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ABSTRACT 

The fundamental issues in modeling and "executive level" control of a three-link, 

three-joint robotic arm-gripper system are presented. First, a mathematical model of the 

mechanism is developed. This model is coupled with a model of a DC permanent magnet 

motor, as an actuator, to obtain an overall system model. This model is used to design and 

simulate five local control systems for the independent control of the joints in the arm portion 

of the arm-gripper system. The control systems developed are a simple feedback system, a 

position servo system, a position servo system with direct gravity compensation, a state­

feedback control system designed based on pole placement, and a PID controller. The effect 

of gravity moment upon the system response is examined, and the performance of each 

control system is analyzed. The performance of each controller is quantified by the settling 

time, percent overshoot, and steady-state error metrics. The position servo system with 

gravity compensator is found to be the best overall control system approach. 
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INTRODUCTION 

Robotic manipulators have a wide range of applications, including manufacturing, 

medicine, and space exploration. Robots are able to perform many tasks to a higher degree 

of precision than humans, and they are often able to work in much more extreme 

environments. 

The design and control of robotic manipulators is a complex topic, requmng 

knowledge of mechanics, control theory, and computer science. The mechanical properties 

of a manipulator affect its speed and precision. Knowledge of control theory is required to 

design a control system for a robot that is not only accurate, but also reliable. The control 

system often requires the use of a digital programmable computer or microcontroller. The 

requirements placed on a robot manipulator system vary widely from application to 

application. In manufacturing, for example, high speed and low cost may be desired, while 

medical applications may sacrifice speed and cost for precision. 

A basic robotic manipulator may consist of two somewhat independent parts: an 

"arm" and an "end-effector" or "gripper." The end-effector is the part of the mechanism that 

directly manipulates objects; this may be a human-like hand, a surgical tool, a paint sprayer 

can, etc. The arm is the part that moves the end-effector to the proper position. 

A layered approach is normally taken to the design of control systems for robot 

manipulators [1]. When a robot manipulator is given a task, the completion of the task 

requires interaction between several "levels" of control. At the highest level, some form of 

artificial intelligence involving computer vision, machine learning, etc., may be used to 
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develop a strategy for completing a task. This task controls a so-called "tactical control 

level," normally a digital system such as a microcontroller or computer system, which 

determines the desired configuration or trajectory for the manipulator based on the needs for 

carrying out the task. This desired configuration or trajectory is sent to an "executive control 

level" in the form of internal coordinates of the mechanism. The job of the executive control 

level is to move the manipulator to the desired position or along the desired trajectory 

specified by the tactical control level. An important text on kinematics and control of robot 

manipulators at the tactical level is Mason and Salisbury [2]. This work is concerned with 

the control of a robotic arm-gripper system at the executive level. Control at higher levels is 

left for further study. 

The arm portion of the system considered in this work consists of three rigid links 

connected by joints, with each joint being actuated by a permanent-magnet DC motor. The 

end-effector has a similar design, consisting of two fingers, each of which is made of two 

rigid links connected by joints. 

This thesis is organized as follows. A mathematical model of the arm portion of the 

mechanism is developed in Chapter 1. Chapter 2 describes the system characteristics and 

presents simple feedback control approaches for each joint in the arm. In Chapter 3, position 

servo systems are developed, including approaches with and without compensation for 

gravity. Chapter 4 describes a state-feedback and a PID controller. Finally, Chapters 5 and 6 

present analyses and conclusions, respectively. Additional information that may be useful 

for further work is presented in the appendices. 
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CHAPTER I 

MODELING THE ARM MECHANISM 

This chapter presents a simple three-link robotic arm with three joints, each driven by 

a permanent-magnet DC motor. First, the design of the arm is discussed. Then, a 

mathematical model of the arm is presented. This model is then coupled with a model of a 

permanent-magnet DC motor (the actuator) to produce an overall system model. 

1.1 A Simple Robotic Arm and Gripper System 

Figure 1.1 shows the robotic arm under consideration. The mechanism consists of 

three rigid links of lengths !A, !8, and lc, and masses mA, m8, and me. The links are connected 

by joints. The mass of joint 1 does not affect the model and is hence ignored; the other two 

joints have masses m2 and m3. Control of the fingers in the gripper mechanism can be 

handled using methods very similar to those for controlling the arm portion, and hence for 

simplicity the gripper is reduced to a circle of radius rc and mass me. Control of the gripper 

is left for further study, and may be based largely on the work presented in this paper. 

Appendix E presents some information related to the design and control of the hand. 

Table 1.1 gives the numerical values for the arm parameters used for this study. 

The configuration of the arm at any point in time is specified by the vector 

Q = [q1 q2 q3 ], where q1 is the angle between link A and the vertical, q2 is the angle 

between link A and link B, and q3 is the angle between link Band link C. 
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Table 1.1: 
Arm Mechanism Parameters. 

Parameter Value 

fA 0.25 m 

Is 0.25 m 

lc 0.25 m 

mA 10 kg 

ms 10 kg 

me 10 kg 

me 20 kg 

rc 0.10m 

m2 2 kg 

m3 2 kg 

1.2 Modeling the Arm Mechanism 

The "driving moment" for a joint is the moment (torque) required to move that joint to a 

desired position. The driving moment about joint i may be written [1]: 

~ = Hi (Q)qi + Gi (Q) (1.1) 

where Hi(Q) represents the total moment of inertia of the portion of the mechanism "behind" 

joint i (a function of the angles q 1, q2, and q3), qi is the angular acceleration of joint i (i.e., 
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the second time-derivative of angle qi), and Gi(Q) represents the moment about joint 

contributed by gravity. 

The moment of inertia and the gravity moment for each joint can be written using 

basic kinematics [1, 3, 4]. If each link in the arm is considered to be a slender homogeneous 

rod pinned at one end, the moment of inertia for the link may be written: 

H - I. m k/1
2 

k · link - 3 lm m (1 .2) 

The moment of inertia for the gripper, simplified to a circular disk, may be written using 

equation 1.3: 

3 2 
H =-m rc· joint 2 G (1.3) 

The parallel axis theorem states that the moment of inertia of a body about any axis parallel 

to the mass center is given by: 

H =He +md 2 (1.4) 

where He is the moment of inertia about the mass center of the body, m is the mass of the 

body, and dis the perpendicular distance between the mass center axis and the parallel axis. 

Gravity induces a moment (torque) about each joint equal to the sum of the moments 

about the joint caused by the individual components of the mechanism. The moment about a 

joint caused by a component of the mechanism is: 

G=mgd (1.5) 
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where m is the mass of the mechanism component, g is acceleration due to gravity, and d is 

the perpendicular distance between the joint axis and the mass center of the mechanism 

component. 

The moments of inertia about each joint can be determined by combining equations 

1.2, 1.3, and 1.4. The gravity moments for each joint can be written using equation 1.5. 

For joint one the moment of inertia is: 

(1 2) (1 2 2) (3 2 2) H, (Q) = 3m)A + 3m ala+ malA + 2_mGrG + mcd, 

+(±mel~ +me (z~ +l~ +2l)8 cosq2)) 

(1.6) 

where d 1 is the perpendicular distance from the center of joint 1 to the endpoint of link C, 

found from: 

d2 _ (z 18 sin q3 )

2 
(z !8 sin q2 )

2 

I - A + + B + -"'------=--"--

Sin(q2 + q3 ) sin(q2 + q3 ) 

+2(ZA + _zssinq3 )(zs + _zssinq2 )cos(q2 +q3) 
sm(q2 + q3) sm(q2 + q3) 

The gravity moment for joint one may be written: 

G,(Q) = (~mAglA +m2glA +m8 glA +m3glA +meglA +mcglA }inq1 

+(~m8gl8 +m8 gl8 +mcgl8 +mcgl8 )cos(q1 +q2) 

+(~megle +mcg(le +rc))cos(q1 +q2 +q3 ) 

For joint two, the moment of inertia is: 

H 2(Q) = (±m81~) +(±mel~)+ (%mer~+ mc (l~ +1~ + 218 le cosq3 )) 

(1.7) 

(1.8) 

(1.9) 



and the gravity moment is: 

G2 (Q) = ( -±mAglA )cosq, +(±m8 gl8 +m8 gl8 +mcgl8 +megl8 ) cos(q, +q2 ) 

+(±mcglc +mcg(lc +rc ))cos(q, +q2 +q3 ) 

Finally, the moment of inertia for joint three is : 

(1 2) (3 2 2) H3 (Q) = 3 mclc + 2 mere + melc 

and the gravity moment about joint three is: 

G3 (Q) = ( - ±mAglA )sinq, +( -mAgl8 -m2gl8 -±m8 gl8 )sin(q, +q2 ) 

+(±mcglc +mcg(lc +rc))cos(q3 ) 

8 

(1.1 0) 

(1.11) 

(1.12) 

The maximum values of moment of inertia and gravity moment for each joint will be 

of interest when designing the joint control systems, since they represent the largest values 

the control systems must be able to handle. These maximum values were determined by 

using a computer program (see Appendix C), using the arm parameters as in Table 1.1 , and 

are summarized in Table 1.2. 
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Table 1.2: 
Maximum Hand G Values by Joint. 

Parameter Joint 1 Joint 2 Joint 3 

H(kg·m2
) 16 6 2 

G (N·m) 285 115 80 

1.3 Modeling the Actuators 

Each joint is driven independently by a single actuator. The actuators are assumed to 

be permanent magnet DC motors directly connected to their respective joints. The model of 

a permanent magnet DC motor is well-known and described in the literature (1, 5, 6]. 

Figure 1.2 shows a schematic diagram of the actuator. The mathematical model is 

developed by writing the differential equations associated with the electrical and mechanical 

equilibrium for the motor. 

The equation of electrical equilibrium can be written using Kirchoffs Voltage Law, 

summing the voltages in the loop: 

. diR C dB 
zRRR +LR-+ ENv--u = 0 . 

dt dt 
(1.13) 

The equation of mechanical equilibrium can be written using the Law of 

Conservation of Energy: 

d 2 B dB 
NvNMJM-2-+F -+M -CMNMiR =0. 

dt v dt 
(1.14) 
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To develop a model of the actuator in state-space, let the state vector of the actuator 

be 

X" {:l{:J (1.15) 

Solving equation 1.13 for diR/dt in terms ofthe state variables in 1.15 gives: 

diR CENv R11 1 
-=---x2--x3+-u . 
dt LR LR LR 

(1.16) 

So "1 1 1 0 0 fi e·· d2() 0 1m1 ar y, so vmg equatiOn 1.14 or = -
2
- g1ves: 

dt 

B= Fv eM 
--x2---x3 

NvNMJM NvJM 
1 M. 

NvNMJM 
(1.17) 

Using equations 1.15, 1.16, and 1.17, a state-space model of the actuator may be 

written as: 

xa = Aaxa + B au + faM (1.18) 

where the system matrices are given by: 
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A"~l 
0 1 

Cu/~JM ] 0 -FvfNvNM JM (1.19) 

0 -CENjLR -RR/LR 

B = 0 l 0 ] 
a ljLR 

(1.20) 

f" ~ l-1/ N":MJM] (1.21) 

For a numerical model, the actuator parameters in Table 1.3 were used. These values 

were chosen based on values used in examples by Vukobratovic [1]. The resulting numerical 

matrices are given in equations 1.22-1.24. 

Table 1.3: 
Actuator Mechanism Parameters. 

CE 0.0459 V/rad/s 

Cu 0.0480 N·m/A 

Ju 0.00003 kg·m2 

Nv 31.17 

Nu 31.17 

RR 1.60 n 

Fv 0.0058 N·m/rad/s 

LR 0.0023 H 



A"~[ 
0 

0 

0 

1 

-0.198991 

-622.045 

B = 0 
[ 

0 J 
a 434.783 

f" ~ [ -34;088 J 

51.~314 J 
-695.652 

1.4 State-Space Model of Combined Actuator and Joint 

13 

(1.22) 

(1.23) 

(1.24) 

A state-space model of the system consisting of the mechanical joint and its actuator 

is developed in this section. It is assumed that the output angle of the actuator is equal to the 

output angle (coordinate) of the joint to which it is connected. In other words, for each joint 

i, 

q. =B. I I • (1.25) 

Further, it is required that the load on a joint be equal to the driving moment about the joint 

(given in equation 1.1 ): 

M; =P; =H;(Q)q;+G;(Q). (1.26) 

Let the state vector of the combined joint-actuator system be: 

x~[ ~J~rn (1.27) 
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From equations 1.18, 1.25, 1.26, and 1.27, the total model for a joint and its actuator 

may be written: 

X= Aax+Bau +fa[H;(Q)q; + G;(Q)]. (1.28) 

In order to develop a model of the combined joint-actuator system, notice that 

equations 1.25 and 1.27 imply: 

q = B = Tx (1.29) 

where 

T=[O 1 0]. (1.30) 

Gravity will be treated as an external disturbance upon the system, and hence it is ignored in 

the system model. Therefore, equation 1.28 may be written (1] : 

x =(I -faH;(Q)Tr [Aax + Bau ] 
(1.31) 

= Ax+Bu 

where 

~ - 1 
A= (I -faH;(Q)T) Aa (1.32) 

and 

~ - 1 
B =(I -faH;(Q)T) Ba. (1.33) 

Notice from equations 1.22, 1.23, and 1.24 that A and B are constant matrices. 

Finally, the system output is the position, q, of the joint; thus, the system output, y, 

can be written: 

y=Cx (1.34) 
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where 

C=[1 o o]. (1.35) 

For the arm described by the parameters in Tables 1.1 and 1.3, and the maximum 

values of moment of inertia given in Table 1.2, the following system matrices are obtained 

using equations 1.32, 1.33, and 1.21: 

A, =l~ 

A, =l~ 

A, =l~ 

1 

-0.0004 

-622.05 

1 

-0.0010 

-622.05 

1 

-0.0001 

-622.05 

0.0~034] 
-695.65 

0.2~82] 
-695.65 

0.0~87] 
-695.65 

B - 0 l 0 ] 

I- 434.78 

B - 0 l 0 ] 
2 

- 434.78 

B - 0 l 0 ] 
3 

- 434.78 

1.5 Combined Actuator and Joint Transfer Function 

f"·' = l- 3:309] 
(1.36) 

f" ·' = l- 3:309] (1.37) 

r", = l-3:309] (1.38) 

The state-space representation given in section 1.4 can be used to derive a transfer 

function for the electromechanical joint. That transfer function is developed in this section. 

The system matrices, A, B, and fa, are given by equations 1.32, 1.33, and 1.21, 

respectively. The transfer function Cj(s) ofthe system can be written [7] : 
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CJ(s) = C(sl- A)+B. (1.39) 

Substituting the appropriate values from the system matrices gives the following expression 

for CJ(s): 

CMNM 

{j-(s) = CMCENMNv +FvRR 

(
LR(H;+NvNMJM) 2 FvLR+RR(H;+NvNMJM) 1J 

--'.!-'-._.!...._---'--=-=__!___ s + s + s 
CMCENvNM +FvRR CMCENvNM +FvRR 

(1.40) 

which can be written [1]: 

KD 
plll( ) - 2 
'if s - 8 3 +(r F +l)rMs +s T ET M E D 

(1.41) 

where KD and F D are constants given by 

K = CMNM 
D ' NMNvCMCE +RRFv 

(1.42) 

Fv 
FD = NMNvJM +H;' (1.43) 

and r£ and rM are the electrical and mechanical time constants, respectively, given by: 

r£ = LR I RR, (1.44) 

and 

RR(NMNJM +H,) 
rM = . 

NMNvCMCE +RRFv 
(1.45) 
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In the case when the electrical time constant T£ is much less than the mechanical time 

constant TM, the terms containing T£ may be neglected and a second-order transfer function .. 
may be written: 

(j."(s)=~ 
TMS 2 +S 

(1.46) 

The numerical joint transfer functions using the arm parameters in Tables 1.1 and 1.3 

and the maximum moment of inertia values from Table 1.2 may be found using equations 

1.41 and 1.46 with the values in Table 1.4 calculated for each joint. Equations 1.4 7, 1.48, 

and 1.49 show these numerical transfer functions for joints one, two, and three, respectively. 

Table 1.4: 
Joint Transfer Function Parameters. 

Parameter Joint 1 Joint 2 Joint 3 

Fo 0.000362 0.000962 0.002858 

Ko 0.69594 0.69594 0.69594 

KM 0.744241 0.744241 0.744241 

TE 0.0014375 0.0014375 0.0014375 

TM 11.92955 4.48714 1.5102 
-----------



0.69594 
p m(s) - 2 

'ill - 0.017149s3 + 11.9296s +s 

{,h111 (s) = 0.69594 

(km(s) = 0.69594 

1.6 Modeling Gravity Effects 

0.69594 
p ll ( )- 2 
'ill s - 11.92955s + s 

0.69594 
~II(s) = 4.48714s2 +s 

0.69594 
pll( ) - 2 
'13 s - 1.5102s +s 
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(1.47) 

(1.48) 

(1.49) 

In order to simulate the effect of gravity upon each joint, it was necessary to pick a 

configuration of the arm in which the other two joints were "locked" into position. This was 

done for each joint by assuming that the other two joints were fixed at a position of n/4. 

Computer programs were used to calculate the gravity moments (see Appendix D) using 

equations 1.8, 1.1 0, and 1.12. The difference in position (angle) between the system 

response neglecting gravity and the actual position considering gravity was approximated by 

the following expression: 

~e =cos-' G;(Q) 
I ' linkmtotg 

(1.50) 

where ~ei is the angular difference, /link is the length of the link immediately "behind" the 

joint, and m101 is the total mass of the mechanism "behind" the joint. 

The results are tabulated in Table 1.5 for joint one, Table 1.6 for joint two, and Table 

1. 7 for joint three. By coordinating the joint position with the output of each control system 

in the following chapters, a rudimentary simulation of gravity's effect is performed. 
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Table 1.5: 
Approximate Effect of Gravity for Joint One, Others at 7t/4 rad. 

q1 (rad) G1 (N·m) /J.B1 (rad) 

0 78.0381 0.762405 

0.1 82.8462 0.695498 

0.2 86.8266 0.63576 

0.3 89.9395 0.585443 

0.4 92.1537 0.547196 

0.5 93.4471 0.523704 

0.6 93.8069 0.516999 

0.7 93.2293 0.527726 

0.8 91.7203 0.554868 

0.9 89.2948 0.596169 

1.0 85.9771 0.648902 
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Table 1.6: 
Approximate Effect of Gravity for Joint Two, Others at 7t/4 rad. 

qz (rad) Gz (N·m) !::..Bz (rad) 

0 69.3672 0.486695 

0.1 53.1067 0.827537 

0.2 36.229 1.09096 

0.3 18.9027 1.32754 

0.4 1.30087 1.55422 

0.5 -16.4006 1.78133 

0.6 -34.0248 2.01922 

0.7 -51.3957 2.28483 

0.8 -68.3398 2.62761 

0.9 -84.6876 0.0 

1.0 -100.276 0.0 
-------------- ----- --
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Table 1.7: 
Approximate Effect of Gravity for Joint Three, Others at n/4 rad. 

q3 (rad) G3 (N·m) 11~ (rad) 

0 30.5691 0.897939 

0.1 30.1648 0.908435 

0.2 28.9558 0.939325 

0.3 26.9544 0.988997 

0.4 24.1804 1.05529 

0.5 20.6616 1.13599 

0.6 16.4331 1.22916 

0.7 11.5372 1.33336 

0.8 6.02282 1.4477 

0.9 -0.0549481 1.57192 

1.0 -6.63538 1.70649 
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CHAPTER II 

SYSTEM CHARACTERISTICS 

. This chapter describes the characteristics and the desired responses of local control 

systems for each of the three joints in the arm. The term "local" refers to the fact that each 

joint is controlled independently by its own controller; i.e., only one joint is assumed to be 

moving at a time; while the other joints are "locked" into position. The effect of removing 

this requirement is discussed in Appendix B. 

2.1 Desired System Characteristics 

The performance of each joint's control system can be summarized by examining 

four aspects of the system's response to a step input: stability, overshoot, speed, and steady­

state error. 

Obviously, the system is required to be stable. If the joint controller is not designed 

with stability in mind, driving the joint to a desired position may cause it to continually 

oscillate about that point, or otherwise fail to converge at a desired steady-state value. 

The response of the control system to a step input over time may be divided into 

"transient" and "steady-state" responses. The percent overshoot is an expression of how far 

the system will exceed its target position during the transient period before the desired 

position is reached at steady-state. For a robotic arm system, it is desired to keep overshoot 
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as small as possible. This is because overshooting may cause the arm to collide with 

obstacles that lie beyond the target position. 

The speed of the-control system response can be quantified by the "settling time," 

which is defined as the time for the response to reach and stay within 2% of the steady-state 

value [6]. For the robotic arm system, speed is desirable but not required: speed may be 

sacrificed to achieve minimal overshoot and zero steady-state error. 

Finally, steady-state error expresses the difference between the desired response and 

the actual response. Effectively, the steady-state error tells how precise the positioning of the 

arm is. It is desired to achieve zero steady-state error. In the chapters that follow, it will be 

seen that gravity has a most significant impact on the steady-state error. 

The nature of the system response waveform (i.e., the stability, percent overshoot, 

and speed) depends upon the location of the poles of the system transfer function (in the s­

domain), or the location of the eigenvalues of the system matrix (in state-space). For the 

system to be stable, the system's poles or eigenvalues must lie in the left-half of the complex 

plane [ 6, 8]. 

Suppose the poles are written in the form 

a-,,2 =-s{j)±J{j)~l-s 2 , (2.1) 

where {j) is a quantity known as the system's "characteristic frequency," which expresses the 

frequency of oscillation of the system response, and s is the "damping ratio," which 

expresses how quickly the response's amplitude reaches the steady-state amplitude. 

If s > 1 there are two real poles, and the response will be an "overdamped" response 

ofthe form: 
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r(t) = C e-( (w+w~.;2-t} C -( (w-wk2-t} 
' + 2e 

(2.2) 

If t; < 1 then the response will be "underdamped," having a decaying sinusoidal form: 

r(t) = C,e -.;wt sin(w~1- t;2 t )+ C2e -.;wt cos(w~l- t;2 t ). (2.3) 

If t; = 0, then the poles are imaginary and located on the imaginary axis (i.e., they have the 

form ± jw ), and the response is an "undamped" sinusoid of the form: 

r(t) = C, sin(wt )+ C2 cos(wt). (2.4) 

This type of response will cause the system to oscillate, and thus can be considered an 

unstable response. The "fastest" stable response with no overshoot is a "critically damped" 

response, for which t; = 1 and two real, repeated roots are present. A critically damped 

response has the form: 

r(t) = (C,t+C2 )e-a>t . (2.5) 

The critically damped response is the form strived for in the design of the control systems for 

the robot arm. 

2.2 Simple Feedback System 

As motivation for examining the approaches to control system design for the arm 

joints, this section presents the response of the simple closed-loop system for each joint. 

Figure 2.1 shows the layout. The input to the system is a voltage, V0 , corresponding to the 

desired position of the joint. Vq is a voltage corresponding to the actual joint position, as 

measured by a potentiometer with gain K0 . The error (difference) between V0 and Vq is 
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amplified by a feedforward gain, Kif, and fed into the "plant" (actuator coupled to the joint). 

The value of Kif determines how rapidly the system's response decays toward a steady-state 

value. Figures 2.2-2.4 depict the responses of joints one, two, and three for varying Kif, 

neglecting gravity. The figures exemplify the problems with the basic feedback approach: 

overshoot and oscillation of the response about the desired point. 

As mentioned previously, gravity has a significant effect on the steady-state error of 

the system. Therefore, neglecting the effect of gravity on the system is unrealistic. As 

shown in Figures 2.5-2.7, all three joints controlled by a simple feedback system behave 

unacceptably when gravity effects are considered. This can be seen by examining the steady­

state error between the actual response and the desired step response (i.e., achieving a steady­

state value of one radian), as well as the long settling time and oscillation of the response. 

The simulation results considered clearly indicate that a basic feedback system is not 

a realistic option for controlling the joints of the arm. 
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CHAPTER III 

POSITION SERVO SYSTEMS 

One approach to the independent control of a joint in the arm is by using a position 

servo system. This type of system controls the actuator as a permanent-magnet DC motor, 

using a potentiometer to detect the joint's position and a tachogenerator to detect its velocity. 

A few approaches to developing position servo systems for each joint are discussed in this 

chapter. 

3.1 Basic Position Servo System 

The scheme of the basic position servo system is illustrated in Figure 3.1 , based on a 

• 
system proposed by Vukobratovic [1] . The input to the system is V0 , a step voltage signal 

corresponding to the desired position of the joint. The system output is q, the actual joint 

position. This actual position is measured by a potentiometer, giving a voltage Vq 

corresponding to actual position. The difference V
0 

- Vq is the system error. This error 

signal is amplified and fed back into the system to drive the joint toward the desired position. 

The position of the joint is measured by a potentiometer coupled to the joint's actuator shaft. 

The velocity (derivative of the position) is measured using a tachogenerator, this signal is 

amplified if necessary, and it is fed back into the controller. The effect of gravity is modeled 

as an external disturbance acting upon the system. The "plant" is the combined joint-actuator 
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transfer function, given for each joint by equations 1.47, 1.48, and 1.49. 

Using Figure 3.1 and Mason's Gain Rule, the transfer function from the input V0 (s) to 

the output Vq(s) of the overall position servo system can be found to be [6, 8, 9] : 

V
9
(s) K

0
Kp 

V
0
(s) = r Er Ms 3 + (r EFD + 1)r Ms 2 + (K0 Kv + 1)s + K 0 Kp 

(3.1) 

and the transfer function from the input q0 to the angle change due to gravity moment, Ba, 

can be found to be [1]: 

Bc (s) _ -KM(1+rEs ) 

V
0
(s)- r£rMs 3 +(rEFD +1)rMs2 +(K0 Kv +1)s+K0 Kp 

(3.2) 

In these equations, K = K K . This is a third-order system because of the presence of the s3 
v v1 v2 

term in the denominator. If the T£ terms are ignored and the second-order joint transfer 

function from equation 1.46 is used, then the following overall second-order transfer 

functions may be written: 

Vq(s) _ K0 KP 

V
0
(s)- rMs 2 +(K0 Kv +1)s+K0 Kp' 

(3.3) 

Bc (s) _ -KM 
V

0
(s)- rMs 2 +(K0 Kv+1)s+K0 Kp 

(3.4) 

The problem of designing the position servo system is essentially the problem of 

placing the poles of the system such that the desired system characteristics as discussed in 

Section 2.1 are achieved. As alluded to in that section, the system response can be specified 

by deciding upon values of the characteristic frequency w and the damping ratio (;in order to 
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place two "dominant" poles. For the purpose of designing the controller, the system is 

therefore approximated by a second-order system of the form: 

a/ 
(j(s) = s 2 +2S'ws+w2 (3.5) 

For a critically damped response, s= 1 is chosen. The characteristic frequency and 

damping ratio have an effect on the settling time, approximately according to the following 

relationship [ 6] : 

r: ~ _i_ ;w . (3 .6) 

Using s= 1 and choosing Ts = 1 s gives w ~ 4 rad/s. Substituting these values into equation 

2.1, the two dominant poles will both be placed at -4. The third pole is free to move about 

the left-half of real axis; however, it must be located far to the left of the dominant poles. 

To place the dominant poles in the desired locations, appropriate values of Kp and Kv 

must be found. First, it is noted that the values of T£, as tabulated in Table 1.4, are small for 

all three joints. Therefore, the second-order transfer function in equation 3.3 may be used to 

design the controller. Writing equation 3.3 in the form given by 3.5 gives: 

KDKP 
q(s) ~ TM 

q (s) ~ 2 KDKv +1 KDKP 
0 s + s + __--"!____!__ 

(3.7) 

TM TM 

from which it can be seen that 

{)) ~ ~KoK, 
TM 

(3.8) 
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and 

S = KDKv +1 

2rM~KDKP/rM (3.9) 

Next, it is noted that the steady-state error can be determined using the Final Value 

Theorem [ 6]: 

E(oo) = limlsC}(s)!. 
S-+0 

From equations 3.1, 3.2, and 3.10, it is found that: 

E(oo) = IG(oo)!KM 
K K · D p 

(3.10) 

(3.11) 

This equation shows that the steady-state error is directly proportional to the steady-state 

value of the gravity moment, and inversely proportional to the position gain Kp. In order to 

minimize steady-state error, it is thus desirable for Kp to be a large value. Furthermore, 

equation 3.11 expresses a way to calculate Kp for a tolerable steady-state error value and 

known values of KM and Kp. The value of Kp, then, may be found using equations 3.8 and 

3.11: 

_{J)_z,_M 5,. Kp 5,. .:....IG_(_oo_..!.),_K.::.:..M 
KD K 0 e(oo) · 

(3.12) 

Once the value of Kp is calculated, Kv may be found by substituting equations 1.42 and 1.45 

into equation 3.9 and solving: 

2( ~RR(NMNJM +H,"tMNMKP -RRFv 
~= -~~ 

CMNM 
(3.13) 
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Table 3.1 summarizes the values of Kp and Kv for each of the three joints, using the 

transfer function parameters in Table 1.4, the maximum values given in Table 1.2, and a 

tolerable steady-state error of 0.01 rad. 

Figures 3.2-3.4 show the responses of the systems neglecting gravity, and Figures 

3.5-3.7 show the responses considering the effect of gravity. Notice that gravity has little 

effect upon joint one. The effect of gravity for joints two and three is more apparent. 

Table 3.1: 
Calculated Simple Servo System Gains. 

Parameter Joint 1 Joint 2 Joint 3 

Kp 30,478 12,298 8,555 

Kv 23,950 16.032 271.07 



U
l 

c C1
l 

0
.8

 

l 
0

.6
 

c 0 - Ul 0 
0

.4
 

Q
_

 

0.
2 

Jo
in

t 
1 

o
~
-
-
~
-
-
~
-
-
~
-
-
~
-
-
~
-
-
-
L
-
-
~
-
-
~
-
-
~
~
~
 

0 
2 

3 
4 

5 
T

im
e 

(s
ec

) 
6 

7 
B

 
9 

10
 

F
ig

ur
e 

3.
2:

 J
o

in
t 

1 
P

os
it

io
n 

S
er

vo
 R

es
po

ns
e,

 N
eg

le
ct

in
g 

G
ra

vi
ty

. 

V
J 

\0
 



en
 

c C
ll 

0
.8

 

~
 0

.6
 

c 0 en
 

~
 

0
.4

 

0.
2 

Jo
in

t 
2 

o
~
-
-
~
-
-
~
-
-
-
L
-
-
~
-
-
~
-
-
-
-
L
-
-
-
~
-
-
~
-
-
-
L
-
-
~
 

0 
2 

3 
4 

5 
Ti

m
e 

(s
ec

) 
6 

7 
B

 
9 

10
 

F
ig

ur
e 

3.
3:

 J
o

in
t 2

 P
os

it
io

n 
S

er
vo

 R
es

po
ns

e,
 N

eg
le

ct
in

g 
G

ra
vi

ty
. 

~
 

0 



U
l 

c ro
 

0.
8 

~
 0

.6
 

c D
 - en D
 

0.
4 

Q
_

 

0.
2 

Jo
in

t 
3 

o
~
-
-
~
-
-
~
-
-
~
-
-
~
-
-
-
L
-
-
-
L
-
-
~
-
-
~
-
-
~
L
-
~
 

0 
2 

3 
4 

5 
Ti

m
e 

(s
ec

) 
6 

7 
8 

9 
10

 

F
ig

ur
e 

3.
4:

 J
o

in
t 3

 P
os

it
io

n 
S

er
vo

 R
es

po
ns

e,
 N

eg
le

ct
in

g 
G

ra
vi

ty
. 

~
 



r.n
 

c (1
l 

<
J
 

~
 

c 0 - Ul 0 Q
_

 

Jo
in

t 
1 

0.
95

 

0.
9 

0.
85

 

0.
8 

0.
 75

 :-
--

-'-
--

:-
--

--
L

...
--

--
l.

.. _
 _

_
.
I
 _

_
 .L

_
_

..
.L

_
_

..
..

..
L

..
_

 _ 
_

_
_

L
 _ 

_
_

j 

0 
L

 
3 

4 
5 

Ti
m

e 
(s

ec
) 

6 
7 

8 
9 

10
 

F
ig

ur
e 

3.
5:

 J
o

in
t 

1 
P

os
it

io
n 

S
er

vo
 R

es
po

ns
e,

 C
on

si
de

ri
ng

 G
ra

vi
ty

. 

-1:
>. 

N
 



en
 

c C1
l 

'i
j g;
 

c 0 .... en
 

0 0.
.. 

Jo
in

t 
2 

1
.6
r
-
-
-
.
-
-
-
.
-
-
-
-
.
-
-
-
.
-
-
-
.
-
-
-
-
.
-
-
-
.
-
-
-
~
-
-
~
-
-
~
 

1.
4 

1.
2 

0.
8 

IJ'
V 

II
 

-

0.
6 

0
.4

 '
-
-
-
-
-
'-

-
-
-
-
-
'-

-
-
-
-
-
'-

-
-
-
L

-
-
-
-
-
1

-
-
-
-
'-

-
-
-
.
.
.
l
_

_
-
-
-
l
-
_

_
 -
-
'-

-
-
-
-
' 

0 
2 

3 
4 

5 
Ti

m
e 

(s
ec

) 
6 

7 
8 

9 
10

 

F
ig

ur
e 

3.
6:

 J
oi

nt
 2

 P
os

it
io

n 
Se

rv
o 

R
es

po
ns

e,
 C

on
si

de
ri

ng
 G

ra
vi

ty
. 

'" 

~
 

w
 



0.
9 

0.
8 

U
l 

c ~
 

0
.7

 
~
 

c a -=
: 

0.
6 

en
 

0 0.
.. 

0.
5 

0.
4 

0 
2 

3 
4 

Jo
in

t 
3 

5 
Ti

m
e 

(s
ec

) 
6 

7 
8 

9 
10

 

F
ig

ur
e 

3.
7:

 J
o

in
t 3

 P
os

it
io

n 
S

er
vo

 R
es

po
ns

e,
 C

on
si

de
ri

ng
 G

ra
vi

ty
. 

~
 
~
 



45 

3.2 Servo. System with Gravity Compensation 

The steady-state error of the servo system described in section 3.1 is caused by the 

gravity moment about the joint (see equation 3.11). Figure 3.8 shows how an additional 

block diagram element can be introduced in order to directly compensate for the gravity 

moment, thus eliminating some of the steady-state error. This requires the ability to calculate 

the magnitude of the gravity moment for the joint, e.g. by programming a microcontroller 

using equations 1.8, 1.1 0, and 1.12 to calculate the gravity moment for joints one, two, and 

three, respectively. 

In Figures 3.9-3.11, the responses of the servos with gravity compensation are 

presented. Notice that joint one has no overshoot and a steady-state response with very little 

error. Joints two and three have some overshoot but very little error in their steady-state 

responses. 
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CHAPTER IV 

STATE-SPACE AND PID CONTROL 

An alternative approach to the s-domain method of controller design used in Chapter 

3 is to analyze the system in state-space. In this chapter, a state-feedback control system is 

developed to illustrate the concept of state-space control. The system is designed using a 

pole placement technique. A similar pole placement technique is also used to design a PID 

controller. 

4.1 State-Feedback Control Using Pole Placement 

Section 1.4 details the development of a state-space representation of each joint­

actuator system. The pole placement technique can be used to develop a control system for 

each joint in state-space [1, 6, 8). Figure 4.1 shows the general scheme of the state-feedback 

controller, where the state variables of the system are fed back via gains that are specified as 

part of the controller design. 

In order to place the poles of the system, appropriate eigenvalues of the closed-loop 

system matrix must be chosen. These eigenvalues correspond to the system poles calculated 

in section 3.1. Let the desired eigenvalues be A.1, A.2, and A.3, where A.1 and A.2 are -4 (compare 

the pole locations calculated in Chapter 3) and A.3 is calculated from : 

~ =an + a 33 + 2(;w (4.1) 
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. as suggested by Vukobratovic [1]. In this equation, a22 and a33 are the appropriate values 

from the system matrix A. 

The gains · required to place the eigenvalues are given by K , the feedback gain 

matrix: 

K = [K P Kv K,]. (4.2) 

The feedback gains required to place the eigenvalues in the desired locations can be 

· found using the characteristic equation for the system [7]: 

jsi- (A- BKC)j = (s- A,)(s- A.J(s- ~). (4.3) 

Solving for the gains gives: 

KJ = a22 +a33 -~-~-A, 
b ' 

3 

(4.4) 

K =~~+A,~ +A,~ -a22 a33 +a22 (a22 +a33 -~ -~ -A,)+a23a32 
v az3b3 ' (4.5) 

Kp =A,~~ 
a23b3 · 

(4.6) 

In these equations, au refers to the corresponding element of matrix A, and bk refers to the 

corresponding element of matrix B. Table 4.1 gives the values of the gains calculated for 

the system matrices given in equations 1.36, 1.37, and 1.38. 

Figures 4.2-4.4 show the system responses to a step input, neglecting gravity for each 
lo 

joint. The responses considering the effect of gravity are given in Figures 4.5-4.7. The state-

feedback system performs well without gravity, but when gravitational effects are included 

the responses are very undesirable. 
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·Table 4.1: 
Calculated State-Space Gain Values. 

Parameter Joint 1 Joint 2 Joint 3 

K1 0.0368 8.74 X 10-S 0.000004 

Kv 37322.5 56.1476 14.4035 

Kp 74428.4 101.977 28.725 
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4.2 Local PID Controller 

The steady-state error of the control systems developed thus far, which is caused in 

large part by gravitational effects, may be eliminated by feeding back the integral of the error 

signal, developing what is known as a PID (proportional-integral-derivative) controller [1, 8]. 

This section explains the development of a PID controller for the joint-actuator system. 

Figure 4.8 shows the general scheme of the PID controller. 

Effectively, feeding back the integral of the position error is equivalent to introducing 

a fourth state variable z(t), where z(t) is given by: 

I 

z(t) = f(q-qJdt. (4.7) 
0 

The state vector of the system including z(t) becomes: 

e 
e 

X=l 0 I 
lR 

(4.8) 

z 

and the state equation can be written 

. ......... "'"'-' ,...,_. 

x = Ax+ Bu + Dq o, (4.9) 

with the augmented system matrices as: 
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0 

A=l 
A o I, ( 4.1 0) 

0 
1 0 0 0 

B=[!l (4.11) 

D=[~J (4.12) 

Now the PID controller can be synthesized using pole placement, following a 

procedure similar to that described in Section 4.1. Using pole placement techniques to place 

the system matrix eigenvalues at -4, -4, and -1, the gain values in Table 4.2 were found. 

Figures 4.9-4.11 shows the system responses, considering gravity, for each joint using the 

PID controller. Notice the lack of steady-state error, as expected. The responses of joints 

two and three also exhibit very large overshoots, making the use of the PID controller 

unrealistic. 
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Table 4.2: 
Calculated PID Controller Gain Values. 

Parameter Joint 1 Joint 2 Joint 3 

Kp 270.59 0.37037 4.91981 

Kv 140.629 -1.12525 2.628 

Kin 108.236 0.148148 I 1.96793 
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CHAPTERV 

ANALYSIS 

The previous chapters presented various approaches to independently controlling the 

joints of the robot ann considered in this study. In this chapter, the control system responses 

are analyzed and compared. The step response at each joint is examined to deduce which 

scheme is best suited for the robotic arm considered. 

5.1 Simple Feedback Systems Analyses 

Section 2.2 presented the simple feedback system responses for each joint. The 

responses neglecting gravity are depicted in Figures 2.1, 2.2, and 2.3. The major problems 

with the basic feedback approach are apparent from the figures: overshoot and oscillation of 

the response about the desired point. 

As mentioned previously, gravity has a significant effect on the steady-state error of 

the system. Therefore, neglecting the effect of gravity on the system is unrealistic. Figures 

2.5, 2.6, and 2.7 show the responses of the simple feedback system when gravity effects are 

considered. Clearly, the large amount of overshoot and the oscillation of the responses are 

undesirable. Furthermore, there is not sufficient compensation for the steady-state error due 

to gravity. 

~ 
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5.2 Position Servo Systems Analyses 

Section 3.1 presented the design of a basic position servo system for each joint. The 

responses at each joint to a step input, neglecting gravity, are depicted in Figures 3.2, 3.3, and 

3.4. The oscillation and overshoot seen in the simple feedback systems are eliminated by this 

choice of controller (compare Figures 3.2-3.4 with Figures 2.1-2.3). There is very little 

steady-state error when gravity is neglected. 

Figures 3.5, 3.6, and 3.7 show the responses of the position servo systems when 

gravity is considered. For joint three there is a large amount of steady-state error. The 

transient responses for joints two and three are also undesirable. 

5.3 Position Servo with Gravity Compensation System Analyses 

Figures 3.9, 3.10, and 3.11 show the responses of the position servo system with 

gravity compensation described in Section 3.2. The gravity compensator slows down the 

responses when compared to the uncompensated system, but reduces the steady-state error 

for joints two and three to zero, at the expense of creating some overshoot (about 28% and 

40% for joints two and three, respectively). 

5.4 State-Feedback Systems Analyses 

The state-feedback control systems presented in Section 4.1, having responses given 

in Figures 4.2, 4.3, and 4.4, exhibit error-free responses when gravity is neglected. However, 

since the effect of gravity upon the systems is ignored in the development of the state-space 

controllers presented, they do not appropriately compensate for gravitational effects. This 
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can be seen by examining Figures 4.5-4. 7 and noting the large overshoot and steady-state 

error of the responses. 

5.5 Local PID Control Systems Analyses 

The PID control system responses shown in Figures 4.9, 4.10, and 4.11 exhibit a zero 

steady-state error, but an erratic transient response, long settling time and a large amount of 

overshoot for joints two and three. In terms of overshoot, the PID controller performs well 

for joint one, but the long settling time may be undesirable. 

5.6 Overall Comparison of Control System Responses 

Table 5.1 gives a summary of the responses, as measured by settling time, percent 

overshoot, and steady-state error of the control systems discussed in this thesis. 
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Table 5.1: 
Summary of Control System Response Characteristics. 

System Joint 1 Joint 2 Joint 3 

Ts = 3.2 S Ts = 1.6 S Ts = 1.95 S 

Simple servo system neglecting gravity OS=O% OS=O% OS=O% 

E=O% E=O% E=O% 
Ts = 2 S Ts = 2 S Ts = 1.5 S 

Simple servo system considering gravity OS=O% OS= 60% OS= 125% 

E=O% E=O% E=60% 
Ts = 2.8 S Ts = 3 S Ts = 2.3 S 

Servo system with compensation for gravity OS=O% OS =28% OS =40% 

E=0.6% E=O% E=O% 
Ts = 1.5 S Ts = 2.8 S Ts = 1.8 S 

State-space system neglecting gravity OS=O% OS=O% OS=O% 

E=O% E=O% E=O% 
Ts = 5.5 S Ts=2 S Ts = 2.5 S 

State-space system considering gravity OS=44% OS=O% OS=O% 

E= 144% E~ 700% £~360% 
Ts=3.1 s Ts = 10 S Ts = 4.2 S 

Local PID controller OS=5% OS= 950% OS= 30% 

E=O% E=O% E=O% 
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CHAPTER VI 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

In this chapter, the system analyses presented in Chapter 5 are used to decide which 

control system is best for each joint. 

6.1 Joint One 

Joint one shows the least amount of variation in the approaches to controller design. 

All of the system responses are similar, which can be seen from Table 5.1. The simple servo 

system appears to have the "best" response when gravity is considered: it is faster than the 

other two, and there is less steady-state error for the case considered. See also Figure 3.5, 

which shows the response of the position servo system with gravity compensation for joint 

one. This system also performs acceptably. 

6.2 Joint Two 

Links A and B are coupled with one another by joint two. The responses of the 

control systems for joint two are more interesting than those of joint one. 

Recall from Section 4.2 and Figure 4.7 that the PID controller's response IS 

unacceptable for joint 2, due to the presence of a large overshoot. From the simulation 

results in Table 5.1, it can be seen that the percent overshoot of the uncompensated servo is 
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unacceptable (it is about 60%). The compensated servo system has a longer settling time 

than the uncompensated servo, but smaller overshoot (about 28%). 

6.3 Joint Three 

The response of the uncompensated servo for joint three is obviously unacceptable 

because of the large steady-state error: about 60%. The PID controller appears to have less 

steady-state error (see also Figure 4.8), but it exhibits overshoot (about 30%) and a longer 

settling time than that of the servo with gravity compensator. The servo with gravity 

compensator has a larger overshoot (about 40%), but a relatively fast settling time (about 2.3 

s) and better steady-state response than either of the other two controllers. 

6.4 Suggestions for Further Work 

In this work, some of the fundamental issues associated with modeling and 

controlling a robotic arm were presented. There are many alternate directions that can be 

taken, many modifications that can be made, and many assumptions and simplifications that 

can be improved. 

Appendix A discusses some of the inaccuracies in the models used in this project. 

Taking these inaccuracies into consideration would improve the model and make the control 

system design more realistic. 

This paper has considered only the local control of a single joint while the other joints 

are locked in position. In real use of a robot arm, this type of control may not be desirable or 

realistic. Appendix B discusses some of the issues involved in the simultaneous control of 

the joints in the arm. 



73 

Although the control of the end-effector, or hand portion of the mechanism, has been 

largely ignored in this work, Appendix E presents some information useful for extending 

control to include the hand. 

Improvements could be made to the simulation of the gravity effects described in 

section 1.6. 

Building a physical prototype of the arm and analyzing the actual performance of the 

control systems "in the real world" would be valuable as well. 
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APPENDIX A 

INACCURACIES IN THE MODELS 

The models of the arm mechanism and the actuators presented in Chapter 1 are only 

approximations. There are many other factors that affect the real system, decreasing the 

accuracy of the model and of the simulations presented in Chapters 2, 3, and 4. This 

appendix discusses some of the inaccuracies and how they might affect the system. 

A.l Arm Mechanism Model Inaccuracies 

For simplicity, the links of the robot arm were assumed to be rigid bodies. 

Depending upon the material of which they are made, this may or may not be a valid 

assumption. Flexible-link manipulators are discussed in some detail in the literature [1, 10]. 

Equation 1.22 assumed that the joint actuators are directly coupled to the joints such 

that the position of the actuator, B, is exactly equal to the position of the joint, q. In reality, 

the relationship between Band q might be much more complex, due for example to friction 

or to practical difficulties in coupling the actuator shaft to the joint shaft. In general, then, 

equation 1.22 might be replaced by 

q = f(B ,B), (A.1) 

where f(B ,B) is some function of the actuator shaft position and the actuator shaft velocity. 
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Similarly, Equation 1.23 assumed that the driving moment required to move a joint is 

exactly equal to the load on that joint. However, in reality this relationship might be much 

more complex. Thus, in. general, it can be said that 

P = v(M,Q), (A.2) 

or, in other words, the driving moment required to move a joint is a function of the load on 

that joint and the current configuration of the arm. 

A.2 Actuator Model Inaccuracies 

The joint actuators were modeled as ideal permanent magnet DC motors, but this type 

of model is only an approximation. 

Throughout this paper, the input to the actuator has been assumed to be the rotor 

circuit voltage (see Equation 1.18 and Figure 1.2). However, in reality the input signal 

amplitude is constrained; that is, it must be below some maximal value, say Umax [1]. This 

introduces a nonlinearity into the model of the actuators: the input voltage to the actuator is 

actually .N(u), where .N(u) is a function expressing the saturation voltage of the motor: 

r=· when U < -Umax 

.N(u) = u when -umax ~U ~Umax · (A.3) 

umax when u > umax 

The effect of this constraint is that there is a more limited domain for the control signal u 

than has been considered previously in this paper. 

The effect of friction in the model has been ignored thus far. Static friction is a force 

that opposes the direction of motion of the joint. For the joint to begin to move, it must first 

overcome the force caused by static friction. Once the joint reaches a certain velocity, the 
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effect of static friction drops to zero and dynamic friction appears, which also opposes the 

motion [1, 3]. The effect of both static and dynamic friction upon the joint control systems is 

that they may increase the steady-state error of the response. The effect of friction can be 

minimized by good mechanical design and maintenance of the robot, or it may be reduced by 

adding friction compensation to the control system. One approach to compensating for 

friction losses is discussed by Vukobratovic [ 1]. 
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APPENDIXB 

SIMULTANEOUS CONTROL OF JOINTS 

Thus far, local independent control of the joints of the arm has been considered. In 

other words, one joint of the arm moves while the others are "locked" into position. This 

means that moving the arm to a specified position may require several steps, slowing down 

the positioning. Successive independent motions of the joints also reduces the robot's ability 

to move along a specified path, since only one joint may be moving at a time. Therefore, it is 

often desirable for a robot to be able to move all of its joints simultaneously to reach a goal 

position. In this appendix, some thoughts on the simultaneous control of the joints are 

presented. 

B.l Effect of Inertia Variation 

The moment of inertia about a joint in the arm changes as the other joints change 

position; see Equations 1.6, 1.9, and 1.11, and note the presence in expressions for Hi of 

functions of qj where j =~:- i. A control system capable of simultaneous control of all of the 

joints must be able to compensate for this changing moment of inertia. This requires the use 

of one or more microprocessors capable of quickly computing the moment of inertia due to 

the current position of the robot. 
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B.2 Effect of Gravity Moment Variation 

The gravity moment about a joint may also change as other joints change position; 

. see Equations 1. 8, 1.1 0, and 1.12, and note the presence in expressions for Gi of functions of 

q1 where j -:F i. The control system for a joint must also be capable of compensating for 

these varying gravity moments. 

B.3 Effect of Centrifugal Force 

As mentioned in the previous sections, the change in position of joints in the arm 

affects the moments of inertia and the gravity moments about other joints. This can also be 

said of the velocity of the joints [ 1]. When a joint is moving, centrifugal force proportional 

to the velocity of the joint is exerted, which affects all of the joints. This causes errors in the 

positioning of the joints. 

B.4 Modeling the Simultaneous Movement of Joints 

Aplevich suggests the use of energy-based methods (Euler-Lagrange equations) in 

modeling the simultaneous movement of joints in a robot arm [7]. The total kinetic energy of 

the system is found as a function of the joint positions and their velocities. The total 

potential energy is found as a function of the joint positions, and the Langrangian (kinetic 

minus potential energy) is used to find the differential equations of motion ofthe system. 
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APPENDIXC 

C PROGRAM FOR FINDING MAXIMUM HAND G 

This program uses equations 1.6-1.12 to approximate the maximum values of Hand 

G by iterating over values of q1, q2, and q3 between 0 and n/2 radians. Note that the program 

starts with q2 and q3 equal to 0.001 since 1/sin e and 1/cos e are undefined for e = 0. 

#include <iostream> 
#include <math.h> 

#define m2 2.0 
#define m3 2.0 
#define rna 10.0 
#define mb 10.0 
#define me 10.0 
#define la 0.25 
#define lb 0.25 
#define lc 0.25 
#define mp 20.0 
#define rp 0.1 
#define g 9.81 
#define pi 3.14159265 

int main(void) { 

double q1_deg=O.O, q2_deg=0.001, q3_deg=0.001, q1, q2, 
q3; 

double inc=1.0; 
double max_h1, max_g1, max_h2, max_g2, max_h3, max_g3; 
double max_h1_q1, max_h1_q2, max_h1_q3, max_g1_q1, 

max_g1_q2, max_g1_q3; 
double max_h2_q1, max_h2_q2, max_h2_q3, max_g2_q1, 

max_g2_q2, max_g2_q3; 
double max_h3_q1, max_h3_q2, max_h3_q3, max_g3_q1, 

max_g3_q2, max_g3_q3; 
double z1, h1, g1, h2, g2, h3, g3; 



ql = (pillBO.O)*ql_ deg; 
q2=(pii1BO.O)*q2_deg; 
q3 ~ (pii1BO.O)*q3_deg; 

II Since q2=q3=0, we will use la+lb+lc t o be the 
II distance from joint 1 to the end of the gripper 
zl = la+lb+lc; 

hl = ((l.OI3.0)*ma*la*la) + 
((l.OI3.0)*mb*lb*lb+mb*la*la) + 
((3.0I2.0)*mp*rp*rp + mp*zl*zl) + 
( (l.OI3.0)*mc*lc*lc + mc*(la*la+lb*lb + 
2*la*lb*cos(q2))); 

gl = (O.S*ma*g*la + m2*g*la * mb*g*la + m3*g*la + 
mc*g*la + mp*g*la)*sin(ql) + 
(O.S*mb*g*lb + mb*g*lb + mc*g*lb + 
mp*g*lb)*cos(ql+q2) 
+ (O.S*mc*g*lc + mp*g*(lc+rp))*cos(ql+q2+q3); 

max_hl = hl; 
max_gl = gl; 

for (ql deg=O.O+inc; ql deg<90.0; ql deg+=inc) { - - -
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cout << "Calculating ql=" << ql_deg << " (current" 
<< " max_hl = " << max_hl << ", max_gl = " 
<< max_gl << ") ... \n"; 

for (q2_deg=0.0; q2_deg<90.0; q2_deg+=inc) { 
for (q3_deg=O.O; q3_deg<90.0; q3_deg+=inc) { 

ql=(pillBO.O)*ql_deg; 
q2=(pillBO.O)*q2_deg; 
q3=(pii1BO.O)*q3_deg; 

if (q2 == 0.0 && q3 
zl = la+lb+lc; 

0. 0) { 

} 
else { 

} 

zl = sqrt(pow( (la + 
lb*sin(q3)lsin(q2+q3)) ,2) + 
pow( (lb + 
lb*sin(q2)lsin(q2+q3)) ,2) + 
2*(la + 
lb*sin(q3)lsin(q2+q3))*(lb + 
lb*sin(q2)lsin(q2+ql))); 



h1 = ((1.0/J.O)*ma*la*la) + 
((1.0/J.O)*mb*lb*lb+mb*la*la) 
+ ((3.0/2.0)*mp*rp*rp + mp*z1*z1) 
+ ((1.0/J.O)*mc*lc*lc 
+ mc*(la*la+lb*lb 
+ 2*la*lb*cos(q2))); 
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g1 = (0.5*ma*g*la + m2*g*la * mb*g*la + 
m3*g*la + mc*g*la 
+ mp*g*la)*sin(q1) + (0.5*mb*g*lb + 
mb*g*lb + mc*g*lb 
+ mp*g*lb)*cos(q1+q2) 
+ (0.5*mc*g*lc + 
mp*g*(lc+rp) )*cos(q1+q2+q3); 

h2 = ( (1.0/J.O)*mb*lb*lb) + 
((1.0/J.O)*mc*lc*lc) 
+ ((3.0/2.0)*mp*rp*rp 
+ mp*(lb*lb+lc*lc+2*lb*lc*cos(q3))); 

g2 = (-0.5*ma*g*la)*cos(q1) + (0.5*mb*g*lb 
+ mb*g*lb + mc*g*lb + 
mp*g*lb)*cos(q1+q2) 
+ (0.5*mc*g*lc + 
mp*g*(lc+rp))*cos(q1+q2+q3); 

h3 = ((1.0/J.O)*mc*lc*lc) + 
((3.0/2.0)*mp*rp*rp + mp*lc*lc); 

g3 = (-0.5*ma*g*la)*sin(q1) + (-ma*g*lb­
m2*g*lb- 0.5*mb*g*lb)*sin(q1+q2) + 
(0.5*mc*g*lc + mp*g*(lc+rp)); 

if (h1 > max_h1 I I -h1 > max_h1) { 
max_h1 = h1; 
max_h1_q1 = q1_deg; 
max_h1_q2 = q2_deg; 
max_h1_q3 = q3_deg; 

} 

if (g1 > max_g1 I I -g1 > max_g1) { 

} 

max_g1 = g1; 
max_g1_q1 
max_g1_q2 
max_g1_q3 

q1_deg; 
q2_deg; 
q3_deg; 



} 

if (h2 > max h2 II -h2 > max h2) { -
max_h2 = h2; 
max_h2_ql = ql_deg; 
max_h2_q2 = q2_deg; 
max_h2_q3 = q3_deg; 

if (g2 > max_g2 II -g2 > max_g2) { 
max_g2 = g2; 
max_g2_ql = ql_deg; 
max_g2_q2 = q2_deg; 
max_g2_q3 = q3_deg; 

} 

if (h3 > max h3 II -h3 > max_h3) { -
max_h3 = h3; 
max_h3_ql = ql_deg; 
max_h3_q2 = q2_deg; 
max_h3_q3 = q3_deg; 

} 

if (g3 > max_g3 I I -g3 > max_g3) { 
max_g3 = g3; 

} 
} 

} 

max_g3_ql = ql_deg; 
max_g3_q2 = q2_deg; 
max_g3_q3 = q3_deg; 

cout << "Maximum hl=" << max_hl << " at ql=" 
<< max_hl_ql << "1 q2=" << max_hl_q2 
<< " 1 q3=" << max_hl_q3 << "\n"; 

cout << "Maximum gl=" << max_gl << II at ql=" 
<< max_gl_ql << II q2=" << max_gl_q2 I 

<< II q3=" << max_gl_q3 << "\n"; I 

cout << "\n"; 

cout << "Maximum h2=" << max_h2 << " at ql=" 
<< max_h2_ql << 11 

I q2=" << max_h2_q2 
<< " 1 q3=" << max_h2_q3 << "\n"; 

cout << "Maximum g2=" << max_g2 << " at ql=" 
<< max_g2_ql << " 1 q2=" << max_g2_q2 
<< 11

1 q3=" << max_g2_q3 << "\n"; 
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cout << "\n"; 

cout << "Maximum h3=" << max - h3 << II at ql=" 
<< max h3 _ql << II q2=" << max h3 _q2 I -
<< II q3=" << max h3 _q3 << "\n"; -

cout << "Maximum g3=" << max_g3 << II at ql=" 
<< max_g3_ql << II q2=" << max_g3_q2 I 

<< II q3=" I << max_g3_q3 << "\n"; 
} 
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APPENDIXD 

C PROGRAMS FOR CALCULATING G and !1fJ 

In section 1.6, the modeling of gravity's effect upon the systems is discussed. The C 

programs used to calculate the gravity moments and angular differences for each joint as it 

moves from 0 to 1 radians are given in this appendix. 

D.l Calculating G1 for q2 = q3 = n/4 rad 

#include <iostream> 
#include <math.h> 

#define m2 2.0 
#define m3 2.0 
#define rna 10.0 
#define mb 10.0 
#define me 10.0 
#define la 0.25 
#define lb 0.25 
#define lc 0.25 
#define mp 20.0 
#define rp 0.1 
#define g 9.81 
#define pi 3.14159265 

int main(void) { 

double q1, q2, 
double g1; 
double theta; 

q2=pi/4; 
q3=pi/4; 

q3; 

for (q1=0.0; q1<1.0; q1+=0.1) { 
g1 = (0.5*ma*g*la + m2*g*la * mb*g*la + 

m3*g*la + mc*g*la + mp*g*la)*sin(q1) 
+ (0.5*mb*g*lb + mb*g*lb + mc*g*lb + 



mp*g*lb)*cos(q1+q2) 
+ (0.5*mc*g*lc + 
mp*g*(lc+rp))*cos(q1+q2+q3); 

theta= acos(g1/(la*(m2+m3+mb+mc+mp)*g)); 
cout << "q1=" << q1 << "\tg1=" << g1 

<< "\ttheta=" <<theta<< "\n"; 
} 

} 

D.2 Calculating G2 for qt = q3 = n/4 rad 

#include <iostream> 
#include <math.h> 

#define m2 2.0 
#define m3 2.0 
#define rna 10.0 
#define mb 10.0 
#define me 10.0 
#define la 0.25 
#define lb 0.25 
#define lc 0.25 
#define mp 20.0 
#define rp 0.1 
#define g 9.81 
#define pi 3.14159265 

int main(void) { 

double q1q1, 
double g2; 
double theta; 

q1=pi/4; 
q3=pi/4; 

q2, q3; 

for (q2=0. 0; q2<1. 0; q2+=0 .1) { 
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g2 = (-0.5*ma*g*la)*cos(q1) + (0.5*mb*g*lb + 
mb*g*lb + mc*g*lb + mp*g*lb)*cos(q1+q2) + 
(0.5*mc*g*lc + 
mp*g*(lc+rp))*cos(q1+q2+q3); 

theta= acos(g2/(lb*(m3+mc+mp)*g)); 
cout << "q2=" << q2 << "\tg2=" << g2 

<< "\ttheta=" << theta << "\n"; 
} 



} 

D.3 Calculating G1 for q1 = q2 = n/4 rad 

#include <iostream> 
#include <math.h> 

#define m2 2.0 
#define m3 2.0 
#define rna 10.0 
#define mb 10.0 
#define me 10.0 
#define la 0.25 
#define lb 0.25 
#define lc 0.25 
#define mp 20.0 
#define rp 0.1 
#define g 9.81 
#define pi 3.14159265 

int main(void) { 

double q1, q2, 
double g3; 
double theta; 

q1=pi/4; 
q2=pi/4; 

q3; 

for (q3=0.0; q3<1.0; q3+=0.1) { 
g3 = (-0.5*ma*g*la)*sin(q1) + (-ma*g*lb­

m2*g*lb-0.5*mb*g*lb)*sin(q1+q2) 
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+ (0.5*mc*g*lc + mp*g*(lc+rp))*cos(q3); 
theta= acos(g3/(lc*mp*g)); 

} 

} 

cout << "q3=" << q3 << "\tg3=" << g3 
<< "\ttheta=" << theta<< "\n"; 
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APPENDIXE 

END-EFFECTOR DESIGN AND CONTROL 

The design and control of the end-effector, or hand component, of the arm-gripper 

system under consideration in this work was not presented. There is a multitude of literature 

concerned with the design and control of robotic hands, some of which is referenced in this 

appendix. Then some of the issues involved in the design and control of robotic hands are 

introduced. 

E.l Important Literature 

Matthew Mason is a recognized authority on the design and control of robotic 

manipulators, especially at levels higher than the executive level (2, 11]. Several recent 

papers also discuss hand design, such as those by Hwang et al. (12], Matsuoka (13], and Pons 

et al. [14]. Arimoto discusses the use of Hamiltonian mechanics in analysis and control of a 

hand [ 4]. 

E.2 Design of the Hand 

The design of the hand, or end-effector, presented in this work is similar to the design 

of the arm itself. Figure 1.1 shows the hand mounted at the end of the arm. The hand 

consists of two "fingers" or "phalanges," each of which consists of two rigid links and two 

joints. At the lowest level, the kinematic analysis of the fingers of the hand is very similar to 

the analysis of the arm presented in Chapter 1, with respect to moments of inertia and 

gravitational moments about the joints. 
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E.3 Grasping vs. Manipulating 

The rigor of analysis and control required for an end-effector depends upon its 

intended use. The two main uses of robotic hands is grasping and manipulation. Pons, et al. , 

define "grasping" as "the combination of procedures and operations needed to hold an object 

in a static position with respect to the hand itself' [14]. In other words, grasping an object 

means immobilizing it with respect to the hand, while the hand and the object it grasps may 

be moved about the robot's workspace using the arm. Manipulation refers to the handling of 

an object by the hand. Manipulation may be considered "dynamic grasping," or a series of 

grasps; in fact, it may be considered a generalization of grasping [14] . 

Kinematics can be used to determine the minimum number of fingers required for 

grasping and for manipulation. In a paper by Arimoto [4], it is noted that three fingers are 

sufficient for grasping (immobilizing) a two-dimensional object with triangular shape and 

four are sufficient for grasping a parallelepiped. In fact, in general four frictionless fingers 

are necessary and sufficient for grasping a two-dimensional polygonal object. 

E.4 Dexterity of Manipulation 

When the velocities of the joints in the hand are related to the velocities of the links 

using a special Jacobian matrix, a useful matrix called a "grip transform" is formed. The grip 

transform can be used to determine the overall force exerted on an object grasped by the hand 

as a function of the joint torques [14]. 
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E.S Manipulability 

If the purpose of the hand is to manipulate objects in addition to simply grasping 

them, a useful quantity is the "manipulability" of the hand. Although there is not currently a 

standardized definition of manipulability, one useful interpretation is due to Cutkosky, and is 

presented by Pons, et al. Manipulability can be thought of as "the ability to impart arbitrary 

motions to the object from a given point in the workspace" [14]. 

E.6 Dynamics of Pinching 

Arimoto suggests the use of Hamiltonian mechanics in the kinematic analysis of 

robotics hands [ 4]. In particular, the dynamics of a pair of fingers pinching an object can be 

derived on the basis of Hamilton's variational principle. A series of differential equations 

may be written from the kinematic analysis and used to derive a state-space model of the 

hand if desired. 
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