
MICRO-CONTROLLER AND DIGITAL SIGNAL PROCESSING

Advisor

An investigation into digital signal processing,

with emphasis on simplicity and practically.

by

Seyed Akhavi

Submitted in Partial Fulfillment of the Requirements

for the degree of Master of Science in Engineering

in the

Electrical Engineering

Program

Date

lAffi-0 < l 5 1 l ~ ~ ~
Dean of the Graduate School

YOUNGSTOWN STATE UNIVERSITY

June, 1992

Date

- /o-4

ABSTRACT

MICRO-CONTROLLER AND DIGITAL SIGNAL PROCESSING

SEYED AKHAVI

MASTER OF SCIENCE IN ENGINEERING

YOUNGSTOWN ST ATE UNIVERSITY, 1992

New advances in digital electronics have made it possible to manufacture micro­

controllers which are capable of analyzing and processing signals. Now applications

that require bulky components and complex hardware can be implemented by using

microcontrollers. The auto industry is using these single chips to monitor and control

the speed of the motor, fuel injection rate and spark timing. Precision electronic

instruments, peripheral devices, communication devices such as pagers, laser printers,

color copiers, are all equipped with one or more microcontroller chips. A modem

approach, which takes full advantage of the microcontroller' s programmability, has

made it feasible to simulate such tasks as filtering in the digital domain. This thesis

investigates the design and implementation of a 5-band audio signal analyzer by using

the latest 16-bit microcontroller manufactured by Motorola. Methods and techniques

involved in the areas of analog-to-digital conversion, digital signal processing, serial

interfacing, and related programming routines are discussed and· developed. Hardware

as well as software design goals, with the emphasis on programmability of

microcontrollers, are presented.

11

lll

ACKNOWLEDGMENTS

I wish to acknowledge the assistance of my advisor Professor Skarote for teaching

the courses which gave birth to the ideas of this project. His teachings have always

been an inspiration for me to try and pursue new ideas.

I also wish to thank Microcontroller Unit of Motorola for their assistance in

obtaining literature, samples, and information. And finally, I must acknowledge my

deep debt to my wife, Mansureh, without whose support, patience, and tolerance I

would not have brought this project to conclusion.

lV

TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGMENTS iii

TABLE OF-CONTENTS .. iv

LIST OF SYMBOLS vi

LIST OF FIGURES ix

CHAPTER 1 .. l

INTRODUCTION ... l

OVERVIEW ... l

SELECTION OF DESIGN CRITERIA .. 4

DESIGN SPECIFICATIONS 4

Conditioning The Incoming Signal ... 4

System Clock And Timing 5

ANALOG TO DIGITAL CONVERSION 8

HARDWARE .. 9

Microcontroller ... 9

Audio Frequency Analyzer 10

SOFfW ARE .. 11

CHAPTER II .. 12

ADC CONVERSION 12

SUCCESSIVE-APPROXIMATION ADC CONVERTER. 12

Overview .. 12

HARDWARE 12

Analog Subsystem ... 14

Digital Control Subsystem 14

Bus Interface Subsystem · .. 14

V

SOFIW ARE .. 15

Successive Approximation Register (SAR): 15

Result Registers .. 15

Module Configuration Register (ADCMCR): 16

ADC Control Register O (ADCTL0): ... 16

ADC Control Register 1 (ADCTLl): ... 17

ADC Status Register (ADSTAT): ... 18

Conversion Complete Field (CCF): ... 18

Conversion Counter Field (CCTR): .. 18

Sequence Complete Flag (SCF): .. 19

ADC PROGRAM .. 19

CHAPTER Ill ... 21

DIGITAL SIGNAL PROCESSING ... 21

INFINITE IMPULSE-RESPONSE (IIR) FILTER 21

THE DIFFERENCE EQUATION ... 24

RESPONSE OF THE DIGITAL FILTER. ... 25

ANALYSIS CONSTRAINTS OF THE BILINEAR TRANSFORMATION 30

COEFFICIENT QUANTIZATION ... 30

SIGNAL PEAK DETECTOR .. 33

CHAPTER IV ... 36

CONCLUSIONS ... 36

AREAS FOR FURTHER DEVELOPMENT .. 37

APPENDIX A ... 38

CALCULATION OF THE COEFFICIENTS .. 38

APPENDIX B ... 41

COMPLETE LIST OF THE PROGRAM41

BIBLIOGRAPHY ... 63

Vl

LIST OF SYMBOLS

SYMBOL DEFINITION UNITS OR

REFERENCE

ADC Analog-to-digital conversion

ABIU A bus interface unit

ADCMCR ADC module configure register

ADCTLO ADC control register 0

ADCTLl ADC control register 1

ADSTAT ADC status Register

AFA Audio frequency analyzer

ALU Arithmetic logic unit

bit Binary digit O or 1

byte Group of bits, usually eight

C Capacitance farad

CA:CD Channel selection field

CCF Conversion complete field

CCTR Conversion counter field

CPU Central processing unit

DAC Digital to analog conversion

DSP Digital signal processing

dB Decibel, unit of logarithmic power ratio none

Fe Center frequency cycles/ second

Fs Sampled frequency cycles/ second

FRZ Freeze

GPT General purpose timer

vu

HCMOS High-density complementary metal

oxide semiconductor

1/0 Input/output

IIR Infinite impulse response

IMB Intermodule bus

kbyte kilo- (one thousand byte)

kHz kilo- (one thousand hertz)

L Inductance henry

LED Light emitting diode

Mag Magnitude dB

MCU Microcontroller unit

MULT Multichannel conversion bit

MSB Most significant bit

PIT Programmable interrupt timer

PRS Prescalar rate selection

Q Quality factor none

QSM Queued serial module

QSPI Queued serial peripheral interface

R Resistance ohm

RAM Random access memory

RC Resistor-capacitor

Ref. Reference

Res. Resolution

rms Root mean square

ROM Read only memory

Vlll

S8CM Select eight-conversion sequence mode

SAA Small angle approximation

SAR Successive approximation register

SCAN Scan mode selection bit

SCF Sequence complete flag

SCI Serial communication interface

SIM System integration module

SRAM Standby RAM

STS Sample time select field

SUPV Supervisor/unrestricted

Tc Clock period second

Ts Sampled period second

VLSI Very large scale integration

z-1 Inverse z-transform operator

<I> Phase angle radian

0 Sampled period radian

a Coefficient related to analog domain in z

{3 Coefficient related to analog domain in z

'Y Coefficient related to analog domain in z

A(w) Gain

LIST OF FIGURES

FIGURE

1. Audio Frequency Analyzer System Diagram

2. Transfer Function Without Low Pass Anti-Aliasing Filter

3. AF A Software Flow Diagram

4. AF A Sampling Period

5. Analog-to-Digital Converter Block Diagram

6. ADCMCR Configuration

7. ADCTLO Configuration

8. ADCTLl Configuration

9. SCF Configuration

10. Op-Amp Active Bandpass Filter

11. DSP Memory Configuration

12. Relationship Between Signal Amplitude and The LED Bar

lX

PAGE

3

5

7

8

13

16

17

18

19

22

32

35

CHAPTER I

INTRODUCTION

OVERVIEW

Semiconductor manufacturers have produced 16- and 32- bit microprocessors

which can handle larger sizes of data at a faster rate. These microprocessors not only

are used in fast computers and workstations but also they have been employed in real­

time control applications. The microprocessor, and several other chips which handle

timing, interrupts, serial communications, and parallel communications might be

needed in design of a real-time control. In a real time-control the microprocessor

interacts with resources which make up an instrument or device, at times dictated by

the hardware external to the microprocessor. Many applications require fast response

and service by a microprocessor. One approach that semiconductor manufacturers have

chosen to increase the system speed is to build faster microprocessors. Another

technique has combined the microprocessor with RAM, ROM, and variety of

input/output capabilities on a single chip, which is commonly referred to as a

microcontroller.

This technique has been made possible by recent advances in very large scale

integration (VLSI) chip manufacturing. Now it is conceivable to build a single chip

that contains all of the major elements of a computer system. This single chip, which

is a microcontroller unit (MCU), includes the central processing unit (CPU), comprised

of the arithmetic logic unit (ALU) and control unit, plus interfacing devices and

memory units. The MCU is a single chip which is built up from standard modules that

interface via a common internal bus[l]. The study of a 16-bit microcontroller and its

application in digital signal processing (DSP) is the main scope of this thesis. The

2

advantages of the digital domain over the analog domain have initiated a new trend

where traditional electronic circuits are now being emulated in software and hardware.

One such area is in digital signal processing. This new method offers a primary

advantage over analog and has much greater flexibility. The programmability of DSP

is what makes it flexible. If a designer is using analog components such as resistors

and capacitors in a low pass filter, and later on might want to make changes to the filter

specifications, one must go back and replace the wiring as well as the components.

Once DSP is applied to make any changes, the designer need only substitute some of

the codes in the software and in this way alter the behavior of the filter. Fast

microcontrollers have made it possible to generate and process frequencies up to 40

kHz.

The designed project uses a microcontroller to:

• Convert the audio signal into a digital signal.

• Sample and subject the data signal to five DSP band pass filter algorithms.

• Extract the peak of each filter.

• Encode the peaks of each band and send them through queued serial peripheral

interface (QSPD to the LED array in real time.

Figure 1 in the next page shows the block diagram of the project.

STEREO
SUMMING
AMPLIFIER

AUDIO SIGNAL(INPUT)

EN • •
CLK •
Din • • • • •

LED DRIVER 125 HZ

EN • • CLK •
Din • • • • •

LED DRIVER 1 KHZ

EN • •
CLK •
Din • • • • •

• • • • • • • •

LOW PASS
ANTI-ALIASING
FILTER

LED
ARRAY

500 HZ

• • • LED
• ARRAY • • • •

"KHZ

LED
ARRAY

LED DRIVER 10 KHZ

MC68HC16

1--------.t ADO

MICRO­
CONTROLLER

SCK
PCSO MOSI

Figure 1. Audio Frequency Analyzer System Diagram

3

SELECTION OF DESIGN CRITERIA

DESIGN SPECIFICATIONS

Conditioning The Incoming Signal

The incoming analog audio signal must be conditioned before being converted to

a digital signal. A low pass filter which eliminates high and unwanted frequencies is

incorporated in the audio frequency analyzer (AFA) to utilize the conditioning of the

incoming signal.

4

In order to design low pass anti-aliasing filters, the designer has to define the

bandwidth of the system, the sampling frequency, and the ADC resolution. The anti­

aliasing filter is an important element needed to correctly attenuate the high frequency

aliasing components of the signal. This design incorporates a 25 kHz sampling

frequency and a processing bandwidth of 10 kHz. If no filter is used, the frequency

components higher than 12.5 kHz will alias with the lower frequency components, and

the digitized samples will represent invalid information. Figure 2 shows the desired

signal left of Fs/2, 12.5 MHz, and undesired aliased signals to the right of Fs/2, where

Fs/2 is half of the sampling frequency Fs.

Mag

(dB)

I I
10 1 2.5

Fs/2

I Freq
25 (kHz)
Fs

Figure 2. Transfer Function Without Low Pass Anti-Aliasing Filter

System Clock And Timin&

5

The software flow diagram of the AFA is shown in Figure 3. This flowchart

contains the steps listed earlier to complete the program. The flowchart shows that the

AF A will run in a continuous loop. The main objective is to extract digital data from

the ADC, run five infinite impulse response (IIR) bandpass filter routines, detect the

peak amplitude of each filter, enccxle the peak amplitude of each filter, enccxle the peak

value to an LED value, and update the QSPI transmit registers, which outputs the

information to the LED array.

The MC68HC16Zl runs on a 16.78 MHz which has a system clock pericxl of 60

nsecs. The processing of the signal should take no longer than 40080 nsecs which is

about 668 clock cycles. This is shown below:

Fs=Sampling frequency

Ts=Sampling pericxl

Fc=MC68HC16Zl CPU clock frequency

Tc=MC68HC16Zl CPU clock pericxl

Fs=224.9 kHz

Ts= 1/Fs=40.08 microsec

Fe= 16.78 MHz

Tc= 1/Fc=60nsec

System clock cycles per sampling period=Ts/Tc

Ts/Tc= 668 system clock cycles

6

The sampling period is shown in Figure 2, which shows the relationship between

sampling periods and real time digital signal processing. In DSP, all calculations and

internal/external communications must be taken care of within the given sample period.

Figure 4 relates the software flowchart in Figure 3 to the designated sample period.

START

'

A/D DATA AQUISITION
Incoming analog signal will be continuously

sampled at a rate of 24.95 kHz

I
DIGIT AL SIGNAL PROCESSING

Five Infinite Impulse Response filters will be
executed on each sample within the sampling
period

I

BAND ANALYSIS
Each band magnitude will be updated with the

latest processed magnitude

QSPI TRANSFER TO LED DISPLAY

The data representing each band will be sent

out to the LED array via QSPI

Figure 3. AFA Software Flow Diagram

/ILL/ , 11 . Ml\ (', I ["Ir,/\

YOUNG0T uv11 ,, · -- - . •· y
11, Ulf,IL L'I 1h 1SJTY

7

Stream of sampling pericxis

I- Step l Step 2

Step 1: Get ADC value

Step 2: Run 5 IIR DSP routine

Step 3: Detect peak of each filter

Step 3

Step 4: Write peak values to QSPI transmit RAM

Step 5: Turn on QSPI output peak values to LED

Step 4

Figure 4. AFA Sampling Pericxi

ANAWG TO DIGITAL CONVERSION

Step 5

After the audio signal is conditioned, it is then fed into MC68HC16Zl 's ADC.

The attenuation of the stopband is directly related to the dynamic range of the sampled

data. We will be using 8-bit conversion that allows a dynamic range of 48 dB.

Attenuation (dB)= 20*log[1 / (2 ** ADC res.)]

The signal must be attenuated 48dB down to cut out all aliasing components, and have

a drop-off slope of 96dB/octave. 100 dB/octave was chosen for the roll-off to insure

meeting the specifications.

8

9

HARDWARE

Microcontroller

The MC68HC16Zl is a high speed 16-bit control unit designed and manufactured

by Motorola. MC68HC16Zl is a member of the M68300/68HC16 Family of modular

microcontrollers. This microcontroller incorporates a true 16-bit CPU, a system

integration module (SIM), an 8/10-bit analog to digital converter (ADC), a queued

serial module (QSM), a general-purpose timer (GPT), and a 1024-byte standby RAM

(SRAM). All these modules are interconnected by the intermodule bus (1MB).

Although all these capabilities might be present in other microcontrollers, for the first

time Motorola designers have included instructions and hardware necessary to

implement control-oriented digital signal processing functions with a minimum of

interfacing, in the MC68HC16Zl. A multiply and accumulate unit provides the

capability to multiply signed 16-bit fractional numbers and store the resulting 32-bit

fixed point product in a 36-bit accumulator. Modulo addressing supports finite impulse

response filters; this feature was the main reason for selecting the MC68HC16Zl for

this design. The DSP techniques and all of the complex mathematical routines

involved in DSP boil down to multiplication and addition. There are four internal

registers, which facilitates DSP mathematical routines [2].

This microcontroller has an embedded module for ADC conversion. The ADC is

a unipolar, successive-approximation converter with eight modes of operation. It has

selectable 8 or 10-bit resolution.

The queued serial module (QSM) provides the MC68HC16Zl with two serial

communication interfaces divided into two submodules: the queued serial peripheral

interface (QSPI) and the serial communications interface (SCI). The QSPI is a full-

duplex, synchronous serial interface for communicating with peripherals and other

MCUs. It is enhanced by the addition of a queue for receiving and transmitting data.

10

The general-purpose timer (GPT) , a module in MC68HC 16Zl is a 11-channel

timer for use in systems where a moderate level of CPU control is required. The GPT

is made up of different submodules: the compare/capture unit, the pulse accumulator,

and the pulse-width modulation unit.

The standby RAM (SRAM) is a lkbyte array of fast (two bus cycle) static RAM,

which is especially useful for system stacks and variable storage.

The system clock for the MC68HC16Zl is 16. 78 MHz, and high-density

complementary metal-oxide semiconductor (HCMOS) architecture makes the basic

power consumption of MC68HC16Zl low.

Audio Frequency Analyzer

Spectral analysis is a method of determining the specific frequency content of a

signal and the energy levels of these frequencies. The energy level, in this case the

peak voltage, is processed by either Fourier Transform methods or by specific filtering

of the signal. The result is then tabulated for more analysis or displayed in a visual

format. This AF A is built by implementing digital signal processing filter techniques.

The input consists of two stereo audio signals that are added together with an op­

amp summing circuit. The output is then sent to the anti-aliasing filter to remove

unwanted high frequency components. The biasing circuit is used to adjust the signal

to alter between ±2.5 volts for proper analog-to-digital conversion. The digital signal

processing takes place in the MC68HC16Zl. MAX 274 manufactured by Maxim is

used as a low frequency filter. MAX 274 is an 8th order, programmable, continuous­

time active filter. There are four 2nd-order filter sections in MAX 274. MAX 274

uses a four-amplifier design which is insensitive to parasitic capacitances and high

11

bandwidth. The built-in capacitors and amplifiers, together with external resistors,

form cascaded integrators with feedback to provide simultaneous lowpass and bandpass

filtered outputs.

MC14489 is selected to drive 16 LEDs and three of them are cascaded to drive a

total of 40 LEDs. MC14489 receives the signal on its serial input from QSPI of the

MC68HC16Zl.

SOFTWARE

A program has to be developed in order for Audio Frequency Analyzer to work

properly. The main program is divided into 4 sections; each of these sections will

perform a distinct operation. The first program is initializing the ADC submcxlule of

MC68HC16Zl and digitizes the analog input. The second program initializes the QSPI

and defines the serial communication between the MC68HC16Zl and MC14489. The

third program activates the PIT and synchronizes the system operation with the

incoming stream of data. The fourth and final program subjects the digitized data to

five DSP routines to detect the peak of the samples at 125 Hz, 500 Hz, 1 kHz, 4 kHz,

and 10 kHz (See Appendix B).

12

CHAPTER II

ADC CONVERSION

SUCCESSIVE-APPROXIMATION ADC CONVERTER

Overview

The successive-approximation method of converting an analog signal to a digital

signal is used when the analog voltage changes rapidly and where the speed of

conversion is a factor. In this method the counter is first reset, then the MSB is set to a

1. The DAC converter generates a voltage caused by the MSB, and this is compared to

the input analog voltage. If the DAC voltage is greater than the input voltage, the

MSB is reset. Then the second MSB is set to a 1, and the comparisons are made again.

This process is repeated for each bit until the proper combination of bits is present.

The MC68HC16Zl uses the successive-approximation method to convert the

incoming audio signal.

HARDWAREI

The ADC submodule is capable of performing 8-bit single conversion in 8

microseconds, and a 10-bit single conversion in 9 microseconds. The ADC functions

are divided into three basic subsystems: an analog front end, a digital control section,

and a bus interface. A block diagram of the converter is shown in Figure 5.

1
For more detailed description of the ADC hardware see "The Technical Summary 16-

Bit Modular Microcontroller". -

13

-..... v"" - RC ARRAY -,.
ANO v

COMPAAATOA .J

-- ,. - AD
SAA ~ A7,f'A7

- - ·-.... ~
~ -..... -

ANALOG

- MUX - -
,. N«)

~
RESU.TO ~ SAMP\.E ~ ·-BUffER

AMP\JflER .J ·-- ,.

~
RESU.T 1 ~ ,.J ·-..... A1,f'A1

WOOE - - ·-
ANO ,.

TIMING
~

RESU.T 2 ~
CONTROl

-,.
+ ~

RESU.T3
~ PORTA

DATA REGISTER -,
~

~
RESU.H

-,.
~

~
RESU.T 5

-,
~

~
RESU.T6

- CU(SELECT/
,

~
PflESCAUR

~
RESl.l.T 7

) ' t l) "

"
\ , ' , ',

BUS IN'TERF ACf UNT

Figure 5. Analog-to-Digital Converter Block Diagram2

2This diagram shows the unconventional method of ADC which utilizes software for
operation. ·

Analog Subsystem

The analog front end of the ADC submodule of this microcontroller

(MC68HC l 6Zl) includes a multiplexer, a resistor-capacitor array, and a high-gain

comparator. The multiplexer selects one of eight internal or eight external signal

sources for conversion. The resistor-capacitor (RC) array performs two functions, it

acts as a sampled/hold circuit, and it accommodates the digital-to-analog comparison

output necessary for successive approximation conversion. The comparator indicates

whether each successive output of the RC array is higher or lower than the unit input.

Digital Control Subsystem

14

The digital control part includes conversion sequence control logic, channel and

reference select logic, successive approximation register, eight result registers, a port

data register, and a control/status register. It controls the multiplexer and the output of

the RC array during the sample and conversion periods, stores the results of

comparison in the successive-approximation register, then transfers the result to a result

register.

Bus Interface Subsystem

The bus interface contains the logic circuitry which is necessary to interface the

ADC to the intermodule bus. The ADC acts as a slave device on the bus. The

interface must respond with the appropriate bus cycle termination signals and supply

appropriate interface timing to the other submodules.

15

SOFfWARE3

Four registers must be configured for ADC operation. These registers are the

Module Configuration Register, Control Register 0 , Control Register 1, and Status

Register. In addition to these four registers there are two general-purpose registers

which are used for any type of ADC conversion. These two registers are discussed

first in the following sections.

Successive Approximation Register (SAR):

The successive approximation register accumulates the result of each conversion

one bit at the time, starting with the most significant bit. At the start of the resolution

period, the MSB of the SAR is set, and all less significant bits are cleared. Depending

on the result of the first comparison, the MSB is set or cleared. Each successive bit is

set or left cleared in descending order until all eight or ten have been resolved. When

conversion is complete, the content of the SAR is transferred to the appropriate result

register.

Result Registers

Result registers are used to store data after the conversion is complete. The

registers can be accessed from the 1MB under ABIU control. Each register can be read

from three different addresses in the ADC memory map. The format of the result data

3
There are more than one hundred memory mapped hardware registers that need to be

configured for this project. I have chosen the ADC converter as an example to show
how these registers and their related fields are selected and configured.

16

depends on the address from which it is read. Three types of formats can be specified,

unsigned right-justified format {$FFF710:$FFF71E} , signed left-justified format

{$FFF720:$FFF72E} , and unsigned left-justified format {$FFF730:$FFF73E} .

Module Configuration Register (ADCMCR):

The module configuration register contains five fields. This register selects the

normal mode of operation for ADC and initializes the ADC operation. Bit 15 is set to

0 for normal operation. Bits 13 and 14 are cleared and bit 7 is also cleared to have

unrestricted access to ADC submodule. The fields associated with this register are

shown below:

15 14 13 12 8 7 6 0

NOT USED NOT USED

0 0 0 0

Figure 6. ADCMCR Configuration

ADC Control Register O (ADCTL0):

This register is used to define ADC clock source and to set up prescaling.

Storing data in this register has an immediate effect. There are three fields that need to

be defined. The Prescalar Rate Selection field is defined to select a divisor value which

corresponds to minimum and maximum system clock. ADC clock is generated from

system clock using a modulo counter and a divide-by-two circuit. The way the ADC

17

clock is selected is based on the value in the PRS region of ADCTL0. The system

clock is divided by the PRS value plus one, then sent to the divide-by-two circuit. Bits

0 and l are set to select 16 MHz frequency for the ADC and the rest of the bits are

cleared. The fields associated with this register are shown below:

15 8 7 6 5 4 0

NOT USED STS PRS

Figure 7. ADCTLO Configuration

ADC Control Register 1 (ADCTLl):

ADCTLl is used to start analog to digital conversion. It has four functions. The

first one is to select a channel or a block of inputs for ADC conversion. Bits 0 thru 3

{ CD: CA} are used to specify which input line or block of data is to be converted to

digital. The audio signal in this project is applied to the input line ADO, so the binary

value 0000 is picked for this region. The second function of this register is to select

the kind of conversion. A single or a continuous conversion can be chosen. If the

SCAN bit is set, a continuous conversion takes place and if this bit is cleared, a single

conversion is done. The third selection is accomplished by setting or clearing the

multichannel conversion bit (MULT). The fourth field in this register is a bit which, if

it is zero, four-conversion sequence takes place and if it is one, sequential conversion

of a block of four or eight channels (selected by channel selection field) is performed.

The fields associated with this register are shown below:

18

15 7 6 5 4 3 2 1 0

NOT USED I SCAN I MDU I = I CD cc CB CA

Figure 8. ADCTLl Configuration

ADC Status Register (ADST AT):

The last register that must be configured for proper operation of Analog Digital

Converter submcxlule is its status register. This register is used to signal the CPU

when the conversion is done. It has three active fields which will be discussed in detail

here.

Conversion Complete Field (CCF):

Each bit {0:7} in this field corresponds to an ADC result register (CCF7 to

RSLT7, etc.). A bit is set when conversion for the corresponding channel is complete,

and remains set until the result register is read. It is cleared when the register is read.

Conversion Counter Field (CCTR):

This region shows the contents of the conversion counter pointer in either four or

eight count conversion sequence. The value corresponds to the number of the next

result register to be written, and thus indicates which channel is being converted.

19

Sequence Complete Flag (SCF):

SCF is set at the end of the conversion sequence when SCAN is cleared, and at

the end of t~e first conversion sequence when SCAN is set. SCF is cleared when

ADCTLl is written and a new conversion sequence begins. The fields associated with

this register are shown below:

15 14 11 10 8 7 0

NOT USED CCTR CCF

0

Figure 9. SCF Configuration

ADC PROGRAM

The program which initializes and begins converting analog input to digital signal

is shown below. First, the ADMCR register is configured for normal operation. In

some applications the analog input lines could be used as an 1/0 port. In this project

the ADO thru AD7 are selected as analog input lines. Second, in ADCTLO register, bit

7 is set to zero for 8-bit conversion, and PRS field is filled with 00011 for a 16 MHz

prescaled rate for clock generation. Third, ADCTLl is filled with 0000 to ensure the

single conversion sequence will run on a single channel (ADO). Fourth, ADSTAT is

configured so that the result register 7 will hold the digital equivalent of the incoming

analog signal. The complete list is shown on the next page.

20

***** ADC Initialization *****
LDD #$0000

STD ADCMCR

LDD #$0003

STD ADCTL0

***** ADC Start *****
LOOP LDD #$0000

STD ADCTLl

LDAA #$80

SCFSET BITA ADSTAT

BEQ SCFSET

BRA LOOP

21

CHAPTER III

DIGIT AL SIGNAL PROCESSING

INFINITE IMPULSE-RESPONSE (IIR) FILTER

The theory of the infinite impulse response (IlR) algorithm used to perform the

bandpass filtering is examined and developed briefly. The equations presented here are

developed to aid in the calculation of the coefficients necessary for digital signal

processing (DSP). This algorithm is used to design five digital filters with different

bandpass and cutoff frequencies. The following questions need to be answered. If the

characteristics of a filter are defined in analog domain, how are those characteristics

employed in digital domain? What is the connection between the analog passive filter

and the digital IIR filter?

To outline the characteristics of the digital filter, the equivalent analog passive

RCL bandpass network is considered. By applying the voltage divider rule, the

transfer function can be written as follows: [3]

v0 R
V; R + j(wL -1/ wC)

(1)

where w =21rf. The gain is the magnitude of Equation (1),

1
A(w) =--=======---

w 2 -w 2
[l +Q2(0)2]

(2)

W w 0

where w O = k and Q = w ~ L. The phase angle, <J>, is found by taking the ratio of

the imaginary to real parts of the transfer function of Equation (1):

(3)

The equivalent s-plane expression is calculated by substituting s = jw:

Rs
H(s)

Rs -+U +l / C
(4)

An op-amp active-filter circuit with essentially the same response as the passive RCL

network is shown in Figure 10. This active filter has several advantages over the

passive network: it eliminates the inductor; it is essentially isolated from input and

output loading and can provide signal gain to the system. [4]

Figure 10. Op-Amp Active Bandpass Filter

A digital-transfer function representation of Equation (4) may be obtained by

applying the bilinear transformation:[5,6]

2 (1 -z- 1)
s-

T (1 +z- 1
)

(5)

22

where z =efi, 0 =wT, and Tis the sample pericxi. Equation (5) can also be expressed

as follows:

2
w =-

T
(6)

23

using the definition of sand z. Substituting Equation (5) into Equation (4) yields the z­

plane transfer function:

H(z) (7)

where the coefficients, a , (3 , and 'Y, are related to R, C, and L by

RT /2
Ci

T2
/ 2C +RT +2L

(8)

2L-T2 /2C
'Y T2

/ 2C +RT +2L
(9)

(3
T2

/ 4C -RT/ 2 +L

T2
/ 2C +RT +2L

(10)

The nonlinear relation between the analog domain frequency and the digital domain

frequency is often referred to as the frequency warp.[5] As the frequency starts from

zero, both analog domain frequency and digital domain frequency are approximately

equal, since tan8 = 8 for small angles. However, as analog domain frequency

approaches infinity, digital domain frequency approaches 2TFs/2. In this particular

application, most of the interesting and useful frequencies satisfy the small angle

approximation (SAA) where 8< Tl4. Thus, using the SAA simplifies the digital

analysis, and a direct correspondence to the analog RCL network is established.

Although the SAA indeed simplifies the analysis, it must be used very carefully in the

derivation because the nature of this IIR filter depends on very small differences of

numbers. If not used correctly, the SAA can mask these differences and give totally

erroneous results.

THE DIFFERENCE EQUATION

To implement the transfer function from Equation (7) as an IIR filter, it is

necessary to transform it to a difference equation in the discrete time domain. In this

form, the filter can be directly implemented in software. Applying the inverse z­

transform operator, z-1
, to Equation (7) yields the following:[?]

z- 1{H(z)} =Z- 1{Y(z) I X(z)} (11)

z- 1 {Y(z)[l / 2 --yz- 1 +/h-2
]} =Z- 1 {X(z)[a(l -z-2

)]} (12)

The time delay property of the z-transform can be stated as follows:

X(z)z--m =Z{[x(n -m)]} (13)

24

where n is the discrete time index variable associated with continuous time sampling at

a rate T. Evaluating Equation (6b), using the property of Equation (7), gives the final

IIR difference equation:

y(n) =2{a[x(n) -x(n -2)] +-yy(n -1) -(3y(n -2)} (14)

The coefficient.s, a, (3, and 'Y, in the difference equation (Equation (14)) are

used to adjust the filter response (gain and phase as a function of frequency). The

representation of the time-varying data is based on standard notation used in digital

filter theory.[5,6,7] Thus, x(n) is the current sampled data represented as an N-bit

signed fraction; x(n-1) is the previous data word; and x(n-2) is the data word previous

to x(n-1). The time index is n and it is assumed that the sampled pericxi, T, is constant

and is related to the sample frequency, fs, by T= llfs. For example, the time between

25

x(n) and x(n-2) is 2T. Sampled values of the input signal are only collected at integral

multiples of T (i.e., the x(n)'s are standard sampled/digitized data).

The y(n) is similar to the input data, x(n), and represents the output data from the

difference equation algorithm. As before, y(n) is the current output value; y(n-1) is the

previous value; and y(n-2) is the value previous to y(n-1). Even though it is assumed

that the input data is a signed fraction (a number between one and minus one), the

y(n)' s can be greater than one (or less than minus one) unless scaling is performed to

prevent this overflow condition.

The coefficients,cx, /3, and 'Y , in the difference equation (Equation (14)) are also

fractional values (i.e. between one and minus one). As it will later be shown, scaling

at the output can be controlled by imposing the following condition on two of these

these coefficients:

ex= 1/4 - {3/2 (15)

This formula guarantees that, at the center frequency, the gain is one and the

phase difference is zero. In this case, the bandpass filter acts as an attenuation filter

and a phase shifter for all frequencies other than the center frequency. Limiting the

gain to one and the input to a fraction scaled to a maximum of one does not always

prevent overflow at the output .

RESPONSE OF THE DIGIT AL FILTER

The gain and phase response can be calculated solely from Equation (7). The

advantage of complex numbers is that both gain and phase information are present in

the transfer function. By definition, the gain is th~ absolute magnitude of H(z). In the

RLC circuit , the gain is simply the ratio of the resistance to the magnitude of the total

26

complex impedance. The ratio of the real to imaginary components of the impedance

is equal to the tangent of the phase. Likewise, the ratio of real to imaginary

components of H(z) is equal to the tangent of the phase for the digital case.

Euler's identity is implemented to ease the calculation of gain, G(w) , and phase,

0(w):

ei8 =cos0 + j sin 0 (16)

The transfer function (Equation (7)) then becomes:

a(ei28 -1)
(17)

and

a(cos28 -1) +jsin28

(0.5cos28 --ycos8 +/3) +j(0.5sin28 --ysin0)
(18)

where O=wT. For example, 8 =-r /2 would correspond to f=fs/4 (since w =2-rf and

T=l/fs). If fs=44.l kHz, then 8 =-r /2 would be a frequency of 11.025 kHz.

The filter gain is found by evaluating the following expression:

(19)

and, after some algebraic and trigonometric manipulations, becomes:

G(w) 2asin8

{[(1 / 2 -,B)sinOf +[(1 / 2 +/3)(cos8 -cos8 0)]
2

}
112

(20)

where

cos8 0 =-y(l / 2 +/3) (21)

27

is the filter center frequency.

Examination of the gain in Equation (13) shows several important features:

• The gain , G(w), is proportional to a.

• The gain at the center frequency, w O, is

G0 =2 a/(1/2 - {3) (22)

as previously noted in Equation (9).

• The bandwidth is adjusted by {3 (that also affects the center frequency as shown

by Equation (21)).

• Equation (20) is symmetric (neglecting the zero at 0= -ir) on a logarithmic scale.

This characteristic of the gain can be seen more easily by taking the SAA of

Equation (20) where

sin0=0

cosO = 1 - 92;2

so that

(23)

(24)

(25)

Substitution of O=k0 0 or 0=0 0 /k yields equivalent values of gain, thus proving that the

gain is symmetrical over the log of frequency. The subscript "a" denotes that the SAA

was used in that expression.

The phase shift, <,0(w), is found from the ratio of the imaginary to real part of

H(z) from Equation (17):

28

<I> Im[H(ej8
)]

tan Re[H(ej8)]
(26)

After some algebraic and trigonometric manipulations, Equation (26) can be written as

tan¢
(0.5 +{3)(cos0 -cos0 0)

(0.5 -(3) sin 0

Applying the SAA simplifies the previous result:

tanc/>.
(0.5 +{3)(8 / -0 2

)

(0.5 -{3)20

(27)

(28)

The SAA can be used to approximate the filter center frequency, 0 0 , from Equation

(21):

O = 1 +2(3 -2-y
Oa 0.5 +{3

(29)

The SAA is accurate within a few percent for angles up to 1r/4. (This SAA

corresponds to a filter frequency of f < fs/8.)

The bandwidth of the filter is most easily determined from Equation (25).

Generally, two frequencies are considered, one on each side of the center

frequency, (J O• The gain at each of the frequencies, (J 1 and 8 2 , is equivalent and is

commonly chosen so that the value of gain is G0 /../2 =-3 dB of the center frequency

gain. As previously noted, 0 1 = (J ofk and O 2 = kO O for a filter symmetric about the

center frequency over the log of frequency.

The Q of the filter in such a case is as follows:

Q=~ ~o
80 k

kO
O

-0
0

/ k - k 2 -1
(30)

where k> 1. Since, by definition, the bandwidth is determined at the frequencies

corresponding to a gain of G0 /../2, using Equation (25), the following term is equal to

one:

and using Equation (30) to solve for f3a in terms of Q yields

0.5 +{3 2 k 2Q
---· =-•-- =-
0.5 -{3. 00 k2 -l 00

Rearranging terms results in the final form:

Q -()0 12
2Q +0 0

29

(31)

(32)

(33)

where 00 =21rf0 lfs. The subscript "a" is used to denote that the SAA was used in this

derivation (i.e., by definition of Q from Equation (25)).

Solving for -y in Equation (21) gives

-y =(0.5 +{3)cos0 0

For unity_ gain at the center frequency, a (Equation (22)) becomes

a =(0.5 -{3) I 2

Equation (25) now simplifies to the following equation for gain:

G.(w)
1

Equation (28) becomes

<P.(w) =tan- 1{Q[(O/ -0 2
) / (8ofJ)]}

(34)

(35)

(36)

(37)

Equations (20), (21), (22), and (27) provide a complete, theoretically accurate,

and concise description of the digital filter response described by the difference

equation (Equation (14)). The coefficients, a and -y, can be found from {3, 80 , and G0 •

13 must be determined from the gain (Equation (20)) by picking G(8 1) and 8 1 , then

finding the values of {3 from the equality. These four equations are exact and can be

used over the entire frequency range from Oto T.

Equations (33) through (37) provide a simplified set of formulas that are

reasonably accurate for f < f s/8 and for unity gain at the center frequency.

30

ANALYSIS CONSTRAINTS OF THE BILINEAR TRANSFORMATION

The passive series resonant network shows how to determine the UR coefficients

from the RCL values of a passive network filter based on the bilinear transformation.

This technique is very powerful, especially if the frequencies of interest are much lower

than the sample frequency (as is often the case in digital audio applications) so that the

SAA can be used. The resonant and cutoff frequency and quality factor, Q, of most

RCL networks are known or can be easily determined. The difference equation shows

how to convert the transfer function to another difference equation, which is the final

form (for software implementation) of the digital IIR filter. The relationship

connecting the R, L, and C values of the analog filter to the coefficients a, {3, and 'Y of

the digital filter (from Equations 8 thru 10) holds true only for frequencies where the

SAA is valid. This frequency range makes up the linear region of the bilinear

transformation where (from Equation (6)) tan 0= 0. In this case, a direct

correspondence between the response of almost any RCL network and an IIR filter's

coefficients can be established, as previously demonstrated for the bandpass filter

network. This technique lends itself to audio applications because the response of a

network is usually described as a function of the log of frequency. The audio range is

basically logarithmic, thus the SAA applies to most of the range of interest since f s/8 is

very close to fs/2 on a log scale.

COEFFICIENT QUANTIZATION

Coefficient quantization depends solely on the word length of the filter

coefficients. Equations (20), (21), and (22) yield values for a, {3, and 'Y for given

values of center frequency and bandwidth. These formulas are exact. However, the

31

word size of the variables used to represent the coefficients in the filter algorithm are of

finite length. Therefore, only certain discrete values of center frequency, bandwidth,

and resonant frequency gain are obtainable.

To anc!1yze the effects of coefficient quantiz.ation in this particular digital filter,

let N be the number of bits used to represent data in the algorithm. Assuming that the

coefficients are fractions, the smallest number that can be represented is therefore:

0 =2-{N--1)

Using Equation (38), a, {3, and 'Y can be represented as follows:

'Y =l -no

{3 =112 -mo

(38)

(39)

(40)

since {3 < 1/2 and I 'YK I . This can be easily seen by evaluating the zeros of the

transfer function (Equation 7) and then calculating the magnitude of that complex

number. The resulting value is the distance from the origin to the pole in the complex

plane and is equal to 2/3. Now, since the poles must lie within the unit circle {3

< 1/2.[7] Using Equation (19), it can be seen that 1 'YI < 1. The integers n ·and m

take on values from 1 to 2N-l. Equation (29) can be written as

80
= 1 +2(1 / 2 -mo) -2(1 -no) = 2(n -m)o

1 / 2 + (1 / 2 - mo) 1 - mo (41)

By inspection, the lowest nonzero value of 8 0 is with n = 2 and m = 1. The lowest

obtainable frequency is theri

f =8 f / 21r =-1-✓2(0
) =f 2-N121

1r 0 0
• 211'" 1 -o . (42)

Assuming fs=44.l kHz. The lowest obtainable frequency for 16 bits is 54.8 Hz; for

24 bits, it is 3.4 Hz. Clearly, 16 bits does not yield the coefficient accuracy needed to

implement filter responses in the low-frequency bands (i.e., 20 to 200 Hz) for audio

applications.

32

The sampling frequency in this design is 24. 95 kHz, and the center frequency and

Q for all five bandpass filters are:

Fo Fs Q

FIRST FILTER 125 Hz 24.95 kHz 0.5

SECOND FILTER 500Hz 24.95 kHz 1.0

THIRD FILTER l kHz 24.95 kHz 1.5

FOURTH FILTER 4 kHz• 24.95 kHz 1

FIFfH FILTER 10 kHz 24.95 kHz 0.5

Using above values and Equations (34), (35), and (36) the coefficients can be

calculated (See appendix A). After the coefficients are calculated, these fractions are

converted to 16-bit hexadecimal values. Two's complement arithmetic is utilized to the

calculation, therefore the most significant bit is the sign bit. The fraction is contained

in the remaining bits, 0-14. A total of fifteen bits will represent the numbers from Oto

32,767. The fraction first is multiplied by 32,767, and then is converted to its

hexadecimal equivalent. If this number is negative, the two's complement is taken to

find the final answer.

A series of multiplications and additions are performed to implement these values

with the 68HC16. The following figure shows the memory configuration used to carry

out the mathematics. As an example, the l kHz filter's coefficients are used.

XNl lK

XN2 lK

x(n-1) YNl lK
1------------1

y(n-1) GAM lK
t------------

x(n-2) YN2 lK -------------- y (n -2) BET lK
t-------------4

x 2 lK x(n)-x(n-2) ALP lK

Figure 11. DSP Memory Configuration

'Y

-{3

33

The ADC value x(n) is divided by two at the start of the algorithm. This is to

ensure that no overflow will occur with the binary mathematics. Next, x(n-2) is

subtracted from x(n). This value is stored away to location X_2_1K. Three MAC

(multiply and accumulate) instructions starting at this address are executed. Then y(n-

1) is multiplied by 'Y and is added to the accumulator. The equation that defines {3

above gives its positive value; this value is converted to its negative before storing it in

memory. The next step is to multiply y(n-2) by -{3 and add it to M accumulator and

multiply [x(n)-x(n-2)) by a. This too is added to the accumulator. The last operation

is the multiplication of the accumulator by two. This is done by a left shift instruction.

This gives the y(n) value. Now the x and y terms need to be updated before the next

sample is received. In other words, x(n-1) becomes x(n-2) and x(n) becomes x(n-1).

Also, y(n-1) becomes y(n-2) and y(n) becomes y(n-1). Once the DSP is finished on the

input x(n) sample, the peak detect algorithm is executed.

SIGNAL PEAK DETECTOR

The audio signal is digitally sampled at 24. 95 kHz. The amplitude will be

detected from the sampled signal and encoded with a value that represents its peak

value according to a bar of eight LEDs. Using a reference value of 0. 775 Vrms

equivalent to OdB, the signal is measured and displayed from -15dB to +6dB. Figure

13 illustrates the relationship between the LED bar, decibels, Vrms, and Vpeak. This

process begins by initializing the internal RAM, the ADC, QSPI, and the PIT; the code

jumps to internal Ram at location $FOOOO. This is necessary because the access time of

the internal RAM is faster than the external RAM access time found on the evaluation

board. This speed is for the DSP routine. The program then cycles in an infinite loop

reading the ADC, encoding the ADC value to its equivalent LED value, and checking

to see if the current value is greater than the previous peak value. If so, then the

34

current peak value is updated and stored away in memory. The code will increase the

current peak value, not decrease it. It also updates the LED array every 10.26 msec

with the current peak value. This routine uses a programmable interrupt timer (PIT) to

detect the c~anges in incoming signal. The PIT times out every 62.5 msec to

decrement the peak value and the LED display. If the input signal is sharply

attenuated, the LED bar slowly decrements. After downloading the program, the

68HC 16 is ready to analyze the audio signals.

A signal generator, voltmeter, counter, and an oscilloscope show the analyzer

works precisely. A known signal sweeps and the results are displayed on the bar of

LED's. The LED's are on and off, based on the magnitude of the input signal. The

test verifies each filter is working properly and the software is reliable.

LED BAR db

• +6

• +3

·- 0

• -3

• -6

• -9

• -12

• -15

Vrms

l.548

l.096

0.775

0.549

0.389

0.275

0.195

0.138

dB= 20*log(V in/V ref)

Vref=0.775 Vrms

Vpeak= 1.414 * Vrms

Vpeak

2.187

1.548

l.096

0.775

0.549

0.389

0.275

0.195

Figure 12. Relationship Between Signal Amplitude and The LED Bar

35

36

CHAPTER IV

CONCLUSIONS

In this thesis an introduction to the basic operation of the MC68HC16

microcontroller was presented. A program for a five band audio analyzer that used this

microcontroller was written. An audio signal was converted to digital, and subjected to

the five digital filters via software. Then the magnitude of each center frequency was

detected and displayed on an array of LED's.

The project demonstrated the feasibility of the software design. A

microcontroller could be used to digitally sample a signal within the audio range and to

subject it to digital signal processing. The filtering of such a signal was accomplished

by means of software. The programmability of the DSP made it much more flexible

than analog approaches to the filter design. Instead of using conventional method of

filtering which uses components such as resisters, capacitors, and operational

amplifiers, the incoming signal was digitally (and by means of software) sampled,

filtered, and then the strength of each band was serially transferred and displayed on an

array of LEDs. The performance was verified by sweeping a known signal and

observing the results on the bar of LEDs. The implementation of DSP was fully

accomplished

The project also effectively demonstrates how the correct micro-controller with

proper support circuitry can greatly simplify a design. Where a variety of interfacing

hardware is integrated into one chip, the estimated cost, space and the speed are greatly

improved. This integration of chips into one and ~he programmability of the

microcontroller clearly demonstrate the advantage of modem digital techniques over the

II

analog method. The same microcontroller can be used to filter out other signals by

making minor changes to the program without any hardware modification.

AREAS FOR FURTHER DEVELOPMENT

37

In some applications it is required to design filters that have center frequencies

higher than 10 kHz. In order to accomplish that, a program which takes fewer cycles

to be executed must be developed. At the same time the program must maintain the

routines that initialize the submodules and run digital signal processing instructions.

38

APPENDIX A

CALCULATION OF THE COEFFICIENTS

FIRST BAND FRACTIONS MUL TIPI.IEO BY 32768 HEX NUMBER

F0 l .25E+02 125.00000 4096000

FS 2.50E • 04 14950.00000 817561600

0 5.00£·01 0.50<XJ0 16384

TETA 3. 15E-02 0.03'48 1031 .500081

X 3 . 15E-02 0.03'48 103'-500081

TAN(X/201 7 87E-03 0.00787 257.880344

BETA 4.9.?E-01 0.49219 18128. 12/JOtS 3F32

GAMA J.9.?E-01 0.99'70 32'96.02092 7F28

ALFA 3.90E·03 J.00390 127.935972 66

If Jt UCHOS 1 15(-01 . TMEN rT 15 EQUAL TO 0 . 715111

SECOND BAND FRACTIONS MUL TIPI.IED BY 32 768 HEX NUMBER

F0 5 OOE•02 500.00000 16384000

FS 1.50E • 04 2•950.00000 817561600

0 I .OOE • 00 I 00000 32766

TETA I l 6E-01 0. 11592 "26.000324

X 6 30E-02 0.06296 2063.000162

TANO<l2QJ J . 15E·02 0.03 149 1031 .840917

BETA 4 69E-01 0.46946 15383. 33843 "3E68

GAMA 9.51E-OI 0.96 179 31515.83981 7E3F

A(Fjj I SJE-02 0.01527 500.3307872 CB

If lC u:cn:os 7 15(-0 1 TM(... IT I'! f QUA L TO 0 7SJH

39

TH IRD BAND FRACTIONS MULTIPLIED BY 32 768 HEX NUMBER
-

FO 1.1)0£+03 1.00£+03 32768000

FS 2.SOE + 04 2.50£+04 817561600

0 1.50£+00 1.50£+00 49152

TETA 2.52£·01 2.52£·01 8252.000647

X 8.39£-02 8.39£-02 2750.666882

TAN(X/20/ 6.30£-02 6.30£-02 2065. 730181

BETA 4,41£-01 4.41£-01 14438.34 771 3866

GAMA 9. 1 IE-0I 9. 11£-01 29850.14251 749A

ALFA 2 .97£-02 2.97£-02 972.8261473 3CC

IF X EXCEEDS 7 16(-01 , THEN rT rs EQUAL TO 0 .75311

FOURTH BAND FRACTIONS MUL TIPUED BY 32768 HEX NUMBER

FO 4.00E+ 03 4.00£+03 131072000

FS 2.50£+04 2 .50£+04 817561600

0 1.00E+OO 1.00000 32768

TETA 1.01£+00 1.00732 33008.00259

X 5.04£-01 0.50366 16504.00129

TAN(X/201 2 .5 7£,01 0.25729 8430.986702

BETA 2.92£-01 0.29169 9558.001333 2556

GAMA 4.23£-01 0.42286 13856.26328 3620

ALFA 1.04£-01 0. 10416 34 I 2. 999333 054

IF X EXCEEDS 7.SISE-01 , THEN IT 15 EQUAL TO 0 .75311

40

- FIFTH BAND FRACTIONS MUL TIPLIEO BY 32768 HEX NUMBER

FO 1.00E•04 1.00E+04 327680000

FS 2.50E+04 2.50E+04 817561600

a 5.00E-01 0.50000 16384

TETA 2.52E + 00 2.51831 82520.00647

X 7.54€-01 0.75398 24706.41664

TAN/X/201 1.91€-01 0. 19076 6250.811315

BETA 3.38E-01 0.33815 11080.41145 2EU8
2·s Com(Jlemenr

A8E4
GAMA ·6.81€-01 -0 .68055 -22300.20051

ALFA 8 09€-02 0.08093 2651 . 7942 73 A58

If ,C EXCEEDS 7 115£•01 , THEN rT IS EQUAL TO 0 .75311

*Description :

*

*

*

*

*

*

*

*

*

*

*

APPENDIX B

COMPLETE LIST OF THE PROGRAM

This program executes a band pass DSP filter

algorithm in real time.

The digital data is acquired with the on-chip

analog to digital converter.

The sampling frequency is 25 kHz.

Executes the function

y(n) = 2{a[x(n)-x(n-2)] + -yy(n-1) - /3y(n-2)}

The output of the 5 filters are analyzed for

their peak values and then encoded with a value

to represent each peak on the LED bar array.

These values are sent out to the LEDs via the

QSPI.

41

**

INCLUDE 'EQUATES.ASM'

INCLUDE 'ORGOOOOO.ASM'

;table of EQUates for

; common register addresses

;initialize reset vector

*** Addresses of coefficients for the IIR Filters and initialization

COEFB

GAM 125

BET_125

EQU

EQU

EQU

$0280

COEFBS+$0

COEFBS+$2

; base addr of coefficients

;addr of the gamma coef

;addr of the beta coef

42

ALP 125 EQU COEFBS+$4 ;addr of the alpha coef

GAM 500 EQU COEFBS+$6 ;addr of the gamma coef

BET 500 EQU COEFBS+$8 ;addr of the beta coef

ALP 500 EQU COEFBS+$A ;addr of the alpha coef

GAM lK EQU COEFBS+$C ;addr of the gamma coef

BET lK EQU COEFBS+$E ;addr of the beta coef

ALP lK EQU COEFBS+$10 ;addr of the alpha coef

GAM 4K EQU COEFBS+$12 ;addr of the gamma coef

BET 4K EQU COEFBS+$14 ; addr of the beta coef

ALP 4K EQU COEFBS+$16 ;addr of the alpha coef

GAM l0K EQU COEFBS+$18 ;addr of the gamma coef

BET l0K EQU COEFBS+$1A ;addr of the beta coef

ALP l0K EQU COEFBS+$1C ;ddr of the alpha coef

ORG $F0280

dc.w $7F28 ; 125 Hz gamma coef, Q=0.5

dc.w $3F32 ; 125 Hz beta coef, Q=0.5

dc.w $66 ; 125 Hz alpha coef, Q=0.5

dc.w $7E3F ;500 Hz gamma coef, Q=l.0

dc.w $3E68 ;500 Hz beta coef, Q=l.0

dc.w $CB ;500 Hz alpha coef, Q= 1.0

dc.w $749A ;lk Hz gamma coef, Q=l.5

dc.w $3866 ;lk Hz beta coef, Q=l.5

dc.w $3CC ; lk Hz alpha coef, Q= 1.5

dc.w $3620 ;4k Hz gamma coef, Q=l.0

dc.w $2556 ;4k Hz beta coef, Q= 1.0

dc.w $D54 . ;4k Hz alpha coef,Q=l.0

dc.w $A8E4 ; 10k Hz gamma coef, Q=0.5

XTRMBS

XNl 125

XN2 125

XNl 500

XN2 500

XNl lK

XN2 lK

XNl 4K

XN2 4K

XNl lOK

XN2 l0K

dc.w

dc.w

$2B48

$A5B

; 10k Hz beta coef, Q=0.5

; 10k Hz alpha coef, Q=0.5

Addresses of filter terms for the x(n) terms and initialization

EQU $02A0 ;base addr of x(n) filter terms

EQU XTRMBS+$0 ;x(n-1)

EQU XTRMBS+$2 ;x(n-2)

EQU XTRMBS+$4 ;x(n-1)

EQU XTRMBS+$6 ;x(n-2)

EQU XTRMBS+$8 ;x(n-1)

EQU XTRMBS+$A ;x(n-2)

EQU XTRMBS+$C ;x(n-1)

EQU XTRMBS+$E ;x(n-2)

EQU XTRMBS+$10 ;x(n-1)

EQU XTRMBS+$12 ;x(n-2)

ORG $F02A0

dc.w $0000 ;125 Hz x(n-1)

dc.w $0000 ; 125 Hz x(n-2)

dc.w $0000 ;500 Hz x(n-1)

dc.w $0000 ;500 Hz x(n-2)

dc.w $0000 ; lk Hz x(n-1)

dc.w $0000 ; lk Hz x(n-2)

dc.w $0000 ; lk Hz x(n-1)

dc.w $0000 ; lk Hz x(n-2)

dc.w $0000 ;lk Hz x(n-1)

dc.w $0000 ; lk Hz x(n-2)

43

44

***** Addresses of filter terms for the y(n) terms and initialization

YTRMBS EQU $02C0 ;base addr of y(n) filter terms

YNl 125 EQU YTRMBS+$0 ;y(n-1)

YN2 125 EQU YTRMBS+$2 ;y(n-2)

X 2 125 EQU YTRMBS+$4 ;x(n) - x(n-2), stored here for mac

YNl 500 EQU YTRMBS+$6 ;y(n-1)

YN2 500 EQU YTRMBS+$8 ;y(n-2)

X 2 500 EQU YTRMBS+$A ;x(n) - x(n-2), stored here for mac

YNl lK EQU YTRMBS+$C ;y(n-1)

YN2 lK EQU YTRMBS+$E ;y(n-2)

X 2 lK EQU YTRMBS+$10 ;x(n) - x(n-2), stored here for mac

YNl 4K EQU YTRMBS+$12 ;y(n-1)

YN2 4K EQU YTRMBS+$14 ;y(n-2)

X 2 4K EQU YTRMBS+$16 ;x(n) - x(n-2), stored here for mac

YNl lOK EQU YTRMBS+$18 ;y(n-1)

YN2 l0K EQU YTRMBS+$1A ;y(n-2)

X 2 l0K EQU YTRMBS+$1C ;x(n) - x(n-2), stored here for mac

ORO $F02C0

dc.w $0000 ; 125 Hz y(n-_l)

dc.w $0000 ; 125 Hz y(n-2)

dc.w $0000 ; 125 Hz [x(n) - x(n-2)]

dc.w $0000 ;500 Hz y(n-1)

dc.w $0000 ;500 Hz y(n-2)

dc.w $0000 ;500 Hz [x(n) - x(n-2)]

dc.w $0000 ;lk Hz y(n-1)

45

dc.w $0000 ; lk Hz y(n-2)

dc.w $0000 ; lk Hz [x(n) - x(n-2)]

dc.w $0000 ;4k Hz y(n-1)

dc.w $0000 ;4k Hz y(n-2)

dc.w $0000 ;4k Hz [x(n) - x(n-2)]

dc.w $0000 ; 10k Hz y(n-1)

dc.w $0000 ; 10k Hz y(n-2)

dc.w $0000 ; 10k Hz [x(n) - x(n-2)]

***** Addresses of various temporary variables and initialization

PKRES EQU $02E0 ;base addr of filter result storage

PK 125 EQU PKRES+$0 ;peak value for 125 Hz

PK 500 EQU PKRES+$1 ; peak value for 500 Hz

PK lK EQU PKRES+$2 ; peak value for 1 k Hz

PK 4K EQU PKRES+$3 ;peak value for 4k Hz

PK I0K EQU PKRES+$4 ;peak value for 10k Hz

CNT EQU PKRES+$6 ;count value for LED qspi update;

;routine

AD EQU PKRES+$8 ; divided by two adc reading

ORG $F02E0

dc.w $0000 ; 125 peak value, 500 peak value

dc.w $0000 ; 1 k peak value, 4k peak value

dc.w $0000 ; 10k peak value

dc.w $0000 ;update count value

dc.w $0000 ;divided by two adc reading

ORG $0200

***** Initialization Routines *****

INCLUDE 'INITSYS.ASM'

***** RAM and Stack Initialization *

LDD #$00FF

STD RAMBAH

LDD #$0000

STD RAMBAL

CLR RAMMCR

LDAB #$OF

TBSK

LDS #$02FE

INCLUDE 'SERIAL.ASM'

Initialize level 6 autovector address

LDAB

TBEK

LDD

#$00

#INT_RT

;initially set EK=F, XK=0,

;YK=0,ZK=0

46

; set sys clock at 16. 78 MHz, disable

;COP

; store high ram array, bank F

; store low ram array, 0000

;enable ram

; set SK to bank F for system stack

;put SP in lk internal SRAM

; ek extension pointer = bankO

; load Dace with interrupt vector

;addr

47

STD $002C ; store addr to level 6 autovector

***** Initialize the PIT *****

LDAB #$OF

TBEK ;ek extension pointer = bankf

LDD #$0610

STD PICR ;pirql=6, piv=$16

LDD #$0101

STD PITR ;set the periodic timer at 62.Smsec

ANDP #$FF1F ;set interrupt priority to 000

***** QSPI Initialization *****

LDAA #$08

STAA QPDR ;output pcsO/ss* to O when asserted

LDAA #$OF

STAA QPAR ;assign QSM port pins to qspi

;module

LDAA #$40E

STAA QDDR ;assign all QSM pins as outputs

;except miso

LDD #$8004 ;mstr, womq=cpol=cpha=O

STD SPCRO ; 16 bits, 2.10 MHz serial baud rate

LDD #$0300 ;interrupt generated, no wrap mode

STD SPCR2 ;newqp=O, endqp=3, queued for 4

;trans

GO

SPIWT

Fill QSPI Command.ram to write the config registers of the 14489

LDAA #$CE

STAA CR0 ;cont= 1, bitse= 1, pcs0=0, no

;delays needed

STAA CRl

STAA CR2

LDAA #$4E

STAA CR3 ;cont=0, bitse= 1, pcs0=0, no

;delays needed

Fill QSPI Transmit. ram to write the config registers of the 14489

LDAA #$3F

STD TR0+l ; store $3F to tran. ram registers

STD TR2

STD TR3+1

Tum on the QSPI, this will write to the config registers of the

MC14489 drivers

LDD #$8404

STAA SPCRl ;tum on spi

48

LDAA #$80 ;after sending data we wait until the

ANDA #$80 ; spif bit is set, before we can send

;more

49

CMPA #$80 ;check for spi done

BNE SPIWT

***** Fill_QSPI Command.ram to write the display registers of the 14489

LDAA #$CE

STAA CR0 ;cont= 1, bitse= 1, pcs0=0, no

;delays needed

STAA CRl

LDAA #$4E ;cont=0, bitse=l, pcs0=0, no

;delays needed

STAA CR2

STAA CR4

LDAA #$8E ;cont= 1, bitse=0, pcs0=0, no

;delays needed

STAA CR3

***** Fill QSPI Transmit. ram for display registers of the 14489

***** The beginning LED values will be $00, all of the LEDs will be off

LDD #$8000

STD TR0 ;TR0 = $8000

STAA TR3+1 ;TRI = $0080

LDD #$0080 ;TR2 = $0000

STD TRI ;TR3 = $:XX80

CLRD ;TR4 = $0000

STD TR2

STD TR4

LDD #$0400

STD SPCR2

ADC Initialization *****

LDD #$0000

STD ADCMCR

LDD #$0003

STD ADCTLO

;display registers need 5

; transmissions

;newqp=O, endqp=4

;tum on ADC

; 8-bit, set sample period

Initialize the extension registers for the internal ram in bank F

Set up the extension registers to point to bank F

LDAB #$OF ; load b with $OF

TBEK ; transfer Bacc to Ek

TBXK ; transfer Bacc to Xk

TBYK ; transfer Bacc to Yk

TBZK ; transfer Bacc to Zk

JMP $FOOOO ;jump to internal ram for speed!

***** Start of Internal lK RAM

RAM

ORG $FOOOO

CLR

CLR

CNT

PK 125

;clear LED update counter

;clear 125 peak value

50

*

LP

*

CLR

CLR

CLR

CLR

Initialization for DSP

ORP

CLRD

TOMSK

LOY

LOX

LDHI

CLRD

STD

PK 500

PK lK

PK 4K

PK lOK

#$0010

#COEFBS

#YTRMBS

ADCTLl

Divide input x(n) by 2, no overflow problem

TOUT LDAA USRR0

TIN

*

ASRA

STAA AD

Check if LEDs need updating

; clear 500 peak value

;clear lk peak value

;clear 4k peak value

;clear 10k peak value

; set saturation mode for Mace

;clear Dace

; no modulo addressing

;4 load y with the coef base addr

51

;4 load x with the yterm base addr

; 8 load h and i multiplier and

; multiplicand

; 2 clear Dace

; 6 single 4 conversion, single

;channel ADO

;6 load Aacc with left jus signed

;ADC value

;2 divide by 2

;6 store divide by 2 adc value away

ADDA #1

STAA CNT

BNE Fl25

LDD #8404

STD SPCRl

***** Start of the 125 Hz routine

Fl25

*

CLRM

LDE AD

Digital processing algorithm

TED

SUBD XN2 125

STD X 2 125

LDD XNl 125

STED XNl 125

MAC 2,2

MAC 2,2

MAC 2,2

TMER

52

;2 add 1 to Aacc

; 6 store new count

;6,2 check to see if its time to

;update

; the LEDs, time = 256 * 668 cycles

;668 cycles = 40.08usec

;so LED update time is 10.26msec

; 6 load up Dace

;6 tum on QSPI, send LED data out

;2 clear Mace

; 6 load Eacc with AD

;2 transfer Eacc to Dace

;6 Dace = x(n) - x(n-2)

;6 store Dace to [x(n) - x(n-2)) addr

;6 load Dace with x(n-1)

;8 store x(n) to x(n-1) and

; store x(n-1) to x(n-2)

; 12 gamma *(yn 1) +Mace= Mace

;12 beta*(yn2)+Macc=Macc

; 6 transfer Mace to Eacc, round for

53

TMER ; 6 transfer Mace to Eacc, round for

;converg

ASLE ;2 multiply Eacc by 2

* Get LED encode value from look-up table

TED ; 2 transfer Eacc to Dace

STAA LD125+3

NOP ;2 no operation, due to CPU

;pipeline

NOP ; 2 no operation, due to CPU

;pipeline

LD125 LDAA LED TBL ; 6 load Aacc with the encoded LED

; value from scaled peak LED table

* Update peak value if needed

CMPA PK 125 ; 6 compare value to previous peak

;value

BLS DN125 ; 6, 2 branch if not more than peak

;value

STAA PK 125 ;6 store new peak value

STAA TR4+1 ;6 store new value to 125 qspi

;tran.ram

* Update y(n-1) and y(n-2)

DN125 LDD YNl 125

STED YNl 125

***** Start of the 500 Hz DSP routine

F500

*

CLRM

LDE AD

Digital processing algorithm

TED

SUBD XN2 500

;6 load Dace with y(n-1)

;2 clear Mace

;6 load Eacc with AD

; 2 transfer Eacc to Dace

;6 Dace = x(n) - x(n-2)

54

STD X 2 500 ;6 store Dace to [x(n) - x(n-2)] addr

*

LDD XNl 500 ;6 load Dace with x(n-1)

STED XNl 500

MAC 2,2 ; 12 gamma *(yn 1) +Mace= Mace

MAC 2,2 ;12 beta*(yn2)+Macc=Macc

MAC 2,2

TMET ;2 transfer Mace to Eacc, truncate

ASLE ;2 multiply Eacc by 2

Get LED encode value from look-up table

TED ;2 transfer Eacc to Dace

ST AA LD500+ 3

NOP ;2 no operation, due to CPU

;pipeline

NOP

LD500 LDAA LED TBL

* Update peak value if needed

CMPA PK 500

BLS DN500

STAA PK 500

STAA TR4

* Update y(n-1) and y(n-2)

DN500 LDD

STED

YNl 500

YNl 500

***** Start of the 1 k Hz routine

FlK

*

CLRM

LDE AD

Digital processing algorithm

;2 no operation, due to CPU

;pipeline

55

;6 load Aacc with the encoded LED

; value from scaled peak LED table

;6 compare value to previous peak

;value

;6,2 branch if not more than peak

;value

; 6 store new peak value

;6 store new value to 500 qspi

;tran.ram

;6 load Dace with y(n-1)

; 2 clear Mace

;6 load Eacc with AD

TED

SUBD XN2 lK

STD X 2 lK

LDD XNl lK

STED XNl lK

MAC 2,2

MAC 2,2

MAC 2,2

TMET

ASLE

* Get LED encode value from look-up table

TED

STAA LD1K+3

NOP

NOP

LDlK LDAA LED TBL

* Update peak value if needed

CMPA PK lK

56

; 2 transfer Eacc to Dace

;6 Dace = x(n) - x(n-2)

;6 store Dace to [x(n) - x(n-2)1 addr

;6 load Dace with x(n-l)

;8 store x(n) to x(n-1) and

;store x(n-1) to x(n-2)

; 12 gamma *(yn 1) +Mace= Mace

; 12 beta*(yn2)+ Macc=Macc

;2 transfer Mace to Eacc, truncate

;2 multiply Eacc by 2

; 2 transfer Eacc to Dace

;2 no operation, due to CPU

;pipeline

;2 no operation, due to CPU

;pipeline

; 6 load Aacc with the encoded LED

; value from scaled peak LED table

;6 compare value to previous peak

;value

*

BLS

STAA

STAA

DNlK

PK lK

TR2+1

Update y(n-1) and y(n-2)

DNlK LDD YNl lK

STED YNl lK

***** Start of the 4k Hz routine

F4K

*

CLRM

LDE AD

Digital processing algorithm

TED

SUBD

STD

LDD

STED

MAC

MAC

XN2 4K

X 2 4K

XNl 4K

XNl 4K

2,2

2,2

MAC 2,2

;6,2 branch if not more than peak

;value

;6 store new peak value

;6 store new value to lk qspi

;tran.ram

;6 load Dace with y(n-1)

; 2 clear Mace

;6 load Eacc with AD

;2 transfer Eacc to Dace

;6 Dace = x(n) - x(n-2)

57

;6 store Dace to [x(n) - x(n-2)] addr

;6 load bacc with x(n-1)

; 12 gamma *(yn 1) +Mace= Mace

; 12 beta*(yn2)+ Macc=Macc

*

LD4K

*

*

TMET

ASLE

Get L?D encode value from look-up table

TED

STAA LD4K+3

NOP

NOP

LDAA LED TBL

Update peak value if needed

CMPA PK 4K

BLS DN4K

STAA PK 4K

STAA TR2

Update y(n-1) and y(n-2)

DN4K LDD YNl 4K

;2 transfer Mace to Eacc, truncate

; 2 multiply Eacc by 2

; 2 transfer Eacc to Dace

;2 no operation, due to CPU

;pipeline

;2 no operation, due to CPU

;pipeline

58

;6 load Aacc with the encoded LED

; value from scaled peak LED table

;6 compare value to previous peak

;value

;6,2 branch if not more than peak

;value

; 6 store new peak value

;6 store new value to 4k qspi

;tran.ram

;6 load Dace with y(n-1)

STED YNl 4K

***** Start of the lOk Hz routine

FlOK

*

*

CLRM

LDE AD

Digital processing algorithm

TED

SUBD XN2 lOK

STD X 2 lOK

LDD XNl lOK

STED XNl lOK

MAC 2,2

MAC 2,2

MAC 2,2

TMET

ASLE

Get LED encode value from look-up table

TED

STAA LD10K+3

;8 store Eacc to y(n-1), Dace to

;y(n-2)

;2 clear Mace

; 6 load Eacc with AD

; 2 transfer Eacc to Dace

;6 Dace = x(n) - x(n-2)

59

;6 store Dace to [x(n) - x(n-2)] addr

;6 load Dace with x(n-1)

;8 store x(n) to x(n-1) and store

;x(n-1) to x(n-2)

; 12 gamma *(yn 1) +Mace= Mace

;12 beta*(yn2)+Macc=Macc

; 2 transfer Mace to Eacc, truncate

;2 multiply Eacc by 2

;2 transfer Eacc to Dace

NOP

NOP

LDlOK LDAA LED TBL

* Update peak value

CMPA PK lOK

BLS DNlOK

STAA PK l0K

STAA TRl

* Update y(n-1) and y(n-2)

DNlOK

END

LDD

STED

NOP

JMP

YNl lOK

YNl l0K

LP

;2 no operation, due to CPU

;pipeline

;2 no operation, due to CPU

;pipeline

60

; 6 load Aacc with the encoded LED

; value from scaled peak LED table

;6 compare value to previous peak

;value

;6,2 branch if not more than peak

;value

; 6 store new peak value

;6 store new value to 10k qspi

;tran.ram

;6 load Dace with y(n-1)

;8 store Eacc to y(n-1), Dace to

;y(n-2)

;6 jump back to start another

;conversion

Exceptions/Interrupts *****

This interrupt is used to decrement each LED bar value

representing the peak value of each filter band

61

INT RT PSHM D,CCR ;stack Dace and CCR on stack

CK125 LDAA PK 125 ;load Aacc with 125 peak value

BEQ CK500 ;equal to O?, then CK500

ANDP #$FEFF ;clear C bit

RORA ;rotate right once, decrease peak

;value

STAA TR4+1 ;store Aacc to 125 Hz qspi tran.ram

STAA PK 125 ; store Aacc to 125 Hz peak value

CK500 LDAA PK 500 ;load Aacc with 500 peak value

BEQ CKlK ;equal to O?, then CKlK

ANDP #$FEFF ;clear C bit

RORA ; rotate right once, decrease peak

;value

STAA TR4 ;store Aacc to 500 Hz qspi tran.ram

STAA PK 500 ; store Aacc to 500 Hz peak value

CKlK LDAA PK lK ;load Aacc with lk peak value

BEQ CK4K ;equal to O?, then CK4K

ANDP FEFF ;clear C bit

RORA ; rotate right once, decrease peak

;value

STAA TR2+1 ;store Aacc to lk Hz qspi tran.ram

STAA PK lK ;store Aacc to lk Hz peak value

CK4K LDAA PK 4K ;load Aacc with 4k peak value

62

BEQ CKlOK ;equal to 0?, then CKlOK

ANDP #$FEFF ;clear C bit

RORA ;rotate right once, decrease peak

;value

STAA TR2 ;store Aacc to 4k Hz qspi tran.ram

STAA PK 4K ;store Aacc to 4k Hz peak value

CKlOK LDAA PKlOK ;load Aacc with 10k peak value

BEQ UPDATE ;equal to 0?, then UPDATE

ANDP #$FEFF ;clear C bit

RORA ;rotate right once, decrease peak

;value

STAA TRI ;store Aacc to 10k Hz qspi tran.ram

STAA PK l0K ; store Aacc to lOk Hz peak value

UPDATE LDD #$8404 ; load up Dace

STD SPCRl ; tum on QSPI, send LED data out

DONE PULM D,CCR ; pull Dace and CCR from stack

RTI ; return from interrupt

***** Location of start of level 6 interrupt, has to be in bank 0

ORG $AOOO

JMPINT JMP INT RT

63

BIBLIOGRAPHY

1. Peatman, John B. Design with Microcontrollers. New York: McGraw-Hill, 1988

2. "Technical Summary - 16-Bit Modular Microcontroller". Phoenix, Arizona:

Motorola Inc., 1992.

3. Brophy, J. J. Basic Electronics for Scientists. New York: McGraw-Hill, 1966.

4. Lancaster, D. Active Filter Cookbook. Indianapolis: Howard W. Sams & Co.,

Inc., 1975.

5. Oppenheim, A. V., and Schafer, R.W. Digital Signal Processing. New Jersey:

Prentice-Hall, 1975.

6. Rabiner, L. R., and Gold, B. Theory and Application of Digital Signal Processing.

New Jersey: Prentice-Hall, 1975.

7. Strawn, J., et al. Digital Audio Signal Processing - An Anthology. New York:

William Kaufman, 1985.

	458 Akhavi Thesis
	458 Akhavi Thesis cont

