

Design and Analysis of an FPGA Based Low Tap Band-stop FIR Filter

by

Lucas Rosler

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in Engineering

in the

Electrical Engineering

Program

YOUNGSTOWN STATE UNIVERSITY

May 2021

Design and Analysis of an FPGA Based Low Tap Band-stop FIR Filter

Lucas Rosler

I hereby release this thesis to the public. I understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library Circulation Desk for
public access. I also authorize the University or other individuals to make copies of this
thesis as needed for scholarly research.

Signature: _______________________________ Date: __________

 Lucas Rosler, Student

Approvals:

 _______________________________ Date: __________

 Frank X Li, Thesis Advisor

 _______________________________ Date: __________

 Faramarz Mossayebi, Committee Member

 _______________________________ Date: __________

 Edward Burden, Committee Member

 _______________________________ Date: __________

 Dr. Salvatore A. Sanders, Dean of Graduate Studies

iii

Abstract

The use of Field Programmable Gate Arrays (FPGAs), although a newer

technology, has paved its way to become a cornerstone of Digital Signal Processing

(DSP). FPGAs have a wide variety of uses, offering the user the ability to create

customized hardware at the gate level in the matter of minutes. Comprised of thousands

of Logic Elements (LEs) and Adaptive Logic Modules (ALMs), the uses of FPGAs are

endless. Through the continued research of simple circuitry, the speed and efficiency of

more complicated designs will improve. In this thesis, the digital filter, a crucial aspect

of DSP, is designed, analyzed, and implemented. Using MATLAB filter designer,

ModelSim, and Quartus Prime a low tap band-stop filter was designed and synthesized

using VHDL codes. The digital filter was simulated then analyzed with a focus on

filtering performance, hardware usage depending on filter order, and slack reduction

through state machine formatted code. The results of the experiment show a working

filter along with a full analysis of situational performance results. These include higher

order filters using more hardware than lower order filters, state machine formatted code

using more ALMs and less registers than non-state machine formatted code, and state

machine formatted code reducing slack compared to that of the non-state machine

formatted code.

iv

Table of Contents
Abstract .. iii
List of Figures .. v
List of Tables .. vii
Acknowledgements .. viii

CHAPTER 1 RESEARCH AREAS FOR FPGA BASED FIR FILTERS
1.1 Project Objectives .. 1
1.2 Research Question ... 1
1.3 Thesis Overview .. 1

CHAPTER 2 DIGITAL FILTER AND FPGA LITERATURE REVIEW
2.1 Introduction .. 3
2.2 Digital Filters ... 3

2.2.1 FIR vs IIR Filter .. 3
2.2.2 Sampling Rate .. 4

2.3 Hardware Elements .. 5
2.4 FPGA Programming .. 5

2.4.1 Fixed-Point vs Floating-Point ... 5
 2.4.2 Data Pipelining.. 6

2.4.3 Edge Detection .. 7
2.5 Slack ... 8

CHAPTER 3 METHODOLOGY
3.1 Hardware and Software tools ... 9

3.1.1 MATLAB .. 9
3.1.2 ModelSim .. 10
3.1.3 Quartus Prime and Cyclone V DE-10 Standard ... 10

3.2 Digital Filter Design .. 10
3.2.1 MATLAB Filter Design .. 10
3.2.2 VHDL Filter Design ... 14

3.3 Filter Simulation .. 18
3.4 Filter Implementation... 25
 3.4.1 ADC Control Module ... 26
 3.4.2 Physical Implementation ... 27
3.5 State Machine Format .. 34
3.6 Higher Order Filter .. 35
3.7 Quartus Prime Analysis ... 38
 3.7.1 Hardware Analysis .. 38
 3.7.2 Slack Analysis ... 43

CHAPTER 4 CONCLUSION
4.1 Conclusion ... 46

Appendix ... 48
Bibliography ... 63

v

List of Figures

Figure 1: FIR Structure………………………………………………………………...4
 Figure 2: IIR Structure………………………………………………………………....4
Figure 3: Edge Detection Using Gates...………………………………………………...7
Figure 4: MATLAB Filter Designer Default Screen…………………………………..9
Figure 5: 13-Coefficient Filter Frequency Specifications…………………………….11

 Figure 6: 13-Coefficient Filter Magnitude Response…………………………………12
Figure 7: 13-Coefficient Filter Impulse Response……………………………………..13
Figure 8: 13-Coefficients for Filter…………………………………………………...13
Figure 9: Stored Filter Coefficients……………………………………………………15
Figure 10: Data Pipelining……………………………………………………………15
Figure 11: VHDL Clock Divider……………………………………………………..16
Figure 12: Gate Edge Detect………………………………………………………….16
Figure 13: Negative Value Solution…………………………………………………..17
 Figure 14: Test Data Code……………………………………………………………18
Figure 15: Test Data Visualization…………………………………………………….19
Figure 16: VHDL Test Data Extraction….…………………………………………..20
Figure 17: 60Hz Filter Simulation…………………………………………………….20
Figure 18: 60Hz Combined with 1KHz Filter Simulation……………………………21
Figure 19: 5KHz Filter Simulation……………………………………………………21
Figure 20: 60Hz Combined with 5KHz Filter Simulation……………………………22
 Figure 21: 3.7KHz Filter Simulation………………………………………………....23
Figure 22: 60Hz Combined with 3.7KHz Filter Simulation………………………….24
Figure 23: 6.3KHz Filter Simulation………………………………………………….24
Figure 24: 60Hz Combined with 6.3KHz Filter Simulation………………………….25
Figure 25: ADC Control Module Simulation…………………………………………..27
Figure 26: Pin Assignments…………………………………………………………….28
Figure 27: Experimental Setup…………………………………………………………28
Figure 28: 1KHz Sinusoidal Test Wave………………………………………………..29
Figure 29: 1KHz Test Wave LED Output…………………………………………...…29
Figure 30: 3.7KHz Sinusoidal Test Wave……………………………………………...30
Figure 31: 3.7KHz Test Wave LED Output……………………………………………30
Figure 32: 5KHz Sinusoidal Test Wave………………………………………………..31
Figure 33: 5KHz Test Wave LED Output……………………………………………...31
Figure 34: 6.3KHz Sinusoidal Test Wave……………………………………………...32
Figure 35: 6.3KHz Test Wave LED Output……………………………………………32
Figure 36: 8KHz Sinusoidal Test Wave………………………………………………..33
Figure 37: 8KHz Test Wave LED Output……………………………………………...33
Figure 38: 25-Coefficient Filter Frequency Specifications…………………………..35

 Figure 39: 25-Coefficient Filter Magnitude Response……………………………….36
Figure 40: 25-Coefficient Filter Impulse Response…………………………………...36
Figure 41: 13-Coefficicent Non-State Machine Hardware Usage…………………...38

vi

Figure 42: 25-Coefficient Non-State Machine Hardware Usage…………………….39
Figure 43: 13-Coefficient State Machine Hardware Usage………………………….40
Figure 44: 25-Coefficient State Machine Hardware Usage………………………….41
Figure 45: Visual Hardware Summary………………………………………………42
Figure 46: 50MHz Non-State Machine Slack Analysis………………………………43
Figure 47: 50MHz State Machine Slack Analysis……………………………………43
Figure 48: 100MHz Non-State Machine Slack Analysis……………………………..44
Figure 49: 100MHz State Machine Slack Analysis…………………………………..44

vii

List of Tables
Table 1: Fixed-Point Notation Calculation………………………………………….14
Table 2: Fixed-Point Notation Calculation for Higher Order Filter………………….37

viii

Acknowledgement

I would like to first and foremost thank my family and friends for their support

throughout my academic career. To my parents, Vance and Barb, I owe everything for

giving me the opportunity to pursue my passions and making me the man I am today.

To my siblings, Colin, Leah, Ben, and Isaac, thank you for all your support. Thanks to

Mirella for listening to me complain and critiquing my poor writing.

I would also like to thank everyone at Youngstown State University more

specifically, my master’s advisor Dr. Li for your knowledge and guidance along the

way. Also, thank you to my committee members Dr. M and Professor Burden for

taking the time to help me achieve my academic goals.

1

Chapter 1 Research Areas for FPGA Based FIR Filters

1.1 Project Objectives

The main project objective was to design, code, simulate, analyze, and implement a

Field Programable Gate Array (FPGA) based low-tap band-stop Finite Impulse Filter

(FIR) filter using VHDL. First, with MATLAB filter designer, a 13-coefficient band-stop

FIR filter was designed. Using this design, an implementable filter was programmed

using VHDL code followed by a successful functionality simulation and demonstration

with a DE-10 Standard FPGA board through Quartus Prime. Upon completion, this same

VHDL design was used to create a replica FIR filter with 25 filter coefficients in order to

analyze the difference in hardware usage between the two. Next, the original filter design

was altered into state machine format to analyze the slack reduction between the state

machine format design and the non-state machine format design. The final step was to

simulate the slack in Quartus Prime to demonstrate the slack reduction.

1.2 Research Question

Through the design, simulation, and implementation of a low-tap band-stop FIR filter,

the analysis of hardware usage depending on filter order and the usefulness of state

machine formatted code with a focus on the change in slack is the primary research goal

of this thesis.

1.3 Thesis Overview

The thesis is split up into four chapters. The first chapter covers what the project is

over and the main research question within the thesis. Chapter two is a literature review,

going over background information that was used throughout the design and

implementation of the project. The third chapter covers the actual design, simulation, and

2

implementation process along with giving any findings from the process. The final

chapter combines the information and gives a conclusion based on the findings.

3

Chapter 2 Digital Filter and FPGA Literature Review

2.1 Introduction

 Digital filtering is a diverse subject that can be accomplished in many different

forms using many different methods. By using electronics, along with their computation

powers, a digital filter can be used to cancel nearly any frequency range. There are

multiple types of digital filters, infinite specifications, a wide array of electronics

platforms where digital filtering can be performed, and varying methods of filtering

within those platforms.

2.2 Digital Filters

2.2.1 FIR vs IIR Filter

 Digital filters are generally classified as Finite Impulse Response (FIR) and

Infinite Impulse Response (IIR). While there are advantages and disadvantages to using

each type of filter both are valid methods of digital filtering.

 The FIR filter is generally seen as the most commonly used type of filter for

digital filtering. Major reasons behind this are that FIR filters are always stable and do

not use a recursive method when performing computations. They are easier to program

and more predictable, but this generally creates a need for higher filter orders to perform

the same filtering as IIR filters which use a recursive method [12]. The non-recursive

method increases the likelihood of being able to use fixed-point formatting because the

main fractional numbers are the pre-known coefficients. FIR filters are created by

running an input signal and delayed input signal through several multipliers and adders

[11]. The basic structural makeup of a FIR filter is given in Figure 1 with Z-1 representing

a delay, and bn representing the coefficient values.

4

Figure 1: FIR Structure

 IIR filters are used less in digital filtering because of their recursive behavior

causing the programmer to need, most likely, to use floating point numbers. This makes

fractional values more difficult to keep track of than fixed-point numbers. IIR filters are

also less numerically stable than FIR filters. This is caused by using feedback paths [1].

A basic example of an IIR filter structure is given in Figure 2.

Figure 2: IIR Structure

2.2.2 Sampling Rate

 The sampling rate, or sampling frequency, is a fundamental aspect of any digital

filter. It is the rate at which samples from an analog input are taken and fed into the

digital filter. Sampling rate is the samples taken per second. This rate alters every aspect

of the filter including possible cutoff frequencies and filter coefficient values [7]. One

5

matter of importance when considering sampling rate is the Nyquist theorem. The

Nyquist theorem states that the sampling frequency must be at least equal to or greater

than twice the frequency of interest [8]. If this criterion is not met, then the signal being

sampled can be misrepresented in digital form making it unusable. The formula is

represented by Equation 1.

𝑓 = (1)

2.3 Hardware Elements

 FPGAs have a variety of hardware components that are combined and

interconnected to turn software into hardware. These basic building blocks are the

foundation of an FPGAs functionality. The main hardware component within an FPGA is

the Configurable Logic Block (CLB). A CLB consists of two different types of hardware,

Flip-Flops, and Look-Up Tables (LUTS). These make up the base of an FPGA and are

the blocks used most by the programmer. Another hardware aspect of FPGAs are DSP

blocks. DSP blocks are prebuilt multiplier circuits that are used to decrease the usage of

Flip-Flops and LUTs when a large number of multipliers are being used. This allows the

Flip-Flops and LUTs to be utilized elsewhere in the software. Both RAM and

Input/Output (I/O) blocks are other hardware components within an FPGA. RAM is used

to store information, such as data sets, while I/O blocks connect the FPGA to the physical

world. Both components allow FPGAs to be more practical to the real world making

them more useful in industry [6].

2.4 FPGA Programming

2.4.1 Fixed-Point vs Floating-Point

 There are two main methods for using fractional bits in binary form, fixed-point

6

notation, and floating-point notation. There are both advantages and disadvantages to

using each.

 Fixed-point notation uses a pre-set shift value to scale up and down fractional bits.

It uses constant scaling as opposed to floating-point numbers which use dynamic scaling.

This notation consists of a sign bit, decimal segment, and fractional segment. The

programmer needs to keep track of this pre-set shift value so the changes can be

counteracted to return the value to its original state once calculations using the value are

completed. Fixed-point notation is easy to track but does not allow for the user to

implement numbers of extreme magnitudes. This can be limiting to the user depending on

the values that they need to store. This notation is very fast when working with base two

numbers [3].

 Floating-point numbers are very similar to fixed-point numbers but differ in the

fact that extra storage is needed to track the magnitude and magnitude change of the

value. This generally makes using floating-point numbers more difficult for the

programmer because they have an extra value to keep track of. They consist of a sign bit,

exponent portion, and mantissa portion. Floating-point numbers, unlike fixed-point

numbers, can be used with values of larger magnitude, making them more versatile than

fixed-point numbers. This notation is slower than fixed-point numbers especially when

working with base two numbers [3].

2.4.2 Data Pipelining

 Data pipelining is the process of collecting, storing, filtering, utilizing, and

deleting data in a system. There are many types of data pipelining that change in

7

complexity depending on the users and system’s needs [13]. Generally, relevant data is

collected and stored within the system. That data is then filtered through, removing any

anomalies that could have a negative effect on the systems functionality. This filtered

through data is then utilized within the system allowing it to learn and adapt [2]. From

here the used data can either be stored, if still relevant, or removed from the system to

allow for more storage space to become available for future data. This process keeps

systems relevant and up to date.

2.4.3 Edge Detection

 Edge detection using an FPGA is integral for the completion of meaningful code.

In VHDL, a rising or falling clock edge function can be used to detect if the system clock

has just risen or fallen. These rising and falling clock edge functions cannot be used with

non-clock signals. Instead, a basic gate circuit can be implemented that informs the user

if the edge is rising for falling. All that is needed for this circuit to work is the previous

signal value and the current signal value. From here, those values are run through an

inverter as well as an AND gate. The circuit used for edge detection is given in Figure 3.

Figure 3: Edge Detection Using Gates

Figure 3 shows a basic rising edge detection circuit. If the previous signal was set to zero

and the current signal was set to one, then the output from the AND gate would be equal

to one. On the next clock cycle, after the edge is detected, both the previous and current

signals will be set to one causing the output of the AND gate to fall to zero. To detect a

8

falling edge of the signal, the inverter would be placed on the current input rather than the

delayed input.

2.5 Slack

 Slack is the amount of time between when a signal leaves one register within an

FPGA design, travels across a connect, and enters into the next register. A positive slack

indicates that the signal had enough time to make it from one register to the next register

before a second system clock period begins [10]. A more positive slack means that this

signal had more time to spare from one register to the next. A negative slack indicates

that the signal left the original register but did not have enough time between system

clock edges to make it to the next register. This leaves the next register at some

intermediate value that has the possibility of being unreadable. The main way to fix a

negative slack is to add registers between existing registers. This means that less

information will need to be processed after each clock edge [10]. By coding in a state

machine format, the programmer can control the number of clock edges required to

complete a process by placing each function in a separate state; therefore, giving them

more control over the amount of slack within each clock period. Reducing negative slack

is not the only goal in slack reduction, increasing positive slack is as well. With a more

positive slack the system can be run at higher system clock speeds. This can make an

entire system more efficient and effective in completing its designed task.

9

Chapter 3 Methodology

3.1 Hardware and Software Tools

3.1.1 MATLAB

 MATLAB, more specifically MATLAB Filter Designer, was first used during the

FIR filter design. This software allows the user to create completely customized filters

followed by giving an analysis of the filter. For the purposes of this thesis, the Response

Type, Design Method, Filter Order, and Frequency Specifications settings were all used

to create the desired filter. The Response Type setting allows the user to select the type of

filter that is being created. The Design Method allows the user to choose between an IIR

and FIR filter as well as the design method. The Filter Order setting permits the user

select the desired number of filter coefficients. Lastly the Frequency Specifications

allows the user to set the characteristics of the filter [4].

Figure 4: MATLAB Filter Designer Default Screen

10

 Once designed, the filter can be analyzed by the software. The Frequency

Response, Impulse Response, and Filter Coefficients were found using the software’s

analysis capabilities.

 The simulation portion also used MATLAB to create a text file with test waves to

simulate the programmed filter at different frequencies. The text file was created using

the cosine function, recording values at a certain sampling frequency.

3.1.2 ModelSim

 The ModelSim software gives the user a programming environment which then

allows the user to simulate behavioral, RTL, and gate-level code [9]. ModelSim was used

to create and debug the digital FIR filter in VHDL. Once created, a testbench was made

in ModelSim that fed waveforms to the filter allowing the code to be simulated and

analyzed at varying frequencies.

3.1.3 Quartus Prime and DE-10 Standard

 Quartus Prime is a software that provides everything necessary to design and

implement FPGA logic [5]. For the purposes of this thesis, the Synthesis and Timing

Analysis capabilities of Quartus Prime were used. When initially creating a project, a

specific board is selected that the user’s code can be uploaded to, allowing the software to

determine the percentage of hardware used on the board. The Cyclone V DE-10 Standard

was the selected board which includes a 12-bit ADC, ARM Cortex-A9 Dual-Core

processor, 110,000 LEs, and 41509 ALMs [14].

3.2 Digital Filter Design

3.2.1 MATLAB Filter Design

 The first step in the process was creating a band-stop filter using MATLAB Filter

11

Designer. The chosen filter type was a FIR filter as they are more code friendly than IIR

filters due to IIR filters’ recursive nature. The designed filter’s goal was to filter out a

signal with a frequency of 5KHz with a user selected sampling frequency of 25KHz,

which is more than double the desired filtering frequency. One of the main points of

focus was creating a filter that uses a limited amount of hardware, implying that it needed

to be a low-tap filter. To accommodate this, the number of filter coefficients was limited

to 13. A side-effect of limiting the number of coefficients was a decrease in filter

performance compared to one that contained many filter coefficients. One aspect of the

diminished performance is that the low-tap filter contained more of a gradual upper and

lower transition band than that of a filter with a high coefficient count. These gradual

transition bands increased the bandwidth of the filter. Another aspect that was taken into

consideration when choosing the cutoff frequencies was having a low amount of

passband ripple. Taking all of this into consideration and through trial-and-error, the

lower cutoff frequency (fL) was set to 3.7KHz and the upper cutoff frequency (fH) was set

to 6.3KHz.

Figure 5: 13-Coefficient Filter Frequency Specifications

12

The filter was created using the windowing method utilizing the frequency specifications

shown in Figure 5. MATLAB filter designer allows the user to select the type of

windowing for the design and the Kaiser method was chosen. With the Kaiser windowing

method both the passband and stopband ripple sizes are only minorly effected by any

alteration in the window length. Through the filter designer, a frequency response for the

filter was obtained, as shown in Figure 6, giving a visual reference of the filter’s

performance.

Figure 6: 13-Coefficient Filter Magnitude Response

 As shown by the frequency response of the filter, in Figure 6, there is limited

passband ripple while there is a more significant amount of stopband ripple. The

stopband ripple should not diminish the filters performance as it has a worst-case a

magnitude of about -35dB. The magnitude response also gives a visual indicator of the

gradual slope of the transition band. Next, the impulse response and coefficients of the

filter were analyzed, given in Figure 7 and Figure 8.

13

Figure 7: 13-Coefficient Filter Impulse Response

Figure 8: 13-Coefficients for Filter

 The impulse response shown in Figure 8 displays the graphical representation of

the filter coefficients in Figure 8. One item of importance is that the magnitude of the

filter coefficients are all within a range of 0.88283 of each other. This will be a main

factor when deciding whether to use fixed-point or floating-point numbers in the VHDL

design. Another important item is that the filter coefficients involve both positive and

negative numbers. When coding the filter, signed numbers will need to be used

throughout the VHDL design and thus need to be converted to unsigned logic vectors

before being sent to a Digital-to-Analog Converter (DAC) for real world use.

14

3.2.2 VHDL Filter Design

 Once the design of the low tap band-stop FIR filter was completed, the next step

was creating the filter in the ModelSim environment using VHDL. As noted previously,

the filter coefficients were positive and negative decimal values all near the same

magnitude, making fixed-point notation with two’s complement the best option for

implementing the coefficients within the code. Using Excel, the filter coefficients were

transformed into usable binary numbers, the process being shown in Table 1.

Table 1: Fixed-Point Notation Calculation

Filter
Coefficients

Coefficient *
2^N

Rounded
Signed 12-bit
Coefficients

-0.03298 -16.88536959 -17 111111101111
-0.14082 -72.09882695 -72 111110111000
-0.05343 -27.35732554 -27 111111100101
0.16240 83.14793945 83 000001010011
0.17981 92.062619 92 000001011100
-0.07289 -37.3174202 -37 111111011011
0.91581 468.8967677 469 000111010101
-0.07289 -37.3174202 -37 111111011011
0.17981 92.062619 92 000001011100
0.16240 83.14793945 83 000001010011
-0.05343 -27.35732554 -27 111111100101
-0.14082 -72.09882695 -72 111110111000
-0.03298 -16.88536959 -17 111111101111

The first step in calculating the signed 12-bit filter coefficients from the decimal filter

coefficients was entering the decimal filter coefficients into Equation 2.

𝑆𝑐𝑎𝑙𝑒𝑑 𝐹𝑖𝑙𝑡𝑒𝑟 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝐹𝑖𝑙𝑡𝑒𝑟 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ 2 (2)

In Equation 2, N was chosen to be nine allowing there to be one signed bit as well as two

whole number bits adding together to give the overall 12-bits. The two whole number bits

were unused; however, they were installed for ease of use in the case of filter alterations.

15

Once calculated, the scaled filter coefficients then needed to be rounded to the nearest

whole number. From there, the numbers were transformed into 12-bit signed form with

the application of two’s complement.

 Following the conversion of the filter coefficients, these values were then entered

into the filter’s VHDL codes, in array format, under the name coeffs as performed in

lines 1 and 4 of Figure 9.

Figure 9: Stored Filter Coefficients

Note that in Figure 9, the populating of the array coefficient, in line 4, is cut off as there

are too many values to fit in a single image. Next, as 12-bit values were entered from the

Analog-to-Digital Converter to the filter entity, data pipelining was carried out to store

the necessary 13 input values in chronological order. The values were first converted into

type signed before being stored for future use. At each rising edge of the sample clock, all

the coefficient values were needed to calculate the output value of the filter at any given

moment. The use of data pipelining was demonstrated in the code from Figure 10.

Figure 10: Data Pipelining

Since data was entered at the sampling frequency of 25KHz and the default clock

speed of the DE-10 Standard board is 50MHz, the system clock frequency needed to be

divided to ensure the timing of the VHDL filter was lined up with timing of the

MATLAB designed filter. This was done using the clock dividing technique of counting

several 50MHz clock cycles and creating a toggle after a certain period of time of a

16

sample clock variable. The technique is shown in Figure 11.

Figure 11: VHDL Clock Divider

In Figure 11, frequency sample is increased at every rising edge of the system clock.

Once frequency sample reaches the desired value, frequency sample is reset which will

be followed by the sample clock toggle. To find the desired value that frequency sample

must equal, both the system clock frequency and the sampling frequency were used in

Equation 3.

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑠𝑎𝑚𝑝𝑙𝑒 =
(

)
 (3)

It should be noted that division by two was used since the system was run on only rising

clock edges and not any falling clock edges, meaning only half of the clock period was

needed. While the use of rising_edge() is acceptable when referring to the system clock, it

cannot be used with any clock created by clock division. Instead, the newly divided clock

used registers and gates to calculate when a rising edge occurred. By storing both the

previous (sample_clk_delay) and current (sample_clk) values of the newly divided clock

into registers, then running them through a simple inverter and AND gate, the type of

edge change can be determined. This process is produced in the code in Figure 12.

Figure 12: Gate Edge Detect

17

 From here, based upon the sample clock, the multiplication and addition of the

FIR filter were performed using the input signal and filter coefficients. One problem that

occurred throughout the process was after the filter calculations, a very small negative

number was output from the filter. Since the FPGA being used can only have positive

voltages, a negative output will not be functional. Likely causes of this are passband

ripple or errors due to filter coefficient rounding. The developed solution to this issue was

a simple software fix. The process of this solution is first checking if the output value was

going to be negative by investigating the signed bit and then placing the output value at

zero if the value was negative. If this problem did not occur and the output was a positive

value, then the output was turned from a signed value into a logic vector value. Next, to

account for the fixed-point notation of the filter coefficients, the output value was shifted

right logical by the previously determined value of 9. This negates the previous

alterations made to the filter coefficients. Both the software fix for the output of small

negative numbers as well as the fixed-point transformation are demonstrated in the code

illustrated in Figure 13.

Figure 13: Negative Value Solution

 The variable filtered_signal is the 24-bit digital output that will be fed into a DAC

before being output from the FPGA. A 24-bit output was selected because that is the

resolution of the DAC on the DE-10 Standard board while an input of 12-bits was chosen

because that is the resolution of the ADC on the DE-10 Standard board.

18

3.3 Filter Simulation

 To simulate the band-stop filter, MATLAB was used to create a text file

populated with data that was then fed to the filter entity using a testbench. To create the

data in MATLAB, the sampling frequency was applied to find the amount of time

between when samples would be taken. From here, a time vector was created and utilized

along with the cosine function and desired wave frequency to generate a test wave. The

data was shifted to be positive, and its magnitude increased to ensure a more complete

usage of the 0V to 5V range that the FPGA being used is capable of. The outcome was a

vector populated with 125,000 test values. Each point along this test wave was then

exported to a text file which was then saved in the FIR filter’s project folder. This process

is demonstrated in Figure 14, while a 5.6KHz test wave was plotted and is shown in

Figure 15.

Figure 14: Test Data Code

19

Figure 15: Test Data Visualization

The next step in the simulation process was importing the newly created test data

into ModelSim followed by feeding it to the FIR filter entity. By creating a testbench and

using the readline function along with the read function within ModelSim, the data was

able to be extracted from the text document. Next, that data was turned into a 12-bit logic

vector which was then sent to the filter as the unfiltered signal input. This entire

extraction process needed to be timed up with the sampling frequency to ensure there

would not be a misrepresentation of test data. This was done by executing the data

extraction on the rising edge of a created 25KHz sample clock signal. The creation of the

filter test input signal is given in Figure 16.

20

Figure 16: VHDL Test Data Extraction

 From here, using a 50Mhz system clock signal as well as clearing the filter reset

bit, several sinusoidal waves were tested at frequencies of interest using ModelSim.

These frequencies were selected using the desired frequency filtering values for the band-

stop filter. The first of these frequencies being 60Hz. This frequency was selected to

show that the filter allowed frequencies outside of the range of interest to pass through

with minimal alteration. The resulting simulation is shown in Figure 17.

Figure 17: 60Hz Filter Simulation

In Figure 17, there is negligible modification to the wave due to the filtering excluding

the several initial values after the reset bit is cleared. Once there was enough data, the

filter entered into a steady state with only a slight delay. Another method of

demonstrating the filter is by combining two waves, one with the frequency being tested

Clk

Sample Clk

Reset Unfiltered Input

Filtered Output

21

and another with a completely passable signal. The passible signal was selected to be

60Hz while the second signal was selected to be 1KHz. It was expected that for this

scenario since both waves’ frequencies are outside of the filters bandwidth the unfiltered

input will be the exact same as the filtered output. The results are shown in Figure 18.

Figure 18: 60Hz Combined with 1KHz Filter Simulation

In Figure 18, as expected both the input and output waves were identical.

The next frequency of interest was 5KHz. Any value at this frequency should

have been filtered out. The outcome of the simulation is given in Figure 19.

Figure 19: 5KHz Filter Simulation

 As shown in Figure 19, there is an extended initial delay compared to that of the

Clk

Sample Clk

Reset Unfiltered Input

Filtered Output

Clk

Sample Clk

Reset Unfiltered Input

Filtered Output

22

non-filtered frequency; however, the 5KHz wave was successfully filtered. Once in

steady state, there was a slight oscillation between three bits meaning that there was not

complete filtering. This is due to real world factors, one of which is rounding. Next, the

filter was tested by combing two separate signals. The passible signal was selected to be

60Hz while the second signal was selected to be 5KHz. It was expected that for this

scenario that the 5KHz signal would be filtered out leaving only the 60Hz. The results are

shown in Figure 20.

Figure 20: 60Hz Combined with 5KHz Filter Simulation

As expected, Figure 20 shows the 5KHz portion from the wave being filtered out.

The next values that were examined were that of the upper and lower cutoff

frequencies, being 3.7KHz and 6.3KHz, respectively. These are points of interest because

there was expected to be some alteration to the wave, while there was not expected to be

complete filtering. The simulation of the 3.7KHz wave is provide in Figure 21.

Clk

Sample Clk

Reset Unfiltered Input

Filtered Output

23

Figure 21: 3.7KHz Filter Simulation

 As expected, the 3.7KHz input signal did not run through the filter without

alteration. While the signal is recognizably a sinusoidal shape, it clearly differs by a range

of magnitude from 60%-80% of the original signal. Not only was the peak-to-peak value

reduced, but the entire signal was compromised. It should be noted that the output signal

does begin to repeat itself after every five output signal periods. Next, the filter was

tested by combing two separate signals. The passible signal was selected to be 60Hz

while the second signal was selected to be 3.7KHz. It was expected that for this scenario

that the 3.7KHz signal would be slightly filtered out leaving both the 60Hz and 3.7KHz

wave with the 3.7KHz wave being at a 60%-80% decreased magnitude. The results are

shown in Figure 22.

Clk

Sample Clk

Reset Unfiltered Input

Filtered Output

24

Figure 22: 60Hz Combined with 3.7KHz Filter Simulation

The results shown in Figure 22 were as expected with the 3.7KHz waves magnitude

being slightly altered at 60%-80% the original magnitude and the 60Hz wave going

unchanged.

This same result was expected for the 6.3KHz wave as the 3.7KHz wave, but the

results differed. The simulation outcome is shown in Figure 23.

Figure 23: 6.3KHz Filter Simulation

From Figure 23, there is a recognizable output oscillation; however, it is plain to

Clk

Sample Clk

Reset Unfiltered Input

Filtered Output

Clk

Sample Clk

Reset Unfiltered Input

Filtered Output

25

see that it is severely distorted. With the amount of distortion shown, any information that

the signal carried would most likely be lost. The signal also continues to change

indicating that the signals filtering is not completed. Next, the filter was tested by

combing two separate signals. The passible signal was selected to be 60Hz while the

second signal was selected to be 6.3KHz. It was expected that for this scenario that the

6.3KHz signal would be slightly filtered out leaving both the 60Hz and 6.3KHz wave

with the 6.3KHz wave being at a 60%-80% decreased magnitude. The results are shown

in Figure 24.

Figure 24: 60Hz Combined with 6.3KHz Filter Simulation

The results shown in Figure 24, were as expected.

Through visual comparison, the filters performance was better at the lower cutoff

frequency than at the upper cutoff frequency. Overall, it did not perform well around the

boundaries of the desired frequency cutoff range. Outside and well within the filtering

frequency range, the designed filter performed sufficiently.

3.4 Filter Implementation

 Implementing the filter onto an FPGA was done through Quartus Prime using the

DE-10 Standard board. The components used in the implementation of the FIR filter

Clk

Sample Clk

Reset Unfiltered Input

Filtered Output

26

consisted of an analog to digital converter (ADC), switch, light emitting diode (LED),

and function generator. The DE-10 Standard contained each of these elements except for

the function generator. By setting a threshold in the VDHL code and turning on an LED

every time the input signal was above this value, the LED was able to indicate the

strength of the signal. When the frequency of the input signal was outside of the filters

cancelling bandwidth, the LED was at its brightest. When the frequency of the input

signal was within the filters cancelling bandwidth, the LED would dim or turn completely

turn off depending on the magnitude of the signal that the filter cancelled. Summarized

shortly, by using Pulse Width Modulation (PWM) and the characteristics of a sinusoidal

input wave, the LED would indicate the input signals strength. This in turn showed the

filtering of the input signal.

3.4.1 ADC Control Module

 First, the ADC needed to be created to turn the input analog signal to a digital

signal. The ADC needed to be controlled using an ADC module which was created in

VHDL and added to the project. This control module consisted of several signals

including signals by the name of CS, DIN, DOUT, and SCLK. The signal CS was given

by the FPGA indicating the start of the operation, DIN was sent by the FPGA giving the

pin address that the analog signal would be received at, DOUT was sent from the ADC

and contained the digital signal that was being sent to the FPGA, and SCLK was the rate

at which samples were taken. The ADC took 16 clock edges to perform one round of

operations and send the FPGA a 12-bit number. The simulated operation of the ADC

control module is given in Figure 25.

27

Figure 25: ADC Control Module Simulation

In Figure 25, CS indicates the start of an operation. The next three bits sent are the

DOUT bits and are sent on the falling edge of SCLK to prevent any race conditions

between DOUT and DIN. The remaining 12 rising clock edges of SCLK are used for

DOUT values to be sent to the FPGA for processing.

3.4.2 Physical Implementation

 After the ADC control module was created and simulated, it was combined with

the FIR filter VHDL codes making the overall system inputs and output clear. The inputs

and outputs of the system were then assigned to physical components using Quartus

Prime and the DE-10 Standard manual. These connections are shown in Figure 26 with

the column labeled “To” being the signal and the column labeled “Value” being the

physical pin that the signal was attached to.

Clk

CS

Reset SClk

Din

Dout

28

Figure 26: Pin Assignments

 A function generator was used to provide an input signal for testing. The test

setup is given in Figure 27.

Figure 27: Experimental Setup

29

The first test signal was a 1KHz, 4-volt peak-to-peak sinusoidal wave. It was

expected that the LED would be completely on as there was no filtering occurring at this

frequency. The outcome ended up as expected. The input wave and output LED values

are shown in Figure 28 and Figure 29, respectively.

Figure 28: 1KHz Sinusoidal Test Wave

Figure 29: 1KHz Test Wave LED Output

30

The next test signal was a 3.7KHz, 4-volt peak-to-peak sinusoidal wave. It was

expected that the LED intensity would be slightly dimmed compared to that of the

intensity of the previous LED. The outcome ended up as expected with a slight amount of

filtering, resulting in a less intense LED light. The input wave and output LED values are

shown in Figure 30 and Figure 31, respectively.

Figure 30: 3.7KHz Sinusoidal Test Wave

Figure 31: 3.7KHz Test Wave LED Output

31

Next, the test signal was a 5KHz, 4-volt peak-to-peak sinusoidal wave. It was

expected that the LED would be completely off because the signal would be filtered,

causing it to entirely fall below the threshold for the LED to turn on. The outcome ended

up as expected with the LED turning off. The input wave and output LED values are

shown in Figure 32 and Figure 33, respectively.

Figure 32: 5KHz Sinusoidal Test Wave

Figure 33: 5KHz Test Wave LED Output

32

The next test signal was a 6.3KHz, 4-volt peak-to-peak sinusoidal wave. It was

expected that the LED intensity would be slightly dimmed compared to that of the

intensity of the previous LED. The outcome ended up as expected with a slight amount of

filtering, resulting in a less intense LED light. The input wave and output LED values are

shown in Figure 34 and Figure 35, respectively.

Figure 34: 6.3KHz Sinusoidal Test Wave

Figure 35: 6.3KHz Test Wave LED Output

33

Finally, the test signal was an 8KHz, 4-volt peak-to-peak sinusoidal wave. It was

expected that the LED would be completely on because the signal would not be filtered.

The outcome ended up as expected with the LED turning on. The input wave and output

LED values are shown in Figure 36 and Figure 37, respectively.

Figure 36: 8KHz Sinusoidal Test Wave

Figure 37: 8KHz Test Wave LED Output

 The implementation of the band-stop FIR filter was successful. The results from

this physical display were in line with the results from the filter simulation performed in

ModelSim.

34

3.5 State Machine Format

 Positive slack is necessary for any type of FPGA implementation. Fast clock

speeds and overprocessing within a clock period can result in negative slack. This makes

slack reduction tremendously important in any FPGA design. By reducing the amount of

information processed in a single clock cycle, the systems slack can be improved. This

can be done through the implementation of state machine formatted code which uses

Look-Up Tables (LUTs) on FPGAs in place of registers.

 Due to the fact that the FIR filter was run at a sampling frequency of 25KHz,

there were enough clock cycles between sample clock trigger edges to perform all the

FIR calculations on separate clock periods. This action reduced the number of

computations within a single system clock period which in turn reduces the negative

slack of the system. One downside to implementing the FIR filter in state machine format

is if there are too many calculations within a single sample clock period, then the filter

will not be prepared to output a correct value in time. Another downside is that the

VHDL code will be much longer and less visually appealing than non-state machine

formatted code but can be easier to follow. State machine format may also use different

hardware which could limit the user depending on the resources at the user’s disposal.

 With all the possible implications in mind, the previously designed band-stop FIR

filter was coded into state machine format. This permitted an investigation into the

amount of slack reduction and a comparison of FPGA hardware use between state

machine formatted code and non-state machine formatted code. The 12th order non-state

machine formatted code was 66 lines in length while the newly created 12th order state

machine formatted code was 154 lines in length. This confirmed the statement that state

35

machine formatted code is generally longer in length that non-state machine formatted

code based around the same design.

3.6 Higher Order Filter

 Filter order is one of the most important factors in filter performance. With a

higher number of coefficients, the transition bands can be steeper and allow for a

narrower filter. The cost of having more filter coefficients in a digital filter is both a

decrease in initial filter speed and an increase in FPGA hardware use. To examine the

relationship between FPGA hardware use and filter order, a second filter was designed

using MATLAB Filter Designer and implemented using the same format of code as used

for the 13-coefficient filter.

 The newly designed band-stop filter was focused on cancelling out the same

frequency as before, 5KHz, while still using the previous sampling frequency of 25KHz.

It was designed using 25 filter coefficients as opposed to the previous 13 filter

coefficients. One change to the filter design was how narrow the band-stop filter could

be. This range was found using the same method as the 13-coefficient filter and is shown

in Figure 38.

Figure 38: 25-Coefficient Filter Frequency Specifications

36

 The frequency response of the newly designed filter had slightly more passband

ripple with no stopband ripple. The value for fL was increased by 700Hz while the value

for fH was decreased by 700Hz. This is given in Figure 39.

Figure 39: 25-Coefficient Filter Magnitude Response

 The impulse response of the filter visually demonstrates one of the main focuses

of the new filter design. This focus being an increase in filter coefficient count. Shown in

Figure 40 is the impulse response of the 24-tap band-stop filter.

Figure 40: 25-Coefficient Filter Impulse Response

37

 From here, the coefficient values retrieved from MATLAB Filter Designer were

transformed into binary numbers. These numbers were then stored in VHDL code in an

array to create the digital filter. As before, this was done using fixed-point notation as

well as two’s complement. The entire conversion process is given in Table 2.

Table 2: Fixed-Point Notation Calculation for Higher Order Filter

Filter
Coefficients

Coefficient *
2^N

Rounded
Signed 12-bit
Coefficients

0.03951 20.22851344 20 000000010100
-0.01705 -8.728061243 -9 111111110111
-0.06135 -31.41106098 -31 111111100001
-0.02080 -10.64717768 -11 111111110101
0.05898 30.19980186 30 000000011110
0.06318 32.350596 32 000000100000
-0.02558 -13.0985349 -13 111111110011
-0.08690 -44.49047705 -44 111111010100
-0.02792 -14.29544491 -14 111111110010
0.07532 38.56580036 39 000000100111
0.07694 39.393976 39 000000100111
-0.02976 -15.23912402 -15 111111110001
0.91082 466.3423862 466 000111010010
-0.02976 -15.23912402 -15 111111110001
0.07694 39.393976 39 000000100111
0.07532 38.56580036 39 000000100111
-0.02792 -14.29544491 -14 111111110010
-0.08690 -44.49047705 -44 111111010100
-0.02558 -13.0985349 -13 111111110011
0.06318 32.350596 32 000000100000
0.05898 30.19980186 30 000000011110
-0.02080 -10.64717768 -11 111111110101
-0.06135 -31.41106098 -31 111111100001
-0.01705 -8.728061243 -9 111111110111
0.03951 20.22851344 20 000000010100

38

3.7 Quartus Prime Analysis

3.7.1 Hardware Analysis

 With both a 13-coefficient and a 25-coefficient band-stop FIR filter, each written

using a state machine format, the hardware can be analyzed to see which design is

superior. This was done through the comparison of register and ALM usage as well as an

inspection of the correlation between hardware usage and filter order. The necessary

information for this analysis was retrieved using the compilation report in Quartus Prime.

The results, from Quartus Prime, for the 13-coefficient filter in non-state machine format

is given in Figure 41.

Figure 41: 13-Coefficicent Non-State Machine Hardware Usage

In Figure 41, the Logic utilization and Total registers sections are the items of interest.

The 13-coefficient non-state machine FIR filter utilizes 374 registers while only using

156 ALMs.

39

Next, the 25-coefficient non-state machine formatted filter was run through

Quartus Prime. The output from the analysis is given in Figure 42.

Figure 42: 25-Coefficient Non-State Machine Hardware Usage

The 25-coefficient filter in non-state machine format used 630 ALMs and a total of 734

registers. From the 13-coefficient filter, there was over a 300% increase in ALM usage

while just under a 100% increase in register usage.

40

The 13-coefficient state machine formatted filter was the next component that was

analyzed using Quartus Prime. The ALM and register values are compiled and presented

in Figure 43.

Figure 43: 13-Coefficient State Machine Hardware Usage

As shown in Figure 43 there were 336 ALMs used in the 13-coefficient state machine

formatted filter along with 311 registers. This illustrates over a 100% increase in ALM

usage between the 13-coefficient state machine filter and the 13-coefficient non-state

machine filter. Figure 43 also shows just above a 16% decrease in register usage from the

state machine formatted filter compared to the non-state machine formatted filter.

41

The final analysis was run on the 25-coefficient state machine formatted filter.

The results are given in Figure 44.

Figure 44: 25-Coefficient State Machine Hardware Usage

There were 672 ALMs utilized in the filter’s creation while there were only 608 registers

used. Compared to the 25-coefficient non-state machine filter, there was just above a 6%

increase in ALM usage and a 17% decrease in register usage.

 Data visualization is a key component of any type of data analysis. The resulting

ALM utilization, register utilization, and total hardware amounts were collected and

visually represented using Python. The graphical outcome is displayed in Figure 45.

42

Figure 45: Visual Hardware Summary

 The results showed an increase in ALM usage with a decrease in register usage in

the state machine formatted code with respect to the non-state machine formatted code.

The 13-coefficient state machine filter had more overall hardware used than that of the

13-coefficient non-state machine filter. This outcome was reversed for the 25-coefficient

filters. Both 13-coefficient filters used less than 50% of the total amount of hardware

when compared to their 25-coefficient counterparts. The 13-coefficient filter used 9 DSP

blocks while the 25-coefficient filter used 11 DSP blocks.

43

3.7.2 Slack Analysis

 For any FPGA design to be functional on a board the design must have a positive

setup slack. Setup slack is the difference between the amount of time that is required for

data to reach the next register and how long the data actually takes to reach the next

register. The path of interest when analyzing slack is the worst-case path out of all the

paths available on the FPGA. This is because if this path is a positive value than in the

worst-case scenario there will still be enough time for the data’s arrival. Quartus Prime

performs slack analysis and allows the user to alter the analysis settings, in this case clock

speed. For the 13-coefficient non-state machine FIR filter a test clock of 50MHz was

used giving the results in Figure 46.

Figure 46: 50MHz Non-State Machine Slack Analysis

In Figure 46, there is a setup slack of 8.242, this means that in the worst-case scenario

data will have enough time to travel from one register to another before the next system

clock period.

 The 13-coefficient state machine FIR filter was then put under analysis with a

50MHz simulation clock. The results are shown in Figure 47.

44

Figure 47: 50MHz State Machine Slack Analysis

The worst-case setup slack for the 13-coefficient state machine filter was 12.22. This

shows that the state machine format has a better slack performance than the non-state

machine formatted code. While both are implementable at a 50MHz system clock the

state machine format requires less time for data to arrive between registers.

 Next, the 13-coefficient non-state machine formatted code was tested using a

100MHz clock. Figure 48 shows the outcome.

Figure 48: 100MHz Non-State Machine Slack Analysis

When run at a 100MHz clock, the non-state machine formatted code has a worst-case

slack of -0.435. Since this value is negative, the design is not implementable on a board

because somewhere in the design there is not enough time for information to be passed

from one register to the next during a single system clock period.

 The 13-coefficient state machine formatted code was then run using a 100MHz

system clock. The results are shown in Figure 49.

Figure 49: 100MHz State Machine Slack Analysis

The state machine formatted code had a worst-case slack of 2.717. This shows that the

45

slack will not be an issue when it comes to implementing the design onto a board.

 While both designs successfully ran when a 50MHz system clock was applied,

only the state machine design successfully ran when a 100MHz system clock was

applied. State machine formatting allows the user to break up large amounts of data, that

need to be processed, into smaller more manageable amounts. By breaking up the amount

of data that was processed in a single clock period, the system needs to process less data

in the same amount of time, increasing positive slack and decreasing negative slack. In

this case, this positive slack increase and negative slack decrease allows the design to be

implemented with a high frequency system clock.

46

Chapter 4 Conclusion

4.1 Conclusion

 Using MATLAB Filter Designer, a 5KHz low-tap band-stop FIR filter with a

sampling frequency of 25KHz was successfully designed. While the performance of the

filter was negatively affected by the low number of coefficients, the filter was

successfully programmed and simulated using fixed-point numbers and data pipelining.

The filter was then successfully implemented onto a DE-10 Standard board with the

experimental values correlating well with the simulation values retrieved using

ModelSim.

 After the development of the filter, a higher order filter was created that focused

about the same 5KHz frequency using the previously selected 25KHz sampling

frequency. Both the low order and higher order filters were then programmed using a

state machine format. The results yielded 4 unique band-stop FIR filters with different

pros and cons for each. The higher order filters had better performance but utilized more

hardware than the lower order filters. The state machine formatted code used more ALMs

compared to the non-state machine formatted code which used more registers. There

were varying results for total amount of hardware usage between the state machine

formatted code and the non-state machine formatted code. The state machine formatted

code had better results from the slack analysis but was more tedious to program and less

organized than that of the non-state machine formatted code.

 As the use of FPGAs in industry and research expands, the basic designs act as a

building block for more complex solutions. Through continual improvement of

47

fundamental designs, the effects of this improvement will have a larger and larger impact

on the FPGA field.

48

Appendix

Label Code Language

A.1 13-Coefficient Band-
Stop FIR Filter Non-

State Machine Format

VHDL

A.2 13-Coefficient Band-
Stop FIR Filter State

Machine Format

VHDL

A.3 25-Coefficient Band-
Stop FIR Filter Non-

State Machine Format

VHDL

A.4 25-Coefficient Band-
Stop FIR Filter State

Machine Format

VHDL

A.5 Filter Testbench VHDL

A.6 Test Data Development MATLAB

A.7 Data Analysis Python

A.1
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;

entity FIR_filter is
 port(clk : in std_logic;
 reset : in std_logic;
 original_signal : in std_logic_vector(11 downto 0);
 filtered_signal : out std_logic_vector(23 downto 0));
end FIR_filter;

architecture behavior of FIR_filter is
 type coeffs is array (0 to 12) of signed(11 downto 0);
 type previous_data_storage is array (0 to 12) of signed(11 downto 0);
 type product_storage is array (0 to 12) of signed(23 downto 0);

 signal coefficient : coeffs := (0 => "111111101111", 1 => "111110111000", 2 =>
"111111100101", 3 => "000001010011", 4 => "000001011100", 5 => "111111011011",

49

6 => "000111010101", 7 => "111111011011", 8 => "000001011100", 9 =>
"000001010011", 10 => "111111100101", 11 => "111110111000",12 =>
"111111101111");
 signal signal_memory : previous_data_storage;
 signal prod : product_storage;
 signal frequency_sample : std_logic_vector(11 downto 0);
 signal sample_clk : std_logic; --sampling clock
 signal sample_clk_delay : std_logic; --necessary to detect rising edge of non
clock
 signal sample_clk_edge : std_logic; --used to signal rising edge in sample clock
 signal sum : signed(23 downto 0);

 begin
 process(clk, reset)
 begin
 if reset = '1' then --resets code
 frequency_sample <= (others => '0');
 sample_clk <= '0';
 sample_clk_delay <= '0';
 sample_clk_edge <= '0';
 sum <= (others => '0');
 filtered_signal <= (others => '0'); --filtered output signal is cleared
 signal_memory <= (others => ("000000000000"));
 prod <= (others => ("000000000000000000000000"));
 elsif rising_edge(clk) then
 frequency_sample <= frequency_sample + 1;

 if(frequency_sample = "001111101000") then
 frequency_sample <= "000000000000"; --value reset
 sample_clk_delay <= sample_clk;
 sample_clk <= not sample_clk; --toggle sampling clk
 sample_clk_edge <= sample_clk and (not sample_clk_delay);
 if sample_clk_edge = '1' then
 signal_memory <= signed(original_signal) &
signal_memory(0 TO 11);
 sum <= (others => '0'); --ensure sum is cleared

 for i in 0 to 12 loop
 prod(i) <= signal_memory(i) * coefficient(i);
 end loop;

 sum <=
prod(0)+prod(1)+prod(2)+prod(3)+prod(4)+prod(5)+prod(6)+prod(7)+prod(8)+prod(9)+
prod(10)+prod(11)+prod(12);

 if sum(23)='1' then

50

 filtered_signal <= "000000000000000000000000";
 else
 filtered_signal <= std_logic_vector(sum srl 9);
 end if;
 end if;
 end if;
 end if;
 end process;
end behavior;

A.2

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;

entity FIR_filter is
 port(clk : in std_logic;
 reset : in std_logic;
 original_signal : in std_logic_vector(11 downto 0);
 filtered_signal : out std_logic_vector(23 downto 0));
end FIR_filter;

architecture behavior of FIR_filter is
 type coeffs is array (0 to 12) of signed(11 downto 0); --coefficient
storage
 type previous_data_storage is array (0 to 12) of signed(11 downto 0); --stores
previous data
 type product_storage is array (0 to 12) of signed(23 downto 0);

 signal coefficient : coeffs := (0 => "111111101111", 1 => "111110111000", 2 =>
"111111100101", 3 => "000001010011", 4 => "000001011100", 5 => "111111011011",
6 => "000111010101", 7 => "111111011011", 8 => "000001011100", 9 =>
"000001010011", 10 => "111111100101", 11 => "111110111000",12 =>
"111111101111");
 signal signal_memory : previous_data_storage;
 signal prod : product_storage;
 signal frequency_sample : std_logic_vector(11 downto 0);
 signal sample_clk : std_logic; --sampling clock
 signal sample_clk_delay : std_logic;
 signal sample_clk_edge : std_logic;
 signal sum : signed(23 downto 0);
 signal start : std_logic;
 signal state : std_logic_vector(4 downto 0);

51

 begin
 process(clk, reset)
 begin
 if reset = '1' then --resets code
 frequency_sample <= (others => '0');
 sample_clk <= '0';
 sample_clk_delay <= '0';
 sample_clk_edge <= '0';
 start <= '0';
 sum <= (others => '0');
 filtered_signal <= (others => '0'); --filtered output signal is cleared
 signal_memory <= (others => ("000000000000"));
 prod <= (others => ("000000000000000000000000"));
 state <= "00000";
 elsif rising_edge(clk) then
 frequency_sample <= frequency_sample + 1;

 if(frequency_sample = "001111101000") then
 frequency_sample <= "000000000000"; --value reset
 sample_clk_delay <= sample_clk;
 sample_clk <= not sample_clk; --toggle sampling clk
 sample_clk_edge <= sample_clk and (not sample_clk_delay);
 if sample_clk_edge = '1' then
 start <= '1';
 state <= "00001";
 end if;
 elsif start = '1' then
 if state = "00001" then
 signal_memory <= signed(original_signal) &
signal_memory(0 TO 11);
 state <= "00010";
 elsif state = "00010" then
 sum <= (others => '0');
 state <= "00011";
 elsif state = "00011" then
 prod(0) <= signal_memory(0) * coefficient(0);
 state <= "00100";
 elsif state = "00100" then
 prod(1) <= signal_memory(1) * coefficient(1);
 state <= "00101";
 elsif state = "00101" then
 prod(2) <= signal_memory(2) * coefficient(2);
 state <= "00110";
 elsif state = "00110" then
 prod(3) <= signal_memory(3) * coefficient(3);
 state <= "00111";

52

 elsif state = "00111" then
 prod(4) <= signal_memory(4) * coefficient(4);
 state <= "01000";
 elsif state = "01000" then
 prod(5) <= signal_memory(5) * coefficient(5);
 state <= "01001";
 elsif state = "01001" then
 prod(6) <= signal_memory(6) * coefficient(6);
 state <= "01010";
 elsif state = "01010" then
 prod(7) <= signal_memory(7) * coefficient(7);
 state <= "01011";
 elsif state = "01011" then
 prod(8) <= signal_memory(8) * coefficient(8);
 state <= "01100";
 elsif state = "01100" then
 prod(9) <= signal_memory(9) * coefficient(9);
 state <= "01101";
 elsif state = "01101" then
 prod(10) <= signal_memory(10) * coefficient(10);
 state <= "01110";
 elsif state = "01110" then
 prod(11) <= signal_memory(11) * coefficient(11);
 state <= "01111";
 elsif state = "01111" then
 prod(12) <= signal_memory(12) * coefficient(12);
 state <= "10000";
 elsif state = "10000" then
 sum <= prod(0);
 state <= "10001";
 elsif state = "10001" then
 sum <= sum + prod(1);
 state <= "10010";
 elsif state = "10010" then
 sum <= sum + prod(2);
 state <= "10011";
 elsif state = "10011" then
 sum <= sum + prod(3);
 state <= "10100";
 elsif state = "10100" then
 sum <= sum + prod(4);
 state <= "10101";
 elsif state = "10101" then
 sum <= sum + prod(5);
 state <= "10110";
 elsif state = "10110" then

53

 sum <= sum + prod(6);
 state <= "10111";
 elsif state = "10111" then
 sum <= sum + prod(7);
 state <= "11000";
 elsif state = "11000" then
 sum <= sum + prod(8);
 state <= "11001";
 elsif state = "11001" then
 sum <= sum + prod(9);
 state <= "11010";
 elsif state = "11010" then
 sum <= sum + prod(10);
 state <= "11011";
 elsif state = "11011" then
 sum <= sum + prod(11);
 state <= "11100";
 elsif state = "11100" then
 sum <= sum + prod(12);
 state <= "11101";
 elsif state = "11101" then
 if sum(23)='1' then
 filtered_signal <= "000000000000000000000000";
 else
 filtered_signal <= std_logic_vector(sum srl 9);
 end if;
 state <= "11111";
 else
 state <= "00000";
 start <= '0';
 end if;
 end if;
 end if;
 end process;
end behavior;

A.3

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;

entity FIR_filter is
 port(clk : in std_logic;
 reset : in std_logic;

54

 original_signal : in std_logic_vector(11 downto 0);
 filtered_signal : out std_logic_vector(23 downto 0));
end FIR_filter;

architecture behavior of FIR_filter is
 type coeffs is array (0 to 24) of signed(11 downto 0);
 type previous_data_storage is array (0 to 24) of signed(11 downto 0);
 type product_storage is array (0 to 24) of signed(23 downto 0);
 signal coefficient : coeffs := (0 => "000000010100", 1 => "111111110111", 2 =>
"111111100001", 3 => "111111110101", 4 => "000000011110", 5 => "000000100000",
6 => "111111110011", 7 => "111111010100", 8 => "111111110010", 9 =>
"000000100111", 10 => "000000100111", 11 => "111111110001",12 =>
"000111010010", 13 => "111111110001", 14 => "000000100111", 15 =>
"000000100111", 16 => "111111110010", 17 => "111111010100", 18 =>
"111111110011", 19 => "000000100000", 20 => "000000011110", 21 =>
"111111110101", 22 => "111111100001", 23 => "111111110111",24 =>
"000000010100");
 signal signal_memory : previous_data_storage;
 signal prod : product_storage;
 signal frequency_sample : std_logic_vector(11 downto 0);
 signal sample_clk : std_logic; --sampling clock
 signal sample_clk_delay : std_logic;
 signal sample_clk_edge : std_logic;
 signal sum : signed(23 downto 0);

 begin
 process(clk, reset)
 begin
 if reset = '1' then --resets code
 frequency_sample <= (others => '0');
 sample_clk <= '0';
 sample_clk_delay <= '0';
 sample_clk_edge <= '0';
 sum <= (others => '0');
 filtered_signal <= (others => '0'); --filtered output signal is cleared
 signal_memory <= (others => ("000000000000")); --sets data_pipeline to
zero
 prod <= (others => ("000000000000000000000000"));
 elsif rising_edge(clk) then
 frequency_sample <= frequency_sample + 1;

 if(frequency_sample = "001111101000") then
 frequency_sample <= "000000000000"; --value reset
 sample_clk_delay <= sample_clk;
 sample_clk <= not sample_clk; --toggle sampling clk
 sample_clk_edge <= sample_clk and (not sample_clk_delay);

55

 if sample_clk_edge = '1' then
 signal_memory <= signed(original_signal) &
signal_memory(0 TO 23);
 sum <= (others => '0'); --ensure sum is cleared

 for i in 0 to 24 loop
 prod(i) <= signal_memory(i) * coefficient(i);
 end loop;

 sum <=
prod(0)+prod(1)+prod(2)+prod(3)+prod(4)+prod(5)+prod(6)+prod(7)+prod(8)+prod(9)+
prod(10)+prod(11)+prod(12)+prod(13)+prod(14)+prod(15)+prod(16)+prod(17)+prod(18
)+prod(19)+prod(20)+prod(21)+prod(22)+prod(23)+prod(24);

 if sum(23)='1' then
 filtered_signal <= "000000000000000000000000";
 else
 filtered_signal <= std_logic_vector(sum srl 9);
 end if;
 end if;
 end if;
 end if;
 end process;
end behavior;

A.4

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;

entity FIR_filter is
 port(clk : in std_logic;
 reset : in std_logic;
 original_signal : in std_logic_vector(11 downto 0);
 filtered_signal : out std_logic_vector(23 downto 0));
end FIR_filter;

architecture behavior of FIR_filter is
 type coeffs is array (0 to 24) of signed(11 downto 0);
 type previous_data_storage is array (0 to 24) of signed(11 downto 0);
 type product_storage is array (0 to 24) of signed(23 downto 0);

 signal coefficient : coeffs := (0 => "000000010100", 1 => "111111110111", 2 =>
"111111100001", 3 => "111111110101", 4 => "000000011110", 5 => "000000100000",

56

6 => "111111110011", 7 => "111111010100", 8 => "111111110010", 9 =>
"000000100111", 10 => "000000100111", 11 => "111111110001",12 =>
"000111010010", 13 => "111111110001", 14 => "000000100111", 15 =>
"000000100111", 16 => "111111110010", 17 => "111111010100", 18 =>
"111111110011", 19 => "000000100000", 20 => "000000011110", 21 =>
"111111110101", 22 => "111111100001", 23 => "111111110111",24 =>
"000000010100");
 signal signal_memory : previous_data_storage; --stores ADC values
for use in addition and multiplication
 signal prod : product_storage; --stores products from filter
arithmetic
 signal frequency_sample : std_logic_vector(11 downto 0);--used to adjust rate
that ADC sample is grabbed
 signal sample_clk : std_logic; --sampling clock
 signal sample_clk_delay : std_logic; --necessary to detect rising
edge of non clock
 signal sample_clk_edge : std_logic; --used to signal rising edge in
sample clock
 signal sum : signed(23 downto 0);
 signal start : std_logic;
 signal state : std_logic_vector(5 downto 0);

 begin
 process(clk, reset)
 begin
 if reset = '1' then --resets code
 frequency_sample <= (others => '0');
 sample_clk <= '0';
 sample_clk_delay <= '0';
 sample_clk_edge <= '0';
 start <= '0';
 sum <= (others => '0');
 filtered_signal <= (others => '0'); --filtered output signal is cleared
 signal_memory <= (others => ("000000000000"));
 prod <= (others => ("000000000000000000000000"));
 state <= "000000";
 elsif rising_edge(clk) then
 frequency_sample <= frequency_sample + 1;

 if(frequency_sample = "001111101000") then
 frequency_sample <= "000000000000"; --value reset
 sample_clk_delay <= sample_clk;--sample clk delayed clk value
 sample_clk <= not sample_clk; --toggle sampling clk
 sample_clk_edge <= sample_clk and (not sample_clk_delay);
 if sample_clk_edge = '1' then
 start <= '1';

57

 state <= "000001";
 end if;
 elsif start = '1' then
 if state = "000001" then
 signal_memory <= signed(original_signal) &
signal_memory(0 TO 23);
 state <= "000010";
 elsif state = "000010" then
 sum <= (others => '0');
 state <= "000011";
 elsif state = "000011" then
 prod(0) <= signal_memory(0) * coefficient(0);
 state <= "000100";
 elsif state = "000100" then
 prod(1) <= signal_memory(1) * coefficient(1);
 state <= "000101";
 elsif state = "000101" then
 prod(2) <= signal_memory(2) * coefficient(2);
 state <= "000110";
 elsif state = "000110" then
 prod(3) <= signal_memory(3) * coefficient(3);
 state <= "000111";
 elsif state = "000111" then
 prod(4) <= signal_memory(4) * coefficient(4);
 state <= "001000";
 elsif state = "001000" then
 prod(5) <= signal_memory(5) * coefficient(5);
 state <= "001001";
 elsif state = "001001" then
 prod(6) <= signal_memory(6) * coefficient(6);
 state <= "001010";
 elsif state = "001010" then
 prod(7) <= signal_memory(7) * coefficient(7);
 state <= "001011";
 elsif state = "001011" then
 prod(8) <= signal_memory(8) * coefficient(8);
 state <= "001100";
 elsif state = "001100" then
 prod(9) <= signal_memory(9) * coefficient(9);
 state <= "001101";
 elsif state = "001101" then
 prod(10) <= signal_memory(10) * coefficient(10);
 state <= "001110";
 elsif state = "001110" then
 prod(11) <= signal_memory(11) * coefficient(11);
 state <= "001111";

58

 elsif state = "001111" then
 prod(12) <= signal_memory(12) * coefficient(12);
 state <= "010000";
 elsif state = "010000" then
 prod(13) <= signal_memory(13) * coefficient(13);
 state <= "010001";
 elsif state = "010001" then
 prod(14) <= signal_memory(14) * coefficient(14);
 state <= "010010";
 elsif state = "010010" then
 prod(15) <= signal_memory(15) * coefficient(15);
 state <= "010011";
 elsif state = "010011" then
 prod(16) <= signal_memory(16) * coefficient(16);
 state <= "010100";
 elsif state = "010100" then
 prod(17) <= signal_memory(17) * coefficient(17);
 state <= "010101";
 elsif state = "010101" then
 prod(18) <= signal_memory(18) * coefficient(18);
 state <= "010110";
 elsif state = "010110" then
 prod(19) <= signal_memory(19) * coefficient(19);
 state <= "010111";
 elsif state = "010111" then
 prod(20) <= signal_memory(20) * coefficient(20);
 state <= "011000";
 elsif state = "011000" then
 prod(21) <= signal_memory(21) * coefficient(21);
 state <= "011001";
 elsif state = "011001" then
 prod(22) <= signal_memory(22) * coefficient(22);
 state <= "011010";
 elsif state = "011010" then
 prod(23) <= signal_memory(23) * coefficient(23);
 state <= "011011";
 elsif state = "011011" then
 prod(24) <= signal_memory(24) * coefficient(24);
 state <= "011100";
 elsif state = "011100" then
 sum <= prod(0);
 state <= "011101";
 elsif state = "011101" then
 sum <= sum + prod(1);
 state <= "011110";
 elsif state = "011110" then

59

 sum <= sum + prod(2);
 state <= "011111";
 elsif state = "011111" then
 sum <= sum + prod(3);
 state <= "100000";
 elsif state = "100000" then
 sum <= sum + prod(4);
 state <= "100001";
 elsif state = "100001" then
 sum <= sum + prod(5);
 state <= "100010";
 elsif state = "100010" then
 sum <= sum + prod(6);
 state <= "100011";
 elsif state = "100011" then
 sum <= sum + prod(7);
 state <= "100100";
 elsif state = "100100" then
 sum <= sum + prod(8);
 state <= "100101";
 elsif state = "100101" then
 sum <= sum + prod(9);
 state <= "100110";
 elsif state = "100110" then
 sum <= sum + prod(10);
 state <= "100111";
 elsif state = "100111" then
 sum <= sum + prod(11);
 state <= "101000";
 elsif state = "101000" then
 sum <= sum + prod(12);
 state <= "101001";
 elsif state = "101001" then
 sum <= sum + prod(13);
 state <= "101010";
 elsif state = "101010" then
 sum <= sum + prod(14);
 state <= "101011";
 elsif state = "101011" then
 sum <= sum + prod(15);
 state <= "101100";
 elsif state = "101100" then
 sum <= sum + prod(16);
 state <= "101101";
 elsif state = "101101" then
 sum <= sum + prod(17);

60

 state <= "101110";
 elsif state = "101110" then
 sum <= sum + prod(18);
 state <= "101111";
 elsif state = "101111" then
 sum <= sum + prod(19);
 state <= "110000";
 elsif state = "110000" then
 sum <= sum + prod(20);
 state <= "110001";
 elsif state = "110001" then
 sum <= sum + prod(21);
 state <= "110010";
 elsif state = "110010" then
 sum <= sum + prod(22);
 state <= "110011";
 elsif state = "110011" then
 sum <= sum + prod(23);
 state <= "110100";
 elsif state = "110100" then
 sum <= sum + prod(24);
 state <= "110101";
 elsif state = "110101" then
 if sum(23)='1' then
 filtered_signal <= "000000000000000000000000";
 else
 filtered_signal <= std_logic_vector(sum srl 9);
 end if;
 state <= "111111";
 else
 state <= "000000";
 start <= '0';
 end if;
 end if;
 end if;
 end process;
end behavior;

A.5

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.math_real.all;
use STD.TEXTIO.all;

61

entity FIR_filter_tb is
end FIR_filter_tb;

architecture testbench of FIR_filter_tb is
 signal clk : std_logic := '0';
 signal reset : std_logic; --circuit input for reset
 signal original_signal : std_logic_vector(11 downto 0); --circuit input for original
signal
 signal filtered_signal : std_logic_vector(23 downto 0);
 signal clk_sample : std_logic := '0';
 file test_input : text open READ_MODE is "test_data.txt";

 begin

 circuit_A : entity work.FIR_filter port map(clk => clk, reset => reset,
original_signal => original_signal, filtered_signal => filtered_signal);

 reset <= '1','0' after 0.1 ms;

 process(clk_sample)
 variable line_test_input : line;
 variable input: integer;
 begin
 if rising_edge(clk_sample) then
 readline(test_input, line_test_input);
 read(line_test_input,input);
 original_signal <= std_logic_vector(to_unsigned(input,
12));
 end if;
 end process;
end testbench;

A.6

%% Wave creation
clear all;
clc;

fs = 25000; %samples per second
dt = 1/fs; %inverse samples per second
stoptime = 5; %stoptime in seconds
t = (0:dt:stoptime-dt)';
fc = 5600; %frequency
y = (cos(2*pi*fc*t) + 1) * 200;
plot(y);

62

fileID = fopen('test_data.txt','w'); %opens file ; opens in read only but 'w' makes it
write
fprintf(fileID,'%f\n',y); %writes value then on the next line prints the next line
fclose(fileID);

A.7

import pandas as pd
import numpy as np
import seaborn
import matplotlib.pyplot as plt

hardware_count = pd.DataFrame({'Type':['13 Coefficient', '13 Coefficient (State Machine
)', '25 Coefficient','25 Coefficient (State Machine)'],'Registers':[374, 311, 734, 608], 'AL
Ms':[156, 336, 630, 672]})
plt.figure()
hardware_count.plot.bar(x='Type')
hardware_count["Total"] = hardware_count.sum(axis=1)
plt.close()
plt.figure()
hardware_count.plot.bar(x='Type')

63

Bibliography

[1] Admin. (2020, September 14). Difference between IIR and FIR filters: A practical
design guide. Retrieved March 17, 2021, from
https://www.advsolned.com/difference-between-iir-and-fir-filters-a-practical-
design-guide/

[2] Chen Sun, Abhinav Shrivastava, Saurabh Singh, Abhinav Gupta; in Proceedings of
the IEEE International Conference on Computer Vision (ICCV), 2017, pg. 843-852

[3] D. L. N. Hettiarachchi, V. S. P. Davuluru and E. J. Balster, "Integer vs. Floating-Point
Processing on Modern FPGA Technology," 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC), Las Vegas, NV, USA,
2020, pp. 0606-0612, doi: 10.1109/CCWC47524.2020.9031118.

[4] Filter designer. (n.d.). Retrieved March 17, 2021, from
https://www.mathworks.com/help/signal/ug/introduction-to-filter-designer.html

[5] FPGA design software - Intel® Quartus® Prime. (n.d.). Retrieved March 17, 2021,
from https://www.intel.com/content/www/us/en/software/programmable/quartus-
prime/overview.html

[6] Fpga fundamentals. (n.d.). Retrieved March 17, 2021, from https://www.ni.com/en-
us/innovations/white-papers/08/fpga-fundamentals.html

[7] H. J. Landau, "Sampling, data transmission, and the Nyquist rate," in Proceedings of
the IEEE, vol. 55, no. 10, pp. 1701-1706, Oct. 1967, doi: 10.1109/PROC.1967.5962.

[8] Levesque, Luc. (2014). Nyquist sampling theorem: Understanding the illusion of a

spinning wheel captured with a video camera. Physics Education. 49. 697.
10.1088/0031-9120/49/6/697.

[9] Modelsim. (n.d.). Retrieved March 17, 2021, from https://eda.sw.siemens.com/en-
US/ic/modelsim/

[10] Morris, K., & Says:, K. (2013, May 28). Timing is everything. Retrieved March 17,
2021, from https://www.eejournal.com/article/20130528-timing/

[11] N. (2015, July 10). What is FIR FILTER? - FIR filters for digital signal processing.
Retrieved March 17, 2021, from https://www.elprocus.com/fir-filter-for-digital-
signal-processing/

64

[12] Recursive digital filter design. (n.d.). Retrieved March 17, 2021, from
https://www.dsprelated.com/freebooks/filters/Recursive_Digital_Filter_Design.htm
l

[13] Scheier, R. L. (n.d.). Fueling Decisions and Actions With Data Pipelining.

[14] Technologies, T. (n.d.). SoC platform - cyclone - DE10-Standard. Retrieved March
17, 2021, from https://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&No=1081

		2021-04-30T13:53:34-0400
	Youngstown State University

