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ABSTRACT 

SOLVING THE MATRIX BALANCING PROBLEM 
An Algorithm Based on a Modification of the 

Transportation Problem 

by 

Julianne M. Labbiento 

Master of Science in Mathematics 

Youngstown State University, 1994 

The classical matrix balancing problem has many applications in areas such as 

economics and statistics. Generally, solutions to instances of this problem are found by 

minimizing either a squared or entropy objective function. This paper introduces a new 

procedure for solving the problem derived from a weighted least absolute value objective 

function. 

An efficient algorithm, incorporating the ideas of piecewise linear programming 

with the traditional transportation algorithm, is developed and presented. A simple 

example is illustrated and a computer program, written in FORTRAN, is given. Fmally, 

special features of the program are discussed. 
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Chapter 1 

Introduction 

1.1 Intent of Paper 

This paper will introduce a new method for solving the matrix balancing problem 

and others of its type. The method is based on the transportation algorithm from the field 

of operations research. The transportation problem is a linear programming problem 

whose solution, with slight modifications, can be used to solve the matrix balancing 

problem. This modified transportation method will be developed, presented, and 

illustrated. 

1.2 Outline of Chapters 

Chapter 2 will explore the matrix balancing problem. Several applications will be 

presented in the areas of business and mathematics. The problem will be formally defined 

mathematically. 

In Chapter 3, the modified transportation algorithm will be developed. Beginning 

with the traditional transportation problem, the primal and dual linear programs will be 

stated and discussed. Complementary slackness conditions and their importance in the 

determination of the dual solution will also be addressed. Observations will be made 
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regarding the matrix balancing problem. Comparisons will be drawn between these 

observations and the transportation problem that will eventually lead to the definition of 

the modified transportation problem. The associated primal and dual linear programs and 

complementary slackness conditions for this modified transportation problem will be 

developed and presented. 

The modified transportation algorithm is presented in Chapter 4, where an example 

solving a matrix balancing problem using the algorithm is also illustrated. A version of the 

Northwest Corner Method for finding the initial basic feasible solution is explained and 

presented in algorithmic form. 

Chapter 5 will discuss the implementation of the Modified Transportation 

Algorithm as a computer program written in FORTRAN. The program is given in the 

Appendix. Specific features of the program will be highlighted in detail in this chapter, 

including establishing an initial basic feasible solution using the Minimal Cost Northwest 

Corner Algorithm described in Chapter 4, finding a dual solution and verifying its 

feasibility, locating the unique cycle on which to pivot, and updating the current feasible 

solution accordingly. A method for identifying the cycle using ideas from graph theory 

will be discussed. Finally, topics for further research will be presented. 
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Chapter 2 

The Matrix Balancing Problem 

2.1 Applications 

The matrix balancing problem is one that arises in many fields such as economics, 

statistics, and demography. Contingency tables are used in insurance, science, and 

research when probabilities must be assigned to a finite two-dimensional array of items. 

This m x n contingency table, while finite in size, may be extremely large. Detennining the 

probabilities for each cell in the table by directly sampling the general population may not 

be feasible due to monetary, time, and other constraints. 

However, deriving these probabilities from a representative sample of the 

population may yield results that contradict previously existing information. There may be 

reason to believe that recently collected probabilities are inconsistent with the existing 

probabilities. Perhaps the existing data is obviously outdated in comparison to the 

recently collected data. Or, suppose the sample of the population is not as representative 

as intended. Using the techniques for solving a matrix balancing problem, incorrect cell 

probabilities must be updated to reflect the new information [Schneider, p. 442]. 
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Another incidence of the use of the matrix balancing problem occurs in the area of 

demography. Demography is the study of the size, density, and distribution of human 

population. A particular topic of interest in demography is interregional migration. 

It is important to economists, agricultural analysts, and industrial analysts, to 

estimate interregional migration patterns in the United States on a regular basis. 

However, matrices detailing flow and other migration characteristics become available 

through the general census of the population only once each decade. Intermediary 

migration estimates must be derived from the existing data and currently known migration 

trends using matrix balancing techniques in order to revise out-of-date interregional 

migration patterns [Schneider, p.442]. 

2.2 Mathematical Definition 

The general definition of the matrix balancing problem is defined as follows: 

Given an m x n matrix P with elements Pij, and vectors R = { r1, •.. , r,. J and 

S = { s1, ••• , sm ], find an m x n matrix Q with elements Qij, which satisfies the 

fallowing conditions : 

"' 
i) 2, Qij = rj, j=l , ... ,n; and 

i=I 

n 

ii) L Qij = Si, i=l, ... ,m 
j=I 

and which is "as close as possible" to matrix P. 
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The phrase "as close as possible" allows the interpretation of a well-balanced 

matrix to vary from problem to problem. For example, one situation may require that 

elements along the main diagonal of the balanced matrix equal the elements along the main 

diagonal of the original matrix. Any deviation from this form would be interpreted as an 

"unbalanced" and, therefore, unacceptable matrix. The introduction of additional 

constraints may be necessary to achieve the "closeness" desired. 

The procedures introduced in this paper will use a weighted least absolute value 

function to ensure closeness. By utilizing this type of function, a natural interpretation of 

the matrix balancing problem as a transportation problem will occur. By slightly 

modifying the traditional transportation algorithm, the matrix balancing problem can be 

solved. 
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Chapter 3 

The Modified Transportation Problem 

3.1 The Transportation Problem 

Historically, the transportation problem can be stated as a shipping problem. 

Given m sources and n destinations, their supply and demand requirements, and related 

shipping costs, how many units should be shipped from each of the sources to each of 

the destinations in order to minimize the total cost of shipping ? While total supply and 

total demand are required to be nonnegative, they need not be equal. Dummy variables 

can be introduced into the problem to force equality. By allocating prohibitively high 

costs to all routes associated with this dummy variable, a shipment of zero units along 

those routes is guaranteed in the optimal solution. For simplicity, it is assumed 

throughout the remainder of this paper that equality of total supply and demand does hold. 

The transportation problem can be expressed as a linear program. In matrix and 

vector form, the primal and dual linear programming problems of the dual pair are given as 

follows: 
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minimize CTX 

subject to : Ax = a 

Bx=b 

x~O 

maximize aTu + bTv 

subject to : u + v ~ C 

u free 

V free 

In the less general form, the primal linear program for the transportation problem 

is as follows : 

'" n 

min LL CijXij 
i=I j=I 

subject to: 

'" I Xij = 
i=I 
n 

L Xij = 
j=I 

Xij ~ 0, 

where: 

rj, 

Si, 

j=l, ... ,n 

i=l, ... ,m 

i=l , ... ,m; j=l , ... ,n 

c ij= cost associated with transporting 1 unit from i to j 

Xij= number of units transported from i to j 

rj= total supply for j 

Si= total demand for i 

By solving this linear program, a total shipping cost can be found. The dual of the 

transportation problem is then used to determine whether the current solution is optimal, 

or whether it can be improved upon. The dual problem is as follows : 

11 



"' n 

max L UiSi + L Vjrj 
i=l j=I 

subject to: 

where: 

Ui + Vj ~ Cij 

Ui, Vj free, i=l , ... ,m; j=l , ... ,n 

Ui= dual variable associated with row i 

Vj= dual variable associated with column j 

Duality relations exist between the two linear programs of the transportation 

problem. ff x is a feasible vector for the primal linear program and (u,v) is a feasible 

vector for the dual linear program, then CTX ~ aTu+bTv. ff one of the problems has an 

optimal solution, then both have optimal solutions. Further, if both have feasible vectors, 

then both have optimal vectors [Ecker, p.110]. In the case of the transportation problem, 

an optimal solution will always exist 

The complementary slackness conditions are used to find a solution for the dual of 

the transportation problem. These conditions are : 

i) Xij ( Ui + Vj - Cij )=0, i=l , ... ,m; j=l , ... ,n 
n 

ii) Ui (L Xij - Si )=0, i=l , ... ,m 
j=I 

"' 
iii) Vj (L Xij - rj )=0, j=l , ... ,n 

i=I 
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H the solution found for the dual problem is also feasible, then the feasible solution found 

for the primal problem is optimal. 

The transportation problem is easily solved using the transportation algorithm and 

tableau. The tableau stores the supplies, demands, and per unit costs. 

Algorithm: The Tranwortation Aleorithm {Ecker, p. 176} 

S,wi_l : Find an initial basic feasible solution x. 

S1J:iLZ : For the current solution x and the current cost 
coefficients Cij,find a dual vector (u,v) such that 
Ui + Vj = Cij for each (ij) with Xij basic and 
calculate the adjusted cost coefficients 
Cij - Ui - Vjfor each (ij) 

SkJL1 : If each adjusted cost coefficient is nonnegative, stop; 
the current xis optimal. 

~: 

Otherwise, pick a position with a negative adjusted 
cost and find the unique loop starting at that position 
with all other positions in the loop being those associated 
with basic variables. 

Shift as mush as possible around the loop to obtain a 
new basic feasible solution x and return to step 2 with 
the adjusted costs as the current costs. 

The optimal solution will be unique with two exceptions. First, and least 

significant, is degeneracy. A second, more interesting case occurs when the sum of the 

dual variables for a nonbasic cell equals either the positive or negative cost coefficient 

The sum of the dual variables minus the associated cost coefficient represents the marginal 

cost for that cell, the per-unit increase in the total cost if that cell is brought into the basis. 
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If the sum is zero, then bringing this cell into the basis will result in another optimal 

solution. 

3.2 A Comparison : The Matrix Balancing Problem vs. 

The Transportation Problem 

Consider the matrix balancing problem as a matrix equation A = P - Q, 

where P is the given matrix, Q is the desired balanced matrix, and A is a transformation 

matrix. Thus, the elements of A are a measure of the individual error for each element in 

Q. Define the ijth element of A to be eij = Pij-<lij· Since eij represents the difference 

between two elements, it can be either nonnegative or negative. Define et and e"i; as 

follows : 

Let 

and 

+ _ {e;i, if e;i ~ 0 
e·· -,, 0 h . , ot erwise 

_ {-e;i, if e;i ~ 0 
e··= 

I) 0 h . , ot erwise 

The row and column totals for the A matrix indicate how much error is incurred for a 

particular row or column. 
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For each element of P, the cost of altering that element must be determined. This 

cost will then be associated with the elements of i\. If the error is nonnegative, a 

positive cost per unit will be applied; if the error is negative, a negative cost per unit will 

be used Define the costs c't and c'ij in this way. 

Let 

c't = the cost of altering P;i if e;i '2!:.0 

and 

c'ij = the cost of altering P;i if e;i ~O 

Viewing the matrix balancing problem in this manner allows for a natural 

progression to a linear programming model that closely resembles the traditional 

transportation problem. 

3.3 The Modified Transportation Problem 

Using the ideas defined in the previous section, formulate the modified 

transportation linear program as follows : 
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"' n 

min ~ ~ (c ~ e~ + c-:: e-::) "'-' "'-' ,, ,, ,, ,, 
i=l j=I 

subject to: 
Ill 

L (e;j - e"ij) = r i 
i=l 

n 

L(e;j-e;;) =~ 
j=I 

e;j:2:0, eij:2:0, i=1, ... ,m;j=1, ... ,n 

The dual of this modified transportation problem is as follows : 

"' n 

max L + I _-we-- + v,·e·· IJ IJ;; 
i=l j=I 

subject to: 
c°ij~ Ui+Vi~Cij 

c;j:2:0, cij<O, i=1, ... ,m;j=1, ... ,n 

Again, complementary slackness conditions are used to find the dual vectors u and v. 

Since the modified transportation problem allows for both positive and negative values in 

the optimal solution, the complementary slackness conditions have also been slightly 

changed. These modified conditions are : 

i) 

ii) 

iii) 

iv) 

eij(w+ Vi-cij) = 0, 

w[f, ( e;j - eij )-r i] = 0, 
•=I 

v i[t ( e;j - eij )-~] = 0, 
1=1 
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One special characteristic of the modified transportation problem is that, unlike the 

transportation problem, there is no positive value constraint set on any of the general 

variables. That is, the row totals, column totals, costs, and ultimately, the optimal 

solution, can have negative values. lhls difference is most significant, as it allows for a 

wider range of problems to be solved using the basic method of the transportation 

algorithm. Thus, more real-life applications can be modeled using this modified version. 
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Chapter 4 

An Illustration of the Method 

4.1 The Modified Transportation Algorithm 

The modified transportation problem can be solved usmg the transportation 

tableau. The modified tableau is created by recording both the positive and negative cost 

associated with each element of the A matrix in the corresponding cell of the tableau, 

and noting the row and column totals of A as usual. The two costs for each cell can be 

interpreted as endpoints of a closed interval. A zero cost can be interpreted as the upper 

(positive) or lower (negative) endpoint of the interval depending on the other cost. An 

initial basic feasible solution can be found using an updated version of the Northwest 

Comer Method [Ecker, p. 166]. This Minimal Cost Northwest Comer Method introduces 

the cheaper of the two options for each cell under consideration into the solution. 

Algorithm : Minimal Cost Northwest Corner Method 
for finding an initial feasible solution 

SlJ:JLl: Consider the available cell in the most Northwest 
corner of the tableau. If the row or column total is 
positive, apply the positive cost; if it is negative, 
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S1J:Jl.l: 

apply the negative cost. If the row total times its 
associated cost is less than the column total times its 
associated cost, enter the row total amount into the 
cell. Decrease the row total and column total by 
this amount. If the updated row and column total 
are both zero, enter a zero into the next cell to the 
right. 

Otherwise, enter the column total amount into the 
cell. Decrease the row total and column total by 
this amount. If the updated row and column totals 
are both zero, enter a zero in to cell beneath the 
current one. 

If the number of filled cells equals m+n-1, then stop. 

If the row amount was entered in Step}, move down 
one row and go to Step 1. 

Otherwise, move to the right one column and go to 
Step 1. 

The Modified Transportation Algorithm is then used to find the optimal solution to the 

problem, the optimal A matrix. 

Algorithm : Modified Transportation Method 
for finding the optimal A matrix 

SJm..1: 

S1J:J1..l: 

Find an initial basic feasible solution e. 

For the current solution e and cost coefficients ct 

and Cij,find a dual vector (u,v) such that for eij 

basic: 

1) 

2) 

11• + v · = c-+: iif e·· = e-+: and Ml J I) IJ IJ > 
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simJ: 

~: 

SJm..j_: 

Calculate the adjusted cost coefficients by : 

If each adjusted cost coefficient lies in the closed 
interval [ Cii, c"t], stop; the current solution e is 

optimal. 

Otherwise, choose the cell with the largest absolute 
value cost coefficient. Find a unique loop beginning 
with that cell and having all basic cells as components. 

If a cell in the loop holds a positive value prior to the 
shift, it must retain a positive value after completion 
of the shift. Similarly, negativity of a negative cell must 
be maintained throughout the shift. 

If Ui + Vi < Cij for the cell with the largest absolute 

value adjusted cost coefficient, then shift the smallest 
negative amount possible around the loop to obtain 
a new basic feasible solution, e. 

If Ui + Vi > c"t for the cell with the largest absolute 

value adjusted cost coefficient, then shift the largest 
positive amount possible around the loop to obtain a 
new feasible solution e. 

Return to Step 2: 

4.2 An Example 
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The following example will illustrate the Modified Transportation Method for 

solving the matrix balancing problem. 

Given the matrix P, vectors Rand S, and cost matrices C+ and C -, as shown, 

find a matrix Q that is as close as possible to P, as determined by the 

costs given in C+ and C -. 

P=[~ 
2 4 3] 
8 3 1 , 

5 7 0 

c·=[; 
1 4 

;J [-3 
-4 -2 -1] 5 3 c-= ~ -3 -4 -2 

3 4 -2 -6 -5 

R=[9 8 18 3] S=[6 19 13] 

Using the Minimal Cost Northwest Comer Algorithm to find an initial feasible 

solution, the initial modified transportation tableau is as follows. Note that the costs 

associated with each cell are recorded in the upper right comer of the cell. 
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_if-3 6~ 

Y-1 1Y-3 

~ Y-2 

-2 7 

Y-2 

-4~ 

¼ 

-4 

Y-1 

_if-2 

3Y-5 

1 

4 

-5 
3 

Using the complementary slackness conditions, dual variables can be found. Arbitrarily, 

let 

u1 = 0. The remaining dual variables are recorded above and beside the tableau. To check 

feasibility of the duals, the sum of the dual variables associated with a cell must lie within 

the closed interval indicated by the two cost coefficients for that cell. The analysis of the 

dual variables for the nonbasic cells of the initial solution is given. 

Vi=-3 V2=l 

_if-3 6y-4 

Y-1 1Y-3 

y-4 Y-2 

-2 7 

22 

Y-2 

-4~ 

r-6 

-4 

Y-1 

_if-2 

3Y-5 

1 

4 

-5 
3 



Ut + V3 = -8 E [-2, 4] 

U1 + V4 = --6 E [-1,5] 

U2 + Vt = 1 E [-1, 6] 

U3 + VI = 4 E [ -4, 1] 

U3 + V2 = 8 E [ -2, 3] 

U3+ V3 = -1 E [--6,4] 

The total cost of this initial feasible solution is 

z = (-2)(-3)+(6)(1)+(1)(5)+(-4)(-4)+(-2)(-2)+(3)(1) = 40 

But, because the dual constraint has not been satisfied for all of the dual variables, this 

cannot be the optimal solution. The cell that most violates the cost coefficient interval is 

cell (1,3). Since the sum the dual variables lies outside the interval on the negative side, a 

negative value should be introduced into that cell. The unique cycle about that cell is 

formed by cells (1,3), (2,3), (2,2), and (1,2). To add a negative value into cell (1,3), that 

same negative amount must be subtracted from cell (2,3), added to cell (2,2), and 

subtracted from cell (1,3). The smallest negative amount that can be shifted around this 

cycle is -1, the value found in cell (2,2). Shifting -1 units around this cycle will maintain a 

feasible solution for the primal problem, since the row totals and column totals are 

unchanged. Once the new feasible solution has been found, a new corresponding dual 

solution must be obtained and evaluated. 
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U1=0 4 _if-3 7~ -1Y-2 Y-1 

U=~ -5 Y-1 Y-3 _3Y-4 _if-2 

U3=l 3 Y-t Y-2 ¼ 3Y-s 

-2 

u1+V4=0e[-1,5] 

U2+ VI= -5 E [-1,6] 

U2 + V2 = -1 E [-3, 5] 

7 -4 1 

U3+ VI= -2 E [-4,1] 
U3+V2 = 2e [-2,3] 

U3+ V3 = -1 E [--6,4] 

z = (-2)(-3)+(7)(1)+(-l)(-2)+(-3)(-4)+(-2)(-2)+(3)(1) = 34 

Updating the basic feasible solution by pivoting on cell (2,1) yields the following tableau: 

U1=0 Y-3 7"--4 

-iY-1 Y-3 

Y-t Y-2 

-2 7 

24 

_3Y-2 

-ly-4 

¼ 

-4 

Y-1 

_if-2 

3Y-s 

1 

4 

-5 
3 



UI + VI = 1 E [ -3, 2] 

u1+v4=0e[-1,5] 

U2+ V2 = -1 E [-3,5] 

U3 + VI = 2 i: [-4, 1] 

U3 + V2 = 2 E [-2, 3] 
U3+ V3 = -1 E [--6,4] 

z = (7)(1)+(-3)(-2)+(-2)(-1)+(-1)(-4)+(-2)(-2)+(3)(1) = 26 

The constraints for the dual of the modified transportation problem are violated 

most for cell (3,1). Because the sum of the dual variables lies outside the closed interval 

on the positive side, a positive amount must be introduced into this cell. The largest 

positive amount that can be shifted around the cycle formed on this cell is 2. After 

pivoting on this cell and calculating the dual variables, analysis of those variables shows 

that this solution to the dual problem is feasible. Therefore, the corresponding solution to 

the primal problem is the optimal solution. 

Y-3 

-4Y-1 

-t1-4 
-2 

UI +VI= 1 E [-3,2] 

UI + V4 = 1 E [-1,5] 
u2+v2 = -1 e[-3,5] 

7~ 

Y-3 

Y-2 

7 

25 

_3Y-2 

-1~ 

¼, 

-4 1 

Y-1 

Y-2 

1Y-s 

4 

-5 
3 

u2+v4=-le[-2,2] 

U3 + V2 = 1 E [ -2, 3] 

U3+ V3 = -2 E [--6,4] 



z = (7)(1)+(-3)(-2)+(-4)(-1)+(-l)(-4)+(2)(1)+(1)(1) = 24 

Thus, the optimal /1 matrix and balanced matrix Q are : 

Chapter 5 

[

o 7 

11= -4 0 

2 0 

-3 OJ -1 0 

0 1 

-5 7 

8 4 Q=[~ 5 

Computer Implementation of the Method 

5.1 Motivation 

Modifying the transportation problem to allow for negativity of variables and dual 

costs for one entity introduces a new method for solving many problems of today. While 

the previous example illustrated the ease of solving a simple 3 x 4 matrix balancing 

problem using this method, obviously one would not want to solve a larger problem by 

manipulating the tableaus by hand 
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The program found in Appendix I implements the ideas set forth in this paper. 

Written in FORTRAN, it allows the user to read in a file containing the dimensions of a 

matrix, a cost array, and supply and demand requirements. Using the method of the 

modified transportation problem, an optimal solution is found and sent to a file. No 

previous knowledge of the method is required. 

5.2 Overview of the FORTRAN Program 

The FORTRAN program, MTRANS, performs the basic procedure for solving the 

modified transportation problem as described in Chapters 3 and 4. Upon reading the data 

from the input file, a test to check the equality of the row totals and column totals is 

performed. If equality does not exist, a dummy row or column is added to the problem. 

Cells in this dummy row or column have positive cost coefficient 199998 and negative 

cost coefficient -199998 thereby guaranteeing that they will not be represented in the 

optimal solution. The numbers 199998 and -199998 were chosen to represent extremely 

large, and most likely prohibitive, costs. 

Establishing an Initial Basic Feasible Solution 

The initial feasible solution is found using the Minimal Cost Northwest Comer 

Algorithm. Consider cell (1,1). If the row total for row 1 is positive, multiply it by the 

positive cost coefficient for that cell; if it is negative, apply the negative cost coefficient 

Apply costs to the column total for column 1 in the same manner. Input the minimum of 

the two values in cell (1,1). If the row value is used, no other cells in row 1 will be able to 
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be filled without violating the constraint that cell totals in a row sum to the row total. A 

flag is turned on to indicate that row 1 is full. Move down one row and consider the 

northwest-most available cell. Repeat the procedure. If the column value is used as input 

for the cell, a similar action results. Move to the right one column and repeat the 

procedure. Continue until m + n - 1 cells have been filled. 

In the event of a tie between the row and column totals, fill the cell with the 

appropriate value, and place a zero in an adjoining cell. If the row total is positive, place a 

zero in the next cell to the right; otherwise, enter a zero in the cell directly beneath the 

current one. Refer to the Minimal Cost Northwest Corner Algorithm on page 18 for more 

details on this method. 

In addition to the cell amount, which is recorded in the array A(i,j), another value 

is associated with each cell. There is a ternary decision function T applied to each cell. 

This function is primarily used to identify whether a cell should be interpreted as basic or 

nonbasic if there is a zero value in it. Initially, both A(ij) and T(i,j) equal zero for all i and 

j. Then as the initial feasible solution is found, 

1, if{cell(i,j) is basic, A(i,j)=O, and ct applies 

T(i,j)= -1, if {cell(i,j) is basic, A(i,j)=O, and cii applies 

0, otherwise 

Any basic cells with A(i,j)=O in the initial basic feasible solution will have T(i,j)=l 

associated with them; that is, for this solution, the positive cost will be applied to the 

zeroes in those cells. The use of the T(ij) array may not seem important at this point in 

the problem. However, it will be necessary to keep track of the "positivity" or 

"negativity" of a cell. Associating this "T-value" with each cell will allow the positivity or 

negativity of a cell to be known at a glance. 
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Fmally, a parent array is created to identify a tree structure associated with the 

initial basic feasible solution. The use of this tree is explained in detail later when finding 

the pivoting cycle. The initial parent array is built as cells are filled, with row one being 

the root of the tree; thus, the parent of row one is zero. The basic premise used here is 

that if the cell in row i, column j is basic, then either i is the parent of j, or vice versa. 

Finding a Dual Solution 

Once an initial basic feasible solution has been established, a corresponding dual 

solution must be found. Arbitrarily, u1 is set to equal zero. All other dual variables are 

equated to 199998. Systematically stepping through the A(ij) array in a southeasterly 

direction, dual variables are calculated, if possible, at each basic cell. ff only one of the 

dual variables associated with a cell equals 199998, then the other dual variable for the cell 

can be determined. ff both variables equal 199998, nothing can be done; continue 

through the A(i,j) array to the next basic cell. 

ff the dual variable can be found, consider A(i,j) for the cell. ff A(ij) is positive, or 

if it is zero with T{i,j) = 1, then the unknown dual variable is found by 

U;+ Vj-Cij = 0. 

Recall that if A(i,j)=O and T(ij) ~ 0, then the cell is basic. ff A(ij) is negative, or if 

A(ij)=O with T{i,j) = -1, then calculate the required dual variable using 

Cij - Ui - V j = 0. 

ff all of the dual variables have not been calculated once A(m,n) has been checked, 

return to A(l,l) and systematically move through the array again. Update dual variables 

wherever possible. Continue this procedure until a dual solution has been determined. 

Checking the Feasibility of the Dual Solution 
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After a dual solution has been found, it must be checked for feasibility. Recall that 

the dual solution is feasible if for all i and j, 

c"ij Su.+vj Set-

If the sum of the dual variables lies within the closed interval determined by the cost 

coefficients for the cell, a counter opt is increased by one. After checking each cell, if opt 

= m x n, the dual solution is feasible and, therefore, the primal solution is optimal. This 

optimal solution is written to a file, along with the optimal total cost 

If, however, the number of optimal cells is not equal tom x n, the pivot cell must 

be located. Running through the non-optimal cells, find the cell whose dual variables 

produced the largest deviation from the interval. If the largest deviation occurs when 

U. + Vj- Cij ~ 0, 

a switch called pos is set to 1. This indicates that a positive value will enter the basis in 

this cell. If the largest difference occurs on the negative side of the interval, neg is set 

equal to 1 and a negative value will enter the basis in this cell. Record the pivot cell as 

A(iljl). 

Locating the Cycle 

One interesting feature of this program is the way the cycle about the pivot cell is 

found. All feasible solutions for the primal problem can be interpreted as a matching on a 

bipartite graph, G ( V1,V2,E ); let V1={ i I i = 1, ... ,m }, V2 = { j I j = 1, ... ,n }, and 

E={ (i,j)I cell(ij) is basic}. Thus, for the example in Chapter 4, the bipartite graph 

associated with the initial basic feasible solution x is : 
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A simple function allows the rows, i, to be identified by odd numbers, and the columns, j, 

to be identified as even numbers. 

{
2x -1, if x is a row, and 

f(x)= 
2x, if xis a column 

The use of this function avoids confusion and misinterpretation of the rows and columns 

of the tableau as they are manipulated. 
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It is most advantageous now to restructure the bipartite graph G into the tree H. 

The root of this tree will be il. For all initial basic feasible solutions il=l. Hence, the tree 

H for the example is : 
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2 4 

6 8 

H 

Recall the parent array introduced when finding the initial basic feasible solution. 

By maintaining this parent array throughout the program, the cycle can be found rather 

easily [Balinski, p. 171]. For the example, it was determined that cell(l,3) was to enter 

the basis on the first pivot. Using the function f(x) to convert the rows and columns to 

unique numbers, an edge should be added between nodes 1 and 6 on the tree. There is a 

unique path from node 1 to node 6; adding edge (1,6) would complete the cycle. To find 

this path, start at node 1. Step back through the parent array until either the root or node 

6 is reached, recording each node visited. If node 6 is visited first, the path has been 

found. If the root is reached first, continue searching through the parent array, starting 

this time with node 6. Again, record any visited node. Once a previously visited node, Y, 

is reached, the unique path will be the union of the two searches minus any nodes "above" 

Yin the parent array. That is, any generations prior to Y are not included in the unique 

path. 
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2 4 

6 8 

H 

cycle= { 1,4,3,6 } 

For convenience the cycle of length z is recorded as an array of nodes, with 

cycr(l)= i1 and cycr(z)=j 1. The array cycr(k) represents a cycle of nodes. It must be 

converted into a cycle of edges, since edges represent basic cells in the tableau. The cycle 

of edges is also held in an array, cyc(k), which is of length p. Recall the array cycr(k) : 

cycr(k) = { 1,4,3,6 } 

The elements of cyc(k) can be found by taking consecutive pairs of elements of cycr(k), 

ordering them with the odd number coming first, and listing them as coordinates of the 
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array A. Append the edge entering the basis onto the end of the cyc(k) array as cyc(p). 

Hence, 

cyc(k) = { A(l,4), A(3,4), A(3,6), A(l,6) } 

Applyingf -1(x) to the subscripts of A allows direct reference of the cycle and the 

tableau. 

cyc(k) = { A(l ,2), A(2,2), A(2,3), A(l,3) } 

This tree structure requires updating each time the basic feasible solution is 

updated, but offers a quick way of locating the unique cycle about the pivot cell. 

Updating the Cycle 

When the feasibility of the dual variables was verified, it was determined whether a 

positive or negative value was to enter the basis in A(il,j 1). Since the pivot value will be 

added to even elements in the cycle and subtracted from the odd elements, the pivot value 

is determined by checking the odd and even cycles separately. The last element of the 

cycle, the entering edge, is excluded from this evaluation. The pivot value will be the 

largest possible amount that can be shifted around the cycle while maintaining positive 

values in previously positive cells, and negative values in those cells already negative. 

H a positive value is to be brought into the basis, a positive number will be added 

to even elements in the cycle. The best pivot candidate will be the largest negative value 

in those cells. Next, the odd cycle must be evaluated. The pivot candidate from this cycle 

will be the minimum of the positive values in the cells. Fmally, comparing the two 
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candidates. the pivot value will be the absolute value of the minimwn of them. This 

amount is shifted around the declared cycle. 

If a negative number is to enter the basis. a similar comparison is made. The pivot 

amount will be the opposite of the absolute value of the minimwn of the two candidates. 

Again. this amount is shifted around the cycle to form the new basic feasible solution. 

Updating the Tree Structure 

Once the shift of units has occurred. the basis supports a new cell structure. The 

parent array must be updated to reflect this new information. Using the tree H. add the 

entering edge and delete the leaving edge. For the example. cell(l.3) entered the basis and 

cell(2.2) left; that is. edge (1.6) and edge (3.4) on the tree are updated to create tree H1• 

The root of the tree will remain the same. Thus. the graph H1 appears as follows: 

1 

2 4 

6 8 

H 

1 

2 

Ht 
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Using the right and left paths found when locating the cycle, cycr(k) and cycl(k), 

it is possible to find the depth of the nodes in the cycle. It must be determined whether the 

root of the tree is an element in the cycle. If is it not, a subroot of the cycle must be 

found. This subroot will be the node in the cycle that sits closest to the root of the tree. 

By design, the right and left paths end at the top of the tree. Thus, by checking the depth 

of last elements in the arrays cycr(k) and cycl(k), the subroot can be determined. 

The parent array can now be updated based on the elements that changed in the 

cycle. Using the graph of H, let k2 designate the odd node associated with the edge that is 

leaving the basis. Let k3 designate the even node associated with that edge. Recall that il 

and jl indicate the odd and even nodes of the entering edge, respectively. Finally, label 

the subroot of the tree as sub. Listing the nodes of the cycle, beginning with i1 and ending 

with jl, labeling k2, k3, and sub, indicating the exiting edge by a vertical line between the 

nodes, and letting an arrow indicate the parent of a node, some observations can be made : 

1 4 
"-/ 

sub k3 
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1) The flow indicated by the arrows is inteITUpted only twice: at the break and 

at the sub. 

2) Arrows only flow into the sub. This is expected, since the sub is either the 

root whose parent is always zero, or the sub is a subroot whose parent 

should remain unchanged within the cycle. 

3) Arrows only flow away from the break. 

4) Arrows never flow into k2 or k3, since they cannot be parents to any node 

in the cycle. 

By considering the locations of k2, k3, and sub, a unique pattern of flow exists for 

each combination of locations. By determining the pattern, the parent array can be 

methodically updated. 

Recording the Optimal Solution 

The parent array has been updated to reflect the new tree structure and the new 

basic feasible solution. Now, the dual problem must also be checked. Repeat the entire 

process until the dual solution e is feasible, indicating that the current primal feasible 

solution x is optimal. The optimal solution x and its optimal total cost are sent to a file as 

output. 

5.3 Further Research 

It remains to be seen how the implementation of the Modified Transportation 

Problem in FORTRAN compares to other existing programs for matrix balancing 

problems. Pertaining to this program, improvements can be made specifically in the 

method used to find the initial basic feasible solution. The Minimal Cost Northwest 
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Corner Method, while effective, may not necessarily find the best starting solution. 

Vogel's Approximation Method for finding an initial basic feasible solution for the 

transportation problem is known to yield much better results [Ecker, p. 180]. In the 

future, a modified version of Vogel's Approximation Method may prove to be equally as 

successful in conjunction with the Modified Transportation Algorithm. 

Another topic for future research lies in determining the complexity of calculating 

the dual variables in very large problems. The mapping of the primal basic feasible 

solution onto the modified transportation tableau may yield a particular pattern of basic 

and nonbasic cells. When this pattern occurs in large problems, the associated dual 

solution is rather difficult to find using the method outlined in the program. Determining 

the complexity of calculating the dual variables for patterns such as those may enable the 

program to be updated to handle such situations correctly. Alternately, studies may show 

that a new method for calculating the dual variables is required. 
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Program MTRANS 
IMPLICIT INTEGER (A-Z) 

C This program solves matrix balancing problems using the Modified Transportation 
C Method. Input is read from a file MTRANS*.IN and output is sent to a file 
C MTRANS.OUT. 

C The parameters of this program are : 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PARAMETER 

Ml 
Nl 
XTRA(I) 
Y(n 
CTRAP(l,n 
CTRAM(l,n 
U(I) 
vcn 
A(l,n 
T(l,J) 

PARENT(K) 

BOOL(K) 
CYCR(K) 
CYCL(K) 
CYC(K) 
Il(K),JJ(K) 
TOTCOST 

DESCRIPTION 

Number of rows in a normal transportation tableau 
Number of columns in a normal transportation tableau 
Supply vector 
Demand vector 
Array of positive costs associated with the matrix 
Array of negative costs associated with the matrix 
Dual vector associated with rows 
Dual vector associated with columns 
Array of cell values 
Array used to distinguish basic and nonbasic cells in certain 
situations 
Array associated with the tree structure; used to find the 
unique cycle when pivoting 
Boolean array used in locating the cycle 
Intermediate arrays used in locating the cycle 

Array of cells appearing in the cycle 
Coordinates of element CYC(K) 
Total cost of the final solution 

C To use this program to solve a problem : 
C Read in the dimensions of the matrix: Ml,Nl. 
C Read in the positive cost coefficients, CTRAP(l,n 
C Read in the negative cost coefficients, CTRAM(l,n 
C Read in the available supplies, XTRA(I) 
C Read in the market demands, Y(n 

DIMENSION CTRAP(lOl,101), CTRAM(lOl,101) 
DIMENSION U(lOl), V(lOl), XTRA(lOl), Y(lOl) 
DIMENSION A(lOl,101), T(lOl,101), PARENT(lOl) 
DIMENSION C(lOl), R(lOl), MAX(l,n 
DIMENSION CYCR(lOl),CYCL(lOl), 11(101), JJ(lOl) 
DIMENSION CYC(lOl), BOOL(206) 



OPEN(6,FILE='MTRANS.OUT ,STA TUS='OLD') 
OPEN(5,FILE='MTRANS.IN' ,STA TUS='OLD') 
READ(5,*) Ml,Nl 
DO 9992 l=l,Ml 

READ(5, *)(CTRAP(l,J),J= 1,Nl) 
9992 CONTINUE 

DO 9993 l=l,Ml 
READ(5,*)(CTRAM(l)),J=l,Nl) 

9993 CONTINUE 
READ(5,*)(XTRA(l),l=l,Ml) 
READ(5,*)(Y(J),J=l,Nl) 

INFIN1=1999998 
INFIN2=1999999 
M=Ml+l 
N=Nl+l 
N2=M+N-1 
N3=N2+1 
Sl=O 
S2=0 
NUMPVT=O 
DO 4951=1,Ml 

CTRAP(l,N)=O 
CTRAM(l,N)=-INFIN2 

495 CONTINUE 
DO 486 J=l,N 

CTRAP(M,J)=O 
CTRAM(M))=-INFIN2 

486 CONTINUE 
DO 500 l=l,Ml 

Sl=Sl+XTRA(I) 
500 CONTINUE 

DO 518 J=l,Nl 
S2=S2+Y(J) 

518 CONTINUE 
IF(S 1.GT.S2)GO TO 1510 
IF(S 1.EQ.S2)THEN 

M=Ml 
N=Nl 
N2=M+N-1 
N3=N2+1 
GOTO 1511 

ENDIF 
XTRA(M) = S2 - S 1 
Y(N) =0 
GOTO 1511 

1510 Y(N)=Sl-S2 
XTRA(M)=0 



1511 IPRINT=0 

C ************************************************************* 
C FINDSTARTINGSOLUTION 
C Finds a starting solution using the Minimum Cost Northwest Corner Algorithm 
C ************************************************************* 

NUMBC=O 
D04K=l,M*N 

PARENT(K)=INFINl 
4 CONTINUE 

D05 l=l,M 
DO 6J=l,N 

T(l,J)=0 
6 CONTINUE 
5 CONTINUE 

12=0 
12=0 
P ARENT(l)=O 
ROOT=l 
DO 151=1,M 

IF (R(l).NE.0) GOTO 15 
DO 20 J=l ,N 

IF (C(J).NE.0) GOTO 20 
IF (R(l).NE.0) GOTO 15 
IF (NUMBC.EQ.M+N-3) THEN 

Jl=J 
11=1 
GOTO35 

ENDIF 
IF (I.EQ.M.AND.Y(J).NE.0) THEN 

A(l,J)=Y(J) 
XTRA(l)=XTRA(I)-Y(J) 
Y(J)=O 
C(J)=l 
GOTO 19 

ELSE IF (J.EQ.N.AND.XTRA(l).NE.0) THEN 
A(l,J)=XTRA(I) 
Y(J)=Y(J)-XTRA(I) 
XTRA(l)=O 
R(l)=l 
GOTO 19 

ENDIF 
IF (Y(J).LT.0.AND.XTRA(l).LT.0) THEN 

IF (Y(J).GT.XTRA(I)) THEN 
A(l,J)=Y(J) 
XTRA(l)=XTRA(I)-Y(J) 
Y(J)=O 
C(J)=l 



GOTO 19 
ELSE 

A(l,J)=XTRA(I) 
Y(J)=Y(J)-XTRA(I) 
XTRA(l)=O 
R(l)=l 
IF(Y(J).EQ.XTRA(I)) THEN 

IF(I+ l.LE.M) THEN 
A(l+l,J)=O 
C(J)=l 
IF (PARENT(2*(1+1)-1).EQ.INFIN1) THEN 

P ARENT(2*(1+ 1 )-1 )=2* J 
ELSE 

P ARENT(2*J)=2*(1+ 1)-1 
ENDIF 
T(l+l,J)=l 
NUMBC=NUMBC+ 1 

ELSE 
A(l,J+l)=O 
T(l,J+ l)=l 
IF (PARENT(2*(J+l)).EQ.INFIN1) THEN 

P ARENT(2*(J+ 1))=2*1-1 
ELSE 

PARENT(2*I-1)=2*(J+ 1) 
ENDIF 
NUMBC=NUMBC+ 1 

ENDIF 
ENDIF 
GOTO 19 

ENDIF 
ELSE IF (Y(J).GE.0.AND.XTRA(l).LT.0) THEN 

IF (Y(J)*CTRAP(I,J).GE.XTRA(l)*CTRAM(I,J)) THEN 
A(l,J)=XTRA(I) 
Y(J)= Y(J)-XTRA(I) 
XTRA(l)=O 
R(l)=l 
GOTO 19 

ELSE 
A(l,J)=Y(J) 
XTRA(l)=XTRA(I)-Y(J) 
Y(J)=O 
C(J)=l 
GOTO 19 

ENDIF 
ELSE IF (Y(J).LT.0.AND.XTRA(D.GE.0) THEN 

IF (Y(J)*CTRAM(l,J).GE.XTRA(I)*CfRAP(I,J)) THEN 
A(l,J)=XTRA(I) 
Y(J)= Y(J)-XTRA(I) 



XTRA(I)=O 
R(I)=l 
GOTO 19 

ELSE 
A(l,J)=Y(J) 
XTRA(l)=XTRA(l)-Y(J) 
Y(J)=O 
C(J)=l 
GOTO 19 

ENDIF 
ELSE 

IF (Y(J).GE.XTRA(I)) THEN 
A(l,J)=XTRA(I) 
Y(J)= Y(J)-XTRA(I) 
XTRA(l)=O 
R(l)=l 
IF(Y(J).EQ.XTRA(I)) THEN 

IF(J+ 1.LE.N) THEN 
A(l,J+l)=O 
R(I)=l 
C(J)=l 
T(I,J+ l)=l 
IF (PARENT(2*(J+l)).EQ.INFIN1) THEN 

PARENT(2*(J+1))=2*1-1 
ELSE 

PARENT(2*1-1)=2*(J+l) 
ENDIF 
NUMBC=NUMBC+ 1 

ELSE 
A(l+l,J)=O 
T(I+l,J)=l 
C(J)=l 
R(l)=l 
IF (PARENT(2*(1+1)-1).EQ.INFIN1) THEN 

PARENT(2*(1+1)-1)=2*J 
ELSE 

PARENT(2*J)=2*(1+1)-1 
ENDIF 
NUMBC=NUMBC+ 1 

ENDIF 
ENDIF 
GOTO 19 

ELSE 
A(l,J)=Y(J) 
XTRA(l)=XTRA(I)-Y(J) 
Y(J)=O 
C(J)=l 
GOTO 19 



ENDIF 
ENDIF 
NUMBC = NUMBC+ 1 
IF(I.EQ.M-1.AND. Y(J).NE.0.AND.NUMBC.NE.M+N-3) THEN 

A(l+l,J)=Y(J) 
XTRA(I+ l)=XTRA(I+ 1)-Y(J) 
C(J)=l 
R(l)=l 

ENDIF 
IF (J.EQ.N-1.AND.XTRA(l).NE.0.AND.NUMBC.NE.M+N-3) THEN 

A(l,J+ l)=XTRA(I) 
Y(J+l)=Y(J+l)-XTRA(I) 
R(l)=l 
C(J)=l 

ENDIF 
19 IF (PARENT(2*1-l).EQ.INFIN1) THEN 

PARENT(2*1-1)=2*J 
ENDIF 
IF (PARENT(2*J).EQ.INFIN1) THEN 

P ARENT(2*J)=2*1-1 
ENDIF 

20 CONTINUE 
15 CONTINUE 

C -------------------------------------------
C Place Last Two Basic Cells 
C -------------------------------------------
35 IF (11.EQ.M) THEN 

A(ll,Jl)=Y(Jl) 
XTRA(ll)=XTRA(Il)-Y(Jl) 
Y(Jl)=O 
A(ll,Jl + l)=XTRA(ll) 
IF (PARENT(2*Jl).EQ.INFIN1) THEN 

PARENT(2*J1)=2*11-1 
ENDIF 
IF (PARENT(2*11-l).EQ.INFIN1) THEN 

PARENT(2*11-1)=2*Jl 
ENDIF 
IF (PARENT(2*11+1).EQ.INFIN1) THEN 

PARENT(2*11 + 1)=2*Jl 
ENDIF 
IF (PARENT(2*(Jl+l)).EQ.INFIN1) THEN 

PARENT(2*(J1+1))=2*11-1 
ENDIF 

ELSE IF (Jl.EQ.N) THEN 
A(ll,Jl)=XTRA(ll) 
Y(Jl )= Y(Jl )-XTRA(ll) 
XTRA(ll)=O 
A(ll+l,Jl)=Y(Jl) 



IF (PARENT(2*(Jl-1)).EQ.INFIN1) THEN 
PARENT(2*(Jl-1) )=2*11-1 

ENDIF 
IF (PARENT(2*Jl).EQ.INFIN1) THEN 

PARENT(2*Jl)=2*11-1 
ENDIF 
IF (PARENT(2*11 + l).EQ.INFINl) THEN 

PARENT(2*11 + 1)=2*Jl 
ENDIF 

ENDIF 

C ****************************************************** 
C Find the Dual Variables 
C ****************************************************** 
200 U(l)=0 

DO 501=2,M 
DO 55 J=l,N 

U(l)=INFINl 
V(J)=INFINl 

55 CONTINUE 
50 CONTINUE 

DO 59 TIME=l,M+N 
DO 60 l=l,M 

DO 65 J=l,N 
IF (U(l).NE.INFINl.AND.V(J).NE.INFINl) GOTO 65 
IF (U(l).EQ.INFINl.AND.V(J).EQ.INFINl) GOTO 65 
IF (A(l,J).GT.0) THEN 

IF (U(l).EQ.INFINl) THEN 
U(l)=CTRAP(l,J)-V(J) 

ELSE 
V (J)=CTRAP(l,J)-U (I) 

ENDIF 
ELSE IF (A(I,J).L T.0) THEN 

IF (U(l).EQ.INFINl) THEN 
U(l)=CTRAM(l,J)-V(J) 

ELSE 
V(J)=CTRAM(l,J)-U(I) 

ENDIF 
ELSE IF (A(l,J).EQ.0.AND.T{l,J).NE.0) THEN 

IF {T(l,J).EQ. l) THEN 
IF (U(l).EQ.INFINl) THEN 

U(l)=CTRAP(l,J)-V (J) 
ELSE 

V (J)=CTRAP(l,J)-U (I) 
ENDIF 

ELSE IF {T(l,J).EQ.-1) THEN 
IF (U(l).EQ.INFINl) THEN 

U(l)=CTRAM(l,J)-V(J) 



ELSE 
V (J)=CTRAM(l,J)-U(I) 

ENDIF 
ENDIF 

ENDIF 
65 CONTINUE 
60 CONTINUE 
59 CONTINUE 

C ******************************************* 
C Check Feasibility of Dual Variables 
C ******************************************* 

OPT=0 
MX=O 
DO 801=1,M 

DO 85 J=l,N 
IF (CTRAM(l,J).LE.U(l)+V(J).AND.U(l)+V(J).LE.CTRAP(l,J)) THEN 

OPT=OPT+l 
GOTO85 

ELSE IF (U(l)+V(J).LT.0) THEN 
MAX(l,J)=CTRAM(l,J)-U(l)-V(J) 
IF (MAX(l,J).GT.MX) THEN 

MX=MAX(l,J) 
11=1 
Jl=J 
POS=O 
NEG=l 

ENDIF 
ELSE IF (U(l)+V(J).GT.0) THEN 

MAX(l,J)=U(I)+ V(J)-CIRAP(l,J) 
IF (MAX(l,J).GT.MX) THEN 

MX=MAX(I,J) 
11=1 
Jl=J 
POS=l 
NEG=O 

ENDIF 
ENDIF 

85 CONTINUE 
80 CONTINUE 

IF (OPT.EQ.M*N) then 
WRITE(6,*)'THE OPTIMAL SOLUTION IS :' 
DO 3011=1,M 

WRITE(6,*)(A(l,J),J=l,N) 
301 CONTINUE 

C -------------------------------------------
C Calculate Total Cost 

C -------------------------------------------



TOTCOST=0 
DO 310 I=l,M 

DO 315 J=l,N 
IF (A(l,J).L T.0) THEN 

TOTCOST=TOTCOST +A(l,J)*CTRAM(l,J) 
ELSE 

TOTCOST=TOTCOST +A(l,J)*CfRAP(l,J) 
ENDIF 

315 CONTINUE 
310 CONTINUE 

WRITE(6,*)'1HE OPTIMAL TOTAL COST IS:', TOTCOST 
999 STOP 

ENDIF 

C ********************************************** 
C Find Cycle Using Tree Structure 
C ********************************************** 

DO 861 K=l,P 
CYCR(K)=O 

861 CONTINUE 
P=O 
DO 862 K=l,T2 

CYCL(K)=O 
862 CONTINUE 

T2=0 
DO 86 NODE=l,M*N 

BOOL(NODE)=O 
86 CONTINUE 

Z=l 
CYCR(Z)=2*11-1 
NODE=CYCR(Z) 
BOOL(NODE)=l 

87 IF (NODE.NE.2*11) THEN 
IF (NODE.NE.ROOT) THEN 

CYCR(Z+ l)=PARENT(CYCR(Z)) 
NODE=CYCR(Z+ 1) 
BOOL(NODE)=l 
Z=Z+l 
GOTO87 

ELSE 
P=Z 
T2=0 
GOTO88 

ENDIF 
ELSE 

P=Z 
GOTO89 

ENDIF 



88 Tl=l 
CYCL(Tl )=2* J1 
NODE=CYCL(Tl) 

90 BOOL(NODE)=l 
CYCL(Tl + l)=PARENT(CYCL(Tl)) 
IF (BOOL(CYCL(Tl+l)).NE.1) THEN 

NODE=CYCL(Tl + 1) 
Tl=Tl+l 
GOTO90 

ELSE 
GOTO91 

ENDIF 
91 T2=Tl 

LAST=CYCL(Tl+l) 
DO 98 K=l,M*N 

IF (PARENT(LAST).EQ.0) GOTO 95 
IF (BOOL(PARENT(LAST)).NE.0) THEN 

BOOL(P ARENT(LAST))=O 
LAST=P ARENT(LAST) 

ENDIF 
98 CONTINUE 
95 RTEND=Z 

DO 97 K=l,RTEND 
IF (BOOL(CYCR(K)).EQ.0) THEN 

Z=Z-1 
ENDIF 

97 CONTINUE 
DO 92 K=Z+ 1,Z+ T2 

CYCR(K)=CYCL(Tl) 
Tl=Tl-1 

92 CONTINUE 
P=Z+T2 

89 DO 93 K=l,P 
IF (MOD(K,2).NE.0) THEN 

CYC(K)=A(0.5*CYCR(K)+0.5,0.5*CYCR(K+ 1)) 
Il(K)=0.5*CYCR(K)+o.5 
JJ(K)=CYCR(K + 1 )*0.5 

ELSE 
IF (K.EQ.P) THEN 

CYC(P)=A(Il,Jl) 
Il(P)=Il 
JJ(P)=Jl 

ELSE 
CYC(K)=A(0.5*CYCR(K + 1 )+o.5,0.5*CYCR(K)) 
Il(K)=0.5*CYCR(K + 1 )+o.5 
JJ(K)=0.5*CYCR(K) 

ENDIF 
ENDIF 



93 CONTINUE 

C ***************************************** 
C Pivot Around the Cycle 
C ***************************************** 

MIN=INFINl 
MX=(-l)*INFINl 
IF(POS.EQ.1) THEN 

Kl=O 
DO 150 K=l,P-1,2 

IF (CYC(K).GT.0.OR.T(II(K),JJ(K)).EQ. l) THEN 
IF (CYC(K).LE.MIN) THEN 

MIN=CYC(K) 
Kl=K 

ENDIF 
ENDIF 

150 CONTINUE 
K2=0 
DO 151 K=2,P-2,2 

IF (CYC(K).LT.0.OR.T(II(K),JJ(K)).EQ.-1) THEN 
IF (CYC(K).GE.MX) THEN 

MX=CYC(K) 
K2=K 

ENDIF 
ENDIF 

151 CONTINUE 
IF (K2.EQ.0) THEN 

CYC(P)=CYC(Kl) 
ELSE IF (Kl.EQ.0) THEN 

CYC(P)=(-1 )*CYC(K2) 
Kl=K2 

ELSE 
IF (ABS(CYC(K2)).LT.CYC(Kl)) THEN 

CYC(P)=ABS(CYC(K2)) 
Kl=K2 

ELSE 
CYC(P)=CYC(Kl) 

ENDIF 
ENDIF 

ELSE 
Kl=O 
DO 152 K=l,P-1,2 

IF (CYC(K).LT.0.OR.T(II(K),JJ(K)).EQ.-1) THEN 
IF (CYC(K).GE.MX) THEN 

MX=CYC(K) 
Kl=K 

ENDIF 
ENDIF 



152 CONTINUE 
K2=0 
DO 153 K=2,P-2,2 

IF (CYC(K).GT.0.OR.T(ll(K),JJ(K)).EQ.l) THEN 
IF (CYC(K).LE.MIN) THEN 

MIN=CYC(K) 
K2=K 

ENDIF 
ENDIF 

153 CONTINUE 
IF (K2.EQ.0) THEN 

CYC(P)=CYC(Kl) 
ELSE IF (Kl.EQ.0) THEN 

CYC(P)=(-1 )*CYC(K2) 
Kl=K2 

ELSE 
IF (ABS(CYC(Kl)).LT.CYC(K2)) THEN 

CYC(P)=CYC(Kl) 
ELSE 

CYC(P) =(-l)*CYC(K2) 
Kl=K2 

ENDIF 
ENDIF 

ENDIF 
VALUE=CYC(p) 
AMT=Kl 
IF {T(ll(AMT),JJ(AMT)).EQ.l) THEN 

T{ll{P),JJ(P))=l 
ELSE IF {T(ll(AMT),JJ(AMT)).EQ.-1) THEN 

T(ll(P),JJ(P))=-1 
ENDIF 
IF (POS.EQ.l) THEN 

DO 154 K=l,P-1 
IF (CYC(K).GE.0) THEN 

T{ll(K),JJ(K))=l 
ELSE 

T(II(K),JJ (K) )=-1 
ENDIF 
CYC(K)=CYC(K)+(-1 )**K*V ALUE 

154 CONTINUE 
ELSE 

DO 155 K=l,P-1 
IF (CYC(K).GE.0) THEN 

T(ll(K),JJ(K))=l 
ELSE 

T(ll{K),JJ (K) )=-1 
ENDIF 
CYC(K)=CYC(K)+(-1 )**K*V ALUE 



155 CONTINUE 
ENDIF 
CYC(Kl)=O 
T(II(AMT),JJ(AMT))=O 
l2=1I(AMT) 
J2=JJ(AMT) 
DO 160 K=l,P 

A(II(K),JJ(K))=CYC(K) 
IF (A(II(K),JJ(K)).NE.0) THEN 

T(II(K),JJ(K))=O 
ENDIF 

160 CONTINUE 

C ************************************** 
C Update Tree Structure 
C ************************************** 

RTCT=O 
DO 1541 K=l,P 

IF (CYCR(K).EQ.2*II(Kl)-1) THEN 
K2=K 

ELSE IF (CYCR(K).EQ.2*JJ(Kl)) THEN 
K3=K 

ENDIF 
1541 CONTINUE 

C -------------------------------------
C Check if Root is in Cycle 
C ----. -----------------------------

RTCOUNT=O 
DO 1543 COUNT=l,P 

IF (CYCR(COUNT).EQ.ROOT) THEN 
RTCOUNT=COUNT 

ENDIF 
1543 CONTINUE 

IF (RTCOUNT.NE.0) THEN 
SUBROOT=ROOT 
SUB=RTCOUNT 

ELSE 
IF (T2.EQ.0) THEN 

SUBROOT=CYCR(Z) 
SUB=Z 

ELSE IF (Z.EQ.0) THEN 
SUBROOT=CYCL(T2) 
SUB=l 

ELSE 
TOPRT=CYCR(Z) 
TOPLT=CYCL(T2) 
DEPTIIRT=0 
DEPTHLT=0 



910 IF (PARENT(TOPRT).NE.ROOT) THEN 
DEP1HRT=DEPTHRT+l 
TOPRT=P ARENT(TOPRT) 
GOT0910 

ENDIF 
911 IF (PARENT(TOPLT).NE.ROOT) THEN 

DEPTHLT=DEPTHLT+l 
TOPLT=PARENT(TOPL T) 
GOT0911 

ENDIF 
IF (DEP1HRT.LT.DEPTHL T) THEN 

SUBROOT=CYCR(Z) 
SUB=Z 

ELSE 
SUBROOT=CYCL(T2) 
SUB=Z+l 

ENDIF 
ENDIF 

ENDIF 
IF (K2.EQ.l) THEN 

IF (SUB.EQ.K2) THEN 
DO 1561 NUM=K3,P-1 

PARENT(CYCR(NUM))=CYCR(NUM+ 1) 
1561 CONTINUE 

PARENT(CYCR(P))=CYCR(l) 
ELSE 

DO 1562 NUM=K3,SUB-1 
PARENT(CYCR(NUM))=CYCR(NUM+ 1) 

1562 CONTINUE 
DO 1563 NUM=SUB+l,P 

PARENT(CYCR(NUM))=CYCR(NUM-1) 
1563 CONTINUE 

PARENT(CYCR(l))=CYCR(P) 
ENDIF 

ELSE IF (K3.EQ.P) THEN 
IF (SUB.EQ.K3) THEN 

DO 1564 NUM=2,K2 
PARENT(CYCR(NUM))=CYCR(NUM-1) 

1564 CONTINUE 
P ARENT(CYCR(l))=CYCR(P) 

ELSE 
DO 1565 NUM=l,SUB-1 

PARENT(CYCR(NUM))=CYCR(NUM+ 1) 
1565 CONTINUE 

DO 1566 NUM=SUB+l,K2 
PARENT(CYCR(NUM))=CYCR(NUM-1) 

1566 CONTINUE 
PARENT(CYCR(P))=CYCR(l) 



ENDIF 
ELSE IF (K2.LT.K3) THEN 

IF (SUB.EQ.1) THEN 
DO 1567 NUM=2,K2 

PARENT(CYCR(NUM))=CYCR(NUM-1) 
1567 CONTINUE 

DO 1568 NUM=K3,P-1 
PARENT(CYCR(NUM))=CYCR(NUM+ 1) 

1568 CONTINUE 
PARENT(CYCR(P))=CYCR(l) 

ELSE IF (SUB.EQ.P) THEN 
DO 1569 NUM=2,K2 

PARENT(CYCR(NUM))=CYCR(NUM-1) 
1569 CONTINUE 

DO 1570 NUM=K3,P-1 
PARENT(CYCR(NUM))=CYCR(NUM+ 1) 

1570 CONTINUE 
PARENT(CYCR(l))=CYCR(P) 

ELSE IF (SUB.EQ.K2) THEN 
DO 1571 NUM=l,K2-1 

PARENT(CYCR(NUM))=CYCR(NUM+l) 
1571 CONTINUE 

DO 1572 NUM=K3,P-l 
PARENT(CYCR(NUM))=CYCR(NUM+ 1) 

1572 CONTINUE 
PARENT(CYCR(P))=CYCR(l) 

ELSE IF (SUB.EQ.K3) THEN 
DO 1573 NUM=2,K2 

PARENT(CYCR(NUM))=CYCR(NUM-1) 
1573 CONTINUE 

DO 1574 NUM=K3+ 1,P 
PARENT(CYCR(NUM))=CYCR(NUM-1) 

1574 CONTINUE 
PARENT(CYCR(l))=CYCR(P) 

ELSE IF (SUB.LT.K2} THEN 
DO 1575 NUM=l,SUB-1 

PARENT(CYCR(NUM))=CYCR(NUM+ 1) 
1575 CONTINUE 

DO 1576 NUM=SUB+l,K2 
PARENT(CYCR(NUM))=CYCR(NUM-1) 

1576 CONTINUE 
DO 1577 NUM=K3,P-1 

PARENT(CYCR(NUM))=CYCR(NUM+ 1) 
1577 CONTINUE 

PARENT(CYCR(P))=CYCR(l) 
ELSE 

DO 1578 NUM=2,K2 
PARENT(CYCR(NUM))=CYCR(NUM-1) 



1578 CONTINUE 
00 1579 NUM=K3,SUB-1 

PARENT(CYCR(NUM))=CYCR(NUM+ 1) 
1579 CONTINUE 

00 1580 NUM=SUB+ l,P 
PARENT(CYCR(NUM))=CYCR(NUM-1) 

1580 CONTINUE 
PARENT(CYCR(l))=CYCR(P) 

ENDIF 
ELSE 

IF (SUB.EQ.l) THEN 
00 1581 NUM=2,K3 

PARENT(CYCR(NUM))=CYCR(NUM-1) 
1581 CONTINUE 

001582 NUM=K2,P-1 
PARENT(CYCR(NUM))=CYCR(NUM+ 1) 

1582 CONTINUE 
PARENT(CYCR(P))=CYCR(l) 

ELSE IF (SUB.EQ.P) THEN 
00 1583 NUM=2,K3 

PARENT(CYCR(NUM))=CYCR(NUM-1) 
1583 CONTINUE 

001584 NUM=K2,P-1 
PARENT(CYCR(NUM))=CYCR(NUM+ 1) 

1584 CONTINUE 
P ARENT(CYCR(l))=CYCR(P) 

ELSE IF (SUB.EQ.K3) THEN 
00 1585 NUM=l,K3-1 

PARENT(CYCR(NUM))=CYCR(NUM+ 1) 
1585 CONTINUE 

00 1586 NUM=K2,P-1 
PARENT(CYCR(NUM))=CYCR(NUM+ 1) 

1586 CONTINUE 
P ARENT(CYCR(P))=CYCR(l) 

ELSE IF (SUB.EQ.K2) THEN 
00 1587 NUM=2,K3 

PARENT(CYCR(NUM))=CYCR(NUM-1) 
1587 CONTINUE 

00 1588 NUM=K2+ 1,P 
PARENT(CYCR(NUM))=CYCR(NUM-1) 

1588 CONTINUE 
PARENT(CYCR(l))=CYCR(P) 

ELSE IF (SUB.LT.K3) THEN 
00 1589 NUM=l,SUB-1 

PARENT(CYCR(NUM))=CYCR(NUM+ 1) 
1589 CONTINUE 

00 1590 NUM=SUB+l,K3 
PARENT(CYCR(NUM))=CYCR(NUM-1) 



1590 CONTINUE 
DO 1591 NUM=K2,P-1 

PARENT(CYCR(NUM))=CYCR(NUM+ 1) 
1591 CONTINUE 

PARENT(CYCR(P))=CYCR(l) 
ELSE 

DO 1592 NUM=2,K3 
PARENT(CYCR(NUM))=CYCR(NUM-1) 

1592 CONTINUE 
DO 1593 NUM=K2,SUB-1 

PARENT(CYCR(NUM))=CYCR(NUM+ 1) 
1593 CONTINUE 

DO 1594 NUM=SUB+ 1,P 
PARENT(CYCR(NUM))=CYCR(NUM-1) 

1594 CONTINUE 
P ARENT(CYCR(l))=CYCR(P) 

ENDIF 
ENDIF 

GOTO200 

END 


