
SOLVING THE MATRIX BALANCING PROBLEM
An Algorithm Based on a Modification of the

Transportation Problem

by
Julianne M. Labbiento

Submitted in partial fulfillment of the requirements
for the Degree of
Master of Science

in the
Mathematics

Program

YOUNGSTOWN ST ATE UNIVERSITY
March, 1994

ABSTRACT

SOLVING THE MATRIX BALANCING PROBLEM
An Algorithm Based on a Modification of the

Transportation Problem

by

Julianne M. Labbiento

Master of Science in Mathematics

Youngstown State University, 1994

The classical matrix balancing problem has many applications in areas such as

economics and statistics. Generally, solutions to instances of this problem are found by

minimizing either a squared or entropy objective function. This paper introduces a new

procedure for solving the problem derived from a weighted least absolute value objective

function.

An efficient algorithm, incorporating the ideas of piecewise linear programming

with the traditional transportation algorithm, is developed and presented. A simple

example is illustrated and a computer program, written in FORTRAN, is given. Fmally,

special features of the program are discussed.

2

ACKNOWLEDGMENTS

I wish to express my gratitude to my thesis advisor, Dr. Nathan P. Ritchey, who

inspired me to successfully complete this thesis.

I would also like to thank Dr. Anita Burris and Dr. R. Bruce Mattingly for their

contributions and helpful suggestions on the improvement of this thesis.

3

TABLE OF CONTENTS

1. INTRODUCTION
1.1 Intent of Paper
1.2 Outline of Chapters

2. THE MA TRIX BALANCING PROBLEM
2.1 Applications
2.2 Mathematical Definition

3. THE MODIFIED TRANSPORTATION PROBLEM
3.1 The Transportation Problem
3.2 A Comparison : The Matrix Balancing Problem vs. the Transportation

Problem
3.3 The Modified Transportation Problem

4. AN ILLUSTRATION OF THE METHOD
4.1 The Modified Transportation Algorithm
4.2 An Example

5. COMPUTER IMPLEMENTATION OF THE METHOD
5.1 Motivation
5.2 Overview of the FORTRAN Program
5.3 Further Research

BIBLIOGRAPHY

APPENDIX FORTRAN PROGRAM

4

Chapter 1

Introduction

1.1 Intent of Paper

This paper will introduce a new method for solving the matrix balancing problem

and others of its type. The method is based on the transportation algorithm from the field

of operations research. The transportation problem is a linear programming problem

whose solution, with slight modifications, can be used to solve the matrix balancing

problem. This modified transportation method will be developed, presented, and

illustrated.

1.2 Outline of Chapters

Chapter 2 will explore the matrix balancing problem. Several applications will be

presented in the areas of business and mathematics. The problem will be formally defined

mathematically.

In Chapter 3, the modified transportation algorithm will be developed. Beginning

with the traditional transportation problem, the primal and dual linear programs will be

stated and discussed. Complementary slackness conditions and their importance in the

determination of the dual solution will also be addressed. Observations will be made

5

regarding the matrix balancing problem. Comparisons will be drawn between these

observations and the transportation problem that will eventually lead to the definition of

the modified transportation problem. The associated primal and dual linear programs and

complementary slackness conditions for this modified transportation problem will be

developed and presented.

The modified transportation algorithm is presented in Chapter 4, where an example

solving a matrix balancing problem using the algorithm is also illustrated. A version of the

Northwest Corner Method for finding the initial basic feasible solution is explained and

presented in algorithmic form.

Chapter 5 will discuss the implementation of the Modified Transportation

Algorithm as a computer program written in FORTRAN. The program is given in the

Appendix. Specific features of the program will be highlighted in detail in this chapter,

including establishing an initial basic feasible solution using the Minimal Cost Northwest

Corner Algorithm described in Chapter 4, finding a dual solution and verifying its

feasibility, locating the unique cycle on which to pivot, and updating the current feasible

solution accordingly. A method for identifying the cycle using ideas from graph theory

will be discussed. Finally, topics for further research will be presented.

6

Chapter 2

The Matrix Balancing Problem

2.1 Applications

The matrix balancing problem is one that arises in many fields such as economics,

statistics, and demography. Contingency tables are used in insurance, science, and

research when probabilities must be assigned to a finite two-dimensional array of items.

This m x n contingency table, while finite in size, may be extremely large. Detennining the

probabilities for each cell in the table by directly sampling the general population may not

be feasible due to monetary, time, and other constraints.

However, deriving these probabilities from a representative sample of the

population may yield results that contradict previously existing information. There may be

reason to believe that recently collected probabilities are inconsistent with the existing

probabilities. Perhaps the existing data is obviously outdated in comparison to the

recently collected data. Or, suppose the sample of the population is not as representative

as intended. Using the techniques for solving a matrix balancing problem, incorrect cell

probabilities must be updated to reflect the new information [Schneider, p. 442].

7

Another incidence of the use of the matrix balancing problem occurs in the area of

demography. Demography is the study of the size, density, and distribution of human

population. A particular topic of interest in demography is interregional migration.

It is important to economists, agricultural analysts, and industrial analysts, to

estimate interregional migration patterns in the United States on a regular basis.

However, matrices detailing flow and other migration characteristics become available

through the general census of the population only once each decade. Intermediary

migration estimates must be derived from the existing data and currently known migration

trends using matrix balancing techniques in order to revise out-of-date interregional

migration patterns [Schneider, p.442].

2.2 Mathematical Definition

The general definition of the matrix balancing problem is defined as follows:

Given an m x n matrix P with elements Pij, and vectors R = { r1, •.. , r,. J and

S = { s1, ••• , sm], find an m x n matrix Q with elements Qij, which satisfies the

fallowing conditions :

"'
i) 2, Qij = rj, j=l , ... ,n; and

i=I

n

ii) L Qij = Si, i=l, ... ,m
j=I

and which is "as close as possible" to matrix P.

8

The phrase "as close as possible" allows the interpretation of a well-balanced

matrix to vary from problem to problem. For example, one situation may require that

elements along the main diagonal of the balanced matrix equal the elements along the main

diagonal of the original matrix. Any deviation from this form would be interpreted as an

"unbalanced" and, therefore, unacceptable matrix. The introduction of additional

constraints may be necessary to achieve the "closeness" desired.

The procedures introduced in this paper will use a weighted least absolute value

function to ensure closeness. By utilizing this type of function, a natural interpretation of

the matrix balancing problem as a transportation problem will occur. By slightly

modifying the traditional transportation algorithm, the matrix balancing problem can be

solved.

9

Chapter 3

The Modified Transportation Problem

3.1 The Transportation Problem

Historically, the transportation problem can be stated as a shipping problem.

Given m sources and n destinations, their supply and demand requirements, and related

shipping costs, how many units should be shipped from each of the sources to each of

the destinations in order to minimize the total cost of shipping ? While total supply and

total demand are required to be nonnegative, they need not be equal. Dummy variables

can be introduced into the problem to force equality. By allocating prohibitively high

costs to all routes associated with this dummy variable, a shipment of zero units along

those routes is guaranteed in the optimal solution. For simplicity, it is assumed

throughout the remainder of this paper that equality of total supply and demand does hold.

The transportation problem can be expressed as a linear program. In matrix and

vector form, the primal and dual linear programming problems of the dual pair are given as

follows:

10

minimize CTX

subject to : Ax = a

Bx=b

x~O

maximize aTu + bTv

subject to : u + v ~ C

u free

V free

In the less general form, the primal linear program for the transportation problem

is as follows :

'" n

min LL CijXij
i=I j=I

subject to:

'" I Xij =
i=I
n

L Xij =
j=I

Xij ~ 0,

where:

rj,

Si,

j=l, ... ,n

i=l, ... ,m

i=l , ... ,m; j=l , ... ,n

c ij= cost associated with transporting 1 unit from i to j

Xij= number of units transported from i to j

rj= total supply for j

Si= total demand for i

By solving this linear program, a total shipping cost can be found. The dual of the

transportation problem is then used to determine whether the current solution is optimal,

or whether it can be improved upon. The dual problem is as follows :

11

"' n

max L UiSi + L Vjrj
i=l j=I

subject to:

where:

Ui + Vj ~ Cij

Ui, Vj free, i=l , ... ,m; j=l , ... ,n

Ui= dual variable associated with row i

Vj= dual variable associated with column j

Duality relations exist between the two linear programs of the transportation

problem. ff x is a feasible vector for the primal linear program and (u,v) is a feasible

vector for the dual linear program, then CTX ~ aTu+bTv. ff one of the problems has an

optimal solution, then both have optimal solutions. Further, if both have feasible vectors,

then both have optimal vectors [Ecker, p.110]. In the case of the transportation problem,

an optimal solution will always exist

The complementary slackness conditions are used to find a solution for the dual of

the transportation problem. These conditions are :

i) Xij (Ui + Vj - Cij)=0, i=l , ... ,m; j=l , ... ,n
n

ii) Ui (L Xij - Si)=0, i=l , ... ,m
j=I

"'
iii) Vj (L Xij - rj)=0, j=l , ... ,n

i=I

12

H the solution found for the dual problem is also feasible, then the feasible solution found

for the primal problem is optimal.

The transportation problem is easily solved using the transportation algorithm and

tableau. The tableau stores the supplies, demands, and per unit costs.

Algorithm: The Tranwortation Aleorithm {Ecker, p. 176}

S,wi_l : Find an initial basic feasible solution x.

S1J:iLZ : For the current solution x and the current cost
coefficients Cij,find a dual vector (u,v) such that
Ui + Vj = Cij for each (ij) with Xij basic and
calculate the adjusted cost coefficients
Cij - Ui - Vjfor each (ij)

SkJL1 : If each adjusted cost coefficient is nonnegative, stop;
the current xis optimal.

~:

Otherwise, pick a position with a negative adjusted
cost and find the unique loop starting at that position
with all other positions in the loop being those associated
with basic variables.

Shift as mush as possible around the loop to obtain a
new basic feasible solution x and return to step 2 with
the adjusted costs as the current costs.

The optimal solution will be unique with two exceptions. First, and least

significant, is degeneracy. A second, more interesting case occurs when the sum of the

dual variables for a nonbasic cell equals either the positive or negative cost coefficient

The sum of the dual variables minus the associated cost coefficient represents the marginal

cost for that cell, the per-unit increase in the total cost if that cell is brought into the basis.

13

If the sum is zero, then bringing this cell into the basis will result in another optimal

solution.

3.2 A Comparison : The Matrix Balancing Problem vs.

The Transportation Problem

Consider the matrix balancing problem as a matrix equation A = P - Q,

where P is the given matrix, Q is the desired balanced matrix, and A is a transformation

matrix. Thus, the elements of A are a measure of the individual error for each element in

Q. Define the ijth element of A to be eij = Pij-<lij· Since eij represents the difference

between two elements, it can be either nonnegative or negative. Define et and e"i; as

follows :

Let

and

+ _ {e;i, if e;i ~ 0
e·· -,, 0 h . , ot erwise

_ {-e;i, if e;i ~ 0
e··=

I) 0 h . , ot erwise

The row and column totals for the A matrix indicate how much error is incurred for a

particular row or column.

14

For each element of P, the cost of altering that element must be determined. This

cost will then be associated with the elements of i\. If the error is nonnegative, a

positive cost per unit will be applied; if the error is negative, a negative cost per unit will

be used Define the costs c't and c'ij in this way.

Let

c't = the cost of altering P;i if e;i '2!:.0

and

c'ij = the cost of altering P;i if e;i ~O

Viewing the matrix balancing problem in this manner allows for a natural

progression to a linear programming model that closely resembles the traditional

transportation problem.

3.3 The Modified Transportation Problem

Using the ideas defined in the previous section, formulate the modified

transportation linear program as follows :

15

"' n

min ~ ~ (c ~ e~ + c-:: e-::) "'-' "'-' ,, ,, ,, ,,
i=l j=I

subject to:
Ill

L (e;j - e"ij) = r i
i=l

n

L(e;j-e;;) =~
j=I

e;j:2:0, eij:2:0, i=1, ... ,m;j=1, ... ,n

The dual of this modified transportation problem is as follows :

"' n

max L + I _-we-- + v,·e·· IJ IJ;;
i=l j=I

subject to:
c°ij~ Ui+Vi~Cij

c;j:2:0, cij<O, i=1, ... ,m;j=1, ... ,n

Again, complementary slackness conditions are used to find the dual vectors u and v.

Since the modified transportation problem allows for both positive and negative values in

the optimal solution, the complementary slackness conditions have also been slightly

changed. These modified conditions are :

i)

ii)

iii)

iv)

eij(w+ Vi-cij) = 0,

w[f, (e;j - eij)-r i] = 0,
•=I

v i[t (e;j - eij)-~] = 0,
1=1

16

i=l , ... ,m; j=l , ... ,n

i=l, ... ,m; j=l , ... ,n

j=l, ... ,n

i=l, ... ,m

One special characteristic of the modified transportation problem is that, unlike the

transportation problem, there is no positive value constraint set on any of the general

variables. That is, the row totals, column totals, costs, and ultimately, the optimal

solution, can have negative values. lhls difference is most significant, as it allows for a

wider range of problems to be solved using the basic method of the transportation

algorithm. Thus, more real-life applications can be modeled using this modified version.

17

Chapter 4

An Illustration of the Method

4.1 The Modified Transportation Algorithm

The modified transportation problem can be solved usmg the transportation

tableau. The modified tableau is created by recording both the positive and negative cost

associated with each element of the A matrix in the corresponding cell of the tableau,

and noting the row and column totals of A as usual. The two costs for each cell can be

interpreted as endpoints of a closed interval. A zero cost can be interpreted as the upper

(positive) or lower (negative) endpoint of the interval depending on the other cost. An

initial basic feasible solution can be found using an updated version of the Northwest

Comer Method [Ecker, p. 166]. This Minimal Cost Northwest Comer Method introduces

the cheaper of the two options for each cell under consideration into the solution.

Algorithm : Minimal Cost Northwest Corner Method
for finding an initial feasible solution

SlJ:JLl: Consider the available cell in the most Northwest
corner of the tableau. If the row or column total is
positive, apply the positive cost; if it is negative,

18

S1J:Jl.l:

apply the negative cost. If the row total times its
associated cost is less than the column total times its
associated cost, enter the row total amount into the
cell. Decrease the row total and column total by
this amount. If the updated row and column total
are both zero, enter a zero into the next cell to the
right.

Otherwise, enter the column total amount into the
cell. Decrease the row total and column total by
this amount. If the updated row and column totals
are both zero, enter a zero in to cell beneath the
current one.

If the number of filled cells equals m+n-1, then stop.

If the row amount was entered in Step}, move down
one row and go to Step 1.

Otherwise, move to the right one column and go to
Step 1.

The Modified Transportation Algorithm is then used to find the optimal solution to the

problem, the optimal A matrix.

Algorithm : Modified Transportation Method
for finding the optimal A matrix

SJm..1:

S1J:J1..l:

Find an initial basic feasible solution e.

For the current solution e and cost coefficients ct

and Cij,find a dual vector (u,v) such that for eij

basic:

1)

2)

11• + v · = c-+: iif e·· = e-+: and Ml J I) IJ IJ >

19

simJ:

~:

SJm..j_:

Calculate the adjusted cost coefficients by :

If each adjusted cost coefficient lies in the closed
interval [Cii, c"t], stop; the current solution e is

optimal.

Otherwise, choose the cell with the largest absolute
value cost coefficient. Find a unique loop beginning
with that cell and having all basic cells as components.

If a cell in the loop holds a positive value prior to the
shift, it must retain a positive value after completion
of the shift. Similarly, negativity of a negative cell must
be maintained throughout the shift.

If Ui + Vi < Cij for the cell with the largest absolute

value adjusted cost coefficient, then shift the smallest
negative amount possible around the loop to obtain
a new basic feasible solution, e.

If Ui + Vi > c"t for the cell with the largest absolute

value adjusted cost coefficient, then shift the largest
positive amount possible around the loop to obtain a
new feasible solution e.

Return to Step 2:

4.2 An Example

20

The following example will illustrate the Modified Transportation Method for

solving the matrix balancing problem.

Given the matrix P, vectors Rand S, and cost matrices C+ and C -, as shown,

find a matrix Q that is as close as possible to P, as determined by the

costs given in C+ and C -.

P=[~
2 4 3]
8 3 1 ,

5 7 0

c·=[;
1 4

;J [-3
-4 -2 -1] 5 3 c-= ~ -3 -4 -2

3 4 -2 -6 -5

R=[9 8 18 3] S=[6 19 13]

Using the Minimal Cost Northwest Comer Algorithm to find an initial feasible

solution, the initial modified transportation tableau is as follows. Note that the costs

associated with each cell are recorded in the upper right comer of the cell.

21

_if-3 6~

Y-1 1Y-3

~ Y-2

-2 7

Y-2

-4~

¼

-4

Y-1

_if-2

3Y-5

1

4

-5
3

Using the complementary slackness conditions, dual variables can be found. Arbitrarily,

let

u1 = 0. The remaining dual variables are recorded above and beside the tableau. To check

feasibility of the duals, the sum of the dual variables associated with a cell must lie within

the closed interval indicated by the two cost coefficients for that cell. The analysis of the

dual variables for the nonbasic cells of the initial solution is given.

Vi=-3 V2=l

_if-3 6y-4

Y-1 1Y-3

y-4 Y-2

-2 7

22

Y-2

-4~

r-6

-4

Y-1

_if-2

3Y-5

1

4

-5
3

Ut + V3 = -8 E [-2, 4]

U1 + V4 = --6 E [-1,5]

U2 + Vt = 1 E [-1, 6]

U3 + VI = 4 E [-4, 1]

U3 + V2 = 8 E [-2, 3]

U3+ V3 = -1 E [--6,4]

The total cost of this initial feasible solution is

z = (-2)(-3)+(6)(1)+(1)(5)+(-4)(-4)+(-2)(-2)+(3)(1) = 40

But, because the dual constraint has not been satisfied for all of the dual variables, this

cannot be the optimal solution. The cell that most violates the cost coefficient interval is

cell (1,3). Since the sum the dual variables lies outside the interval on the negative side, a

negative value should be introduced into that cell. The unique cycle about that cell is

formed by cells (1,3), (2,3), (2,2), and (1,2). To add a negative value into cell (1,3), that

same negative amount must be subtracted from cell (2,3), added to cell (2,2), and

subtracted from cell (1,3). The smallest negative amount that can be shifted around this

cycle is -1, the value found in cell (2,2). Shifting -1 units around this cycle will maintain a

feasible solution for the primal problem, since the row totals and column totals are

unchanged. Once the new feasible solution has been found, a new corresponding dual

solution must be obtained and evaluated.

23

U1=0 4 _if-3 7~ -1Y-2 Y-1

U=~ -5 Y-1 Y-3 _3Y-4 _if-2

U3=l 3 Y-t Y-2 ¼ 3Y-s

-2

u1+V4=0e[-1,5]

U2+ VI= -5 E [-1,6]

U2 + V2 = -1 E [-3, 5]

7 -4 1

U3+ VI= -2 E [-4,1]
U3+V2 = 2e [-2,3]

U3+ V3 = -1 E [--6,4]

z = (-2)(-3)+(7)(1)+(-l)(-2)+(-3)(-4)+(-2)(-2)+(3)(1) = 34

Updating the basic feasible solution by pivoting on cell (2,1) yields the following tableau:

U1=0 Y-3 7"--4

-iY-1 Y-3

Y-t Y-2

-2 7

24

_3Y-2

-ly-4

¼

-4

Y-1

_if-2

3Y-s

1

4

-5
3

UI + VI = 1 E [-3, 2]

u1+v4=0e[-1,5]

U2+ V2 = -1 E [-3,5]

U3 + VI = 2 i: [-4, 1]

U3 + V2 = 2 E [-2, 3]
U3+ V3 = -1 E [--6,4]

z = (7)(1)+(-3)(-2)+(-2)(-1)+(-1)(-4)+(-2)(-2)+(3)(1) = 26

The constraints for the dual of the modified transportation problem are violated

most for cell (3,1). Because the sum of the dual variables lies outside the closed interval

on the positive side, a positive amount must be introduced into this cell. The largest

positive amount that can be shifted around the cycle formed on this cell is 2. After

pivoting on this cell and calculating the dual variables, analysis of those variables shows

that this solution to the dual problem is feasible. Therefore, the corresponding solution to

the primal problem is the optimal solution.

Y-3

-4Y-1

-t1-4
-2

UI +VI= 1 E [-3,2]

UI + V4 = 1 E [-1,5]
u2+v2 = -1 e[-3,5]

7~

Y-3

Y-2

7

25

_3Y-2

-1~

¼,

-4 1

Y-1

Y-2

1Y-s

4

-5
3

u2+v4=-le[-2,2]

U3 + V2 = 1 E [-2, 3]

U3+ V3 = -2 E [--6,4]

z = (7)(1)+(-3)(-2)+(-4)(-1)+(-l)(-4)+(2)(1)+(1)(1) = 24

Thus, the optimal /1 matrix and balanced matrix Q are :

Chapter 5

[

o 7

11= -4 0

2 0

-3 OJ -1 0

0 1

-5 7

8 4 Q=[~ 5

Computer Implementation of the Method

5.1 Motivation

Modifying the transportation problem to allow for negativity of variables and dual

costs for one entity introduces a new method for solving many problems of today. While

the previous example illustrated the ease of solving a simple 3 x 4 matrix balancing

problem using this method, obviously one would not want to solve a larger problem by

manipulating the tableaus by hand

26

The program found in Appendix I implements the ideas set forth in this paper.

Written in FORTRAN, it allows the user to read in a file containing the dimensions of a

matrix, a cost array, and supply and demand requirements. Using the method of the

modified transportation problem, an optimal solution is found and sent to a file. No

previous knowledge of the method is required.

5.2 Overview of the FORTRAN Program

The FORTRAN program, MTRANS, performs the basic procedure for solving the

modified transportation problem as described in Chapters 3 and 4. Upon reading the data

from the input file, a test to check the equality of the row totals and column totals is

performed. If equality does not exist, a dummy row or column is added to the problem.

Cells in this dummy row or column have positive cost coefficient 199998 and negative

cost coefficient -199998 thereby guaranteeing that they will not be represented in the

optimal solution. The numbers 199998 and -199998 were chosen to represent extremely

large, and most likely prohibitive, costs.

Establishing an Initial Basic Feasible Solution

The initial feasible solution is found using the Minimal Cost Northwest Comer

Algorithm. Consider cell (1,1). If the row total for row 1 is positive, multiply it by the

positive cost coefficient for that cell; if it is negative, apply the negative cost coefficient

Apply costs to the column total for column 1 in the same manner. Input the minimum of

the two values in cell (1,1). If the row value is used, no other cells in row 1 will be able to

27

be filled without violating the constraint that cell totals in a row sum to the row total. A

flag is turned on to indicate that row 1 is full. Move down one row and consider the

northwest-most available cell. Repeat the procedure. If the column value is used as input

for the cell, a similar action results. Move to the right one column and repeat the

procedure. Continue until m + n - 1 cells have been filled.

In the event of a tie between the row and column totals, fill the cell with the

appropriate value, and place a zero in an adjoining cell. If the row total is positive, place a

zero in the next cell to the right; otherwise, enter a zero in the cell directly beneath the

current one. Refer to the Minimal Cost Northwest Corner Algorithm on page 18 for more

details on this method.

In addition to the cell amount, which is recorded in the array A(i,j), another value

is associated with each cell. There is a ternary decision function T applied to each cell.

This function is primarily used to identify whether a cell should be interpreted as basic or

nonbasic if there is a zero value in it. Initially, both A(ij) and T(i,j) equal zero for all i and

j. Then as the initial feasible solution is found,

1, if{cell(i,j) is basic, A(i,j)=O, and ct applies

T(i,j)= -1, if {cell(i,j) is basic, A(i,j)=O, and cii applies

0, otherwise

Any basic cells with A(i,j)=O in the initial basic feasible solution will have T(i,j)=l

associated with them; that is, for this solution, the positive cost will be applied to the

zeroes in those cells. The use of the T(ij) array may not seem important at this point in

the problem. However, it will be necessary to keep track of the "positivity" or

"negativity" of a cell. Associating this "T-value" with each cell will allow the positivity or

negativity of a cell to be known at a glance.

28

Fmally, a parent array is created to identify a tree structure associated with the

initial basic feasible solution. The use of this tree is explained in detail later when finding

the pivoting cycle. The initial parent array is built as cells are filled, with row one being

the root of the tree; thus, the parent of row one is zero. The basic premise used here is

that if the cell in row i, column j is basic, then either i is the parent of j, or vice versa.

Finding a Dual Solution

Once an initial basic feasible solution has been established, a corresponding dual

solution must be found. Arbitrarily, u1 is set to equal zero. All other dual variables are

equated to 199998. Systematically stepping through the A(ij) array in a southeasterly

direction, dual variables are calculated, if possible, at each basic cell. ff only one of the

dual variables associated with a cell equals 199998, then the other dual variable for the cell

can be determined. ff both variables equal 199998, nothing can be done; continue

through the A(i,j) array to the next basic cell.

ff the dual variable can be found, consider A(i,j) for the cell. ff A(ij) is positive, or

if it is zero with T{i,j) = 1, then the unknown dual variable is found by

U;+ Vj-Cij = 0.

Recall that if A(i,j)=O and T(ij) ~ 0, then the cell is basic. ff A(ij) is negative, or if

A(ij)=O with T{i,j) = -1, then calculate the required dual variable using

Cij - Ui - V j = 0.

ff all of the dual variables have not been calculated once A(m,n) has been checked,

return to A(l,l) and systematically move through the array again. Update dual variables

wherever possible. Continue this procedure until a dual solution has been determined.

Checking the Feasibility of the Dual Solution

29

After a dual solution has been found, it must be checked for feasibility. Recall that

the dual solution is feasible if for all i and j,

c"ij Su.+vj Set-

If the sum of the dual variables lies within the closed interval determined by the cost

coefficients for the cell, a counter opt is increased by one. After checking each cell, if opt

= m x n, the dual solution is feasible and, therefore, the primal solution is optimal. This

optimal solution is written to a file, along with the optimal total cost

If, however, the number of optimal cells is not equal tom x n, the pivot cell must

be located. Running through the non-optimal cells, find the cell whose dual variables

produced the largest deviation from the interval. If the largest deviation occurs when

U. + Vj- Cij ~ 0,

a switch called pos is set to 1. This indicates that a positive value will enter the basis in

this cell. If the largest difference occurs on the negative side of the interval, neg is set

equal to 1 and a negative value will enter the basis in this cell. Record the pivot cell as

A(iljl).

Locating the Cycle

One interesting feature of this program is the way the cycle about the pivot cell is

found. All feasible solutions for the primal problem can be interpreted as a matching on a

bipartite graph, G (V1,V2,E); let V1={ i I i = 1, ... ,m }, V2 = { j I j = 1, ... ,n }, and

E={ (i,j)I cell(ij) is basic}. Thus, for the example in Chapter 4, the bipartite graph

associated with the initial basic feasible solution x is :

30

1

2

3

i

G

j

1

2

3

4

A simple function allows the rows, i, to be identified by odd numbers, and the columns, j,

to be identified as even numbers.

{
2x -1, if x is a row, and

f(x)=
2x, if xis a column

The use of this function avoids confusion and misinterpretation of the rows and columns

of the tableau as they are manipulated.

31

1

3

s

;

G

j

2

4

6

8

It is most advantageous now to restructure the bipartite graph G into the tree H.

The root of this tree will be il. For all initial basic feasible solutions il=l. Hence, the tree

H for the example is :

32

I

2 4

6 8

H

Recall the parent array introduced when finding the initial basic feasible solution.

By maintaining this parent array throughout the program, the cycle can be found rather

easily [Balinski, p. 171]. For the example, it was determined that cell(l,3) was to enter

the basis on the first pivot. Using the function f(x) to convert the rows and columns to

unique numbers, an edge should be added between nodes 1 and 6 on the tree. There is a

unique path from node 1 to node 6; adding edge (1,6) would complete the cycle. To find

this path, start at node 1. Step back through the parent array until either the root or node

6 is reached, recording each node visited. If node 6 is visited first, the path has been

found. If the root is reached first, continue searching through the parent array, starting

this time with node 6. Again, record any visited node. Once a previously visited node, Y,

is reached, the unique path will be the union of the two searches minus any nodes "above"

Yin the parent array. That is, any generations prior to Y are not included in the unique

path.

33

2 4

6 8

H

cycle= { 1,4,3,6 }

For convenience the cycle of length z is recorded as an array of nodes, with

cycr(l)= i1 and cycr(z)=j 1. The array cycr(k) represents a cycle of nodes. It must be

converted into a cycle of edges, since edges represent basic cells in the tableau. The cycle

of edges is also held in an array, cyc(k), which is of length p. Recall the array cycr(k) :

cycr(k) = { 1,4,3,6 }

The elements of cyc(k) can be found by taking consecutive pairs of elements of cycr(k),

ordering them with the odd number coming first, and listing them as coordinates of the

34

array A. Append the edge entering the basis onto the end of the cyc(k) array as cyc(p).

Hence,

cyc(k) = { A(l,4), A(3,4), A(3,6), A(l,6) }

Applyingf -1(x) to the subscripts of A allows direct reference of the cycle and the

tableau.

cyc(k) = { A(l ,2), A(2,2), A(2,3), A(l,3) }

This tree structure requires updating each time the basic feasible solution is

updated, but offers a quick way of locating the unique cycle about the pivot cell.

Updating the Cycle

When the feasibility of the dual variables was verified, it was determined whether a

positive or negative value was to enter the basis in A(il,j 1). Since the pivot value will be

added to even elements in the cycle and subtracted from the odd elements, the pivot value

is determined by checking the odd and even cycles separately. The last element of the

cycle, the entering edge, is excluded from this evaluation. The pivot value will be the

largest possible amount that can be shifted around the cycle while maintaining positive

values in previously positive cells, and negative values in those cells already negative.

H a positive value is to be brought into the basis, a positive number will be added

to even elements in the cycle. The best pivot candidate will be the largest negative value

in those cells. Next, the odd cycle must be evaluated. The pivot candidate from this cycle

will be the minimum of the positive values in the cells. Fmally, comparing the two

35

candidates. the pivot value will be the absolute value of the minimwn of them. This

amount is shifted around the declared cycle.

If a negative number is to enter the basis. a similar comparison is made. The pivot

amount will be the opposite of the absolute value of the minimwn of the two candidates.

Again. this amount is shifted around the cycle to form the new basic feasible solution.

Updating the Tree Structure

Once the shift of units has occurred. the basis supports a new cell structure. The

parent array must be updated to reflect this new information. Using the tree H. add the

entering edge and delete the leaving edge. For the example. cell(l.3) entered the basis and

cell(2.2) left; that is. edge (1.6) and edge (3.4) on the tree are updated to create tree H1•

The root of the tree will remain the same. Thus. the graph H1 appears as follows:

1

2 4

6 8

H

1

2

Ht

36

3

8

s

4

Using the right and left paths found when locating the cycle, cycr(k) and cycl(k),

it is possible to find the depth of the nodes in the cycle. It must be determined whether the

root of the tree is an element in the cycle. If is it not, a subroot of the cycle must be

found. This subroot will be the node in the cycle that sits closest to the root of the tree.

By design, the right and left paths end at the top of the tree. Thus, by checking the depth

of last elements in the arrays cycr(k) and cycl(k), the subroot can be determined.

The parent array can now be updated based on the elements that changed in the

cycle. Using the graph of H, let k2 designate the odd node associated with the edge that is

leaving the basis. Let k3 designate the even node associated with that edge. Recall that il

and jl indicate the odd and even nodes of the entering edge, respectively. Finally, label

the subroot of the tree as sub. Listing the nodes of the cycle, beginning with i1 and ending

with jl, labeling k2, k3, and sub, indicating the exiting edge by a vertical line between the

nodes, and letting an arrow indicate the parent of a node, some observations can be made :

1 4
"-/

sub k3

37

1) The flow indicated by the arrows is inteITUpted only twice: at the break and

at the sub.

2) Arrows only flow into the sub. This is expected, since the sub is either the

root whose parent is always zero, or the sub is a subroot whose parent

should remain unchanged within the cycle.

3) Arrows only flow away from the break.

4) Arrows never flow into k2 or k3, since they cannot be parents to any node

in the cycle.

By considering the locations of k2, k3, and sub, a unique pattern of flow exists for

each combination of locations. By determining the pattern, the parent array can be

methodically updated.

Recording the Optimal Solution

The parent array has been updated to reflect the new tree structure and the new

basic feasible solution. Now, the dual problem must also be checked. Repeat the entire

process until the dual solution e is feasible, indicating that the current primal feasible

solution x is optimal. The optimal solution x and its optimal total cost are sent to a file as

output.

5.3 Further Research

It remains to be seen how the implementation of the Modified Transportation

Problem in FORTRAN compares to other existing programs for matrix balancing

problems. Pertaining to this program, improvements can be made specifically in the

method used to find the initial basic feasible solution. The Minimal Cost Northwest

38

Corner Method, while effective, may not necessarily find the best starting solution.

Vogel's Approximation Method for finding an initial basic feasible solution for the

transportation problem is known to yield much better results [Ecker, p. 180]. In the

future, a modified version of Vogel's Approximation Method may prove to be equally as

successful in conjunction with the Modified Transportation Algorithm.

Another topic for future research lies in determining the complexity of calculating

the dual variables in very large problems. The mapping of the primal basic feasible

solution onto the modified transportation tableau may yield a particular pattern of basic

and nonbasic cells. When this pattern occurs in large problems, the associated dual

solution is rather difficult to find using the method outlined in the program. Determining

the complexity of calculating the dual variables for patterns such as those may enable the

program to be updated to handle such situations correctly. Alternately, studies may show

that a new method for calculating the dual variables is required.

39

BIBLIOGRAPHY

Bacharach, Michael. Biproportional Matrices and Input-Output Change. London :
Cambridge University Press, 1970.

Balinski, M.L., and J. Gonzalez. "Maximum Matchings in Bipartite Graphs via Strong
Spanning Trees." Networks 21 (1991). 165-179.

Ecker, Joseph G., and Michael Kupferschmid. Introduction to Operations Research.
Malabar, Florida: Krieger Publishing Company, 1991.

Higham, Nicholas J. "Matrix Nearness Problems and Applications." Applications of
Matrix Theory (1989): 1-27.

lntriligator, Michael D. Mathematical Optimization and Economic Theory. Englewood
Cliffs, New Jersey: Prentice-Hall Inc., 1971.

Kruse, Robert L. Data Structures and Program Design. Englewood Cliffs, New Jersey :
Prentice-Hall, Inc., 1984.

Roberts, Fred S. Applied Combinatorics. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1984.

Schneider, Michael H., and Stavros A. Zenios. "A Comparative Study of Algorithms for
Matrix Balancing." Operations Research 38, no. 3 (May-June 1990): 439-455.

Sedgewick, Robert. Algorithms. Reading, Massachusetts: Addison-Wesley Publishing
Co., Inc., 1983.

Tarjan, Robert Endre. Data Structures and Network Algorithms. Philadelphia,
Pennsylvania: Society for Industrial and Applied Mathematics, 1983.

Yan, Chiou-Shuang. Introduction to Input-Output Economics. New York: Holt,
Rinehart, Winston, 1969.

40

APPENDIX

41

Program MTRANS
IMPLICIT INTEGER (A-Z)

C This program solves matrix balancing problems using the Modified Transportation
C Method. Input is read from a file MTRANS*.IN and output is sent to a file
C MTRANS.OUT.

C The parameters of this program are :

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PARAMETER

Ml
Nl
XTRA(I)
Y(n
CTRAP(l,n
CTRAM(l,n
U(I)
vcn
A(l,n
T(l,J)

PARENT(K)

BOOL(K)
CYCR(K)
CYCL(K)
CYC(K)
Il(K),JJ(K)
TOTCOST

DESCRIPTION

Number of rows in a normal transportation tableau
Number of columns in a normal transportation tableau
Supply vector
Demand vector
Array of positive costs associated with the matrix
Array of negative costs associated with the matrix
Dual vector associated with rows
Dual vector associated with columns
Array of cell values
Array used to distinguish basic and nonbasic cells in certain
situations
Array associated with the tree structure; used to find the
unique cycle when pivoting
Boolean array used in locating the cycle
Intermediate arrays used in locating the cycle

Array of cells appearing in the cycle
Coordinates of element CYC(K)
Total cost of the final solution

C To use this program to solve a problem :
C Read in the dimensions of the matrix: Ml,Nl.
C Read in the positive cost coefficients, CTRAP(l,n
C Read in the negative cost coefficients, CTRAM(l,n
C Read in the available supplies, XTRA(I)
C Read in the market demands, Y(n

DIMENSION CTRAP(lOl,101), CTRAM(lOl,101)
DIMENSION U(lOl), V(lOl), XTRA(lOl), Y(lOl)
DIMENSION A(lOl,101), T(lOl,101), PARENT(lOl)
DIMENSION C(lOl), R(lOl), MAX(l,n
DIMENSION CYCR(lOl),CYCL(lOl), 11(101), JJ(lOl)
DIMENSION CYC(lOl), BOOL(206)

OPEN(6,FILE='MTRANS.OUT ,STA TUS='OLD')
OPEN(5,FILE='MTRANS.IN' ,STA TUS='OLD')
READ(5,*) Ml,Nl
DO 9992 l=l,Ml

READ(5, *)(CTRAP(l,J),J= 1,Nl)
9992 CONTINUE

DO 9993 l=l,Ml
READ(5,*)(CTRAM(l)),J=l,Nl)

9993 CONTINUE
READ(5,*)(XTRA(l),l=l,Ml)
READ(5,*)(Y(J),J=l,Nl)

INFIN1=1999998
INFIN2=1999999
M=Ml+l
N=Nl+l
N2=M+N-1
N3=N2+1
Sl=O
S2=0
NUMPVT=O
DO 4951=1,Ml

CTRAP(l,N)=O
CTRAM(l,N)=-INFIN2

495 CONTINUE
DO 486 J=l,N

CTRAP(M,J)=O
CTRAM(M))=-INFIN2

486 CONTINUE
DO 500 l=l,Ml

Sl=Sl+XTRA(I)
500 CONTINUE

DO 518 J=l,Nl
S2=S2+Y(J)

518 CONTINUE
IF(S 1.GT.S2)GO TO 1510
IF(S 1.EQ.S2)THEN

M=Ml
N=Nl
N2=M+N-1
N3=N2+1
GOTO 1511

ENDIF
XTRA(M) = S2 - S 1
Y(N) =0
GOTO 1511

1510 Y(N)=Sl-S2
XTRA(M)=0

1511 IPRINT=0

C ***
C FINDSTARTINGSOLUTION
C Finds a starting solution using the Minimum Cost Northwest Corner Algorithm
C ***

NUMBC=O
D04K=l,M*N

PARENT(K)=INFINl
4 CONTINUE

D05 l=l,M
DO 6J=l,N

T(l,J)=0
6 CONTINUE
5 CONTINUE

12=0
12=0
P ARENT(l)=O
ROOT=l
DO 151=1,M

IF (R(l).NE.0) GOTO 15
DO 20 J=l ,N

IF (C(J).NE.0) GOTO 20
IF (R(l).NE.0) GOTO 15
IF (NUMBC.EQ.M+N-3) THEN

Jl=J
11=1
GOTO35

ENDIF
IF (I.EQ.M.AND.Y(J).NE.0) THEN

A(l,J)=Y(J)
XTRA(l)=XTRA(I)-Y(J)
Y(J)=O
C(J)=l
GOTO 19

ELSE IF (J.EQ.N.AND.XTRA(l).NE.0) THEN
A(l,J)=XTRA(I)
Y(J)=Y(J)-XTRA(I)
XTRA(l)=O
R(l)=l
GOTO 19

ENDIF
IF (Y(J).LT.0.AND.XTRA(l).LT.0) THEN

IF (Y(J).GT.XTRA(I)) THEN
A(l,J)=Y(J)
XTRA(l)=XTRA(I)-Y(J)
Y(J)=O
C(J)=l

GOTO 19
ELSE

A(l,J)=XTRA(I)
Y(J)=Y(J)-XTRA(I)
XTRA(l)=O
R(l)=l
IF(Y(J).EQ.XTRA(I)) THEN

IF(I+ l.LE.M) THEN
A(l+l,J)=O
C(J)=l
IF (PARENT(2*(1+1)-1).EQ.INFIN1) THEN

P ARENT(2*(1+ 1)-1)=2* J
ELSE

P ARENT(2*J)=2*(1+ 1)-1
ENDIF
T(l+l,J)=l
NUMBC=NUMBC+ 1

ELSE
A(l,J+l)=O
T(l,J+ l)=l
IF (PARENT(2*(J+l)).EQ.INFIN1) THEN

P ARENT(2*(J+ 1))=2*1-1
ELSE

PARENT(2*I-1)=2*(J+ 1)
ENDIF
NUMBC=NUMBC+ 1

ENDIF
ENDIF
GOTO 19

ENDIF
ELSE IF (Y(J).GE.0.AND.XTRA(l).LT.0) THEN

IF (Y(J)*CTRAP(I,J).GE.XTRA(l)*CTRAM(I,J)) THEN
A(l,J)=XTRA(I)
Y(J)= Y(J)-XTRA(I)
XTRA(l)=O
R(l)=l
GOTO 19

ELSE
A(l,J)=Y(J)
XTRA(l)=XTRA(I)-Y(J)
Y(J)=O
C(J)=l
GOTO 19

ENDIF
ELSE IF (Y(J).LT.0.AND.XTRA(D.GE.0) THEN

IF (Y(J)*CTRAM(l,J).GE.XTRA(I)*CfRAP(I,J)) THEN
A(l,J)=XTRA(I)
Y(J)= Y(J)-XTRA(I)

XTRA(I)=O
R(I)=l
GOTO 19

ELSE
A(l,J)=Y(J)
XTRA(l)=XTRA(l)-Y(J)
Y(J)=O
C(J)=l
GOTO 19

ENDIF
ELSE

IF (Y(J).GE.XTRA(I)) THEN
A(l,J)=XTRA(I)
Y(J)= Y(J)-XTRA(I)
XTRA(l)=O
R(l)=l
IF(Y(J).EQ.XTRA(I)) THEN

IF(J+ 1.LE.N) THEN
A(l,J+l)=O
R(I)=l
C(J)=l
T(I,J+ l)=l
IF (PARENT(2*(J+l)).EQ.INFIN1) THEN

PARENT(2*(J+1))=2*1-1
ELSE

PARENT(2*1-1)=2*(J+l)
ENDIF
NUMBC=NUMBC+ 1

ELSE
A(l+l,J)=O
T(I+l,J)=l
C(J)=l
R(l)=l
IF (PARENT(2*(1+1)-1).EQ.INFIN1) THEN

PARENT(2*(1+1)-1)=2*J
ELSE

PARENT(2*J)=2*(1+1)-1
ENDIF
NUMBC=NUMBC+ 1

ENDIF
ENDIF
GOTO 19

ELSE
A(l,J)=Y(J)
XTRA(l)=XTRA(I)-Y(J)
Y(J)=O
C(J)=l
GOTO 19

ENDIF
ENDIF
NUMBC = NUMBC+ 1
IF(I.EQ.M-1.AND. Y(J).NE.0.AND.NUMBC.NE.M+N-3) THEN

A(l+l,J)=Y(J)
XTRA(I+ l)=XTRA(I+ 1)-Y(J)
C(J)=l
R(l)=l

ENDIF
IF (J.EQ.N-1.AND.XTRA(l).NE.0.AND.NUMBC.NE.M+N-3) THEN

A(l,J+ l)=XTRA(I)
Y(J+l)=Y(J+l)-XTRA(I)
R(l)=l
C(J)=l

ENDIF
19 IF (PARENT(2*1-l).EQ.INFIN1) THEN

PARENT(2*1-1)=2*J
ENDIF
IF (PARENT(2*J).EQ.INFIN1) THEN

P ARENT(2*J)=2*1-1
ENDIF

20 CONTINUE
15 CONTINUE

C ---
C Place Last Two Basic Cells
C ---
35 IF (11.EQ.M) THEN

A(ll,Jl)=Y(Jl)
XTRA(ll)=XTRA(Il)-Y(Jl)
Y(Jl)=O
A(ll,Jl + l)=XTRA(ll)
IF (PARENT(2*Jl).EQ.INFIN1) THEN

PARENT(2*J1)=2*11-1
ENDIF
IF (PARENT(2*11-l).EQ.INFIN1) THEN

PARENT(2*11-1)=2*Jl
ENDIF
IF (PARENT(2*11+1).EQ.INFIN1) THEN

PARENT(2*11 + 1)=2*Jl
ENDIF
IF (PARENT(2*(Jl+l)).EQ.INFIN1) THEN

PARENT(2*(J1+1))=2*11-1
ENDIF

ELSE IF (Jl.EQ.N) THEN
A(ll,Jl)=XTRA(ll)
Y(Jl)= Y(Jl)-XTRA(ll)
XTRA(ll)=O
A(ll+l,Jl)=Y(Jl)

IF (PARENT(2*(Jl-1)).EQ.INFIN1) THEN
PARENT(2*(Jl-1))=2*11-1

ENDIF
IF (PARENT(2*Jl).EQ.INFIN1) THEN

PARENT(2*Jl)=2*11-1
ENDIF
IF (PARENT(2*11 + l).EQ.INFINl) THEN

PARENT(2*11 + 1)=2*Jl
ENDIF

ENDIF

C **
C Find the Dual Variables
C **
200 U(l)=0

DO 501=2,M
DO 55 J=l,N

U(l)=INFINl
V(J)=INFINl

55 CONTINUE
50 CONTINUE

DO 59 TIME=l,M+N
DO 60 l=l,M

DO 65 J=l,N
IF (U(l).NE.INFINl.AND.V(J).NE.INFINl) GOTO 65
IF (U(l).EQ.INFINl.AND.V(J).EQ.INFINl) GOTO 65
IF (A(l,J).GT.0) THEN

IF (U(l).EQ.INFINl) THEN
U(l)=CTRAP(l,J)-V(J)

ELSE
V (J)=CTRAP(l,J)-U (I)

ENDIF
ELSE IF (A(I,J).L T.0) THEN

IF (U(l).EQ.INFINl) THEN
U(l)=CTRAM(l,J)-V(J)

ELSE
V(J)=CTRAM(l,J)-U(I)

ENDIF
ELSE IF (A(l,J).EQ.0.AND.T{l,J).NE.0) THEN

IF {T(l,J).EQ. l) THEN
IF (U(l).EQ.INFINl) THEN

U(l)=CTRAP(l,J)-V (J)
ELSE

V (J)=CTRAP(l,J)-U (I)
ENDIF

ELSE IF {T(l,J).EQ.-1) THEN
IF (U(l).EQ.INFINl) THEN

U(l)=CTRAM(l,J)-V(J)

ELSE
V (J)=CTRAM(l,J)-U(I)

ENDIF
ENDIF

ENDIF
65 CONTINUE
60 CONTINUE
59 CONTINUE

C ***
C Check Feasibility of Dual Variables
C ***

OPT=0
MX=O
DO 801=1,M

DO 85 J=l,N
IF (CTRAM(l,J).LE.U(l)+V(J).AND.U(l)+V(J).LE.CTRAP(l,J)) THEN

OPT=OPT+l
GOTO85

ELSE IF (U(l)+V(J).LT.0) THEN
MAX(l,J)=CTRAM(l,J)-U(l)-V(J)
IF (MAX(l,J).GT.MX) THEN

MX=MAX(l,J)
11=1
Jl=J
POS=O
NEG=l

ENDIF
ELSE IF (U(l)+V(J).GT.0) THEN

MAX(l,J)=U(I)+ V(J)-CIRAP(l,J)
IF (MAX(l,J).GT.MX) THEN

MX=MAX(I,J)
11=1
Jl=J
POS=l
NEG=O

ENDIF
ENDIF

85 CONTINUE
80 CONTINUE

IF (OPT.EQ.M*N) then
WRITE(6,*)'THE OPTIMAL SOLUTION IS :'
DO 3011=1,M

WRITE(6,*)(A(l,J),J=l,N)
301 CONTINUE

C ---
C Calculate Total Cost

C ---

TOTCOST=0
DO 310 I=l,M

DO 315 J=l,N
IF (A(l,J).L T.0) THEN

TOTCOST=TOTCOST +A(l,J)*CTRAM(l,J)
ELSE

TOTCOST=TOTCOST +A(l,J)*CfRAP(l,J)
ENDIF

315 CONTINUE
310 CONTINUE

WRITE(6,*)'1HE OPTIMAL TOTAL COST IS:', TOTCOST
999 STOP

ENDIF

C **
C Find Cycle Using Tree Structure
C **

DO 861 K=l,P
CYCR(K)=O

861 CONTINUE
P=O
DO 862 K=l,T2

CYCL(K)=O
862 CONTINUE

T2=0
DO 86 NODE=l,M*N

BOOL(NODE)=O
86 CONTINUE

Z=l
CYCR(Z)=2*11-1
NODE=CYCR(Z)
BOOL(NODE)=l

87 IF (NODE.NE.2*11) THEN
IF (NODE.NE.ROOT) THEN

CYCR(Z+ l)=PARENT(CYCR(Z))
NODE=CYCR(Z+ 1)
BOOL(NODE)=l
Z=Z+l
GOTO87

ELSE
P=Z
T2=0
GOTO88

ENDIF
ELSE

P=Z
GOTO89

ENDIF

88 Tl=l
CYCL(Tl)=2* J1
NODE=CYCL(Tl)

90 BOOL(NODE)=l
CYCL(Tl + l)=PARENT(CYCL(Tl))
IF (BOOL(CYCL(Tl+l)).NE.1) THEN

NODE=CYCL(Tl + 1)
Tl=Tl+l
GOTO90

ELSE
GOTO91

ENDIF
91 T2=Tl

LAST=CYCL(Tl+l)
DO 98 K=l,M*N

IF (PARENT(LAST).EQ.0) GOTO 95
IF (BOOL(PARENT(LAST)).NE.0) THEN

BOOL(P ARENT(LAST))=O
LAST=P ARENT(LAST)

ENDIF
98 CONTINUE
95 RTEND=Z

DO 97 K=l,RTEND
IF (BOOL(CYCR(K)).EQ.0) THEN

Z=Z-1
ENDIF

97 CONTINUE
DO 92 K=Z+ 1,Z+ T2

CYCR(K)=CYCL(Tl)
Tl=Tl-1

92 CONTINUE
P=Z+T2

89 DO 93 K=l,P
IF (MOD(K,2).NE.0) THEN

CYC(K)=A(0.5*CYCR(K)+0.5,0.5*CYCR(K+ 1))
Il(K)=0.5*CYCR(K)+o.5
JJ(K)=CYCR(K + 1)*0.5

ELSE
IF (K.EQ.P) THEN

CYC(P)=A(Il,Jl)
Il(P)=Il
JJ(P)=Jl

ELSE
CYC(K)=A(0.5*CYCR(K + 1)+o.5,0.5*CYCR(K))
Il(K)=0.5*CYCR(K + 1)+o.5
JJ(K)=0.5*CYCR(K)

ENDIF
ENDIF

93 CONTINUE

C ***
C Pivot Around the Cycle
C ***

MIN=INFINl
MX=(-l)*INFINl
IF(POS.EQ.1) THEN

Kl=O
DO 150 K=l,P-1,2

IF (CYC(K).GT.0.OR.T(II(K),JJ(K)).EQ. l) THEN
IF (CYC(K).LE.MIN) THEN

MIN=CYC(K)
Kl=K

ENDIF
ENDIF

150 CONTINUE
K2=0
DO 151 K=2,P-2,2

IF (CYC(K).LT.0.OR.T(II(K),JJ(K)).EQ.-1) THEN
IF (CYC(K).GE.MX) THEN

MX=CYC(K)
K2=K

ENDIF
ENDIF

151 CONTINUE
IF (K2.EQ.0) THEN

CYC(P)=CYC(Kl)
ELSE IF (Kl.EQ.0) THEN

CYC(P)=(-1)*CYC(K2)
Kl=K2

ELSE
IF (ABS(CYC(K2)).LT.CYC(Kl)) THEN

CYC(P)=ABS(CYC(K2))
Kl=K2

ELSE
CYC(P)=CYC(Kl)

ENDIF
ENDIF

ELSE
Kl=O
DO 152 K=l,P-1,2

IF (CYC(K).LT.0.OR.T(II(K),JJ(K)).EQ.-1) THEN
IF (CYC(K).GE.MX) THEN

MX=CYC(K)
Kl=K

ENDIF
ENDIF

152 CONTINUE
K2=0
DO 153 K=2,P-2,2

IF (CYC(K).GT.0.OR.T(ll(K),JJ(K)).EQ.l) THEN
IF (CYC(K).LE.MIN) THEN

MIN=CYC(K)
K2=K

ENDIF
ENDIF

153 CONTINUE
IF (K2.EQ.0) THEN

CYC(P)=CYC(Kl)
ELSE IF (Kl.EQ.0) THEN

CYC(P)=(-1)*CYC(K2)
Kl=K2

ELSE
IF (ABS(CYC(Kl)).LT.CYC(K2)) THEN

CYC(P)=CYC(Kl)
ELSE

CYC(P) =(-l)*CYC(K2)
Kl=K2

ENDIF
ENDIF

ENDIF
VALUE=CYC(p)
AMT=Kl
IF {T(ll(AMT),JJ(AMT)).EQ.l) THEN

T{ll{P),JJ(P))=l
ELSE IF {T(ll(AMT),JJ(AMT)).EQ.-1) THEN

T(ll(P),JJ(P))=-1
ENDIF
IF (POS.EQ.l) THEN

DO 154 K=l,P-1
IF (CYC(K).GE.0) THEN

T{ll(K),JJ(K))=l
ELSE

T(II(K),JJ (K))=-1
ENDIF
CYC(K)=CYC(K)+(-1)**K*V ALUE

154 CONTINUE
ELSE

DO 155 K=l,P-1
IF (CYC(K).GE.0) THEN

T(ll(K),JJ(K))=l
ELSE

T(ll{K),JJ (K))=-1
ENDIF
CYC(K)=CYC(K)+(-1)**K*V ALUE

155 CONTINUE
ENDIF
CYC(Kl)=O
T(II(AMT),JJ(AMT))=O
l2=1I(AMT)
J2=JJ(AMT)
DO 160 K=l,P

A(II(K),JJ(K))=CYC(K)
IF (A(II(K),JJ(K)).NE.0) THEN

T(II(K),JJ(K))=O
ENDIF

160 CONTINUE

C **************************************
C Update Tree Structure
C **************************************

RTCT=O
DO 1541 K=l,P

IF (CYCR(K).EQ.2*II(Kl)-1) THEN
K2=K

ELSE IF (CYCR(K).EQ.2*JJ(Kl)) THEN
K3=K

ENDIF
1541 CONTINUE

C -------------------------------------
C Check if Root is in Cycle
C ----. -----------------------------

RTCOUNT=O
DO 1543 COUNT=l,P

IF (CYCR(COUNT).EQ.ROOT) THEN
RTCOUNT=COUNT

ENDIF
1543 CONTINUE

IF (RTCOUNT.NE.0) THEN
SUBROOT=ROOT
SUB=RTCOUNT

ELSE
IF (T2.EQ.0) THEN

SUBROOT=CYCR(Z)
SUB=Z

ELSE IF (Z.EQ.0) THEN
SUBROOT=CYCL(T2)
SUB=l

ELSE
TOPRT=CYCR(Z)
TOPLT=CYCL(T2)
DEPTIIRT=0
DEPTHLT=0

910 IF (PARENT(TOPRT).NE.ROOT) THEN
DEP1HRT=DEPTHRT+l
TOPRT=P ARENT(TOPRT)
GOT0910

ENDIF
911 IF (PARENT(TOPLT).NE.ROOT) THEN

DEPTHLT=DEPTHLT+l
TOPLT=PARENT(TOPL T)
GOT0911

ENDIF
IF (DEP1HRT.LT.DEPTHL T) THEN

SUBROOT=CYCR(Z)
SUB=Z

ELSE
SUBROOT=CYCL(T2)
SUB=Z+l

ENDIF
ENDIF

ENDIF
IF (K2.EQ.l) THEN

IF (SUB.EQ.K2) THEN
DO 1561 NUM=K3,P-1

PARENT(CYCR(NUM))=CYCR(NUM+ 1)
1561 CONTINUE

PARENT(CYCR(P))=CYCR(l)
ELSE

DO 1562 NUM=K3,SUB-1
PARENT(CYCR(NUM))=CYCR(NUM+ 1)

1562 CONTINUE
DO 1563 NUM=SUB+l,P

PARENT(CYCR(NUM))=CYCR(NUM-1)
1563 CONTINUE

PARENT(CYCR(l))=CYCR(P)
ENDIF

ELSE IF (K3.EQ.P) THEN
IF (SUB.EQ.K3) THEN

DO 1564 NUM=2,K2
PARENT(CYCR(NUM))=CYCR(NUM-1)

1564 CONTINUE
P ARENT(CYCR(l))=CYCR(P)

ELSE
DO 1565 NUM=l,SUB-1

PARENT(CYCR(NUM))=CYCR(NUM+ 1)
1565 CONTINUE

DO 1566 NUM=SUB+l,K2
PARENT(CYCR(NUM))=CYCR(NUM-1)

1566 CONTINUE
PARENT(CYCR(P))=CYCR(l)

ENDIF
ELSE IF (K2.LT.K3) THEN

IF (SUB.EQ.1) THEN
DO 1567 NUM=2,K2

PARENT(CYCR(NUM))=CYCR(NUM-1)
1567 CONTINUE

DO 1568 NUM=K3,P-1
PARENT(CYCR(NUM))=CYCR(NUM+ 1)

1568 CONTINUE
PARENT(CYCR(P))=CYCR(l)

ELSE IF (SUB.EQ.P) THEN
DO 1569 NUM=2,K2

PARENT(CYCR(NUM))=CYCR(NUM-1)
1569 CONTINUE

DO 1570 NUM=K3,P-1
PARENT(CYCR(NUM))=CYCR(NUM+ 1)

1570 CONTINUE
PARENT(CYCR(l))=CYCR(P)

ELSE IF (SUB.EQ.K2) THEN
DO 1571 NUM=l,K2-1

PARENT(CYCR(NUM))=CYCR(NUM+l)
1571 CONTINUE

DO 1572 NUM=K3,P-l
PARENT(CYCR(NUM))=CYCR(NUM+ 1)

1572 CONTINUE
PARENT(CYCR(P))=CYCR(l)

ELSE IF (SUB.EQ.K3) THEN
DO 1573 NUM=2,K2

PARENT(CYCR(NUM))=CYCR(NUM-1)
1573 CONTINUE

DO 1574 NUM=K3+ 1,P
PARENT(CYCR(NUM))=CYCR(NUM-1)

1574 CONTINUE
PARENT(CYCR(l))=CYCR(P)

ELSE IF (SUB.LT.K2} THEN
DO 1575 NUM=l,SUB-1

PARENT(CYCR(NUM))=CYCR(NUM+ 1)
1575 CONTINUE

DO 1576 NUM=SUB+l,K2
PARENT(CYCR(NUM))=CYCR(NUM-1)

1576 CONTINUE
DO 1577 NUM=K3,P-1

PARENT(CYCR(NUM))=CYCR(NUM+ 1)
1577 CONTINUE

PARENT(CYCR(P))=CYCR(l)
ELSE

DO 1578 NUM=2,K2
PARENT(CYCR(NUM))=CYCR(NUM-1)

1578 CONTINUE
00 1579 NUM=K3,SUB-1

PARENT(CYCR(NUM))=CYCR(NUM+ 1)
1579 CONTINUE

00 1580 NUM=SUB+ l,P
PARENT(CYCR(NUM))=CYCR(NUM-1)

1580 CONTINUE
PARENT(CYCR(l))=CYCR(P)

ENDIF
ELSE

IF (SUB.EQ.l) THEN
00 1581 NUM=2,K3

PARENT(CYCR(NUM))=CYCR(NUM-1)
1581 CONTINUE

001582 NUM=K2,P-1
PARENT(CYCR(NUM))=CYCR(NUM+ 1)

1582 CONTINUE
PARENT(CYCR(P))=CYCR(l)

ELSE IF (SUB.EQ.P) THEN
00 1583 NUM=2,K3

PARENT(CYCR(NUM))=CYCR(NUM-1)
1583 CONTINUE

001584 NUM=K2,P-1
PARENT(CYCR(NUM))=CYCR(NUM+ 1)

1584 CONTINUE
P ARENT(CYCR(l))=CYCR(P)

ELSE IF (SUB.EQ.K3) THEN
00 1585 NUM=l,K3-1

PARENT(CYCR(NUM))=CYCR(NUM+ 1)
1585 CONTINUE

00 1586 NUM=K2,P-1
PARENT(CYCR(NUM))=CYCR(NUM+ 1)

1586 CONTINUE
P ARENT(CYCR(P))=CYCR(l)

ELSE IF (SUB.EQ.K2) THEN
00 1587 NUM=2,K3

PARENT(CYCR(NUM))=CYCR(NUM-1)
1587 CONTINUE

00 1588 NUM=K2+ 1,P
PARENT(CYCR(NUM))=CYCR(NUM-1)

1588 CONTINUE
PARENT(CYCR(l))=CYCR(P)

ELSE IF (SUB.LT.K3) THEN
00 1589 NUM=l,SUB-1

PARENT(CYCR(NUM))=CYCR(NUM+ 1)
1589 CONTINUE

00 1590 NUM=SUB+l,K3
PARENT(CYCR(NUM))=CYCR(NUM-1)

1590 CONTINUE
DO 1591 NUM=K2,P-1

PARENT(CYCR(NUM))=CYCR(NUM+ 1)
1591 CONTINUE

PARENT(CYCR(P))=CYCR(l)
ELSE

DO 1592 NUM=2,K3
PARENT(CYCR(NUM))=CYCR(NUM-1)

1592 CONTINUE
DO 1593 NUM=K2,SUB-1

PARENT(CYCR(NUM))=CYCR(NUM+ 1)
1593 CONTINUE

DO 1594 NUM=SUB+ 1,P
PARENT(CYCR(NUM))=CYCR(NUM-1)

1594 CONTINUE
P ARENT(CYCR(l))=CYCR(P)

ENDIF
ENDIF

GOTO200

END

