NFD = $2 \times NHD + 1$
0014	С	
0015	ĉ	NOTE: NED SHOULD BE GREATER THAN OF FOULAL TO NEC
0015	č	NOTE: NED BROOLD BE GREATEN THAN ON EQUAL TO NEC
0016	C	
0017	С	NF - NFC+NFD FOR IOPT=2 OTHERWISE EQUAL TO NFC
0018	С	RC - RADIUS OF THE CONDUCTOR
0019	С	RD - RADIUS OF THE DIELECTRIC FROM THE CENTER OF THE WIRE
0020	C	X - CENTER-TO-CENTER SPACING BETWEEN THE CONDUCTORS
0020	c	IN THE Y (HORIZONTAL) DIRECTION
0021	2	CENTRE A (NORTHON SEA CINC DEFINEEN THE CONDUCTORS
0022	C	I - CENTER-TO-CENTER SPACING BETWEEN THE CONDUCTORS
0023	C	IN THE Y (VERTICAL) DIRECTION
0024	C	
0025	C	NOTE: ALL DIMENSIONS MUST BE IN THE SAME UNITS.
0026	C	
0027	č	FR _ PELATIVE DIFLECTRIC CONSTANT OF THE INSULATION
0027	2	THE NUMBER OF THE DEEDENCE CONDUCTOR / 11 JUNICOM
0028	C	TREF - NUMBER OF THE REFERENCE CONDUCTOR (1 TIDICATES THE
0029	C	FIRST WIRE.) CAN NOT EXCEED THE NUMBER OF WIRES
0030	C	IOPT - OPTION SELECTOR
0031	C	IOPT=1 COMPUTES CAPACITANCE OF DIELECTRIC COATED
0032	C	WIRES FOR VARIOUS CONFIGURATION
0033	č	LOPT-2 COMPUTES CAPACITANCE OF BARE WIDES OF FOR
0034	č	
0034	5	MULTICONDUCTOR COAX CABLES
0035	C	CG - CONTAINS THE GENERALIZED CAPACITANCE MATRIX ON
0036	C	RETURN DIMENSION OF MATRIX IS NW BY NW
0037	C	CTL - CONTAINS THE TRANSMISSION LINE CAPACITANCE MATRIX
0038	C	ON RETURN DIMENSION IS (NW-1) BY (NW-1)
0039	C	D - WORKING SOUARE MATRIX OF ORDER (NEC+NED)
0040	č	D1 - MOBELING DECEMBER OF DIMENSION (/NEC:NED)+NX)++2 IS
0041	č	DI - WORRING VECTOR OF DIMENSION ((NFC+NFD)*NW)**2 IS
0042	C	IOPT=1 OTHERWISE THE DIMENSION IS (NFC*NW)**2
0042	C	SCR - SCRATCH VECTOR OF DIMENSION $(NF*NW+1)/2$
0043	C	LT - SCRATCH VECTOR OF DIMENSION 2*NF*NW
0044	C	
0045	C	SUBPOUTTINES REQUIRED.
0046	ċ	NTALL AND THE THERE TON DOUMTHE
0047	2	MINV - MATRIX INVERSION ROUTINE
0048	-	MPC - MATRIX MULTIPLICATION WITH A CONSTANT MULTIPLIED
0040	C	BY THE RESULT
0050	C	
0050	C	
0051		STREOTHTANE CAR NEC NED NE DC DD ED TREE TOP
0052		CONTRACTINE CAPINE, NEC, NED, NE, NE, NEE, ICET,
0053		TCG, CTL, D, DI, SCR, LT, NHC, NHD, X, Y, MDI, MD2, MD3, MD4, MD5,
0054		+MD6,MD7,MD8,MD9,MD10,PCTL,CONF,PD1,CER,RD1,NWH,PCG)
0055		COMPLEX*16 MPR,MR
0056		REAL*16 D(MD3.MD3).D1(MD8).A12 ER(NW).PCTL(MD7)
0057		REAL+16 X(NW, NW), Y(NW, NW), PD1(NW), CC(NW, NW), CTT.(MD2)
0050		PRILL PRANT AND AND AND COLORD AND AND AND AND AND AND AND AND AND AN
		MERL TO ROTD, ANDTD, SMRC, SRC, SRD, XER, BETA

REAL*16 XVALUE, YVALUE, PI, EPS, AC, AD, DELTC, DELTD

-050		DEAL+16 CMA DUATIN THEMAN ED1 ED2 CED
0059		REAL 10 GMA, RHAIN, THEIN, ERI, ERZ, CER
1060		REAL*16 A1 A2 A3 A4 A5 RD1 (MD10) PCG (NWH NWH)
0000		
0061		REAL*16 B1,B2,B3,B4,B5,B12,BB1,BBB1
		DEAL+16 DC(NEA) DD(NEA) CANC CANC DO MUERA
0062		REAL 10 RC(NW), RD(NW), CANG, SANG, RO, THETA
		PFAL*16 01 017 02 022 YSEP YSEP
0005		NERD IV QI,QIZ,QZ, XDEI, IVAL
0064		DIMENSION LT(MD5).SCR(MD6)
0004		
0065		CHARACTER*1 CONF
0005	~	
0066	C	
	C	CONSTANTS AND COMMON COMPLITATIONS
006/	<u> </u>	CONSTRATS AND COMMON COMPORTIONS
1068	C	
0000	•	
0069		PI=3.141592700
0005		
0070		EP5=8.854185Q-12
0010		
0071		NWT=NW-T
		$NW12 = NW1 \times NW1$
00/2		ANTZ-ANT ANT
0073		NFC1=NFC+1
00/5		
0074		NFD1=NFD+1
0074		
0075		
	C	
00/0	6	
0077	C	ANGLE BETWEEN MATCH POINTS ON THE CONDUCTOR AND DIELECTRIC
00//	-	
0078	С	SURFACES
0070		
0079	C	
0000		AC-7 DOD+PT /NEC
0080		AC-2.000 FI/NFC
0001		AD=2.000*PT/NFD
TOOD		
0082	C	
0000	-	
0083	C	ANGULAR ROTATION OF MATCHPOINTS FROM 0 DEGREES, I.E., THE
	~	HORIZONMAL
0084	6	HORIZONIAL
0095	C	
0003	6	
0086		DELTC=PI/(2.000*NFC)
0000		
0087		DELTD=PI/(2.0QU*NFD)
0000	-	
8800	C	
0000	C+++	
0003	6	
0090	C	IS ROUTINE COMPUTES THE OFF-DIAGONAL "D" SUBMATRICES
	-	
0091	C***	***************************************
0000	~	NEW DESCRIPTION WITCH AND DOMENTAL TO CALCUTAMED
0092	6	NPW = PRESENT WIRE IN WHICH THE FOTENTIAL IS CALCULATED
0093	C	NSW-DRESENT WIRE IN WHICH THE SOURCE IS RESIDING
	-	ADA-FREDENI WIKE IN WHICH THE BOOKED ID REDIDING
0094	C	MPP=PRESENT MATCH POINT ON THE BOUNDARY IN WHICH POTENTIAL IS
0005	-	
0032	C	CALCUATED
0006	-	
4430	C	XSEP=SEPARATION IN THE HORIZONTAL DIRECTON FROM NSW TO NPW
0097	C	VEED-CEDARATON IN THE VERTICAL DIRECTION FROM NEW TO NEW
0000	6	ISEP SEPARATION IN THE VERTICAL DIRECTION FROM NSW TO NEW
0098	C	
0000	•	THE FEEL CREEKING PROGRAM
4433		DO 10 NSW=1.NW
0100		
		DO 10 NPW=1.NW
0101		
0100		XSEP=X(NPW,NSW)
102		VCER-V(NDW NEW)
0102		ISEP=I(NPW,NSW)
69.7		MNDW-NDW
n lov		
81.0.0		MNPW=NSW
V105		
0100		ER1 = ER(NPW) - 1.000
0044		
0107		ERZ=ER(NPW)+1.0QU
		TE(/ NEW NEW) BO () FUEN
V108		IF((NSW-NPW).EQ.0)THEN
81.00		CALL DIA NEW ED CONF NEW NW DC NEC D TOPT
4103		CALL DIA(NSW, ER, COMP, NEW, NW, RC, NEC, D, IOPI,
0110		&RD.NFC1 ER1 NF AC DELTC NHC NHD AD DELTD
4410		and the cit, Eki, Mr, Ac, Debic, Mac, Mab, Ab, Debib,
0111		MD1, MD2, MD3, MD4, MD5, MD6, MD7, MD8, ER2)
80.00		
4112		ELSE
111.		CALL ARRAY AND A DALLA WAY DO COME WAY THE WAY
-413		CALL UTDIA (NFC, AC, DELTC, NFW, RC, CONF, NSW, IREF, NW,
1114		ANHC TORM NUD NECT DD D NED AD DET MD ED1 VCED VCED
1000		THE, LOFT, NEU, NECT, RD, D, NEU, RD, DELTD, ERT, RDEF, IDEF,
116		MD1.MD2 MD3 MD4 MD5 MD6 MD7 MD8 FR2)
111.		
-116		END IF
	C	

С THIS SECTION TELLS WHERE TO PUT THE SUBMATRIX "D" IN THE 1117 С)118 LARGER "D1" MATRIX BEFORE IT IS INVERTED C)119 0120 MM=NPW NN=NSW 0121 CALL PLACE(MM, NN, LD, NF, D, D1, MD8) 0122 10 CONTINUE 0123 С 0124 С 0125 THIS PORTION OF THE PROGRAM INSERTS THE SUBMATRIX ON THE С DIAGONAL OF THE LARGE "D1" MATRIX NW TIMES 0126 C 0127 C 0128 INVERSTION OF "D1" AND COMPUTATION OF THE GENERLIZED C CAPACITANCE MATRIX "CG" 0129 C 0130 C FULL MATRIX INVERSION OF THE "D1" MATRIX IS DONE 0131 С THEN THE TERMS OF THE GENERALIZED CAPACITANCE MATRIX ARE 0132 С COMPUTED 0133 C 0134 IF(CONF.EQ.'P') THEN 0135 CALL P1(NW,NF,D1,MD8,LD,NFC,RD1,MD10) 0136 NWH=NW/2 0137 MLD=NWH*NF 0138 CALL MINV(RD1, MLD, DET, LT(1), LT(MLD+1)) 0139 ELSE 0140 CALL MINV(D1,LD,DET,LT(1),LT(LD+1)) 0141 END IF 0142 ISTP=1 0143 IF(DET)20,30,20 0144 CALL SUM(NW,NF,LD,NFC,D1,RC,CG,PCG,RD,MD8,IOPT,CER, 20 0145 0146 &CONF, RD1, MD10, NWH) IF (CONF.EQ.'R'.OR.CONF.EQ.'B'.OR.CONF.EQ.'C'.OR.CONF. 0147 0148 &EQ.'S') THEN CALL TRANS(NW,CG,NW12,NW1,CTL,MD2,IREF,IOPT,PD1) 0149 0150 ELSE IF(CONF.EQ.'P') THEN 0151 CALL PLANE(NWH, PCG, PCTL, MD7) 0152 END IF 0153 RETURN 0154 C 0155 0000 AFTER THE PER-UNIT LENGTH GENERALIZED AND TRANSMISSION LINE 0156 CAPACITANCE MATRICES HAVE BEEN CALCULATED, CONTROL RETURNS 0157 TO THE CALLING PROGRAM 0158 0159 С ERROR RETURN 0160 C 0161 30 WRITE(6,40)ISTP 0162 40 FORMAT(' ** SINGULAR MATRIX AT STEP ', I1) 9163 NW=00164 WRITE(6,50)NW 0165 50 FORMAT(5X,'SINGULAR PASS NW= ', I3) 0166 WRITE(6,60)MD1,MD2,MD2,MD3,MD3,MD4,MD4,MD5,MD6,MD7,MD8, 0167 0168 +NW, NW, NW, NW, NW, NW, NW, NW, NW 60 0169 FORMAT(///,10X,'VERIFY THAT VARIABLE ARRAYS AND VECTORS ARE',/, 0170 +10X, 'DIMENSIONED PROPERLY IN THE PROGRAM.' 0171 +,/,10X,'THE DIMENSIONS IN THE PROGRAM MUST BE LESS THAN OR' 0172 +,/,10X,' EQUAL TO THE DIMENSIONS LISTED BELOW',//, +10X, 'DIMENSION FOR C IS C(',I3,')',/, +10X, 'DIMENSION OF C1 & RL ARE C1(',I3,'), RL(',I3,')',/, +10X, 'DIMENSION OF D IS D(',I3,',',I3,') IN MAIN',/, 0173 0174

0175	+10X, 'DIMENSION OF D1 IS D1(',I3,',',I3,')',/,
0176	+10X, 'DIMENSION OF LT IS LT(', I3, ')',/,
0177	+10X, 'DIMENSION OF SCR IS SCR(',I3,')',/,
0178	+10X, 'DIMENSION OF PCTL IS PCTL(', I3, ')', /,
0179	+10X, 'DIMENSION OF RPL IS RPL(',I3,')',/,
0180	+10X, 'DIMENSION OF D1 IS D1(', 16, ') IN SUBROUTINES GETCAP &
0181	+PLACE',/,
0182	+10X,'DIMENSIONS OF X & Y ARE X(',I3,',',I3,'),
0183	+Y('I3,',',I3,')',/,
0184	+10X,'DIMENSIONS OF RC,RD,ER,H,& PD1 ARE',/,
0185	+10X,'RC(',I3,'), RD(',I3,'), ER(',I3,'), H(',I3,'),
0186	+ & PD1(', I3, ')', /)
0187	RETURN
0188	END

C 0001 U U U THIS ROUTINE COMPUTES THE POTENTIALS OF THE MATCH 0002 WIRE DUE TO THE WIRE AND DIELECTRIC OF THE END WIRE 0003 I.E. IT COMPUTES THE OFF-DIAGONAL TERMS OF THE SMALL 0004 С D SUBMATRIX 0005 C 0006 SUBROUTINE OFDIA(NFC,AC,DELTC,NPW,RC,CONF, 0007 &NSW, IREF, NW, NHC, IOPT, NHD, NFC1, RD, D, NFD, AD, DELTD, ER1, XSEP, YSEP, 0008 &MD1, MD2, MD3, MD4, MD5, MD6, MD7, MD8, ER2) 0009 REAL*16 AC, DELTC, BETA, CANG, SANG, RC(NW) 0010 REAL*16 Q1,Q12,Q2,Q22,R0,THETA,B1,D(MD3,MD3) 0011 REAL*16 A1, A3, B2, B3, RD(NW), A2, B4, B5, AD, DELTD, GMA 0012 REAL*16 RHATN, THETN, ER1, XSEP, YSEP, ER2 0013 CHARACTER*1 CONF 0014 DO 60 MPP=1,NFC 0015 BETA=(MPP-1)*AC+DELTC 0016 CANG=QCOS(BETA) 0017 SANG=OSIN(BETA) 0018 Q1=XSEP+RC(NPW)*CANG 0019 Q12=Q1**2 0020 Q2=YSEP+RC(NPW)*SANG 0021 Q22=Q2**2 0022 RO=QSQRT(Q12+Q22)0023 THETA=QATAN2(Q2,Q1) 0024 B1=QLOG(RO) 0025 IF((CONF.EQ.'C'.AND.NSW.EQ.IREF).OR. 0026 & (CONF.EQ.'S'.AND.NSW.EQ.IREF)) THEN 0027 C 0028 COMPUTE AVERAGE MN TERM FOR COAX OR SHIELD WHITH SOURCE C 0029 C ON SHIELD R<R' 0030 0031 C 0032 D(MPP, 1) = -RC(NSW) * QLOG(RC(NSW))IF(IOPT.EQ.1) THEN 0033 0034 C COMPUTE AVERAGE MN' TERM FOR COAX OR SHIELD WHITH 0035 C 0036 C SOURCE ON SHIELD R<R' 0037 C 0038 D(MPP,NFC1)=-RD(NSW)*QLOG(RD(NSW)) 0039 END IF 0040 ELSE IF(CONF.EQ.'P'.AND.NSW.GT.NW/2) THEN 0041 C 0042 C COMPUTE AVERAGE MN TERM FOR WIRE BUNDLE WITH PLANE PRESENT 0043 C 0044 D(MPP,1)=RC(NSW)*B10045 IF(IOPT.EQ.1) THEN 0046 C 0047 C COMPUTE AVERAGE MN' TERM FOR WIRE BUNDLE WITH PLANE PRESENT 0048 C 0049 D(MPP,NFC1)=RD(NSW)*B1 0050 END IF 0051 ELSE 0052 C 0053 C 0054 COMPUTE AVERAGE MN TERMS FOR REMAINING CONFIGURATIONS C 0055 D(MPP,1)=-RC(NSW)*B1 005 0057 IF(IOPT.EQ.1) THEN C 0058 C 0059 COMPUTE AVERAGE MN' TERMS FOR REMAINING CONFIGURATIONS C 0060 D(MPP, NFC1) = -RD(NSW) * B1

END IF 0061 END IF 0062 IF((CONF.EQ.'C'.AND.NSW.EQ.IREF).OR. 0063 & (CONF.EQ.'S'.AND.NSW.EQ.IREF)) THEN 0064 C 0065 COMPUTE THE MN TERMS FOR CONFIGURATION COAX AND SHIELD WHEN С 0066 С SOURCE IS ON THE SHIELD R<R' 0067 C 0068 A1=RO 0069 A3=1.0Q0 0070 DO 10 J=1,NHC 0071 J1=J+1 0072 J2=J1+NHC 0073 B2=QCOS(J*THETA)/(2.0Q0*J*A3) 0074 B3=QSIN(J*THETA)/(2.0Q0*J*A3) 0075 D(MPP, J1)=B2*A1 0076 D(MPP, J2)=B3*A1 0077 A1=A1*RO 0078 A3=A3*RC(NSW) 0079 10 CONTINUE 0080 С 0081 C COMPUTE THE MN' TERMS FOR CONFIGURATION COAX AND SHIELD WHEN 0082 C SOURCE IS ON THE SHIELD R<R' 0083 C 0084 IF(IOPT.EQ.1) THEN 0085 A1=RO 0086 A3=1.000 0087 DO 11 J=1, NHD 0088 J1=J+NFC1 0089 J2=J1+NHD 0090 0091 B2=QCOS(J*THETA)/(2.000*J*A3) 0092 B3=QSIN(J*THETA)/(2.000*J*A3) 0093 D(MPP, J1)=B2*A1 0094 D(MPP, J2)=B3*A1 0095 A1 = A1 * RO0096 A3=A3*RD(NSW) 0097 11 CONTINUE 0098 END IF 0099 ELSE IF (CONF.EQ.'B'.OR. (CONF.EQ.'C'.AND. 0100 &NSW.NE.IREF).OR. (CONF.EQ.'S'.AND.NSW.NE.IREF) 0101 &.OR. (CONF.EQ. 'P'.AND.NSW.LE.NW/2)) THEN 0102 C 0103 C COMPUTE THE MN TERMS FOR CONFIGURATION COAX AND SHIELD WHEN 0104 C SOURCE IS NOT ON THE SHIELD OR FOR PLANE (REAL WIRES), RIBBON 0105 C CABLES, WIRE BUNDLE, AND WIRE BUNDLE OF GROUND R>R' 1106 C 0107 A1=RC(NSW) 0108 A3=R0*2.000 0109 DO 20 J=1,NHC 0110 J1=J+1 111 112 J2=J1+NHC11: B2=QCOS(J*THETA)/(J*A3) 11 B3=QSIN(J*THETA)/(J*A3) 11 A1=A1*RC(NSW) D(MPP, J1)=B2*A1 D(MPP, J2)=B3*A1 11 A3=A3*R0 20 CONTINUE

119	С	
120	C	COMPUTE THE MN' TERMS FOR CONFIGURATION COAY AND SUTETD MUEN
121	č	SOURCE IS NOT ON THE SHIELD OR FOR PLANE (PEAL WIDES) BIRGON
0121	č	CABLES WIRE BUNDLE AND WIRE BUNDLE OF CROUND DAY
0122	č	Children , while bonder, and while bonder of GROUND RYR.
0123	C	
0124		IF (IOPT.EQ.I) THEN
0125		A2=RD(NSW)
0126		A3=R0*2.0Q0
0127		DO $30 J=1, NHD$
0128		J3=J+NFC1
0129		J4=J3+NHD
0130		B2=QCOS(J*THETA)/(J*A3)
0131		B3=QSIN(J*THETA)/(J*A3)
0132		$A_2 = A_2 * RD(NSW)$
0122		D(MPP, J3) = B2 * A2
0133		D(MPP, J4) = B3 * A2
0134		3-3-3+90
0135	20	
0136	30	
0137		END IF
0138		ELSE IF(CONF.EQ. R.) THEN
0139		AI=RC(NSW)
0140		A3=R0*2.000
0141		DO 31 J=1,NHC
0142		J1=J+1
0143		B2=QCOS(J*THETA)/(J*A3)
0144		A1=A1*RC(NSW)
0145		D(MPP,J1)=B2*A1
0146		A3=A3*RO
0147	31	CONTINUE
0148		IF(IOPT.EO.1) THEN
0149		A2=RD(NSW)
0150		A3=B0*2,000
0151		DO 32 JEI NHD
0152		
0153		
0154		$D_2 = QCOS(0^{-1}HEIA)/(0^{-AS})$
0155		
0155		D(MPP, J3) = B2 * A2
0157		A3=A3*RO
0150	32	CONTINUE
0150		END IF
0159	C.	ELSE IF(CONF.EQ.'P'.AND.NSW.GT.NW/2) THEN
0161	C	
0101	C	COMPUTE MN TERMS FOR IMAGE WIRES
0162	C	
0103		Al=RC(NSW)
0154		A3=R0*2.000
0165		DO 40 J=1.NHC
0166		J1=J+1
0107		12=11+NHC
0168		
0169		
0170		
0171		
0172		D(mPP, JI) = -BZ*AI
0173		D(MPP, J2)=B3*A1
0174	40	A3=A3*RO
0175		CONTINUE
0176	C	IF(IOPT.EQ.1) THEN
	-	$\mathbf{D}(3d, \mathbf{I}) = Rc(\mathbf{A}\mathbf{S}\mathbf{v}) = \mathbf{B}\mathbf{I}$

0177 С COMPUTE MN' TERMS FOR IMAGE WIRES 0178 C 0179 A2=RD(NSW)0180 A3=R0*2.000 0181 DO 50 J=1, NHD J3=J+NFC10182 J4=J3+NHD0183 B4=QCOS(J*THETA)/(J*A3)0184 B5=QSIN(J*THETA)/(J*A3) 0185 A2=A2*RD(NSW) 0186 D(MPP, J3) = -B4 * A20187 D(MPP, J4) = B5 * A20188 A3=A3*R0 0189 0190 50 CONTINUE 0191 END IF 0192 END IF IF(IOPT.EQ.1) THEN 60 0193 0194 С 0195 0000 THIS SECTION COMPUTES THE ELECTRIC FIELD COMPONENTS ON THE 0196 MATCH WIRE DUE TO BOTH THE CONDUCTIOR AND DIELECTRIC OF THE 0197 END WIRE 0198 0199 DO 110 MPP=1,NFD 0200 BETA=(MPP-1)*AD+DELTD 0201 CANG=QCOS(BETA) 0202 0203 SANG=QSIN(BETA) Q1=XSEP+RD(NPW)*CANG 0204 0205 Q12=Q1**2 Q2=YSEP+RD(NPW)*SANG 0206 0207 Q22=Q2**2 0208 RO=QSQRT(Q12+Q22)0209 THETA=QATAN2(Q2,Q1) 0210 GMA=BETA-THETA 0211 RHATN=QCOS(GMA) 0212 THETN=QSIN(GMA) B1=ER1*RHATN/RO 0213 0214 JJ=NFC+MPP 0215 IF (CONF.EQ.'S'.AND.NSW.EQ.IREF) THEN 0216 C 0217 C COMPUTE THE AVERAGE M'N TERM FOR SHIELD R<R' (SOURCE 0218 C ON SHIELD) 0219 C 0220 D(JJ,1)=0.0000221 CC 9222 COMPUTE THE AVERAGE M'N' TERMS FOR SHIELD R<R' (SOURCE 0223 C ON SHIELD) 0224 C D(JJ,NFC1)=0.0Q0 0225 0226 ELSE IF(CONF.EQ.'P'.AND.NSW.GT.NW/2) THEN 0227 0228 D(JJ,1) = -RC(NSW) * B10229 D(JJ,NFC1) = -RD(NSW) *B10230 ELSE C 0231 С COMPUTE REMAINING M'N TERMS FOR OTHER CONFIGURATION R>R' 0232 C 0233 0234 D(JJ,1)=RC(NSW)*B1C 0235 C COMPUTE REMAINING M'N' TERMS FOR OTHER CONFIGURATION R>R'

0237		D(II) = D(NGW) + DI
0238		END TF
0239		IF(CONF.EQ.'S'.AND.NSW.EQ.IREF) THEN
0240	С	
0241 0242 0243 0244 0245	υυυυυ	COMPUTE THE M'N TERMS WHEN R <r' bundle<br="" for="" shielded="" wire="">WHEN SOURCE IS ON SHIELD AND POTENTIAL MATCHPOINTS ARE ON DIELECTRICS OF THE INNER WIRES. NOTE, ALSO THAT THESE ROUTINES WORK IF THERE IS A DIELECTRIC BETWEEN THE SHIELD AND THE INNER WIRES</r'>
0240	C	A1-1 000
0247 0248 0249 0250 0251 0252 0253 0254 0255		A1=1.0Q0 A3=1.0Q0 D0 65 I=1,NHC J1=I+1 J2=J1+NHC B2=-ER1*(QCOS(I*THETA)*RHATN-SIN(I*THETA)*THETN) B3=-ER1*(QSIN(I*THETA)*RHATN+COS(I*THETA)*THETN) D(JJ,J1)=A1*B2/(2.0Q0*A3) D(JJ,J2)=A1*B3/(2.0Q0*A3)
0256		Al=Al*RO
0257	65	A3=A3*RD(NSW)
0258	65	CONTINUE
0259 0260 0261 0262	0000	COMPUTE THE M'N' TERMS WHEN R <r' dielectric="" note:="" radius<br="">OF SHIELD SMALLER THAN CONDUCTOR RADIUS. THIS ALSO CALCULATES THE DIFFERENCE OF THE FLUX DENSITY WHEN SOURCE</r'>
0263	С	IS ON SHIELD AND POTENTIAL MATCHPOINTS ARE ON THE INNER
0264	С	WIRES
0265	С	0(35,31)=A1+B2/A3
0266 0267 0268 0269		A2=1.0Q0 A3=1.0Q0 DO 66 J=1,NHD J3=J+NFC1
0271 0272 0273 0274		B2=-ER1*(QCOS(J*THETA)*RHATN-QSIN(J*THETA)*THETN) B3=-ER1*(QSIN(J*THETA)*RHATN+QCOS(J*THETA)*THETN) D(JJ,J3)=(A2*B2)/(2.0*A3) D(JJ,J4)=(A2*B3)/(2.0*A3)
0275		A2=A2*RO
0276	72 -	A3=A3*RD(NSW)
0278	66	CONTINUE FISE IF (CONF FO (B) OF (CONF FO (S) AND NSW NE IDEF)
0279		SOR (CONF EO 'P' AND NSW LE NW/2)) THEN
0280	С	
0281	C	COMPUTE THE M'N TERMS WHEN R>R' FOR SHIELDED WIRE BUNDLE
1282	C	OR COAX CABLE WHEN SOURCE IS NOT ON THE SHIELD OR FOR
0283	С	THE REMAINING CONFIGURATIONS, I.E., RIBBON CABLES, WIRE
0285	С	BUNDLES, AD WIRE BUNDLES WITH GROUND PLANE.
0286	С	11-1-1
0287		A1=RC(NSW)
0288		A3=R0*2.0Q0
0289		DO 70, J=1, NHC
0290		J1=J+1
0291		$J_2=J_1+NHC$
0292		$A_{1}=A_{1}^{*}RC(N_{0}W)$
0293		
0295		$B_2 = ERI*(QCOS(J*THETA)*RHATN-QCOS(J*THETA)*THETN)$ B3=ERI*(QSIN(J*THETA)*RHATN-QCOS(J*THETA)*THETN) D(JJ,J1)=A1*B2/A3

0296 0297	70	D(JJ,J2)=A1*B3/A3 CONTINUE
0298	С	
0299	С	COMPUTE THE M'N' TERMS WHEN R>R' FOR SHIELDED WIRE BUNDLE
0300	C	OR COAX CABLE WHEN SOURCE IS NOT ON THE SHIELD OR FOR THE
0301	C	REMAINING CONFIGURATIONS, I.E., RIBBON CABLES, WIRE
0302	C	BUNDLES, AD WIRE BUNDLES WITH GROUND PLANE.
0305	C	A2-DD(NSW)
0205		$A_{3}=RO*2$ 000
0305		$PO = 80 \cdot I = 1$ NHD
0307		J3=J+NFC1
0308		J4=J3+NHD
0309		A2=A2*RD(NSW)
0310		A3=A3*R0
0311		B2=ER1*(QCOS(J*THETA)*RHATN+QSIN(J*THETA)*THETN)
0312		B3=ER1*(QSIN(J*THETA)*RHATN-QCOS(J*THETA)*THETN)
0313		D(JJ, J3) = (A2 * B2) / A3
0314		D(JJ, J4) = (A2*B3)/A3
0315	80	CONTINUE
0316		ELSE IF(CONF.EQ.'R') THEN
0317		A1 = RC(NSW)
0318		$A3 = R0 \times 2.000$
0319		JU / I, J=I, NHC
0320		$\Delta 1 = \Delta 1 \pm RC(NSW)$
0322		$A3=A3 \times RO$
0323		B2=ER1*(OCOS(J*THETA)*RHATN+OSIN(J*THETA)*THETN)
0324		D(JJ,J1) = A1 * B2/A3
0325	71	CONTINUE
0326		IF(IOPT.EQ.1) THEN
0327		A2=RD(NSW)
0328		A3=R0*2.0Q0
0329		DO 72 J=1, NHD
0330		J3=J+NFC1
0331		A2=A2*RD(NSW)
0332		
0334		B2 = ERI * (QCOS(J * THETA) * RHATN+QSIN(J * THETA) * THETN)
0335	72	D(JJ, JJ) = (A2*B2)/A3
0336	14	END IF
0337		ELSE IF (CONF. FO. 'P'. AND. NSW. GT. NW/2) THEN
0338	C	
0339	C	COMPUTE THE M'N TERMS FOR THE IMAGE WIRES
0340	C	
0742		A1=RC(NSW)
0342		A3=R0*2.0Q0
0344		DO 90, $J=1,NHC$
0345		J1=J+1
0346		J2=J1+NHC
0347		A1=A1*RC(NSW)
0348		A3=A3*R0
0349		B4=ER1*(QCOS(J*THETA)*RHATN+QSIN(J*THETA)*THETN)
0350		B5=ER1*(QSIN(J*THETA)*RHATN-QCOS(J*THETA)*THETN)
0351		D(JJ, JI) = -(AI * B4)/A3 D(JT, J2) = (AI * B5)/A2
0352	90	
0354	С	CONTINUE
	С	COMPUTE THE M'N' TERMS FOR THE IMAGE WIRES

0355	С	
0356		IF(IOPT.EQ.1) THEN
0357		A2 = RD(NSW)
0358		A3=R0*2.000
0359		DO 100 J=1.NHD
0360		J3=J+NFC1
0361		14-13+NHD
0301		22 - 22 + D(NSW)
0302		$A_2 = A_2 + B_0$
0305		
0364		B4=ERI*(QCOS(J*THETA)*RHATN+QSIN(J*THETA)*THETN)
0365		B5=ER1*(QSIN(J*THETA)*RHATN-QCOS(J*THETA)*THETN)
0366		D(JJ, J3) = -(A2 * B4) / A3
0367		$D(JJ, J4) = (A2 \times B5) / A3$
0368	100	CONTINUE
0369		END IF
0370		END IF
0371	110	CONTINUE
0372	1.0	FND IF
0372		
03/3		REIORN
03/4		

D(J,NFC1)=48 CONTINUE IF(CONF.EQ.'P'.AND.MEN.TE.'N,1) TEE ABB1--FEEL-ACTINENT/RETAINN B602=1.0C0 ELSE SE01=EEL-ACTINENT, RETAINN DE 10 J=NFC1.NFC DE 10 J=NFC1.NFC CONTINUE FO 30 HFF=1.NFC SETA=(NPP-1)*AC+DELTC AJ=1.0C0 If(CONF.EG.'B'.OR.CONF.EQ.'C'.OB.COM CONTINUE If(CONF.EG.'B'.OR.CONF.EQ.'C'.OB.COM CONT.SO, F'.AND.MEN.LF.NR/1)! THE DO 10 J=1.NEC J=J+1 J2=J1+DN D(MFF.J1)=RC(MEN)*SCOS:J*FCEAJ/L. D(MFF.J1)=RC(MEN)*SCOS:J*FCEAJ/L. CONTINUE IF(SP1.EQ.:) TELD A1=RC(MEN).CO(MEN) A3=1.0C0

00 50 J=3 (200 J3=J+NFC) J4=J3=NFC D(NFF,J))=A3 *RC(NFR)*QC D(NFF,J))=A3 *RC(NFR)*QC

100000000

0001	С	
0002	С	CALCULATE DIAGONAL TERMS OF CAPACITANCE MATRIX
0003	С	
0004		SUBROUTINE DIA (NSW, ER, CONF, NFW, NW, RC, NFC, D. LOPT
0005		&RD, NFC1, ER1, NF, AC, DELTC, NHC, NHD, AD, DELTD
0006		&MD1.MD2.MD3.MD4.MD5.MD6.MD7.MD8.EB2)
0007		REAL*16 ER1 ER(NW) ER2 B1 BC(NW) D(MD3 MD2) PP1
0008		REAL*16 RD(NW) BBB1 BBB2 AC DELTC A3 PETRO AL AL
0000		PEAL *16 AD DETTD 12 B3 B4 B5
0005		
0010		LE(CONE DO / D. N.D. N.C. CT. NH/2) THEN
0011		P1-PC(NSW)+OC(NSW)(1)
0012		BI=RC(NSW)*QLOG(RC(NSW))
0013		
0014		BI=-RC(NSW)*QLOG(RC(NSW))
0015		END IF
0016		DO 10 J=1, NFC
0017		D(J, I) = BI
0018	10	CONTINUE
0019		IF(IOPT.EQ.1) THEN
0020		IF(CONF.EQ.'P'.AND.NSW.GT.NW/2) THEN
0021		BB1=RD(NSW) *QLOG(RD(NSW))
0022		DIELSE
0023		BB1=-RD(NSW)*QLOG(RD(NSW))
0024		END IF
0025		DO 20 $J=1, NFC$
0026		D(J, NFC1) = BB1
0027	20	CONTINUE
0028		IF(CONF.EQ.'P'.AND.NSW.GT.NW/2) THEN
0029		BBB1=-ER1*RC(NSW)/RD(NSW)
0030		BBB2=1.0Q0
0031		ELSE
0032		BBB1=ER1*RC(NSW)/RD(NSW)
0033		BBB2=-1.000
0034		END IF
0035		DO 30 J=NFC1 NF
0036		D(J, 1) = BBB1
0037		D(J, NFC1) = BBB2
0038	30	CONTINUE
0039		END IF
0040		DO 80 MPP=1 NFC
0041		
0042		λ_{3-1} 000
0043		TECONE EO LEC OB CONE EO LCC OB CONE EO LCC
0044		IF (CONF.EQ. B. OR.CONF.EQ. C. OR.CONF.EQ. S
0045		a.OR. (COMF.EQ. F. AND.NSW.LE.NW/2)) THEN
0046		DO 40 J=1, NHC
0047		
0048		JZ=JI+NHC
0049		D(MPP, J1) = RC(NSW) * QCOS(J*BETA)/2.0D0/J
0050	10	D(MPP, J2) = RC(NSW) *QSIN(J*BETA)/2.0D0/J
0051	40	CONTINUE
0052		IF(IOPT.EQ.1) THEN
0053		A1=RC(NSW)/RD(NSW)
0054		A3=1.0Q0
0055		DO 50 $J=1$, NHD
0056		J3=J+NFC1
0057		J4=J3+NHD
0058		D(MPP, J3) = A3 * RC(NSW) * QCOS(J*BETA)/2.0D0/J
0059		D(MPP, J4)=A3*RC(NSW)*QSIN(J*BETA)/2.0D0/J
0060	-	A3=A3*A1
	50	CONTINUE

END IF 0061 ELSE IF (CONF.EQ.'R') THEN 0062 DO 51 J=1,NHC 0063 J1 = J + 10064 D(MPP, J1) = RC(NSW) * QCOS(J*BETA)/2.0D0/J0065 51 CONTINUE 0066 IF(IOPT.EQ.1) THEN 0067 A1=RC(NSW)/RD(NSW) 0068 A3=1.000 0069 DO 52 J=1,NHD 0070 J3=J+NFC1 0071 D(MPP, J3) = A3 * RC(NSW) * QCOS(J*BETA)/2.0D0/J0072 A3=A3*A1 0073 52 CONTINUE 0074 END IF 0075 ELSE IF(CONF.EQ.'P'.AND.NSW.GT.NW/2) THEN 0076 DO 60 J=1,NHC 0077 J1=J+1 0078 J2=J1+NHC0079 D(MPP, J1) = -RC(NSW) * QCOS(J*BETA)/2.0D0/J0080 D(MPP, J2) = RC(NSW) * QSIN(J*BETA)/2.0D0/J0081 60 CONTINUE 0082 IF(IOPT.EQ.1) THEN 0083 A1=RC(NSW)/RD(NSW) 0084 A3=1.000 0085 DO 70 J=1,NHD 0086 J3=J+NFC1 0087 0088 J4=J3+NHD0089 D(MPP, J3) = -A3 * RC(NSW) * QCOS(J*BETA)/2.0D0/J0090 D(MPP, J4) = A3 * RC(NSW) * QSIN(J*BETA)/2.0D0/J0091 A3=A3*A1 0092 70 CONTINUE 0093 END IF 0094 END IF 0095 80 CONTINUE 0096 IF(IOPT.EQ.1) THEN 0097 C 0098 C THIS SECTION COMPUTES THE FIELD ON THE DIELECTRIC DUE TO THE 0099 С DIELECTRIC ITSELF AND ALSO THE CONDUCTORS INSIDE THEM 0100 C 0101 A1=RC(NSW)/RD(NSW) 0102 A12=A1*A1 0103 DO 130 MPP=NFC1,NF 0104 BETA=(MPP-NFC1)*AD+DELTD 0105 A3=1.0Q0 106 IF (CONF.EQ. 'B'.OR.CONF.EQ. 'S' 0107 &.OR. (CONF.EQ. 'P'.AND.NSW.LE.NW/2)) THEN 0108 C COMPUTE THE M'N TERMS OF THE D SUBMATRIX THE SOURCE IS ON THE SH IELD 0109 C AND THE POTENTIAL MATCHPOINTS ARE ON THE SHIELD ALSO 0110 C COMPUTE THE M'N TERMS OF THE D SUBMATRIX FOR OTHER REAL WIRES 0111 DO 90 J=1,NHC 0112 J1 = J + 10113 0114 J2=J1+NHC1115 B2=QCOS(J*BETA)/2.0D01116 B3=QSIN(J*BETA)/2.0D0 1117 D(MPP, J1)=ER1*A3*A12*B2 0118 D(MPP, J2)=ER1*A3*A12*B3 A3=A3*A1

	0.0	
0119	90	CONTINUE
0120	C	COMPOSE THE MAN TERMS OF THE D SUBMATRIX FOR OTHER REAL WIRES
0121		
0122		
0123		
0124		$B_2 = QCOS(J * BETA)/2.0Q0$
0125		$B_3=QSIN(J*BETA)/2.0Q0$
0126		D(MPP, J3) = -ER2 * B2
0127	1.0	$D(MPP, J4) = -ER2 \times B3$
0128	100	CONTINUE
0129		ELSE IF(CONF.EQ.'R') THEN
0130		DO 101 J=1,NHC
0131		J1=J+1
0132		B2=QCOS(J*BETA)/2.0D0
0133		D(MPP,J1)=ER1*A3*A12*B2
0134		A3=A3*A1
0135	101	CONTINUE
0136		DO 102 J=1,NHD
0137		J3=J+NFC1
0138		B2=QCOS(J*BETA)/2.0Q0
0139		$D(MPP, J3) = -ER2 \times B2$
0140	102	CONTINUE
0141		ELSE IF(CONF.EQ.'P'.AND.NSW.GT.NW/2) THEN
0142		A3=1.000
0143		DO 110 $J=1,NHC$
0144		J1=J+1
0145		J2=J1+NHC
0146		B4 = OCOS(J * BETA)/2.000
0147		B5=OSIN(J*BETA)/2.000
0148		D(MPP, J1) = -ER1 * A3 * A12 * B4
0149		D(MPP, J2) = ER1 * A3 * A12 * B5
0150	110	A3=A3*A1
0151		DO 120 J=1.NHD
0152		J3=J+NFC1
0153		14=13+NHD
0154		$B_{4}^{-}OCOS(J_{4}^{+}BETA)/2,000$
0155		B5-QSIN(J#BETA)/2.000
0156		
0157		D(MPP, JA) = -FP2+B5
0158	120	
0159		
0160	130	
0161	130	END TE
0162		BAU IF Demiton
0163		

0001	C	
0002	С	SUBROUTINE PLACE PLACES THE D SUBMATRICES INTO THE LARC
0003	С	D1 MATRIX
0004	С	
0005		SUBROUTINE PLACE(MM,NN,LD,NF,D,D1,MD8)
0006		$REAL \times 16 D(NF, NF), D1(MD8)$
0007		NP = NF * (MM - 1 + (NN - 1) * LD)
0008		DO 20 I=1, NF
0009		DO 10 $J=1, NF$
0010		D1(NP+J)=D(J,I)
0011	10	CONTINUE
0012	20	NP=NP+LD
0013		RETURN
0014		END
00		

0001	С	
0002	С	SUBROUTINE SUM SELECTS CERTAIN ROWS ASSOCIATED WITH THE AVG
0003	С	TERM OF THE FOURIER SERIES AND SUMS THEM TO DETERMINE THE
0004	C	ELEMENTS IN THE CG MATRIX
0005	С	
0006		SUBROUTINE SUM(NW,NF,LD,NFC,DI,RC,CG,PCG,RD,MD8,IOPT,CER,
0007		α CONF, RDI, MDIU, NWH) PEAL+16 CC(NW, NW) D1(MD9) DI EDS A1 A2 A2
0008		$REAL^{10}$ CG(NW, NW), DI(MD0), FI, EFS, RI, R2, R3 $REAL^{+16}$ BC(NW) BD(NW) CEP BD1(MD10) BCC(NWW NWW)
0009		CHARACTER*1 CONF
0011		PT=3, 141592700
0012		EPS=8.8541850-12
0013		A3=PI*EPS*2.000
0014		NWH=NW/2
0015		IF(CONF.EQ.'P') THEN
0016		MNW=NWH
0017		ELSE
0018		MNW=NW
0019		END IF
0020		DO 20 I=1,MNW
0021		IROW=(I-1)*NF+1
0022		DO 20 $J=1$, MNW
0023		IF(CONF.EQ.'P') THEN
0024		IL=((J-1)*LD*NF/2)+IROW
0025		
0026		IL=(J-I)*LD*NF+IROW
0027		END 1F
0028		A1=0.0Q0
0029		$A_{2=0.000}$
0030		IF (CONF FO (P)) THEN
0032		A1=A1+RD1(TL)
0033		ELSE
0034		A1=A1+D1(IL)
0035		END IF
0036		IF(CONF.EQ.'P') THEN
0037		END IF
0038		IF(IOPT.EQ.1) THEN
0039		IF(CONF.EQ.'P') THEN
0040		A2=A2+RD1(IL+NFC)
0041		ELSE
0042		A2=A2+D1(IL+NFC)
0043		END IF
0044		END IF
0046		IF(CONF.EQ.'P') THEN
0047		
0048		
0049		
0050	10	
0051		TE(CONE EO (P() THEN
0052		IF(IOPT.EO.2) THEN
0053		PCG(I,J) = A1 * RC(I) * A3 * CER
0054		ELSE IF(IOPT.EO.1) THEN
0055		PCG(I,J) = (A1 * RC(I) + A2 * RD(I)) * A3
0057		END IF
0058		ELSE
0059		IF(IOPT.EQ.2) THEN
0060		CG(I,J)=A1*RC(I)*A3*CER
		ELSE IF(IOPT.EQ.1) THEN

0061		CG(I,J) = (A1 * RC(I) + A2 * RD(I)) * A3
0062		END IF
0063		END IF
0064	20	CONTINUE
0065		RETURN
0066		END
0000		
		the lot designed
1000		
1000		
1000		
1000		
1000		TLITELESS AND OF
1000		
		IP(I-IREF) TO BUILT INTERNAL TIL AND THE
1000		
		11=11+1
		CONTINUE
1000		

0001	С	
0002	C	THIS SUBROUTINE COMPUTES THE TRANSMISSION LINE CAPACITANCE
0003	C	MATRIX FROM THE GENERALIZED CAPACITANCE MATRIX
0004	č	
0005	č	MSIIM IS THE MATRIX SIIM
0005	č	A2 IS THE DINNING DOWSIM
0000	č	AZ IS THE COLUMN SIM _ STORED IN DI(1_NHI)
0007	č	AS ISTRE COLOMN SOM - STORED IN DI(I=NWI)
0008	C	CURRENT TRANS (NW CC NW12 NW1 CTL ND2 TRANS TOTAL AND
0009		SUBROUTINE TRANS (NW, CG, NWIZ, NWI, CIL, MDZ, IREF, IOPT, PDI)
0010		REAL*16 CG(NW, NW), CTL(MD2), PDI(NW), MSOM, A2, A3
0011		MSUM=0.0Q0
0012		DO 10 I=1,NW
0013	10	MSUM=MSUM+CG(IREF,I)
0014		geolii=1
0015		DO 50 I=1,NW
0016		IF(I-IREF)20,50,20
0017	20	A2=0.0Q0
0018		A3=0.0Q0
0019		DO 30 J=1,NW
0020		A2 = A2 + CG(I, J)
0021	30	A3=A3+CG(J,I)
0022	1.0	MSIIM=MSIIM+A2
0022		
0023		PO(40) = I I NW12 NW1
0024	40	$CTI_{(J)} = 22$
0025	40	
0020	50	
0027	50	
0028		
0029		
0030		
10031		1F(J-1REF)80,90,80
0032	60	DO 80 I=1,NW
0033		IF(I-IREF)70,80,70
0034	70	CTL(II) = CG(I,J) - CTL(II) * PDL(JJ) / MSUM
0035		II=II+1
0036	80	CONTINUE
0037		JJ=JJ+1
0038	90	CONTINUE
0039		RETURN
0040		END

0001 00000 THIS SUBROUTINE COMPUTES THE TERMS WHICH REDUCE THE CAPACITANCE 1002 MATRIX WHEN A GROUND PLANE IS PRESENT FORM A 2NX2N MATRIX TO A 0003 NXN MATRIX. NOTE THE MATRIX RD1 IS THE REDUCED D1 MATRIX. 0004 0005 0006 SUBROUTINE P1(NW, NF, D1, MD8, LD, NFC, RD1, MD10) 0007 REAL*16 D1(MD8), RD1(MD10) NWH=NW/2 0008 0009 NP=NF*NW 1010 NK=NF*NWH 0011 0012 0013 NN=NP*NK N=0MP=1 DO 20 I=1,NK 1014 DO 10 J=1,NK 1016 1017 1018 RD1(MP)=D1(N+J)+D1(NN+N+J)MP=MP+1 10 CONTINUE 1019 1020 1021 1022 N=N+LD 20 CONTINUE RETURN END

0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014	c c c c	THIS SUBROUTINE COMPUTES THE CAPACITANCE MATRIX FOR A WIRE BUNDLE OVER A GROUND PLANE FROM THE GENERALIZED CAPACITANCE MATRIX SUBROUTINE PLANE(NWH, PCG, PCTL, MD7) REAL*16 PCG(NWH, NWH), PCTL(MD7) K=1 DO 10 I=1,NWH DO 10 J=1,NWH PCTL(K)=PCG(I,J) K=K+1 CONTINUE RETURN
0014 0015		RETURN END

0001	С	
0002	C	SUBROUTINE MINV IS A PROGRAM TO INVERT A MATRIX
0003	С	ALTONN
0004	C	PARAMETERS
0005	С	A=INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED
0006	Ċ	BY RESULTANT INVERSE.
0007	č	N=OPDER OF MATRIX A
0007	č	
0000	c	L-WOR VECTOR OF LENGTH N
0009	C	M-WORK VECTOR OF LENGTH N
0010	č	M=WORK VECTOR OF LENGTH N
0011	C	CURROUTER MINING (A. N. D. L. M.)
0012		SUBROUTINE MINV (A,N,D,L,M)
0013		DIMENSION $L(1)$, $M(1)$
0014		REAL TO A(T), BIGA, HOLD, D
0015		D=1.000
0016		NK=-N
0017		DO 19 K=1,N
0018		NK=NK+N
0019		L(K) = K
0020		M(K) = K
0021		KK=NK+K
0022		BIGA=A(KK)
0023		DO $3 J = K, N$
0024		IZ=N*(J-1)
0025		DO $3 I = K, N$
0026		IJ=IZ+I
0027	1	IF(QABS(BIGA)-QABS(A(IJ))) 2,3,3
0028	2	BIGA=A(IJ)
0029		L(K) = I
0030		M(K) = J
0031	3	CONTINUE
0032	č	CONTINUE
0033	č	INTERCHANCE BOWS
0034	č	
0035	C	7-7 (4)
0036		T = (T, T)
0037	1	
0038	-	
0039		
0040		
0041		
0042		
0042	-	A(KI) = A(JI)
0043	5	A(JI)=HOLD
0045	C	
0045	C	INTERCHANGE COLUMNS
0040	C	
0049	6	I=M(K)
0040	_	IF(I-K) 9,9,7
0050	7	JP=N*(I-1)
0051		DO 8 $J=1,N$
0052		JK=NK+J
0052		JI=JP+J
0054		HOLD = -A(JK)
0055		A(JK) = A(JI)
0055	8	A(JI) = HOLD
0055	C	
0057	С	DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT FLEMENT IS
0058	С	CONTAINED IN RIGA
0059	С	SOUTHINED IN DIGN
0000	9	TE(BTCA) 11 10 11
		IF(DIGA) II,IU,II
0061	10	D=0.0Q0
------	----	----------------------------------
0062		RETURN
0063	11	DO 13 $I=1, N$
0064		IF(I-K) 12,13,12
0065	12	IK=NK+I
0066		A(IK) = A(IK) / (-BIGA)
0067	13	CONTINUE
0068	C	
0069	C	REDUCE MATRIX
0070	C	DO 16 T-1 N
0071		DO 16 I=I,N
0072		I = N + I
0073		
0075		DO = 16 J = 1 N
0076		T.J = T.J + N
0077		IF(I-K) 14.16.14
0078	14	IF(J-K) 15.16.15
0079	15	KJ = IJ - I + K
0080		A(IJ) = HOLD * A(KJ) + A(IJ)
0081	16	CONTINUE
0082	С	
0083	С	DIVIDE ROW BY PIVOT
0084	С	
0085		KJ = K - N
0086		DO 18 J=1,N
0087		KJ = KJ + N
0088		IF(J-K) 17,18,17
0089	17	A(KJ) = A(KJ) / BIGA
0090	18	CONTINUE
0091	C	
0092	C	PRODUCT OF PIVOTS
0093	C	D-D+DICI
0094	c	DED*BIGA
0095	č	PERLACE DIVOT BY DECIDEOCAL
0097	č	REPERCE FIVOI BI RECIFROCAL
0098	C	A(KK)=1 000/BTGA
0099	19	CONTINUE
0100	ĉ	00011102
0101	c	FINAL ROW AND COLUMN INTERCHANGE
0102	c	
0103		K=N
0104	20	$\mathbf{K} = (\mathbf{K} - 1)$
0105		IF(K) 27,27,21
0106	21	I = L(K)
0107		IF(I-K) 24,24,22
0108	22	JQ=N*(K-1)
0109		JR=N*(I-1)
0111		DO 23 J=1,N
0112		JK=JQ+J
0112		HOLD=A(JK)
0114		JI=JR+J
0115		A(JK) = -A(JI)
0116	23	A(JI) = HOLD
0117	24	J=M(K)
0118	25	IF(J-K) 20,20,25
	25	KI=K-N

0119		DO 26 I=1,N	
0120		KI = KI + N	
0121		HOLD=A(KI)	
0122		JI = KI - K + J	
0123		A(KI) = -A(JI)	
0124	26	A(JI) = HOLD	
0125		GO TO 20	
0126	27	RETURN	
0127		END	

001	0000	SUBROUTINE MPRT IS USED TO PRINT OUT A MATRIX IN MATRIX FORM WITH LABELING
005	0000	DESCRIPTION OF PARAMETERS A=INPUT MATRIX
	C	M=NUMBER OF ROWS IN A
009	000	B=LITERAL INPUT OF TITLE. HOLLERITH FORM. J=NUMBER OF CHARACTERS, INCLUDING SPACES, ETC. IN B
011	С	Levelopment Lerler, Longing Arb. N. T., 19
012		SUBROUTINE MPRT(A,M,N,B,J)
013		DIMENSION B(J), C(18)
0014		REAL*16 A(M,N)
1015		= 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
017		OPEN (INTT=3 FILE='GOOD DAT' STATUS='NEW()
1018		WRITE(3,3)B.C
1019		I=2
020		LL=1
021	1	LU=MINO(LL+5.N)
0022		WRITE(3,6)(L,L=LL,LU)
0023		WRITE(3,7)
0024		DO 2 K=1, M
0025	2	WRITE(3,4)K, (A(K,L), L=LL, LU)
0026		IF(LU.EQ.N)RETURN
0027		WRITE(3,5)I
0028		CLOSE(UNIT=3)
0029		LL=LU+1
0030		I=I+1
0031		GO TO 1
0032	3	FORMAT('1',70A1)
0033	4	FORMAT(9X,'*',/,4X,I3,2X,'*',1P6E13.4)
0034	5	FORMAT('1PAGE ', 12, 'RIGHT ')
0035	6	FORMAT(/, 5X, 'COLUMN', 6(4X, I3, 4X))
0036	7	FORMAT(/, 3X, 'ROW', 3X, 67('*'))
0037		END

REFERENCES

- 1. Higgins, Thomas J. and Black Kenneth G., "Rigorous Determination of The Parameters of Microstrip Transmission Lines," IRE Transactions on Microwave Theory and Techniques, Vol. MTT-3, pp.93-113, March 1955.
- Paul, C. R., and Clements J. C., "Computation of the Capacitance Matrices for Dielectric-Coated Wires", Technical Report, Rome Air Development Center, Griffis AFB. N.Y., 1974
- 3. Harrington R. F., "Field Computation by Moment Methods." New York: Macmillan, 1968.
- 4. Harrington, R. F., "Matrix Methods for Field Problems", IEEE Trans. Electromag. Compat., Vol. 55, pp.136-149, February 1967
- 5. Adams, A. T., "Electromagnetics for Engineers.," New York: Ronald Press, 1971.
- 6. Dwight, H. B., "Tables of Integrals and Other Mathematical Data, New York: Macmillan, 1961.
- 7. King, Ronald Wyeth Percival, "Transmission -line theory," New York: McGraw-Hill, 1955
- Paul, C. R. and Feather, A. E., "Applications of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling. Vol. II, Computation of the Capacitance Matrices for Ribbon Cables", Technical Report, Rome Air Development Center, Griffis AFB. N.Y., 1976
- 9. Paul, C. R. and Feather, A. E., "Computation of the Transmission Line Inductance and Capacitance Matrices from the Generalized Capacitance Matrix," IEEE Trans. Electromag. Compat., Vol EMC-18, pp. 175-183, November 1976.
- Paul, C. R., "Applications of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling. Vol. I, Multiconductor transmission Line Theory, Technical Report, Rome Air Development Center, Griffis AFB. N.Y., 1976
- Smythe, "Static and Dynamic Electricity". New York: McGraw Hill, 1950

- 12. Clements, J. C., Paul, C. R., and Adams, A.R., "Computation of the Capacitance Matrix for Systems of Dielectric Coated Cylindrical Conductors", IEEE Trans. Electromag. Compat., Vol. EMC-17, pp. 238-248, November 1975
- 13. Kraus, John D. and Carver, Keith R. "Electromagnetics". New York: McGraw Hill Book Company, 1973
- Weeks, W. T., "Multiconductor Transmission Line Theory in the TEM Approximation", IBM Journal of Research and Development", pp. 604-611, November 1972.
- 15. Belden Electronc Wire and Cable master catalog 885, P.O. box 1980, Richmond, In. 47375
- 16. Brogan, William L., "Modern Control Theory", Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1985