
"AN OPTICAL REFLECTIVE CONNECTION APPROACH

FOR MUL'I"IPLE PROCESSOR ARRAYS"

by

JONATHAN F. GALLO

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Advisor

Dea

Master of Science in Engineering

in the

Electrical Engineering

Program

YOUNGSTOWN STATE UNIVERSITY

March, 1994

Date

-

ABSTRACT

"AN OPTICAL REFLECTIVE CONNECTION APPROACH

FOR MULTIPLE PROCESSOR ARRAYS"

Jonathan F. Gallo

Master of Science in Engineering

Youngstown State University, 1994

ii

The purpose of this thesis is to describe a

microcomputer array interconnection system, configurable

through optical links, such that computing power of a matrix

of cells can be distributed optimally for changes in

computational demands. Detail is given for the arrangement

of the reflectors for free-space switching. Requirements

for dealing with errors in construction of such a grid are

discussed. A partial treatment is given for actual creation

of the hardware, and an ideal device is described.

WILLIAM F
YOUNGsro v~. ~'!_AAG LIBRARY

I SJA TE u
NIVERsny

iii

ACKNOWLEDGEMENTS

I express my sincerest thanks to the following

persons for their varied assistances through which I would

not have been able to finally complete this paper: K. P. Moy,

M.W. Allender, M. Pietros, P. Cetrone, P.N. Crook,

A.F. Gallo, Dr. & Mrs. Gallo, and others who lent much

needed support. I would especially like to thank my

advisor, Professor Samuel J. Skarote, for his extensive

patience and advice in this undertaking.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGMENTS .

TABLE OF CONTENTS

LIST OF SYMBOLS .

LIST OF FIGURES

LIST OF TABLES.

CHAPTER

I. INTRODUCTION

II. HARDWARE OVERVIEW.

III. CONNECTION OVERVIEW.

IV. MAPPING CONSIDERATIONS

V. ERRORS IN CONSTRUCTION

VI.

5.1 Node-to-Node Distance Error.

5.2 Reflector Height Error

5.3 Beam Angle Error

DESIGN EXAMPLE

VII. IDEAL SYSTEM DESCRIPTION

VIII. SUMMARY ...

APPENDIX A. Software listing for program ARRAY0l.BAS

APPENDIX B. Software listing for program ARRAY02.BAS

APPENDIX C. Software listing for program ARRAY03.BAS

APPENDIX D. Software listing for program ARRAY04.BAS

REFERENCES .

BIBLIOGRAPHY

iv

PAGE

ii

iii

iv

V

vi

vii

1

4

9

13

25

27

28

29

32

43

47

50

52

54

56

58

59

SYMBOL

d, d 2 , d 3

f,fi,fr

h,h2

x,y

{A,B,C,D,E}

NOT,XOR,AND

A, -A

B, -B

x, -x

LIST OF SYMBOLS

MEANING

node-to-node distances

plane reflection angles

reflector heights

array position values

node address matrixes

combinational logic functions

reflector angles

residual of error reflection

beam error angles

unit-length reflection angles

2x-unit-length reflection angles

4x-unit-length reflection angles

V

LIST OF FIGURES

FIGURE

1. Basic Structure of Micro Array

2. Various Reflector Array Constructions

vi

PAGE

7

8

3 . Ring, Full, and N-cube Constructions . 11

4 . Mapping of a 2-cube. 14

5. Reflector Angle Determination 16

6. Combinational Logic Circuit. 24

7. Detail of Reflector Angle Determination 26

8. Error Due to Horizontal Variation 27

9. Error Due to Vertical Variation . 28

10. Error - Positive Beam Angle 31

11. Error - Negative Beam Angle 31

12. 4-Cube Reflector Placement. 33

13. Partially Assembled Reflector 36

14 . Assembled Reflector and Laser 37

15. Drawing of Reflector Components 39

16. Array Plane Circuit Board 40

17. Generic Receiver Circuit. 41

18. Ideal System Description. 46

TABLE

1.

2.

3.

4 .

5.

6.

LIST OF TABLES

Comparison of Three Arrangements .. .

Cell Mapping Information for a 2-cube

Mapping Method Used by Software for 6-cube

Redirection Angles for a 2-cube

Mapping Information for a 6-cube

Redirection Angles for a 4-cube.

vii

PAGE

10

14

15

17

17

34

1

CHAPTER I

INTRODUCTION

As clock speeds of computing systems increase,

higher rates of information transfer are needed. Increasing

amounts of data are subjected to more varied and complex

types of processing. This is evident in the nature of

current microcomputers. Where these used to only contain a

central computing unit, now they have a main processing unit

coupled with an associated numeric processor. Some systems

have separate video computation as well as processor-based

print technology. Communication channels and audio circuits

can now perform sophisticated data manipulation with minimal

reliance on the main processor. Evolution of such systems

point to multiprocessor based computing, even within the

context of the main processing section.

Parallelism of computing power and distributed

functionality of processing both require communication

amongst many processing cells. Throughput of such systems

is dependent on the speed by which data gets transferred

from point to point. Speed and density of point-to-point

connection systems are limited by the amount of crosstalk or

coupling between separate links. Optically connected

electronics are attracting more interest, because light

interconnection exhibits less electromagnetic interference

than electronic methods.

Most small computer systems incorporate one or more

paralleled-wire busses to transfer data between a single

processing unit, its memory, and external devices.

Multiprocessor designs typically utilize crossbar circuits

to dynamically interconnect computing cells' inputs and

outputs. Crossbar circuits are switch matrices typically

implemented in physical wiring, integrated form, and, in

some new designs, optical gates. As stated above, the fact

that optical connections are more electromagnetically quiet

than electronic ones gives hope that very high-speed and

low-interference switching devices can be fabricated [1].

2

Basic optical connections consist of a transmitter

coupled to a receiver through a transmission medium such as

optical fiber or free space. A gating medium is also needed

when using more than one connection, to link certain inputs

with certain outputs . This can be accomplished through an

optical coupling circuit, which routes some or all optical

energy (or signal content) in one fiber to another. By using

free-space links, wiring constraints associated with

physical waveguides can be avoided, thus allowing a high

degree of interconnection in computational grids.

Free-space links imply point-to-point connections; thus some

means for redirecting these vectors is needed, to provide

for the physical positions of individual cells. Free-space

routing can be accomplished through reflection or refraction

by an intervening redirecting device, such as a lens, prism,

refractive grating, reflector, or hologram.

This thesis explores one possible free-space

routing device - a planar reflector array - by which such

free-space redirection can be implemented. Chapter II

discusses the basic structure of a computational array, and

the resulting requirements for an associated reflector

array. It assumes the computing array is organized in a

square and planar configuration of processing cells, with

parallel light beams orthogonal to its surface. This then

requires an overhead array composed of reflective surfaces

which perform the optical redirection.

3

The amount of optical redirection depends on the

manner in which the computing cells are connected. Chapter

III compares three interconnection methods, ring, full and

N-cube. The N-cube structure is chosen for implementation

in the thesis, due to its low maximum path distance, and its

reasonable number of links. Chapter IV explores N-cube

addressing and details its implementation in the context of

the square array to be implemented.

Some errors associated with beam reflection, such

as receiver/reflector shift and beam misalignment, are

covered in Chapter V, while Chapter VI reveals details of

the example reflective array actually built. Chapter VII

describes an ideal system and some future work. Computer

programs used in development of the hardware are listed in

the Appendixes.

CHAPTER II

HARDWARE OVERVIEW

Figure 1, on page 7, shows one possible arrangement

of a multiprocessor system, that of a planar array of

identical computing cells. Each consists of a processor,

local memory, and input/output section. The processors and

memory are either optical or standard electronic circuits.

Constructing an array from identical computing and memory

modules reduces system complexity. The input section for

each cell consists of a number of isolated light-receiving

circuits (i.e. solar cell, phototransistor, or light

junction), while the output section contains one or more

light-transmitting circuits (diode, laser diode, laser, or

light port.) All the output beams as well as the receiving

areas are oriented normal to the computing array, so as to

be pointed straight up into the face of an overhead

reflecting surface. This reflecting surface could be

constructed in several ways:

i) milled to redirect the incoming beams to their
destinations;

ii) coated with a variable thickness of optically
refractive material;

iii) or a planar reflector needing self output beam
redirection.

These reflector constructions are shown in Figure 2. One

further approach would have the reflector implemented as a

4

semiconductor hologram, possibly time-variant, to provide

dynamic redirection of the output beams [2].

5

The function of the reflecting array is to provide

switching between the output light beams and the input

photosensors for each computing cell. In two of these

configurations, the optical paths would be frozen into

predetermined path links, implying the reflector surface

would have to be physically changed to reconfigure the

array. Both the planar reflector and the time-changing

hologram might be able to dynamically reconfigure the array

without direct physical manipulation of the structure. A

planar reflector would require beam directors at the

individual nodes, while the hologram approach would

dynamically change its own reflective characteristics. This

thesis does not discuss implementation of the holographic

array plane, whose basic structure is outlined in [3].

With a synchronized array, timing could be provided

through the power supply leads, thus reducing the overall

complexity of the system . If light gates are used, a common

laser (diode) source could provide power [3], timing, and

communication beams for the entire array. Uniformity in

configuration simplifies node construction and programming.

This thesis assumes a milled reflector approach .

Simplification of the system was considered a primary

objective. Steered beams were viewed as making the beam

hardware too complex, while the hologramatic approach would

shift complexity to the reflector construction. However,

the basic concepts of addressing and layout are applicable

to these reflector constructions.

6

One method of cell placement is to randomly place

the cells on the 2-dimensional cell plane, storing the x-y

coordinates of the transmitters and receivers for each cell.

The method used by the software is to place the cells in an

organized manner. This simplifies the mapping algorithm by

reducing the number of reflecting plane angles involved. A

drawback to symmetric cell placement is rigidity, as it does

not easily allow for failure of individual elements, as does

random placement.

A further software requirement, not implemented, is

adjustment of the reflector"s surface characteristic to

correct for angular beam spreading and maximize optical

energy at the corresponding receptor. Indeed, with the

array implemented in a wafer structure, surface real estate

available for sensors would be limited, thus requiring very

accurate and adjusted beam redirection. This could be

accomplished or aided by alteration of the individual

transmitters to modify their beam characteristics, not

limited to micromachined lenses for each transmitter, or

corrective layers of refractive material. Binary step

milling [4] holds the promise of very large numbers of tiny

lens elements, for transmitter/receiver augmentation, and

for direct lithography of the reflective surface itself .

A.

A. Processor Array Plane.
I. Input Photosensors.
M. Node Memory.
0. Output Transmitters.
P. Node Processors.
R. Reflector Array Plane.

7

Figure 1. Basic Structure of Micro Array

WILLIAM F. MAAG LIBRARY
YOUf 1 1STOW1 I STATF UNIVERSITY

8

,MILLED RE.FLECT.OR

I , , COATED REFLECTOR.
<::::: <:...;

Figure 2. Various Reflector Array Constructions

-

CHAPTER III

CONNECTION OVERVIEW

For P processors to be physically linked, three

possible connection schemes are considered; ring, full, and

N-cube. See Figure 3 on page 11. The two criteria of

connection comparison considered are the number of links,

and the maximum path length.

9

The number of links is the total physical data

connections needed to establish a particular system, while

the maximum path length is the number of connection steps a

data token would take to get from one system "side" to the

"farthest opposite" side. Higher link numbers equate to

higher connectivity, at the cost of constructing and

maintaining a higher number of physical connections. Lower

path length implies speedier message passing, as signal

packages should arrive more quickly to their destinations,

although such connected systems can suffer from "distracted"

or overtaxed nodes, where many individual nodes must deal

with an overabundance of communication packets arriving

concurrently.

Assume each system has P=2N-1 processors, where

N={l,2,3 ... } as shown in Figure 3 on page 11.

A ring connection is just what its name implies -

it connects all nodes into a giant ring, where each node is

connected to only two other nodes. This scheme requires only

Plinks and has a maximum path length of P/2, this length

having no back tracking of a packet. For large numbers of

nodes, the path length becomes very long, as there is only

one path (with possibly two directions on it).

The full connection ties each node to every other

node. With high number of nodes, this becomes a daunting

task. Although it has the smallest maximum path length of

just 1, it needs

10

(P-l)+(P-2)+ ... +2+1 = P(P-1)/2 (3 .1)

links. As can be seen, as the number of processors rises,

the maximum path length of the ring becomes extreme, while

the number of links for the full case becomes excessive.

TABLE 1

COMPARISON OF THREE ARRANGEMENTS

Number of Links Maximum Path Delay
N p Ring Full N-cube Ring Full N-cube

1 2 1 1 1 1 1 1

2 4 4 6 4 2 1 2

3 8 8 28 12 4 1 3

4 16 16 120 32 8 1 4

5 32 32 496 80 16 1 5

6 64 64 2016 192 32 1 6

7 128 128 8128 448 64 1 7

.

.
N P=2N p P(P-1)/2 N*P P/2 1 N

The N-cube, or hypercube architecture [5] strikes a

balance between these two. It starts from a single node and

11

0 0 0 N=O

••t----0 ••t----0 ••1---~o N=l

N=2

N=3

[

16 NODES l
120 LINKS N=4

Ring Full N-Cube

Figure 3. Ring, Full, and N-cube Constructions

simply replicates and connects itself to obtain higher form.

As shown in Figure 3, each N-cube is a doubling of its

previous size. Also shown in Figure 3 are ring and full

connections for certain sized sets of nodes. One can see

that the number of connections for the full system rapidly

12

becomes undrawable . In a wired system, it would be very

difficult to build. The number of nodes in an N-cube

follows a binary progression (1,2,4,8,16 ...) requiring only

N*2N-l = N*P (3 . 2)

links and having a maximum delay path of just N, assuming

P=2N-1
• This allows the entire array to have a low maximal

path distance, while limiting the links to a reasonable

number. Note also, that an N-cube structure has an inherent

binary nature, and is ideally suited for computing uses - it

allows a full binary mapping of nodes. This simply means

that all the addresses get assigned to a node, because there

are the same number of nodes as there are addresses.

Assuming an array of computing cells, where the

cells are to be connected in an N-cube array architecture,

limiting N to even numbers (thus setting P to 4,16,64 .. .)

allows a "square" 2-dimensional arrangement of the array,

which is a primary thrust of this thesis.

Limiting to a square array, and requiring a

binary number of nodes per side (or a binary total of

nodes), allows total mapping of addresses to nodes. Such

limiting is chosen due to the 2-dimensional nature of the

physical placement of this paper"s device. This will be

discussed in the following chapter. However, it should be

noted that such limiting need not be utilized. Indeed, if

there is not maximal mapping of addresses to nodes, open

addresses might be used for other companion or control

nodes.

13

CHAPTER IV

MAPPING CONSIDERATIONS

To demonstrate, assume a 2-cube of 4 processing

cells in a square arrangement as shown in Figure 4. Each

cell needs 2 transmitters and 2 receivers. Assume modular

cells, where each transmitter and receiver have unique

positions in the cell, but have identical positions from

cell to cell. Assume further that the cells are addressed

in a gray-code manner, meaning that neighboring nodes differ

in address by only one bit. Physical mapping is found by

assigning half of the cell address to the x-coordinate of

the plane, and the other half to they-coordinate, as shown

in Table 2.

Since there are only 4 processors, there need only

be 2 bits in each cell address, and hence only one bit

affecting either physical dimension. Inverting one bit of a

cell's address produces the address of an adjacent cell on

the N-cube. (For this simple case, it so happens that all

the N-cube adjacent cells are also adjacent physically on

the coordinate plane.)

As can be seen in Figure 4, each cell is unit step

from its two neighbors, thus (with good placement of its

components), each receiver-transmitter pair is the same

length. Thus, for a common height reflector, the angle of

reflection will be the same for all links.

14

10 11

2 3 GJGJ GJGJ
GJGJ GJGJ
GJGJ GJGJ

0 1 GJGJ GJGJ
00 01

Figure 4. Mapping of a 2-cube

TABLE 2

CELL MAPPING INFORMATION FOR A 2-CUBE

Cell Cell Position Connected to:

X y cell# & cell#

0 0 0 1 2

1 0 1 0 3

2 1 0 0 3

3 1 1 1 2

Table 3 shows the physical mapping method used for

the first program developed for this paper. Note that for

the 6-cube (2 6 = 64 = 8*8) example, each cell has 6 nearest

neighbors, with a 2-dimensional placement of all 64 cells.

Note the nature of the nearest neighbors; each is still (in

either the x or y direction), in the same column or row as

the origin of that beam. This means that only the x or y

15

axis of the reflector has to be changed, thus simplifying

the reflector design. The first software program, listed in

Appendix A, provides a visualization of the 6-cube

discussed. It graphically illustrates neighbor addresses.

1

0

TABLE 3

MAPPING METHOD USED BY SOFTWARE FOR A 6-CUBE

Cell y 2 0 1

6-Bit

Address

1

0

1

0

Yo

1

0

1

0

1

0

1

0

0

0 1

56 57

48 49

40 41

0 1

1 0

0 1 0 1

59 60 61

51 52 53

43 44 45

35 36 37

28 29

20 21

12 13

3 4 5

1

0 1

62

54

46

38

30

14

6

63

55

47

39

31

23

15

7

18{010010} produces six neighbors; 19{010011}, 16{010000},

22{010110}, 26{011010}, 2{000010}, and 50{110010}. Angular

displacement left-to-right is similar to the right-to-left

displacement. Thus 18-to-19 reflection is the same as

18-to-26; 18-to-2 is the same as 18-to-16; and 18-to-22 is

the same as 18-to-50. As derived in the next chapter, with

a reflector height of h, and a lateral (x or y) displacement

of d, see Figure 5:

A = {tan-1 [d/h]} /2 (4.1)

16

In Tables 4 and 5, and Figure 5, A is the angle for

left-to-right redirection of one cell length, while -A is

the angle for right-to-left. Band -B refer to redirection

of 2 unit lengths, while x and -x redirect 4 unit lengths.

Reflector

or X
- -~- - - - -

h

~ransmitter Receiver

• --------- d - - - - - - - - - - - •

Figure 5. Reflector Angle Determination

With odd placement of any of the components, there

will be instances when the simple case of reflection will

not work. Figure 5 displays a side view, thus not

indicating that the planar reflective area might need to be

tilted in the other dimension (into or out of the page) to

accommodate a two-axis reflection, occurring where there

exists a conflict of assignment for two or more devices.

17

TABLE 4

REDIRECTION ANGLES FOR A 2-CUBE

Cell Receiver Al(X-Axis) A2(Y-Axis)

0 0 0 A

0 1 A 0

1 0 A 0

1 1 0 -A

2 0 -A 0

2 1 0 A

3 0 -A 0

3 1 0 -A

TABLE 5

MAPPING INFORMATION FOR A 6-CUBE

X-ADDRESS Y-ADDRESS Nl N2 N3 N4 NS N6 A B X A B X

0 0 0 0 0 0 0 32 16 8 4 2 1 + + + + + +

1 0 0 0 0 0 1 33 17 9 5 3 0 + + + + + -
2 0 0 0 0 1 0 34 18 10 6 0 3 + + + + - +

3 0 0 0 0 1 1 35 19 11 7 1 2 + + + + - -
4 0 0 0 1 0 0 36 20 12 0 6 5 + + + - + +

5 0 0 0 1 0 1 37 21 13 1 7 4 + + + - + -
6 0 0 0 1 1 0 38 22 14 2 4 7 + + + - - +

7 0 0 0 1 1 1 39 23 15 3 5 6 + + + - - -

8 0 0 1 0 0 0 40 24 0 12 10 9 + + - + + +

9 0 0 1 0 0 1 41 25 1 13 11 8 + + - + + -
10 0 0 1 0 1 0 42 26 2 14 8 11 + + - + - +

11 0 0 1 0 1 1 43 27 3 15 9 10 + + - + - -

12 0 0 1 1 0 0 44 28 4 8 14 13 + + - - + +

13 0 0 1 1 0 1 45 29 5 9 15 12 + + - - + -

18

TABLE 5 (Continued)

X-ADDRESS Y-ADDRESS Nl N2 N3 N4 NS N6 A B X A B X

14 0 0 1 1 1 0 46 30 6 10 12 15 + + - - - +

15 0 0 1 1 1 1 47 31 7 11 13 14 + + - - - -

16 0 1 0 0 0 0 48 0 24 20 18 17 + - + + + +

17 0 1 0 0 0 1 49 1 25 21 19 16 + - + + + -
18 0 1 0 0 1 0 50 2 26 22 16 19 + - + + - +

19 0 1 0 0 1 1 51 3 27 23 17 18 + - + + - -
20 0 1 0 1 0 0 52 4 28 16 22 21 + - + - + +

21 0 1 0 1 0 1 53 5 29 17 23 20 + - + - + -
22 0 1 0 1 1 0 54 6 30 18 20 23 + - + - - +

23 0 1 0 1 1 1 55 7 31 19 21 22 + - + - - -
24 0 1 1 0 0 0 56 8 16 28 26 25 + - - + + +

25 0 1 1 0 0 1 57 9 17 29 27 24 + - - + + -
26 0 1 1 0 1 0 58 10 18 30 24 27 + - - + - +

27 0 1 1 0 1 1 59 11 19 31 25 26 + - - + - -

28 0 1 1 1 0 0 60 12 20 24 30 29 + - - - + +

29 0 1 1 1 0 1 61 13 21 25 31 28 + - - - + -
30 0 1 1 1 1 0 62 14 22 26 28 31 + - - - - +

31 0 1 1 1 1 1 63 15 23 27 29 30 + - - - - -
32 1 0 0 0 0 0 0 48 40 36 34 33 - + + + + +

33 1 0 0 0 0 1 1 49 41 37 35 32 - + + + + -
34 1 0 0 0 1 0 2 50 42 38 32 35 - + + + - +

35 1 0 0 0 1 1 3 51 43 39 34 34 - + + + - -

36 1 0 0 1 0 0 4 52 44 32 38 37 - + + - + +

37 1 0 0 1 0 1 5 53 45 33 39 36 - + + - + -
38 1 0 0 1 1 0 6 54 46 34 36 39 - + + - - +

39 1 0 0 1 1 1 7 55 47 35 37 38 - + + - - -
40 1 0 1 0 0 0 8 56 32 44 42 41 - + - + + +

41 1 0 1 0 0 1 9 57 33 45 43 40 - + - + + -
42 1 0 1 0 1 0 10 58 34 46 40 43 - + - + - +

43 1 0 1 0 1 1 11 59 35 47 41 42 - + - + - -
44 1 0 1 1 0 0 12 60 36 40 46 45 - + - - + +

19

TABLE 5 (Continued)

X-ADDRESS Y-ADDRESS Nl N2 N3 N4 NS N6 A B X A B X

45 1 0 1 1 0 1 13 61 37 41 47 44 - + - - + -

46 1 0 1 1 1 0 14 62 38 42 44 47 - + - - - +

47 1 0 1 1 1 1 15 63 39 43 45 46 - + - - - -

48 1 1 0 0 0 0 16 32 56 52 50 49 - - + + + +

49 1 1 0 0 0 1 17 33 57 53 51 48 - - + + + -

50 1 1 0 0 1 0 18 34 58 54 48 51 - - + + - +

51 1 1 0 0 1 1 19 35 59 55 49 50 - - + + - -
52 1 1 0 1 0 0 20 36 60 48 54 53 - - + - + +

53 1 1 0 1 0 1 21 37 61 49 55 52 - - + - + -

54 1 1 0 1 1 0 22 38 62 50 52 55 - - + - - +

55 1 1 0 1 1 1 23 39 63 51 53 54 - - + - - -
56 1 1 1 0 0 0 24 40 48 60 58 57 - - - + + +

57 1 1 1 0 0 1 25 41 49 61 59 56 - - - + + -

58 1 1 1 0 1 0 26 42 50 62 56 59 - - - + - +

59 1 1 1 0 1 1 27 43 51 63 57 58 - - - + - -
60 1 1 1 1 0 0 28 44 52 56 62 61 - - - - + +

61 1 1 1 1 0 1 29 45 53 57 63 60 - - - - + -

62 1 1 1 1 1 0 30 46 54 58 60 63 - - - - - +

63 1 1 1 1 1 1 31 47 55 59 61 62 - - - - - -

The second computer program listed in Appendix B,

computes the above data for the computing cells in the 8x8

arrangement of the 6-cube of Table 3. For the reflection

information, each beam redirection needs two angular

displacements, one for each dimension of the array. The

software finds the x and y values of displacement. Each

step in either the x or y direction is unit distance from

the regular arrangement of the grid. This means that each

reflection is a combination of the inter-cell spacing and

the spacing between transmitter and receiver. In such an

arrangement, the address of each node contains:

i) that node's position (x,y) on the plane array .

ii) the addresses of the node ' s nearest neighbors.

iii) direction information to reach each neighbor.

20

As in the case of the 2-cube, it can be seen that

the first half of the address is the x position of that

cell, while the other half of the address is they position

of the cell.

Again, to find the nearest neighbors of any cell,

one bit of its address is inverted to find one neighbor.

This works if a gray-code addressing scheme is used for

adjacent node addresses. As in the case of the 2-cube,

there will only be 2 directions for reflector orientation.

This is due to the 2-dimensionality in physical layout.

However, now there will be 3 possible angles for the

reflecting surface. The software shows two of each angle A,

B, and x for each node, one in a vertical and one in a

horizontal direction. It can be seen that the direction

(+/- for increasing/decreasing x or y), will mimic the bits

of the node address, where a 1 bit of address corresponds to

a negative reflection angle. From a binary perspective,

this makes absolute sense, as it can be seen that by

inverting only one bit from a one to a zero changes the

address negatively by some power of 2. A zero in the

address will cause a positive address change by some power

of 2, thus requiring a positive reflection angle. Since

21

half the bits (in this case, 3 bits) of an address control

the x-axis placement of the node, there will be three

addresses in the same row as the original node, each

differing in address by 1, 2, and 4. Correspondingly, the

other half of the address affects the y-axis location, thus

the other three neighbor nodes occur in the same column,

differing from the original address by 8, 16, and 32.

Referring to Table 3, note the orientations of the

highlighted cells.

Thus, for the 6-cube discussed, the address is of

the form:

(4.2)

giving the square as shown in Table 3, and in general, for

an N-cube of the square type:

{y<N121-1 YtN12i-2· • ·Y2 Y1 Yo x,N12i-1 x<N121-2· • .X2 X1 Xo}

where N=2,4,6,8 ...

(4. 3)

In a general form, {A} is substituted for the {yx}

form of the address, implying a source address for a node.

The destination address {D} of the same form is supplied by

the sending node. Exclusively OR'ing them will produce the

intermediate product {B}:

{B} = {A} XOR {D} (4.4)

which is used to modify another term {E}, which starts out

as zeroed array(, {E} = { .. 000 .. }.) {B} is scanned in some

predetermined order to find a digit one value (1). At the

point that the first 1 is found, the corresponding bit in

{E} must be asserted, and scanning of {B} stopped:

22

{E} = f ({B}) = f ({A}, {D}) (4. 5)

This changed {E} term is then XOR'ed with the

original source address, to produce the node address which

the packet should be sent to next:

{C} = {E} XOR {A} (4. 6)

which allows any node to send along a message packet in the

correct direction within the array. The final function for

the address {C} is dependent on the manner in which scanning

is performed on the intermediate term {B}. Scanning from

right to left will produce the following logic:

IF B0 = 1 then {E} = { .. 001}
ELSE IF Bl= 1 then {E} = { .. 010}
ELSE IF B2 = 1 then {E} = { .. 100}

OTHERWISE {E} = { .. 000}

(4.7)
(4. 8)
(4.9)

(4.10)

By placing the terms into a Karnaugh map, the terms

for {E} can be found to be:

Ea = Ba
E1 = NOT (B 0) B1
E2 = NOT (B0) NOT (B1) B2

(4.11)
(4.12)
(4.13)

(4.14)

This form of {E} can be manipulated into a simpler

form by recognizing that:

{ B} = { .. B3B2B1 B0 }

2 {B} = { .. B2B1B0 0}
4{B} = { .. B1B0 00}

2n{B} = { .. B1B0000000<-- n zeros -->00000}

(4.15)
(4.16)
(4.17)

(4.18)

which only means that by NOT'ing all but the first of the

above functions will produce necessary terms which can be

AND'ed together to form {E}. Of course, there will exist

higher valued terms outside the range of bits needed, as

23

multiplication (even by 2,) will produce numbers larger than

the initial value. These terms can be eliminated by simply

AND'ing the final product with 2°, where n is the number of

bits of resolution in the source address {A}.

The third computer program, listed in Appendix C,

produces passing addresses by using the procedure just

described. The experimental program generates random

addresses for a 4-cube array, stacking simulated data tokens

for each node. No output of the program is shown or

discussed in this paper.

The above discussion gave the procedure to follow

if software is utilized to compute next-neighbor-to-pass-to

addresses for token passing. If hardware is built, the

equations (4.4) through (4.6) can be implemented through the

use of combinational logic gates, as shown in Figure 6.

24

{D}

I I
--

\.. J \.. J ... I J ... I J ... I .J ... I .J .. - -·...1 .. -- ...

'\7 '\.7 '(_] \..] '(] '(7
, .. - - - - - ·r - - - - - - - - - - - - - - - - - ..

~ ·~ ~ ~
~ .~ ~ ~, J

{B}

'

{A}
~~

I '
'

l) l) l) l) lJ '

'
' - .. {E}

\.. JJJJJ ... I .J .. - - -.... .. - -.... .. - -

'\7 '\7 '(-:) '(7 '(7 '(/

I I I I
{C}

Figure 6. Combinational Logic Circuit

25

CHAPTER V

ERRORS IN CONSTRUCTION

Three primary errors in alignment will affect

correct optical linking of any two nodes, each representing

a small change from computed values. Since these errors

cumulatively add, it is imperative that they are recognized,

identified, and corrected for. It is assumed that they are

time-invariant, meaning once corrected for, they should no

longer affect the system. Variations discussed are:

i) variation in node-to-node distance (d);

ii) aberration in reflector spot height (h);

iii) change in beam transmission angle (E).

Correcting for both distance and height error is

simply a matter of adjusting the reflector angle to

compensate for the resulting error. Beam angle error

requires possible relocation of the reflector spot position

as well as angle compensation. All errors will change the

spot size of the beam at the receiver, so dispersion

correction (or beam angle error correction) is necessary if

the receiver area or sensitivity are critically small.

For the following, refer to Figure 7. Assuming the

reflective spot a linear reflector, the incident and

reflected angles will be equal (fi = fr = f) . From the

diagram, for the calculation of the reflector angle:

f =e+cx (5.1)

2f = E + ~

and by solving for a:

a = (~ - E) /2 = ~/2 - E/2

or:

a = {tan-1
[(d-x) /h] - E }/2

When x = 0 and E = 0 :

a = {tan-1 [d/h]} /2

as was indicated in equation 4.1

26

(5 .2)

(5. 3)

(5 . 4)

(5. 5)

With a vertical beam, symmetric changes in both d

and h imply no change in reflector angle. Thus, a 10%

change ind and h keeps the angle the same.

d ---------~

Figure 7. Detail of Reflector Angle Determination

27

5.1 NODE-TO-NODE DISTANCE ERROR

As indicated in Figure 8, a variation in distance

between nodes will cause the receiver position to deviate

from the intended spot landing area , thus corrupting or

impeding signal reception. A small change in distance,

err(d) will require either relocation of the receiver to its

original space, or correction of the reflective angle:

d 2 = err (d) + d (5 . 6)

a2 = {tan-1 [d2 /h]}/2 (5.7)

d ------,M:c-- err (d~

d

Fiqure 8. Error Due to Horizontal Variation

28

5.2 REFLECTOR HEIGHT ERROR

A deviation in reflector height would be caused by

bending, warpage, or some local surface discontinuity of the

reflective surface. Although not anticipated to occur, such

an error in height, err(h), would result in overshooting or

undershooting of the intended receiver. Compensating for a

change in surface-to-reflector height requires corrective

milling of the reflective spot such that its angle is

decreased for an increase in height, as per Fig. 9:

h 2 = err (h) + h

a2 ----i -----
err(h)

h2

h

d

Figure 9. Error Due to Vertical Variation

(5.8)

(5. 9)

5.3 BEAM ANGLE ERROR

It is expected that if the transmitters located at

each node are discrete devices, there will exist the

likelihood of the beams not being entirely normal to the

surface of the plane.

As shown in Figure 10, given a beam angle error E,

where positive Eis towards the target node, the lateral

translation of the reflector is:

29

x = h*tan (E) (5.10)

while the residual of the reflection is:

~ = tan-1
((d - x) /h) (5.11)

and the assumption is a plane reflective surface, then:

f = (E + ~) /2

This derives the angle of reflection as:

IX = f - E = ((E + ~) /2) - E = (~ - E) /2

or, by substituting from above:

a= {tan-1
((d - x)) /h] - E}/2

(5.12)

(5.13)

(5.14)

This is the same as was given in equation 4.1 Now,

as indicated in Figure 11, given a beam angle error E, where

positive Eis away from the target node, the lateral

translation of the reflector is the same as before:

x = h*tan(E) (5.15)

while the residual of the reflection requires a small change

from subtraction to addition:

~ = tan-1
((d + x) /h) (5.16)

while again, the assumption is a plane reflective surface,

there is another change in summation:

f = (13 - E) /2

deriving the angle of reflection to:

a = f + £ = ((13 - E) /2) + £ = (13 + E) /2

or, by substituting from above:

a= {tan-1
[(d + x) /h] + d/2

30

(5 .17)

(5.18)

(5.19)

The general form now becomes, where positive£ is

towards, and negative£ is away from the target node:

a = [tan-1
{ (d - h*tan(E)) /h} + £] /2 (5.20)

Note that with zero beam error, the beam is normal

to horizontal:

£ = 0

and the angle simplifies to that in equation 5.4:

a = [tan-1 {d/h}] /2

(5.21)

(5.22)

Dynamic errors in the values just discussed are

more difficult to compensate for, as they will corrupt more

than one node-to-node connection linkage. Small tilts,

shifts, or vibrations of the reflector will affect almost

all communicating nodes. Thermal changes cause expansion

and contraction of both the reflector supporting structure,

as well as the circuit substrate, thus introducing the above

errors. Gross tiltage or movement of the entire reflective

array must not occur, as this will result in massive

disruption of almost all connections.

h

- - - - - - - - - - - - - - - - :, -

X

d

Figure 10. Error - Positive Beam Angle

- - - - :, _ - - - - - - - - - - - - - - -

X ----------- d

Figure 11. Error - Negative Beam Angle

31

32

CHAPTER VI

DESIGN EXAMPLE

It was decided that a small example of design and

construction would be helpful to demonstrate implementation

of the principles discussed in the preceding chapters. A

4-cube array was chosen, so as to minimize complexity of

construction. This implied 24 or 16 nodes of size, to be

arranged in a 4 x 4 configuration. Since each node would

have 4 array neighbors, each would require 4 reflective

surfaces above it, thus requiring a total of 64 reflectors,

oriented in a chessboard 8 x 8 arrangement, again arranged

in the same addressing fashion as the 6-cube of Chapter 4.

Here, above each node area, would exist 4 square reflectors,

2 required for x-axis and 2 for y-axis reflections. It was

arbitrarily decided the top 2 squares would reflect

vertically, while the bottom 2 squares would reflect in a

horizontal direction. This is shown in Figure 12.

A decision was made to limit each node to a 1" x 1"

area, and to position the reflector 2" above the array

plane. A small program, listed in Appendix D, utilizing the

equations from Chapter 4, produced the reflective angular

data shown in Table 6. Notice only two distinct reflective

angles are necessary for the entire array, as placement and

orientation determine their beams' directions. Note also,

33

che alternation in Figure 11 of the two angles' placements.

12

8

4

0

+ +
~+

13 14

9 10

5 6

1 2

direction

15

11

7

3

DD DD a a a a
DD DD a a a a
DD DD a a a a
D D D D a a a a

• angle= 13.3

angle= 22.5

Figure 12. 4-cube Reflector Placement

To implement the reflective surface, square stock

metal rods 1/2" x 1 / 2" were cut to the required height and

ground to the correct angles; 32 were ground to an angle of

22. 5°, whil,e the other 32 were ground to 13. 3° . The height

of 2" separation was to be from the array surface to the

center of each reflective spot.

Pictures of the hardware to be described is shown

i n Figures 13 and 14, while a mechanical drawing of the base

p late is shown in Figure 15. Figure 16 shows the circuit

board used as the array plane.

34

TABLE 6

REDIRECTION ANGLES FOR A 4-CUBE

node# x-oosn v-oosn horiz. vert.
0 0.25 0.25 13.3 0

0.75 0.25 22.5 0
0.25 0.75 0 13.3
0.75 0.75 0 22.5

1 1.25 0.25 -13.3 0
1. 75 0.25 22.5 0
1.25 0.75 0 13.3
1. 75 0.75 0 22.5

2 2.25 0.25 13.3 0
2.75 0.25 -22.5 0
2.25 0.75 0 13.3
2.75 0.75 0 22.5

3 3.25 0.25 -13.3 0
3.75 0.25 -22.5 0
3.25 0.75 0 13.3
3.75 0.75 0 22.5

4 0.25 1. 25 13.3 0
0.75 1.25 22.5 0
0.25 1. 75 0 -13.3
0.75 1. 75 0 22.5

5 1.25 1.25 -13.3 0
1. 75 1.25 22.5 0
1.25 1. 75 0 -13.3
1. 75 1. 75 0 22.5

6 2.25 1. 25 13.3 0
2.75 1. 25 -22.5 0
2.25 1. 75 0 -13.3
2.75 1. 75 0 22.5

7 3.25 1. 25 -13.3 0
3.75 1. 25 -22.5 0
3.25 1. 75 0 -13.3
3.75 1. 75 0 22.5

8 0.25 2.25 13.3 0
0.75 2.25 22.5 0
0.25 2.75 0 13.3
0.75 2.75 0 -22.5

9 1.25 2.25 -13.3 0

1. 75 2.25 22.5 0

1.25 2.75 0 13.3

1. 75 2.75 0 -22.5

10 2.25 2.25 13.3 0

2.75 2.25 -22.5 0

2.25 2.75 0 13.3

2.75 2.75 0 -22.5

35

TABLE 6 (Continued)

node# x-oosn v-oosn horiz. vert.
11 3.25 2.25 -13.3 0

3.75 2.25 -22.5 0
3.25 2.75 0 13.3

3.75 2.75 0 -22.5

12 0.25 3.25 13.3 0
0.75 3.25 22.5 0
0.25 3.75 0 -13.3
0.75 3.75 0 -22.5

13 1.25 3.25 -13.3 0
1. 75 3.75 22.5 0
1.25 3.25 0 -13.3
1. 75 3.75 0 -22.5

14 2.25 3.25 13.3 0
2.75 3.75 -22.5 0
2.25 3.25 0 -13.3
2.75 3.75 0 -22.5

15 3.25 3.25 -13.3 0
3.75 3.75 -22.5 0
3.25 3.25 0 -13.3
3.75 3.75 0 -22.5

Since the reflectors' ends were ground down from a

set size, there was a small difference in height which had

to be added to those having the larger angle, in order to

bring their height up, so that their centers would be at the

same level as those reflectors with the smaller angle.

Although steel stock was selected for the

reflectors, a highly polished finish was found to be too

time intensive to achieve, so that after they were made, a

way had to be found to increase their reflectance. This was

achieved through an adhesive-backed reflective film applied

after grinding a reasonably smooth top to each rod. Had

this reflective arrangement been decided on in advance, the

36

Figure 13. Partially Assembled Reflector

37

Figure 14. Assembled Reflector and Laser

rods could have been milled out of plastic (or even wood),

thus lightening the structure substantially.

Each reflector had a threaded hole tapped into its

base to allow it to be anchored to an aluminum base plate.

In addition two small grooves were ground on the base of

each reflector.

38

The base plate had rectangular grooves milled at

right angles to allow any reflector to sit at only one of 4

orientations. Longer threaded shafts held the reflectors at

a constant distance of 2" above the array plane, which

consisted of a printed-circuit board having 64 holes

aligning one to each of the reflectors.

The array plane circuit board was conceived to

comprise two separated sets of parallel traces at 90° to

each other, with the transmitters or receivers attached to

one of each trace. By selecting one vertical and one

horizontal trace, a single receiver or transmitter can be

electrically selected for connection to a detecting or

driving circuit. Due to the addressing nature of the array,

only one other trace need be used for nearest-neighbor

addressed transmitter/receiver of the one selected.

In a full implementation, one would require that

each array plane hole would contain both a receiver and a

transmitter. This device, however, was constructed solely

for the purpose of demonstration of the connection approach,

and not for complete implementation of a computing device.

r 4
• ·I

0 0 0 0 0 0 0 0

• • • • • • •
0 0 0 0 0 0 0 0

•••••••
0 0 0 0 0 0 0 0

• • • • • • •
0 0 0 0 0 0 0 0

a • • • • • • •
0 0 0 0 0 0 0

• • • • • • •
0 0 0 0 0 0 0 0

b •••••• Dr+--,
0 0 0 0 0 0 0 0

~~ • • • • • • • ~

a 64 holes . 125" dia
no threads, countersunk from
bottom of plate, on .5" centers.

b 4 holes .35" dia
no threads, tapped from top,
one per flange as shown .

•
i : t2"i X

G .075"

•

. 5"

c 32 rods .5" x .5" base, with centered, threaded
hole from bottom. Angle= 22.5 degrees from
horizontal, x = 0"

d same as c except, angle= 13.3, x = .045"

Figure 15. Drawing of Reflector Components

39

40

Figure 16 . Array Plane Circuit Board

41

It was found that, for the hardware built, a common

light-emitting-diode (LED) was inadequate as a transmission

source, due to its limited optical output and wide angular

dispersion. A narrower beam, higher output LED was found,

but then rejected for cost reasons. Collimation of multiple

sources was also ruled out, again to minimize cost.

For demonstration purposes, a Helium-Neon laser

source was chosen. Its marginal power output of less than 1

milliwatt was not high enough to justify developing an optic

splitting device; only one surface reflection can be

demonstrated at a time.

A simple receiver circuit, centered around a

cadmium sulfide photo-resistor, was used to detect the

presence of light above a threshold ambient value. Light

energy falling on the photo-resistor Rl drives current into

the trimming resistor, R2.

V+

V+ = 5 - 13 volts
-+ + R1 phototransistor -+ R1 Dl + =
-+ R2 2K trim pot =

Ql Ql = NPN darlington

Dl = L. E. D.
Z1

Zl = 3.6 zener diode

Figure 17. Generic Receiver Circuit

42

When the voltage of R2 is higher than the zener

voltage plus that of the base-to-emitter voltage, the

Darlington conducts, and the resulting current through its

collector lights the LED indicator. Trimming resistor R2

allows for varying the threshold value to compensate for

ambient light conditions. Refer to the circuit shown in

Figure 17. A picture of the completed detector is shown in

Figure 16.

43

CHAPTER VII

IDEAL SYSTEM DESCRIPTION

An ideal system would have one beam director at

each array node, all nodes being supplied their beams from a

common pump source. By utilizing beam directors at the

transmitters instead of reflective redirection, each node

would be responsible for steering its own beam to its

destination. Advantages for such a system would be:

a) transmitter compensation of the above inconsistencies

b) transmitter compensation for surface irregularities

c) reduction to a simple smooth (flat) reflector

d) dynamic structure reconnection

e) accommodation of random node placement

f) simplified construction with single node controllers

With identical node structures, a simple reflective

plane, one common pump source, and one beam per node, the

physical structure would be relatively non-complex for high

numbers of array elements. Such a system is depicted in

Figure 18.

The direction element would consist of two stacked

refractive elements (such as piezo-optic crystals), each

responsible for bending the beam in their respective axis.

To communicate with another element, a node would provide x

and y bending voltages to the redirector to thus point its

beam in the correct direction [2]. With higher beam

44

directivity, dynamic changes in the overall structure, such

as linear distortion due to thermal expansion, could be

compensated for. To handle random node placement, each node

would energize its beam in turn, while every other node

would monitor for reflection, announcing through a "manager"

node when its receiver had been hit by the beam. This

direction information, stored in a lookup table, allows a

node to "dial up" a connection, similar to a phone system.

As this could allow full interconnection of an array, there

would be a need for node identification as well as

connection and timing protocols.

Higher link flexibility requires rules for managing

an increased rate of data collision, although this would be

offset by the capability of the system to dynamically

restructure itself into alternate connection configurations,

indeed even allowing fracturing of the main system into

computational subsystems. This would translate into

capability to handle varying degrees of computational

complexity to match that required by the incoming

applications.

Structural support of the reflector could be

implemented by utilizing a solid, optically transparent

material (glass/plastic/diamond) in place of free space.

This could be aided by implementing direct point-to-point

connection by eliminating the reflective plane and placing

the array nodes in a circular, cylindrical, or spherical

orientation, although for construction purposes, a planar

configuration is preferred. Both of these would decrease

the propagation time of the light beams, but:. would impose

power constraints due to optical attenuation through the

bending devices and the associated heat and stress

dissipation.

45

The entire paper has implied common frequency light

sources, to minimize system complexity. However, this need

not be the case. Provided that its receiving area is

complementary, each node need not be limited to the same

optical frequency. This would reduce optical crosstalk from

multiple reflections.

Overall system speed would depend p:rimarily on the

base speeds of the nodes, augmented by using supercooled,

superconducting, or high-speed node logic circuitry.

JUUUl

A. Array Plane with Optic - Gate Substrate.
C. Control System for Pump and Ref~ector.
0 . Optical Media .
P . Beam Pump Source .
R. Re= l ector Plane .
S. Structu ral /Cooling Framework .

Figure 18 . Ideal System Descr iption

4 6

47

CHAPTER VIII

SUMMARY

This paper has covered some of the aspects of a

reflective connection device for computational arrays, as

one solution for the inherent crosstalk and limited speed of

current wire-bussed designs. (See Chapter I.)

In Chapter II, several assumptions were made about

the nature of a computational array. A square, symmetric

arrangement of identical computing nodes was established as

the model computational array. Communication light beams

originating from each node, and oriented perpendicular to

the plane of the array, required an overhead reflective

device . Simplification of the reflective structure is

obtained through the regularity of the array model, and in

the selection of milled reflecting elements in place of

hologramatic or planar reflectors.

In Chapter III, comparison of three linking methods

(ring, full, and N-cube), led to the selection of the N-cube

for the computational array. The N-cube architecture is a

binary structure containing 2N nodes. Primarily, the low

maximum path distance and low number of physical links of

the N-cube minimized the number of reflections implemented.

Reflector simplification was achieved by positioning the

array nodes in a regular manner.

48

As further explained in Chapter IV, addressing and

positioning of the N-cube had impact on the nature of the

reflector design. In addressing the N-cube in a gray-code

manner, and requiring the array nodes to be systematically

arranged on a 2-dimensional plane, the reflector element

requirements are reduced to single axis reflections. This

later eased the milling requirements.

Possible errors (receiver shift, reflector shift,

and beam misalignment) were considered, and the adjustments

to individual surfaces' angles was given. These errors, as

derived in Chapter V, can be compensated for when they are

time-invariant. No mention of measurement for these errors

was discussed.

Construction of a prototype reflective device was

documented in Chapter VI. The reflector, consisting of 64

milled reflective rods attached to a base plate, is suited

for a 4-cube of 16 processors. By utilizing the layout

considerations of Chapter IV, there are only 2 different

angled reflectors used (32 of each). A helium-neon laser

and small detector circuit were assembled for use in

demonstration of the reflection elements.

Chapter VII gave a brief description of a possible

ideal system, including some ideas which would allow dynamic

reconfiguration of the reflector plane (common pump beam,

optical gates, transmitter beam steering, etc.)

Further research into this type of connective

system might include many details of the aforementioned

49

ideal system description (as described in Chapter VII).

Microlithography of an entire wafer-scale device would be

the next logical step, as technology always demands smaller

size, reduced power, reduced weight, higher computing power,

and the like. An exploration of other physical placement

algorithms could yield a more effective (speed, real-estate,

cost) design. In addition, actual construction of an entire

computing array design, complete with interfacing hardware

and configuration software, would be most desired.

'NAME: ARRAY0l.BAS
'DATE: 02-92

APPENDIX A

'NOTE: This program displays a planar array of 64 cells ,
'assumed connected in a 6-CUBE architecture. Neighbors
'(grey) are indicated for one selected (red) element.
"u$ are data for the address characters, delis pitch
'between digits. (x(n),y(n)) is beginning point while
'(x(n+l),y(n+l)) is ending point for numeral line segment
'where 0 < n < 8.

SCREEN 9 WINDOW (-1.5, -2.5)-(9, 8)
u$(0) = 0111111"
u$(1) = 0001100
u$(2) = 1011011
u$(3) = 1011110
u$(4) = 1101100
u$(5) = '1110110
u$(6) = 11 1110111
u$(7) = "0011100
u$(8) = "1111111
u$(9) = 11 1111100
del = .16

'grid draw routine
FOR i = 0 TO 7

FOR j = 0 TO 7

X (1) = . 3: y (1)
X (2) = . 2: y(2)
x(3) = .2: y(3)
X (4) = . 3: y (4)
X (5) = . 3: y (5)
X (6) = .3: y(6)
x(7) = . 2: y (7)
X (8) = . 2: y(8)

LINE (i , j) - (i + . 9 , j + . 9) , , B
numb= j * 8 + i
t = INT(numb / 10)
o = numb - 10 * t
FOR k = 1 TO 7

t1$ = MID$(u$(t), k, 1)
t2$ = MID$(u$(o), k, 1)

IF tl$ = "l" THEN LINE
(i+x(k),j+y(k))-(i+x(k+l),j+y(k+l))

=
=
=
=
=
=
=
=

.2

.2

. 3

. 3

.2

.1

.1

.2

IF t2$ = "1" THEN LINE
(i+x(k)+del,j+y(k))-(i+x(k+l)+del,j +y(k+l))

NEXT k
NEXT j

NEXT i
LOCATE 22, 10: PRINT "Arrows to move. y address="
LOCATE 23, 10: PRINT 11 <esc> for exit. x address="
'keyboard interpretation routine
get.key: a$= INKEY$: IF a$= 1111 THEN GOTO get.key

IF LEN(a$) = 2 THEN b = ASC(MID$(a$, 2, 1))
IF ASC(a$) = 27 THEN END
IF b = 72 THEN y = y + 1

50

IF b = 80 THEN y = y - 1
IF b = 77 THEN X = X + 1
IF b = 75 THEN X = X - 1
X = ABS(x + 8) MOD 8
y = ABS(y + 8) MOD 8

I ... erases the old mappings ...
PAINT (old.x + . 5, old.y + . 5) ' 0 I 15

FOR i = 0 TO 2
PAINT ((old.x XOR 2 Ai) + .5, old.y + .5), 0, 15
PAINT (old.x + .5, (old.y XOR 2 Ai) + .5), 0, 15

NEXT i

' ... and maps the adjacent addresses ...
PAINT (x + .5, y + .5), 4, 15

FOR i = 0 TO 2
PAINT ((x XOR 2 Ai) + .5, y + .5), 7, 15
PAINT (x + .5, (y XOR 2 Ai) + .5), 7, 15

NEXT i

FOR i = 0 TO 2
LOCATE 22, 47 - 2 * i
PRINT (y AND 2 Ai) / 2 Ai;
LOCATE 23, 47 - 2 * i
PRINT (x AND 2 Ai) / 2 Ai;

NEXT i

' ... then saves this new position ...
old.x = x: old.y = y

' ... and goes back to get another key-press.
GOTO get.key

END

51

'NAME: ARRAY02.BAS
'DATE: 02-92

APPENDIX B

'PROG: This program calculates nearest-neighbor data for a
'planar array of 64 cells, configured in a 6-CUBE
'architecture. Note: The 6-bit address of each node
'contains the following data:
'(a) The addresses of each of the 6 adjacent nodes.
'(b) The direction(physical) towards each adjacent node.
'(c) The number distance to each of the adjacent nodes.

'OPEN "b:\stuff.out" FOR OUTPUT AS #1

OPEN "con" FOR OUTPUT AS #1

FOR z = 0 to 63
IF z MOD 16 = 0 THEN

PRINT #1, ""
PRINT #1, " --address-- ---neighbor-addresses---
----------------"
PRINT
(1)
ELSE

END IF

#1, II Z y
ABC ABC"

y = INT(z / 8
X = Z - 8 * y

PRINT #1, USING"##

FOR i = 2 TOO STEP -1

X (32) (16) (8) (4)

II ; z;

PRINT #1, RIGHT$(STR$((y AND 2 Ai) / 2 Ai), l);
NEXT i

PRINT # 1 , " " ;

FOR i = 2 TOO STEP -1
PRINT #1, RIGHT$(STR$((x AND 2 Ai) / 2 Ai), l);

NEXT i

PRINT # 1 , " " ;

FOR i = 5 TOO STEP -1
PRINT #1, USING"## "; z XOR 2 Ai;

NEXT i

PRINT #1, II II•
I

(2)

52

53

FOR i = 5 TOO STEP -1
IF (z AND 2 Ai) / (2 Ai) THEN PRINT #1, 11 - 11 ; ELSE PRINT
#1, 11+ II;
PRINT #1, 11

NEXT i
PRINT #1, 1111

NEXT z

END

II•
I

'NAME: ARRAY03.BAS
'DATE: 06-93

APPENDIX C

54

'PROG: This program will generate random addresses for each
'node in a 4-cube, displaying the current address for each
'node stack as well as the percentage used by the four node
'paths. An indication is given for any excessive node stack
'size.

DIM z(16,4,190),y(16},x(l6)
'z is the node stack array. z(,,0) is the node stack size.
'y array counts the number of hits used by the 8,4,2,1 bits.
'x array counts the number of unique values in 8,4,2,1 bits.

SCREEN 0: CLS

FOR a= 0 TO 15
LOCATE 5 + a, 10
PRINT USING"##"; a;
PRINT II

NEXT a

FOR y = 0 TO 299
FOR a= 0 TO 15

LOCATE 1, 1: PRINT y, a
'wait for a keypress to continue.

II

'keypress: a$= INKEY$: IF a$="" THEN GOTO keypress
'dis the destination address, while a is the current node
'address.
d = INT(15 * RND(l))
b = a XOR d
'generates f(B)
b = 15 AND b AND (NOT (b * 2))
b = b AND (NOT (b * 4)) AND (NOT (b * 8))
IF b = 8 THEN c = 0
IF b = 4 THEN c = 1
IF b = 2 THEN c = 2
IF b = 1 THEN c = 3
IF b = 0 THEN GOTO around
'PRINT "sending to node: "; b XOR d
b = a XOR b
'bis now the new address to send the token to.
'c is the bit that was changed.
LOCATE 5 + b, 20 + 12 * c
z(b, c, 0) = z(b, c, 0) + 1
'if b = d then the token has reached its destination.

IF b ~ d THEN GOTO around
'if there are more than 40 stack elements then print "E"
IF z(b, c, 0) > 40 THEN PRINT"*"; ELSE PRINT" ";

z(b, c, z(b, c, 0)) = d
PRINT USING 11 (###) 11

; z (b, C, 0);
PRINT USING 11 ## 11

; z (b, c, z (b, C, 0))
y(c) = y(c) + 1
'at the bottom, print the percentages.
FOR e = 0 TO 3

LOCATE 22, 23 + 12 * e
temp= y(0) + y(l) + y(2) + y(3)
PRINT USING 11 ##.# 11

; 100 * y(e) / temp
NEXT e

around:

'FOR b = 0 TO 3

55

'IF z(a, y(b), 0) = 0 THEN GOTO around2 ELSE z(a, y(b), 0)
'= z(a, y(b), 0) + 1
'around2:

NEXT b
NEXT a

NEXT y

'THIS ROUTINE SHOULD LIST THE NUMBER OF UNIQUE ADDRESSES
'WHICH PASSED THROUGH EACH OF THE NODES
'FOR a= 0 TO 15
I PRINT
' FOR b = 0 TO 3

FOR c = 0 TO 15
x(c) = 0

NEXT c
sum = 0
FOR c = 1 TO z(a, b, 0)

IF x(z(a, b, c) = 0 THEN sum= sum+ 1
IF x(z(a, b, c) = 0 THEN PRINT z(a, b, c); 11 11

;

x(z(a, b, c)) = 1
NEXT c
LOCATE 5 + a, 20 + 7 * b
PRINT TAB(50); , ;
PRINT USING 11 #### 11

; sum
I NEXT b
'NEXT a

END

1
'NAME: ARRAY04.BAS
'DATE: 6-93

APPENDIX D

56

'PROG: This program generates nearest-neighbor node angles
'of reflection for a 4-cube. Data is outputted for each of
'the four sub areas within each node. It is assumed that
'the position of each sub area is the same with respect to
'each node.

OPTION BASE 0
DIM X (16) , Y (16) , o (4, 2 , 2) ,
CONST pi= 3.141592654#
CLS

ang(16,4 , 2), used(l6,4)

h = 2
a = 4
b = 4
cell.a= a I 4
cell.b = b / 4
PRINT "h="; h; " a="; a; " b="; b

'Generates cell offset positions.
FOR j = 0 TO 3

FOR i = 0 TO 3
n = i + j * 4
X(n) =a* i / 4
Y(n) = b * j / 4

NEXT i
NEXT j

'height
'array length
'array width
'cell length
'cell width

'Generate xmtr/rcvr offsets within cell, o(a,b,c) where a is
'the sub-cell(0-3), bis xmtr/rcvr (0/1), c is x/y (0/1)
'Assumes xmtr and rcvr offsets are the same.

FOR k = 0 TO 1
FOR l = 0 TO 1

m = 1 + k * 2
o(m,0,0) = cell.a I 4 + cell. a * 1 I 2
o(m,0,1) = cell.b I 4 + cell.b * k I 2
o (m, 1, 0) = cell.a I 4 +cell.a* 1 I 2
o(m,1,1) = cell.b I 4 + cell.b * k I 2

NEXT 1
NEXT k

'Calculates nearest-neighbor node numbers.
'Uses a used node matrix used(a,b) where a is the node
'number (0-15) , 'and bis the xmtr number (0-3).
'Also computes reflection angles using invtan(d/h)

FOR i = 0 TO 15
FOR j = 0 TO 1

IF used(i,j) = 1 THEN PRINT" hit"; : GOTO around
used(i,j) = 1
k = i XOR 2 "'j
d = X(k) + o(j,1,0) - X(i) - o(j,0,0)
ang(i,j,0) = 28.6479 * ATN(d/h)
IF ang(i,j,0) > 90 THEN ang(i,j,0) = ang(i,j,0) - 180

NEXT j

FOR j = 2 TO 3
IF used(i,j) = 1 THEN PRINT" hit"; : GOTO around
used(i,j) = 1
k = i XOR 2 "'j
d = Y(k) + o(j,1,1) - Y(i) - o(j,0,1)
ang(i,j,l) = 28.6479 * ATN(d/h)
IF ang(i,j,l) > 90 THEN ang(i,j,l) = ang(i,j,l) - 180

around:
NEXT j

NEXT i

'Prints out the center positions (x,y) and angles (x,y)
'for the reflector patches.

FOR i = 0 TO 15
PRINT"("; X(i); ", "; Y(i); ")";
FOR j = 0 TO 3

PRINT , " at (x, y) " ;

57

PRINT USING " ###. ###"; X (i) + o (j, 1, 0) ; Y (i) + o (j, 1, 1) ;
PRINT " angle (x, y) ";
PRINT USING"###.###"; ang(i,j,0); ang(i,j,1)

NEXT j
PRINT

NEXT i

END

REFERENCES

[1] T. E". Bell, "Optical Computing: a field in flux.,"
IEEE Spectrum, 1986, 23#8:34-57.

[2] c. D. Howe and B. Moxon, "How to program parallel
processors," IEEE Spectrum, 1987, 24#9:36-41.

[3] L. D. Hutcheson and P. Haugen, "Optical interconnects
replace hardware," IEEE Spectrum, 1987, 24#3:30-35.

[4] M. Leonard, "The World of Communications is Moving To
Fiber Optics," Electronic Design, 1992, 40#1:73-80.

[5] P. Wiley, "A parallel architechture comes of age at
last," IEEE Spectrum, 1987, 24#6:46-50.

58

I
I

I

BIBLIOGRAPHY

Drummond, T. J. et. al. 1988.
"Quantum-tailored solid-state devices,"
IEEE Spectrum, 25#6:33-37.

Goutzoulis A. P. and Abramovitz I. J. 1988.
"Digital Electronics meets its match,"
IEEE Spectrum, 25#8:25.

Katzman, M., 1987.
Laser Satellite Communications
N. J. Englewood Cliffs: Prentice Hall, Inc.

Shibata J. and Kauiwara T. 1989.
"Optics and electronics are living together,"
IEEE Spectrum, 26#2:34-38.

Turabian, K. L. 1973.
A Manual for Writers of Term Papers. Theses. and

Dissertations
Chicago: University of Chicago Press.

Verdeyen, J. T., 1981.
Laser Electronics
N. J. Englewood Cliffs: Prentice Hall, Inc.

59

