
Advisor

AN ALGORITHM FOR SOLVING

A CONSTRAINED LEAST SQUARES PROBLEM

for estimating the effects of an unknown

monotonically intervening factor

by

Shalini Wadhwa

Submitted in partial fulfillment of the requirements

for the Degree of

Master of Science

in the

Mathematics

Program

Dean of the Graduate School

YOUNGSTOWN STATE UNIVERSITY

March, 1991

1

Date

lo l~~1
j

Date

ABSTRACT

AN ALGORITHM FOR SOLVING

A CONSTRAINED LEAST SQUARES PROBLEM

for estimating the effects of an unknown

monotonically intervening factor

by

Shalini Wadhwa

Master of Science in Mathematics

Youngstown State University, 1991

The conventional least squares method cannot estimate any hidden causal factor which is

assumed to shift the regression hyperplane monotonically upwards (downwards). A constrained

least squares problem has been formulated by S. Thore to model this phenomenon.

A compact and efficient algorithm is developed and presented to solve this constrained prob­

lem. Computational results are presented which illustrate the effectiveness of this algorithm.

The new method is then used to estimate the price elasticity of cigarettes and the monotonic

shifts of the demand curve. A causal factor is found which may reflect the awareness among

the general public of the harmful effects of smoking.

2

ACKNOWLEDGEMENTS

I wish to express my gratitude to my thesis advisor, Dr. Nathan P. Ritchey, who spent

endless hours reviewing my work and inspired me to successfully complete this thesis.

I would also like to thank Dr. John J. Buoni and Dr. Samuel F. Barger for their contribution

and advice in improvement of this thesis .

Finally, I would like to thank Mrs. Ritchey for her helpful suggestions.

3

Table of Contents

1. Introduction

1.0 Preview ... 6

1.1 Reflections 7

1.2 Historical Background ... 8

1.3 Difficulties caused by nonlinearity 8

2. Theoretical Perspective

2.1 Convex and Concave functions .. 12

2.2 Maxima and Minima 14

2.3 Quadratic Programming .. 16

2.4 Lagrange Multipliers and Kuhn-Tucker Theory 17

2.5 Wolfe's Method 19

2.6 Convergence of Wolfe's Algorithm ... 24

2.7 Curve fitting and the Principle of Least Squares 25

2.8 The Constrained Least Squares Problem .. 28

3. Solving the Problem

3.1 Mathematical Analysis ... 30

3.2 Computer Implementation of the Method 40

4

3.3 The Demand for Cigarettes in the U. S (An Example)42

3.4 Further Research ... 46

3.5 Conclusion 4 7

Bibliography ... 48

Appendix 50

5

Chapter 1

Introduction

1.0 Preview

This thesis will present a compact and efficient algorithm to solve a constrained least squares

problem formulated by S. Thore (1988).

The first chapter covers the historical background of nonlinear programming problems,

especially quadratic programming problems. Then, the difficulties caused by nonlinearity are

discussed and illustrated with an example.

The second chapter introduces the theoretical aspects of the algorithm. It describes convex

and concave functions since it is often necessary to determine whether the function is convex

or concave in a mathematical program. Then, various types of optima are defined. A general

form of the quadratic programming problem and a solution method given by the Kuhn-Tucker

theory and Wolfe's method are presented. The principle of least squares is discussed. Finally,

the constrained least squares problem is presented, as formulated by S.Thore.

The third chapter solves the problem presented in the previous chapter by size reduction

methods like substitution and Tucker's condensed tableau method. These methods reduce the

size of the problem considerably, as demonstrated by an example problem. The method is

further illustrated with the "real life" problem of 'Demand of cigarettes in the U. S.', using

the data which was collected by Dr. J. E. Harris. The problem is solved using the computer

programs which appear in the Appendix. A causal factor is found which may reflect the

awareness among the general public of the harmful effects of smoking.

6

A discussion of the final results of the cigarette problem is presented and illustrated with

the help of a graph.

1 Reflections 1.

For centuries mathematicians have been formulating and solving optimization problems and

studying their theoretical properties. For example, Euclid knew how to find the point on the

straight line Ax+ By = C that is closest to the origin. Using the compass and straightedge,
l

he was minimizing (x2 + y2
) 2 subject to Ax+ By= C. In the seventeenth century Newton

and Leibnitz derived the fundamental theorems of differential calculus, with which it became

possible to find the maxima and minima of all continuous algebraic functions. By the nineteenth

century the more specialized method of Lagrange multipliers had been developed for finding

the solution of optimization problems subject to equality constraints.

However, before the advent of digital computers, a moderately large optimization problem,

one involving, say, 100 constraints and 200 variables, could not be solved with the available

theoretical results. In fact most of the efficient methods used today for solving simultaneous

linear equations were known to Gauss. Nevertheless, he could not solve a problem consisting of

1000 such equations - and we can with our computers. Or again, if the simultaneous equations

were nonlinear, the Newton-Raphson method could find a solution, provided that there weren't

too many such equations. But in those days, even 10 or 15 were "too many".

Our pursuit has been much more successful because our computers give us the capability of

applying our findings. This is particularly true of optimization problems subject to inequality

constraints, which were terribly laborious for classical mathematicians and thus studied little

by them.

Not only is a large-scale constrained optimization problem electronically feasible today,

but in addition there is a great deal of interest in this area. For example modern economics,

engineering, and management science have provided many large and complicated problems in

the past 25 years which were difficult to formulate.

7

WILLIAM F. ~~IJ,f..-:1

YO NGS l"OWN STATE

2 Historical Background 1.

Operations research is an important branch of applied mathematics which is concerned with

the formulation and solution of optimization problems. In operations research we use the term

mathematical program to describe most of the optimization problems that have an objective

function to minimize or maximize and constraints to satisfy.

The History of mathematical programming can be divided, generally speaking, into two

parallel and occasionally convergent streams of development: one springing from Dantzig's

simplex method (1940) and the other from Kuhn Tucker's optimality theory(1951).

In the mid 1950s a technique called separable programming was developed that allowed

an approximate optimal solution to be obtained for certain types of problems. Later, this

technique was generalized to all types of nonlinear programs. In this method, piecewise linear

approximations were used in place of all nonlinear functions, enabling the problem to be solved

by a modified simplex scheme.

Beginning in 1955, a number of papers dealing with quadratic programming began to appear.

These include the works of E. Barankin and R. Dorfman (1955), E. M. L. Beale (1955), M.

Frank and P. Wolfe (1956), H. Markowitz (1956), C. Hildreth (1957), H. Houthakker (1957) and

P. Wolfe (1959). Additional papers have appeared since 1959. Most of the techniques presented

for solving quadratic programming problems were a confluence of the simplex computational

approach and the theory of Kuhn and Tucker. Basically, these methods relied on the fact that

first partial derivatives of quadratic functions are linear.

It is natural that quadratic programming received so much attention from theorists. Mathe­

matically, it is the natural first extension beyond the realm of linear programming. And, it also

has the mathematical advantage of being solvable in a finite number of steps. In practice, it has

been used extensively because many practical problems can be put in the form of a nonlinear

quadratic program and linear constraints.

1.3 Difficulties caused by nonlinearity

Various types of mathematical programs are distinguished according to the nature of functions

to be optimized. The simplest type in which all the functions are linear, is called a linear

8

(0,3)

All other mathematical programs may be referred to collectively as nonlinear programs.
gram.
It is generally much easier to solve a linear program than a nonlinear program. To see this,

first consider the following linear program:

Max z = X1 + 4x2

subject to

and x1, x2 ~ 0.

{2,6)

{0,0) {8,0)

Figure l.

9

The feasible region is shown in Figure 1. To solve this problem via the simplex method , we

start at the origin, where z = 0, and test for optimality by computing the reduced costs. We

choose the x 2 -direction, in which the rate of increase of z is greater. By pivoting, we "jump"

from one corner point to the other until the optimal point is reached.

The ease with which linear programming problems or LPP's can be solved is due to the

following 3 important factors:

1) Given any bounded LPP, at least one corner or extreme point of the feasible

region must be optimal. 'Therefore, to solve any linear program it is only necessary

to search over a finite number of feasible solutions, i.e., those corresponding to the

extreme points.

2) The various extreme-point solutions can be obtained easily and directly by means

of linear algebraic transformations .

3) When an extreme point is found such that no movement away from it in any

feasible direction can improve the value of the objective function, then that extreme

point must be the optimal solution to the problem.

All the above characteristics of LPP are fully exploited by the Simplex Method.

Now consider a nonlinear program:

Min z = [(xi - 8)2 + (x2 - 4)2]½

subject to

When this problem is solved graphically (Figure 2) it is seen that the optimum does not lie

10

(0,3)

Orner point; thus this problem can not be solved by a Simplex-type algorithm.
at a c

(2,6)

(0,0) (8,0)

z = 2.5
z = 2.828

z = 3.5

Figure 2.

Furthermore, an algorithm that would search over all the boundary points of any given

feasible region cannot be used to solve every nonlinear program. Such an algorithm would be

unable to locate the point in the interior of the feasible set.

The existence of local optima that might not be optimal overall is possible in nonlinear pro­

grams. In general, the methods in nonlinear programming, including quadratic programming,

are capable of finding local optima only. To solve a problem that has several local optima, it is

necessary to do extra work to find them all. This limitation causes no additional difficulties in

the problems where no local optima other than overall optima exist.

11

Chapter 2

Theoretical Perspective

2.1 Convex and concave functions

In solving a mathematical programming problem, it is frequently necessary to determine

whether a given function f is convex or concave. The fun ction is said to be convex over a convex

set X in En if for any two points X1 and x2 in X and for all A , 0 ::; A ::; 1,

and concave if

Observe that if f(x) is concave, then -f(x) is convex, and vice versa.

If f{x) is a convex function over En, then the set of points S={ x where f(x) ~ b }, where b

is any real number, is a convex set. Similarly if f(x) is concave, then T={ x where f(x) ~ b }

is a convex set.

Consider the mathematical programming problem

Max z = J(x)

subject to

12

i = 1,2, ... ,m.

Since the intersection of any two convex sets is a convex set, the feasible region of the above

mathematical program is a convex set if the following three sufficient conditions are met:

(a) for all constraints g;(x) :'S b;, the function g;(x) is convex;

(b) for all constraints g;(x) ~ b;, the function g;(x) is concave;

(c) for all constraints g;(x) = b;, the function g;(x) is linear.

It can be very difficult to show that even a simple function like f(x) = ex is concave or convex

by the above definitions. However, there is another method to classify the function based on the

second derivative. If it is a function of one variable we determine whether the second derivative

is negative or positive over the interval of interest. If a function has two variables, we determine

the Hessian Matrix, H, associated with the function f(x1, x2):

The quadratic fonn1 q(x) = xr II X, where H, the Hessian matrix, is positive semidefinite

if and only if the variables can be ordered such that, if h;j are the elements of H, h11 is positive

and the determinant of H is nonnegative:

~ 0.

If the above determinant is strictly positive, then the quadratic form is positive definite.

Similarly, if the h11 is negative and the sign of the above determinant is nonpositive, the

quadratic form can be described as positive semidefinite, and negative definite if the determinant

is strictly negative.

1
A quadratic form is any scalar valued function, defined for all X in En, that takes the form shown below.

n n

q(x) =LL h;jXiXj

i=I j=I

where each h;; is a real number.

13

If the function f(x) has continuous second order partial derivatives, then it is concave (con-

) er some region R in En if and only if its Hessian matrix is negative (positive) definite
vex ov

m''de1;nite for all x. or se J'

2 Maxima and Minima 2.

Before we consider solution methods for mathematical optimization problems, we must be

careful to specify exactly what an optimum is. Three kinds of optima are defined below. The

definitions are described in terms of maxima but analogous definitions and properties exist for

minima.

One of the goals in solving a mathematical program is to identify the global or absolute

maximum from among the feasible points, if one exists.

A global maximum of the function f(x) over a closed set S occurs at the point x* in S if and

only if f(x) :'.S: f(x*) for all points x in S . We then say that x* maximizes f(x) in S, or that J(x)

takes on a global maximum over S at the point x* .

The definition makes it clear that global maxima may occur at more than one point in S,

although the maximum feasible value of f(x) must be unique. If the closed set S is the feasible

region of any mathematical programming problem having a bounded, nonempty feasible region,

then at least one feasible point must be a global maximum. If the feasible region is unbounded,

the maximum may either occur at some specific finite point or may not exist.

There exist in addition to global maxima, two types of local maxima: unconstrained and

constrained.

Let f(x) be defined for all x in some set T. An unconstmined local (or relative) maximum of

f(x) occurs at x* in T provided that there exists some 6 ~ 0 such that if x is within a distance

6 of x*, then x is in T and f(x) :'.S: J(x*).

An unconstrained local maximum can be thought of as the top of any hill in a region

containing one, two or several hills. By definition it can only occur in the interior of T, never

on the boundary. Let us take a closed interval T , 0 :'.S: x :'.S: 1 on the real line (Figure 3) . The

points x==a, x==b and x==c are unconstrained local maxima of f(x), but x = 0 and x = 1 are not.

Let f(x) be defined for all x in some U. A conslmined local maximum of f(x) with respect to

the set U occurs at x* in U provided there exists some 6 ~ 0 such that, if x is in U and lies

14

within a distance S of x*, then f(x) ::; f(x*).

This definition, unlike the one preceding, allows x* to be a boundary point. We see that

U
nconstrained maximum is also a constrained maximum, although the reverse is not true.

any
It is also true that any (finite) point that constitutes a global maximum of f(x) over a set S

must be a constrained local maximum as well.

The global maximum in Figure 3 occurs at x = 0, which is not an unconstrained global

maximum but a constrained local maximum.

~--:x:-:=:-;O~----_i_ ___ ..L _______ _L ________ _J_:>-
x=a x=b x=c x=

Figure 3

15

3 Quadratic Programming
2.

A quadratic programming problem is a problem that has a quadratic objective function and

the constraints that are linear.

Although linear forms are the most widely used in the modeling of mathematical optimiza-

. problems, quadratic forms come next. Quadratic programs are similiar to linear programs
t1on

from an analytical and computational point of view. Because of this, they are easy to handle

and many real world problems are approximated by quadratic forms.

For example: The surface area of a circle, cube or other regular figure is proportional to

the square of its characteristic linear dimension. The sales revenue of a monopolistic firm that

sells xi units of some product at a price of x2 per piece is x1x2, which is a quadratic term. In

statistics, the variance of a given sample of observations is a quadratic function of the values

that constitute the sample. Kinetic energy carried by a rocket and/or an atomic particle is

proportional to the square of its velocity and the potential energy of a rigid standing wall or a

dam is a quadratic function of its height.

The general quadratic programming problem can be written as

subject to

n n n

Max z = LCjXj + LLCjkXjXk
j=l j=lk=l

n

L aijXj ~ bi,
j=l

and Xj ~ 0

i = 1, ... ,m

j=l, ... ,n

where aij,bi,Cj and Cjk are any real numbers.

The above quadratic program can be written more compactly in matrix form as

Max z = cT_x + _xTn_x

subject to

AX~ b

and X ~ 0

16

where A is an m x n matrix, Dis an n x n matrix, bis an m-component vector, and X and

C are n-component vectors. Here, D is a symmetric matrix and the elements of D are defined

as

d· · - d ·· - Cij + Cji
IJ - JI - 2

To date, no technique that directly finds a global optimum for a quadratic programming

problem has been developed except when it is known that any local optimum is also a global

optimum. If the objective function is defined and convex over the closed convex set X in En, then

any constrained local minimum of z in X is a global minimum over X. If the objective function

is concave over the closed convex set X, then any constrained local maximum in X is a global

maximum over X. The objective function above is the sum of a linear form and a quadratic

form. A linear form is a concave function. If XT DX is concave then the objective function

will be sum of two concave functions and will be concave. Note that XT DX will be concave, if

the Hessian matrix D is negative definite or negative semidefinite, then any constrained local

maximum will be a global maximum in I 2.2 I.

2.4 Lagrange Multipliers and Kuhn-Tucker Theory

The Lagrange Multiplier was named for the French Mathematician Joseph Louis Lagrange

(1736-1813) . This rnateriaJ, classical in origin, is relatively straightforward. It provides a set

of necessary conditions which must be obtained at all local optima in a mathematical program

with equality constraints and in unconstrained problems. On the other hand, Kuhn-Tucker

theory provides an insight into inequality constraints in a bounded feasible region and develops

the computational algorithm for dealing with them.

There is a theoretical similarity between the unconstrained problems and the problems with

equality constraints. We can solve both of these problems by identifying all the points at which

the partial derivatives are equal to zero. The vanishing of the partial derivatives constitutes a

set of necessary conditions which must be obtained at all local optima.

17

H. Kuhn and A. W. Tucker (1951) developed the Kuhn-Tucker necessary conditions which

a.re closely bound up with the classical notion of the gradient vector and constitute the basis for

identifying the local optima of a nonlinear constrained problem subject to inequality constraints.

The development is based on the Lagrangean method. These conditions are also sufficient under

certain limitations.

Kuhn-Tucker conditions for the quadratic program

Consider a quadratic programming problem of the form ~- The problem is written as

Max z = CTX + XTDX

subject to

G(X)

Let

be the Lagrange multipliers (2: 0) corresponding to the set of constraints AX -b ~ 0 and X 2: 0

respectively. Let s2 (;?: 0) and r 2 (;?: 0) be the nonnegative slack variables of the constraints.

Associated with above quadratic program is the Langrangean function of the type:

L(X, >., µ, s, r) = CT X + XT DX - >.(AX - b + s2
) - U(-X + r 2

).

The necessary condition for the optimality is that ,\ be non-negative for maximization and

non-positive for minimization problems. The ith Lagrange multiplier value associated with the

global optima x• gives the rate of change of the optimal attainable value of the objective function

with respect to a change in g;. The restrictions on ,\ must hold as part of the Kuhn-Tucker

18

Y
conditions. The remaining conditions are derived as below:

necessar

cL v'z - (.-\r, UT)'v'G(X) = 0 - [I] --ex
cL

-2AiSi =0 i = 1,2, ... ,m -~ -=
CSi
cL

-2µ iTi =0 i = 1,2, ... ,m -~ --
CTi
cL

AX-b+ s =o-@J
6,,\
cL

-X+r = 0 - [fil cu

The above Kuhn-Tucker conditions as written as follows:

-2XTD+.-\TA-UT -C

AX+s

.X, U, .1Y, s, r >

0

b

0

j=l,2, ... ,n and

Sufficiency of the Kuhn-Tucker conditions:

i = 1,2, ... ,m

If objective function is a concave function and G(X) is convex in I 2.4 I , the region defined

by G(X) ~ 0 is a convex set. It follows that any local maximum of z in the feasible region

must be the optimal solution to the problem. Problems such as this one, in which a concave

function is to be maximized or a convex function minimized over a convex set, are known as

convex programming problems. For such problems, Kuhn-Tucker conditions are sufficient to

determine the global optimum.

2.5 Wolfe's Method

A method of solving quadratic programs was proposed by Phillip Wolfe in 1959. Wolfe's

algorithm can be applied directly to any quadratic programming problem of the form [TI]
The basic approach of the algorithm is to generate, by means of a modified simplex pivoting

procedure, a sequence of feasible points that terminates at a solution point x* where the Kuhn-

19

'fucker conditions are satisfied. Note that the feasible region of[]}], which is bounded entirely

by hyperplanes, is a convex set. Therefore, provided that the objective function is concave, i.e.,

the matrix Dis negative definite or semidefinite, the point x* will be an optimal solution. This

follows from the sufficiency of the Kuhn-Tucker conditions for convex programming problems.

When Dis indefinite or positive (semi) definite, convergence may fail entirely, or if it occurs,

the solution obtained may not even be a local optimum.

Wolfe was able to modify the simplex method in a way that enabled it to solve quadratic

programs by finding feasible points that satisfy the Kuhn-Tucker conditions (Wayne L. Win-

ston,1991).

We will illustrate Wolfe's method by applying it to the following example problem.

subject to

and x1,X2 > 0

The above problem can be written in the matrix form I 2.4 I as follows:

(-1,-1) (:',) + (x1, x2) (

1 1)(X1) Min z 2 -2
1 -1 X2 -2

subject to

1 1 3

-2 -3 (X1) -6
<

-1 0 X2 0

0 -1 0

20

The objective function is convex, 2 so any paint satisfying Kuhn-Tucker conditions will solve ·

this QPP(Quadratic Programming Problem).

The Kuhn-Tucker conditions ~ are now written as:

+ s1 3

and

Except for the four com plcmen tary slackness conditions for this QPP, the Kuhn-Tucker

conditions are all linear.

To find a point satisfying the Kuhn-Tucker conditions, Wolfe's method applies a modified

version of Phase I of the two-phase simplex method to the linear Kuhn-Tucker conditions. An

artificial variable is added to each equation from the Kuhn-Tucker conditions that does not have

an obvious basic variable. Then the sum of the artificial variables is minimized. To ensure that

the complementary slackness conditions are satisfied, Wolfe's method modifies the simplex's

choice of the entering variable as follows:

1) Never perform a pivot that would make µi from the ith constraint and Xi both

basic variables.

2) Never perform a pivot that would make the slack (or surplus) variable for the ith

constraint and Ai both basic variables.

2
The function is convex if its Hessian matrix is positive definite or semidefinite. From filJ the Hessian matrix

(
1 -1)

-1 2

of the given function is positive definite as h11 = 1 2'. 0 and IHI= 1 2'. 0.

21

Now we solve the following LP:

Min z = a1 + a2 + a3

subject to

=3

a3 = 6

note that all the variables are nonnegative.

The Initial Tableau for Wolfe's Method;

1 2 4 2 -5 -1 -1 0 -1 0 0 0 8

0 1 -1 1 -2 -1 0 0 0 1 0 0 1

0 -1 m 1 -3 0 -1 0 0 0 1 0 1

0 1 1 0 0 0 0 1 0 0 0 0 3

0 2 3 0 0 0 0 0 -1 0 0 1 6

In the above tableau, 2 is the pivot element as x 2 is the entering variable and a2 is the

leaving variable.

22

The First Tableau for Wolfe's Method:

1

0

0

0

0

4

1
2

0

0

1

0

0

0 1

3 7
2 -2
1 3
2 -2

1 ;!
-2 2

3 9
-2 2

-1

-1

0

0

0

1

The Second Tableau for Wolfe's Method:

1

0

0

0

0

0

0

0

0

1

0

0

1

0

0

12
7

12
7
2
7
1
7

3
-7

29
-7

6 -7
3 -7

~
7

-1

0

0

0

5
-7

2 -7
1 -7

3
7

The current basic feasible solution is w = i

0

0

0

1

0

0

0

1

0

-1

0

0

0

-1

1
7

1 -7
3
7
3
7

0

1

0

0

0

1

0

0

0

-2 0

1
2
1
2

5
7
2
7
1
7

3
-7

0

0

0

1

8
7 , s1

6

3
2
1
2
5
2
9
2

6
7
8
7
4
7
9
7

1 9
7, Xt = 7· The

simplex method recommends that)11 should enter the basis. However, Wolfe's modification of

the simplex method for the entering variable does not allow both >.1 and s1 to be basic variables

since, the condition >.1s1 = 0 has to ·be satisfied. If we let >.1 enter the basis and let s1 leave the

basis then the condition >. 1s1 = 0 will be satisfied but the minimum ratio rule will be violated.

Thus, >.1 cannot enter the basis. Since s2 is the only other variable with a positive coefficient

in row zero, we enter s2 into the basis. 'vVe perform pivots using the above rules until we reach

the optimum solution with z=O.

2.6 Convergence of Wolfe's algorithm

In this section we will show that when D is negative definite in case of maximization problems,

23

Wolfe's algorithm will eventually find a feasible point satisfying the Kuhn-Tucker conditions

. ons 1975). Here, we will only demonstrate that such a point actually exists, though,
(S1nun ,
to obtain the result we need to show that when D is negative definite, the objective function

is bounded and we show that some finite feasible point must be a global maximum and a

tr~ined local maximum, at which the Kuhn-Tucker conditions necessarily hold.
cons ""

Consider what happens to the value of the objective function z = cT X + XT DX where

D is negative definite, as X is displaced from some fixed point xo in any specified direction

Yo -:/ o. The points generated are of the form X = xo + 0yo where 0 is a nonnegative scalar.

The objective value at any point X, expressed as a function of 0 , is then

They'[Dy0 has a negative value. Therefore, as 0 increases, the term 02 y'[Dyo ~ 0 eventually

becomes large enough in magnitude to dominate the sum and cause Z(0) to begin decreasing;

regardless of the values of c, D, xo and Yo , the term 20x'{; Dyo does not increase at the same rate

because of single 0 in this term. Th erefore we conclude that z cannot become infinitely large,

and that there exists at least one point in the feasible region that satisfies the Kuhn-Tucker

conditions.

Wolfe's algorithm seeks a feasible solution by starting with an initial set of values, that

satisfy some of the constraints. Then by adding nonnegative artificial variables aj to satisfy

the others and using the modified simplex pivoting procedure to minimize z = Li aj, with

Xjµj = 0 = AjSi, a feasible solution is found . The variable chosen to enter the basis at

each pivot will have a positive reduced cost. The objective function will therefore decrease or

remain the same at each iteration . Assuming that a repeating sequence of degenerate bases is

not encountered, the procedure must eventually terminate at a solution having the property

that no non-basic variable with a negative reduced cost can be brought into the basis without

violating the condition x iµi = 0 = >.;s; in ~ .

When this point is reached, the value of every artificial variable will be zero, and the Kuhn

Tucker conditions will be satisfied. This can be proven by taking the dual of the program and by

exploiting some of the joint properties of optimal solutions to primal and dual linear programs.

24

2.1 Curve fitting and the Principle of Least Squares

One very useful application of quadratic programming arises when statistical data are to be

d to the mathematical model by the method of least squares.
fitte

Let (xi, Yi), i = 1, ... ,n be n distinct points with x the independent variable and y the

dependent variable. The general problem in curve fitting is to find an analytical expression of

the form y = f(x), for the functional relationship of the data.

Fitting of a curve to the set of numerical data is of considerable importance theoretically

as well as practically. Theoretically, it is useful in the study of correlation and regression. For

example, lines of regression can be regarded as the fitting of linear curves to a bivariate distri­

bution. In practical statistics, it enables us to represent the relationship between two variables

by simple algebraic expressions, e.g., polynomials, exponential or logarithmic functions. It may

be used to estimate the values of one variable which would correspond to the specified values

of the other variable.

Fitting of a Straight line:

Consider the fitting of a straight line

y =a+ bx

to a set of n points (xi, Yi), for i = 1, ... ,n.

The problem is to determine 'a' and 'b' so that the approximating line is the line of 'best fit'.

The term 'best fit' can be interpreted as the deviations of the actual values of y from their

estimated values as given by the line of best fit.

Let Pi(Xi, yi) be any general point in the scatter diagram (Figure 4). We find the distance

of this point from our line, y= ax + b.

The error of estimate or residual for y; is,

PiHi = PiM - HiM = Yi - (a+ bxi)-

According to the principle of least squares, we have to determine a and b so as to minimize

E = "-'~ (P:J:I ·)2 L..1=} I .l t

25

y

0 M X

Figure 4

From the calculus the partial derivatives of E w.r.t a and b should vanish separately.

i.e

n

=> LYi = na + b Li=l Xi·
i=l

n

=> L XiYi = a L~1 Xi+ b Li=l X[.
i=I

26

The above two equations are known as the normal equations for estimating a and b.

We can calculate Li=I XiYi, Li=I Yi, E~1 Xi, E~1 x, from the set of points (xi, Yi) and the

values of a and b can be found as follows:

b=

a= y-bx

where x and fl are the mean values of Xi and Yi, i=l, ... , n. The least squares method is the

most convenient procedure for determining a line of best fit. This method does, however, put

substantially more weight on an outlier but will not allow that point to completely dominate

the approximation.

Using the least squares method, we can fit a straight line (y = ax + b) , a K th degree

polynomial (a0 + a1 x + a2x2 + · · · + akxk) , power curves (y = axb) and exponential curves

(y = abx) .

One of the limitations of the method of curve fitting by the principle of least squares is the

choice of mathematical curve to be fitted to the given data. If we plot the data on an arithmetic

or semi-logarithmic scale, it often provides adequate basis for selecting the type of curve.

Another problem with the least squares method arises with data that contains some points

that are wildly inaccurate when compared to the overall accuracy that is expected. In addition

to errors in measurement and round off, there is always the danger of points being recorded

incorrectly. These wild points may comprise 15 percent or so of the total (1.Barrodale, 1966)

and can prevent a good approximation from being obtained and consequently these points may

remain undetected . Theoretically it is seen that the L1 approximations is better than L2 or

least squares approximations in the presence of wild points.

There is another situation where least squares is not the best method (J. Peter Bloomfield

and William. L. Steiger, 1983). Let Z = (x,y) f Rk+i be a random vector whose components

obey the linear model

y == a1x1 + ... + akxk + U,

y ==<ax> +u.

27

\ . ' '
0 NGSiUi~f~ STA,·E U

Suppose the errors U follow the double exponential law f(t) = ~e-hltl_ It has been shown

that Lt approximations are superior to L 2 in such a case.

2.s The Constrained Least Squares Problems

formulation of Our Problem

A quadratic programming problem which will be solved using the information given in the

last few sections will now be formulated.

To begin with, assume that we have available as data, T different set of joint observations

(xi, Yt) for the time periods t = 1, .. . , T. If the variables Xt and Yt in a bivariate distribution are

related, we will find that the points in a scatter diagram will cluster around some curve called

the " curve of regression ". If the curve is a straight line, this is called a line of regression and

there is said to be linear regression between the variables. To estimate a single equation linear

regression, the regression equation is

Yt =a+ bxt + Ut, t = l, ... ,T.

The regression model estimates an equation using the least squares technique. That is, we

minimize the squares of the residuals,

There are situations that one may suspect the presence of hidden causal factors which

we may not be able to observe directly in the data available to us, as, for example, when

underlying economic structure is changing systematically over time due to changes of taste,

custom, technology etc. These variables are often difficult to measure directly. We will make

an assumption that the demand curve, cost curve, etc., shifts monotonically over time. This

assumption can be translated into constraints of the type ar :S ar-t :S • · · :S a1, since ai's

determine the magnitude of the shifts which we assume to be monotonic.

28

S. Thore, 1988, formulated this problem as follows:

T

Min L (Yt - at - bxt)2

t=l

subject to

and b, ai unrestricted, i = l, ... ,T.

29

Chapter 3

Solving the Problem

3.1 Mathematical Analysis

We can rewrite the constrained least squares problems as in (2.6) as follows

T

Min z = L [Yt - (at+ bxt)] 2

t=l

subject to

and b, a1, ... , aT unrestricted.

30

We write the above quadratic program in matrix form as:

T

Min z = 2)y; - CtXt + X[DtXt]
t=l

subject to

X ~ O

Where

Xt =
(b

at) X=

b

and D, = (:, :;) for t = 1,2, ... ,T.

Dt is the symmetrix hessian matrix and the determinant IDtl = 0. Therefore, the quadratic

form XT DtXt is positive semidefinite1• The objective function is the sum of convex functions

a.nd hence convex. Here we minimize the convex function over the convex set so the Kuhn

Tucker conditions are sufficient to find the optimal solution. We get an optimal solution which

satisfies the Kuhn-Tucker conditions and is a global minimum, not necessarily unique.

We rewrite the problem [II) as

T

Min z = L)Yt - at - bxt)2

t=l

1
Any positive semidefinite quadratic form is a convex function over all of E".

31

subject to

and b, ai, ... , aT unrestricted.

We start the solution process by writing the Lagrangian function of I 3.2 I
T T-1

L(a1,a2,• .. ,at,b,>. , et) = L(Yt - at - bxt)
2 + L At(-at + at+l + e;)

t=l t=l

where).= (>.1, >.2, . . . , AT-1) are the Lagrangean Multipliers and et , t = 1, 2, ... ,T - 1, are

the nonnegative slack variables.

We now write the Kuhn-Tucker conditions as follows,

oL
oa1

oL

oL

oaT
oL
ob

oL

8>.1
oL

8>.2

oL

-

-

-

o).T-1

-2(YT - aT - bxT) ... + AT-1

-2 Ef=1(Yt - at - bxt)

-a1 + a2 + e1

-a2 + a3 + e2

-aT-1 + aT + eT-1

32

=0

=0

=0

=0

=0

=0

=0

>.1e1 = 0, >.2e2 = 0, ... ,).T-1 eT-1 = 0

and Ai ~ 0, i = 1, ... , T - 1.

@lJ
We form the matrix from the above equations :

b a1 a2 aT >-1 >-2).T-1 e1 e2 eT-1 r.h.s

2x1 2 0 0 -1 0 0 0 0 0 2y1

2x2 0 2 0 1 -1 0 0 0 0 2y2

2XT 0 0 2 0 0 1 0 0 0 2yT

2 L-i=I Xt 2 2 2 0 0 0 0 0 0 2 °f:,;=l Yt

0 -1 1 0 0 0 0 1 0 0 0

0 0 -1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 1 0

Matrix A.

The above matrix is of size (2T) x (3T-1) and (2T) x (5T-1) with artificial variables

added to get the starting basis. This matrix is very large and sparse. Although this problem

can be solved using some QPP method, we will reduce the size of the above problem so that it

is easier and efficient to the solve the same problem. To do this we go through the following

steps:

From @}] we now know that

~T-1
aT = aT-1 - eT-1 = a1 - L..,t=I et.

33

Since quadratic programming problem solving methods like Wolfe's method deal only with

Sitive variables, the unrestricted variables a1 and b are-substituted as follows
the po

II I O II 0 _ a' _ a1 where a 2:'.: a 2:'.: ,
a1 - 1 '

b::: b' _ b11
, where b

1

2:'.: 0 b
11

2:'.: 0.

Also, substituting the new values of at, t = l, 2, ... , T . We rewrite~ as

T-1
I II I II ~

2a1 - 2a1 + 2b xr - 2b XT + ,\r-1 - 2 ~ et
t=l

T T T-1 T

2(a~+a~)Lxt-2(b
1

+b
11

)I:x;-2I:(e1 L xt,)
t=l t=l t=l t' =t+l

)qe1 = 0, >-2e2 = 0 .. . >-r-1 er-1 = 0

and all variables positive.

We write I 3.4 I in the matrix form as below

I I

a1 a I b b" >.1 >.2 AT-I e1

2yy

T

2LXtYt
t=l

I 3.4 I

eT-1

0 0 0 -(2+2x1)

2 -2 2x1 -2x1 -1 0 0 0 0

2 -2 2x2 -2x2 -1 0 -2 0

2 -2 2x3 -2x3 0 1 -1 0 0

2 -2 2XT -2XT 0 0 1 -2 -2

2LT
I=! X1 -2 L;=I Xt LT 2 2 1=1 X1 LT 2 -2 l=I X1 0 0 0 -2 L;=2 Xt -2x1

Matrix B.

34

T

2

2

2

2

2L;=l l

The size of the above matrix is (T+l) x (2T+2). Since there is no ready-made basis, we

add artificial variables to the set of equations I 3.4 I. The size of the matrix after adding the

artificial variables will be (T+l) x (3T+3). There is a method _known as Tucker's condensed

tableau method which will further reduce the size of the matrix. We will discuss this method

of reduction process with the help of an example below.

Wolfe's method of solving a QPP is one of the best known. It has the great advantage that

it reduces the task of solving a QPP to perform simplex type pivots. Also, all the variables are

now non-negative, which is the requirement of the Wolfe's method. We solve a small problem

with the use of size-reduction methods and Wolfe's algorithm :

Example for the above approach for the given set of points:

Consider the set of 4 points (x;, y;), given below:

(1,6)

(2,19)

(3,12)

(4,15).

We get the following equations from [I±] :

I II I II

2a1 - 2a1 + 6b - Gb + >-2 - ,\3 - 2e1
3

, II I II ~

2a1 - 2a1 + 8b - 8b + A3 - 2 ~ et
t=l

I II I II

10a1 - 10a1 + 30b - 30b - 9e1 - 7e2 - 4e3

and a~, b
1

, b
11

2: 0.

12

38

24

30

140

Since there is no obvious basis in the above set of equations we add artificial variables

a1, ···, a5 to the above equations res pectively.

35

The tableau is given below:

I
,,

b' b" >-1 >-2 >.3 r.h.s var in a a e1 e2 e3 a1 a2 as

basis 18 -18 50 -50 0 0 0 -15 -11 -6 0 0 0 244

a1 2 -2 2 -2 -1 0 0 0 0 0 1 0 0 12

a2 2 -2 4 -4 1 -1 0 -2 0 0 0 1 0 38

a3 2 -2 6 -6 0 1 -1 -2 -2 0 0 0 0 24

a4 2 -2 8 -8 0 0 1 -2 -2 -2 0 0 0 30

as 10 -10 30 -30 0 0 0 -9 -7 -4 0 0 1 140

We further try to reduce this problem by a metho<l known as Tucker's condensed tableau

method. In this method we always have au assumed basis where the basic columns (shown in

the left side of the matrix) do not need to be stored in computer memory. The matrix we now

need is formed as follows:

I II

var in a a

basis 18 -18 50 -50 0

a1 2 -2 2 -2 -1

a2 2 -2 4 -4 1

a3 2 -2 6 -6 0

a4 2 -2 [I] -8 0

as 10 -10 30 -30 0

0 0 -15 -11 -6

0 0 0 0 0

-1 0 -2 0 0

1 -1 -2 -2 0

0 1 -2 -2 -2

0 0 -9 -7 -4

r.h.s

244

12

38

24

30

140

We use vVolfc's method and Tucker's co11dc11scd tableau method to get the next tableau. In

Tucker's updation method, the column corresponding to the entering variable is updated and

its elements get the value of the column corresponding to the leaving variable. We see that in

this method we always have the assumed basis which nce<l not be saved in memory. This helps

us reduce the size of the matrix to be solved a nd the space needed to store the matrix.

36

'fucker's Condensed Tableau Method and Wolfe's algorithm

1) The column corresponding to b' is most positive; therefore, it enters the basis and

the variable in row 4, i.e., artificial variable a,i, leaves the basis obeying minimum

ratio rule. Hence the pivot element is at (4,2).

2) The column corresponding to b
1

is updated as follows:

The pivot element 8 is saved and the elements in the column corresponding to b
1

are divided by the negative of the pivot element except the element in place of the

pivot element(-8), which is made the reciprocal of the existing one. The rest of the

elements in the matrix are changed according to the usual method. The tableau

achieved is the first tableau listed below:

3) Dy ·wol f e's method ei 's and ,\;'s have to obey the rule:

Aiei = 0 , i = 1, .. . , 3

That is, if e1 is in the basis then A1 cannot enter the basis.

At each step the identity matrix corresponding to the basis is not saved and the column

corresponding to the entering variable is updated by the method described above. Also the rule

that Aiei = 0, i = 1, ... , 3 is satisfied.

The First tableau

var in

basis

a1

a2

a3

b'

as

I

a

5.5

1.5

1

0.5

0.25

2.5

II

a

-5.5

-1.5

-1

-0.5

-0.25

-2.5

-6 .25 0 0

-0.25 0 -1

0.5 0 1

-0.75 0 0

0.125 -1 0

-3 .75 0 0

0

0

-1

1

0

0

37

A3

-6.25

-0.25

-0.5

-1.75

0.125

-3.75

-2.5

0.5

-1

-0.5

-0.25

-1.5

1.5

0.5

1

-0.5

-0.25

0.5

6.5

0.5

1

~
-0.25

3.5

r.h.s

56.5

4.5

23

1.5

3.75

27.5

The Final tableau

I b" A2 A3 r.h.s var in a as a4 a2 e1 a1 a3

basis 0 -1 -1 0 -1 0 0 0 -1 -1 0

e2 0 3 -5 0 -2 -3 -1 -1 -1 -5 20

Al 0 -2 4 0 2 1 1 0 1 3 0

e3 0 2 -5 0 -1.5 -1 -2 -1 -1.5 -2.5 10

b' 0 2 -4 -1 -1.5 -1.5 -1 -1 -1.5 -3 13
II -1 3 -6 0 -2.5 -2 -1.5 -1 -2.5 -4.5 7 a

There were 5 pivots performed in the above example:

(4,2), (3,9), (1,8), (2,4), (5,1).

The user time taken to solve this problem was 00hr00m02s05.

The first row of the final tableau tells us of the variables which are non-basic and the first

column tells of all the variables that are in the basis.

The optimal solution for the given data is:

a' = 0, a" = 7, b
1 = 13, b

11 = 0, A1 = 0 = A2 = A3, e1 = 0, e2 = 20, e3 = 10.

Then

b = b
1

- b
11 = 13

I II

a1 = a - a = -7

a3 = a2 - e2 = -27

a4 = a3 - e3 = -36.

The equations are as follows:

Yi= -7 + 13x1

Y2 = -7 + 13x2

Y3 = -27 + 13x3

Y4 = -37 + 13x4 •

In Figure 5 the data points are circled and we see that instead of one line as in the conven­

tional least squares method, we get three lines satisfying these points. The monotonic shifts

38

een these shifts represent the presence of hidden causal factor in the data. ares ,
We see that the matrix we solved is of size 5 x 10 in the above example. If we had added

the artificial variables, the size of the matrix would have been 10 x 10. Thus Tucker's updation

method helps save space.

If there are T data points:

[!]. Matrix A(with artificial variables): (2T) x (5T-1)

@J. Matrix A with the use of Tucker's condensed tableau method: (2T) x (3T-1)

@J. Matrix B(with artificial variables): (T+l) x (3T+3)

[TI Matrix B with the use of Tucker's condensed tableau method : (T+l) x (2T+2).

Hence, we see that the size of the problem is approximately reduced by one-fifth the size of

original problem [!].

X

(-37,0) (-27,0) (- 7 ,0) y

Fig1tre 5.

39

3.2 Computer Implementation of the Method

The computer programs listed in the Appendix give the equations of the lines satisfying

the data points. The program! reads the input file which is written in the format (x 1, Yt) and

creates the matrix of the form Matrix B. The program2 performs the pivots on this matrix

according to the Wolfe's method of solving a quadratic programming problem. It makes sure

that AiEi = 0, i.e., the complementary slackness conditions are maintained throughout. Other

than these conditions, the rest of the program follows the Simplex Method. It also updates the

columns by Tucker's condensed tableau method. The solution has been found when the value

of the objective function, z, becomes zero . The results are given in the form of equations.

These programs were written in 'C' on the Encore Multi max. The memory of this system is

4 to 12 Megabytes. This memory allows a sufficiently large matrix to be solved. When we run

the programs with different sets of data points, we can see how the user time spent with the

computer varies with the computer varies with the number of data points. These are shown in

a tabular form below:

Number of points Avg time taken to solve vg no of pivots

5 Ohr. 001n. 03s. 00 6

10 Ohr.OOm.16s. 75 12

20 Ohr.01111.02s.88 21

30 Ohr .04m.30s.OO 35

50 Ohr.201n.OOs.OO 58

100 lhr.50111.00s.OO 105

Table 1.

The results tabulated above are used to plot the following graph (Number of points -vs­

Avg time taken to solve) If there are more points, the matrix created is larger and the time

taken to solve a larger matrix is more. Observe in figure 6 that for small number of points, the

40

y

C:
(I)

~
co

E-t

(I)

E:
·M
E-t

Number of points

Figure 6

41

time taken by the computer to solve the problem is very small as compared to the time

taken to solve bigger problems. Also observe that the number of pivots increase as the number

of points increase.

3.3 Demand for Cigarettes in the U .S (AN EXAMPLE)

Consider the following cigarette data (Harris, 1986, Massachusetts Institute of Technology

and Massachusetts General Hospital)

Let

Xt = price of cigarettes per pack, for the years 1964 to 1986,

Yt = Consumption of cigarettes, in packs per day.

year Xt Yt

1964 0.996 0.575

1965 1.031 0.583

1966 1.046 0.587

1967 1.064 0.586

1968 1.093 0.573

1969 1.099 0.547

1970 1.136 0.546

1971 1.103 0.553

1972 1.109 0.554

1973 1.051 0.568

1974 1.000 0.567

1975 0.971 0.565

1976 0.959 0.561

1977 0.943 0.555

1978 0.918 0.543

1979 0.874 0.529

1980 0.830 0.527

1981 0.807 0.525

1982 0.851 0.512

42

0.996 0.478

1984 1.025 0.472

1985 1.047 0.462

1986 1.099 0.449

We see from the data that the price of cigarettes increased until 1973, From 1973 until 1982

it decreased. After that, it increased again. We want to determine the relationship between the

cost of cigarettes and consumption of cigarettes from the data available to us. From the data

we also see that the consumption declined throughout. Estimating the line of "best fit " using

the conventional regression, we get

Yt = 0.494 + 0.045Xt + Ut , R 2 = 0.011 .

This regression is quite meaningless. If we interpret this equation, we see that the positive

value of the b-coefficient means that lower price of cigarettes would discourage the consumer

from smoking. Therefore, the conventional least squares method seems unappropriate in this

example. We suspect that there is some hidden intervening causal factor in the data. It is obvi­

ous that the consumption of cigarettes is not totally dependent on price of cigarettes but some

of the other factors involved may be difficult to measure. Awareness of the harmful effects of

cigarettes among general public is one such factor. In S.Thore's model there is no assumption of

a linear trend over time except for the monotonic shifts of the demand over time. The way our

problem is formulated, the data itself will dictate the magnitude of the shifts each year. These

shifts may occur at a few discrete points of time, or in leaps and bounds, with intermittent

periods of change. S.Thore formulated the problem as follows:

subject to

1986

Min L (Yt - llt - bxt)2

t=1964

and b, a1964, .•. , a1986 unrestricted.

43

We use the program 1 and program 2 in the Appendix and get the following results:

1. Yt == 0.699655 -0.113033 Xt

2. Yt == 0.699655 -0.113033 Xt

3. Yt == 0.699655 -0.113033 Xt

4. Yt == 0.699655 -0.113033 Xt

5. Yt == 0.696546 -0.113033 Xt

6. Yt == 0.678249 -0.113033 Xt

7. Yt == 0.678249 -0.113033 Xt

8. Yt == 0.678249 -0.113033 Xt

9. Yt == 0.678249 -0.113033 Xt

10. Yt == 0.678249 -0.113033 Xt

11. Yt == 0.678249 -0.113033 Xt

12. Yt == 0.674757 -0.113033 Xt

13. Yt == 0.669401 -0.113033 Xt

14. Yt == 0.661593 -0.113033 Xt

15. Yt == 0.646767 -0.113033 Xt

16. Yt = 0.627793 -0.113033 Xt

17. Yt = 0.620819 -0.113033 Xt

18. Yt = 0.616220 -0.113033 Xt

19. Yt = 0.608193 -0.113033 Xt

20. Yt = 0.590581 -0.113033 Xt

21. Yt = 0.587856 -0.113033 Xt

22. Yt = 0.580344 -0.113033 Xt

23. Yt = 0.573222 -0.113033 Xt-

Since there were 23 points, the matrix that we created was of size 24 x 48 and the number

of pivots performed to get the final solution was 28. The time taken to solve this problem was

Ohr02m39s53.

The effect of price on consumption is determined by the co-efficient -0.1130 and the gradual

shift of the demand curve is measured by the drop of the constant term. The results indicate

44

~
JI

1.20 i I

1.15 ·-- •·-•--·--•--•--•--•--•--•--•--•·--•--

1.10 .. --·--·-·--·-·--·--•--+--+--l--1

1.05

1.00

0.95

~ 0.90
0
co
0.

~ 0.85
Q)

0.

~ 0.80 --• ·-•--·--•-,--•--•--· --·--·--•·--

.,.,
~
n.

0. 75 I I I I f-+--f
.__.__. __ .. __ _

o. 7 o 1 1 1 1 1 1 1 1 , II M 1 1 11 1 • , , , , , ~· , , u , 11 , , , , , , , , ,

0.42 0.44 0.46 0.48 0.50 0.52 0.54 0 .56 0 .50 0.60 0 .62 0.64 0.66 0.68 0.70 0.72

Demand for Cigarettes (in number
of packets)

Figure 7

that the demand curve stayed unchanged for the first three years of the data and perhaps

after that the public became more aware of the harmful effects of the cigarettes and conscious of

its health and the consumption declined. This change was initially quite slow but changed more

rapidly during late 1970's and early 1980's. The calculations done did not provide a validated

estimation of the demand function for cigarettes in U.S. To find such a function other factors

such as income, demographic characteristics of the population, etc., are required.

3.4 Further Research

Another method of Reduction

I " b' b"). I >.2).T-1 01 01 e1 fT-1

0 0 0 -(2 + 2x1)

IT] -2 2x1 -2x1 -1 0 0 0 0

2 -2 1..::J.} -2x2 1 -1 0 -2 0

2 -2 2x3 -2X3 [I] -1 -2 0

2 -2 2XT -2XT 0 0 1 -2 -2

2E;=I Xt -2 L,;=I Xt L,T 2 2 l=I X1 ? L,T 2 -- l=I X1 0 0 [I] -2 L,;=2 Xt -2x1

In the above matrix (Matrix D) if we pivot 011 the cells (1,0), (2,2), (4,3), ... , (T+2,T+l),

we get the basis we are looking for. Then we can meet the feasibility conditions(all the values

on r.h.s should be positive) by using the Dual-Simplex method to 'fix' the right hand side.

These pivots should be performed keeping complementary slackness conditions in mind. Again,

the basis need not be saved in the computer memory, because we can use Tucker's condensed

tableau method .

In the above method for T points we will perform T pivots for sure to create a basis and

then more pivots a.re performed to meet the feasibility condition by Dual-Simplex method.

Which also means more solution time. It is not, however, obvious that which reduction is

faster. Future work could answer this question.

4G

T

2y

2y

2y

2y·

2"£,;=I :

Conclusion

We have developed an efficient an<l compact method to solve the constrained least squares

problem. We saw that conventional least squares metho<l does not provide good results for some

data. The need for constrained least squares metho<l was recognized in such cases. We used the

theory behind the non-linear programming: Kuhn-Tucker's theory and Wolfe's method of solv­

ing the quadratic programming problem to <levelop a method which now makes it possible to find

an unknown factor which shifts the regression hyperplane monotonically downwards/upwards.

With the help of a cigarette example our method was illustrated. The programs in the appendix

solved this problem. The data itself determined the magnitude of the possible shift each year.

The gradual shift of the demand curve is measured by the drop of the constant term. We were

able to find out exactly when the scare of smoking set in, when it peaked and what the general

trend of demand was. The graph from Figure 7 showed these shifts very clearly.

The size of the problem was reduced considerably using the substitutions and Tucker's

updation method . If we solve a big problem using this method, say a 100-points problem, we

see that the size of the Matrix A is 200 x 500 as compared to Matrix D which is 100 x 200.

Hence the new method can solve the problem in less time and needs less space to solve it.

47

BIBLIOGRAPHY

1) Barankin, E. W., and R. Dorfman, ' Towards Quadratic Programming' ,Office of

Naval Research Logistics Projects at Columbia University and University of Cali­

fornia, Berkeley, 1955.

2) Barrodale, I.,'L1 Approximation and the Analysis of Data', University of Liverpool,

1968, pp. 51.

3) Beale, E.M.L.,"On minimizing a Convex Function Subject to Linear Inequalities,"

'Journal of Royal Statistical Society (BJ', 17, 1955, pp. 173-184.

4) Bloomfield, Peter and William L. Steiger, 'Least Absolute Deviations (Theory,

Applications and Algorithms)'. Birkhauser Boston, Inc., 1983, pp. 39.

5) Boot, John C. G. , 'Quadratic Programming'. North - Holland Publishing Com­

pany, 1964.

6) Frank, M., and P.Wolfe," An algorithm for Quadratic Programming ,'" Naval Re­

search Logistics Quarterly, 3, 1956, pp. 95-110, pp. 481-492.

7) Gupta S. C. and V. K. Kapoor,' Fundamentals of Mathematical Statistics'. Sultan

Chand & Sons, 1988, pp. 566-567.

8) Hadley. G, 'Nonlinear and Dynamic Programming'. Addison - Wesley, Publishing

Company, 1964.

9) Harris, J. E., Massachusettes Institute of Technology and Massachusetts General

Hospital, 1986.

10) Hildreth, C., " A Quadratic Programming Procedure," 'Naval Research Logistics

Quarterly', 14, 1957, pp . 79-85.

11) Houthakker, H., "The Capacity Method of Quadratic Programming,'"Econometrica',

28, 1960, pp. 62-87.

12) Kuhn, H. W., and A. W. Tucker, "Nonlinear Programming,'"Proceedings Second

Berkeley Symposium on Mathematical Statistics and Probability', 1951,

13) Markovitz, H., "The Optimization of a Quadratic Function Subject to Linear

Constraints,'"Naval Research Logistics Quarterly', 3, 1956, pp. 111-133.

48

14) Simmons, H. Donal,'Nonlinear Programming for Operations Rese.arch '. Prentice

_ Hall, Inc.,Englewood Cliffs, New Jersey, 1975, pp. 13-16, pp.229-230.

l5) Taha, A. Hamdy, 'Opemtions Rese.arch (An Introduction)'. 4th ed. Macmillan

Publishing Company. 1987, pp. 793-795.

16) Thore Thore, 'A Constmined Least Squares Method For Estimating The Effects of

An Unknown Monotonically Intervening Factor', working paper, 1988.

17) Winston, L. Wayne, ' Operations Rese.arch Applications and Algorithms ', 2nd ed

ition. PWS - Kent Publishing Company, Boston, 1991, pp. 662-664.

18) Wolfe, P., "The Simplex Method for Quadratic Programming,'"Econometrica', 27,

1959, pp. 382-398.

49

APPENDIX

50

/*****************/
/** PROGRAMl **/
/*****************/

/***/
/* THIS PROGRAM CREATES THE INITIAL MATRIX FROM THE SET OF GIVEN
DATA POINTS FOR THE CONSTRAINED LEAST SQUARES PROBLEM*/
/***/
/* THIS FILE READS THE DATA FROM THE FILE 'data.in'.
IT RUNS WITH THE COMMAND 'create 1

•

***/

#include <stdio.h>

main()
{
/* VARIABLE DEFINITIONS : */

double p,q,r,s,h;
int i,t,T,tt,tl,j,k,m,n;
double l,X[500] ,Y[500],suml[500] ,totl[500];
double sum,tot,square,mult,11,mm;
char temp_str[512];

/* FILE DEFINITIONS : */

FILE *in file,*out_file,*outl_file;
/********************************/
/* THIS FILE HAS THE SET OF DATA POINTS IN IT*/

in file - fopen("data.in","r");

/* THIS FILE HAS THE FILE IN WHICH THE MATRIX IS
CREATED*/

out file fopen("matrix","w");

/* THIS FILE HAS THE SIZE OF THE MATRIX TO BE READ
FOR THE PROGRAM IN WHICH PIVOTS ARE PERFORMED*/

outl_file=fopen("size.file","w");

/* INITIALIZATION OF CERTAIN VARIABLES*/

sum= 0.0;
tot= 0.0;
square= 0.0;
mult = 0.0;
1 = 0.0;
p=2.0;
q-0.0;
r=l.O;
h=2.0;
T=O;

/* TO KNOW THE NUMBER OF DATA POINTS INTHE DATA FILE
AND THE VARIABLE T DENOTES IT *I

while(fgets(temp_str,512,in_file)) T++;
fclose(in_file);

/* SIZE OF THE MATRIX TO BE CREATED */
in_file-fopen(11 data.in11

,
11 r");

m=T+l; /* number of rows in the matrix*/
n=2*T+2; /* number of columns in the matrix*/
fprintf(outl_file, 11 %d %d %d 11 ,m,n,T);

/**/
/* the set of data points are read in the array X[t] and
Y[t] */

for(t=l; t<=T; ++t){

}

fscanf(in_file, 11 %lf %lf\n", &X[t], &Y[t]);
sum +- X[t];
tot +- Y[t];
square+= X[t]*X[t];
mult +- X[t]*Y[t];

for(i=l; i<=T ; ++i)(
suml[i] - 0.0;

for(i=2; i<=T; ++i)(
for(j=i; j<=T; ++j){

suml[i] +- X[j];
totl[i] +-Y[j];

/*********************************
for creating the first equation

********************************/

11=2*T+sum;
mm=2*sum+square;
fprintf(out_file," %lf %lf 11

, 11, -11);
fprintf(out_file, 11 %lf %lf 11 ,mm, -mm);
for(i=l; i<=T-1; ++i){

fprintf(out_file," %lf ",q);

for(i-2; i<-T; ++i){
fprintf(out_file, 11 %lf 11 ,-p*(T-(i-l))-suml[i]);

fprintf(out_file, 11 %lf 11 ,2*tot+mult);
fprintf(out_file, 11 \n 11

);

/***************************************
for creating the next T-1 equations
**/

for(i=l; i<=T; ++i)(

fprintf(out_file,"%lf %lf %lf %lf 11 ,p,-p,p*X[i],-p*X[i]);

for(j=3; j<=i; ++j)(
fprintf(out_file, 11 %lf 11 ,q);

if (i - 1)
fprintf(out_file," %lf ", -r);

else if(i= T)
fprintf(out_file," %lf ", r) ;

else
fprintf(out_ file," %lf %lf ", r, -r);

for(j - i+l; j<- T-1; ++j)(
fprintf(out_file , " %lf ",q);

for(k- 1; k<- i-1; ++k)(
fprintf(out_file , " %lf ", -h) ;

for(k=i; k<=T-1; ++k)(
fprintf(out_file," %lf ",q);

fprintf(out_file , " %lf \n ",2*Y[i]) ;

/********************************
for creating the last equation
********************************/

fprintf(out_file," %lf %lf %lf %lf",sum,-sum , square,-square) ;
for(i=l; i<=T-1 ; ++i)(

fprintf(out_file," %lf ", 1);
}

for(i=2; i<=T; ++i)(
fprintf(out_file," %lf" , - (suml [i])) ;

fprintf(out_file," %lf \n ",mult) ;

}/*main*/

!*****************/
/** PROGRAM2 **/
/*****************!

/***/
/* THIS PROGRAM SOLVES THE CONSTRAINED LEAST SQUARES PROBLEM.

IT USES THE MATRIX CREATED IN FILE' matrix' IN PROGRAMl.c */
/***/
/* THIS PROGRAM RUNS WITH THE COMMAND 'pivot' .

THE RESULTS ARE IN THE FILE NAME' results '.
***/
#include <stdio.h>
#define unmark -10

int bubble() ;
int chec [500] ;
int checl [500] ;

main()
{

double a[290][500] ,ratio[250] ,z[500] ,zrow[500];
double rl,r2,save , savel,hold,holdl,hold2,bet;
double e[250] ,lambda(20],beta(20] ,alpha[20] ,alp[250];
double diffl,diff2,difference,X[100] ,Y(lOO] ,solution;
int pivotno,rat,max,T,i,j,k,w,t,m,n,ml,nl,col;
int column[500] ,ans,cool,MAX,indexO,indexl,index2;
int cl,set,selectl,get,flag,coo,save2,save3;

/**/
/* FILE DEFINITIONS :*/

FILE *i_file,*ol_file,*oo_file,*o3_file,*in_file;
FILE *o2_file;

!**/
/* THIS FILE HAS THE SIZE OF THE MATRIX TO BE SOLVED

AND ALSO THE NUMBER OF DATA POINTS*/

ol_file=fopen("size.file","r");

/* READS THE SIZE OF THE MATRIX AND THE NO OF DATA POINTS*/
fscanf(ol_file," %d %d %d ",&ml,&nl,&T);

/* THIS FILE HAS THE FINAL SOLUTION FROM THE FINAL MATRIX*/
o2_file=fopen("results","a+");

/* THIS FILE HAS THE LATEST MATX AFTER THE PIVOT IS PERFORMED*/
i file= fopen("matrix", "r+");

/* TO READ THE MATRIX FROM THE matrix IN AN ARRAY a[][]*/
for(k=O ; k<= ml ; ++k){

for(t=O ; t<= nl ; ++t)(
fscanf(i_file," %lf ",&a(k] [t]) ;

}

diffl= a[O] [nl];
/**/

/*TO INITIALIZE THE ARRAY FOR THE CHECKING*/
for(i=O ; i<500; ++i)(

chec[i]=unmark;
checl[i]=unmark;

pivotno = O;

difference - 0.01;
/**/

/* THIS WHILE LOOP PERFORMS THE PIVOT TILL Z IS GREATER THAN 0.00001,
OR WHEN THE VALUE OF Z STOPS IMPROVING MUCH AFTER IT IS CONSIDERABLY

SMALL*/
while(difference >- 0.00001){

save2=0;
save3=0;
set=O;
pivotno=pivotno + l;

/* to find the total no of pivots performed*/
for(i-0; i<nl; ++i){

column[i]-i;

/**/
/* TO READ THE ROW O IN THE ARRAY zrow TO BE SORTED*/

for(i=O; i<=nl; ++i){
zrow[i]=a[O] [i];
z [i] =a [0] [i] ;

}

flag=O;
max=O;

/**/
/* THE FUNCTION bubble SORTS THE ROW O AND SAVES THE

COLUMN NOS OF THE SORTED ROW IN THE ARRAY col*/
bubble(zrow,column,nl);

/**/
/* THE FOLLOWING MODULE HELPS IN CHOOSING THE COLUMN

TO PERFORM THE PIVOT ON ACCORDING TO THE WOLFE'S METHOD .*/
/* THE FLAG IS SET WHEN THE COLUMN ON WHICH THE PIVOT IS

TO BE PERFORMED IS FOUND*/
/* THE ARRAY chec[] and checl[] HELPS TO KEEP _ TRACK OF THE

COLUMNS WHICH ARE IN THE BASIS AND IT ALSO KEEPS TRACK
OF WHICH VARIABLE IS IN WHICH ROW*/

while(flag=O) {
col=column[max];

/* If the value of the column in z-row is almost zero we
don't perform the pivot and set the flag*/

if(z[col]<=.0000001){
set-unmark;

}

if(col<4){
flag=l;

}

for(i=O; i<=nl; ++i){
if(checl[i]~col){

save3=unmark;

if(save3 !- unmark){
if(set !- unmark){

chec[col]=col;

if(col>=4){
if(col<=4+T-2){

coo=col+T-1;
max= max+ l;

)

if(chec[coo]=unmark){
if(set != unmark){

chec[col)=col;
flag=l;
chec[coo]=lOO;

if(col>=4+T-l){
if(col<4+2*T-2){

coo-col-T+l;
max - max+ l;

if(chec[coo]=unmark){
if(set !- unmark){

chec[col]=col;
flag=l;
chec[coo)=lOO;

)/* while*/

/**/
/* THE SELECTION OF COLUMN ENDS HERE*/
/**/
/* NOW WE DECIDE ON THE ROW TO PERFORM THE FINAL PIVOT

ON THE BASIS OF MINIMUM RATION RULE , rl CONTAINS
THE ELEMENT OF THE LAST COLUMN AND r2 CONTAINS THE
ELEMENT OF THE SELECTED COLUMN*/

if(set !- unmark){
for(k=l; k<=ml; ++k){

rl= a[k] [nl];
r2=a[k] [col];

if(r2 != 0 .0){ /* to avoid division by zero*/
ratio[k]=rl/r2;

else
ratio[k]=l000000.000;

/**/

for(i=l; i<=ml; ++i){
if(ratio[i]<O.O) /* to avoid the negative ratio*/

ratio[i]=l000000.00;

!**/

/* THIS
I*

PART FINDS THE MINIMUM OF THE RATIOS IN THE ARRAY ratio[]*/
THE MINIMUM RATION RULE*/

save=ratio[l];
selectl=l;
for(i=2; i<=ml;++i)
{

if(ratio[i] < save)(
save=ratio[i];
selectl=i;

/**/
/* THIS PART TAKES CARE OF THE UNMARKING OF THE COLUMNS

IN CASE AFTER SOME PIVOTS, ACCORDING TO WOLFE'S METHOD,
THE VARIABLE WHICH COULD NOT ENTER AT SOME POINT CAN
NOW ENTER*/

/* If the column re-enters the basis then we set
flag save3 */

m=selectl;
n=col;
for(i=O; i<=nl; ++i)(

if(checl[i]-n)(
save3=unmark;
chec[i]=m;

/**/

if(save3!=unmark)(

chec[n]=m;

for(i=O; i<=nl; ++i)(
if(chec[i]=m)(

chec[i]=unmark;
checl[i]=n;
if(i>=4)(

if(i<- 4+T-2)(
cool-i+T-1;

chec[cool]=unmark;
}

if(i>4+T-l)(
if(i<=4+2*T-2)(

cool=i-T+l;
chec[cool]=unmark;

}

printf(" %d %d \n\n",m,n);
/**/

/* TUCKER-UPDATION and GAUSSIAN ELIMINATION METHOD TO GET
THE NEXT TABLEAU: */

hold = a [m] [n];
for(k=O ; k<=nl; ++k)

if(k=n)(
a[m][n]=l/a[m] [n];

else
a[m] [k] a[m][k]/hold;

for(i=O ; i < m; ++i)(
hold2=(-(a[i][n]));
for(j-O ; j<-(nl) ; ++j) (

if(j=n) (
a[i] [j]=a[i] [j]/-hold;

}

else
a[i] [j] ~ a[m] [j] * hold2 + a[i] [j];

}

for(i=(m+l); i<- ml ; ++i){
holdl-(-(a[i] [n]));
for(j-0 ; j<=nl ; ++j){

if(j=n) {
a[i] [j]=a[i] [j]/-hold;
}

else
a[i] [j] - a[m] [j] * holdl + a[i] [j];

}

i file= fopen("matrix", "w");

for(k=O ; k<- ml ; ++k){
for(t-0 ; t<- nl ; ++t){
fprintf(i_file, "%lf ",a[k] [t]);
}

fprintf(i_file," \n ");

fclose(i_file);
i_file= fopen("matrix", "r+");
for(k=O ; k<- ml ; ++k){

for(t-0 ; t<- nl ; ++t){
fscanf(i_file," %lf ",&a[k][t]);

}

fclose(o2_file);
}/*set*/
diff2=a[O] [nl];
difference= diffl - diff2;
diffl - diff2;
if (diffl <= .00001){

difference= 0.0000001;

if (diffl >- .001){
difference - 0.001;

if(set-unmark){
printf(" the set is unmarked \n ");
difference-.0000001;

}/* while*/
o2_file=fopen("results","w");

/**/

/* TO WRITE THE FINAL SOLUTION IN THE FORM OF THE EQUATIONS WE
FIND THE VARIABLES THAT ARE IN THE BASIS AND EVALUATE ALPHA AND
LAMBDA AND BETA AND PUT THEM IN THE EQUATION FORM*/

for(i=O; i<=l; ++i){
ans=chec [i] ;
indexO=i+l;
if(ans!-100){

alpha[indexO]=a[ans] [nl];

else{

alpha[index0]=0.00000;

}

for(i- 2; i<- 3; ++i){
ans=chec [i] ;
indexl- i-1;
if(ans! - 100){

beta[indexl]=a[ans][nl];

else{
beta[indexl]=0 . 00000;

}

for(i=4; i<=4+T-2;++i){

}

ans-chec [i] ;
if(ans!=lOO){

lambda[i -3]=a[ans][nl];

else{
lambda[i-3]=0 . 00000;

for(i=4+T-l; i<=4+2*T-2 ; ++i){

ans=chec [i] ;
index2-i-T-2;
if(ans! - 100){

e[index2]=a[ans][nl] ;

else{
e[index2]=0 . 00000;

}

alp[l]=alpha[l]-alpha[2];

/* printf("the val of alpha %lf \n",alp[l]); */

bet=beta[l] -beta[2];
/* printf("beta val %lf \n " ,bet) ; */
for(i=2 ; i<=T; ++i){

alp[i]=alp[i-1] -e[i - l];
}

for(i- 1 ; i<- T; ++i){
if(bet <0. 0) {

fprintf(o2_file," %d. yt - %lf %lf xt\n ",i,alp[i] ,bet);
}

else

fprintf(o2_file," %d. yt = %lf + %lf xt\n ",i,alp[i],bet);
}

fprintf(o2_file, "\n \n") ;
fprintf(o2 file," TOTAL NO OF PIVOTS PERFORMED : %d ",pivotno) ;

l/* main*/ -
/**/

/* THIS FUNCTION PERFORMS BUBBLE SORT ON THE ELEMENTS IN THE FIRST
ARGUMENT AND SAVES THEM ACCORDING TO THE COLUMN NUMBERS*/
int bubble(x,co , SIZE)
double x[];
int SIZE,co[];

int i,j,temp;
daub le temp 1 ;

for (i = O; i < SIZE - l; ++i){ /* bubble sort*/
for (j = SIZE - 1; j > i; - -j) {
if (x[j - l] < x[j]) { /* check the order*/

temp - co[j - l];
templ-x [j -1] ;
co[j - l] - co[j];
X [j - 1] =X [j] ;
co [j] - temp ;
x [j]-templ;

/**/

