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ABSTRACT 

ON THE IMPLEMENTATION OF STRUCTURE FUNCTION IN THE DIGITAL 

SIGNAL PROCESSOR 

The implementation of the structure function on a digital signal processor board 

to detect incipient stall and its applicability for online or near online applications were 

investigated. Previous research proved that the structure function successfully detects 

precursors to stall in axial compressors in off-line situations. The simplicity of the 

detection mechanism from a computational point of view suggests that the structure 

function could be used as an effective method for online stall detection. An eZdsp 

hardware platform from Spectrum Digital employing TMS320F2812 DSP by Texas 

Instruments was utilized to implement the structure function in this study. The ability to 

detect chaos in a time series was tested since the fundamental theory is affiliated with 

chaos theory. The experimental data obtained from high-speed compressors were then 

filtered with structure function implemented on the DSP board. The structure function 

applied to these systems showed sensitivity to the system dynamics and pre-filtering 

conditions. Due to this sensitivity the real time application is not feasible, although the 

near on-line detection is possible and has potential application in a supervisory control 

mechanism for stall warning. 

III 





ACKNOWLEDGMENTS 

I would like to acknowledge the great support Dr. Faramarz Mossayebi has shown 

me during my graduate and undergraduate studies. Without his help, this work would not 

be possible. I would also like to thank Dr. Salvatore R. Pansino and Dr. Jalal Jalali for all 

their help and guidance over the years. Special thanks go to Rick Laughlin for all the 

valuable feedback he gave me during my research and Carolyn Denny-Schaefer for 

always being so understanding. 

In addition, I would like to express my sincere thanks to Dr. Robert Foulkes, Dr. 

Phillip Munro, Dr. Robert Kramer and many other professors at Youngstown State 

University for all the knowledge they passed on to me and my classmates. Finally, I 

would like to thank my parents, who never stopped believing in me. 

v 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION ......................................................................................................... ! 

II. STRUCTURE FUNCTION ........................................................................................ 6 

2.1 BACKGROUND lNFORMA TION ON STRUCTURE FUNCTION .. .. .. . ... .. . 6 

2.2 CHUA AND ROSSLER SYSTEMS 8 

2.3 BIFURCATION DIAGRAM ........ ...... . .. .. .. .. .. .. .. .. .. .. .. .... .. .. ... . ..... . ......... . .. ............ . .. ... . ..... 12 

2.4 STRUCTURE FUNCTION SIMULATION ... .. .. .. .... ... . ............ . ............... ....... .. .. .. .............. 14 

2. 4.1 Chua and Rossler Systems .. ....... ..... .............. ..... .... ............ ...... .... ..... .. ...... .. .... .. 14 

2. 4. 2 Stage 3 7 Compressor ......... ... ... ...... .... ... ........... ...... ... ...... ... ............. .. .. ........ ... ... 18 

2. 4. 3 T5 5 Multi-stage Engine ....... .... .... ... .... ... ... .. .... ...... ...... .............. .......... .. .. .. ... .. ... 18 

III. DIGITAL SIGNAL PROCESSING ....................................................................... 21 

3.1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING ...... . ....... . .. ........ . ... . ... ......... . .. ... . .. . 21 

3.2 B ASICS OF DIGITAL SIGNAL PROCESSING ... .. ....... . .... .. ... . ... . . . . ...... 23 

3.3 CHARACTERISTICS OF SPECTRUM DIGITAL'S EZDSP ..... . .. ... .... .. ... . . .... .. ........ . 29 

3.3.1 F2812 Interrupt System ....... .......... ...... ........ ... ...... ... .. ... ..... ... .. .. ....... ... .... .... .... .. 33 

3.3.2 F2812 Event Manager .. ......... ............ ........ .......... .......... ... ... .... .... ..... .... ....... ..... 34 

3.3.3 Analog-to-Digital Converter .. ...... .. ........ .. ... ..... ......... ..... .... ...... ...... ..... ..... .. .... .. 35 

3.3.4 Fixed Point and Floating Point .. ..... ... .. ... ......................... .. ..... .. .... ................ .. . 36 

VI 



IV. IMPLEMENTATION OF THE STRUCTURE FUNCTION WITH A DSP ..... 37 

4.1 CHUA AND ROSSLER SYSTEMS ................................ ··················· .............................. 3 7 

4.2 ROTOR37 AND T55 ............................................................................. 40 

V. SUMMARY OF RESULTS AND DISCUSSION FOR FUTURE WORK .......... 43 

REFERENCES ................................................................................................................ 45 

APPENDICES .................................................................................................................. 47 

APPENDIX 1 .................. . 

APPENDIX2 ........................................... . 

APPENDIX 3 

. .......... 48 

. ................................................. 51 

.................................................. 54 

APPENDIX 4 .................................................................................................................... 56 

APPENDIX6 

APPENDIX6 ......................................... . 

58 

61 

APPENDIX 7 .................................................................................................................... 64 

APPENDIX 8 .................................................................................................................... 67 

VII 



LIST OF FIGURES 

FIGURE PAGE 

2-1 Periodic Response of Chua's System with Parameter A=8.60 ........................... 9 

2-2 Chaotic Response of Chua's system with Parameter A=8.90 ............................ 9 

2-3 Periodic Response of Rossler's System with Parameter c=5.50 ........................ 10 

2-4 Chaotic Response of Rossler's System with Parameter c=4.50 ......................... 10 

2-5 Bifurcation Diagram of Chua's System .................... .. .. .............. . 12 

2-6 Bifurcation Diagram of Rossler's System .......................................................... 12 

2-7 Response of SF to Various Step and Window Sizes ......................................... 14 

2-8 Structure Function for Chua's System ............................................................... 15 

2-9 Structure Function for Rossler's System ........................................................... 16 

2-10 Rotor 3 7 Simulation ........................................................................................ 18 

2-11 T55 Simulation ................................................................................................ 19 

3-1 Common Applications of Signal Processing .. 21 

3-2 Sampled Analog Signal ................... 23 

3-3 Frequency Response of a Complex Signal 24 

3-4 Block Diagram of a Common Signal Processing System .................................. 26 

3-5 eZdsp Connector Positions .. .. ................................................................ 30 

3-6 F2812 Block Diagram .................. .. 32 

3-7 Peripheral Interrupt Expansion .................. .. ..................... 33 

3-8 F2812 Event Manager Block Diagram 34 

VIII 



3-9 Simplified Block Diagram of the ADC ................. .. ························· 35 

4-1 Structure Function Running on DSP .................................................................. 37 

4-2 Offline Plot ofthe Implemented SF for Chua System ........................................ 37 

4-3 Offline Plot of the Implemented SF for Rossler System .................................... 38 

4-4 DSP Running SF on Averaged and Normalized T55 Data ................................. 40 

4-5 DSP Running SF on Averaged and Normalized Rotor 37 Data ......................... 41 

IX 



LIST OF TABLES 

TABLE PAGE 

3-1 eZdsp Memory Space ........................................................................................ 29 

3-2 eZdsp Jumpers Factory Settings ....................................................................... 31 

X 



I. INTRODUCTION 

Many engineering applications such as turbojet engines, refrigerators/air­

conditioners and industrial compressors depend on compressors. Compressors decrease 

the volume of a gas in order to increase its pressure [ 1]. The most common types of 

compressors are positive displacement, centrifugal and axial. Axial compressors increase 

the kinetic energy by accelerating the velocity of the gases, which are then converted into 

pressure. This type of compressors provides much higher flow rate than positive 

displacement compressors. Gas turbine engines, which power most of the commercial 

jets, use axial compressors. These compressors are designed to operate under constant, 

non-fluctuating load. The performance of the engine can be improved by decreasing the 

mass flow rate, which then increases the pressure rise. However, changing the mass flow 

rate can cause the compressor to be unstable since the compressor is designed for steady 

and axisymmetric flow. These instability consequences are categorized as surge, rotating 

stall and classical surge. 

Surge is an axisymmetric oscillation ofthe mass flow along the axial length of the 
~. 

compressor. It has a higher amplitude and lower frequency than rotating stall and both 

fan and compressor systems can be affected by surge. If this oscillation is strong enough 

to cause a temporary change in flow direction, it is referred to as deep surge. 
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Rotating stall is a severely non-axisymmetric distribution of axial flow velocity, 

taking the form of a wave, which propagates steadily in the circumferential direction at a 

fraction of the rotor speed. These large vibratory stresses usually affect the blading of 

axial compressor and are, therefore, often unacceptable for structural reasons [2]. 

Furthermore, they can cause a significant drop in the engine performance (a drop of more 

than 80 percent is shown in [3]). In some cases, a restart of the engine is required to 

recover from rotating stall. 

If during a surge cycle, the compressor goes through a rotating stall, this 

phenomenon is called a classic surge. By leaving a margin between the operating mass 

flow rate of the air compressor and the mass flow rate at which the stall occurs (i.e. stall 

line), the instabilities can be avoided. Because of the possible catastrophic consequences 

that could result from such instabilities, especially in aircraft engine applications [2], the 

designer must ensure that there is enough margin between the stall line and the operating 

line, known as stall margin (typically 25%). Keeping a large stall margin causes the 

performance penalty and decreases the operating range of the engine. And even when 

leaving a stall margin, in such situations as rotor speed transients, flow distortions, and 

unsteady inlet and exit pulsations, a stall can occur. Based on this fact, it is essential to 

detect the precursors to stall in order to be able to recover from stall condition. 

Recently, much research has been done to reduce the stall margin to maximize the 

engine performance. This requires prior knowledge to approaching stall by locating stall 

precursors. Then, a feedback control system can be used to lower the working line or 

lower the mass flow to increase the system stability. Several techniques already exist in 
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literature today to detect the stall precursors. Tryfonidis et al. [6] used the traveling wave 

energy technique assuming that the stall was caused by the instability of small amplitude 

circumferential waves and Day [7] used a nonlinear method to argue that before a stall 

occurs, short length-scale pressure disturbances take place. Another approach, suggested 

by Bright et al. [8], is the use of chaotic time series analysis method, a correlation 

integral, to observe an approaching stall. 

The nonlinear techniques are based on the idea that when stall approaches, a 

change in a compressor event will occur, and if some parameters change during this time, 

then the technique could be used to identify the stall. The correlation integral successfully 

detects stall precursors; however, it cannot not be easily implemented due to the data size 

and processing resources it requires. M. H. Vhora [9] argues that structure function could 

be seen as a single dimensional variation of the correlation integral and, therefore, 

requires less data and computing power that could be collected from a single sensor. 

Given this, structure function is the preferable method for online implementation to 

detect stall in real-time and then for informing the control scheme to prevent stall from 

happening. This thesis investigates the use of the structure function on simulated data 

running on a digital signal processor board to detect incipient stall. Previous research 

suggests that the structure function successfully detects precursors to stall in axial 

compressors, while its simple format provides effortless design. These reasons justify the 

use structure function as an effective method for online stall detection. 

In order to test the success of the structure function to detect stall, the ability to 

detect chaos in a time series is tested since the fundamental theory is affiliated with chaos 

theory. The Chua and Rossler systems are selected to serve as the chaotic systems, as 
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their response displays various nonlinear dynamic behaviors based on the value of the 

chosen parameter. A time vector is created, and the structure function is applied to these 

systems as they are driven to chaos to observe online ability of structure function to 

detect chaos. An eZdsp platform from Spectrum Digital employing TMS320F2812 DSP 

by Texas Instruments is utilized to implement the structure function. The simulation data 

for Chua' s and Rossler's systems is obtained by using MATLAB, which is then used by 

the DSP board, as if they were real-time measurements, to implement the structure 

function and to observe and quantify the chaotic nature ofthe systems. This is then 

followed by the analysis of several time series associated with a high-speed compressor 

to detect the incipient of stall. Thus, the primary objectives of this research are to apply 

the structure function to nonlinear systems in general and a high speed compressor data, 

detect dynamical changes, and finally, examine its capabilities and limitations for the real 

time implementation. 

This work is structured as follows. Chapter 2 provides the background 

information on the mathematical foundation of structure function and random processes. 

In addition the chapter presents information on Chua's and Rossler's systems and their 

time series, as well as their bifurcation diagram. This chapter also displays simulated 

results of structure function to these time series as well as a high-speed compressor 

running at stage 37 and T55 multi-stage engine. A brief introduction to digital signal 

processing is presented in Chapter 3. The specifications for the eZdsp board used during 

this research are also provided in this chapter. Chapter 4 includes results of applying the 

structure function, as implemented on the eZdsp board, to the Chua's and Rossler's 

systems, as well as the high-speed compressor's data. The comparisons of results along 
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with the limitation of the technique used, as well as potential areas for future research are 

provided in Chapter 5. 
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II. STRUCTURE FUNCTION 

2.1 Background Information on Structure Function 

The structure function has been developed as a tool for random variable analysis 

and applied in electronics, automatic regulation and the theory of turbulence [ 15]. This 

section gives background information on the utilization of structure function in random 

variables. 

When using continuous random variables, which are numeric results of operating 

a non-deterministic mechanism, random functions of time yield different results for 

various measurements taken under the same conditions. The observation results obtained 

using random functions are called stochastic processes. 

Random functions cannot be analyzed applying classical theory of probability. 

Appropriate mathematical tools for such analysis were partially developed in 1940s by 

A.N. Kolmogorov (known as Kolmogorov extension), E.E. Slutsky and, A.Y. Khinchi. 

Kolmogorov extension makes it possible to construct stochastic processes with fairly 

--
arbitrary finite-dimensional distributions. Also, all issues related to a sequence would 

have a probabilistic answer if they were taken as a random sequence. Unfortunately, 

some questions about functions on continuous domain do not have a probabilistic answer. 
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If the mean values and variances of a process are constant, while the correlation 

function only depends upon the difference of h - t~, the process is considered to be 

stationary. The majority of random processes encountered in real life consist of stationary 

processes. Also, if parts of a process are stationary over intervals oftime, 't, the process 

can be identified as quasi-stationary. However, if the value of 't is large enough, the mean 

can change significantly, causing the loss of stationary conditions. 

For random processes x(t) with stationary increments, ~.x(t) = x(t+'t)- x(t), 

the processes x(t) themselves are not stationary [17,18]. The structure function serves as a 

fundamental characteristic of random processes with stationary increments. This equation 

is used in various fields as correlation of two-point velocity differences. Kolmogorov 

introduced the structure function 

SF(1) = < [x(t+'t)- x(t)]2 > (2.1) 

to random fields [16]. The Eq. (2.1) can be described as the moment of the difference 

field ~.x(t) in the direction of 't. Kolmogorov employed the structure function to describe 

the dissipation of energy in the locally isotropic turbulence. He concluded that 

< [u(x+r)-u(x)]q > = Cq Eq13 rq13 (2.2) 

where u is the streamwise component of the turbulent fluctuating velocity, r is the 

separation of measuring points in the direction of flow, Cq is a constant, E is energy 

dissipation rate and q is the order of the structure function [16]. 

The structure equation is also utilized in fluid mechanics to detect the 

intermittency in fluid. flow behavior. Intermittency is defined as the random, rapid 

switching from tranquil to bursting behaviors. 

M. H. Vhora [9] states that when dealing with stationary random processes, using 
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the structure function instead of the correlation function is more convenient if we are 

interested in the difference of the random processes in different times, not their absolute 

values. Vhora employs the following structure function: 

SF(n) 
1 N-n 

N- n ~[x(i + n)- x(i)]2 (2.3) 

where the structure function is defined for any time series x(k), and xi is the i1
h sample 

number in the time series. N is the data window size, and 't is the difference in number of 

samples for which the structure function is calculated. 

2.2 Chua and Rossler Systems 

Two systems of differential equations, Chua's circuit and Rossler attractor, are 

used to demonstrate the capability of the SF to detect the chaotic changes in a system. 

Both systems are simulated using MATLAB and are driven to chaos in order to analyze 

the correspondence between the structure function and the dynamic behavior of the 

system. 

The Chua's system is given by Eqs. (2.4) to (2.6): 

dx = A(y+ x-2x
3

J 
dt 7 

dy =x-y+z 
dt 

dz -100 
-=--y 
dt 7 .. 

(2.4) 

(2.5) 

(2.6) 

Initially x, y and z are set to 0.1, 0.02 and -0.3, respectively. As displayed 

in Figure 2-1 and Figure 2-2, the system response changes from periodic to 
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chaotic as the value of parameter A is changed from 8.60 to 8.90. Appendix 1 

displays the MA TLAB commands used to create the system response. This 

script varies the parameter A from 8.65 to 8.95 in 200 equal steps. For each value 

of the parameter, first 12,000 data point obtained from this simulation are 

discarded to ignore the transient response and the following 5,000 data points are 

collected. At the end of the program, an array of one million data points (i.e., 

5,000 points collected for each one of the 200 steps) is stored on the host 

machine. 

Rossler's system is also simulated on MATLAB in a similar manner using 

the differential Eqs. (2.7) to (2.9): 

dx 
dt = -y-z 

dy =-x+ay 
dt 

dz = b+xz-cz 
dt 

(2.7) 

(2.8) 

(2.9) 

The parameter of interest, c, is swept from 4 to 6 in 200 equal steps and 

the first 20,000 transient data points are discarded in each step. The initial 

conditions for the variables are taken as x=0.01, y=O.l, z=0.03, a=0.2 and, b=0.2. 

The script used for system simulation is shown in Appendix 2. Figure 2-3 and 2-4 

show the periodic and chaotic response of Rossler's system, respectively. 
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Figure 2-2 Chaotic Response of Chua's System with Parameter A=8.90 
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Periodic Behav~our of Rossler system , c=5 5 
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Figure 2-3 Periodic Response of Rossler's System with Parameter c=5.50 
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Figure 2-4 Chaotic Response of Rossler's System with Parameter c=4.50 
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2.3 Bifurcation Diagram 

Bifurcation is a qualitative change in an attractor's structure as a parameter is 

varied. Bifurcation diagram is the graphical tool displaying the changes in the behavior of 

the system as a function of this parameter. Bifurcation diagrams of both systems are 

obtained by plotting the parameter of interest against the local minimum obtained in each 

step. 

Bifurcation diagram for Chua's system is shown in Figure 2-5. It is clearly seen in 

this figure that the simple periodic process has undergone a process with twice the period, 

a process defined as "period doubling," as value of A approaches 8.7. As the parameter is 

increased, the behavior becomes chaotic. The chaotic attractor is evident when A is 8.78. 

Also, the system response temporally returns to periodic when A is between 8.87 and 

8.88. Figure 2-6 displays the bifurcation diagram for Rossler's system. Chaotic attractor 

begins when parameter cis around 4.2 and period doubling can be noticed for smaller 

values of c. Temporarily periodic behavior can be noted when parameter cis between 5.2 

and 5.6, which is followed by unstable period-three limit cycle. 
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Bifurcation diagram of Chua system 
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Figure 2-5 Bifurcation Diagram of Chua's System 
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Bifurcation diagram of Rossler system 
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Figure 2-6 Bifurcation Diagram of Rossler's System 
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2.4 Structure Function Simulation 

2.4.1 Chua and Rossler Systems 

Recall that the structure function requires two values: window size, Nand step 

size, n. An appropriate size for these parameters must be determined to be able to apply 

the structure function. To understand the effects of choosing these parameters, Vhora 

applies the structure function for various Nand n values [9]. The obtained 3D graph is 

shown in Figure 2-7. Based on this graph, Vhora determines some features ofthe 

structure function in regard to length of window, N and step size, n. The values of the 

structure function do not depend on N, as long as N covers first few oscillations. 

Secondly, any value n will work as good as the other. The only difference will be the 

amplitude of the resulting function. Therefore, Vhora concludes that values ofN and n 

can be taken as arbitrary [9]. 
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Figure 2-7 Response of SF to Various Step and Window Sizes 

200 

Structure function for Chua's system is presented in Figure 2-8. Window length of 

100 and step size of 48 are selected for simulation (see Appendix 3 for the MA TLAB 

script). Comparing bifurcation diagram (Figure 2-5) and the structure function (Figure 2-

8), we can see that the structure function is sensitive to changes in the system dynamics 

as the response in periodic regions is smooth, but it becomes wiggly as the system 

becomes a chaotic attractor. Also, notice that when A is 8.87, the system changes 

behavior from chaotic to periodic and this corresponds to a sudden drop in the structure 

function. Similarly, when A is around 8.9, a sudden jump occurs at the structure function 

as the system re-enter~ the chaotic region. From these responses, we can interpret that the 

structure function can detect dynamic changes and, therefore, is suitable for detecting 

dynamic system changes before stall. 
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Figure 2-9 shows the structure function for Rossler's system obtained using 

window length of 50 and step size of24 (see Appendix 4 for the MATLAB script). Once 

again, bifurcation diagram (Figure 2-6) and the structure function (Figure 2-9) for the 

system can be put side by side to observe that the structure function is sensitive to 

changes in the system dynamics. Note the smooth curve the SF produces until c reaches 

4.3 and when cis between 5.2 and 5.6. Both of these smooth curves are followed by 

disproportionate lines caused by the chaotic response of the system. This simulation 

concludes the study of structure function using simulated data by detecting chaos in time 

senes. 

16 



Structure Function for set of Lime series (Rossler) 
5r---.---.---.---.---.---.---.---~--~--~ 

4 

3 

~ 2 

1 

-1~--~--~--~--~--~--~--~----~--~~ 
4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 

Parameter c 
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2.4.2 Stage 37 Compressor 

MA TLAB is employed to simulate detection of stall precursors in a high speed 

compressor. The compressor data used is collected from NASA Lewis using a single 

stage high speed compressor running at stage 37. It was sufficient for SF to use only data 

collected from one of the eight pressure transducers placed around the circumference of 

the rig. The raw data is zero-averaged and band-pass filtered (see Appendix 5) before 

applying the SF. The same structure function is applied to both of the high speed 

compressors using window size often and step size of two. Instead of collecting a new 

set of data for each window, the window is shifted by a data point on each cycle. The 

obtain results are shown in Figure 2-10. From this figure, it can be seen that the 

amplitude of the SF starts rising about twenty-five revolutions prior to stall and at about 

eighteen revolutions before stall it has grown enough to alert the necessary control 

systems. 

2.4.3 T55 Multi-stage Engine 

In this case, data collected from a multi-stage T55 rig with a single sensor is zero-

averaged and low-passed-filtered at a low frequency, 8Hz, before applying the structure 

function (see Appendix 6). The sliding structure function with widow size often and step 

size of two is applied to filtered data. The results are displayed in Figure 2-11. The 

amplitude of the structure function increases high enough to provide warning, twenty 

revolutions before the stall. This case concludes the simulation of structure function on 

simulated and high speed compressor data. In Chapter 4, the same data sets are collected 

by a digital signal processor to investigate the online implementation of the SF. 
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III. DIGITAL SIGNAL PROCESSING 

3.1 Introduction to Digital Signal Processing 

Digital Signal Processing is one oftoday's popular fields. It has become a part of 

the undergraduate Electrical Engineering curriculum in many universities around the 

globe and already entered many technologies in daily and commercial use (see figure 3-1 

[I 0]). This chapter will serve as a brief introduction to signal processing and the DSP 

board used for this experiment. 

Before discussing the details of the specific board, a general introduction to signal 

processing, sampling theorem and components of a digital signal processing system will 

be presented. Then, control peripherals, memory map, event and interrupt manager of the 

eZdsp board used for this work will be discussed. 
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Figure 3-1 Common Applications of Signal Processing 
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3.2 Basics of Digital Signal Processing 

The abbreviation DSP is used to refer to either digital signal processing or digital 

signal processor depending on its context. As suggested by its name, signal processing is 

a theoretical concept, whereas signal processor is the instrument employed to perform the 

processing. Signal processing can be defined as manipulating a signal, extracting data 

from it, or simply analyzing it using mathematical techniques. Two common methods of 

achieving these goals are Analog Signal Processing and Digital Signal Processing. 

Generally, Analog Signal Processing is processing continuous time signals using analog 

devices and Digital Signal Processing is digitally representing a signal (quantization) and 

processing it using digital hardware such as a Digital Signal Processor. Some DSPs (e.g., 

TI TMS320C67xx family) are capable of processing a signal faster than the sampling 

time; therefore, there is no delay on the output. This method is called Real-Time DSP. 

This functionality is required by many current technologies: For instance, imagine how 

uncomfortable using a cell-phone would be if there was a noticeable delay on the phone. 

Just like the processors, the signals used can be categorized in two main groups, 

Analog and Digital. Analog signals are continuous over time, whereas digital signals are 

discrete instances oftime and amplitude. Analog signals are found in nature and can be 

quantized to be used with Digital Signal Processors. This process is called sampling. 

Figure 3-2 shows a simple triangular wave in time domain. In this example, the vertical 

axis, y, represents voltage, and the horizontal axis, x, represents time. Other domains 

such as frequency and.spatial (measure of space) are also commonly used in DSP 

applications. 
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Figure 3-2 Sampled Analog Signal 

In order to give the reader a clear idea of the sampling theorem, fundamentals of 

signals and relationship between time and frequency domains will be analyzed. As stated 

by Fourier theorem, any waveform can be generated by summing sine waves; in the same 

manner, any complex waveform can be decomposed into the sum of multiple sine waves. 

For example, the triangular wave represented in time domain, Figure 3-2, can also be 

represented in Fourier series by Eq (3.1). 

8A ~ [ 1 . ( n1r )] . f(t) =-2 L.... --2 sm - sm nm0t 
1f n=13 5 n 2 

' ' 

(3.1) 

In frequency domain, the signals are displayed as amplitude versus frequency, as 

shown in Figure 3-3. The signal shown in this figure is made up of the sum of four 

frequencies. Therefore, we can see that a complex signal in time domain can be 
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decomposed into simple sine waves analyzed as amplitude versus time and also be 

represented in frequency domain as amplitude versus frequency. The two domains can be 

related to each other since the decomposed signals in time domain correspond to the 

spikes shown in frequency domain. 

] ·-
~ 
<t: 

Frequency 

Figure 3-3 Frequency Response of a Complex Signal 

Now that the relationship between the two domains has been established, let us 

examine the sampling theorem. Nyquist-Shannon sampling theorem states that when 

sampling a band-limited signal (e.g., converting from an analog signal to digital), the 

sampling frequency must be greater than twice the input signal bandwidth in order to be 

able to reconstruct the original perfectly from the sampled version. If we refer back to 

Figure 3-2, we can see that each period lasts 16 seconds and is sampled 16 times, thus, 

1 
yielding a sampling frequency of 1 Hz. The frequency of the signal is 0.0625 Hz, 16 of 

the sampling frequency; therefore, the original signal can be reconstructed from the 

collected data. However, ifthe sampling frequency were identical to the frequency ofthe 

triangular wave, the digital representation obtained would be no more than a DC value. 

Similarly, ifthe sampling frequency were 1.5 times the signal frequency, another 
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triangular waveform with a lower frequency would be obtained from the two periods of 

the original signal. This phenomenon is known as aliasing. To avoid this situation, the 

engineer must ensure that signal is appropriately band-limited: in other words, the 

difference between the frequencies of any two of its sinusoidal components must be 

strictly less than s/2. 

Next, let's tum our attention to the general components of a signal processing 

system. A common signal processing system starts with an anti-aliasing filter, which is 

used to remove the undesirable higher frequency components. This is generally 

accomplished by an analog circuitry placed before the signal is inputted to the digital 

signal processor. The band-limited signal is then quantized by the analog-to-digital 

converter (ADC), so it can be processed by the DSP. Once the signal is in digital form, 

the processor can implement the desired functions. Most of the systems require the 

created response to be converted back to an analog signal, which is done by a digital-to­

analog controller (DAC), whereas in others the digital form is used throughout the 

system, and no more conversions are necessary. A reconstruction filter can be used after 

the conversion back to analog to smooth the high frequency components. Figure 3-4 

taken from the Texas Instruments web page [ 11] shows the block diagram of such a 

system. 
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Figure 3-4 Block Diagram of a Common Signal Processing System 

The general scenario described above can be illustrated with an example based on 

Figure 3-4. The objective ofthe system shown is to transform inputted square wave into a 

sine wave. As previously indicated, any signal can be represented by many simple sine 

waves. The Fourier series expansion of a square wave is given by Eq. (3.2). 

4 <XJ 1 
f(t) =- L -sinnm0t 

7r n=l,3,5 n 
(3.2) 

Since the anti-aliasing filter removes the higher frequency components of a signal, 

the square wave already begins to resemble a sine wave. The signal is then sampled using 

an analog-to-digital converter, processed using the DSP and converted to continuous time 

with the DAC. The reconstruction filter then smoothes the edges of the resulting signal, 

and the transformation is complete. This example outlines the general use of signal 

processing in real-world applications. In signal processing, many design decisions made 
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are system dependent, thus required hardware and software must be chosen to meet the 

system demands. 

When designing a filter or a spectrum analysis tool for a system, a decision must 

be made if analog or digital components will be used. Digital systems have become more 

and more popular in their usage due to their advantages. They are considered to be more 

stable since they do not age over time, and the response of a digital system will not be 

affected by changes in temperature. They also offer portability: system responses built of 

same digital components will be identical; on the other hand, responses obtained from 

analog systems might differ since analog components have tolerance. If using an analog 

system, system modification requires changes of components, which might not be 

practical in many cases, whereas a recompile might be all it takes to update a digital 

system. Given these facts, a digital system has been chosen to be used in this research. 

The advantages of digital signal processors as a digital system are numerous. In 

order to achieve real-time performance, a fast instruction cycle is necessary. Since the 

digital signal processors have on-board dedicated multipliers that perform single cycle 

multiplication, they can process more data in a given time than a system that uses 

consecutive additions. Also, availability of multiple bus lines enables operations to be 

carried out in parallel. The fact that Texas Instruments boards have support for single­

cycle signal processing specific functions presents even more reasons for using them in 

signal processing applications. TMS320F2812 manufactured by Texas Instruments meets 

all aforementioned requirements and, therefore, is the digital signal processor employed 

in this research. 
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3.3 Characteristics of Spectrum Digital's eZdsp 

The structure function is processed on an eZdsp F2812 board by Spectrum 

Digital. The board is a stand-alone module based on Texas Instruments TMS320F2812 

digital signal processor. It is created for developers to evaluate the TMS320F2812 DSP to 

determine the applicability of the processor to their design. The module has the following 

listed specifications: 

• 150 MIPS operating speed 

• 18K words on-chip RAM 

• 128K words on-chip Flash memory 

• 64K words off-chip SRAM memory 

• 30 MHz. clock 

• 2 Expansion Connectors 

• Onboard IEEE 1149.1 JTAG Controller 

• 5-volt only operation with supplied AC adapter 

• TI F28xx Code Composer Studio tools driver 

Two expansion slots provided, analog and input/output expansion, can be used to 

interface the board with any necessary circuitry. The JTAG emulation connector is for 

emulation and debugging of assembly or high-level language code. The code composer 

studio is the software development environment to be used with the DSP. eZdsp requires 

5V on P6 in order to operate. Table 3-1 [ 12] displays the memory space of eZdsp F2812. 

This figure will be necessary to create the command file that maps the compiled program 

into the board's memory. 
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OxOO 2000 

OxOO 4000 

Ox08 0000 

Ox10 0000 

Ox18 0000 

OxJF COOO 

The connectors used on the board are displayed in Figure 3-5 [12], where Pl 1s 

the JTAG interface and P2 is the expansion slot P2 can be used to connect external 

module for evaluating functionalities that are not present on the module. P3 is the parallel 

port interface used to communicate with the host PC. P4/P7/P8 connectors are the 

input/output interfaces. P4 and P8 used to capture inputs and output pulse-width 

modulated waveforms or SPI connections, while P7 is used for compare trips. P5/P9 are 
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channel A and B ADC inputs, and P6 is the power connector as mentioned above. 

I· ·I 

Figure 3-5 eZdsp Connector Positions 

Various features of the DSP are determined by settings of the eight available 

jumpers. The factory defaults of these jumpers are shown in Table 3-2 [ 12]. Jumper 1 is 

used to select the operation mode for the processor as a microprocessor or a 

microcontroller. Jumpers 4 and 5 are unpopulated and used to provide 3.3V or 5V to P2, 

expansion slot, of the module. Similarly, jumper 4 and 5 provide 3 .3V or 5V to pins 1 

and 2 ofP8 and P2, respectively. Jumpers 7, 8, 11 and 12 determine the boot mode for 

the processor. The default setting is HO; however, Flash, SPI, SCI, OTP or Parallel port 

could be selected to boot into. Finally, jumper 9 enables or disables the phase-locked 

loop. 



Position As 
Jumper# Size Function Shipped From 

Factory 

JP1 1 X 3 XMP/MCn 2-3 

JP4 1 X 3 +3.3/5 Volts to P8,P4 Not connected 

JPS 1 X 3 +3.3/5 Volts to P2 Not Connected 

JP7 1 X 2 Boot Mode 3 2-3 

JP8 1X3 Boot Mode 2 2-3 

JP9 1x3 PLL Disable 1-2 

JP11 1 X 3 Boot Mode 1 1-2 

JP12 1 X 3 Boot Mode o 2-3 

Table 3-2 eZdsp Jumpers Factory Settings 

As stated earlier, eZdsp module is equipped with the powerful digital signal 

controller: TMS320C2812. Figure 3-6 [13] shows the block diagram ofthis controller. 

This figure partitions the DSP into four main functionalities: internal/external bus system, 

central processing unit (CPU), memory and peripherals. F2812 uses a "modified 

Harvard-Architecture" since it reads operands from data memory and program memory 

within a clock cycle using the Program and Data Bus. F2812 DSP CPU has the following 

capabilities: 

• 32-bit fixed-point DSP 

• 32 x 32 bit fixed-point MAC 

• Dual 16 x 16 single-cycle fixed-point MAC (DMAC) 

• 32-/64-bit saturation 

• 64/32 and 32/32 modulus division 

-
• Fast interrupt service time 

• Single cycle read-modify-write instructions 

• Unique real-time debugging capabilities 

32 



• Upward code compatibility 

• MCU/DSP balancing code density & execution time 

• Ability to support 32-bit instructions for improved execution time 

• Ability to support 16-bit instructions for improved code efficiency 

RAM 

A(18-0) 

0(15-0) 
--.. ~- ~1~- I I D I r--

PIE 
R-M-Wijlnterrupt ""'"' 132x32 bit I . Manager T . Atom1c Auxl lary Multiplier 

Registers ALU - · 
3 

32 bit 
Realtime 1 1r , Register Bus lri~~~~ 

JTAG 

Data Bus GPIO 

1 ·2 

Figure 3-6 F2812 Block Diagram 

3.3 .1 F2812 Interrupt System 

Interrupts are requests generated by an internal or external hardware to halt the 

current execution of the program to serve the hardware. This triggers the interrupt service 

routine to execute, and once the interrupt is served, CPU resumes processing of the 

program. C28x provides fourteen maskable interrupts; however, ninety-six interrupt 

sources exist on the DSP. This space issue is resolved by utilizing Peripheral Interrupt 
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Expansion, PIE. PIE partitions these ninety-six interrupts in twelve groups, each eight 

lines long as shown in Figure 3-7 [13]. The figure also shows the interrupt flag register 

(IFR), interrupt enable register (IER) and interrupt global mask bit (INTM) used to 

enable and acknowledge these interrupts. 

Peripheral Interrupt Expansion - PIE 
Interrupt Group 1 ..--- I"'IC rnUUUit! lUI ;:JO llllt!fiU!Jl~ __...-

PIEIFR1 P!~!.~.~1 (0 
INT1.x interrupt group 

INT1.1-c!}--- f-1\ en 
II INT2.x interrupt group 

1\ 
INT1.2-[Q}-- / __ CX) ' 

INT3.x interrupt gro.~ • • f---lm 
>< 

N 

• • 
,.. 

INT4.x interrupt group 

INT1.8-cD .. ~ .. t-V 
Ill INT5.x interrupt group Q. u ::s INT6.x Interrupt group ... 96 .... 

INT7 .x interrupt group 
28x Core Interrupt logic 

.! n r:: 
INTS.x interrupt group -1 - ,---INT1-INT 12 E INT9.x Interrupt group 

12'nte~ 
<IJ 

o:: , o:: :E 28x ..r:: 
INT1 o.x interrupt group :- ~~--~ 

c. 

!:: 1 !:!:! I ~ Core 
·:::: 
<IJ INT11.x Interrupt group 0. 

j -~ L · ~ --INT12.x interrupt group 
"1 t...::':::... 

3 (TINT!/ XINT13) __/ 
4 (TINT2) / 

4.14 

Figure 3-7 Peripheral Interrupt Expansion 

3.3.2 F2812 Event Manager 

The two event managers provided by F2812 (EVA and EVB) are control 

peripherals. Block diagram for EVA is shown in Figure 3-8. EVB is physically identical 

to EVA, but it uses a different naming convention (i.e., General Purpose Timer 3 and 

General Purpose Tim~r 4, instead of General Purpose Timer 1 and General Purpose 

Timer 2, etc.). The event managers provide sixteen pulse-width modulators generally 

used in motor control applications, six capture units used for logging of different events, 
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two quadrature encoders used for determining the position of a rotating shaft, and ten 16-

bit compare units helpful for generating PWM waveforms using the four general-purpose 

timers. 
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Figure 3-8 F2812 Event Manager Block Diagram 
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3/QEP11 

3.3.3 Analog-to-Digital Converter 

The eZdsp module has on board a 12-bit 16 channel analog-to-digital convector. It 

provides two sample-and-hold circuits and supports simultaneous and sequential 

sampling modes. It has an analog input range of OV to 3V and runs at 25 Mhz. Each 

result is stored individually, and autosequencer allows up to sixteen "autoconversations" 

in a single session. Figure 3-9 [14] shows a simplified block diagram of the unit. 
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3.3 .4 Fixed Point and Floating Point 

The processors can be categorized in two groups based on the type of operations 

the hardware can support. Floating type devices support the use ofiEEE 754 real 

numbers and are very efficient when operating with high floating point data. F2812 is a 

fixed point processor, so CPU's arithmetic logic unit supports only integer calculations. 

However, it is very efficient in control tasks, interrupt services and input/output control. 

Texas Instruments provides its customers with "IQ-Math" library. This library consists of 

highly optimized functions that allow the developers to seamlessly use floating-point 

math on a fixed-point processor. 

-SYSCLK 

Figure 3-9 Simplified Block Diagram of the ADC 

Thus, based on these listed characteristics of the signal processor, eZdsp module 

is qualified to implement the structure function. 
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IV. IMPLEMENTATION OF THE STRUCTURE 

FUNCTION WITH A DSP 

4.1 Chua and Rossler Systems 

As stated in the introduction the focus of this work is the DSP implementation of 

the structure function in order to explore a possibly effective stall detection technique for 

online or near online applications. Therefore, once the structure function is simulated 

successfully, and it detected the dynamic system changes, an online model is compiled 

and tested for a near real-time application. As previously discussed, an eZdsp board from 

Spectrum Digital using F2812 Texas Instruments DSP is employed to run the function. 

The time response of Chua and Rossler systems described in Chapter II are stored 

as a data file in floating-point format on the PC. The processor continuously accesses the 

file as if collecting data from a sensor. The inputted data is then collected in a buffer and 

filtered using the structure function. The result is displayed in a live graph and also stored 

back on the computer to be analyzed later. A sample screenshot of this process for Chua 

system is presented in~Fi~re 4-1. Notice that around the 44th sample, the system 

dynamics start changing. After this point, the system enters a chaotic stage until the 99th 

sample, where a sudden drop in amplitude occurs. During this period, the system is 
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Figure 4-2 Offline Plot of the Implemented SF for Chua System 
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periodical again, which lasts for only about 10 samples. Parameter values corresponding 

to sample time can be seen in Figure 4-2, which is an offline plot of same data. 

Appendix 7 shows the main C file and the associated header file that applies the 

structure function to Rossler series on the F2812 DSP board. The same files can also be 

used to apply SF to Chua series by simply changing the N and n parameters in sf.h. The 

data input/output to the board is accomplished by placing probe points since this tool 

requires much less memory than standard data input/output methods employed by C 

language. Figure 4-3 displays the outputted data points from Rossler system plotted by 

MATLAB. As expected, this figure is identical to Figure 2-9, the simulated response 

obtained by MA TLAB. Hence, same conclusions about structure function obtained in 

Chapter 2 would also apply to Figure 4-3. 
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Figure 4-3 Offline Plot of the Implemented SF for Rossler System 
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4.2 Rotor37 and T55 

The C program Main.c, which is included in Appendix 6, is associated with the 

application of structure function to data obtained for Rotor37 and T55 high-speed 

compressors. This is the main program of the project, which implements the sliding 

controller discussed in Chapter II on Texas Instruments DSP. Data input/output could not 

be achieved by probe points since they cannot accommodate such complicated 

functionality. Therefore, data input is accom plished by fgets() function available in 

stdio.h. Among the functions that are recognized by TI's C compiler, fgets is a data 

input/output function that requires the least resources. Fgets() reads the string from the 

stream for a specified length and stores it into the buffer. In this project, the stream was 

the specified data file containing the zero-averaged and filtered data points, while its 

length was 17 characters, which is the default length for MA TLAB created data. This 

string is then converted to floating point by atoi() function located in the stdlib.h library. 

The sliding window is implemented by advancing the file position indicator by offset 

bytes (accomplished by multiplying the characters per line and main loop counter) with 

respect to the beginning. Once the data window is ready, the processing function applies 

the structure function and writes the results, two at a time, to the specified file using 

probe points. 

The projects mentioned above are written using a high-level programming 

language C. Even though C has many advantages for time critical calculations, a more 

optimized method should be used (e.g., assembly language). Also, since the core ofthe 

DSP is fixed-point, declaring floating-point arrays and manipulating them requires 

numerous resources. A solution to this issue can be obtained by incorporating Texas 
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Instruments IQ math library to the project and using the IQ functions to do the 

calculations. This will increase the execution speed and might also free some memory. 

The bottleneck ofthis system, however, was not the use of floating-point digits. 

Accessing data files over 15 MB and browsing through them took longer time and more 

memory than any other part of the project. Fortunately, this issue should not occur in a 

real-life system, since the data will most likely be collected through the analog to digital 

converter, not from a computer. 
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V. SUMMARY OF RESULTS AND DISCUSSION FOR 

FUTURE WORK 

This research validated the offline study made by Vhora [9] by implementing the 

structure function on a Digital Signal Processing board. The structure function was 

applied to ordinary differential equations representing Chua and Rossler systems and 

showed sensitivity to system dynamics. Then, data collected from high-speed 

compressors was filtered with structure function to detect stall. These results could be 

used to trigger a secondary control system to prevent the stall from happening. The 

simplicity of the function allows it to be easily implemented using a digital controller. 

The objective of this work was to apply the structure function to detect dynamical 

changes in a non-linear system and investigate its implementation issues. Real-time 

processing could not be accomplished due to hardware interfacing issues; however, the 

structure function was found to be a successful method to detect changes in system 

dynamics in near-real-time applications. Since high precision mathematics is required to 

implement the structure function, a digital signal processor was used as the system core. 

For larger window sizes than the ones presented here, external memory would most likely 

be required due to large volume of data that needs to be stored and processed. 
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The structure function has been successfully implemented, and additional studies 

to improve system performance have been proposed. The code written for this work is 

portable; hence, it could be executed from a real-time floating-point DSP such as Texas 

Instrument's 6711 to study the executing time differences. Also, IQ Math functions could 

be utilized instead of IEEE floating point to further optimize the code. 
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Appendix 1 

Chua Bifurcation Diagram 

~--------------------------------------------------------------------------

~ Create Chua series data 

~--------------------------------------------------------------------------

~********************************************************************* 

~SET VALUES AND DEFINE VARIABLES 

c=l ;j=l; 

T=0.02; ~ TIME STEP FOR INTEGRATION 

temp_n=l2000; ~Transient steps to discard 

max_n=5000; ~NUMBER OF INTEGRATION STEPS to record 

xdata=zeros(l ,5000*200); 

store=zeros(l 0000,2); ~ temporary number 

~Main loop 

for R=8.6515:0.0015:8.95; 

o/o********************************************************************* 

x=O.l; 

y=0.02; 

z=-0.3; 

~ INITIAL CONDITIONS 

~********************************************************************* 

xdotO=O ;ydotO=O ;zdotO=O; 
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% Transient passage loop 

for n=1 :temp_n 

%Chua equations, R=A 

xdotl =R *(y+ x*(l.O- 2.0*x*x)/7.0); 

ydot1 =x-y+z; 

zdot1 =-100.0*y/7.0; 

x=x + T/2.0*(3.0*xdot1-xdot0); 

y=y + T/2.0*(3.0*ydot1-ydot0); 

z=z + T/2.0*(3.0*zdot1-zdot0); 

xdotO=xdot 1 ; 

ydotO=ydot 1 ; 

zdotO=zdot 1 ; 

end% FOR 

% Data recording loop 

for n=1 :max n 

% Chua equations, R =A 

xdot1 =R *(y+ x*(1.0 - 2.0*x*x)/7.0); 

ydotl =x-y+z; 

zdotl =-1 OO.O*y/7 .0; 

x=x + T/2.0*(3.0*xdotl-xdot0); 

y=y + T/2.0*(3.0*ydotl-ydot0); 

z=z + T/2.0*(3__.0*zdotl-zdot0); 

xdotO=xdot 1 ; 

ydotO=ydotl; 
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zdotO=zdot 1 ; 

xdataG)=x; 

j=j+ 1; 

end %FOR 

%********************************************************************* 

%FIND THE LOCAL MAXIMUM VALUES 

for n=j-max_n+ 1 :j-2; 

if xdata(n-1 )<xdata(n) & xdata(n)>xdata(n+ 1 ); 

store( c, 1 )=xdata(n); 

store( c,2)=R; 

c=c+1; 

end% IF 

end %FOR 

%********************************************************************* 

end %Main loop 

store=store(1 :c-1,:); 

xdata=xdata(1 :j-1 ); 

store=store'; 

xdata=xdata'; 

save c:\xdata.dat xdata -ascii 

save c:\store.dat store -ascii 

figure (I );plot(store(2,: ),store(l ,: ),'k. '), 

title('Bifurcation diagram of Chua system'), 

xlabel('Parameter A'), axis tight, 
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Appendix 2 

Rossler Bifurcation Diagram 

~--------------------------------------------------------------------------

~ Creates Rossler series data 

~0--------------------------------------------------------------------------

~********************************************************************* 

~ SET VALUES AND DEFINE VARIABLES 

c=l ;j=l; 

T=O.Ol; ~ TIME STEP FOR INTEGRATION 

temp_n=20000; ~Transient steps to discard 

max_n=5000; ~NUMBER OF INTEGRATION STEPS to record 

rdata=zeros(l ,5000*200); 

store=zeros(l 0000,2); ~ temporary number 

~Main loop 

for R=4.01 :0.01 :6; 

~o********************************************************************* 

x=O.Ol; 

y=O.l; 

z=0.03; 

a=0.2; 

b=0.2; 

~ INITIAL CONDITIONS 

~********************************************************************* 

~ Transient passage loop 

for n= 1 :temp_ n 
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%Rossler equations, R=c 

xdot=-y-z; 

ydot=x+a*y; 

zdot=b+x*z-R *z; 

x=x + T*xdot; 

y=y + T*ydot; 

z=z + T* zdot; 

end %FOR 

% Data recording loop 

for n= 1 :max n 

%Rossler equations, R=c 

xdot=-y-z; 

ydot=x+a*y; 

zdot=b+x*z-R *z; 

x=x + T*xdot; 

y=y + T*ydot; 

z=z + T*zdot; 

rdataG)=x; 

j=j+ 1; 

end%FOR 
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~********************************************************************* 

~FIND THE LOCAL MAXIMUM VALUES 

for n=j-max_n+ 1 :j-2; 

if rdata(n-1 )<rdata(n) & rdata(n)>rdata(n+ 1 ); 

store( c, 1 )=rdata(n); 

end~ IF 

end ~FOR 

store( c,2)=R; 

c=c+1; 

o/o********************************************************************* 

end ~ Main loop 

store=store( 1 : c-1 , :) ; 

rdata=rdata(1 :j-1 ); 

store=store'; 

rdata=rdata'; 

save c:\rdata.dat rdata -ascii 

save c:\store.dat store -ascii 

figure(3);plot(store(2,:),store(1,:),'k.','MarkerSize',4) 

title('Bifurcation diagram of Rossler system') 

xlabel('Parameter c') 
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Appendix 3 

Chua Structure Function Simulation 

~--------------------------------------------------------------------------

~ Implement SF to Chua's Series 

~--------------------------------------------------------------------------

load c:\xdata.dat -ascii; 

sf=zeros(85,2); 

c=l;k=O; 

n=48; 

N=100; 

total=O; 

for A=8.6515:0.0015:8.95; 

x=xdata(l +5000*k:(k+ 1 )* 5000); 

for im=l :1 :N-n; 

tempm 1 =(x(im+n) - x(im))/'2; 

total=total+tempm 1; 

end; 

sfm( c, 1 )=totali(N-n); 

sfm(c,2)=A; 

k=k+l; 

c=c+1; 

total=O; 

end; ~FOR 

save sfm2.dat sfm -ascii 

figure(2) 

plot(sfm(:,2),sfm(:,1),'k') ~or 'k' for black 

axis([8.65 8.95 0 0.5]) 
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title(' Structure Function for set of time series (Chua)') 

xlabel('Parameter A') 

ylabel('SF') 
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Appendix4 

Rossler Structure Function Simulation 

~0--------------------------------------------------------------------------

% Implements SF to Rossler series data 

%--------------------------------------------------------------------------

load c:\rdata.dat -ascii; 

sf=zeros(85,2); 

c=1;k=O; 

N=50; 

n=24; 

total=O; 

for A=4.01:0.01 :6; 

r=rdata(1 +5000*k:(k+ 1 )* 5000); 

for im=1: 1 :N-n; 

tempm1 =(r(im+n)- r(im))/'2; 

total=total+tempm 1; . 

end; 

sfr( c, 1 )=total/(N-n); 

sfr( c,2)=A; 

k=k+1; 

c=c+1; 

total=O; 

end; %FOR 

%save sfr.dat sfr -ascii 

figure(4) 

plot( sfr(: ,2),sfr(:, 1 ),'k') 

axis([ 4 6 -1 5]) 
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title('Structure Function for set of time series (Rossler)') 

xlabel('Parameter c') 

ylabel('SF'), 
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Appendix 6 

Rotor 37 Structure Function Simulation 

~--------------------------------------------------------------------------

~Filter and Normalize Rotor 37 Data and Apply SF 

~--------------------------------------------------------------------------

~********************************************************** 

~Grab data 

~********************************************************** 

load ' ... \rotor37\st1001'; 

x 1 =Pressure( I 0001 :20000,1 ); 

x=x1; 

~********************************************************** 

~Filter and Normalize data 

~********************************************************** 

~find zero avg of data and substract from the original data 

~to form the zero avg data 

x_ong=x; 

[p,q]=size(x); 

avg=sum(x)/p; 

x_avg = x- repmat(avg,p,1); 

x=x_avg; 

data=x; 

lcut=288;hcut=300; 

~ 

sampling_freq = 3000; 

nyq_frq = sampling_freq/2; 

wn=[lcut hcut]/nyq_frq; 

[b,a]=butter(3,wn); 
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y=filtfilt(b,a,x); 

x=y; 

~********************************************************** 

~Apply SF 

o/o********************************************************** 

y1=y; 

start=1; ~ start location in the data array x 

n=2; 

N=10; 

Shift=N/1 0; ~ sliding distance in successive windows 

[mm,nn]=size(x); 

count=1 +fix((mm-N-start+ I)/Shift); 

sf=zeros( count, I); 

for NN count=1 :count 

tempi =(x(n+start:N+start-1)- x(start:N-n+start-I))/'2; 

sf(NN _ count)=mean(temp I); 

start=start+Shift; 

~d; 

o/o********************************************************** 

~Figure 

~********************************************************** 

figure(4) 

plot_limit=5005; 

rev_count=180; 

plot_ start=plot_limit-(1 O*rev _count); ~ 10 data points are taken during each rev 

subplot(3, I, I ),plot( xi (plot_ start:plot_limit),'k'); 

title('Rotor 37 Raw data time series from Sensorl ') 

ylabel('Amplitude') 

set(gca,'XTick' ,0:200: 1800) 

set(gca,'XTickLabel', { 0:0:0}) 

axis tight, grid on, 
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subplot(3, 1 ,2),plot(y1 (plot_start:plot_limit),'k'); 

title('Zero-averaged and BandPass Filtered data between 288-300Hz') 

ylabel('Amplitude') 

set(gca,'XTick',0:200: 1800) 

set(gca,'XTickLabel',{O:O:O}) 

axis tight, grid on, 

subplot(3, 1 ,3),plot( sf(plot_ start+N-n:plot_limit+N-n), 'k'); 

title(' SF, Step size 2, Window size 1 0') 

ylabel('SF'),xlabel('Revolutions before stall'), 

set(gca,'XTick' ,0:200: 1800) 

set(gca,'XTickLabel',{ -180:20:0}) 

axis tight, grid on, 



Appendix 6 

T55 Structure Function Simulation 

~--------------------------------------------------------------------------

~Filter and Normalize T55 Rigl Data and Apply SF 

~--------------------------------------------------------------------------

sampling_ freq=3000; 

~********************************************************** 

~Grab data 

~********************************************************** 

load' ... \t55\DATA1'; 

~Grab at least 7000 samples before stall occurs 

~Plot selected data 

data=x; 

lower=22e3; upper=33.le3; 

x=data(lower:upper ); 

data=x; 

t= 1:1 :size( data); 

figure(l) 

plot(t,x) 

title('raw data') 

~find zero avg of data and substract from the original data 

~to form the zero avg data 

p= length( data); 

avg=sum(x)/p; 

x_avg = x- repmat(avg,p,l); 

x=x_avg; 
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~********************************************************** 

~Filter data 

o/o********************************************************** 

lcut=8; 

sampling_freq = 3000; 

nyq_frq = sampling_freq/2; 

[b,a]=butter(3,lcut/nyq_frq); 

y=filtfilt(b,a,x); 

~plot filtered data 

figure(2) 

set(O,'DefaultFigureColor','white'), 

ty=l: 1 :size(y); 

plot(ty,y) 

title('Filtered and Averaged Data') 

~********************************************************** 

~Apply SF 

~********************************************************** 

x=y; 

start= 1; ~ start location in the data array x 

n=2; 

N=10; 

Shift= Nil 0; ~ sliding distance in successive windows 

[mm,nn]=size(x); 

count= I +fix((mm-N-start+ 1)/Shift); 

sf=zeros( count, 1); 

for NN count=1 :count 

temp1 =(x(n+start:N+start-1) - x(start:N-n+start-1 ))."2; 

sf(NN _count )~mean( tern p 1); 

start=start+Shift; 

end; 

save c:\t55 _avg_lp.dat x -ascii 
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~********************************************************** 

~Figure 

~********************************************************** 

figure(6) 

plot_limit=p-50; ~p=length( data); 

rev_count=180; 

plot_ start=plot_limit-(1 O*rev _count); ~ 10 data points are taken during each rev 

subplot(3, 1,1 ),plot( data(plot_ start:plot_limit), 'k'); 

title('T55 Raw data time series from Sensorl') 

ylabel('Amplitude') 

set(gca,'XTick',0:200: 1800) 

set(gca,'XTickLabel', {0:0:0}) 

axis tight, grid on, 

subplot(3, 1 ,2),plot(x(plot_ start:plot_limit),'k'); 

title('Zero-averaged and LowPass Filtered data at 8Hz') 

ylabel('Amplitude') 

set(gca,'XTick' ,0:200: 1800) 

set(gca,'XTickLabel', {0:0:0}) 

axis tight, grid on, 

~ subplot(3, 1 ,3),plot(sf(plot_start-N+ 1 :plot_limit-N+ 1 ),'k'); 

subplot(3, 1 ,3),plot(sf(plot_ start+N-n:plot_limit),'k'); 

title('SF, Step size 2, Window size 1 0') 

ylabel('SF'),xlabel('Revolutions before stall'), 

set(gca,'XTick',0:200: 1800) 

set(gca,'XTickLabel', { -180:20:0}) 

axis tight, grid on, 

zoom on; 
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Appendix 7 

Application of SF to Ross system using DSP 

/* 

* ========sfh======== 

*I 

#define N 50 //window size 

#define n 24 //step size 

#define BUFSIZE N //length to be read from file 

I* 

* ======== main.c ======== 

*I 

#include <stdio.h> 

#include "sfh" 

I* Global declarations *I 

float inp[BUFSIZE]; /*processing data buffers*/ 

float out_ buffer[200]; 

int k; 

float total=O; //total 

int im=O; //counter 

float templ; 

float temp3; //dummy variables 

intm; 

/* Functions *I 

static int sf(void); 
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static void datalnput(void); 

I* ======== main ======== *I 

void main() 

{ 

while(k<200) 

{ 

I* Read using a Probe Point connected to a host file. *I 

I* Read From: .. ./rN5l.dat buffer:50 *I 

dataiO(); 

sf(); 

} 

I* Write output to a graph connected through a probe-point. *I 

I* Write to: sf_ross_5l.dat length: 400 *I 

k=O; 

} 

I* ======== sf======== * 

* FUNCTION: apply structure function to input signal. 

* PARAMETERS: none *I 

static int processing() 

{ 

for(im=O;im<(N-n);im++) 

{ 

templ=(inp[im+n]- inp[im]); 

temp3=temp 1 *temp 1; 

total=total+temp3; 
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return; 

} 

} 

out_buffer[k]=(float) total/(N-n); 

k++; 

total=O; 

/* ======= datalnput ====== * 

*FUNCTION: read input data. 

*PARAMETERS: none.*/ 

static void datalnput() 

{ 

return; 

} 



.......... 

Appendix 8 

Application of SF to T55 data using DSP 

I* 

* ======== sf.h ======== 

* 
*I 

#define BUFSIZE N II length to be read from file 

#define LENGTH 21 //matlab data has 17 char per line 

#define N 10 II Window size 

#define n 2 II Step size 

/* 

* ======== main.c ======== 

*I 

#include <stdio.h> 

#include <stdlib.h> 

#include "sf.h" 

/* Global declarations *I 

float inp_buffer[BUFSIZE]; 

float out_ buffer[2]; 

I* processing data buffers *I 

char line[LENGTH]; //17 chars per line on matlab output 

int k_in=O; 

float data; 

int file _index; 

int counter; I /main counter 

II 

float total=O; 
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int im; 

int k_out; 

//File IO 

FILE *filein, *fileout; 

/* Functions *I 

static int processing(void); 

static void dataln(void); 

I* 

* ======== main======= 

*I 

void main() 

{ 

/*Data file used for T55 Simulation 

filein=fopen("c:\\t55.dat" ,"r"); *I 

I* Data file used for Rotor37 Simulation*/ 

filein=fopen("c:\\r3 7 .dat", "r"); 

/* 

if (filein ==NULL) 

{ 

*I 

puts("file did not open\n"); 

} 

//puts("program started\n"); 

/* puts(" Zeroing _array ... \n"); 

for (k_in = 0; k_in <=BUFSIZE; k_in++) 

{ 
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""""'"f 

inp_buffer[k_in] = 0; 

} 

*I 

while (counter<1793) { 

I* Advance the file position indicator by offset bytes with 

respect to place, 0: beginning, 1: current position, 2: EOF; *I 

fseek(filein,counter* 17 ,0); 

II file _index=ftell(filein); 

} 

dataln(); 

processing(); 

data Out(); 

counter++; 

fclose(filein); 

} 

I* 

* ======== processing ======== 

* 
*FUNCTION: apply signal processing transform to input signal. 

* 
*PARAMETERS: address of input and output buffers. 

* 
* RETURN VALUE: TRUE. 

*I 

static int processing() 

{ 

float temp; 
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} 

I* 

for(im=O;im<(N-n);im++) 

{ 

} 

data=(inp _ buffer[im+n] - inp _ buffer[im ]); 

temp=data *data; 

total=total+temp; 

out_ buffer[k _ out]=(float) total/(N-n); 

k_out++; 

if (k_out >= 2) 

{ 

k_out=O; //Add fileoutput probe here: add:out_buffer, 

II length:4 

} 

retum(l); 

* ======= dataiO ======== 

* 
*FUNCTION: read input signal and write processed output signal. 

* 
* PARAMETERS: none. 

* 
* RETURN VALUE: none. 

*I 

static void dataln() 

{ 

/* do data I/0 *I 
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---

k_in=O; 

II puts ("start reading file\n"); 

~******************************************************************** 

while (k_in< N) { 

fgets(line, LENGTH, filein); 

data=atof(line ); 

inp _ buffer[k _in ]=data; 

II file _index=ftell(filein); 

k_in++; 

} 

return; 

~******************************************************************** 

} 

II 
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