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ABSTRACT 

"AN OPTICAL REFLECTIVE CONNECTION APPROACH 

FOR MULTIPLE PROCESSOR ARRAYS" 

Jonathan F. Gallo 

Master of Science in Engineering 

Youngstown State University, 1994 

ii 

The purpose of this thesis is to describe a 

microcomputer array interconnection system, configurable 

through optical links, such that computing power of a matrix 

of cells can be distributed optimally for changes in 

computational demands. Detail is given for the arrangement 

of the reflectors for free-space switching. Requirements 

for dealing with errors in construction of such a grid are 

discussed. A partial treatment is given for actual creation 

of the hardware, and an ideal device is described. 
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CHAPTER I 

INTRODUCTION 

As clock speeds of computing systems increase, 

higher rates of information transfer are needed. Increasing 

amounts of data are subjected to more varied and complex 

types of processing. This is evident in the nature of 

current microcomputers. Where these used to only contain a 

central computing unit, now they have a main processing unit 

coupled with an associated numeric processor. Some systems 

have separate video computation as well as processor-based 

print technology. Communication channels and audio circuits 

can now perform sophisticated data manipulation with minimal 

reliance on the main processor. Evolution of such systems 

point to multiprocessor based computing, even within the 

context of the main processing section. 

Parallelism of computing power and distributed 

functionality of processing both require communication 

amongst many processing cells. Throughput of such systems 

is dependent on the speed by which data gets transferred 

from point to point. Speed and density of point-to-point 

connection systems are limited by the amount of crosstalk or 

coupling between separate links. Optically connected 

electronics are attracting more interest, because light 

interconnection exhibits less electromagnetic interference 

than electronic methods. 



Most small computer systems incorporate one or more 

paralleled-wire busses to transfer data between a single 

processing unit, its memory, and external devices. 

Multiprocessor designs typically utilize crossbar circuits 

to dynamically interconnect computing cells' inputs and 

outputs. Crossbar circuits are switch matrices typically 

implemented in physical wiring, integrated form, and, in 

some new designs, optical gates. As stated above, the fact 

that optical connections are more electromagnetically quiet 

than electronic ones gives hope that very high-speed and 

low-interference switching devices can be fabricated [1]. 

2 

Basic optical connections consist of a transmitter 

coupled to a receiver through a transmission medium such as 

optical fiber or free space. A gating medium is also needed 

when using more than one connection, to link certain inputs 

with certain outputs . This can be accomplished through an 

optical coupling circuit, which routes some or all optical 

energy (or signal content) in one fiber to another. By using 

free-space links, wiring constraints associated with 

physical waveguides can be avoided, thus allowing a high 

degree of interconnection in computational grids. 

Free-space links imply point-to-point connections; thus some 

means for redirecting these vectors is needed, to provide 

for the physical positions of individual cells. Free-space 

routing can be accomplished through reflection or refraction 

by an intervening redirecting device, such as a lens, prism, 

refractive grating, reflector, or hologram. 



This thesis explores one possible free-space 

routing device - a planar reflector array - by which such 

free-space redirection can be implemented. Chapter II 

discusses the basic structure of a computational array, and 

the resulting requirements for an associated reflector 

array. It assumes the computing array is organized in a 

square and planar configuration of processing cells, with 

parallel light beams orthogonal to its surface. This then 

requires an overhead array composed of reflective surfaces 

which perform the optical redirection. 

3 

The amount of optical redirection depends on the 

manner in which the computing cells are connected. Chapter 

III compares three interconnection methods, ring, full and 

N-cube. The N-cube structure is chosen for implementation 

in the thesis, due to its low maximum path distance, and its 

reasonable number of links. Chapter IV explores N-cube 

addressing and details its implementation in the context of 

the square array to be implemented. 

Some errors associated with beam reflection, such 

as receiver/reflector shift and beam misalignment, are 

covered in Chapter V, while Chapter VI reveals details of 

the example reflective array actually built. Chapter VII 

describes an ideal system and some future work. Computer 

programs used in development of the hardware are listed in 

the Appendixes. 



CHAPTER II 

HARDWARE OVERVIEW 

Figure 1, on page 7, shows one possible arrangement 

of a multiprocessor system, that of a planar array of 

identical computing cells. Each consists of a processor, 

local memory, and input/output section. The processors and 

memory are either optical or standard electronic circuits. 

Constructing an array from identical computing and memory 

modules reduces system complexity. The input section for 

each cell consists of a number of isolated light-receiving 

circuits (i.e. solar cell, phototransistor, or light 

junction), while the output section contains one or more 

light-transmitting circuits (diode, laser diode, laser, or 

light port.) All the output beams as well as the receiving 

areas are oriented normal to the computing array, so as to 

be pointed straight up into the face of an overhead 

reflecting surface. This reflecting surface could be 

constructed in several ways: 

i) milled to redirect the incoming beams to their 
destinations; 

ii) coated with a variable thickness of optically 
refractive material; 

iii) or a planar reflector needing self output beam 
redirection. 

These reflector constructions are shown in Figure 2. One 

further approach would have the reflector implemented as a 

4 



semiconductor hologram, possibly time-variant, to provide 

dynamic redirection of the output beams [2]. 
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The function of the reflecting array is to provide 

switching between the output light beams and the input 

photosensors for each computing cell. In two of these 

configurations, the optical paths would be frozen into 

predetermined path links, implying the reflector surface 

would have to be physically changed to reconfigure the 

array. Both the planar reflector and the time-changing 

hologram might be able to dynamically reconfigure the array 

without direct physical manipulation of the structure. A 

planar reflector would require beam directors at the 

individual nodes, while the hologram approach would 

dynamically change its own reflective characteristics. This 

thesis does not discuss implementation of the holographic 

array plane, whose basic structure is outlined in [3]. 

With a synchronized array, timing could be provided 

through the power supply leads, thus reducing the overall 

complexity of the system . If light gates are used, a common 

laser (diode) source could provide power [3], timing, and 

communication beams for the entire array. Uniformity in 

configuration simplifies node construction and programming. 

This thesis assumes a milled reflector approach . 

Simplification of the system was considered a primary 

objective. Steered beams were viewed as making the beam 

hardware too complex, while the hologramatic approach would 

shift complexity to the reflector construction. However, 



the basic concepts of addressing and layout are applicable 

to these reflector constructions. 
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One method of cell placement is to randomly place 

the cells on the 2-dimensional cell plane, storing the x-y 

coordinates of the transmitters and receivers for each cell. 

The method used by the software is to place the cells in an 

organized manner. This simplifies the mapping algorithm by 

reducing the number of reflecting plane angles involved. A 

drawback to symmetric cell placement is rigidity, as it does 

not easily allow for failure of individual elements, as does 

random placement. 

A further software requirement, not implemented, is 

adjustment of the reflector"s surface characteristic to 

correct for angular beam spreading and maximize optical 

energy at the corresponding receptor. Indeed, with the 

array implemented in a wafer structure, surface real estate 

available for sensors would be limited, thus requiring very 

accurate and adjusted beam redirection. This could be 

accomplished or aided by alteration of the individual 

transmitters to modify their beam characteristics, not 

limited to micromachined lenses for each transmitter, or 

corrective layers of refractive material. Binary step 

milling [4] holds the promise of very large numbers of tiny 

lens elements, for transmitter/receiver augmentation, and 

for direct lithography of the reflective surface itself . 



A. 

A. Processor Array Plane. 
I. Input Photosensors. 
M. Node Memory. 
0. Output Transmitters. 
P. Node Processors. 
R. Reflector Array Plane. 
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Figure 1. Basic Structure of Micro Array 
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Figure 2. Various Reflector Array Constructions 
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CHAPTER III 

CONNECTION OVERVIEW 

For P processors to be physically linked, three 

possible connection schemes are considered; ring, full, and 

N-cube. See Figure 3 on page 11. The two criteria of 

connection comparison considered are the number of links, 

and the maximum path length. 

9 

The number of links is the total physical data 

connections needed to establish a particular system, while 

the maximum path length is the number of connection steps a 

data token would take to get from one system "side" to the 

"farthest opposite" side. Higher link numbers equate to 

higher connectivity, at the cost of constructing and 

maintaining a higher number of physical connections. Lower 

path length implies speedier message passing, as signal 

packages should arrive more quickly to their destinations, 

although such connected systems can suffer from "distracted" 

or overtaxed nodes, where many individual nodes must deal 

with an overabundance of communication packets arriving 

concurrently. 

Assume each system has P=2N-1 processors, where 

N={l,2,3 ... } as shown in Figure 3 on page 11. 

A ring connection is just what its name implies -

it connects all nodes into a giant ring, where each node is 

connected to only two other nodes. This scheme requires only 



Plinks and has a maximum path length of P/2, this length 

having no back tracking of a packet. For large numbers of 

nodes, the path length becomes very long, as there is only 

one path (with possibly two directions on it). 

The full connection ties each node to every other 

node. With high number of nodes, this becomes a daunting 

task. Although it has the smallest maximum path length of 

just 1, it needs 

10 

(P-l)+(P-2)+ ... +2+1 = P(P-1)/2 ( 3 .1) 

links. As can be seen, as the number of processors rises, 

the maximum path length of the ring becomes extreme, while 

the number of links for the full case becomes excessive. 

TABLE 1 

COMPARISON OF THREE ARRANGEMENTS 

Number of Links Maximum Path Delay 
N p Ring Full N-cube Ring Full N-cube 

1 2 1 1 1 1 1 1 

2 4 4 6 4 2 1 2 

3 8 8 28 12 4 1 3 

4 16 16 120 32 8 1 4 

5 32 32 496 80 16 1 5 

6 64 64 2016 192 32 1 6 

7 128 128 8128 448 64 1 7 

. . . . . . . 

. . . . . . . 
N P=2N p P(P-1)/2 N*P P/2 1 N 

The N-cube, or hypercube architecture [5] strikes a 

balance between these two. It starts from a single node and 
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0 0 0 N=O 

••t----0 ••t----0 ••1---~o N=l 

N=2 

N=3 

[ 

16 NODES l 
120 LINKS N=4 

Ring Full N-Cube 

Figure 3. Ring, Full, and N-cube Constructions 

simply replicates and connects itself to obtain higher form. 

As shown in Figure 3, each N-cube is a doubling of its 

previous size. Also shown in Figure 3 are ring and full 

connections for certain sized sets of nodes. One can see 

that the number of connections for the full system rapidly 
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becomes undrawable . In a wired system, it would be very 

difficult to build. The number of nodes in an N-cube 

follows a binary progression (1,2,4,8,16 ... ) requiring only 

N*2N-l = N*P ( 3 . 2) 

links and having a maximum delay path of just N, assuming 

P=2N-1
• This allows the entire array to have a low maximal 

path distance, while limiting the links to a reasonable 

number. Note also, that an N-cube structure has an inherent 

binary nature, and is ideally suited for computing uses - it 

allows a full binary mapping of nodes. This simply means 

that all the addresses get assigned to a node, because there 

are the same number of nodes as there are addresses. 

Assuming an array of computing cells, where the 

cells are to be connected in an N-cube array architecture, 

limiting N to even numbers (thus setting P to 4,16,64 .. . ) 

allows a "square" 2-dimensional arrangement of the array, 

which is a primary thrust of this thesis. 

Limiting to a square array, and requiring a 

binary number of nodes per side (or a binary total of 

nodes), allows total mapping of addresses to nodes. Such 

limiting is chosen due to the 2-dimensional nature of the 

physical placement of this paper"s device. This will be 

discussed in the following chapter. However, it should be 

noted that such limiting need not be utilized. Indeed, if 

there is not maximal mapping of addresses to nodes, open 

addresses might be used for other companion or control 

nodes. 
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CHAPTER IV 

MAPPING CONSIDERATIONS 

To demonstrate, assume a 2-cube of 4 processing 

cells in a square arrangement as shown in Figure 4. Each 

cell needs 2 transmitters and 2 receivers. Assume modular 

cells, where each transmitter and receiver have unique 

positions in the cell, but have identical positions from 

cell to cell. Assume further that the cells are addressed 

in a gray-code manner, meaning that neighboring nodes differ 

in address by only one bit. Physical mapping is found by 

assigning half of the cell address to the x-coordinate of 

the plane, and the other half to they-coordinate, as shown 

in Table 2. 

Since there are only 4 processors, there need only 

be 2 bits in each cell address, and hence only one bit 

affecting either physical dimension. Inverting one bit of a 

cell's address produces the address of an adjacent cell on 

the N-cube. (For this simple case, it so happens that all 

the N-cube adjacent cells are also adjacent physically on 

the coordinate plane.) 

As can be seen in Figure 4, each cell is unit step 

from its two neighbors, thus (with good placement of its 

components), each receiver-transmitter pair is the same 

length. Thus, for a common height reflector, the angle of 

reflection will be the same for all links. 
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10 11 

2 3 GJGJ GJGJ 
GJGJ GJGJ 
GJGJ GJGJ 

0 1 GJGJ GJGJ 
00 01 

Figure 4. Mapping of a 2-cube 

TABLE 2 

CELL MAPPING INFORMATION FOR A 2-CUBE 

Cell Cell Position Connected to: 

# X y cell# & cell# 

0 0 0 1 2 

1 0 1 0 3 

2 1 0 0 3 

3 1 1 1 2 

Table 3 shows the physical mapping method used for 

the first program developed for this paper. Note that for 

the 6-cube (2 6 = 64 = 8*8) example, each cell has 6 nearest 

neighbors, with a 2-dimensional placement of all 64 cells. 

Note the nature of the nearest neighbors; each is still (in 

either the x or y direction), in the same column or row as 

the origin of that beam. This means that only the x or y 
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axis of the reflector has to be changed, thus simplifying 

the reflector design. The first software program, listed in 

Appendix A, provides a visualization of the 6-cube 

discussed. It graphically illustrates neighbor addresses. 

1 

0 

TABLE 3 

MAPPING METHOD USED BY SOFTWARE FOR A 6-CUBE 

Cell y 2 0 1 

6-Bit 

Address 

1 

0 

1 

0 

Yo 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 1 

56 57 

48 49 

40 41 

0 1 

1 0 

0 1 0 1 

59 60 61 

51 52 53 

43 44 45 

35 36 37 

28 29 

20 21 

12 13 

3 4 5 

1 

0 1 

62 

54 

46 

38 

30 

14 

6 

63 

55 

47 

39 

31 

23 

15 

7 

18{010010} produces six neighbors; 19{010011}, 16{010000}, 

22{010110}, 26{011010}, 2{000010}, and 50{110010}. Angular 

displacement left-to-right is similar to the right-to-left 

displacement. Thus 18-to-19 reflection is the same as 

18-to-26; 18-to-2 is the same as 18-to-16; and 18-to-22 is 

the same as 18-to-50. As derived in the next chapter, with 

a reflector height of h, and a lateral (x or y) displacement 

of d, see Figure 5: 

A = {tan-1 [d/h]} /2 (4.1) 
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In Tables 4 and 5, and Figure 5, A is the angle for 

left-to-right redirection of one cell length, while -A is 

the angle for right-to-left. Band -B refer to redirection 

of 2 unit lengths, while x and -x redirect 4 unit lengths. 

Reflector 

or X 
- -~- - - - -

h 

~ransmitter Receiver 

• --------- d - - - - - - - - - - - • 

Figure 5. Reflector Angle Determination 

With odd placement of any of the components, there 

will be instances when the simple case of reflection will 

not work. Figure 5 displays a side view, thus not 

indicating that the planar reflective area might need to be 

tilted in the other dimension (into or out of the page) to 

accommodate a two-axis reflection, occurring where there 

exists a conflict of assignment for two or more devices. 
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TABLE 4 

REDIRECTION ANGLES FOR A 2-CUBE 

Cell Receiver Al(X-Axis) A2(Y-Axis) 

0 0 0 A 

0 1 A 0 

1 0 A 0 

1 1 0 -A 

2 0 -A 0 

2 1 0 A 

3 0 -A 0 

3 1 0 -A 

TABLE 5 

MAPPING INFORMATION FOR A 6-CUBE 

# X-ADDRESS Y-ADDRESS Nl N2 N3 N4 NS N6 A B X A B X 

0 0 0 0 0 0 0 32 16 8 4 2 1 + + + + + + 

1 0 0 0 0 0 1 33 17 9 5 3 0 + + + + + -
2 0 0 0 0 1 0 34 18 10 6 0 3 + + + + - + 

3 0 0 0 0 1 1 35 19 11 7 1 2 + + + + - -
4 0 0 0 1 0 0 36 20 12 0 6 5 + + + - + + 

5 0 0 0 1 0 1 37 21 13 1 7 4 + + + - + -
6 0 0 0 1 1 0 38 22 14 2 4 7 + + + - - + 

7 0 0 0 1 1 1 39 23 15 3 5 6 + + + - - -

8 0 0 1 0 0 0 40 24 0 12 10 9 + + - + + + 

9 0 0 1 0 0 1 41 25 1 13 11 8 + + - + + -
10 0 0 1 0 1 0 42 26 2 14 8 11 + + - + - + 

11 0 0 1 0 1 1 43 27 3 15 9 10 + + - + - -

12 0 0 1 1 0 0 44 28 4 8 14 13 + + - - + + 

13 0 0 1 1 0 1 45 29 5 9 15 12 + + - - + -



18 

TABLE 5 (Continued) 

# X-ADDRESS Y-ADDRESS Nl N2 N3 N4 NS N6 A B X A B X 

14 0 0 1 1 1 0 46 30 6 10 12 15 + + - - - + 

15 0 0 1 1 1 1 47 31 7 11 13 14 + + - - - -

16 0 1 0 0 0 0 48 0 24 20 18 17 + - + + + + 

17 0 1 0 0 0 1 49 1 25 21 19 16 + - + + + -
18 0 1 0 0 1 0 50 2 26 22 16 19 + - + + - + 

19 0 1 0 0 1 1 51 3 27 23 17 18 + - + + - -
20 0 1 0 1 0 0 52 4 28 16 22 21 + - + - + + 

21 0 1 0 1 0 1 53 5 29 17 23 20 + - + - + -
22 0 1 0 1 1 0 54 6 30 18 20 23 + - + - - + 

23 0 1 0 1 1 1 55 7 31 19 21 22 + - + - - -
24 0 1 1 0 0 0 56 8 16 28 26 25 + - - + + + 

25 0 1 1 0 0 1 57 9 17 29 27 24 + - - + + -
26 0 1 1 0 1 0 58 10 18 30 24 27 + - - + - + 

27 0 1 1 0 1 1 59 11 19 31 25 26 + - - + - -

28 0 1 1 1 0 0 60 12 20 24 30 29 + - - - + + 

29 0 1 1 1 0 1 61 13 21 25 31 28 + - - - + -
30 0 1 1 1 1 0 62 14 22 26 28 31 + - - - - + 

31 0 1 1 1 1 1 63 15 23 27 29 30 + - - - - -
32 1 0 0 0 0 0 0 48 40 36 34 33 - + + + + + 

33 1 0 0 0 0 1 1 49 41 37 35 32 - + + + + -
34 1 0 0 0 1 0 2 50 42 38 32 35 - + + + - + 

35 1 0 0 0 1 1 3 51 43 39 34 34 - + + + - -

36 1 0 0 1 0 0 4 52 44 32 38 37 - + + - + + 

37 1 0 0 1 0 1 5 53 45 33 39 36 - + + - + -
38 1 0 0 1 1 0 6 54 46 34 36 39 - + + - - + 

39 1 0 0 1 1 1 7 55 47 35 37 38 - + + - - -
40 1 0 1 0 0 0 8 56 32 44 42 41 - + - + + + 

41 1 0 1 0 0 1 9 57 33 45 43 40 - + - + + -
42 1 0 1 0 1 0 10 58 34 46 40 43 - + - + - + 

43 1 0 1 0 1 1 11 59 35 47 41 42 - + - + - -
44 1 0 1 1 0 0 12 60 36 40 46 45 - + - - + + 
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TABLE 5 (Continued) 

# X-ADDRESS Y-ADDRESS Nl N2 N3 N4 NS N6 A B X A B X 

45 1 0 1 1 0 1 13 61 37 41 47 44 - + - - + -

46 1 0 1 1 1 0 14 62 38 42 44 47 - + - - - + 

47 1 0 1 1 1 1 15 63 39 43 45 46 - + - - - -

48 1 1 0 0 0 0 16 32 56 52 50 49 - - + + + + 

49 1 1 0 0 0 1 17 33 57 53 51 48 - - + + + -

50 1 1 0 0 1 0 18 34 58 54 48 51 - - + + - + 

51 1 1 0 0 1 1 19 35 59 55 49 50 - - + + - -
52 1 1 0 1 0 0 20 36 60 48 54 53 - - + - + + 

53 1 1 0 1 0 1 21 37 61 49 55 52 - - + - + -

54 1 1 0 1 1 0 22 38 62 50 52 55 - - + - - + 

55 1 1 0 1 1 1 23 39 63 51 53 54 - - + - - -
56 1 1 1 0 0 0 24 40 48 60 58 57 - - - + + + 

57 1 1 1 0 0 1 25 41 49 61 59 56 - - - + + -

58 1 1 1 0 1 0 26 42 50 62 56 59 - - - + - + 

59 1 1 1 0 1 1 27 43 51 63 57 58 - - - + - -
60 1 1 1 1 0 0 28 44 52 56 62 61 - - - - + + 

61 1 1 1 1 0 1 29 45 53 57 63 60 - - - - + -

62 1 1 1 1 1 0 30 46 54 58 60 63 - - - - - + 

63 1 1 1 1 1 1 31 47 55 59 61 62 - - - - - -

The second computer program listed in Appendix B, 

computes the above data for the computing cells in the 8x8 

arrangement of the 6-cube of Table 3. For the reflection 

information, each beam redirection needs two angular 

displacements, one for each dimension of the array. The 

software finds the x and y values of displacement. Each 

step in either the x or y direction is unit distance from 

the regular arrangement of the grid. This means that each 

reflection is a combination of the inter-cell spacing and 



the spacing between transmitter and receiver. In such an 

arrangement, the address of each node contains: 

i) that node's position (x,y) on the plane array . 

ii) the addresses of the node ' s nearest neighbors. 

iii) direction information to reach each neighbor. 
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As in the case of the 2-cube, it can be seen that 

the first half of the address is the x position of that 

cell, while the other half of the address is they position 

of the cell. 

Again, to find the nearest neighbors of any cell, 

one bit of its address is inverted to find one neighbor. 

This works if a gray-code addressing scheme is used for 

adjacent node addresses. As in the case of the 2-cube, 

there will only be 2 directions for reflector orientation. 

This is due to the 2-dimensionality in physical layout. 

However, now there will be 3 possible angles for the 

reflecting surface. The software shows two of each angle A, 

B, and x for each node, one in a vertical and one in a 

horizontal direction. It can be seen that the direction 

(+/- for increasing/decreasing x or y), will mimic the bits 

of the node address, where a 1 bit of address corresponds to 

a negative reflection angle. From a binary perspective, 

this makes absolute sense, as it can be seen that by 

inverting only one bit from a one to a zero changes the 

address negatively by some power of 2. A zero in the 

address will cause a positive address change by some power 

of 2, thus requiring a positive reflection angle. Since 
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half the bits (in this case, 3 bits) of an address control 

the x-axis placement of the node, there will be three 

addresses in the same row as the original node, each 

differing in address by 1, 2, and 4. Correspondingly, the 

other half of the address affects the y-axis location, thus 

the other three neighbor nodes occur in the same column, 

differing from the original address by 8, 16, and 32. 

Referring to Table 3, note the orientations of the 

highlighted cells. 

Thus, for the 6-cube discussed, the address is of 

the form: 

(4.2) 

giving the square as shown in Table 3, and in general, for 

an N-cube of the square type: 

{y<N121-1 YtN12i-2· • ·Y2 Y1 Yo x,N12i-1 x<N121-2· • .X2 X1 Xo} 

where N=2,4,6,8 ... 

( 4. 3) 

In a general form, {A} is substituted for the {yx} 

form of the address, implying a source address for a node. 

The destination address {D} of the same form is supplied by 

the sending node. Exclusively OR'ing them will produce the 

intermediate product {B}: 

{B} = {A} XOR {D} (4.4) 

which is used to modify another term {E}, which starts out 

as zeroed array(, {E} = { .. 000 .. }.) {B} is scanned in some 

predetermined order to find a digit one value (1). At the 

point that the first 1 is found, the corresponding bit in 

{E} must be asserted, and scanning of {B} stopped: 
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{E} = f ( {B}) = f ( {A}, {D}) ( 4. 5) 

This changed {E} term is then XOR'ed with the 

original source address, to produce the node address which 

the packet should be sent to next: 

{C} = {E} XOR {A} ( 4. 6) 

which allows any node to send along a message packet in the 

correct direction within the array. The final function for 

the address {C} is dependent on the manner in which scanning 

is performed on the intermediate term {B}. Scanning from 

right to left will produce the following logic: 

IF B0 = 1 then {E} = { .. 001} 
ELSE IF Bl= 1 then {E} = { .. 010} 
ELSE IF B2 = 1 then {E} = { .. 100} 

OTHERWISE {E} = { .. 000} 

(4.7) 
( 4. 8) 
(4.9) 

(4.10) 

By placing the terms into a Karnaugh map, the terms 

for {E} can be found to be: 

Ea = Ba 
E1 = NOT (B 0 ) B1 
E2 = NOT (B0 ) NOT (B1 ) B2 

(4.11) 
(4.12) 
(4.13) 

(4.14) 

This form of {E} can be manipulated into a simpler 

form by recognizing that: 

{ B} = { .. B3B2B1 B0 } 

2 {B} = { .. B2B1B0 0} 
4{B} = { .. B1B0 00} 

2n{B} = { .. B1B0000000<-- n zeros -->00000} 

(4.15) 
(4.16) 
(4.17) 

(4.18) 

which only means that by NOT'ing all but the first of the 

above functions will produce necessary terms which can be 

AND'ed together to form {E}. Of course, there will exist 

higher valued terms outside the range of bits needed, as 
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multiplication (even by 2,) will produce numbers larger than 

the initial value. These terms can be eliminated by simply 

AND'ing the final product with 2°, where n is the number of 

bits of resolution in the source address {A}. 

The third computer program, listed in Appendix C, 

produces passing addresses by using the procedure just 

described. The experimental program generates random 

addresses for a 4-cube array, stacking simulated data tokens 

for each node. No output of the program is shown or 

discussed in this paper. 

The above discussion gave the procedure to follow 

if software is utilized to compute next-neighbor-to-pass-to 

addresses for token passing. If hardware is built, the 

equations (4.4) through (4.6) can be implemented through the 

use of combinational logic gates, as shown in Figure 6. 
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Figure 6. Combinational Logic Circuit 
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CHAPTER V 

ERRORS IN CONSTRUCTION 

Three primary errors in alignment will affect 

correct optical linking of any two nodes, each representing 

a small change from computed values. Since these errors 

cumulatively add, it is imperative that they are recognized, 

identified, and corrected for. It is assumed that they are 

time-invariant, meaning once corrected for, they should no 

longer affect the system. Variations discussed are: 

i) variation in node-to-node distance (d); 

ii) aberration in reflector spot height (h); 

iii) change in beam transmission angle (E). 

Correcting for both distance and height error is 

simply a matter of adjusting the reflector angle to 

compensate for the resulting error. Beam angle error 

requires possible relocation of the reflector spot position 

as well as angle compensation. All errors will change the 

spot size of the beam at the receiver, so dispersion 

correction (or beam angle error correction) is necessary if 

the receiver area or sensitivity are critically small. 

For the following, refer to Figure 7. Assuming the 

reflective spot a linear reflector, the incident and 

reflected angles will be equal ( fi = fr = f) . From the 

diagram, for the calculation of the reflector angle: 

f =e+cx (5.1) 



2f = E + ~ 

and by solving for a: 

a = (~ - E) /2 = ~/2 - E/2 

or: 

a = {tan-1 
[ (d-x) /h] - E }/2 

When x = 0 and E = 0 : 

a = {tan-1 [d/h]} /2 

as was indicated in equation 4.1 
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(5 .2) 

( 5. 3) 

( 5 . 4) 

( 5. 5) 

With a vertical beam, symmetric changes in both d 

and h imply no change in reflector angle. Thus, a 10% 

change ind and h keeps the angle the same. 

d ---------~ 

Figure 7. Detail of Reflector Angle Determination 
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5.1 NODE-TO-NODE DISTANCE ERROR 

As indicated in Figure 8, a variation in distance 

between nodes will cause the receiver position to deviate 

from the intended spot landing area , thus corrupting or 

impeding signal reception. A small change in distance, 

err(d) will require either relocation of the receiver to its 

original space, or correction of the reflective angle: 

d 2 = err ( d) + d ( 5 . 6) 

a2 = {tan-1 [d2 /h]}/2 (5.7) 

d ------,M:c-- err (d~ 

d 

Fiqure 8. Error Due to Horizontal Variation 
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5.2 REFLECTOR HEIGHT ERROR 

A deviation in reflector height would be caused by 

bending, warpage, or some local surface discontinuity of the 

reflective surface. Although not anticipated to occur, such 

an error in height, err(h), would result in overshooting or 

undershooting of the intended receiver. Compensating for a 

change in surface-to-reflector height requires corrective 

milling of the reflective spot such that its angle is 

decreased for an increase in height, as per Fig. 9: 

h 2 = err (h) + h 

a2 ----i -----
err(h) 

h2 

h 

d 

Figure 9. Error Due to Vertical Variation 

(5.8) 

( 5. 9) 



5.3 BEAM ANGLE ERROR 

It is expected that if the transmitters located at 

each node are discrete devices, there will exist the 

likelihood of the beams not being entirely normal to the 

surface of the plane. 

As shown in Figure 10, given a beam angle error E, 

where positive Eis towards the target node, the lateral 

translation of the reflector is: 
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x = h*tan (E) (5.10) 

while the residual of the reflection is: 

~ = tan-1 
( ( d - x) /h) (5.11) 

and the assumption is a plane reflective surface, then: 

f = (E + ~) /2 

This derives the angle of reflection as: 

IX = f - E = ( (E + ~) /2) - E = (~ - E) /2 

or, by substituting from above: 

a= {tan-1
( (d - x)) /h] - E}/2 

(5.12) 

(5.13) 

(5.14) 

This is the same as was given in equation 4.1 Now, 

as indicated in Figure 11, given a beam angle error E, where 

positive Eis away from the target node, the lateral 

translation of the reflector is the same as before: 

x = h*tan(E) (5.15) 

while the residual of the reflection requires a small change 

from subtraction to addition: 

~ = tan-1
( (d + x) /h) (5.16) 

while again, the assumption is a plane reflective surface, 



there is another change in summation: 

f = (13 - E) /2 

deriving the angle of reflection to: 

a = f + £ = ( (13 - E) /2) + £ = (13 + E) /2 

or, by substituting from above: 

a= {tan-1
[ (d + x) /h] + d/2 
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( 5 .17) 

(5.18) 

(5.19) 

The general form now becomes, where positive£ is 

towards, and negative£ is away from the target node: 

a = [tan-1
{ (d - h*tan(E)) /h} + £] /2 (5.20) 

Note that with zero beam error, the beam is normal 

to horizontal: 

£ = 0 

and the angle simplifies to that in equation 5.4: 

a = [tan-1 {d/h}] /2 

(5.21) 

(5.22) 

Dynamic errors in the values just discussed are 

more difficult to compensate for, as they will corrupt more 

than one node-to-node connection linkage. Small tilts, 

shifts, or vibrations of the reflector will affect almost 

all communicating nodes. Thermal changes cause expansion 

and contraction of both the reflector supporting structure, 

as well as the circuit substrate, thus introducing the above 

errors. Gross tiltage or movement of the entire reflective 

array must not occur, as this will result in massive 

disruption of almost all connections. 



h 

- - - - - - - - - - - - - - - - :, - - - - - - - - - - - - - - - - - - - - -

X 

d 

Figure 10. Error - Positive Beam Angle 

- - - - :, _ - - - - - - - - - - - - - - -

X ----------- d 

Figure 11. Error - Negative Beam Angle 
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CHAPTER VI 

DESIGN EXAMPLE 

It was decided that a small example of design and 

construction would be helpful to demonstrate implementation 

of the principles discussed in the preceding chapters. A 

4-cube array was chosen, so as to minimize complexity of 

construction. This implied 24 or 16 nodes of size, to be 

arranged in a 4 x 4 configuration. Since each node would 

have 4 array neighbors, each would require 4 reflective 

surfaces above it, thus requiring a total of 64 reflectors, 

oriented in a chessboard 8 x 8 arrangement, again arranged 

in the same addressing fashion as the 6-cube of Chapter 4. 

Here, above each node area, would exist 4 square reflectors, 

2 required for x-axis and 2 for y-axis reflections. It was 

arbitrarily decided the top 2 squares would reflect 

vertically, while the bottom 2 squares would reflect in a 

horizontal direction. This is shown in Figure 12. 

A decision was made to limit each node to a 1" x 1" 

area, and to position the reflector 2" above the array 

plane. A small program, listed in Appendix D, utilizing the 

equations from Chapter 4, produced the reflective angular 

data shown in Table 6. Notice only two distinct reflective 

angles are necessary for the entire array, as placement and 

orientation determine their beams' directions. Note also, 
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che alternation in Figure 11 of the two angles' placements. 

12 

8 

4 

0 

+ + 
~+ 

13 14 

9 10 

5 6 

1 2 

direction 

15 

11 

7 

3 

DD DD a a a a 
DD DD a a a a 
DD DD a a a a 
D D D D a a a a 

• angle= 13.3 

angle= 22.5 

Figure 12. 4-cube Reflector Placement 

To implement the reflective surface, square stock 

metal rods 1/2" x 1 / 2" were cut to the required height and 

ground to the correct angles; 32 were ground to an angle of 

22. 5°, whil,e the other 32 were ground to 13. 3° . The height 

of 2" separation was to be from the array surface to the 

center of each reflective spot. 

Pictures of the hardware to be described is shown 

i n Figures 13 and 14, while a mechanical drawing of the base 

p late is shown in Figure 15. Figure 16 shows the circuit 

board used as the array plane. 
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TABLE 6 

REDIRECTION ANGLES FOR A 4-CUBE 

node# x-oosn v-oosn horiz. vert. 
0 0.25 0.25 13.3 0 

0.75 0.25 22.5 0 
0.25 0.75 0 13.3 
0.75 0.75 0 22.5 

1 1.25 0.25 -13.3 0 
1. 75 0.25 22.5 0 
1.25 0.75 0 13.3 
1. 75 0.75 0 22.5 

2 2.25 0.25 13.3 0 
2.75 0.25 -22.5 0 
2.25 0.75 0 13.3 
2.75 0.75 0 22.5 

3 3.25 0.25 -13.3 0 
3.75 0.25 -22.5 0 
3.25 0.75 0 13.3 
3.75 0.75 0 22.5 

4 0.25 1. 25 13.3 0 
0.75 1.25 22.5 0 
0.25 1. 75 0 -13.3 
0.75 1. 75 0 22.5 

5 1.25 1.25 -13.3 0 
1. 75 1.25 22.5 0 
1.25 1. 75 0 -13.3 
1. 75 1. 75 0 22.5 

6 2.25 1. 25 13.3 0 
2.75 1. 25 -22.5 0 
2.25 1. 75 0 -13.3 
2.75 1. 75 0 22.5 

7 3.25 1. 25 -13.3 0 
3.75 1. 25 -22.5 0 
3.25 1. 75 0 -13.3 
3.75 1. 75 0 22.5 

8 0.25 2.25 13.3 0 
0.75 2.25 22.5 0 
0.25 2.75 0 13.3 
0.75 2.75 0 -22.5 

9 1.25 2.25 -13.3 0 

1. 75 2.25 22.5 0 

1.25 2.75 0 13.3 

1. 75 2.75 0 -22.5 

10 2.25 2.25 13.3 0 

2.75 2.25 -22.5 0 

2.25 2.75 0 13.3 

2.75 2.75 0 -22.5 
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TABLE 6 (Continued) 

node# x-oosn v-oosn horiz. vert. 
11 3.25 2.25 -13.3 0 

3.75 2.25 -22.5 0 
3.25 2.75 0 13.3 

3.75 2.75 0 -22.5 

12 0.25 3.25 13.3 0 
0.75 3.25 22.5 0 
0.25 3.75 0 -13.3 
0.75 3.75 0 -22.5 

13 1.25 3.25 -13.3 0 
1. 75 3.75 22.5 0 
1.25 3.25 0 -13.3 
1. 75 3.75 0 -22.5 

14 2.25 3.25 13.3 0 
2.75 3.75 -22.5 0 
2.25 3.25 0 -13.3 
2.75 3.75 0 -22.5 

15 3.25 3.25 -13.3 0 
3.75 3.75 -22.5 0 
3.25 3.25 0 -13.3 
3.75 3.75 0 -22.5 

Since the reflectors' ends were ground down from a 

set size, there was a small difference in height which had 

to be added to those having the larger angle, in order to 

bring their height up, so that their centers would be at the 

same level as those reflectors with the smaller angle. 

Although steel stock was selected for the 

reflectors, a highly polished finish was found to be too 

time intensive to achieve, so that after they were made, a 

way had to be found to increase their reflectance. This was 

achieved through an adhesive-backed reflective film applied 

after grinding a reasonably smooth top to each rod. Had 

this reflective arrangement been decided on in advance, the 
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Figure 13. Partially Assembled Reflector 



37 

Figure 14. Assembled Reflector and Laser 



rods could have been milled out of plastic (or even wood), 

thus lightening the structure substantially. 

Each reflector had a threaded hole tapped into its 

base to allow it to be anchored to an aluminum base plate. 

In addition two small grooves were ground on the base of 

each reflector. 
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The base plate had rectangular grooves milled at 

right angles to allow any reflector to sit at only one of 4 

orientations. Longer threaded shafts held the reflectors at 

a constant distance of 2" above the array plane, which 

consisted of a printed-circuit board having 64 holes 

aligning one to each of the reflectors. 

The array plane circuit board was conceived to 

comprise two separated sets of parallel traces at 90° to 

each other, with the transmitters or receivers attached to 

one of each trace. By selecting one vertical and one 

horizontal trace, a single receiver or transmitter can be 

electrically selected for connection to a detecting or 

driving circuit. Due to the addressing nature of the array, 

only one other trace need be used for nearest-neighbor 

addressed transmitter/receiver of the one selected. 

In a full implementation, one would require that 

each array plane hole would contain both a receiver and a 

transmitter. This device, however, was constructed solely 

for the purpose of demonstration of the connection approach, 

and not for complete implementation of a computing device. 



r 4
• ·I 

0 0 0 0 0 0 0 0 

• • • • • • • 
0 0 0 0 0 0 0 0 

••••••• 
0 0 0 0 0 0 0 0 

• • • • • • • 
0 0 0 0 0 0 0 0 

a • • • • • • • 
0 0 0 0 0 0 0 

• • • • • • • 
0 0 0 0 0 0 0 0 

b •••••• Dr+--, 
0 0 0 0 0 0 0 0 

~~ • • • • • • • ~ 

a 64 holes . 125" dia 
no threads, countersunk from 
bottom of plate, on .5" centers. 

b 4 holes .35" dia 
no threads, tapped from top, 
one per flange as shown . 

• 
i : t2"i X 

G .075" 

• 

. 5" 

c 32 rods .5" x .5" base, with centered, threaded 
hole from bottom. Angle= 22.5 degrees from 
horizontal, x = 0" 

d same as c except, angle= 13.3, x = .045" 

Figure 15. Drawing of Reflector Components 
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Figure 16 . Array Plane Circuit Board 



41 

It was found that, for the hardware built, a common 

light-emitting-diode (LED) was inadequate as a transmission 

source, due to its limited optical output and wide angular 

dispersion. A narrower beam, higher output LED was found, 

but then rejected for cost reasons. Collimation of multiple 

sources was also ruled out, again to minimize cost. 

For demonstration purposes, a Helium-Neon laser 

source was chosen. Its marginal power output of less than 1 

milliwatt was not high enough to justify developing an optic 

splitting device; only one surface reflection can be 

demonstrated at a time. 

A simple receiver circuit, centered around a 

cadmium sulfide photo-resistor, was used to detect the 

presence of light above a threshold ambient value. Light 

energy falling on the photo-resistor Rl drives current into 

the trimming resistor, R2. 

V+ 

V+ = 5 - 13 volts 
-+ + R1 phototransistor -+ R1 Dl + = 
-+ R2 2K trim pot = 

Ql Ql = NPN darlington 

Dl = L. E. D. 
Z1 

Zl = 3.6 zener diode 

Figure 17. Generic Receiver Circuit 
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When the voltage of R2 is higher than the zener 

voltage plus that of the base-to-emitter voltage, the 

Darlington conducts, and the resulting current through its 

collector lights the LED indicator. Trimming resistor R2 

allows for varying the threshold value to compensate for 

ambient light conditions. Refer to the circuit shown in 

Figure 17. A picture of the completed detector is shown in 

Figure 16. 



43 

CHAPTER VII 

IDEAL SYSTEM DESCRIPTION 

An ideal system would have one beam director at 

each array node, all nodes being supplied their beams from a 

common pump source. By utilizing beam directors at the 

transmitters instead of reflective redirection, each node 

would be responsible for steering its own beam to its 

destination. Advantages for such a system would be: 

a) transmitter compensation of the above inconsistencies 

b) transmitter compensation for surface irregularities 

c) reduction to a simple smooth (flat) reflector 

d) dynamic structure reconnection 

e) accommodation of random node placement 

f) simplified construction with single node controllers 

With identical node structures, a simple reflective 

plane, one common pump source, and one beam per node, the 

physical structure would be relatively non-complex for high 

numbers of array elements. Such a system is depicted in 

Figure 18. 

The direction element would consist of two stacked 

refractive elements (such as piezo-optic crystals), each 

responsible for bending the beam in their respective axis. 

To communicate with another element, a node would provide x 

and y bending voltages to the redirector to thus point its 

beam in the correct direction [2]. With higher beam 
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directivity, dynamic changes in the overall structure, such 

as linear distortion due to thermal expansion, could be 

compensated for. To handle random node placement, each node 

would energize its beam in turn, while every other node 

would monitor for reflection, announcing through a "manager" 

node when its receiver had been hit by the beam. This 

direction information, stored in a lookup table, allows a 

node to "dial up" a connection, similar to a phone system. 

As this could allow full interconnection of an array, there 

would be a need for node identification as well as 

connection and timing protocols. 

Higher link flexibility requires rules for managing 

an increased rate of data collision, although this would be 

offset by the capability of the system to dynamically 

restructure itself into alternate connection configurations, 

indeed even allowing fracturing of the main system into 

computational subsystems. This would translate into 

capability to handle varying degrees of computational 

complexity to match that required by the incoming 

applications. 

Structural support of the reflector could be 

implemented by utilizing a solid, optically transparent 

material (glass/plastic/diamond) in place of free space. 

This could be aided by implementing direct point-to-point 

connection by eliminating the reflective plane and placing 

the array nodes in a circular, cylindrical, or spherical 

orientation, although for construction purposes, a planar 



configuration is preferred. Both of these would decrease 

the propagation time of the light beams, but:. would impose 

power constraints due to optical attenuation through the 

bending devices and the associated heat and stress 

dissipation. 
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The entire paper has implied common frequency light 

sources, to minimize system complexity. However, this need 

not be the case. Provided that its receiving area is 

complementary, each node need not be limited to the same 

optical frequency. This would reduce optical crosstalk from 

multiple reflections. 

Overall system speed would depend p:rimarily on the 

base speeds of the nodes, augmented by using supercooled, 

superconducting, or high-speed node logic circuitry. 



JUUUl 

A. Array Plane with Optic - Gate Substrate. 
C. Control System for Pump and Ref~ector. 
0 . Optical Media . 
P . Beam Pump Source . 
R. Re= l ector Plane . 
S. Structu ral /Cooling Framework . 

Figure 18 . Ideal System Descr iption 

4 6 
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CHAPTER VIII 

SUMMARY 

This paper has covered some of the aspects of a 

reflective connection device for computational arrays, as 

one solution for the inherent crosstalk and limited speed of 

current wire-bussed designs. (See Chapter I.) 

In Chapter II, several assumptions were made about 

the nature of a computational array. A square, symmetric 

arrangement of identical computing nodes was established as 

the model computational array. Communication light beams 

originating from each node, and oriented perpendicular to 

the plane of the array, required an overhead reflective 

device . Simplification of the reflective structure is 

obtained through the regularity of the array model, and in 

the selection of milled reflecting elements in place of 

hologramatic or planar reflectors. 

In Chapter III, comparison of three linking methods 

(ring, full, and N-cube), led to the selection of the N-cube 

for the computational array. The N-cube architecture is a 

binary structure containing 2N nodes. Primarily, the low 

maximum path distance and low number of physical links of 

the N-cube minimized the number of reflections implemented. 

Reflector simplification was achieved by positioning the 

array nodes in a regular manner. 
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As further explained in Chapter IV, addressing and 

positioning of the N-cube had impact on the nature of the 

reflector design. In addressing the N-cube in a gray-code 

manner, and requiring the array nodes to be systematically 

arranged on a 2-dimensional plane, the reflector element 

requirements are reduced to single axis reflections. This 

later eased the milling requirements. 

Possible errors (receiver shift, reflector shift, 

and beam misalignment) were considered, and the adjustments 

to individual surfaces' angles was given. These errors, as 

derived in Chapter V, can be compensated for when they are 

time-invariant. No mention of measurement for these errors 

was discussed. 

Construction of a prototype reflective device was 

documented in Chapter VI. The reflector, consisting of 64 

milled reflective rods attached to a base plate, is suited 

for a 4-cube of 16 processors. By utilizing the layout 

considerations of Chapter IV, there are only 2 different 

angled reflectors used (32 of each). A helium-neon laser 

and small detector circuit were assembled for use in 

demonstration of the reflection elements. 

Chapter VII gave a brief description of a possible 

ideal system, including some ideas which would allow dynamic 

reconfiguration of the reflector plane (common pump beam, 

optical gates, transmitter beam steering, etc.) 

Further research into this type of connective 

system might include many details of the aforementioned 
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ideal system description (as described in Chapter VII). 

Microlithography of an entire wafer-scale device would be 

the next logical step, as technology always demands smaller 

size, reduced power, reduced weight, higher computing power, 

and the like. An exploration of other physical placement 

algorithms could yield a more effective (speed, real-estate, 

cost) design. In addition, actual construction of an entire 

computing array design, complete with interfacing hardware 

and configuration software, would be most desired. 



'NAME: ARRAY0l.BAS 
'DATE: 02-92 

APPENDIX A 

'NOTE: This program displays a planar array of 64 cells , 
'assumed connected in a 6-CUBE architecture. Neighbors 
'(grey) are indicated for one selected (red) element. 
"u$ are data for the address characters, delis pitch 
'between digits. (x(n),y(n)) is beginning point while 
'(x(n+l),y(n+l)) is ending point for numeral line segment 
'where 0 < n < 8. 

SCREEN 9 WINDOW (-1.5, -2.5)-(9, 8) 
u$(0) = 0111111" 
u$(1) = 0001100 
u$(2) = 1011011 
u$(3) = 1011110 
u$(4) = 1101100 
u$(5) = '1110110 
u$(6) = 11 1110111 
u$(7) = "0011100 
u$(8) = "1111111 
u$(9) = 11 1111100 
del = .16 

'grid draw routine 
FOR i = 0 TO 7 

FOR j = 0 TO 7 

X ( 1) = . 3: y ( 1) 
X ( 2) = . 2: y(2) 
x(3) = .2: y(3) 
X (4) = . 3: y ( 4) 
X ( 5) = . 3: y ( 5) 
X ( 6) = .3: y(6) 
x(7) = . 2: y (7) 
X ( 8) = . 2: y(8) 

LINE ( i , j ) - ( i + . 9 , j + . 9 ) , , B 
numb= j * 8 + i 
t = INT(numb / 10) 
o = numb - 10 * t 
FOR k = 1 TO 7 

t1$ = MID$(u$(t), k, 1) 
t2$ = MID$(u$(o), k, 1) 

IF tl$ = "l" THEN LINE 
(i+x(k),j+y(k))-(i+x(k+l),j+y(k+l)) 

= 
= 
= 
= 
= 
= 
= 
= 

.2 

.2 

. 3 

. 3 

.2 

.1 

.1 

.2 

IF t2$ = "1" THEN LINE 
(i+x(k)+del,j+y(k))-(i+x(k+l)+del,j +y(k+l)) 

NEXT k 
NEXT j 

NEXT i 
LOCATE 22, 10: PRINT "Arrows to move. y address=" 
LOCATE 23, 10: PRINT 11 <esc> for exit. x address=" 
'keyboard interpretation routine 
get.key: a$= INKEY$: IF a$= 1111 THEN GOTO get.key 

IF LEN(a$) = 2 THEN b = ASC(MID$(a$, 2, 1)) 
IF ASC(a$) = 27 THEN END 
IF b = 72 THEN y = y + 1 
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IF b = 80 THEN y = y - 1 
IF b = 77 THEN X = X + 1 
IF b = 75 THEN X = X - 1 
X = ABS(x + 8) MOD 8 
y = ABS(y + 8) MOD 8 

I ... erases the old mappings ... 
PAINT (old.x + . 5, old.y + . 5) ' 0 I 15 

FOR i = 0 TO 2 
PAINT ((old.x XOR 2 Ai) + .5, old.y + .5), 0, 15 
PAINT (old.x + .5, (old.y XOR 2 Ai) + .5), 0, 15 

NEXT i 

' ... and maps the adjacent addresses ... 
PAINT (x + .5, y + .5), 4, 15 

FOR i = 0 TO 2 
PAINT ((x XOR 2 Ai) + .5, y + .5), 7, 15 
PAINT (x + .5, (y XOR 2 Ai) + .5), 7, 15 

NEXT i 

FOR i = 0 TO 2 
LOCATE 22, 47 - 2 * i 
PRINT (y AND 2 Ai) / 2 Ai; 
LOCATE 23, 47 - 2 * i 
PRINT (x AND 2 Ai) / 2 Ai; 

NEXT i 

' ... then saves this new position ... 
old.x = x: old.y = y 

' ... and goes back to get another key-press. 
GOTO get.key 

END 

51 



'NAME: ARRAY02.BAS 
'DATE: 02-92 

APPENDIX B 

'PROG: This program calculates nearest-neighbor data for a 
'planar array of 64 cells, configured in a 6-CUBE 
'architecture. Note: The 6-bit address of each node 
'contains the following data: 
'(a) The addresses of each of the 6 adjacent nodes. 
'(b) The direction(physical) towards each adjacent node. 
'(c) The number distance to each of the adjacent nodes. 

'OPEN "b:\stuff.out" FOR OUTPUT AS #1 

OPEN "con" FOR OUTPUT AS #1 

FOR z = 0 to 63 
IF z MOD 16 = 0 THEN 

PRINT #1, "" 
PRINT #1, " --address-- ---neighbor-addresses---
----------------" 
PRINT 
( 1) 
ELSE 

END IF 

#1, II Z y 
ABC ABC" 

y = INT( z / 8 
X = Z - 8 * y 

PRINT #1, USING"## 

FOR i = 2 TOO STEP -1 

X (32) (16) ( 8) ( 4) 

II ; z; 

PRINT #1, RIGHT$(STR$((y AND 2 Ai) / 2 Ai), l); 
NEXT i 

PRINT # 1 , " " ; 

FOR i = 2 TOO STEP -1 
PRINT #1, RIGHT$(STR$((x AND 2 Ai) / 2 Ai), l); 

NEXT i 

PRINT # 1 , " " ; 

FOR i = 5 TOO STEP -1 
PRINT #1, USING"## "; z XOR 2 Ai; 

NEXT i 

PRINT #1, II II• 
I 

(2) 
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FOR i = 5 TOO STEP -1 
IF (z AND 2 Ai) / (2 Ai) THEN PRINT #1, 11 - 11 ; ELSE PRINT 
#1, 11+ II; 
PRINT #1, 11 

NEXT i 
PRINT #1, 1111 

NEXT z 

END 

II• 
I 



'NAME: ARRAY03.BAS 
'DATE: 06-93 

APPENDIX C 
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'PROG: This program will generate random addresses for each 
'node in a 4-cube, displaying the current address for each 
'node stack as well as the percentage used by the four node 
'paths. An indication is given for any excessive node stack 
'size. 

DIM z(16,4,190),y(16},x(l6) 
'z is the node stack array. z(,,0) is the node stack size. 
'y array counts the number of hits used by the 8,4,2,1 bits. 
'x array counts the number of unique values in 8,4,2,1 bits. 

SCREEN 0: CLS 

FOR a= 0 TO 15 
LOCATE 5 + a, 10 
PRINT USING"##"; a; 
PRINT II 

NEXT a 

FOR y = 0 TO 299 
FOR a= 0 TO 15 

LOCATE 1, 1: PRINT y, a 
'wait for a keypress to continue. 

II 

'keypress: a$= INKEY$: IF a$="" THEN GOTO keypress 
'dis the destination address, while a is the current node 
'address. 
d = INT(15 * RND(l)) 
b = a XOR d 
'generates f(B) 
b = 15 AND b AND (NOT (b * 2)) 
b = b AND (NOT (b * 4)) AND (NOT (b * 8)) 
IF b = 8 THEN c = 0 
IF b = 4 THEN c = 1 
IF b = 2 THEN c = 2 
IF b = 1 THEN c = 3 
IF b = 0 THEN GOTO around 
'PRINT "sending to node: "; b XOR d 
b = a XOR b 
'bis now the new address to send the token to. 
'c is the bit that was changed. 
LOCATE 5 + b, 20 + 12 * c 
z(b, c, 0) = z(b, c, 0) + 1 
'if b = d then the token has reached its destination. 

IF b ~ d THEN GOTO around 
'if there are more than 40 stack elements then print "E" 
IF z(b, c, 0) > 40 THEN PRINT"*"; ELSE PRINT" "; 



z(b, c, z(b, c, 0)) = d 
PRINT USING 11 (###) 11

; z (b, C, 0); 
PRINT USING 11 ## 11

; z (b, c, z (b, C, 0)) 
y(c) = y(c) + 1 
'at the bottom, print the percentages. 
FOR e = 0 TO 3 

LOCATE 22, 23 + 12 * e 
temp= y(0) + y(l) + y(2) + y(3) 
PRINT USING 11 ##.# 11

; 100 * y(e) / temp 
NEXT e 

around: 

'FOR b = 0 TO 3 
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'IF z(a, y(b), 0) = 0 THEN GOTO around2 ELSE z(a, y(b), 0) 
'= z(a, y(b), 0) + 1 
'around2: 

NEXT b 
NEXT a 

NEXT y 

'THIS ROUTINE SHOULD LIST THE NUMBER OF UNIQUE ADDRESSES 
'WHICH PASSED THROUGH EACH OF THE NODES 
'FOR a= 0 TO 15 
I PRINT 
' FOR b = 0 TO 3 

FOR c = 0 TO 15 
x(c) = 0 

NEXT c 
sum = 0 
FOR c = 1 TO z(a, b, 0) 

IF x(z(a, b, c) = 0 THEN sum= sum+ 1 
IF x(z(a, b, c) = 0 THEN PRINT z(a, b, c); 11 11

; 

x(z(a, b, c)) = 1 
NEXT c 
LOCATE 5 + a, 20 + 7 * b 
PRINT TAB(50); , ; 
PRINT USING 11 #### 11

; sum 
I NEXT b 
'NEXT a 

END 



1 
'NAME: ARRAY04.BAS 
'DATE: 6-93 

APPENDIX D 
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'PROG: This program generates nearest-neighbor node angles 
'of reflection for a 4-cube. Data is outputted for each of 
'the four sub areas within each node. It is assumed that 
'the position of each sub area is the same with respect to 
'each node. 

OPTION BASE 0 
DIM X ( 16) , Y ( 16) , o ( 4, 2 , 2 ) , 
CONST pi= 3.141592654# 
CLS 

ang(16,4 , 2), used(l6,4) 

h = 2 
a = 4 
b = 4 
cell.a= a I 4 
cell.b = b / 4 
PRINT "h="; h; " a="; a; " b="; b 

'Generates cell offset positions. 
FOR j = 0 TO 3 

FOR i = 0 TO 3 
n = i + j * 4 
X(n) =a* i / 4 
Y(n) = b * j / 4 

NEXT i 
NEXT j 

'height 
'array length 
'array width 
'cell length 
'cell width 

'Generate xmtr/rcvr offsets within cell, o(a,b,c) where a is 
'the sub-cell(0-3), bis xmtr/rcvr (0/1), c is x/y (0/1) 
'Assumes xmtr and rcvr offsets are the same. 

FOR k = 0 TO 1 
FOR l = 0 TO 1 

m = 1 + k * 2 
o(m,0,0) = cell.a I 4 + cell. a * 1 I 2 
o(m,0,1) = cell.b I 4 + cell.b * k I 2 
o (m, 1, 0) = cell.a I 4 +cell.a* 1 I 2 
o(m,1,1) = cell.b I 4 + cell.b * k I 2 

NEXT 1 
NEXT k 

'Calculates nearest-neighbor node numbers. 
'Uses a used node matrix used(a,b) where a is the node 
'number (0-15) , 'and bis the xmtr number (0-3). 
'Also computes reflection angles using invtan(d/h) 



FOR i = 0 TO 15 
FOR j = 0 TO 1 

IF used(i,j) = 1 THEN PRINT" hit"; : GOTO around 
used(i,j) = 1 
k = i XOR 2 "'j 
d = X(k) + o(j,1,0) - X(i) - o(j,0,0) 
ang(i,j,0) = 28.6479 * ATN(d/h) 
IF ang(i,j,0) > 90 THEN ang(i,j,0) = ang(i,j,0) - 180 

NEXT j 

FOR j = 2 TO 3 
IF used(i,j) = 1 THEN PRINT" hit"; : GOTO around 
used(i,j) = 1 
k = i XOR 2 "'j 
d = Y(k) + o(j,1,1) - Y(i) - o(j,0,1) 
ang(i,j,l) = 28.6479 * ATN(d/h) 
IF ang(i,j,l) > 90 THEN ang(i,j,l) = ang(i,j,l) - 180 

around: 
NEXT j 

NEXT i 

'Prints out the center positions (x,y) and angles (x,y) 
'for the reflector patches. 

FOR i = 0 TO 15 
PRINT"("; X(i); ", "; Y(i); ")"; 
FOR j = 0 TO 3 

PRINT , " at ( x, y) " ; 
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PRINT USING " ###. ###"; X ( i) + o ( j, 1, 0) ; Y ( i) + o ( j, 1, 1) ; 
PRINT " angle (x, y) "; 
PRINT USING"###.###"; ang(i,j,0); ang(i,j,1) 

NEXT j 
PRINT 

NEXT i 

END 
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