Analysis of Monthly Suspended Sediment Load in Rivers and Streams Using Linear

Regression and Similar Precipitation Data

by

Faith Echiejile

Submitted in Partial Fulfilment of the Requirements

for the Degree of

Master of Science

in the

Environmental Science Program

Youngstown State University

August 2021

Analysis of Monthly Suspended Sediment Load in Rivers and Streams Using Linear Regression and Similar Precipitation Data

Faith Echiejile

I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the university or other individuals to make copies of this thesis as needed for scholarly research.

Signature:

Faith Echiejile, Student

Approvals:

Dr. Isam E. Amin, Thesis Advisor

Dr. Alan M. Jacobs, Committee Member

Dr. Douglas M. Price, Committee Member

Mr. Wes Vins, Committee Member

Date

Date

Date

Date

Date

ABSTRACT

Suspended sediment impacts the water quality of streams and rivers by retaining and acting as a carrier for other contaminants, increasing turbidity, which can block light from getting to submerged vegetation and clog fish gills, amongst other environmental effects. Therefore, understanding its dynamics and prediction is crucial to environmental protection and water management. The objective of this study is to improve the prediction accuracy of suspended sediment load in rivers and streams by grouping monthly data of suspended sediment and water discharge into groups of similar precipitation values. Linear regression was used to predict the suspended sediment load, a dependent variable, as a function of the stream water discharge, an independent variable on four U.S. rivers and streams. This study used ten years of data for the suspended sediment load, stream water discharge, and precipitation for each river. Results from the traditional approach, which does not have precipitation data and is therefore ungrouped, were compared with results from the precipitation approach using the correlation coefficient (r) and the percent deviation. Out of the 21 groups investigated, 19 groups showed a lower percent deviation from the traditional approach. For the correlation coefficient values, 12 groups were higher than the traditional approach, while two groups had the same values as the traditional approach. Ten groups had correlation coefficient values between 0.90 to 0.97. Overall, the precipitation approach has improved the prediction accuracy of the suspended sediment load compared to the traditional approach.

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my supervisor Dr. Isam E. Amin for his dedication, support, invaluable guidance, and useful critiques throughout this research work.

To Dr. Peter Kimosop, I am extremely grateful for his profound interest, encouragement, and assistance at every stage of my research work.

My appreciation also extends to my committee members: Dr. Alan M. Jacobs, Dr. Douglas M. Price, and Mr. Wes Vins for participating in this research.

I appreciate my parents Nelson and Maria for their prayers and support, my siblings, Lizzy, Amos, and Grace for keeping me motivated every step of the way.

Table of Content

List of Figures	vi
List of Tables	ix
Chapter 1- Introduction	1
1.1 Objectives	4
1.2 Scope	5
1.3 Approach	5
Chapter 2 - Literature Review	6
2.1 Introduction	6
2.2 Previous Studies	7
Chapter 3- Study Sites and Method	
3.1 Overview of Study Sites	
3.1.1 San Joaquin River, California	12
3.1.2 Rio Puerco River, New Mexico	14
3.1.3 The Powder River, Wyoming, and Montana	15
3.1.4 Little Colorado River, Arizona	17
3.2 Linear Regression Analysis	
Chapter 4- Results and Discussion	21
4.1 Results of Linear Regression	
4.1.1 San Joaquin River Results and Discussion	21
4.1.2 Rio Puerco Results and Discussion	
4.1.3 Powder River Results and Discussion	
4.1.4 Little Colorado River Results and Discussion	
Chapter 5- Conclusions and Recommendations	57
References	

List of Figures

Figure 4. 1 San Joaquin River- Ungrouped: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 2 San Joaquin River- Ungrouped Data set: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 3 San Joaquin River- Group 1 : Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 4 San Joaquin River- Group 2: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 5 San Joaquin River- Group 3: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 6 San Joaquin River- Group 4: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)25
Figure 4. 7 San Joaquin River- Group 5: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 8 San Joaquin River- Group 6: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 9 San Joaquin River- Group 1: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 10 San Joaquin River- Group 2: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 11 San Joaquin River- Group 3: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 12 San Joaquin River- Group 4: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 13 San Joaquin River- Group 5: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 14 San Joaquin River- Group 6: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 15 Rio Puerco River- Ungrouped (Traditional): Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 16 Rio Puerco- Ungrouped Data Set: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 17 Rio Puerco River- Group 1: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)

Figure 4. 18 Rio Puerco River- Group 2: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 19 Rio Puerco River- Group 3: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 20 Rio Puerco River- Group 4: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 21 Rio Puerco River- Group 5: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 22 Rio Puerco- Group 1: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 23 Rio Puerco- Group 2: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 24 Rio Puerco- Group 3: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 25 Rio Puerco- Group 4: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 26 Rio Puerco- Group 5: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 27 Powder River- Ungrouped (Traditional): Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 28 Powder River- Ungrouped (Tradition): Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 29 Powder River- Group 1: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)41
Figure 4. 30 Powder River- Group 2: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 31 Powder River- Group 3: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 32 Powder River- Group 4: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 33 Powder River- Group 5: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 34 Powder River- Group 1: Observed vs. Corrected Predicted Suspended Sediment
Load

Figure 4. 36 Powder River- Group 3: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 37 Powder River- Group 4: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 38 Powder River- Group 5: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 39 Little Colorado River- Ungrouped (Traditional): Regression relationship between monthly sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 40 Little Colorado River- Ungrouped : Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 41 Little Colorado River- Group 1: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 42 Little Colorado River- Group 2: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 43 Little Colorado River- Group 3: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 44 Little Colorado River- Group 4: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 45 Little Colorado River- Group 5: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)
Figure 4. 46 Little Colorado River- Group 1: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 47 Little Colorado River- Group 2: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 48 Little Colorado River- Group 3: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 49 Little Colorado River- Group 4: Observed vs. Corrected Predicted Suspended Sediment Load
Figure 4. 50 Little Colorado River- Group 5: Observed vs. Corrected Predicted Suspended Sediment Load

List of Tables

Table 4. 1 San Joaquin River: Percent Deviation and Correlation Coefficient of the Groups
Table 4. 2 Rio Puerco River: Percent Deviation and Correlation Coefficient of the Groups
Table 4. 3 Powder River: Percent Deviation and Correlation Coefficient of the Groups
Table 4. 4 Little Colorado River: Percent Deviation and Correlation Coefficient of the Groups

Chapter 1- Introduction

Water pollution can be caused by many pollutants including pathogens (infectious agents), inorganic chemicals, synthetic organic chemicals, and sediment. Pollutants get into water bodies either from point sources or non-point sources. Pollution from non-point sources including nutrient loading, soil erosion and associated pollutants is detrimental to the environment. Numerous water quality issues including suspended sediment in rivers and streams linger due to overflow from non-point sources (Melesse et al 2010). Sediment may move in rivers and streams either as bedload or suspended load (Garg, 2011).

The suspended load is made up of adequate materials with upward fluid stress which prevents the particles from sinking to the bed. The wash load which is the finest portion of suspended sediment load generally accounts for less than 10% of the bed material and is conveyed in near-continuous suspension (Gitto et al 2017). In addition, the suspended load flows in suspension within the water body, which would consist of bed or bank materials and materials washed from the watershed, usually silt and clay, as silt and clay have very low fall velocity. While the bed load is made up of the materials that travel close to the bed either with a rolling or sliding motion or in suspension. The composition of suspended sediment load transport is determined by factors such as river flow, transport capacity, sediment availability, and season (Iven et al 1981).

In rivers, streams, lakes, and reservoirs sediment is the most prevalent pollutant, which makes it a burden to be borne by the flowing water and is, consequently, designated as sediment load. However, when excessive, it poses serious environmental and health risks. Rhea (2019) posited that sediment alters water quality as it retains and carries other contaminants often, like pathogens, organic chemicals, nutrients, heavy metals, and bacteria along. Nutrients like phosphorus typically attach to fine sediment particles, which can lead to eutrophication

downstream of a water body (Vaughan, 2016). The sources of these pollutants are mostly from urban contaminants, agriculture, mine spoils, and industrial waste which may have temporary and extended effects (Bartram and Balance, 1996).

One of the main sources of suspended sediment is soil erosion. Erosion occurs when soil materials are detached and transported by an erosive agent, this takes place in two stages. The first stage involves the detachment of small soil particles through runoff, rainfall impact, and the various weathering processes. The second stage is the transportation of the detached soil particles by wind or runoff away from their source (Aksoy et al, 2019; Vercruysse et al, 2017).

Precipitation is also an important element for surface erosion which brings about suspended transport across channels of a specific river basin. The combination of rainfall and changes in land use and land cover intensifies surface erosion in a watershed (Ampomah et al, 2020). In addition, an increase in the severity and amount of rainfall (different rain patterns) also increases surface erosion producing suspended sediment transport (Krajewski et al, 2017). Hence, different variables including the total length of a precipitation event, average rainfall intensity, preceding rainfall, peak discharge, and total discharge are mostly incorporated in models to analyze sediment concentration (Vercruysse et al, 2017). However, the correlation between different rain patterns and suspended sediment load can be non-linear and may vary as sediment load does not completely depend on precipitation (Ampomah et al, 2020).

Some of the factors that affect sediment transport characteristics include the nature of sediments or rocks through which the river flows and the amount of water moving through a river. Sediment load in rivers and streams can be curbed by either employing preventative measures or taking remedial measures. Some preventive measures that can be considered include repairing and maintaining drainage ditches and levees and ensuring there is a minimal disturbance of the banks. Remedial measures that can be taken include the construction of

sedimentation ponds, detention reservoirs, settling basins, and using dredging to remove deposited sediment.

The United States is facing an immense challenge because of sediment pollution. Approximately 30 percent of the overall sediment in the United States is attributed to natural erosion while anthropogenic activities such as agricultural activities and construction in urban areas are responsible for 70 percent of the sediments (United States Environmental Protection Agency, 2006). It was estimated that the environmental damage caused by sediment in the United States is not less than \$16 billion annually (Mid-America Regional Council (MARC), 2010). Among the environmental damages associated with sediments in rivers and streams are loss of sensitive aquatic habitat, abrasion of turbines and delicate plant and animal tissues, reduction in fishery resources, coastline alteration, eradication of wetlands, nutrient balance changes, increase in turbidity which can clog fish gills and block light from getting to submerged vegetation, loss of submerged vegetation, and replacement of coral reef communities (Orlando and Yee, 2017). Excessive sedimentation can change how the river flows and diminish water depth, which causes recreational use and navigation more challenging, thereby depleting the usable water volume. Therefore, sediment control and prediction of the suspended sediment load is crucial in reducing the environmental impacts of excessive sediment in surface waters (Amin and Jacobs 2007).

Given the risk associated with sediments, effective management of sediments is paramount. Effective management of sediments in water bodies requires understanding its dynamics and the factors responsible for it. Bong, Son, and Kim (2019) were of the view that insight on how sediment moves as suspended solids is crucial for predicting sediment transport in surface water bodies and can give understanding into the fate of pollutants transported by sediment. Information on suspended load is effective for countering or mitigating problems in reservoirs and dams design, sediment and pollutants transport in streams, estuaries, and lakes, and design of stable channels and dams. This can enhance the safety of wildlife habitats and fish (Melesse et al 2010).

The most evaluated constituent of the sediment load is the suspended material. Thus, many of the experiments and studies have focused on this and the functional correlation between suspended sediment and streamflow has been determined (Mimikou 2009). Nevertheless, drivers in the sediment delivery process are numerous than what most studies accounted for. Sediment transport and level of delivery from affected areas can vary with respect to prevailing vegetation type, land use, and connectivity to hillslopes. Also, the duration and intensity of rainfall occurrence can raise the amount of sediment carried to the channel from highland sources (Stout, 2012). Other factors that contribute to the amount of sediment in surface-water bodies include the following aspects of rivers and streams: source, length, flow path, flow rate, size of the drainage basin, amount of precipitation, and nature of flow (perennial or ephemeral). Therefore, the prediction of suspended sediment in rivers and streams can be particularly challenging.

1.1 Objectives

The objective of this research is to use monthly precipitation values to improve the accuracy of predicting suspended sediment loads in rivers and streams using linear regression. The dependent variable will be the suspended sediment load and the independent variable will be the river water discharge. In this study, linear regression will be employed to calculate (predict) the suspended sediment load, in response to river water discharge. The amount of precipitation received by a river, or a stream directly affects the flow rate (water discharge) of the river or stream and the suspended sediment resulting from that flow rate. Therefore, linear regression will be applied to flow rates and suspended sediment loads resulting from equal or comparable values of precipitation (monthly values). This approach is expected to yield high

values of correlation coefficient between water discharge (flow rate) and suspended sediment load.

Linear regression will also be applied to water discharge data and sediment load data without using precipitation as a factor. This is the traditional approach usually used by researchers. Results of the proposed approach using precipitation and the traditional approach will be compared.

1.2 Scope

This study will focus on the San Joaquin River, Rio Puerco, Powder River, and Little Colorado River. The rivers are selected based on their distribution under different climatic conditions. For each river, suspended sediment load will be predicted utilizing linear regression analysis using the proposed precipitation approach and the traditional approach, as explained above. In this study, all the rivers will be considered in-depth with respect to their source, length, flow path, drainage basin, precipitation, nature of flow (perennial or ephemeral), suspended sediment data, and flow rate during the measurement period. Data for the study will be sourced from the United States Geological Survey National Water Information System: Web Interface (USGS, 2021).

1.3 Approach

SPSS and Microsoft Excel will be used to run the linear regression analysis. Linear regression will be applied to monthly water discharge and suspended sediment load values. Results of the proposed and traditional approaches will be compared, as explained in section 1.2 "Objectives."

Chapter 2 - Literature Review

2.1 Introduction

Soil erosion introduces significant quantities of sediment into rivers and streams. The classification of the erosion process that leads to the accumulation of sediments in rivers and streams includes gully, sheet, rill, and in-stream erosion. In most cases, these erosions occur due to heavy rainfall leading to an overland flow of rainwater that sweeps the sediments in various lands such as agricultural lands. The rainwater then transports and deposits these sediments in rivers and streams (Merrit et al., 2003). In-stream erosion refers to the removal of sediment located in the stream banks and bed of the stream. Some of the effects of the erosion of stream banks include deepening and widening rivers and streams. Excessive erosion in a stream collapses the stream's bank, which increases the stream's sediments. Deepening of the channel occurs since the increased weight of the materials forming the banks due to the new added sediments and materials becomes too much for the banks to handle leading to their collapse. In most cases, the stream bank's erosion stops when a stable channel is achieved when the deposition of sediments and the erosion process have reached equilibrium (Piest and Bowie, 1974).

The majority of a stream's sediment load is transported in solvated load (dissolved load) or suspension. The rest is referred to as the bed load. The dissolved load is materials from the Earth that have been broken down and incorporated into ions and are borne in the solution. This is often contributed by groundwater. Ions like potassium, chloride, calcium, sulfate, and bicarbonate are common. With the appropriate chemical conditions during flow, these ions can proceed to create new minerals. Minerals may also precipitate through evaporation. Fine-grained sediment such as clay and silt make up the suspended load and is carried in suspension attributed to turbulence. Coarser-grained sediment such as sand and gravel make up the

bedload, and these heavier sediments are transported by rolling and sliding on the bottom of the stream bed.

Regression-based models have continued to be applied in studying, calculating, and predicting the suspended sediment load in streams and rivers, mostly since these models remain some of the most convenient, simple, and easily applicable in the analysis process (Jain 2001; Walling 1977). Furthermore, numerous researchers have shown that the correlation between the suspended sediment load in rivers and streams and water discharge is affected by different variables. Variables such as density, temperature, viscosity, compactness, the concentration of moving particles, and energy can also influence the level of sediment load in rivers and streams (Gunawan et al., 2018). For instance, different natural processes, e.g., sediment sources and sediment sinks, can change the quantity of suspended sediments since this factor can lead to the addition or removal of the suspended sediment load in rivers and streams (Araujo et al., 2012).

2.2 Previous Studies

Sediment transport equations can be grouped into three categories: physically based equations, regression-based, and empirical models. Substantial data and numerous parameter estimates are required for the physically based model (Tayfur 2003). Regression-based models do not require a huge amount of data like the physically based model. The empirical model is limited to cases and locations for which they have been developed but cannot be employed at other locations (Yang 1996; Tayfur 2003).

A known methodology in the study of sediment discharge is using linear regression analysis to correlate suspended sediment load or concentration with water discharge in rivers or streams (sediment rating curves). Prolonged irregularities of the suspended sediment load at a specific gauge station can be examined using the linear regression approach. Good outcomes can be produced for predicting monthly or annual sediment load in streams with large drainage basins using the linear regression approach. The approach could also provide reliable results for predicting the daily sediment load in streams of homogeneous and small drainage basins. Some investigators (Linsley et al., 1981) recommended employing linear regression for drainage basins not having sediment records to derive an order-of-magnitude estimate of the sediment yield.

Many researchers have utilized the linear regression approach to analyze and predict suspended sediment load in rivers and streams (sediment rating curves). Examples include Leopold and Maddock (1953), Leopold and Miller (1956), Brown and Ritter (1971), Bhowmik et al., (1980), Linsley et al., (1981), Asselman (2000), Rankl (2004), Amin and Jacobs (2007), and Amin and Jacobs (2020). Prediction of the suspended sediment load uses stream water discharge and suspended sediment load data collected daily, monthly, or annually. Amin and Jacobs (2007) stated that the monthly regression relationship gives the highest correlation when compared to the daily and annual relationships. They determined that when daily sediment load is added up to give monthly sediment load, the variations in the daily sediment load are evened out, and the monthly relationship is not prone to wide hydrologic changes. In contrast, the annual relationship is exposed to wide hydrologic alterations that occur all through the year.

To attain substantial model results from the regression analysis, it was proposed that water discharge and sediment data needs to be obtained daily or weekly over a period from 10 to 20 years (Bhowmik et al., 1980). Amin and Jacobs (2020), however, indicated that working with data collected over 5 to 10 years is as good as working with data that extends to over 20 years.

Brown and Ritter (1971) collected sediment-water discharge data at 22 locations within the Eel River Basin in California for a period of 12 years. They used the data to determine the quantity of sediment transported by streams in several areas of the Eel River Basin and to determine the relationship between sediment concentrations and stream water discharge using linear regression. Brown and Ritter used linear equations to evaluate the suspended sediment load in response to the water discharged in the analyzing process.

Rankl (2004) applied linear regression to predict the suspended sediment load in different rivers and streams in the State of Wyoming. In his study, he collected data from seven rivers for a period of 10 years. Rankl found that the correlation coefficient values between suspended sediment load and water discharge varied between 0.94 and 0.98, which indicates an excellent correlation between the two variables. He also found that the slope values of the regression lines ranged from 1.29 to 1.70. This range of values is close to that obtained by Leopold and Miller (1956) (1.09 to 1.58, with a median of 1.29) for intermittent streams in the western United States. His study concluded that "rainstorm energy, estimated by the rainfall intensity, is the primary mechanism for soil-particle detachment" (Rankl, 2004). Similarly, a study conducted by Jie and Yu (2011) found that the magnitude of rainfall and the velocity of the stream are the main factors leading to suspended load. These findings portray that fast-moving water has a high velocity which increases the ability to easily pick and move large sediment depicting that the faster the flow, the higher the energy for transporting the larger pieces of sediment.

Amin and Jacobs (2007) also applied the linear regression approach to address the effects of sediment sources and sinks on suspended sediment load in The Rio Puerco in central New Mexico. In this study, sources and sinks effects were considered compared to the traditional approach that in no way examines sources and sinks. Regression equations were used to predict daily, monthly, and annual suspended load, but the highest correlation coefficient was produced from the monthly regression relationship, which was chosen for the analysis. The results of sources and sinks were established by fitting three regression lines through the data. The regression equations were applied to determine the amount of sediment lost to sinks and those added from sources. Before adding the effects of sources and sinks to

the simulation, the monthly suspended sediment and water discharge correlation coefficient was 0.93. After adding the effects of sources and sinks, the correlation coefficient raised to 0.98, consequently leading to a notable increase in not just the correlation coefficient but also in the suspended sediment load prediction accuracy when

using linear regression.

As described earlier, different natural processes can change the quantity of suspended sediments in the channels of rivers or streams by adding or removing sediments (Amin and Jacobs, 2007). In the case of sediment addition, the sediments come from sources such as the surrounding watershed; in sediment removal, the sediments leave the channel and occupy locations outside the channel.

Bhowmik et al. (1980) examined sediment load and water discharge in the Kankakee River in Illinois in a two-year study 1967-1968 and 1977-1978. Daily suspended-sediment data were evaluated to establish rating curves at examined gauging stations and approximate the suspended sediment load conveyed by the river at each station. Regression equations were used to establish the relationship between the sediment loads in tons per day with discharge in cubic feet per second. The comparison from the daily water discharge and sediment load data show that the sediment discharge peaks do not always correlate with the water discharge peaks, making the development of a direct correlation between water discharge and sediment load at examined gauging station challenging.

Leopold and Miller (1956) investigated various ephemeral and perennial streams in the western United States to study the effect of discharge on suspended sediment load. The linear regression model was also applied to show the relationship between the suspended sediment load and water discharge. Their study illustrated that the suspended sediment load of the arroyos (dry ephemeral streams that flow only a few days or weeks during the entire year) increased downstream more rapidly than water discharge, which arises from the loss of water

by infiltration to the channel bed, subsequently yielding increased levels of suspended sediment downstream. On the contrary, for the perennial streams (streams that flow year-round), the suspended sediment load declined downriver.

Ampomah et al., (2020) study assessed the impact of both intensified precipitation and urban development on suspended sediment yield in the Cuyahoga River utilizing numerical modeling. Historical Satellite-based land-cover data were used on the suspended sediment yield and precipitation data to produce a Multiple Linear Regression (MLR) model for the Cuyahoga River basin. The study model showed that an increment of 1 km² in urban areas could raise the mean annual suspended sediment yield by 0.9 tons/day, while every 1 mm increase in the mean annual precipitation can raise the mean annual suspended sediment yield by 860 tons/day. The findings from the above studies indicated that statistical analysis could produce improved predictability of sediment. Ampomah et al., (2020) also posited that the prediction of sediment could provide decision-makers with a benchmark for evaluating the possible effects of subsequent development on water quality in the river basin.

Chapter 3- Study Sites and Method

3.1 Overview of Study Sites

In this study, four American rivers will be investigated for the prediction of the suspended sediment load. The rivers are:

- 1. San Joaquin River, California
- 2. The Rio Puerco, New Mexico
- 3. Powder River, Wyoming, and Montana
- 4. Little Colorado River, Arizona

3.1.1 San Joaquin River, California

The San Joaquin River is in central California. It is 350 miles long. The river rises from Mount Goddard in the Sierra Nevada Mountain range, flowing through the northern region of San Joaquin Valley and draining in the Suisun Bay in San Francisco and the Pacific Ocean.

San Joaquin River remains one of the rivers with the highest number of dams used to produce hydroelectric power. Its drainage basin is approximately 15,600 square miles with an annual average of 1.6 million-acre feet of surface runoff (California Water Boards, 2021). The river also provides a rich agricultural landmass, sources of irrigation, and wildlife. The river discharges an estimated 144.7 m³/s (United States Geological Survey, 2021). The watershed's land cover comprises forested and agricultural areas.

San Joaquin River (figure 3.1) has three main tributaries that directly flow into the river. The upper tributaries have led to the erosion of soil, rock, and sediment from the mountains. The river comprises high, flat, and low trajectories. The flat trajectory comprises the Central Valley which has created a rich agricultural, aquatic, and wildlife habitat.

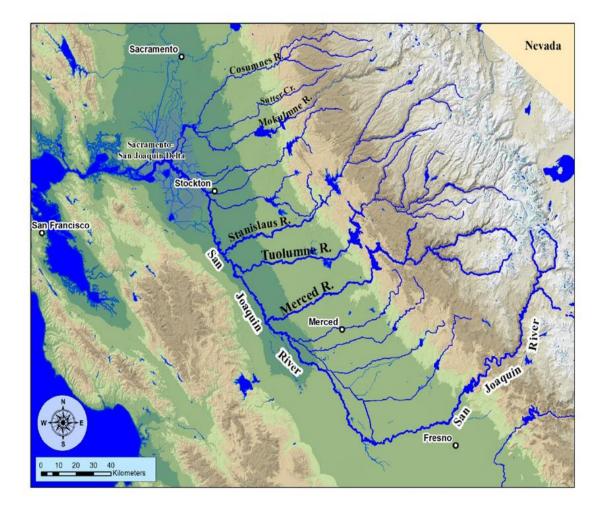


Figure 3. 1 Map of San Joaquin River Watershed and Associated Tributaries (Stringfellow and Camarillo, 2014)

The monthly precipitation data from 1980 to 1989 was derived from the National Oceanic and Atmospheric Administration (NOAA). The average monthly precipitation data for the San Joaquin River at Acampo 5 NE, California between 1980 to 1989 was about 1.745 inches, with the highest amount of precipitation in January (3.58 inches) and March (3.97 inches). The lowest amount of precipitation is in July and August.

The river discharge and the suspended sediment load data was obtained from the USGS gauging station 11303500 at Vernalis California. The water discharge, suspended sediment,

and Precipitation data between 1980 to 1989 will be used in the linear regression analysis conducted in this study.

3.1.2 The Rio Puerco, New Mexico

The Rio Puerco (figure 3.2) is the largest tributary to the Rio Grande in New Mexico and drains approximately 6,200 square miles in central New Mexico. The drainage basin is bordered on the east by the Rio Grande drainage basin, on the west by the Continental Divide, on the north by the Jemez mountains, and on the South by the Ladrone mountain. The Rio Puerco drains more than 20% of its area at San Marcial which is only 4% of Rio Grande's annual runoff at San Marcial. The river also contributes about 70% of Rio Grande's average annual suspended sediment load (Gellis et al., 2001). Vegetation is sparse over most of the watershed which consists mostly of pinyon-juniper woodland and grassland, copious amount of readily erodible sediment is also available in the watershed (Nordin, 1963; Molnar and Ramirez, 2001).

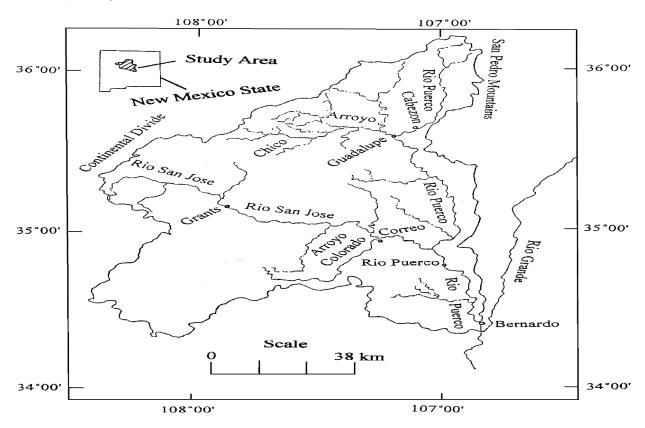


Figure 3. 2 Map of Rio Puerco Drainage Basin (Amin and Jacobs, 2007)

A huge section of the Rio Puerco basin is made up of siltstones and shales which readily erode, producing areas of high sediment yield that supply substantial amounts of easily eroded, fine-grained, and valley-filled materials. The high terrain of the Rio Puerco basin will help create precipitation and the steep slopes provide sediment-moving power to the resulting runoff (Watts et al., 1997).

The suspended sediment data and water discharge data examined in this study are computed at the Bernardo gauging station 0835300 from 1982 – 1991. The Rio Puerco is an ephemeral river that loses water through its bed but gets most of its runoff from rainfall influenced by thunderstorms; the type of intense rain that can easily move materials and cut channels (Amin and Jacobs, 2007; Molnar and Ramirez, 2001). The average monthly precipitation for Rio Puerco at Bernardo between 1982 – 1991 is 0.76 inches with the highest precipitation in August (1.69 inches), July (1.3 inches), and September (1.135 inches). The lowest precipitation occurs in February with 0.24 inches. The precipitation data was obtained from the NOAA website at the Bernardo station.

3.1.3 The Powder River, Wyoming, and Montana

The Powder River (figure 3.3) is a tributary of the Yellowstone River. The river is about 375 miles long in northeastern Wyoming and southeastern Montana in the United States. The powder River is produced by the junction of its middle forks and south forks. The river covers approximately 19,500 square miles that include the river and its tributaries. The larger part of the drainage basin is in Wyoming. (Hembree et al., 1952). The Powder River Basin (PRB) has the highest aggregation of low-sulfur sub-bituminous coal in the world (Luppens et al., 2013). Most of the sediment transported by the Powder River originates from regions of lower elevations bolstered by sedimentary rocks (Pizzuto, 1994).

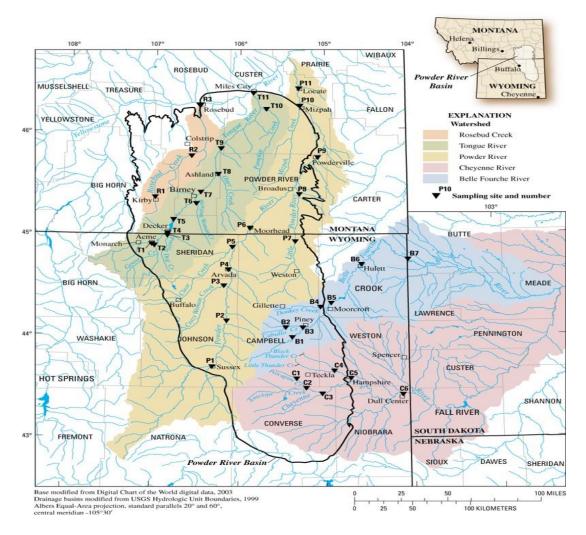


Figure 3. 3 Map of the Powder River Basin (Clark et al., 2005).

The Powder River Basin is bounded by the Cesar Ridge anticline to the north, the Casper Arch, Laramie Mountains, and the Hartville uplift to the south, the Bighorn Mountains to the west, and the Black Hills to the east. The two major geologic formations that define the Powder River Basin structure are the Wasatch and Fort Union, but the geologic formation of that of the Wyoming basin is the Wasatch and Fort Union alluvium veins (Ogden and Puckett, 2008).

The average monthly precipitation for the Powder River at Casper Natrona Co Airport, Wyoming between 1948 to 1957 (the period of data used in this study) is 0.90 inches which was also obtained from the NOAA website. The highest precipitation occurred in the month of May with 2.084 inches and June with 1.19 inches. The lowest precipitation was in January and February.

3.1.4 Little Colorado River, Arizona

Little Colorado River (figure 3.4) is in eastern Arizona and western New Mexico. The river originates from two tributaries that arise from the White Mountains and Mount Baldy that meet at a canyon forming the Little Colorado River. The river stretches for 338 miles from the canyons and flows through the Richville Valley and eventually empties into Lyman Lake. The river then leaves the lake and flows northwards meeting with its main tributaries and eventually drains into the Colorado River in the Grand Canyon. The Little Colorado River is an ephemeral river with an arid climate in the lower basin and semi-arid in the upper basin. The daily average temperature in the basin ranges between -3 to 27°C (Gray and Fisk, 1992).

The monthly precipitation data from 1957 to 1966 was obtained from the National Oceanic and Atmospheric Administration (NOAA). The average monthly precipitation data for the Little Colorado River at Fort Valley Arizona from 1957 to 1966 was about 1.93 inches, with the highest amount of precipitation in August and July (3.51 and 2.71 inches), respectively. The lowest amount of precipitation was in June with 0.69 inches. The river discharge and the suspended sediment load data was obtained from the USGS gauging station 09402000 at Little Colorado River near Cameron, AZ.

Little Colorado River's average annual discharge is estimated at 370 cubic feet per second and rises to about a thousand cubic feet per second during summer due to cloudbursts (Arizona Geological Survey, 2020). The sediments carried from the upper trajectories settle in the lower valleys, creating aquamarine waters and vegetation. However, in some cases, during the period of snowmelt in summer and spring, the increase of water velocity and volume erodes the lower parts below Cameron leading to various environmental detriments.

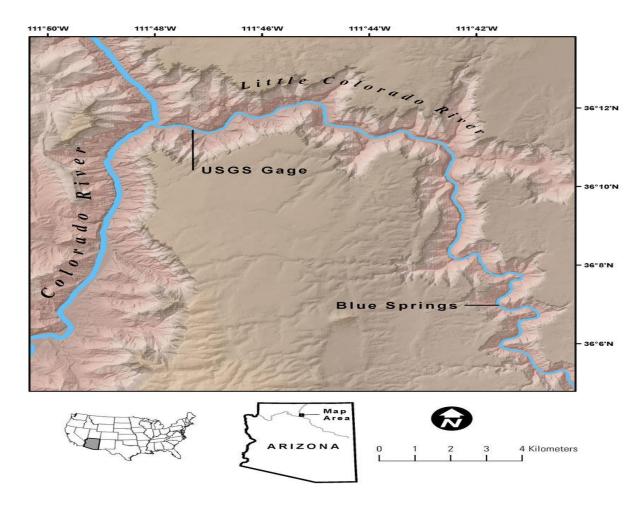


Figure 3. 4 Map of the Little Colorado River (Limburg et al, 2013).

3.2 Linear Regression Analysis

Different approaches have been used to determine suspended sediment load in rivers or streams. These include the direct measurements at sediment gauging stations, the regression method (sediment rating curve), empirical methods, wavelet-based artificial intelligence models, the artificial intelligence method such as artificial neural network, gene expressions and genetic programming models, and finally the support vector machine models (Ulke et al., 2016). One of the most used techniques in investigating the relationship between water discharge and suspended sediment in streams and rivers is linear regression which expresses the relationship in the form of a linear or power equation. There are several types of linear regression: Simple linear regression, multiple linear regression, ordinal regression, logistic

regression, discriminant analysis and multinominal regression (Bewick et al., 2003; Kisi and Ozkan, 2016).

Linear regression connects one or more explanatory variables to a response variable using linear coefficients, as the coefficient of determination R^2 tells us how much variance is being explained by the model (Helsel and Hirsch, 2002). In this model, the correlation coefficient R is reported for the data analysis.

In this study, the linear regression model was applied to determine the power relationship between the response variable (suspended sediment) and the regressor variable (water discharge). The data used was categorized into groups of similar precipitation values for all the rivers studied.

The equation for regression takes the form:

 $Y = aX^m$ (equation 1)

Where Y = suspended sediment load

X = water discharge

a = constant

m = slope of the regression line

Equation (1) logarithmic form:

 $\log Y = m \log X + \log a$ (equation 2)

Equation (2) is in the form y = mx + b

Where m = slope of regression line

 $b = \log a = intercept$

Equation (1) was used for the prediction of monthly suspended sediment load at the four investigated rivers.

One of the several methods used to transform data sets to attain linearity, simplify the analysis, satisfy linear regression assumptions, improve regression model, and eliminate curvature is the logarithmic transformation (Helsel and Hirsch, 2002; Ott, 1993). This was employed in this research to transform equation 1 (originally in engineering units) to logarithmic function (equation 2) and was retransformed back to the original engineering unit. Retransformation leads to a bias that is usually negative except the data is positively and flawlessly correlated. The bias ensues because regression predicts the mean of a normal distribution in log units, but the retransformed values produce values closer to the mean (Miller, 1951; Koch and Smillie, 1986). Bias can be corrected by using the Minimum Variance Unbiased Estimator (MVUE) approach specifically with errors assumed to be normally distributed and the Smearing Estimator with non-normal error distribution (Cohn and Gilroy, 1991).

The smearing estimator is a nonparametric method developed by Duan (1983) and recommended by Cohn and Gilroy (1991) in handling the bias correction problem. This method is applied in this study because it assumes the residuals are independent and can support any distribution (Amin and Jacobs 2007). The equation for the smearing estimate is:

$$Y_{SE} = Y \left[\sum \frac{10^{\text{res}}}{n} \right]$$

Where Y_{SE} = the corrected predicted sediment load using the smearing factor

- Y = the predicted sediment load
- n = number of the predicted sediment loads
- res = residuals

Residuals (res) are obtained by subtracting the logarithm of the predicted sediment load from the logarithm of the observed sediment load:

res = [(log observed sediment load) - (log predicted sediment load)].

Chapter 4- Results and Discussion

4.1 Results of Linear Regression

The regression equations were used to establish the relationship between the stream water discharge and the suspended sediment load for the four rivers investigated in this study. The suspended sediment and water discharge data covered a period of 10 years as follows:

- 1. San Joaquin River, California (1980-1989)
- 2. The Rio Puerco, New Mexico (1982-1991)
- 3. Powder River, Wyoming, and Montana (1948-1957)
- 4. Little Colorado River, Arizona (1957-1966)

The data for water discharge is measured in cubic feet per second (ft³/s) while the suspended sediment load is expressed in short tons per month (sh.t/month). Both the suspended sediment load and the river water discharge data were grouped based on similar precipitation values.

4.1.1 San Joaquin River Results and Discussion

The data between 1980 -1989 for the San Joaquin River was divided into six (6) groups of similar precipitation values. The record for suspended sediment and water discharge was complete. The correlation coefficient value for the ungrouped data (traditional linear regression analysis) was 0.90, and for the six grouped data: 0.82, 0.90, 0.92, 0.96, 0.93, and 0.92, respectively. Therefore, the correlation coefficient values for both the ungrouped and the grouped data sets for San Joaquin River show a strong correlation between the monthly suspended sediment load and the monthly river water discharge.

Figure 4.1 shows the regression relationship of the ungrouped data set.

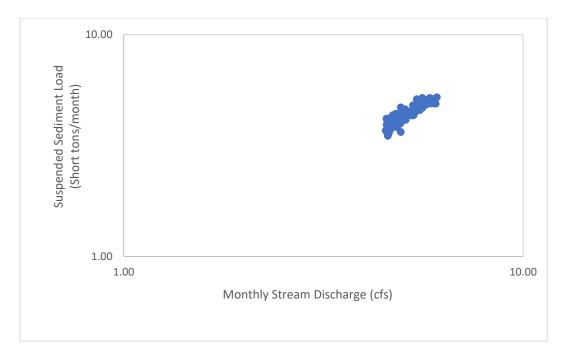
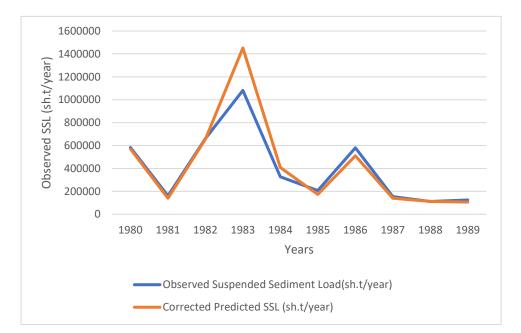
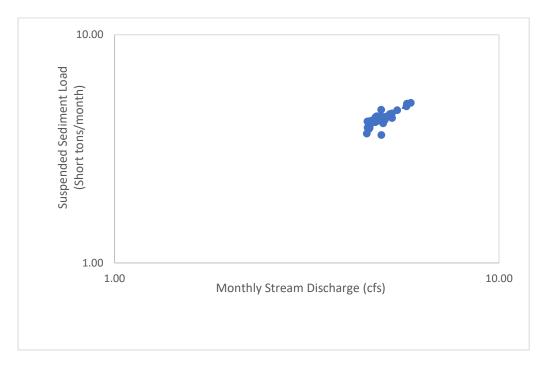


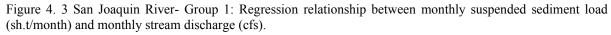
Figure 4. 1 San Joaquin River- Ungrouped: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 0.8273 X^{1.0214}$

Figure 4.2 compares the annual observed and the predicted suspended sediment load

(SSL).


Figure 4. 2 San Joaquin River- Ungrouped Data set: Observed vs. Corrected Predicted Suspended Sediment Load

The corrected predicted suspended sediment load refers to the suspended sediment load that was corrected for the bias resulting from using logarithmic functions (see chapter 3).

The linear regression correlation coefficient for the San Joaquin River ungrouped data set was 0.90 with a percent deviation ranging from 0.05% to 3.26% and an average of 0.43%. From the graph of Figure 4.2, the corrected predicted suspended sediment line is reasonably close to the observed suspended sediment load.

Figures 4.3 through to 4.8 show the regression relationships of San Joaquin River six (6) groups.

The regression equation for this relationship is $Y = 1.1673 X^{0.816}$

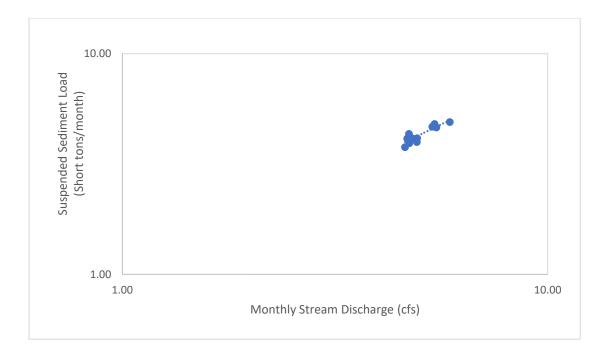


Figure 4. 4 San Joaquin River- Group 2: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 0.9412X^{0.9414}$

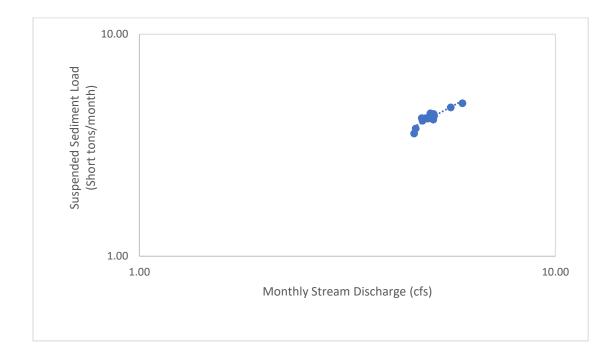


Figure 4. 5 San Joaquin River- Group 3: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 0.8293 X^{1.0066}$

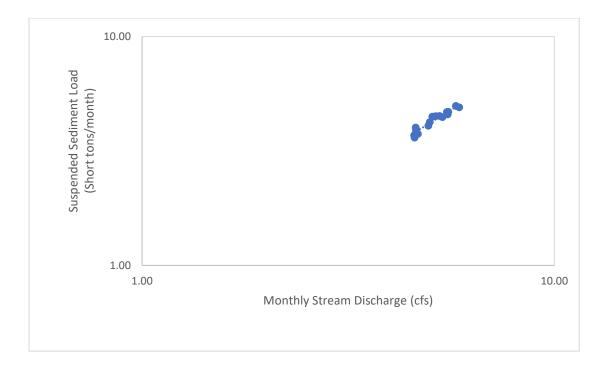


Figure 4. 6 San Joaquin River- Group 4: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 0.6955X^{1.1164}$

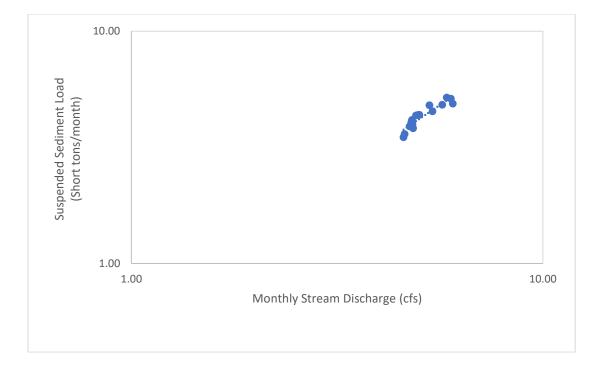


Figure 4. 7 San Joaquin River- Group 5: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 0.6068X^{1.1991}$

Figure 4. 8 San Joaquin River- Group 6: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 0.7118X^{1.1222}$

Figure 4.9 to 4.14 shows the comparison between the annual observed suspended sediment load and the corrected predicted suspended sediment load for groups 1-5. For all the groups, the observed and corrected predicted sediment load was reasonably close. The closer the lines, the better (accurate) the linear regression relationship.

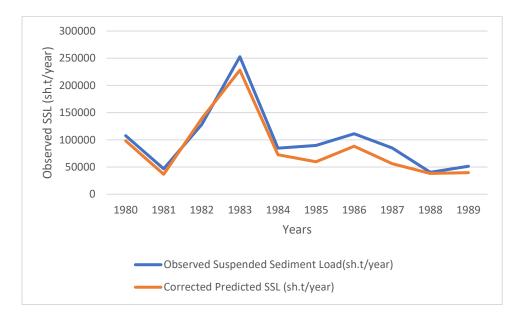


Figure 4. 9 San Joaquin River- Group 1: Observed vs. Corrected Predicted Suspended Sediment Load

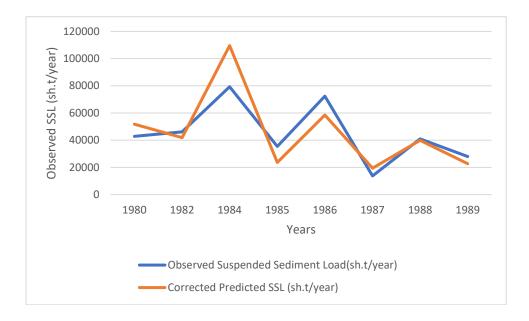


Figure 4. 10 San Joaquin River- Group 2: Observed vs. Corrected Predicted Suspended Sediment Load

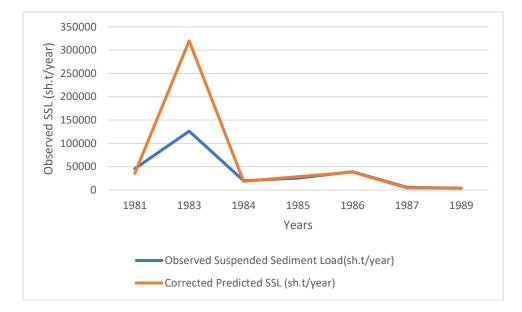


Figure 4. 11 San Joaquin River- Group 3: Observed vs. Corrected Predicted Suspended Sediment Load

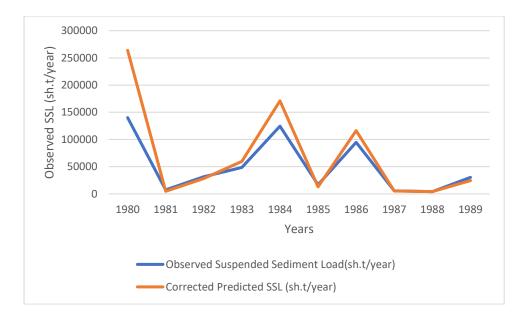


Figure 4. 12 San Joaquin River- Group 4: Observed vs. Corrected Predicted Suspended Sediment Load

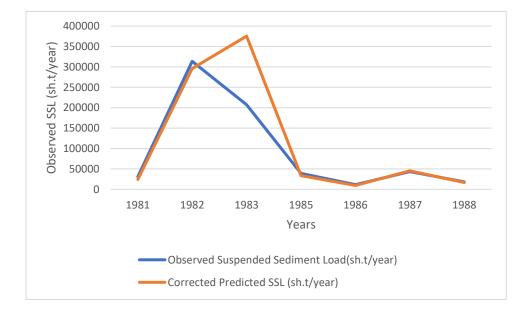


Figure 4. 13 San Joaquin River- Group 5: Observed vs. Corrected Predicted Suspended Sediment Load

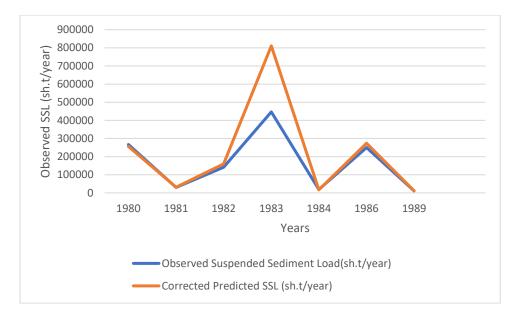


Figure 4. 14 San Joaquin River- Group 6: Observed vs. Corrected Predicted Suspended Sediment Load

Comparison between the observed suspended sediment and the corrected predicted sediment for all groups, except group 2, shows close agreement. The accuracy of the suspended sediment load is demonstrated by the absolute percent deviation (see chapter 3) using the smearing estimator (Appendix A). The smaller the percent deviation, the higher the accuracy of the prediction.

<u>Group 1: Precipitation Range (1.0 – 0.19 inches)</u>

The percent deviation for group 1 ranges from 0.01% to 3.97% with an average of 0.34%. The average percent deviation of group 1 is less than that of the (ungrouped) traditional data set which is 0.43%. Though the correlation coefficient of group 1 is lower than that of the ungrouped data set (0.82 to 0.90), the prediction accuracy is higher in group 1 than in the traditional data set.

Group 2: Precipitation Range (0.2 – 0.69 inches)

The percent deviation for group 2 is between 0.03% and 0.86% with an average of 0.33% which is lower than both the ungrouped data set and group 1. The correlation coefficient of group 2 is the same as that of the ungrouped data set, which is 0.90, but group 2 has a higher prediction accuracy than the ungrouped data set.

Group 3: Precipitation Range (0.7 – 1.3 inches)

Group 3 has a percent deviation ranging from 0.05% to 0.99% with an average of 0.32%. The percent deviation average of group 3 is smaller than the ungrouped data set (0.43%), but the ungrouped data set has a higher correlation coefficient of 0.92 t(compared to 0.90 for the ungrouped data set). This shows that group 3 also has a higher prediction accuracy than the ungrouped (traditional) data set.

Group 4: Precipitation Range (1.4 – 2.5 inches)

The percent deviation for group 4 is between 0 to 0.90% with an average of 0.09% which is lower than the ungrouped data set. The high prediction accuracy of group 4 is supported by the high correlation coefficient of 0.96.

Group 5: Precipitation Range (2.6 - 4.5 inches)

Group 5 has a percent deviation ranging from 0.11% to 3.21%., leading to an average of 0.56%. The average percent deviation for group 5 is higher than that of the ungrouped (traditional data set). This indicates a lower prediction accuracy than the ungrouped data set which has a percent deviation of 0.43%. However, the correlation coefficient value for group 5 is higher than that of the ungrouped with 0.93 and 0.90 respectively.

Group 6: Precipitation Range (4.7 – 8.7 inches)

The percent deviation for group 6 is between 0.05% to 0.61% with 0.38% average. This demonstrates a higher prediction accuracy than the ungrouped data set with 0.43%. The correlation coefficient value for group 6 is 0.92 which is higher than the ungrouped data set.

For the San Joaquin River, 5 out of the 6 groups show a higher correlation coefficient value and higher prediction accuracy than the ungrouped (traditional data set).

San Joaquin River	Groups	Percent Deviation (%)	Correlation Coefficient (r)
	Ungrouped (Traditional)	0.43	0.90
	Group 1	0.34	0.82
	Group 2	0.33	0.90
	Group 3	0.32	0.92
	Group 4	0.09	0.96
	Group 5	0.56	0.93
	Group 6	0.38	0.92

Table 4. 1 San Joaquin River: Percent Deviation and Correlation Coefficient of the Groups

4.1.2 The Rio Puerco Results and Discussion

The ten years data for Rio Puerco was divided into five groups based on similar precipitation values as shown in Appendix B. Linear regression analysis was applied to the ungrouped and grouped data. The ungrouped (Traditional) correlation coefficient is r = 0.90, and the values for the grouped are 0.88, 0.91, 0.94, 0.97 and 0.85, respectively. The correlation coefficient values for both the ungrouped (traditional) and the grouped data set for Rio Puerco show a strong correlation between the monthly suspended sediment load and the monthly stream discharge.

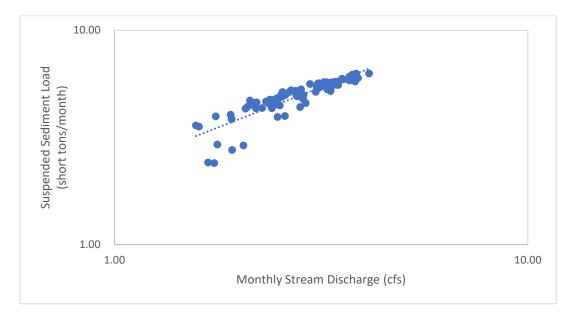
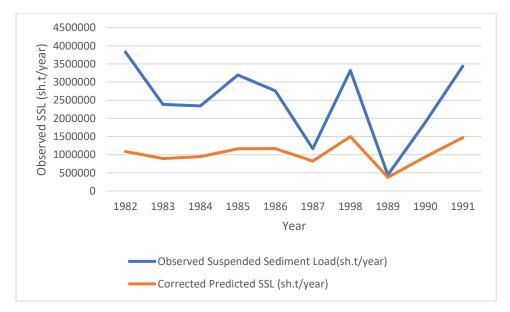



Figure 4.15 show the regression relationship of the ungrouped (traditional) data set.

Figure 4. 15 Rio Puerco River- Ungrouped (Traditional): Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs)

The regression equation for this relationship is $Y = 2.2822X^{0.7512}$

Figure 4.16 shows the comparison between the annual observed and the predicted sediment

load for the Rio Puerco River.

Figure 4. 16 Rio Puerco- Ungrouped Data Set: Observed vs. Corrected Predicted Suspended Sediment Load

The linear regression correlation coefficient for the ungrouped (traditional) data set for Rio Puerco was 0.90 with a percent deviation ranging from 0.04% to 79.29% and an average of 3.78%. From the comparison graph, the corrected predicted suspended sediment load line is reasonably close to the observed suspended sediment load.

Figures 4.17 through to 4.21 show the regression relationships for the (5) groups of the Rio Puerco.

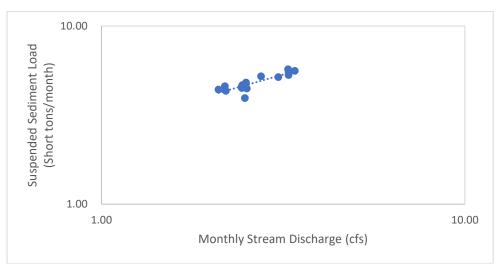


Figure 4. 17 Rio Puerco River- Group 1: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 2.7434X^{0.5784}$

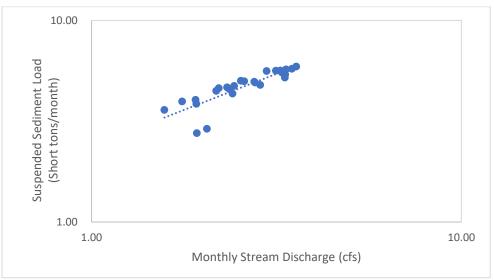


Figure 4. 18 Rio Puerco River- Group 2: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 2.5877 X^{0.643}$

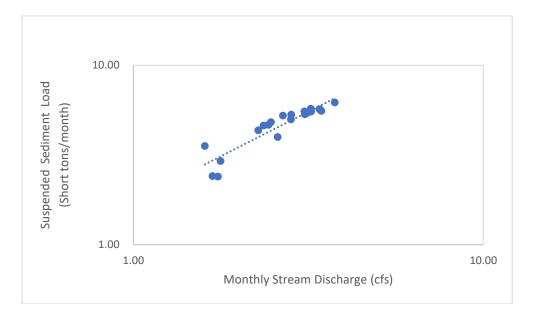


Figure 4. 19 Rio Puerco River- Group 3: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 1.9444X^{0.9037}$

Figure 4. 20 Rio Puerco River- Group 4: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 3.1028X^{0.4998}$

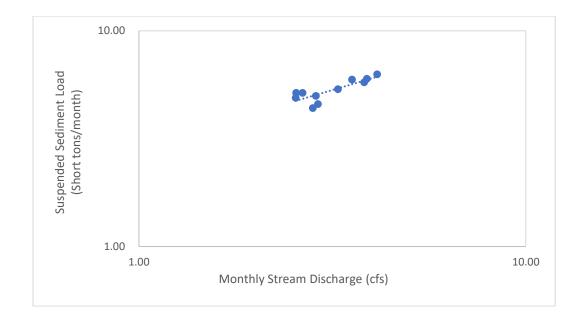


Figure 4. 21 Rio Puerco River- Group 5: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 2.8822X^{0.5313}$

Figure 4.22 to 4.26 shows the comparison between the observed suspended sediment load and the corrected predicted suspended sediment load for the 5 groups of the Rio Puerco River. The correction of bias and accuracy of the suspended sediment load for Rio Puerco is shown by the absolute percent deviation using the smearing estimator (see Appendix B).

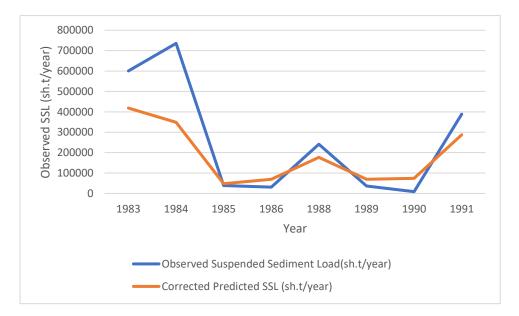


Figure 4. 22 Rio Puerco- Group 1: Observed vs. Corrected Predicted Suspended Sediment Load

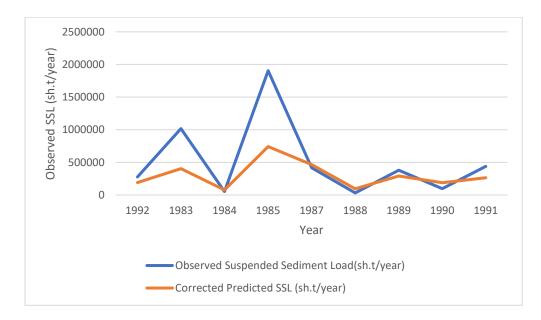


Figure 4. 23 Rio Puerco- Group 2: Observed vs. Corrected Predicted Suspended Sediment Load

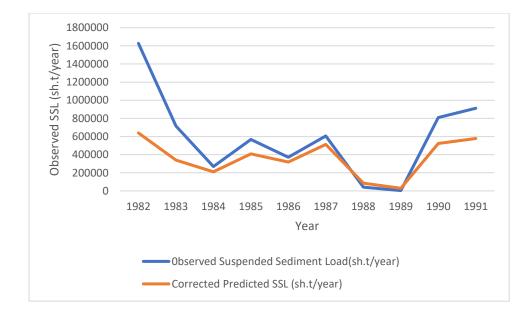


Figure 4. 24 Rio Puerco- Group 3: Observed vs. Corrected Predicted Suspended Sediment Load

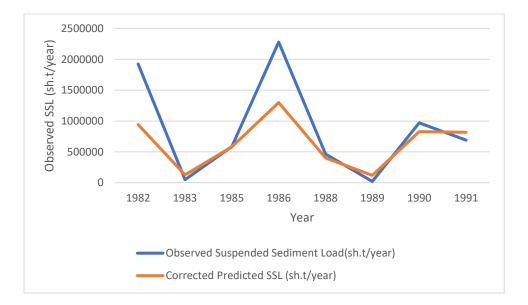


Figure 4. 25 Rio Puerco- Group 4: Observed vs. Corrected Predicted Suspended Sediment Load

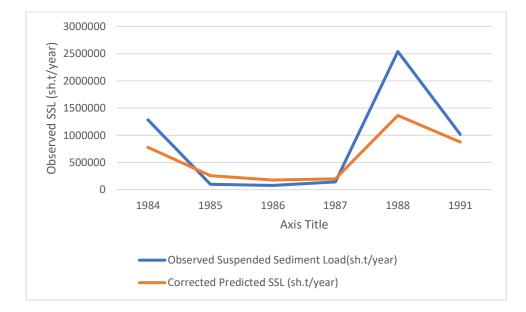


Figure 4. 26 Rio Puerco- Group 5: Observed vs. Corrected Predicted Suspended Sediment Load

<u>Group 1: Precipitation Range (0 - 0.19 inches)</u>

The percent deviation for Rio Puerco group 1 ranges from 0.02% to 6.81% with an average of 0.97%. The average percent deviation of group 1 is much lower than that of the (ungrouped) traditional data set, which is 3.78%. The correlation coefficient of group 1 is lower than the traditional data set 0.88 and 0.90, respectively but the prediction accuracy is higher in group 1 than the traditional data set.

Group 2: Precipitation Range (0.2 – 0.52 inches)

The percent deviation for group 2 is between 0.02% to 39.92% with an average of 2.37% which is lower than that of the ungrouped data set. The correlation coefficient for Rio Puerco group 2 is higher than the ungrouped data set and group 1 with a value of 0.91. With an average of 2.37 percent deviation, the prediction accuracy is higher than the ungrouped data set.

Group 3: Precipitation Range (0.55 – 1.28 inches)

Group 3 has a percent deviation ranging from 0 to 33.56% with an average of 2.59%. The percent deviation average of group 3 is smaller than that of the ungrouped data set (3.78 percent deviation), but the ungrouped data set has a higher correlation coefficient (0.94 to 0.90). This shows that group 3 has a higher prediction accuracy than the ungrouped (traditional) data set.

<u>Group 4: Precipitation Range (1.3 – 1.98 inches)</u>

The percent deviation for group 4 is between 0.09 to 4.48% with an average of 0.89% which is also lower than the ungrouped data set. The high prediction accuracy of group 4 is supported by the high correlation coefficient of 0.97.

Group 5: Precipitation Range (2.0 – 3.4 inches)

Group 5 has a percent deviation ranging from 0.01% to 6.36%., leading to an average of 1.27%. The average percent deviation for group 5 is lower than that of the ungrouped (traditional data set). This indicates a higher prediction accuracy than the ungrouped data set with a percent deviation of 3.78%. although, the correlation coefficient value for group 5 is lower than the ungrouped with 0.85 against 0.90, respectively.

The precipitation range for grouping the Rio Puerco River is less than that of the San Joaquin River as Rio Puerco is an ephemeral stream with large thunderstorms during the summer monsoon season and snowmelt during Spring only. All five (5) groups show a higher prediction accuracy than the ungrouped (traditional data set). Two groups from the five groups have a lower correlation coefficient than the ungrouped (traditional).

	Groups	Percent Deviation (%)	Correlation Coefficient (<i>r</i>)
Rio Puerco River	Ungrouped (Traditional)	3.78	0.90
	Group 1	0.97	0.88
	Group 2	2.37	0.91
	Group 3	2.59	0.94
	Group 4	0.89	0.97
	Group 5	1.27	0.85

Table 4. 2 The Rio Puerco: Percent Deviation and Correlation Coefficient of the Groups

4.1.3 Powder River Results and Discussion

The data between 1948 -1957 for the Powder River was divided into five (5) groups of similar precipitation values. The correlation coefficient values for both the Ungrouped (traditional) and the grouped data set for Powder River show a good correlation between the monthly suspended sediment load and the monthly stream discharge.

The correlation coefficient value for the ungrouped data (traditional) was r = 0.80, and for the grouped data was 0.81, 0.80, 0.78, 0.78, and 0.90, respectively.

Figure 4.27 shows the regression relationship of the ungrouped (traditional) data set.

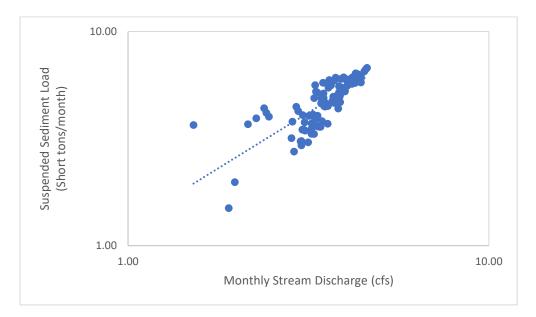


Figure 4. 27 Powder River- Ungrouped (Traditional): Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 1.2634X^{1.0395}$

Figure 4.28 shows the comparison of the annual observed vs. corrected predicted suspended sediment load.

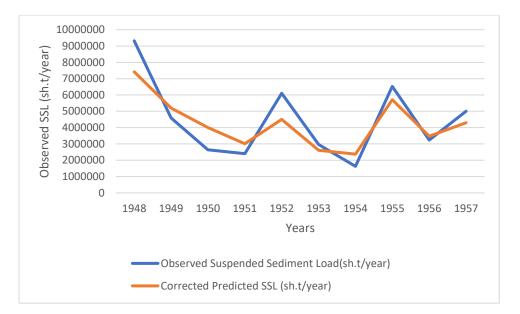


Figure 4. 28 Powder River- Ungrouped (Tradition): Observed vs. Corrected Predicted Suspended Sediment Load

The linear regression correlation coefficient for the ungrouped (traditional) data set for Powder River was 0.80 with a percent deviation ranging from 0.02% to 52.95% with an average of 8.03%. From the comparison graph, the corrected predicted suspended sediment line is considerately close to the observed suspended sediment load.

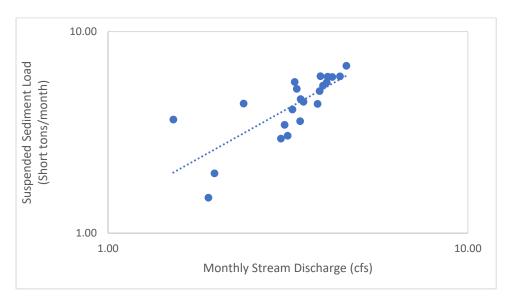


Figure 4.29 through 4.33 shows the regression relationships of the grouped data set.

Figure 4. 29 Powder River- Group 1: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 1.3173X^{0.9974}$

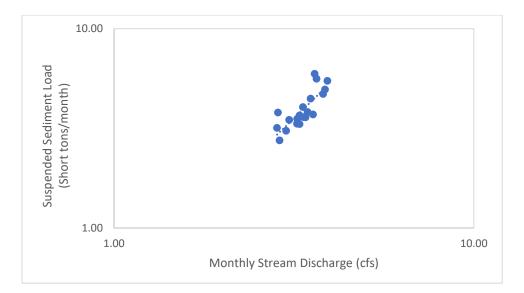


Figure 4. 30 Powder River- Group 2: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 0.4736X^{1.7502}$

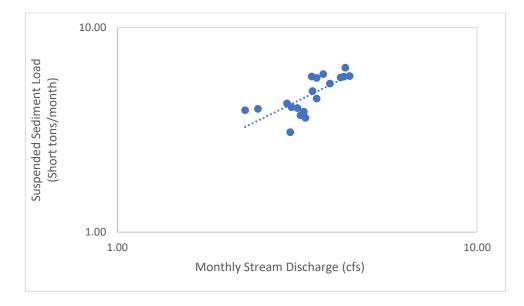


Figure 4. 31 Powder River- Group 3: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 1.6059X^{0.8679}$

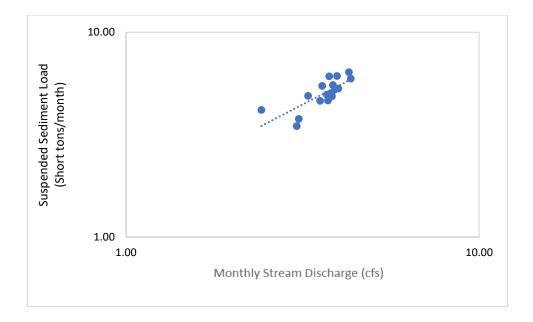


Figure 4. 32 Powder River- Group 4: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 1.5831X^{0.8952}$

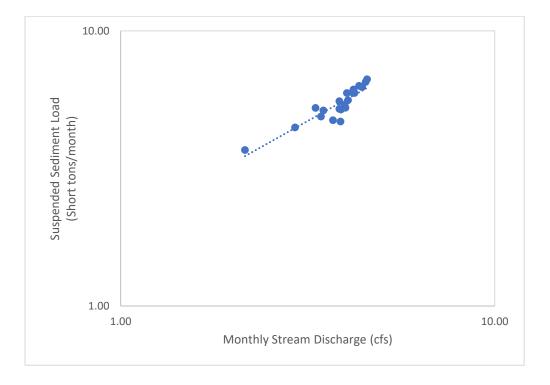


Figure 4. 33 Powder River- Group 5: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 1.9603 X^{0.7599}$

Figure 4.34 to 4.38 shows the comparison between the observed suspended sediment load and the corrected predicted suspended sediment load for the Powder River. The correction of bias and accuracy of the suspended sediment load for Powder River is shown by the absolute percent deviation using the smearing estimator (see Appendix C).

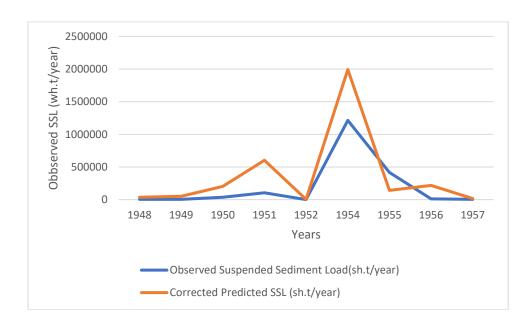


Figure 4. 34 Powder River- Group 1: Observed vs. Corrected Predicted Suspended Sediment Load

Figure 4. 35 Powder River- Group 2: Observed vs. Corrected Predicted Suspended Sediment Load

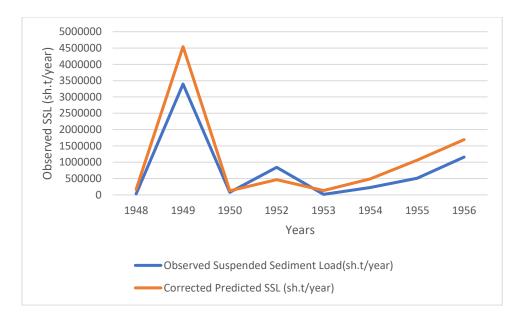


Figure 4. 36 Powder River- Group 3: Observed vs. Corrected Predicted Suspended Sediment Load

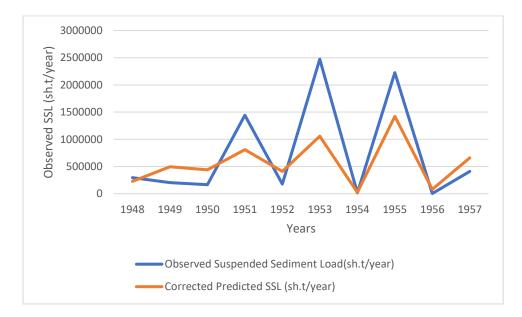


Figure 4. 37 Powder River- Group 4: Observed vs. Corrected Predicted Suspended Sediment Load

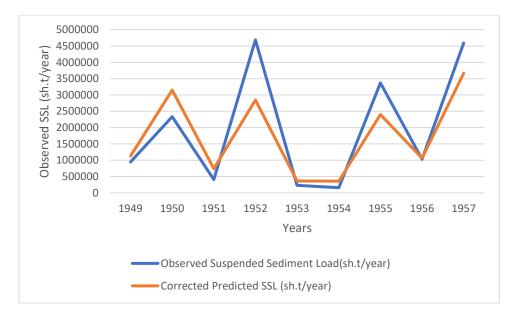


Figure 4. 38 Powder River- Group 5: Observed vs. Corrected Predicted Suspended Sediment Load

<u>Group 1: Precipitation Range (0 - 0.25 inches)</u>

The percent deviation for group 1 ranges from 0.012% to 64.12% with an average of 17.48%. The average percent deviation of group 1 is higher than that of the (ungrouped) traditional data set, which is 8.03%. The correlation coefficient of group 1 is slightly higher than that of the traditional data set, 0.81 and 0.80, respectively, but the prediction accuracy in group 1 is lower than the traditional data set.

Group 2: Precipitation Range (0.26 – 0.46 inches)

The percent deviation for group 2 is between 0.03% to 13.80% with an average of 4.44% which is lower than both the ungrouped data set and that of group 1. The correlation coefficient of group 2 is the same as that of the ungrouped data set, 0.80, but group 2 has a higher prediction accuracy than the ungrouped data set.

Group 3: Precipitation Range (0.55 – 0.78 inches)

Group 3 has a percent deviation ranging from 0.17% to 47.42% with an average of 6.49%. The percent deviation average of group 3 is smaller than that of the ungrouped data set which has an 8.03% deviation. The correlation coefficient for group 3 is lower than the

traditional data set 0.78 against 0.80, but the prediction for group 3 is more accurate than the ungrouped (traditional) data set.

Group 4: Precipitation Range (0.80 – 1.36 inches)

The percent deviation for group 4 is between 0.03 to 20.23% with an average of 3.04% which is lower than that of the ungrouped data set. The correlation coefficient for group 4 is less than the ungrouped (traditional) data set but has the same value as group 3 and the prediction accuracy is higher than that of the ungrouped (traditional).

Group 5: Precipitation Range (1.40 – 3.95 inches)

Group 5 has a percent deviation ranging from 0.07% to 7.94%., leading to an average of 1.48%. The average percent deviation for group 5 is lower than that of the ungrouped (traditional data set). This indicates a higher prediction accuracy than the ungrouped data set, which has a percent deviation of 8.03%. The correlation coefficient value for group 5 is higher than the ungrouped with 0.90 and 0.80, respectively.

The statistical analysis of the Powder River shows 2 groups out of the 5 groups with a lower correlation coefficient value than the ungrouped data (traditional), though both groups produced a higher prediction accuracy. Group 2 regression analysis produced the same correlation coefficient value as that of the ungrouped and two other groups produced higher correlation coefficient value. Only group 1 percent deviation is higher than the traditional data set.

	Groups	Percent Deviation (%)	Correlation Coefficient (<i>r</i>)
Powder River	Ungrouped (Traditional)	8.03	0.80
	Group 1	17.48	0.81
	Group 2	4.44	0.80
	Group 3	6.49	0.78
	Group 4	3.04	0.78
	Group 5	1.48	0.90

Table 4. 3 Powder River: Percent Deviation and Correlation Coefficient of the Groups

4.1.4 Little Colorado River Results and Discussion

The ten years data for the Little Colorado River between 1957 - 1966 was broken down into five groups based on similar precipitation values. Linear regression analysis was applied to the ungrouped and grouped data. The ungrouped (traditional) correlation coefficient r = 0.87, and the values for the grouped are 0.89, 0.87, 0.81, 0.82 and 0.90, respectively. The correlation coefficient values for both the ungrouped (traditional) and the grouped data for Little Colorado River show a good correlation between the monthly suspended sediment load and the monthly stream discharge.

Figure 4.39 shows the regression relationship between the suspended sediment load and stream discharge for the ungrouped (traditional) data set.

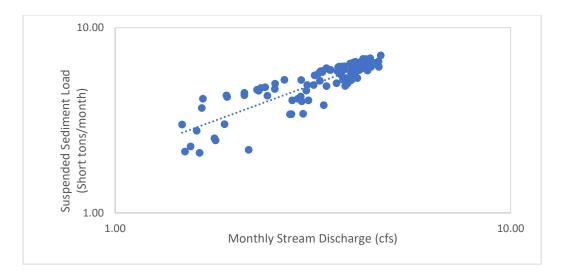


Figure 4. 39 Little Colorado River- Ungrouped (Traditional): Regression relationship between monthly sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 1.9942X^{0.786}$

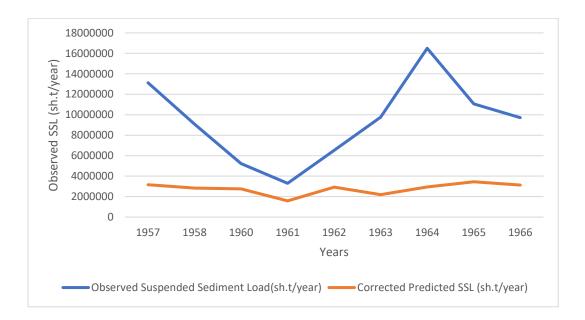


Figure 4. 40 Little Colorado River- Ungrouped: Observed vs. Corrected Predicted Suspended Sediment Load

Figure 4.40 shows the observed vs. corrected predicted suspended sediment load.

The linear regression correlation coefficient for the ungrouped (traditional) data set for Little Colorado River was 0.87 with a percent deviation ranging from 0.04% to 80.35% and an average of 11.02%. From the comparison graph, the deviation between the observed suspended

sediment load and the corrected predicted sediment load is due to the enormous hydrologic changes that took place during the ten years of the study.

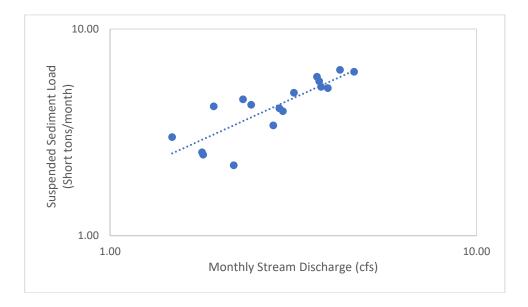


Figure 4.41 through 4.45 shows the regression relationships of the grouped data set.

Figure 4. 41 Little Colorado River- Group 1: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 2.0037 X^{0.7442}$

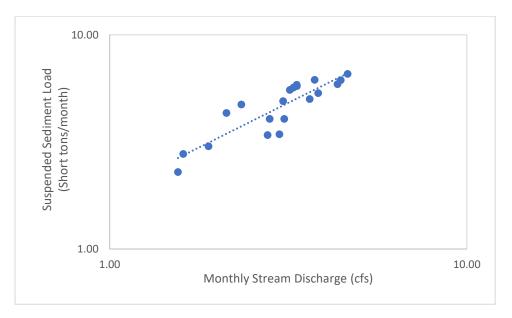


Figure 4. 42 Little Colorado River- Group 2: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 1.8442X^{0.833}$

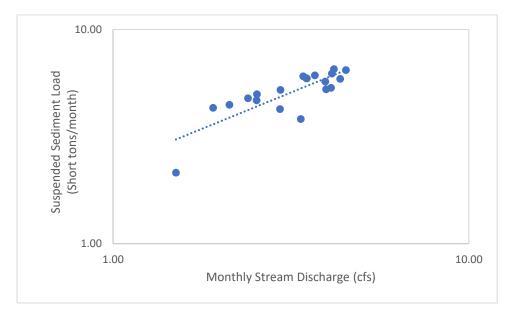


Figure 4. 43 Little Colorado River- Group 3: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 2.3271 X^{0.6782}$

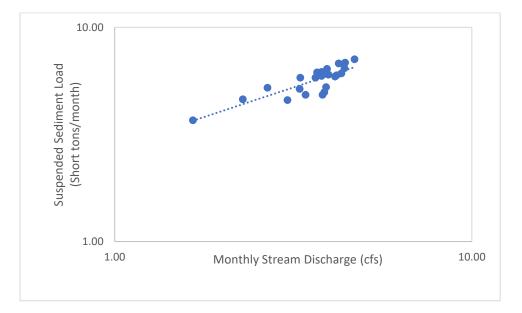


Figure 4. 44 Little Colorado River- Group 4: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 2.7724X^{0.5532}$

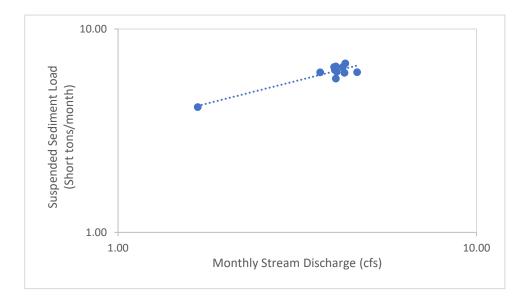


Figure 4. 45 Little Colorado River- Group 5: Regression relationship between monthly suspended sediment load (sh.t/month) and monthly stream discharge (cfs).

The regression equation for this relationship is $Y = 3.3336X^{0.4458}$

Figure 4.46 to 4.50 shows the comparison between the annual observed suspended sediment load and the corrected predicted suspended sediment load for Little Colorado River. The deviation between the observed and corrected predicted load in groups 2 and 3 is due to the vast hydrologic variations that took place during the ten years of study.

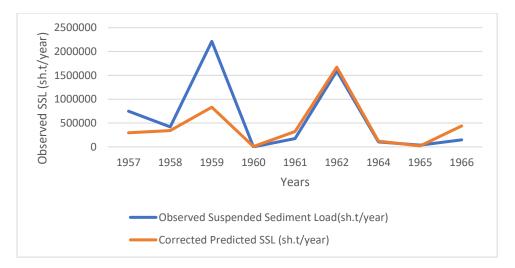


Figure 4. 46 Little Colorado River- Group 1: Observed vs. Corrected Predicted Suspended Sediment Load

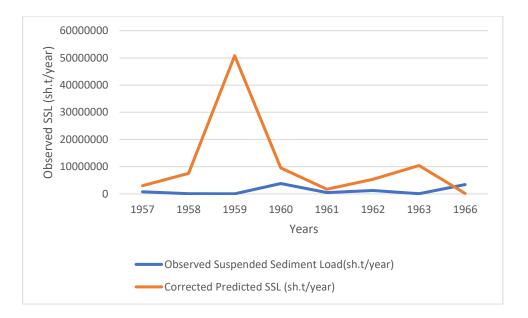


Figure 4. 47 Little Colorado River- Group 2: Observed vs. Corrected Predicted Suspended Sediment Load

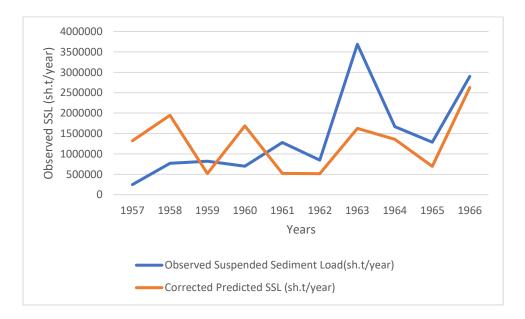


Figure 4. 48 Little Colorado River- Group 3: Observed vs. Corrected Predicted Suspended Sediment Load

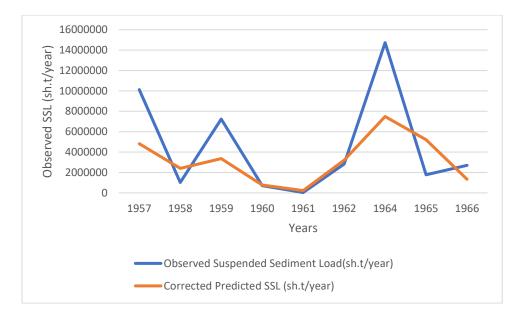


Figure 4. 49 Little Colorado River- Group 4: Observed vs. Corrected Predicted Suspended Sediment Load

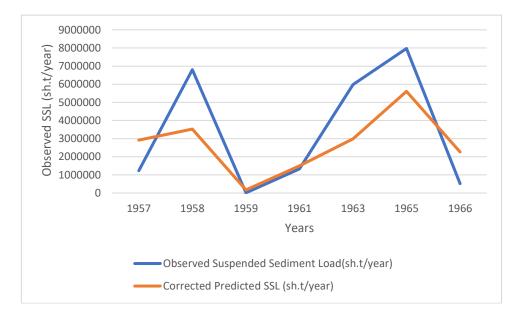


Figure 4. 50 Little Colorado River- Group 5: Observed vs. Corrected Predicted Suspended Sediment Load

Group 1: Precipitation Range (0 - 0.85 inches)

The percent deviation for Little Colorado River group 1 ranges from 0.11% to 24.42% with an average of 4.92%. The average percent deviation of group 1 is much lower than that of the (ungrouped) traditional data set, which is 11.12%. The correlation coefficient of group 1 is

higher than the traditional data set, 0.89 and 0.0.87, respectively. The prediction accuracy, however, is higher in group 1 than that of the traditional data set.

Group 2: Precipitation Range (0.86 – 1.30 inches)

The percent deviation for group 2 is between 0.05% to 41.28% with an average of 7.93%, which is lower than that of the ungrouped data set. The correlation coefficient of Little Colorado River group 2 is the same as the ungrouped data set with a value of 0.87, but the prediction accuracy is higher than the ungrouped data set.

<u>Group 3: Precipitation Range (1.31 – 2.05 inches)</u>

Group 3 has a percent deviation ranging from 0.02 to 53.70% with an average of 4.43%. The percent deviation average of group 3 is smaller than the ungrouped data set (which has a 11.12 percent deviation) but has a lower correlation coefficient of 0.81 compared to 0.87 for the traditional data set. This shows that group 3 has a higher prediction accuracy than the ungrouped (traditional) data set.

Group 4: Precipitation Range (2.12 – 4.09 inches)

The percent deviation for group 4 is between 0.13 to 14.75% with an average of 3.35%, which is also lower than the ungrouped data set, but the correlation coefficient is lower than the ungrouped, 0.82 to 0.87, respectively. However, the prediction accuracy of group 4 is higher than that of the ungrouped data set.

Group 5: Precipitation Range (4.1 – 8.35 inches)

Group 5 has a percent deviation ranging from 0.01% to 11.72%, leading to an average of 1.76%. The average percent deviation for group 5 is lower than that of the ungrouped

(traditional data set). This indicates a higher prediction accuracy than the ungrouped data set with a percent deviation of 11.12%. The low percent deviation of group 5 is reflected in the high correlation coefficient of 0.90.

All five (5) groups show a higher prediction accuracy than the ungrouped (traditional data set). Two groups from the five groups have a lower correlation coefficient than the ungrouped (traditional).

	Groups	Percent Deviation (%)	Correlation Coefficient (<i>r</i>)
Little Colorado River	Ungrouped (Traditional)	11.12	0.87
	Group 1	4.92	0.89
	Group 2	7.93	0.87
	Group 3	4.43	0.81
	Group 4	3.35	0.82
	Group 5	1.76	0.90

Table 4. 4 Little Colorado River: Percent Deviation and Correlation Coefficient of the Groups

Chapter 5- Conclusions and Recommendations

5.1 Conclusions

This study focused on improving the prediction accuracy of suspended sediment load in rivers and streams in response to stream or river water discharge utilizing the linear regression approach. To accomplish the goal of the study, both the monthly suspended sediment load data and the monthly stream discharge data were grouped in reference to similar precipitation values. Furthermore, monthly suspended sediment load (in short tons per month) was regressed against monthly stream water discharge (in cubic feet per second) for each group to establish equations for calculating suspended sediment loads in four (4) American rivers. The correlation coefficients resulting from the regression of all groups were compared with that of the traditional approach, in which linear regression was applied without the precipitation data. In addition to the correlation coefficient, the percent deviation from the groups was also compared with that of the traditional approach.

The high correlation coefficient values (between the suspended sediment load and the stream water discharge) obtained from the groups have considerably improved the prediction accuracy compared to the traditional approach. The percent deviations for most of the groups were relatively low, ranging from 0.09% to 17.48%, which implies that the prediction has a high level of precision. This is shown by the graphs of the observed and corrected predicted suspended sediment load. The percent deviations were calculated using the smearing estimator, which is a statistical method used to remove the bias resulting from using logarithmic functions and retransforming back to engineering units.

5.2 Future Recommendation

Future studies may improve the prediction accuracy of the suspended sediment load by grouping the suspended sediment load and water discharge data using different precipitation intensities. Precipitation intensity is the rate of precipitation per unit time (e.g., precipitation in inches per hour). Further studies may include the correlation between suspended sediment load and precipitation values or intensities.

In this study, suspended sediment load was predicted using monthly sediment and water discharge data. Future studies can predict suspended sediment using daily sediment and water data.

The accuracy of predicting suspended sediment load can be increased by removing the effects of sediment sources and sinks. Sediment sources add sediment eroded outside the river channel (e.g., sediment eroded in the watershed surrounding the river) to the sediment eroded in the river channel. Sediment sinks remove sediment eroded from the river channel and transport it to locations outside the river channel.

Finally, non-linear regression or weighted non-linear least square method could be used to improve prediction accuracy for suspended sediment load as this method eliminate the need for logarithmic transformation and the resulting bias correction.

References

- Aksoy, H., Mahe, G., and Meddi, M. (2019). Modeling and Practice of Erosion and Sediment Transport under Change. *Water* 11, no. 8: 1665. https://doi.org/10.3390/w11081665
 - Amin, I. E. and Jacobs, A. M. (2020). Record length needed to predict suspended sediment load from stream discharge data using linear regression. *International Journal of Ecological Economics and Statistics*. Vol. 41, Issue No. 4.
 - Amin, I. E., and Jacobs, M. (2007). Accounting for sediment sources and sinks in the regression analysis of the suspended sediment load of streams: the Rio Puerco, New Mexico as an example. *Environmental Geosciences*, 14(1) 1-14.
- Ampomah, R., Hosseiny, H., Zhang, L., Smith, V., and Sample-Lord, K. (2020). A Regression-Based Prediction Model of Suspended Sediment Yield in the Cuyahoga River in Ohio Using Historical Satellite Images and Precipitation Data. *Water*,12, 881; doi:10.3390/w12030881
- Araujo, H., Cooper, A., Hassan, M., and Venditti, J. (2012). Estimating suspended sediment concentrations in areas with limited hydrological data using a mixed-effects model. *Hydrological Processes*, 26(24), 3678-3688.
- Arizona Geological Survey. (2020). Little Colorado River. https://azgs.arizona.edu/azgeobibwatersheds/little-colorado-river?page=19
- Asselman, N. (2000). Fitting and Interpretation of Sediment Rating Curves. Journal of Hydrology. 234. 228-248. 10.1016/S0022-1694(00)00253-5.

- Bartram & Balance, 1996). Water Quality Monitoring A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes. Published on behalf of United Nations Environment Programme and the World Health Organization © 1996 UNEP/WHO ISBN 0 419 22320 7 (Hbk) 0 419 21730 4 (Pbk)
- Bewick V, Cheek L, and Ball J. (2003). Statistics review 7: Correlation and regression. Crit Care. Dec;7(6):451-9. doi: 10.1186/cc2401. Epub 2003 Nov 5. PMID: 14624685; PMCID: PMC374386.
- Bhowmik, N. G., Allen P. B., William C. B., and Richard P. B. Hydraulics of Flow and Sediment Transport in the Kankakee River in Illinois. Illinois State Water Survey, Champaign, Report of Investigation 98, 1980.
 - Bong T., Son Y., Kim K.S., (2019). Experimental modelling of suspended sediment transport considering the flow rate and grain size. *Journal of Coastal Research*, 35(3), 637-647.
 - Brown, W. M., and Ritter, J.R. (1971). Sediment Transport and Turbidity in the Eel River Basin, California. *United States Geological Survey Water Supply Report*. pubs.usgs.gov/wsp/1986/report.pdf
 - California Water Boards. (2021). San Francisco Bay/Sacramento San Joaquin Delta Estuary: (Bay-Delta) Watershed Efforts. https://www.waterboards.ca.gov/waterrights/water issues/programs/bay delta/
 - Clark, L.M., Lambing, H. J., and Bobst, L. B. (2005). Surface-Water Monitoring in Watersheds of the Powder River Basin, 2005. U.S. Geological Survey; Bureau of Land Management-3137

- Cohn, T. A., and E. J. Gilroy. (1991). Estimating Loads from Periodic Records U.S. Geological Survey Branch of Systems Analysis Technical Memo 91.01, 81 p.
- Duan, N. 1983. Smearing Estimate A Nonparametric Retransformation MethodJournal of the American Statistical Association, vol. 78, pp. 605 610.
- Garg, V. (2011). Modeling catchment sediment yield: a genetic programming approach. *Nat Hazards*. DOI 10.1007/s11069-011-0014-3
- Gellis, A., Pavich, M., and Ellwein, A. (2001). Erosion and sediment yields in two subbasins of contrasting land use, Rio Puerco, New Mexico. 25703. 648-6963.
- Gitto A.B., Venditti J.G., Kostaschuk R., Church M. (2017). Representative point-integrated Suspended sediment sampling in rivers. *Water Resources Research*. 53, 2956-2971, doi: 10.1002/2016WR19187.
- Gray, John and Fisk, G.G. (1992). Monitoring radionuclide and suspended-sediment transport in the Little Colorado River basin, Arizona and New Mexico, USA. 505-516.
 - Gunawan, T., Daud, A., Haki, H., and Sarino. (2018). The Estimation of Total Sediments Load in River Tributary for Sustainable Resources Management. IOP Conference Series:
 Earth and Environmental Science, 248(1). https://iopscience.iop.org/article/10.1088/1755-1315/248/1/012079/meta
 - Helsel, D.R., and Hirsch, R.M., (2002). Statistical methods in water research, Elsevier, Amsterdam, 529 p

- Hembree, C. H., Colby, B. R., Swenson, H. A., and Davis, J. R., (1952). Sedimentation and chemical quality of water in the Powder River basin, Wyoming and Montana: U.S. Geological Survey Circular 170, 92 p.
- Iven, J. L., Bhowmik, N. G., Brigham, A. R., & Gross, D. L. (1981). The Kankakee River yesterday and today. Illinois State Water Survey.
- Jain, S. K. (2001). Development of Integrated Sediment Rating Curves using ANNs. *Journal of Hydraulic Engineering*, 127(1), 30–37.
- Jie, L. C., and Yu, S. T. (2011). Suspended sediment load estimate using support vector machines in Kaoping River basin. 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 1750-1753. https://ieeexplore.ieee.org/document/5769267
- Kisi, O. and Ozkan, C. (2016). A New Approach for Modeling Sediment-Discharge Relationship: Local Weighted Linear Regression. Water Resour Manage 31, 1–23. https://doi.org/10.1007/s11269-016-1481-9
- Koch, R.W., and Smillie, G.M., (1986). Bias in hydrologic prediction using log-transformed regression models: American Water Resources Association, Water Resources Bulletin, v. 22, no. 5, p. 717-732.
- Krajewski, A., Sikorska, A., Banasik, K. (2017). Modeling Suspended Sediment Concentration in the Stormwater Outflow from a Small Detention Pond. *Journal of Environmental Engineering*, 143(10):05017005.

- Leopold, L.B., and Maddock, T. (1953). The hydraulic geometry of stream channels and some physiographic implications. *Geological Survey Professional*, Paper. 252-A: 21. doi: 10.1109/CECNET.2011.5769267.
- Leopold, L.B., and Miller, J.P. (1956). Ephemeral streams; hydraulic factors and their relation to the drainage net. U.S. Geol. Surv. Profess. Paper 282-A, 37pp. DOI:10.3133/PP282A
- Limburg, E. K., Hayden A. T., Pine, E. W., and Valley, J. W. (2013). Of Travertine and Time:
 Otolith Chemistry and Microstructure Detect Provenance and Demography of
 Endangered Humpback Chub in Grand Canyon, USA. *PLoS ONE 8(12): 84235*
- Linsley, R. K., Kohler, M. A., and Paulhus, J. L. (1981). Hydrology for engineers (3rd ed.). McGraw-Hill.
- Luppens, J. A., Scott, D. C., Osmonson, L. M., Haacke, J. E., and Pierce, P. E. (2013).Assessment of Coal Geology, Resources, and Reserve Base in the Powder River Basin,Wyoming and Montana. *Publications of the US Geological Survey. 121*.
- Melesse, A.M., Ahmed S., McClain M.E., Wang X., Lim Y.H., (2010). Suspended sediment Load prediction of river systems: an artificial neural network approach. *Agricultural Water Management*. 98, 855-866.
- Merritt, W. S., et al. (2003). A Review of Erosion and Sediment Transport Models. *Environmental Modelling Software Journal*, 18(8-9) 761–799.
- Mid-America Regional Council (MARC, 2010). Regional watershed management tools. Erosion and Sediment Control. Retrieved on January 1, 2020, from www.marc.org/Enviroment/Water.

- Miller, C.R., (1951). Analysis of flow-duration sediment rating curve method of computing sediment yield: U.S. Bureau of Reclamation, 55 p.
- Mimikou, M., (2009). An investigation of suspended sediment rating curves in western and northern Greece. *Hydrological Sciences Journal*. 27:3, 369-383
- Molnar, P., and Ramírez, J. (2001). Recent trends in precipitation and streamflow in the Rio Puerco Basin. *Journal of Climate*, 14, 2317-2328.
- NOAA. (2021). Average Monthly Precipitation Data https://www.ncdc.noaa.gov/cdoweb/search?datasetid=GSOM accessed May 6, 2021
- Nordin, C. F., (1963). A preliminary study of sediment transport parameters, Rio Puerco near Bernardo, New Mexico: U.S. Geological Survey. Professional Paper 462 –C, 21 p.
- Ogden, F. L., and Puckett, K. A. (2008). Task 2–Estimation of Recharge in the Powder River Basin of Wyoming with Uncertainty Bounds. *Oil & Natural Gas Technology*, 6.
- Orlando, J. L. and Yee, S. H., (2017). Linking terrigenous sediment delivery to declines in coral reef ecosystem services. *Estuaries Coast.*; 40(2): 359–375
- Ott, R.L., (1993). An introduction to statistical methods and data analysis: Duxbury Press, Belmont, California, 1051 p
- Piest, R. F., and Bowie, A. J. (1974). Gully and Stream Bank Erosion. *United States Department* of Agriculture, www.ars.usda.gov/sp2UserFiles/Place/36221500/cswq-t6428piest.pdf.
- Pizzuto, J. (1994). Channel adjustments to changing discharges, Powder River, Montana. Geological Society of America Bulletin, 106, 1494-1501.

- Rankl, J. G. (2004). Relationships Between Total-Sediment Load and Peak Discharge for Rainstorm Runoff on Five Ephemeral Streams in Wyoming. U.S. Geological Survey Water-Resources Investigations Report, 02–4150, https://pubs.usgs.gov/wri/wri024150/pdf/wrir02-4150.pdf
- Rhea, D (2019). What is Sediment and Why is it a Stormwater Pollutant. Retrieved on January 1, 2021, from https://extension.psu.edu/what-is-sediment-and-why-is-it-astormwaterpollutant#:~:text=Sediment%20poses%20a%20greater%20water,other%20pa thogens%20along%20with%20it.
- Stout, J. C. Identifying and quantifying sediment sources and sinks in the Root River, Southeastern Minnesota (2012). All Graduate Theses and Dissertations. 1304. https://digitalcommons.usu.edu/etd/1304
- Stringfellow, W. T., and M. K. Camarillo. (2014). Synthesis of Results from Investigations of the Causes of Low Dissolved Oxygen in the San Joaquin River & Estuary in the Context of the Dissolved Oxygen Total Maximum Daily Load (Report 7.1). Ecological Engineering Research Program, School of Engineering & Computer Sciences, University of the Pacific, Stockton, CA. DOI: 10.13140/RG.2.1.3009.4803
- Tayfur G. (2003) Modelling sediment transport. In: Singh VP, Yadava RN (eds) Watershed Hydrology. Allied Publishers, p 353–375
- Ulke, A., Tayfur, G. and Ozkul, S. (2016). Investigating a Suitable Empirical Model and Performing Regional Analysis for the Suspended Sediment Load Prediction in Major Rivers of the Aegean Region, Turkey. *Water Resour Manage* **31**, 739–764 (2017). https://doi.org/10.1007/s11269-016-1357-z

- United States Environmental Protection Agency (USEPA). (2006). Wadeable streams assessment: a collaborative survey of the nation's streams, Washington, D.C., 98 pp.
- United States Geological Survey. (2021). San Joaquin River: Provisional Data. https://waterdata.usgs.gov/nwis/uv?site no=11251000
- USGS. 2021. "National Water Information System: Web Interface." The U.S. Geological Survey Water Resources, https://waterdata.usgs.gov/nwis/monthly/?referred_module=sw accessed March 5th, 2021
- Vaughan, A. A. (2016). Discharge-Suspended Sediment Relations: Near-channel Environment
 Controls Shape and Steepness, Land Use Controls Median and Low Flow Conditions
 All Graduate Theses and Dissertations. 5191.
 https://digitalcommons.usu.edu/etd/5191
- Vercruysse, K., Grabowski, R., and Rickson, R. J. (2017). Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth-Science Reviews. 166. 10.1016/j.earscirev.2016.12.016.
- Walling, D. E. (1977). Limitations of the rating curve technique for estimating suspended sediment loads, with particular reference to British rivers. In-Erosion and solid matter transport in inland waters. Proceedings of the Paris Symposium, *IAHS Wallingford*, *Oxfords*, 122, 34–48.

Watts, R. D., Pelltier, R. T., and Molnar P. (1997). Erosion in the Rio Puerco: Geography and Processes, in Impact of Climate Change and Land Use in the Southwestern United States, online workshop held July 7-27,1997. https://geochange.er.usgs.gov/sw/impacts/geology/puerco2/

Yang, C.T. (1996) Sediment transport theory and practice. McGraw-Hill, USA, p 897

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Groups	Year	Months	Monthly Precipitation Values (in)	Monthly Stream Discharge (cfs)	Observed Suspended Sediment Load(sh.t/m onth)	Monthly Stream Discharge (log X)	Suspended Sediment (log Y)	Log Y	Antilog Y	Residual	Power Residual	Corrected Predicted SSL (sh.t/day)	Percent Deviation	Absolute Percent Deviation
	1980	6		159150	31560	5.20	4.50	4.31	20504.86	0.19	1.54	35063.30	-0.11	0.11
	1980	8		59070	16578	4.77	4.22	3.96	9133.09	0.26	1.82	15617.59	0.06	0.06
	1980	9		114060	23079	5.06	4.36	4.19	15624.40	0.17	1.48	26717.72	-0.16	0.16
	1981	6		44970	13278	4.65	4.12	3.86	7310.84	0.26	1.82	12501.54	0.06	0.06
	1981	7		37950	14073	4.58	4.15	3.80	6365.31	0.34	2.21	10884.67	0.23	0.23
	1981	8		38070	11157	4.58	4.05	3.80	6381.73	0.24	1.75	10912.75	0.02	0.02
	1982	5		559500	72150	5.75	4.86	4.76	57198.86	0.10	1.26	97810.05	-0.36	0.36
	1982	7		184890	33510	5.27	4.53	4.36	23173.08	0.16	1.45	39625.97	-0.18	0.18
	1982	8		120510	22665	5.08	4.36	4.21	16341.70	0.14	1.39	27944.31	-0.23	0.23
	1983	7		576900	98220	5.76	4.99	4.77	58646.29	0.22	1.67	100285.15	-0.02	0.02
	1984	8		65370	24750	4.82	4.39	4.00	9920.45	0.40	2.49	16963.97	0.31	0.31
	1985	5		63960	24783	4.81	4.39	3.99	9745.49	0.41	2.54	16664.79	0.33	0.33
	1985	7		76710	19083	4.88	4.28	4.05	11303.73	0.23	1.69	19329.38	-0.01	0.01
	1985	8		78030	24525	4.89	4.39	4.06	11462.20	0.33	2.14	19600.36	0.20	0.20
	1986	6		186990	20796	5.27	4.32	4.37	23387.63	-0.05	0.89	39992.85	-0.92	0.92
	1986	7		86820	49680	4.94	4.70	4.10	12505.36	0.60	3.97	21384.17	0.57	0.57
	1986	8		95490	23418	4.98	4.37	4.13	13515.38	0.24	1.73	23111.29	0.01	0.01
	1987	6		59700	23100	4.78	4.36	3.96	9212.50	0.40	2.51	15753.38	0.32	0.32
	1987	7		48960	16578	4.69	4.22	3.89	7835.98	0.33	2.12	13399.52	0.19	0.19
	1987	8		48810	16149	4.69	4.21	3.89	7816.38	0.32	2.07	13366.01	0.17	0.17
Group 1	1987	9	0 - 0.19	47910	13707	4.68	4.14	3.89	7698.57	0.25	1.78	13164.56	0.04	0.04
	1988	7		40710	8046	4.61	3.91	3.83	6740.60	0.08	1.19	11526.43	-0.43	0.43
	1988	8		46710	13056	4.67	4.12	3.88	7540.86	0.24	1.73	12894.87	0.01	0.01
	1988	9		43560	14292	4.64	4.16	3.85	7123.25	0.30	2.01	12180.76	0.15	0.15
	1989	7		38520	7314	4.59	3.86	3.81	6443.21	0.06	1.14	11017.89	-0.51	0.51
	1989	12		41430	15345	4.62	4.19	3.83	6837.72	0.35	2.24	11692.51	0.24	0.24
	1984	9		87510	4332	4.94	3.64	4.10	12586.40	-0.46	0.34	21522.75	-3.97	3.97
	1983	8		271050	47070	5.43	4.67	4.50	31662.91	0.17	1.49	54143.57	-0.15	0.15
	1987	5		65340	15297	4.82	4.18	4.00	9916.73	0.19	1.54	16957.61	-0.11	0.11
	1986	10		112230	17175	5.05	4.23	4.19	15419.54	0.05	1.11	26367.41	-0.54	0.54
	1984	7		57120	15882	4.76	4.20	3.95	8886.31	0.25	1.79	15195.60	0.04	0.04
	1989	8		35070	15003	4.54	4.18	3.78	5968.29	0.40	2.51	10205.78	0.32	0.32
	1981	9		35430	8310	4.55	3.92	3.78	6018.24	0.14	1.38	10291.19	-0.24	0.24
	1989	5		58470	13743	4.77	4.14	3.96	9057.32	0.18	1.52	15488.02	-0.13	0.13
	1984	5		97200	19104	4.99				0.14	1.39	23448.46	-0.23	0.23
	1988	10		33810	4941	4.53	3.69	3.76	5792.73	-0.07	0.85	9905.57	-1.00	1.00
	1983	6		782400	107430	5.89	5.03	4.88	75200.45	0.15	1.43	128592.76	-0.20	0.20
	1980	10		122160	24030	5.09	4.38	4.22	16524.05	0.16	1.45	28256.13	-0.18	0.18
	1980	11		98340	12438	4.99	4.09	4.14	13843.64	-0.05	0.90	23672.63	-0.90	0.90
	1985	4		73980	21396	4.87	4.33	4.04	10974.37	0.29	1.95	18766.18	0.12	0.12
	1984	6		68910	20748	4.84	4.32	4.02	10356.69	0.30	2.00	17709.93	0.15	0.15
	1987	4		86010	13722	4.93	4.14	4.62	41597.41	-0.48	0.33	17886.89	-0.30	0.30

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Groups	Year	Months	Monthly Precipitation Values (in)	Monthly Stream Discharge (cfs)	Observed Suspended Sediment Load(sh.t/m onth)	Monthly Stream Discharge (log X)	Suspended Sediment (log Y)	Log Y	Antilog Y	Residual	Power Residual	Corrected Predicted SSL (sh.t/day)	Percent Deviation	Absolute Percent Deviation
	1986	11		84240	9411	4.93	3.97	4.61	40791.05	-0.64	0.23	17540.15	-0.86	0.86
Ī	1988	3		67230	13104	4.83	4.12	4.52	32987.53	-0.40	0.40	14184.64	-0.08	0.08
Ī	1988	6		51330	13500	4.71	4.13	4.41	25587.36	-0.28	0.53	11002.56	0.18	0.18
	1985	6		52440	21264	4.72	4.33	4.42	26107.93	-0.09	0.81	11226.41	0.47	0.47
	1986	5		262920	63000	5.42	4.80	5.08	119097.84	-0.28	0.53	51212.07	0.19	0.19
Group 2	1988	2	0.2 - 0.69	41670	5862	4.62	3.77	4.32	21027.31	-0.55	0.28	9041.74	-0.54	0.54
Group 2	1989	4	0.2 - 0.09	57450	14634	4.76	4.17	4.45	28449.69	-0.29	0.51	12233.37	0.16	0.16
	1982	6		227520	46140	5.36	4.66	5.02	103939.39	-0.35	0.44	44693.94	0.03	0.03
	1989	6		47490	13353	4.68	4.13	4.38	23781.28	-0.25	0.56	10225.95	0.23	0.23
	1984	1		768900	79290	5.89	4.90	5.51	327069.32	-0.62	0.24	140639.81	-0.77	0.77
	1980	5		297360	42870	5.47	4.63	5.13	133730.39	-0.49	0.32	57504.07	-0.34	0.34
-	1988	5		53430	8526	4.73	3.93	4.42	26571.67	-0.49	0.32	11425.82	-0.34	0.34
	1985	9		57750	14112	4.76	4.15	4.46	28589.53	-0.31	0.49	12293.50	0.13	0.13
	1980	7		101520	25392	5.01	4.40	4.96	90846.15	-0.55	0.28	16352.31	0.36	0.36
-	1987	10		41100	5757	4.61	3.76	4.56	36559.89	-0.80	0.16	6580.78	-0.14	0.14
-	1984	4		128550	19785	5.11	4.30	5.06	115213.57	-0.77	0.17	20738.44	-0.05	0.05
-	1983	10		399600	47940	5.60	4.68	5.56	360834.35	-0.88	0.13	64950.18	-0.35	0.35
	1989	1		37650	3717	4.58	3.57	4.52	33471.62	-0.95	0.11	6024.89	-0.62	0.62
C	1981 1986	5	0712	59010 111180	15411 15477	4.77	4.19 4.19	4.72	52616.92 99550.19	-0.53	0.29	9471.04 17919.03	0.39	0.39
Group 3	1986	12	0.7 - 1.3	121950	13477	5.05	4.19	5.00	109260.27	-0.81	0.16	19666.85	-0.16	0.16
-	1985	10		62160	13440	4.79	4.13	4.74	55444.68	-0.91	0.12	9980.04	-0.46	0.46
	1985	2		86370	14724	4.79	4.08	4.74	77206.63	-0.00	0.22	13897.19	0.18	0.18
	1981	5		953100	78180	5.98	4.17	5.94	865590.44	-0.72	0.19	155806.28	-0.99	0.00
-	1985	9		125430	23838	5.10	4.38	5.05	112399.02	-0.67	0.05	20231.82	0.15	0.15
·	1981	4		75960	15453	4.88	4.19	4.83	67843.54	-0.64	0.23	12211.84	0.13	0.21
	1980	4		307500	47700	5.49	4.68	5.97	930952.29	-1.29	0.05	55857.14	-0.17	0.17
·	1983	9		339300	48480	5.53	4.69	6.02	1039060.79	-1.33	0.05	62343.65	-0.29	0.29
	1985	2		97230	16899	4.99	4.23	5.41	257440.80	-1.18	0.07	15446.45	0.09	0.09
	1989	2		37020	5022	4.57	3.70	4.94	87599.08	-1.24	0.06	5255.94	-0.05	0.05
·	1981	10		41580	7539	4.62	3.88	5.00	99728.61	-1.12	0.08	5983.72	0.21	0.21
-	1980	3		759000	80610	5.88	4.91	6.41	2552695.74	-1.50	0.03	153161.74	-0.90	0.90
	1984	3		225060	27693	5.35	4.44	5.82	657056.89	-1.38	0.04	39423.41	-0.42	0.42
	1980	12		88470	11877	4.95	4.07	5.36	231686.23	-1.29	0.05	13901.17	-0.17	0.17
Carry 4	1989	11	14.25	42120	6735	4.62	3.83	5.01	101175.64	-1.18	0.07	6070.54	0.10	0.10
Group 4	1989	10	1.4 - 2.5	42030	8499	4.62	3.93	5.00	100934.31	-1.07	0.08	6056.06	0.29	0.29
	1986	4		587700	94830	5.77	4.98	6.28	1918591.64	-1.31	0.05	115115.50	-0.21	0.21
	1984	2		324900	36930	5.51	4.57	6.00	989952.85	-1.43	0.04	59397.17	-0.61	0.61
	1989	9		40590	10035	4.61	4.00	4.99	97081.43	-0.99	0.10	5824.89	0.42	0.42
	1987	11		46440	5688	4.67	3.75	5.05	112827.66	-1.30	0.05	6769.66	-0.19	0.19
	1984	12		143130	30720	5.16	4.49	5.60	396419.36	-1.11	0.08	23785.16	0.23	0.23
	1982	9		183870	31440	5.26	4.50	5.72	524320.79	-1.22	0.06	31459.25	0.00	0.00

	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Groups	Year	Months	Monthly Precipitation Values (in)	Monthly Stream Discharge (cfs)	Observed Suspended Sediment Load(sh.t/m onth)	Monthly Stream Discharge (log X)	Suspended Sediment (log Y)	Log Y	Antilog Y	Residual	Power Residual	Corrected Predicted SSL (sh.t/day)	Percent Deviation	Absolute Percent Deviation
	1988	11		38220	4134	4.58	3.62	4.96	90775.04	-1.34	0.05	5446.50	-0.32	0.32
	1984	10		114420	29250	5.06	4.47	5.49	308751.24	-1.02	0.09	18525.07	0.37	0.37
	1982	10		245370	33150	5.39	4.52	6.25	1761896.89	-1.73	0.02	52856.91	-0.59	0.59
	1986	1		61800	11424	4.79	4.06	5.53	337225.07	-1.47	0.03	10116.75	0.11	0.11
í T	1988	12		41160	4056	4.61	3.61	5.32	207139.53	-1.71	0.02	6214.19	-0.53	0.53
	1987	1		69150	6564	4.84	3.82	5.59	385869.44	-1.77	0.02	11576.08	-0.76	0.76
í T	1985	3		82080	21753	4.91	4.34	5.68	473922.77	-1.34	0.05	14217.68	0.35	0.35
í E	1981	12		55560	7803	4.74	3.89	5.47	296817.82	-1.58	0.03	8904.53	-0.14	0.14
í D	1985	12		66150	9141	4.82	3.96	5.56	365883.57	-1.60	0.02	10976.51	-0.20	0.20
í D	1987	12		38340	3126	4.58	3.49	5.28	190240.43	-1.78	0.02	5707.21	-0.83	0.83
Crown 5	1983	4	2.6 - 4.5	1093500	75330	6.04	4.88	7.02	10572877.00	-2.15	0.01	317186.31	-3.21	3.21
Group 5	1988	4	2.0 - 4.3	64380	13971	4.81	4.15	5.55	354175.78	-1.40	0.04	10625.27	0.24	0.24
í T	1982	2		199350	63510	5.30	4.80	6.14	1373458.07	-1.33	0.05	41203.74	0.35	0.35
	1982	4		688800	150810	5.84	5.18	6.78	6074395.35	-1.61	0.02	182231.86	-0.21	0.21
	1985	11		57870	7971	4.76	3.90	5.49	311676.13	-1.59	0.03	9350.28	-0.17	0.17
í T	1981	3		93660	22794	4.97	4.36	5.74	555183.00	-1.39	0.04	16655.49	0.27	0.27
í T	1982	12		494700	66240	5.69	4.82	6.61	4084425.29	-1.79	0.02	122532.76	-0.85	0.85
	1983	2		948000	132180	5.98	5.12	6.95	8909153.66	-1.83	0.01	267274.61	-1.02	1.02
í T	1987	3		102450	23199	5.01	4.37	5.79	618230.56	-1.43	0.04	18546.92	0.20	0.20
	1987	2		64080	10383	4.81	4.02	5.55	352197.71	-1.53	0.03	10565.93	-0.02	0.02
	1986	3		751200	121740	5.88	5.09	6.45	2793385.63	-1.36	0.04	195536.99	-0.61	0.61
	1980	2		563400	115860	5.75	5.06	6.31	2022668.19	-1.24	0.06	141586.77	-0.22	0.22
(T	1989	3		60690	11094	4.78	4.05	5.22	165948.00	-1.17	0.07	11616.36	-0.05	0.05
(T	1981	11		46920	7788	4.67	3.89	5.09	124324.27	-1.20	0.06	8702.70	-0.12	0.12
(T	1981	1		97530	22062	4.99	4.34	5.45	282597.88	-1.11	0.08	19781.85	0.10	0.10
	1982	1		116670	39990	5.07	4.60	5.54	345541.01	-0.94	0.12	24187.87	0.40	0.40
(T	1983	12		573900	99960	5.76	5.00	6.31	2065018.73	-1.32	0.05	144551.31	-0.45	0.45
Group 6	1980	1	4.7 - 8.7	392100	151020	5.59	5.18	6.13	1346690.88	-0.95	0.11	94268.36	0.38	0.38
	1984	11		84660	18447	4.93	4.27	5.38	241100.73	-1.12	0.08	16877.05	0.09	0.09
	1983	11		320400	60480	5.51	4.78	6.03	1073608.93	-1.25	0.06	75152.63	-0.24	0.24
	1982	3		301800	79830	5.48	4.90	6.00	1003919.55	-1.10	0.08	70274.37	0.12	0.12
	1982	11		209220	21351	5.32	4.33	5.82	665485.95	-1.49	0.03	46584.02	-1.18	1.18
	1983	1		572100	122550	5.76	5.09	6.31	2057751.86	-1.23	0.06	144042.63	-0.18	0.18
	1983	3		1201200	163650	6.08	5.21	6.67	4730448.29	-1.46	0.03	331131.38	-1.02	1.02
	1986	2		262320	128610	5.42	5.11	5.93	857769.47	-0.82	0.15	60043.86	0.53	0.53

(Column 11) Residual = [log observed suspended sediment load (column 8)] - [log predicted suspended sediment load (column 9)]

(Column 12) Power Residual = 10^Aesidual

(Column 13) Corrected Predicted Suspended Sediment Load using the Smearing estimator method (Mean of column 12 for each group multiplied by (Column 10)

(Column 14) Percent Deviation = [(observed sediment - corrected sediment)]/(observed sediment) * 100%

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Groups	Year	Months	Monthly Precipitation Values (in)	Monthly Stream Discharge (cfs)	Observed Suspended Sediment Load(sh.t/ day)	Monthly Stream Discharge (log X)	Suspended Sediment (log Y)	Log Y	Antilog Y	Residual	Power Residual	Corrected Predicted SSL (sh.t/day)	Percent Deviation	Absolute Percent Deviation
	1984	2		1170	145860	3.07	5.16	2.21	163.28	2.95	893.32	148958.58	-0.02	0.02
	1988	3		324	28947	2.51	4.46	1.89	77.69	2.57	372.58	70880.38	-1.45	1.45
	1991	4		125.7	24981	2.10	4.40	1.65	44.93	2.75	555.99	40990.42	-0.64	0.64
	1991	2		1872	333900	3.27	5.52	2.33	214.28	3.19	1558.21	195491.78	0.41	0.41
	1984	5		1833	524400	3.26	5.72	2.33	211.69	3.39	2477.20	193125.66	0.63	0.63
	1988	10		561	167160	2.75	5.22	2.03	106.73	3.19	1566.19	97370.39	0.42	0.42
	1989	2		270.6	36690	2.43	4.56	1.85	70.01	2.72	524.08	63868.28	-0.74	0.74
Group 1	1991	3	0 - 0.19	158.4	20934	2.20	4.32	1.71	51.36	2.61	407.59	46856.00	-1.24	1.24
	1983	4		1866	202350	3.27	5.31	2.33	213.89	2.98	946.06	195129.13	0.04	0.04
	1990	2		303	8727	2.48	3.94	1.87	74.74	2.07	116.76	68185.69	-6.81	6.81
	1983	5		2532	397800	3.40	5.60	2.41	255.18	3.19	1558.88	232803.88	0.41	0.41
	1988	5		275.7	45300	2.44	4.66	1.85	70.77	2.81	640.12	64561.77	-0.43	0.43
	1986	4		271.5	30960	2.43	4.49	1.85	70.14	2.64	441.39	63991.06	-1.07	1.07
	1984	3		315	65370	2.50	4.82	1.88	76.44	2.93	855.20	69734.81	-0.07	0.07
	1985	6		153.3 268.8	38850	2.19	4.59	1.70	50.40	2.89	770.88	45977.40	-0.18	0.18
	1984 1985	4		3780	54750 802200	2.43 3.58	4.74	2.12 2.94	131.17 872.04	2.62 2.96	417.40 919.91	63341.96 421107.64	-0.16 0.48	0.16
	1985	2		148.8	29535	2.17	5.90 4.47	2.94	872.04	2.96	343.99	41461.95	-0.40	0.48
	1982	2		585	83310	2.17	4.47	2.36	229.01	2.54	343.99	110587.59	-0.40	0.40
	1985	2		2265	523500	3.36	5.72	2.30	604.15	2.50	866.50	291745.64	-0.33	0.33
	1985	10		723	60690	2.86	4.78	2.78	266.54	2.94	227.69	128712.58	-1.12	1.12
	1991	6		1737	439500	3.24	5.64	2.43	499.51	2.30	879.86	241214.30	0.45	0.45
	1989	9		161.1	41370	2.21	4.62	1.96	90.89	2.66	455.17	43890.16	-0.06	0.45
	1982	5		387	97920	2.59	4.99	2.23	170.32	2.76	574.93	82246.26	0.16	0.16
	1988	12		83.1	7170	1.92	3.86	1.75	56.56	2.10	126.77	27311.69	-2.81	2.81
	1987	3		2178	248760	3.34	5.40	2.77	587.43	2.63	423.47	283670.89	-0.14	0.14
	1990	3		112.5	798	2.05	2.90	1.85	70.27	1.06	11.36	33932.70	-41.52	41.52
Group 2	1990	5	0.2 - 0.52	228	36690	2.36	4.56	2.07	116.57	2.50	314.74	56293.55	-0.53	0.53
	1983	8	0.2 - 0.52	939	411600	2.97	5.61	2.51	321.45	3.11	1280.44	155229.64	0.62	0.62
	1988	2		254.1	21552	2.41	4.33	2.10	125.99	2.23	171.06	60839.95	-1.82	1.82
	1982	3		211.8	45180	2.33	4.65	2.04	110.58		408.58	53397.51	-0.18	0.18
	1983	6		1416	431400	3.15	5.63	2.63	431.48	3.00	999.82	208360.04	0.52	0.52
	1987	2		2148	159390	3.33	5.20	2.76	581.62	2.44	274.04	280865.41	-0.76	0.76
	1983	2		567	91950	2.75	4.96	2.35	223.94	2.61	410.61	108138.44	-0.18	0.18
	1987	11		57.3	9255	1.76	3.97	1.64	43.33	2.33	213.59	20924.55	-1.26	1.26
	1985	3		3036	579300	3.48	5.76	2.87	745.29	2.89	777.29	359898.42	0.38	0.38
	1989	3		81.3	10917	1.91	4.04	1.75	55.68	2.29	196.08	26886.44	-1.46	1.46
	1989	8		1872	327300	3.27	5.51	2.72	527.04	2.79	621.02	254505.32	0.22	0.22
	1982	7		342	104550	2.53	5.02	2.19	155.88	2.83	670.71	75274.11	0.28	0.28
	1988	6		37.5	3954	1.57	3.60	1.50	31.98	2.09	123.65	15442.35	-2.91	2.91
	1983	7		474	177510	2.68	5.25	2.91	803.57	2.34	220.90	87083.38	0.51	0.51
	1987	4		2796	368400	3.45	5.57	3.67	4692.36	1.89	78.51	508511.47	-0.38	0.38
	1989	1		39.9	3579	1.60	3.55	1.84	68.60	1.72	52.17	7434.58	-1.08	1.08
	1986	12		59.4	852		2.93	2.01	101.90	0.92	8.36		-11.96	11.96
	1984	6		296.7	65970	2.47	4.82	2.70	504.34	2.12	130.80	54655.54	0.17	0.17

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Groups	Year	Months	Monthly Precipitation Values (in)	Monthly Stream Discharge (cfs)	Observed Suspended Sediment Load(sh.t/ day)	Monthly Stream Discharge (log X)	Suspended Sediment (log Y)	Log Y	Antilog Y	Residual	Power Residual	Corrected Predicted SSL (sh.t/day)	Percent Deviation	Absolute Percent Deviation
	1985	8		1206	340200	3.08	5.53	3.31	2033.68	2.22	167.28	220390.30	0.35	0.35
	1990	12		48.3	260.1	1.68	2.42	1.92	82.96	0.50	3.14	8989.95	-33.56	33.56
	1991	5		1665	338100	3.22	5.53	3.45	2802.54	2.08	120.64	303711.35	0.10	0.10
	1986	9		1650	348600	3.22	5.54	3.44	2777.44	2.10	125.51	300990.74	0.14	0.14
	1985	1		384	9603	2.58	3.98	2.81	651.78	1.17	14.73	70633.28	-6.36	6.36
Group 3	1990	11	0.55 -1.28	271.2	45060	2.43	4.65	2.66	461.23	1.99	97.69	49983.74	-0.11	0.11
Group 5	1984	9		672	202680	2.83	5.31	3.06	1136.98	2.25	178.26	123214.59	0.39	0.39
	1982	9		5829	1626900	3.77	6.21	3.99	9741.59	2.22	167.01	1055696.35	0.35	0.35
	1987	5		1230	238410	3.09	5.38	3.32	2073.92	2.06	114.96	224750.93	0.06	0.06
	1991	11		663	99390	2.82	5.00	3.05	1121.84	1.95	88.60	121573.73	-0.22	0.22
	1988	4		227.1	41400	2.36	4.62	2.59	386.62	2.03	107.08	41898.22	-0.01	0.01
	1986	5		188.4	21972	2.28	4.34	2.51	321.08	1.84	68.43	34795.40	-0.58	0.58
	1990	7		1383	268950	3.14	5.43	3.37	2330.34	2.06	115.41	252538.94	0.06	0.06
	1983	10		1635	537300	3.21	5.73	3.44	2752.33	2.29	195.22	298269.99	0.44	0.44
	1985	9		1233	218160	3.09	5.34	3.32	2078.95	2.02	104.94	225295.98	-0.03	0.03
	1991	9		2616	474300	3.42	5.68	3.64	4391.95	2.03	107.99	475955.18	0.00	0.00
	1990	8		2517	494700	3.40	5.69	3.63	4226.67	2.07	117.04	458043.83	0.07	0.07
	1985	4		2691	583800	3.43	5.77	2.21	160.70	3.56	3632.78	533578.17	0.09	0.09
	1983	9		134.4	50400	2.13	4.70	1.56	35.94	3.15	1402.50	119316.67	-1.37	1.37
	1989	10		118.8	20460	2.07	4.31	1.53	33.79	2.78	605.56	112181.29	-4.48	4.48
	1986	11		3006	363900	3.48	5.56	2.23	169.84	3.33	2142.54	563931.14	-0.55	0.55
	1988	/		1302	465600	3.11	5.67	2.05	111.80	3.62	4164.63	371201.53	0.20	0.20
Group 4	1991	8	1.3 - 1.98	5247	690300	3.72	5.84	2.35	224.37	3.49	3076.61	744969.91	-0.08	0.08
	1990	4		239.1	56400	2.38	4.75	1.68	47.93	3.07	1176.82	159126.04	-1.82	1.82
	1986	10		4977	692100	3.70	5.84	2.34	218.52	3.50	3167.16	725557.12	-0.05	0.05
	1990 1986	9		5124	915000	3.71	5.96	2.35	221.73	3.62	4126.72	736189.85	0.20	0.20
	1986	/ 8		5046 6939	1224000	3.70 3.84	6.09	2.34	220.03	3.75	5562.81	730567.28	0.40 0.56	0.40
	1982	8		7674	1926000 993300	3.84	6.28 6.00	2.41 2.52	258.01 334.07	3.87 3.47	7464.87	856657.79	0.56	0.56
	1991	10		1860	232080	3.89		2.52	334.07	3.47	1475.10	656552.51 309207.21	-0.33	0.34 0.33
	1984	10		798	232080	2.90	5.37 4.58	2.20	157.33	2.58	377.54	197238.42	-0.33 -4.21	4.21
	1984	6		348	77850	2.90	4.58	2.00	64.58	3.08	1205.57	197238.42	-4.21 -0.63	4.21
	1986	7		348	143040	2.54	4.89	1.81	64.58	3.08	2195.07	126910.76	-0.63	0.63
Crown F	1984	12	2.0 - 3.4	354 651	24042	2.55	4.38	1.81	90.07	2.43	2195.07	177016.18	-6.36	6.36
Group 5	1991	8		444	142890	2.81	4.38	1.95	73.50	3.29	1944.12	144448.14	-0.30	0.30
	1987	° 9		6633	593700	3.82	5.10	2.49	309.17	3.29	1944.12	607619.79	-0.01 -0.02	0.01
	1985	10		735	98640	2.87	4.99	1.98	96.07	3.28	1920.30	188806.03	-0.02	0.02
	1985	8		3582	872100	3.55	5.94	2.35	222.86	3.59	3913.23	437990.12	0.50	0.50
	1984	8		13464	1945800	4.13	6.29	2.35	450.35	3.59	4320.60	885090.31	0.55	0.55
			ad suspended s								4520.00	005050.51	0.55	0.55

(Column 11) Residual = [log observed suspended sediment load (column 8)] - [log predicted suspended sediment load (column 9)]

(Column 12) Power Residual = 10[^]Residual

(Column 13) Corrected Predicted Suspended Sediment Load using the Smearing estimator method (Mean of column 12 for each group multiplied by (Column 10)

(Column 14) Percent Deviation = [(observed sediment - corrected sediment)]/(observed sediment) * 100%

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Groups	Year	Months	Monthly Precipitation Values (in)	Monthly Stream Discharge (cfs)	Observed Suspended Sediment Load(sh.t/m onth)	Monthly Stream Discharge (log X)	Suspended Sediment (log Y)	Log Y	Antilog Y	Residual	Power Residual	Corrected Predicted SSL (sh.t/day)	Percent Deviation	Absolute Percent Deviation
	1948	2		6660	23724	3.82	4.38	3.93	8574.68	0.44	2.77	330982.62	-12.95	12.95
	1948	3		25866	992400	4.41	6.00	4.52	33184.93	1.48	29.91	1280938.19	-0.29	0.29
	1948	4		7497	116340	3.87	5.07	3.98	9649.34	1.08	12.06	372464.43	-2.20	2.20
	1948	5		15906	893100	4.20	5.95	4.31	20432.50	1.64	43.71	788694.69	0.12	0.12
	1948	6		39300	5859000	4.59	6.77	4.70	50365.35	2.07	116.33	1944102.35	0.67	0.67
	1948	7		11973	948000	4.08	5.98	4.19	15391.62	1.79	61.59	594116.55	0.37	0.37
	1952	1		1053	876	3.02	2.94	3.13	1362.24	-0.19	0.64	52582.60	-59.03	59.03
	1950	8		241.2	24549	2.38	4.39	2.50	313.23	1.89	78.37	12090.80	0.51	0.51
	1952	12		1437	1101	3.16	3.04	3.27	1857.51	-0.23	0.59	71700.04	-64.12	64.12
	1956	6		7800	1027200	3.89	6.01	4.00	10038.29	2.01	102.33	387478.09	0.62	0.62
Group 1	1949	11	0 - 0.25	2679	42270	3.43	4.63	3.54	3457.36	1.09	12.23	133454.12	-2.16	2.16
	1956	9	0-0.25	33	4596	1.52	3.66	1.63	43.08	2.03	106.69	1662.79	0.64	0.64
	1951	8		2004	419100	3.30	5.62	3.41	2588.20	2.21	161.93	99904.44	0.76	0.76
	1957	2		1248	2796	3.10	3.45	3.21	1613.80	0.24	1.73	62292.60	-21.28	21.28
	1951	2		2619	3942	3.42	3.60	3.53	3380.13	0.07	1.17	130472.91	-32.10	32.10
	1953	10		94.8	95.7	1.98	1.98	2.09	123.41	-0.11	0.78	4763.66	-48.78	48.78
	1951	11		3120	30510	3.49	4.48	3.60	4024.89	0.88	7.58	155360.92	-4.09	4.09
	1952	4		11322	390300	4.05	5.59	4.16	14556.86	1.43	26.81	561894.71	-0.44	0.44
	1948	8		2214	157230	3.35	5.20	3.46	2858.68	1.74	55.00	110344.87	0.30	0.30
	1952	9		79.8	31.5	1.90	1.50	2.02	103.93	-0.52	0.30	4011.71	-126.36	126.36
	1953	3		9048	248040	3.96	5.39	4.07	11639.93	1.33	21.31	449301.17	-0.81	0.81
	1954	11		1800	12735	3.26	4.10	3.37	2325.38	0.74	5.48	89759.58	-6.05	6.05
	1950	12		1164	3060	3.07	3.49	5.04	110012.64	-1.56	0.03	9901.14	-2.24	2.24
	1951	1		1893	2106	3.28	3.32	5.41	257679.99	-2.09	0.01	23191.20	-10.01	10.01
	1955	7		4503	410700	3.65	5.61	6.07	1174277.67	-0.46	0.35	105684.99	0.74	0.74
	1954	8		4074	863100	3.61	5.94	5.99	985531.46	-0.06	0.88	88697.83	0.90	0.90
	1949	2		2319	3993	3.37	3.60	5.57	367587.78	-1.96	0.01	33082.90	-7.29	7.29
	1950	2		1896	4689	3.28	3.67	5.41	258395.14	-1.74	0.02	23255.56	-3.96	
	1954	4		8256	297270	3.92	5.47	6.53		-1.06	0.09	305340.56	-0.03	0.03
	1954	12		1017	1185	3.01	3.07	4.94	86861.00	-1.87	0.01	7817.49	-5.60	5.60
	1950	11		3285	28881	3.52	4.46	5.83	676163.78	-1.37	0.04	60854.74	-1.11	1.11
Group 2	1954	2	0.26 - 0.46	6447	50700	3.81	4.71	6.34	2200642.46	-1.64	0.02	198057.82	-2.91	2.91
010002	1948	12	0.20 0.40	2547	3936	3.41	3.60	5.64	433155.22	-2.04	0.01	38983.97	-8.90	8.90
	1957	1		1686	3387	3.23	3.53	5.32	210405.85	-1.79	0.02	18936.53	-4.59	4.59
	1951	12		2241	11046	3.35	4.04	5.54	346222.30	-1.50	0.03	31160.01	-1.82	1.82
	1951	3		7206	90990				2673918.61		0.03		-1.64	
	1954	1		1674	2157	3.22	3.33	5.32		-1.98	0.01	18701.27	-7.67	7.67
	1956	1		2823	6543		3.82	5.71			0.01	46675.44		
	1956	2		3753	5190	3.57	3.72	5.93		-2.22	0.01	76830.13	-13.80	13.80
	1952	10		765	564	2.88	2.75	4.72		-1.97	0.01	4749.40		7.42
	1955	10		717	6303	2.86	3.80	4.67	47113.06		0.13	4240.18	0.33	0.33
	1949	12		690	1515		3.18	4.64		-1.46	0.03	3964.68		
	1952	11		1989	7581	3.30	3.88	3.07	1171.13	0.81	6.47	100904.22	-12.31	12.31

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Groups	Year	Months	Monthly Precipitation Values (in)	Monthly Stream Discharge (cfs)	Observed Suspended Sediment Load(sh.t/m onth)	Monthly Stream Discharge (log X)	Suspended Sediment (log Y)	Log Y	Antilog Y	Residual	Power Residual	Corrected Predicted SSL (sh.t/day)	Percent Deviation	Absolute Percent Deviation
	1952	7		5418	824100	3.73	5.92	3.45	2794.59	2.47	294.89	240781.47	0.71	0.71
	1956	12		2160	4200	3.33	3.62	3.10	1258.03	0.52	3.34	108391.84	-24.81	24.81
	1955	1		1059	1206	3.02	3.08	2.83	677.68	0.25	1.78	58389.05	-47.42	47.42
	1952	8		1116	11925	3.05	4.08	2.85	709.23	1.23	16.81	61107.14	-4.12	4.12
	1954	6		918	18009	2.96	4.26	2.78	598.65	1.48	30.08	51579.29	-1.86	1.86
	1955	9		287.4	10101	2.46	4.00	2.34	218.49	1.66	46.23	18825.43	-0.86	0.86
	1949	9		184.5	8685	2.27	3.94	2.17	148.72	1.77	58.40	12813.93	-0.48	0.48
	1949	3		26415	619800	4.42	5.79	4.04	11052.05	1.75	56.08	952244.20	-0.54	0.54
Group 3	1954	5	0.55 - 0.78	7950	208740	3.90	5.32	3.59	3898.05	1.73	53.55	335855.77	-0.61	0.61
	1948	11		3810	31230	3.58	4.49	3.31	2058.75	1.18	15.17	177381.77	-4.68	4.68
	1953	11		1470	10926	3.17	4.04	2.95	900.81	1.08	12.13	77613.79	-6.10	6.10
	1956	3		18219	570000	4.26	5.76	3.90	8006.22	1.85	71.19	689816.27	-0.21	0.21
	1950	10		3054	78390	3.48	4.89	3.23	1699.17	1.66	46.13	146400.32	-0.87	0.87
	1953	12		1689	5307	3.23	3.72	3.01	1016.20	0.72	5.22	87555.61	-15.50	15.50
	1955	5		14904	497400	4.17	5.70	3.83	6725.55	1.87	73.96	579473.69	-0.17	0.17
	1949	6		19995	2303400	4.30	6.36	3.94	8679.37	2.42	265.39	747814.49	0.68	0.68
	1956	7		2946	583500	3.47	5.77	3.22	1646.89	2.55	354.30	141896.37	0.76	0.76
	1949	7		3795	463500	3.58	5.67	3.31	2051.71	2.35	225.91	176775.51	0.62	0.62
	1955	8		5772	1237500	3.76	6.09	3.57	3686.78	2.53	335.66	284251.03	0.77	0.77
	1950	7		1905	77970	3.28	4.89	3.14	1366.69	1.76	57.05	105371.88	-0.35	0.35
	1949	4		9837	203790	3.99	5.31	3.77	5941.81	1.54	34.30	458113.82	-1.25	1.25
	1951	10		3510	41970	3.55	4.62	3.37	2361.93	1.25	17.77	182104.91	-3.34	3.34
	1950	3		6639	88770	3.82	4.95	3.62	4178.83	1.33	21.24	322187.76	-2.63	2.63
	1957	3		6726	73110	3.83	4.86	3.63	4227.82	1.24	17.29	325964.77	-3.46	3.46
	1953	4		5403	43740	3.73	4.64	3.54	3475.07	1.10	12.59	267927.66	-5.13	5.13
	1955	3		21462	879900	4.33	5.94	4.08	11945.92	1.87	73.66	921030.22	-0.05	0.05
Group 4	1957	7	0.80 - 1.36	7140	335400	3.85	5.53	3.65	4460.04	1.88	75.20	343869.27	-0.03	0.03
Group 4	1955	12	0.00 1.00	6093	102900	3.78	5.01	3.59	3869.81	1.42	26.59	298362.06	-1.90	1.90
	1952	6		7836	177990	3.89	5.25	3.69	4847.32	1.56	36.72	373728.36	-1.10	1.10
	1953	6		18864	2428500	4.28	6.39	4.03	10642.80	2.36	228.18	820559.53	0.66	0.66
	1951	9		9087	1307100	3.96	6.12	3.74	5534.60	2.37	236.17	426717.82	0.67	0.67
	1948	10		3912	294150	3.59	5.47	3.42	2602.70	2.05	113.02	200668.02	0.32	0.32
	1955	11		1218	5919	3.09	3.77	2.96	915.76	0.81	6.46	70604.79	-10.93	10.93
	1956	11		1104	3045	3.04	3.48	2.92	838.64	0.56	3.63	64658.95	-20.23	20.23
	1951	4		5076	92040	3.71	4.96	3.52	3286.18	1.45	28.01	253364.45	-1.75	1.75
	1954	10		261.3	14853			2.36			64.34			0.20
	1955	4		15504	1322100			3.48		2.64	441.19		0.43	0.43
	1951	5		9348	240480	3.97	5.38	3.31	2040.20	2.07	117.87	515822.51	-1.14	1.14
	1950	6		9807	179010		5.25	3.33	2115.88	1.93	84.60		-1.99	1.99
	1953	7		2079	176910	3.32	5.25	2.81	650.97	2.43	271.76		0.07	0.07
	1951	6		3036	137370	3.48	5.14	2.94	868.01	2.20	158.26	219458.42	-0.60	0.60
	1952	3		7422	48420		4.69	3.23		1.45	28.28	432872.52	-7.94	7.94
	1956	4		7650	151050	3.88	5.18	3.24	1751.93	1.94	86.22	442940.58	-1.93	1.93

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Groups	Year	Months	Monthly Precipitation Values (in)	Monthly Stream Discharge (cfs)	Observed Suspended Sediment Load(sh.t/m onth)	Monthly Stream Discharge (log X)	Suspended Sediment (log Y)	Log Y	Antilog Y	Residual	Power Residual	Corrected Predicted SSL (sh.t/day)	Percent Deviation	Absolute Percent Deviation
	1953	5		4950	53970	3.69	4.73	3.10	1258.50	1.63	42.88	318186.42	-4.90	4.90
	1957	6		32820	3297000	4.52	6.52	3.72	5298.30	2.79	622.28	1339568.26	0.59	0.59
	1950	5		26289	1754100	4.42	6.24	3.65	4476.19	2.59	391.87	1131716.00	0.35	0.35
Group 5	1956	5	1.40 - 3.95	10584	881400	4.02	5.95	3.35	2242.09	2.59	393.11	566868.80	0.36	0.36
	1949	10		2715	75780	3.43	4.88	2.90	797.34	1.98	95.04	201591.79	-1.66	1.66
	1955	6		21909	2047800	4.34	6.31	3.59	3897.28	2.72	525.44	985349.33	0.52	0.52
	1950	4		11334	396000	4.05	5.60	3.37	2361.83	2.22	167.67	597141.07	-0.51	0.51
	1954	3		7002	160200	3.85	5.20	3.21	1637.97	1.99	97.80	414128.79	-1.59	1.59
	1957	4		7005	354600	3.85	5.55	3.21	1638.51	2.34	216.42	414263.61	-0.17	0.17
	1949	5		16491	874200	4.22	5.94	3.50	3140.57	2.44	278.36	794030.41	0.09	0.09
	1951	7		846	28425	2.93	4.45	2.52	328.72	1.94	86.47	83111.26	-1.92	1.92
	1950	9		141	4908	2.15	3.69	1.93	84.24	1.77	58.26	21298.19	-3.34	3.34
	1957	5		14550	941400	4.16	5.97	3.46	2855.50	2.52	329.68	721956.01	0.23	0.23
	1952	5		36030	4641000	4.56	6.67	3.75	5687.63	2.91	815.98	1438004.74	0.69	0.69

[Column 11] Residual = [log observed suspended sediment load (column 8)] - [log predicted suspended sediment load (column 9)]

(Column 12) Power Residual = 10[^]Residual

(Column 13) Corrected Predicted Suspended Sediment Load using the Smearing estimator method (Mean of column 12 for each group multiplied by (Column 10)

(Column 14) Percent Deviation = [(observed sediment - corrected sediment)]/(observed sediment) * 100%

Groups Year Months Precentian Values (in) Stream Disclarge (in) Stream Disclarge (in) Germent (in) Log Y Antilig Y Residual Precinat Pacificat Perceinat Pacificat Perceination Pacificat Perceinat Pacifi	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
9199 3 966 10 1966 10 1967 10 1968 10 1968 11 1958 11 1956 11 1956 11 1958 11 1956 11 1956 11 1956 11 1956 11 1956 11 1956 12 1956 12 1956 12 1956 12 1956 12 1956 12 1956 12 1958 10 1958 10 1958 10 1956 11 1956 12 1956 13 1956 13 1958 15 1958 12 1956 13 1956 13 1956	Groups	Year	Months	Precipitation	Stream Discharge	Suspended Sediment Load(sh.t/	Stream Discharge	Sediment	Log Y	Antilog Y	Residual		Predicted SSL		Absolute Percent Deviation
Group 1 1966 10 1967 10 1967 10 1967 10 1952 4 1959 11 1956 10 1959 11 1956 10 1957 11 1956 11 1956 11 1956 11 1956 11 1956 11 1956 11 1956 11 1956 11 1956 11 1956 11 1956 11 1956 11 1956 11 1956 11 1956 11 1957 12 1957 12 1956 11 1957 12 1956 11 1957 12 1956 11 1957 12 <tr< td=""><td></td><td>1957</td><td>9</td><td></td><td>4671</td><td>744600</td><td>3.67</td><td>5.87</td><td>3.22</td><td>1671.40</td><td>2.65</td><td>445.49</td><td>240331.20</td><td>0.68</td><td>0.68</td></tr<>		1957	9		4671	744600	3.67	5.87	3.22	1671.40	2.65	445.49	240331.20	0.68	0.68
Group 1 1965 10 1962 4 22.8 374.0 2.31 4.57 2.12 123.20 2.26 127.945 1911.015 0.49 0.05 1956 10 305 999 1.48 300 1.45 2.42 1.55 5.51 1.464.832.67 0.90 0.05 1956 1.166 3.0 999 1.42 0.42 0.42 1.81 0.466 2.41 2.28.2 2.90 0.28.2 0.90 0.05		1959	3		921	10071	2.96	4.00	2.65	450.77	1.35	22.34	64816.18	-5.44	5.44
Group 1 1992 4 3170 159400 4.64 6.20 4.00 10090.03 2.20 158.51 1446388.26 0.09 0 1995 11 1096 4 30 999 1.44 3.00 1.45 2.84.21 1.55 3.15 1.407.07 3.09 9 1995 10 1996 4.22 1.64 6.42 1.55 3.01 0.01 0.08 0.08 0.00 1.64 1.04		1964			267.6	19785		4.30	2.22	166.24	2.08	119.02	23903.06	-0.21	0.21
Group 1 1995 11 1956 0 0.88 1750 220200 4.24 6.34 369 4853.93 65951195 0.44 1956 4 1959 1 66 220200 4.22 1.84 64.66 2.41 258.32 9301.21 0.44 0.44 1956 4 62.4 220.4 1.80 2.4.22 1.81 64.66 2.41 258.32 9301.21 0.44 0.45 0.44 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.44 0.45 0.44 0.45 0.44		1965	10				2.31	4.57	2.12		2.45	279.45			0.49
Group 1 1959 11 17502 220320 4.24 6.34 3.69 4.83 9 697919195 0.08 0.04 1956 4 1956 4 1951 4 22 1.81 64.69 2.41 258.32 9301.21 0.44 0.0 1959 1 1957 1 1.81 64.69 2.41 24.33 9301.21 0.44 0.0 1959 1 1951 4 2.42 1.81 66.09.31 0.75 5.66 7381.13 -2.42 2.42 2.42 1.11 1.13.30 0.75 5.66 7381.13 -2.42 2.42 2.43 1.11 1.14 1	-		4												0.09
Group 1 1996 0 0.88 16720 1.92 4.22 1.81 6.4649 2.41 258.27 9910.121 0.44 0.64 1959 1 1959 1 1959 1 1951 1.74 54.37 39137.30 1.164 272 1954 15 1961 15 1550 3.77 5.24 3.30 2006.00 1.94 87.41 22844.318 0.04 0.4 0.44 224 244	-	1964									1.55			-3.09	3.09
Group 1 1966 4 0-0.85 8647 14790 3.33 5.17 3.43 2721.87 1.74 54.37 591377.90 -1.64 1 1961 4 1964 4 62.4 20.90 1.80 2.46 1.71 51.33 0.75 5.66 7981.13 -2.42 2.24	-	1959	11										697951.95	0.68	0.68
Group 1 1966 4 847 14790 3.33 5.17 3.33 221.87 1.74 54.37 391377.90 1.1.4 1.2 1959 1 1959 1 100 1.80 2.246 1.71 51.33 0.75 5.56 7381.13 2.442 2.24 1956 12 1505 125 100 101.80 2.266 0.01.94 87.41 28843.18 0.06 2.26 2.26 2.20 1.21		1958	6	0 - 0.85	83.1	16710			1.81	64.69	2.41	258.32		0.44	0.44
91961 4 1964 5 1964 5 1964 5 1960 12 1960 12 1958 10 1957 12 1956 5 1957 138 1966 10 1958 79 1958 79 1956 79 1956 79 1966 10 1966 10 1966 777 1958 777 1968 777 1968 777 1969 1330 1962 12 1963 777 1038 1.89 1963 7 1964 112 1965 777 1038 1.89 1963 7 1964 12 1957 4 1956 7 1957	Group 1	1966	4	0 0.05							1.74			-1.64	1.64
1964 5 1960 12 1960 12 1958 10 1957 12 1958 10 1957 12 1958 10 1957 12 1958 10 1958 10 1958 10 1958 10 1958 10 1958 10 1958 10 1966 10 1966 10 1966 10 1966 10 1967 12 1968 11 1969 11 1957 10 1957 11 1956 11 1957 11 1957 11 1957 11 1957 11 1957 11 1957 11 1957 11 1956			1												24.42
1960 12 1958 10 1957 12 1958 5 1966 10 1965 12 1966 11 1965 12 1966 11 1966 11 1966 11 1966 11 1966 11 1966 11 1967 10 1968 10 1968 11 1969 120 1966 1 1967 10 1968 12 1966 11 1957 40 1957 108 1.88 3.02 1.84 69.27 1.18 14.99 0.59 0.61 0.00 1.14 2.82 2.805.83 6.51 6.6 1957 40 3.27 5.68 2.99 980.93 2.69 4.76 1.14225.01 4.12 1.6 <td< td=""><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.64</td></td<>			4												0.64
1958 10 5274 387600 3.72 5.59 3.27 1843.49 2.32 210.25 265074.99 0.32 0.02 1955 55 789 357 324 2.51 326.67 0.90 7.99 46971.70 1.70.00 17 1956 10 789 1550 3.26 307.66 1.53 341.61 5720.84 3.21 32.0			5												0.18
1957 12 618 2610 2.79 3.42 2.51 326.67 0.90 7.99 46971.70 1.70 17 1956 10 789 13590 2.90 4.13 2.60 397.86 1.53 34.16 5708.47 3.21 33 1956 12 77.7 1038 1.89 3.02 1.84 69.27 1.18 14.99 13931.05 1.24.2 12 1966 1 633 11255 2.81 4.05 2.60 400.67 1.45 2.81.2 8058.38 6.15 6.31 10.57 1.43 14.99 19331.05 1.24.2 12 11.53 11.53 11.53 11.53 11.53 11.53 2.23.55 2.2761.78 0.39 0.59 0.59 1.15 1.21.2 10.52 1.21.2 10.52 1.22.1 16.29 1.22.1 16.29 1.25 2.27 1.56 1.33 4917.70.1 1.66 1.10 1.11 1.11 1.13															20.26
Instruction															0.32
Image: space of the system of the s															17.00
Image: Second			-												3.21
Group 2 1966 1 1963 3 639 11265 2.81 4.05 2.60 400.67 1.45 28.51 3.2761.78 0.93 0.59 1963 3 216.9 53520 2.34 4.73 2.21 162.90 2.52 28.55 3.2761.78 0.39 0.59	_														0.61
Group 2 1963 3 1958 7 1961 11 1957 4 1959 7 1961 11 1957 4 1959 4 1957 20 1957 21 1957 20 1957 21 1957 21 1957 4 1957 20 1957 21 1957 20 1957 21 1957 3 1957 20 1957 20 1957 20 111 101 1957 20 1957 20 1950 3 1950 3 1950 3 1950 3 1950 3 1950 3 1950 3 1950 3 1	_														12.42
Instant Instant <t< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.31</td></t<>			1												0.31
Image: height of the second			3												6.15
Group 2 1957 4 1966 9 1957 4 1966 9 1957 4 1957 2 1957 2 1957 2 1957 2 1957 2 1957 2 1957 2 1957 2 1957 2 1957 2 1951 1 1960 3 1962 11 1962 3 1962 11 1962 3 1959 9 1953 1.55 1955 3.23 1956 342000 3.20 5.53 2.93 846.76 2.61 403.89 170301.00 0.50 0.00 1956 3 421900 3.83 5.34 3.46 788.94 78809.56 -1.65 1.16 1956 3			7												0.39
Group 2 1966 9 1959 4 1959 4 1957 2 1961 1 1961 1 1961 1 1961 1 1961 1 1961 3 1961 3 1962 1 1962 3 1962 3 1962 3 1962 3 1962 3 1962 3 1962 3 1962 3 1962 3 1962 3 1962 3 1962 3 1962 3 1965 9 1966 3 1965 9 1966 1 1962 1 1962 1 1963 2 1964 1 1965			11												0.59
Group 2 1959 4 1957 2 1961 1 1961 1 1960 3 1962 1 1962 1 1960 3 1962 1 1963 2 1964 2 1965 2 1966 2 1966	-		4												41.28
Group 2 1957 2 1961 1 1960 3 1960 3 1960 3 1960 3 1960 3 1962 11 1962 11 1962 11 1962 5 1962 35.7 1959 342000 3.20 1959 342000 3.20 1959 342000 3.20 1959 342000 3.20 1959 342000 3.20 1959 342000 3.20 1959 342000 3.20 1959 342000 3.83 5.34 3.46 2884.64 1.88 75.94 58015.9.6 1.165 1.16 1960 11 40.5 600 1.61 2.78 1.60 40.25 1.17 14.91 809.05 1.129 1.29 1961 196 2 1149 <td< td=""><td>-</td><td></td><td>9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.66</td></td<>	-		9												0.66
Group 2 1961 1 0.86-1.30 35.7 193.5 1.55 2.29 1.56 36.24 0.73 5.34 7288.46 -36.67 36.67 1960 3 1962 111 13904.13 2.44 277.06 2693828.38 0.27 0.0 1962 31 1569 342000 3.20 5.53 2.93 846.76 2.61 403.89 170301.00 0.50 0.0 1962 3 1959 9 132.9 2077 3.41 2.57 372.26 0.84 6.84 74869.36 -284.00 288 1959 9 132.9 20778 2.12 4.32 0.38 1.88 75.94 580159.67 1.65 1 1960 11 1962 11 2193 70200 3.34 5.85 3.05 1119.16 2.88 627.25 225085.99 0.68 0.02 1960 21 1149 80040 3.66 4.90	-		4												11.10
1960 3 1962 11 1962 11 1962 11 1962 15 1962 5 1962 5 1962 5 1962 5 1962 5 1962 5 1962 5 1962 5 1962 5 1962 5 1962 5 1962 5 1962 5 1962 5 1962 5 1960 11 1960 11 1962 10 1963 20 1963 20 1963 20 1963 20 1963 20 1963 20 1963 20 1963 20 1963 20 1965 3 1957 6 <td>Group 2</td> <td></td> <td>2</td> <td>0.86 - 1.30</td> <td></td> <td>1.01</td>	Group 2		2	0.86 - 1.30											1.01
1962 11 1962 1569 34200 3.20 5.53 2.93 846.76 2.61 403.89 170301.00 0.50 0.28 1962 3 585 2547 2.77 3.41 2.57 372.26 0.84 6.84 74869.36 -28.40 288 1959 9 132.9 20778 2.12 4.32 2.03 108.32 2.28 191.82 21785.10 -0.05 0.05 1960 11 40.5 600 1.61 2.78 1.60 40.25 1.17 14.91 8096.05 -12.49 122 1962 10 2193 70200 3.34 5.85 3.05 1119.16 2.80 627.25 225085.99 0.68 0.02 1963 20 1149 8040 3.63 5.01 3.29 1954.96 1.72 2.76 39182.23 -2.81 2.25 1957 3 132.5 22020 4.10 5.34 </td <td></td> <td></td> <td>1</td> <td></td> <td>36.67</td>			1												36.67
1962 5 1962 3 1962 3 1962 3 1959 9 1960 11 1960 11 1962 3 1963 20 1964 10 1965 9 1960 11 1962 10 1963 20 1963 20 1963 20 1964 20 1965 20 1966 21 1967 3 1968 20 1969 20 1960 20 1960 21 1960 20 1960 20 1960 20 1960 20 1960 20 1960 20 1960 20 1960 20 1957 6 1957 <	-														0.27
1962 3 1959 9 1959 9 1960 11 1960 11 1960 11 1960 11 1961 11 1962 10 1962 10 1963 20 1963 20 1963 20 1964 20 1965 20 1963 20 1964 20 1965 20 1966 20 1967 3 1957 3 1957 3 1957 3 1957 3 1957 3 1957 3 1957 3 1957 3 1957 3 1957 6 1966 2 1966 3 1966 3 1966 3 <td>-</td> <td></td> <td>0.50</td>	-														0.50
1959 9 1960 11 1960 11 1962 10 1963 2 1963 2 1963 2 1963 2 1963 2 1963 2 1963 2 1963 2 1963 2 1964 2 1965 2 1963 2 1964 2 1965 2 1966 2 1967 3 1957 3 12567 220290 4.10 3.63 5.34 3.15 1957 3 12567 220290 4.10 5.34 1957 3 1957 3 12567 220290 2340 6588 3.37 3.82 2.65 448.56 1.	-		2												28.40 1.65
1960 11 1960 11 1962 10 1963 2 1963 2 1963 2 1963 2 1963 2 1963 2 1963 2 1963 2 1963 2 1963 2 1964 2 1965 2 1960 2 1960 2 1967 3 1957 3 12567 220290 4.10 5.34 1957 6 1957 6 1956 2 1956 2 1966 2 1966 2 1966 3 1962 8 1962 8 1962 8 1961 10	-														0.05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		-												12.49
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-														0.68
1960 2 4284 103140 3.63 5.01 3.29 1954.96 1.72 52.76 393182.23 -2.81 22 1957 3 12567 220290 4.10 5.34 3.15 1402.54 2.20 157.07 1185605.51 -4.38 4 1957 6 132.9 28203 2.12 4.45 1.81 64.12 2.64 439.85 54202.08 -0.92 0 1966 2 2340 6588 3.37 3.82 2.65 448.56 1.17 14.69 379178.34 -56.56 56 1966 3 32640 2895300 4.51 6.46 3.43 2679.42 3.03 1080.57 2264992.04 0.22 0 1962 8 81.6 20322 1.91 4.31 1.66 46.06 2.64 441.21 38935.84 -0.92 0 0 1961 10 249 59820 2.40 4.78 1.99 </td <td>-</td> <td></td> <td>2</td> <td></td>	-		2												
1957 3 12567 220290 4.10 5.34 3.15 1402.54 2.20 157.07 1185605.51 -4.38 4 1957 6 132.9 28203 2.12 4.45 1.81 64.12 2.64 439.85 54202.08 -0.92 0 1966 2 2340 6588 3.37 3.82 2.65 448.56 1.17 14.69 379178.34 -56.56 56 1966 3 32640 2895300 4.51 6.46 3.43 2679.42 3.03 1080.57 2264992.04 0.22 0 1962 8 81.6 20322 1.91 4.31 1.66 46.06 2.64 441.21 38935.84 -0.92 0 1961 10 249 59820 2.40 4.78 1.99 98.16 2.78 609.44 82974.32 -0.39 0 0	-		2												
1957 6 1957 6 1966 2 1966 2 1966 3 1966 3 1962 8 1961 10			2												4.38
1966 2 1966 2 1966 3 1966 3 1966 3 1966 3 1966 3 1966 3 1966 3 1966 3 1966 3 1966 3 1962 8 1961 10 249 59820 2.40 4.78 1.99 98.16 2.78 609.44 8274.32 -0.39 0.249 59820 2.40 4.78 1.99 98.16 2.78 609.44 82974.32 -0.39	-		6												
1966 3 1966 3 1962 8 1961 10 1964 100 1965 100 1966 100 1967 100 1968 100 1969 100 1960 100 1961 100			2												56.56
1962 8 81.6 20322 1.91 4.31 1.66 46.06 2.64 441.21 38935.84 -0.92 0 1961 10 249 59820 2.40 4.78 1.99 98.16 2.78 609.44 82974.32 -0.39 0	-		2												0.22
1961 10 249 59820 2.40 4.78 1.99 98.16 2.78 609.44 82974.32 -0.39 0	-		2												0.92
															0.32
1962 9 3090 829200 3.49 5.92 2.73 541.63 3.18 1530.93 457858.38 0.45 C	-	1961					3.49	5.92	2.73	541.63					

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Groups	Year	Months	Monthly Precipitation Values (in)	Monthly Stream Discharge (cfs)	Observed Suspended Sediment Load(sh.t/ month)	Monthly Stream Discharge (log X)	Suspended Sediment (log Y)	Log Y	Antilog Y	Residual	Power Residual	Corrected Predicted SSL (sh.t/month)	Percent Deviation	Absolute Percent Deviation
	1963	4		885	17790	2.95	4.25	2.37	231.97	1.88	76.69	196091.27	-10.02	10.02
	1960	1		8877	515700	3.95	5.71	3.04	1107.97	2.67	465.44	936602.86	-0.82	0.82
Group 3	1963	10	1.31 - 2.05	903	166560	2.96	5.22	2.37	235.16	2.85	708.29	198787.36	-0.19	0.19
	1961	9		2655	1121400	3.42	6.05	2.69	488.67	3.36	2294.80	413087.34	0.63	
	1958	4		22455	770100	4.35	5.89	3.32	2079.10	2.57	370.40	1757526.35	-1.28	
	1959	10		3210	821100	3.51	5.91	2.74	555.81	3.17	1477.30	469843.30	0.43	0.43
	1964	9		13209	1667700	4.12	6.22	3.16	1450.74	3.06	1149.55	1226352.50	0.26	
	1963	11		342	47040	2.53	4.67	2.09	121.73	2.59	386.43	102900.58	-1.19	1.19
-	1960	4		9357	182940	3.97	5.26	3.06	1148.26	2.20	159.32	970657.89	-4.31	
-	1961	7		345	96780	2.54	4.99	2.09	122.45	2.90	790.35	103511.89	-0.07	0.07
	1965	8		4932	1288500	3.69	6.11	2.87	743.74	3.24	1732.45	628708.85	0.51	0.51
	1963	9		15090	3456000	4.18	6.54	3.20	1587.82	3.34	2176.57	1342234.42	0.61	0.61
-	1965 1957	2		6597 26088	70410 7014000	3.82 4.42	4.85 6.85	2.56 2.89	359.52 769.19	2.29 3.96	195.85 9118.74	1108657.83 2371974.93	-14.75 0.66	
-	1957	0 E		8085	184980	4.42	5.27	2.89	402.33	2.66	459.77	1240691.03	-5.71	
-	1965	1		20562	1274700	4.31	6.11	2.83	674.29	3.28	1890.45	2079327.07	-0.63	0.63
-	1905	3		7305	96390	3.86	4.98	2.58	380.37	2.40	253.41	1172977.71	-0.03	11.17
-	1905	2		2649	69720	3.42	4.84	2.34	217.02	2.40	321.26	669243.24	-8.60	8.60
-	1966	8		8541	2535600	3.93	6.40	2.62	414.73	3.79	6113.84	1278926.77	0.50	0.50
	1964	4		13707	785100	4.14	5.89	2.73	538.78	3.16	1457.18	1661466.52	-1.12	
	1957	7		2034	665100	3.31	5.82	2.27	187.51	3.55	3546.92	578248.88	0.13	0.13
	1962	1		45.3	4839	1.66	3.68	1.36	22.86	2.33	211.71	70483.68	-13.57	13.57
	1962	2		25008	2816700	4.40	6.45	2.88	751.40	3.57	3748.59	2317140.32	0.18	
Group 4	1960	9	2.12 - 4.09	192.6	41520	2.28	4.62	1.71	50.90	2.91	815.70	156966.48	-2.78	2.78
	1961	3		1110	37800	3.05	4.58	2.13	134.13	2.45	281.81	413625.90	-9.94	9.94
	1959	8		17364	6183000	4.24	6.79	2.79	614.09	4.00	10068.60	1893691.85	0.69	0.69
	1966	7		477	168390	2.68	5.23	1.92	84.06	3.30	2003.11	259233.68	-0.54	0.54
	1960	10		4461	664200	3.65	5.82	2.46	289.55	3.36	2293.91	892896.17	-0.34	0.34
	1959	12		9273	1053900	3.97	6.02	2.64	434.03	3.39	2428.16	1338447.38	-0.27	0.27
	1964	7		4851	1481400	3.69	6.17	2.48	303.29	3.69	4884.44	935269.81	0.37	0.37
	1957	11		6264	874200	3.80	5.94	2.54	349.36	3.40	2502.28	1077341.63	-0.23	0.23
	1964	8		49710	12462000	4.70	7.10	3.04	1098.83	4.05	11341.20	3388501.97	0.73	
	1965	11		1974	145440	3.30	5.16	2.27	184.43	2.90	788.57	568749.59	-2.91	2.91
	1957	10		6258	1579500	3.80	6.20	2.54	349.18	3.66	4523.51	1076770.64	0.32	0.32
	1958	3		15249	958500	4.18	5.98			-	1677.13			
	1958	8		11265	3543000	4.05	6.55	2.33	213.39		16603.36		0.44	
	1965	9		10572	1957500	4.02	6.29	2.32	207.44		9436.68		0.01	
	1959	7		46.5	13590	1.67	4.13	1.27	18.46		736.13		-11.72	
	1965	7		10155	3165000	4.01	6.50	2.31	203.75	4.19	15533.96		0.40	
	1961	8		4614	1330500	3.66	6.12	2.16	143.34	3.97	9282.30		-0.01	
Group 5	1965	4	4.1 - 8.35	44130	1383900	4.64	6.14	2.59	392.23	3.55	3528.33	3672623.48	-1.65	
	1966	12		11229	514800	4.05	5.71	2.33	213.09		2415.92	1995244.29	-2.88	
	1965	12		11952	1465500	4.08	6.17	2.34	219.10	3.83	6688.82	2051526.04	-0.40	0.40

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Groups	Year	Months	Monthly Precipitation Values (in)	Monthly Stream Discharge (cfs)	Observed Suspended Sediment Load(sh.t/ month)	Monthly Stream Discharge (log X)	Suspended Sediment (log Y)	Log Y	Antilog Y	Residual	Power Residual	Corrected Predicted SSL (sh.t/month)	Percent Deviation	Absolute Percent Deviation
	1957	1		19113	1235400	4.28	6.09	2.43	270.10	3.66	4573.81	2529125.77	-1.05	1.05
	1963	8		20178	5982000	4.30	6.78	2.44	276.71	4.33	21618.14	2591007.60	0.57	0.57
	1958	9		17352	3255000	4.24	6.51	2.41	258.71	4.10	12581.59	2422456.83	0.26	0.26
(Column 11	,	. 0	ved suspended s	ediment load	l (column 8)] -	[log predicte	d suspended s	ediment loa	ad (column 9)]					

(Column 11) Residual = [log observed suspen (Column 12) Power Residual = 10^Residual

(Column 13) Corrected Predicted Suspended Sediment Load using the Smearing estimator method (Mean of column 12 for each group multiplied by (Column 10) (Column 14) Percent Deviation = [(observed sediment - corrected sediment)]/(observed sediment) * 100%