
Manufacturability Analysis of Laser Powder Bed Fusion using Machine Learning

by

Daniyal Khan

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master

of

Computing and Information Systems

YOUNGSTOWN STATE UNIVERSITY

December, 2023

Manufacturability Analysis of Laser Powder Bed Fusion using Machine Learning

Daniyal Khan

I hereby release this thesis to the public. I understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library Circulation Desk
for public access. I also authorize the University or other individuals to make copies
of this thesis as needed for scholarly research.

Signature:

Daniyal Khan, Student Date

Approvals:

Dr Alina Lazar, Thesis Advisor Date

Dr. John R. Sullins, Committee Member Date

Dr. Hunter Taylor, Committee Member Date

Dr. Salvatore A. Sanders, Dean of Graduate Studies Date

ABSTRACT

Additive Manufacturing (AM), particularly LASER Powder Bed Fusion (LPBF), has

gained prominence for its flexibility and precision in handling complex metal struc-

tures. However, optimizing L-PBF for intricate designs involves analyzing over 130

process parameters, leading to prolonged duration and increased costs. This thesis

proposes a novel approach by harnessing statistical and machine learning algorithms

to predict manufacturability issues before the printing process. By performing a com-

parative analysis of the intended design with the machine produced result, the study

introduces two machine learning and one artificial neural network (ANN) algorithm

to forecast the printability of new designs accurately. This innovative method aims

to reduce or eliminate the need for iterative printing, reducing productivity costs and

optimizing the LPBF additive manufacturing process.

iii

Acknowledgments

I would first like to thank my thesis advisor, Dr. Alina Lazar of the Department

of Computer Science and Information Systems at Youngstown State University. The

door to Prof. Lazar’s office was always open whenever I encountered a problem or was

concerned about my research work or writing. She consistently allowed this thesis to

be my own work while guiding me in the right direction whenever I needed it.

I would also like to thank the committee members Dr. John Sullins and Dr. Hunter

Taylor for their precious time and advice during my thesis process.

I wish to extend my heartfelt appreciation to the Department of Computer Science

and Information Systems and the College of Graduate Studies for their financial

support throughout my graduate studies.

Finally, I want to convey my deep appreciation to my classmates and friends who

consistently offered invaluable technical assistance, support, and unwavering encour-

agement during my academic journey, including the research and writing phases of

this thesis. Their contributions were indispensable to the completion of this achieve-

ment, and I am truly grateful. Thank you.

iv

Table of Contents

List of Figures 1

List of Tables 2

1 Introduction 3

1.1 Laser Powder Bed Fusion . 4

2 Related Works 6

3 Methods 9

3.1 Multi-Layer Perceptron Neural Network 9

3.2 Adaptive Boosted Decision Tree . 10

3.3 XGBoost . 12

4 Datasets 14

4.1 Commanded Data . 14

4.2 Actual Data . 15

4.3 Data Pre-processing . 16

4.3.1 Common Layer Interface . 16

4.3.2 Point Cloud Data . 18

4.4 Data Labeling . 19

5 Experiments and Results 22

5.1 Multi-Layer Perceptron . 23

5.2 Adaptive Boosting for Decision Tree 24

5.3 Extreme Gradient Boost (XGBoost) 24

v

6 Discussion 26

7 Conclusion 28

8 References 29

vi

List of Figures

1 Representational architecture Laser Powder Bed Fusion System . . . 5

2 Additive Manufacturing Worksheet proposed by Booth’s Group [1] . 7

3 Architecture of a MLP Neural Network 11

4 A Simple Decision Tree Model . 12

5 CLI files representing different features of the Layer 30.0 16

6 Visualization of Layer 30.0 from the CLI File 17

7 Visualization of a slice of one layer of the Command File (CLI) (a)

Single Vectors, (b) A Polylines . 18

8 Visualization of Actual data-points of Layer 30.0 of QTA UTEP 43.1 19

9 A slice of Actual data points on top of Commanded vectors 20

10 Representation of Actual Data-points Associated with One Commanded

Vector . 21

11 Convergence of Loss and Accuracy in MLP neural network model with

the number of epochs . 23

12 Accuracy and Convergence time of AdaBoost with different Learning

Rates and Tree Depths . 25

13 Accuracy and Convergence time of XGBoost with different Number of

Estimators and Tree Depths . 26

1

List of Tables

1 Criterion set for Printing of Quality Test Artifact 14

2 Description of the Data-set after the Labeling process 22

3 Comparison of the Algorithms on Different Criterion 27

2

1 Introduction

In the past few decades, Additive Manufacturing (AM) has been one of the

increasingly important metal processing methods on account of its advantageous high

flexibility, low material wastage, short lead time, and complex geometry handling.

Several researches have shown how AM is efficiently capable of working with complex

structures using a vast variety of materials such as polymers [2], ceramics [3], and

metals [4]. LASER Powder Bed Fusion (L-PBF), also known as Selective LASER

Melting (SLM) or Direct Metal LASER Melting (DMLM), is one of the most efficient

AM methods. L-PBF provides the capability of near net shape (NNS) manufacturing,

which aims for fabricating with close in size and shape, with highest accuracy among

other AM techniques. However, with the increase in complexity of the design model,

L-PBF becomes extremely challenging to develop the product where more than 130

process parameters such as LASER power, scan speed, hatching-spacing, and hatching

angles need to be analyzed with an intent of optimization.

Analyzing the L-PBF process has been an exponentially complex task, with

the primary concern being the enhancement of build quality. Optimization of the

AM process requires analysis of the design, the print results, and the modification of

the design and associated parameters to mitigate the problems found in the analysis.

Currently, used optimization methods include multiple iterations of the printing pro-

cess. After each printing process, a post-build analysis is conducted on the produced

object to identify any defects. Subsequently, the design is adjusted or the printing

parameters are fine-tuned based on the findings of this analysis. While this strat-

egy does not ensure an optimized design, the comparatively slow iterative printing

of L-PBF leads to increased productivity costs and prolonged duration for analysis

3

and optimization. Hence, expediting the optimization process requires eliminating

the iterative printing of the artifact.

This thesis work attempts to coin a method by leveraging the capability of

statistical and machine learning algorithms to analyze the manufacturability of the

design subjected to be printed using L-PBF, and predict what parts of the design are

more prone to cause defects in the final build. Several research studies are underway

to formulate comprehensive machine learning algorithms, emphasizing the examina-

tion of the correlation between design, process parameters, and the quality of the

manufactured parts. We propose a method for comparison of the design, which is

subject to be printed with what the machine prints. Then, we use the result of the

comparison to architect a machine learning model that can predict if a new design is

printable by the machine or not. This thesis proposes two different machine learning

and one artificial neural network (ANN) algorithm that can perform this task with

high accuracy.

1.1 Laser Powder Bed Fusion

Metal additive manufacturing involves forming objects from 3D computer-

aided design (CAD) model data by joining materials, typically in a layer-by-layer

fashion, unlike subtractive manufacturing technologies. Using slicing software, the

3D CAD model files are sliced into two-dimensional (2D) layers. The surface rough-

ness of the formed object depends on the selected thickness of the layer, or thinning

the layers smooths the surface. There are several methods used in metal additive

manufacturing, which include material jetting, material droplet printing, sheet lam-

ination, powder bed fusion, material extrusion, binder jetting, and directed energy

4

Figure 1: Representational architecture Laser Powder Bed Fusion System

deposition[5], among which laser bed fusion is most commonly used in current printing

systems.

In powder bed fusion, a layer of metal powder is evenly spread on the build

plate, and a heat source is employed to fuse the metal powder at locations specified

by the design, facilitating the formation of the desired geometry. After one layer

is completed, a new thin layer of powder is applied on top of the completed layer,

and the same process is repeated until the complete 3D geometry is formed. In laser

powder bed fusion (L-PBF), a laser beam is used as a heat source to fuse the metal

powder. L-PBF additive manufacturing systems are setup as shown in Figure 1. The

Galvanometric Scanning Head (GSH) controls the incidence angle of the laser beam

and directs it to the locations specified by the design on the build platform. Once

one layer is completely fused, a new layer is spread evenly by the powder roller, which

shifts the new powder from the powder stock to the build plate.

5

2 Related Works

There have been several attempts to devise an approach for pre-build analysis

of manufacturability using the LASER Powder Bed Fusion (LPBF) process, which

included mathematical, statistical, and machine learning (ML) methods. The most

conventional approach is to use a design worksheet Figure 2 to evaluate the design [1].

This approach needed the user to consider manufacturability factors for LPBF, includ-

ing but not limited to a minimum thickness, the most optimal printing orientation,

the maximum number of overhang angles without supports, etc. In this method, be-

fore the design can be fabricated, the users need to verify the design manually based

on the measures provided. The method is helpful in designs with simple structures,

but evaluating designs with complicated structures is very difficult as this approach

is incapable of providing a way to determine how different printing strategies and

processes will affect the final quality of the artifact.

The second approach applies Bayesian Networks (BNs) to the knowledge man-

agement system to categorize the AM knowledge into different correlated layers. It

leverages the BNs capacity of inferring under uncertainty. It generates its inference

based on principles of conditional probability and Bayes’ Theorem [6]:

P (A|B) =
P (B|A)P (A)

P (B)
(1)

here A and B represent events with the condition that P(B) is not equal to zero.

It makes it possible to repeatedly update the probabilities of interconnected nodes

whenever new evidence is received. This method, then, is applied to find the prob-

ability of the state of certain variables affecting the build quality. For example, the

6

Figure 2: Additive Manufacturing Worksheet proposed by Booth’s Group [1]

probability of the surface inclination to the Z-axis being below or above a given angle

can be determined using layer thickness. These probabilities help categorize layers,

which in turn helps to determine the best fabrication AM process for the given part.

While the method is indeed declarative and descriptive, it lacks the capability to

handle design complexities on various LPBF machine types. Furthermore, each node

in the Bayesian Network is discretized, but since many AM parameters are continu-

ous, this leads to a significant loss of information. Consequently, as reported by the

authors [6], this imposes a substantial accuracy limitation on the predictions made

by the Bayesian Network.

7

As a subset of Artificial Intelligence, machine learning has been a feasible

option for certain tasks that can be handled without human intervention and also some

computationally intensive tasks where the number of factors affecting the process are

too high to be handled by humans [7]. It has generated a major domain for developing

machine learning in AM for pre-process parameter optimization, manufacturability

prediction, in-situ monitoring, and post-process analysis, where quality control is a

critical aspect. In the area of In-situ or real-time monitoring [8, 9, 10] and post-process

analysis, there have been several researches [11] which generated efficient results in

finding the major defects in the build.

However, in pre-process analysis or manufacturability, very little work is ob-

served. In this problem [12] and [13] are major works which mainly focused on the

use of Hybrid Machine Learning algorithms to evaluate the design to predict if the

design is vulnerable. Zhang et al. [12] proposed a method that combines a voxel-based

Convolutional Neural Network (CNN) aimed for analysis of the design and a Neural

Network (NN) model, which aims at the inclusion of input variable design, material,

and printing process in 3D objects, texts, and values data types. Zhang et. al. [13],

on the other hand, omits the use of voxelization of 3D models for the design analysis.

Instead, they propose the use of sparse metrics for the shape representation of the

design. In both of the works, LPBF machine type differences were not considered in

the analysis process, making it incompatible for some machines while working with

others.

This thesis introduces a deep learning approach for manufacturability analysis.

Our proposal centers on the utilization of a common layer interface (CLI) represen-

tation of the design, which consists of a sequence of coordinates that command the

8

movement of the laser head on the build plate for the fabrication process. This CLI

dataset is labeled by the use of associated Point Cloud Data(PCD), recorded during

the fabrication of the artifact. For each of the CLI layers, there is one associated PCD

layer that assists in labeling coordinate sequences on the layer level. This labeled data

set is then used to train the neural network. The data-set section elaborates more on

the structure of the CLI file and recording of PCD. The method is compatible with

different machine types as the model can be trained specifically for a machine type

using PCD generated from the machine.

3 Methods

3.1 Multi-Layer Perceptron Neural Network

Artificial Neural Networks (ANNs), due to their ability to imitate the human

brain and robustness to handle complex problems, have gained enormous attention in

the domain of artificial intelligence. Their application lies in a wide range of domains,

such as pattern recognition, natural language processing, forecasting, and prediction.

Multi-layer perceptron (MLP) is one of the most popular types of artificial neural

network. A single perceptron model works as a threshold function that learns a

binary classifying criterion. Its operation involves mapping the input variable x to

an output variable ŷ : ŷ = f(x). But single-layer perceptron is limited only to data

points that are linearly separable and where the problem is to separate two classes by

computation of a dividing hyperplane. But when the data is not linearly separable,

then it becomes necessary to increase the number of perceptrons. However, when

the data points are highly variable, the single-layer perceptron model fails to classify

9

them. Therefore, a multi-layered perceptron is required to tackle such variables.

An MLP neural network comprises layers of units where each layer contains

several perceptrons or nodes. The number of layers in MLP is required to be at least

three, which consists of an input layer, one output layer, and one or more hidden

layers that connect the input layer from the output layer as illustrated in Figure

3. Introducing non-linearity is important so that the model can handle complex

relationships that lie in a highly variable data set. The use of the activation function

helps to equip the model with a non-linear behavior[14]. Each node of the hidden

layer takes some of the input variables and applies the activation function on it, and

the resultant(activated output) is passed to the next layer. A general computation

at a node of a hidden layer is expressed as in the following equation:

ŷi = Activation

{
n∑

i−1

(Wi × xi + b)

}
(2)

Sigmoid and hyperbolic tangent (tanh) are two of the widely used activation functions[15].

But the choice of activation function depends completely on the type of task.

3.2 Adaptive Boosted Decision Tree

Introduced in the 1960s, decision tree [16] has proved itself to be one of the

most effective supervised learning methods for classification and regression tasks.

Their application lies in a wide variety of domains because of their robustness, even

in the presence of missing values. The primary objective of a decision tree is the

implementation of a model that can make predictions for the targeted variable. This

is achieved by inferring decision rules from the features of the dataset. Figure 4

10

Figure 3: Architecture of a MLP Neural Network

illustrates a simple decision tree model that has a binary target variable. The root

node or topmost node of the tree asks a most important question (X > 5) and divides

the tree. Based on the answer, a child node is selected. Furthermore, the child node,

on the second level of the tree, asks another question (X < 2), and this process is

repeated until a leaf node (represented by a circle) is reached which categorizes (R1,

R2, R3, R4, or R5) the instance.

AdaBoost[17] or adaptive boosting, is an ensemble learning method. In the

proposed work, the AdaBoost Algorithm is used to generate a robust decision tree

classifier that attains precise classification. AdaBoost, due to its accuracy, inter-

pretability, and scalability, has been among the most popular boosting methods for

classification tasks. AdaBoost trains multiple weak learners or stumps (a small deci-

sion tree having only one level in it, i.e., two leaves) consecutively. The new learners

11

Figure 4: A Simple Decision Tree Model

focus on the misinterpreted or misclassified samples from the previous learners; as

a result, a stronger learner than the previous one is achieved. In this process, pre-

viously misclassified samples are trained by combining them with new samples, and

their weights are updated so that the new classifier focuses on more complex sce-

narios, which gradually develops a stronger classifier. These weak learners are also

called estimators and, as hyper-parameters of the algorithm, the number of estima-

tors and learning rate can shrink or expand the contribution of each weak learner in

the training process[18].

3.3 XGBoost

XGBoost stands for Extreme Gradient Boost. It is an alternative decision

tree ensemble method that extends the gradient boost algorithm[19] to create a more

scalable method. The Gradient Boost algorithm creates weak learners, which can

have more than two leaves in it, as opposed to AdaBoost, where weak learners are

12

stumps (typically decision trees having only two leaves). In the traditional gradient

boosting algorithm for binary problems, the objective function (Eq. 3) is primarily

training loss that measures the difference between the predicted and actual label.

ObjectiveFunction =
n∑

i−1

LogLoss(yi, ŷi) (3)

In XGBoost, the objective function incorporates training loss and additional regular-

ization terms.

ObjectiveFunction =
n∑

i−1

LogLoss(yi, ŷi) +
K∑
k−1

Ω(fk) (4)

Where n is the number of samples, and K is the number of trees in the ensemble. The

regularization term Ω(fk) gives more control over the complexity of the weak learners

and also helps in the prevention of over-fitting of the model. The regularization

function is defined as follows:

Ω(fk) = γT +
1

2
λ

T∑
j−1

ωj
2 (5)

Where T is the number of leaves in the tree, ωj is the score associated with jth

leaf. And γ and λ are regularization hyper-parameters, the value of which is directly

proportional to the complexity of the tree. A more comprehensive explanation of the

algorithm is not in the scope of this thesis.

13

Feature Infill Contour Downfill Down Contour
Speed(mm/sec) 1000 1000 1000 1000
Power(watt) 250 300 200 150

Table 1: Criterion set for Printing of Quality Test Artifact

4 Datasets

The proposed method uses data collected from the standard Quality Test

Artifact (QTA)[20], which was printed at Tailored Alloys in association with W.M.

KECK CENTER FOR 3D INNOVATION. The QTA was sliced into 846 layers of

5-millimeter thickness. This dataset included two types of data files. The first type

is called the command data file, as it is generated after the design phase and is fed

into the LPBF machine for the fabrication of the artifact. Whereas, the second type

of data file is called the actual data file. The actual data file is generated while the

artifact is being printed in the machine. The QTA was printed using the criterion

mentioned in Table 1. Table 1 shows only the default power and speed set for the

printing process in which the speed remains constant, whereas the power can vary

with each vector.

An elaborated description of these datasets is given in the following subsec-

tions.

4.1 Commanded Data

Commanded data is a set of Common Layer Interface files that are generated

from the AutoDesk Netfabb slicing procedure. Once the designing phase of the ar-

tifact is complete, the design can be divided into layers, where the number of layers

depends on the required surface roughness of the artifact. The process of dividing the

14

design into layers is called slicing, and it generates a set of Common Layer Interface

files as shown in Figure 6. This set of files includes different types (the type represents

different features of the layer as shown in Figure 5) of CLI files which commands the

Galvanometeric Scanning Head (GSH)(see Figure 1) to direct the LASER Beam on

the build plate. Following is the description of relevant fields that a CLI file includes:

1. LAYER - Layer Number.

2. POWERS - Commanded LASER powers for vectors in the Layer Number de-

fined above.

3. HATCHES

(a) Number of Vectors in the Layer (N).

(b) Start and end coordinates ((Xs, Ys), (Xe, Ye)) of N vector.

Each layer is divided into different CLI files which may include commands for separate

features of the layer. The sequence in which the machine reads commands for each

layer from different files can be controlled at the slicing phase or in the machine itself.

This sequence is recorded in the model-section (metadata) file.

4.2 Actual Data

Actual Data is collected during the fabrication of the artifact. It records the

movements of the GSH. A GSH contains a set of reflective mirrors that direct the

LASER beam in the intended direction on the build plate. One of the mirrors controls

the x-axes, and another controls the y-axes, whereas the focal point of the LASER

beam provides the z-axes. These records of the GSH movements can be used to

15

Figure 5: CLI files representing different features of the Layer 30.0

simulate the position on the build plate where the LASER defuses the powder(see

Figure 1) and can be used to analyze if the LASER followed the commanded path

efficiently or was deviated. This data is stored in a Point Cloud Data(PCD) file

format. For each layer, this file records the time, GMS position, Power of the LASER,

and state of the LASER that tells whether the LASER was in ON state or OFF state,

and sensor values, if any, used in the machine.

4.3 Data Pre-processing

The raw data contains a set of files that are required to be processed, cleaned,

and converted into a format that matches the proposed ML model criterion. The

pre-processing of the files includes steps as follows:

4.3.1 Common Layer Interface

As mentioned in the previous subsection, in a CLI file, each layer is represented

as a set of vectors(see Figure 6) called HATCHES that contains N vectors, where N

represents the number of vectors in each layer. The vectors, which are stored as lines

16

Figure 6: Visualization of Layer 30.0 from the CLI File

of string in the CLI file, are converted into Comma Separated Values (CSV) Format

where a vector is represented as rows having four values as start coordinate (Xs, Y s)

and end coordinate (Xe, Y e). The vectors in each HATCH can be of two types (see

Figure 7) :

1. Single Vector

2. Polyline Vector

A single vector, as the name suggests, is an individual vector and is not directly

connected with another vector by either of its edges. The Polyline vector is a set of

consecutive vectors that are connected with each other by either one of the edges of

17

Figure 7: Visualization of a slice of one layer of the Command File (CLI) (a) Single
Vectors, (b) A Polylines

another vector. The number of vectors in a Polyline can be as few as two vectors.

The pre-processing of the CLI files generates a set of CSV files where each CSV file

corresponds to a layer of the artifact.

4.3.2 Point Cloud Data

Point Cloud Data is stored in the .pcd file format in which the top few lines

of the file include meta information about the machine and printing parameters,

which are required during the analysis of the data on application software provided

by the machine manufacturer. The metadata for the proposed purpose includes axes

offsets and scaling factors, as the values given in the PCD file are stored in a format

understandable by the manufacturer software, so the offsets and scaling factors are

used to convert these values into standard units (millimeters). The machine generates

one file for one layer of the artifact. Each PCD file records the coordinates of the

18

Figure 8: Visualization of Actual data-points of Layer 30.0 of QTA UTEP 43.1

LASER position on the build plate every 10 microseconds. The processed PCD is

saved in Comma Separated Values (CSV) format. Visualization of one layer of the

PCD File is shown in Figure 8.

4.4 Data Labeling

Proposed methods are supervised machine learning algorithms that require

a labeled data set to train the model. To label the input dataset, the commanded

dataset (CLI) is compared with the actual dataset (PCD). One vector command

19

Figure 9: A slice of Actual data points on top of Commanded vectors

((Xscli, Yscli), (Xecli, Yecli)) is created by a set of consecutive actual data points(Xi, Yi),

where i represents number of points in the set. To find the actual data points associ-

ated with one vector, an exhaustive comparison of vector coordinates with the actual

data point coordinates is performed. This comparison includes a search of the points

in the PCD file that are associated with the commanded vectors. A magnified plot of

the actual data points on top of the commanded vectors can be seen in Figure 9. The

search process starts with finding the closest points in the PCD file to the start and

end coordinates of the vector. All the actual data points between the start and end

coordinates are associated with the subjected vector. Figure 10 is a representative

example of a CLI vector ((Xscli, Yscli), (Xecli, Yecli)) overlapped on actual data points

(Xi, Yi). To identify if the CLI vector is deviated, the perpendicular distances (di)

of the actual data points are calculated. If the average of distances is greater than a

deviation threshold distance(τ), then the vector is labeled as deviated. The distances

20

Figure 10: Representation of Actual Data-points Associated with One Commanded
Vector

of the actual data points from the CLI vectors are calculated using the Cartesian

distance calculation equation, which is as follows.

di =
|(xi −Xscli)(Yecli − Yscli)− (yi − Yscli)(Xecli −Xscli)|√

(Xecli −Xscli)2 + (Yecli − Yscli)2
(6)

For experimentation of the proposed methods, deviation distance threshold τ for

the used data-set has been set to 25µ. The labeled dataset generated using the

aforementioned labeling method showed that over 30% of the points deviated from

the given commands. The description of the independent variable in the final labeled

dataset is presented in Table 2

21

Features Description
layer_height Height of the Layer in millimeter

((Xscli, Yscli), (Xecli, Yecli)) Start and End Coordinates of the vector
c_power Commanded Power for the vector
c_speed Commanded Speed for the feature of the layer
vector The set number of the vector

deviation The label associated with each vector (0 or 1)

Table 2: Description of the Data-set after the Labeling process

5 Experiments and Results

We tested the three algorithms mentioned in Section 3 on the same dataset

to determine the accuracy of each algorithm. To achieve a good trade-off between

training time and the accuracy of the final model, all the algorithms were trained

and compared on different sets of hyperparameters. The training dataset has 481,847

vectors, among which 152,565 are labeled as ’Deviated (0)’ and 329,282 are labeled

as ’Not Deviated (1)’. The size of the train, validation, and test datasets are kept

constant for all the algorithms. The train, validation, and test datasets are divided

in the ratio of 0.8, 0.1, and 0.1 respectively. The accuracy of each of the tests was

calculated using the following equation:

Accuracy(%) =
Pcorrect

Pcorrect + Pincorrect

× 100 (7)

Where Pcorrect, and Pincorrect represent correct and wrong predictions respectively.

The experiments were performed on Simple Linux Utility for Resource Management

(SLURM) provided by Ohio Super Computer (OSC)[21] on Pitzer Cluster[22].

22

Figure 11: Convergence of Loss and Accuracy in MLP neural network model with
the number of epochs

5.1 Multi-Layer Perceptron

The multi-layer perceptron model contains three hidden layers. The input layer

size is 8, while the hidden layers are 16, 32, and 16 respectively. ReLU[23] (Rectified

Linear Unit) activation function is used by the hidden layers where, as a sigmoid

function is used at the output layer of the network. The Multi-Layer Perceptron

has been tested on four training batch sizes. While loss and test accuracies did not

change significantly, the convergence of the model was slower or faster depending on

the batch size used. The learning rate was kept constant at 0.01 for all the tests, as it

was the most optimal for the model structure used. The most optimal training batch

size was 10,000. The results are shown in the figure 11. The maximum accuracy

achieved by the model was 0.756, and the recorded convergence time was 108.48 sec.

23

5.2 Adaptive Boosting for Decision Tree

The AdaBoost algorithm was trained on different sets of parameters to find

the most optimal hyperparameters. In the AdaBoost algorithm, the parameters that

can affect the model’s accuracy and training time are the learning rate and the depth

of the tree being used as a weak learner. For experimentation, the model was tested

with four learning rates: 0.1, 0.2, 0.3, and 0.4. These learning rates were tested with

nine tree depths, ranging from 2 to 10. The AdaBoost algorithm produced accuracy

similar to that of the multi-layer perceptron, with the training time of the model

slightly lower. The maximum accuracy (0.7608) generated by the model was at a

learning rate of 0.3 and a tree depth of 7. The recorded model convergence time was

174.14 seconds, higher than MLP, but AdaBoost produced slightly better accuracy.

Figure 12 shows the accuracies and time taken by each hyperparameter set.

5.3 Extreme Gradient Boost (XGBoost)

The XGBoost algorithm underwent testing across various scenarios involving

changes in the number of estimators or weak learners. The number of estimators

tested varied from 200 to 500, and each specific number of estimators was paired

with nine different tree depths ranging from 2 to 10. It’s important to note that

the learning rate was held constant throughout all tests at its default value of 1.

As depicted in Figure 13, the model’s convergence time was notably faster, achieving

similar accuracies compared to the other two previously mentioned models. The most

favorable outcome was obtained when employing 500 estimators in conjunction with

a tree depth of 4, demonstrating efficient training completed in a mere 1.65 seconds.

This configuration proved highly effective in achieving the desired result, highlighting

24

Figure 12: Accuracy and Convergence time of AdaBoost with different Learning Rates
and Tree Depths

25

Figure 13: Accuracy and Convergence time of XGBoost with different Number of
Estimators and Tree Depths

the synergy between the substantial number of estimators and the moderate depth

of the decision trees.

6 Discussion

The experiments on all three algorithms revealed that the accuracy gener-

ated from the size of the dataset we utilized is comparable. Although the accuracy

fluctuates between 0.75 and 0.77, the speed at which the model converges during the

training process varies significantly. Table 3 presents the mean absolute error (MAE),

root mean squared error (RMSE), score, and training time for each algorithm with

different sets of hyper-parameters. The optimal trade-off between training time, er-

26

Model Criterion MAE RMSE Score Time (s)

MLP

B
at

ch
S
iz

e 5000 0.2462 0.4692 0.7538 253.64

10000 0.244 0.494 0.756 108.48

15000 0.2461 0.4961 0.7539 134.02

20000 0.2459 0.496 0.754 76.45

AdaBoost

le
ar

n
in

g
ra

te 0.1 0.247 0.497 0.753 137.28

0.2 0.2436 0.4935 0.7564 158.5

0.3 0.2406 0.4905 0.7593 154.62

0.4 0.2387 0.4885 0.7613 169.49

XGBoost

E
st

im
at

or
s 200 0.2405 0.4904 0.7594 0.9272

300 0.2379 0.4878 0.762 1.05

400 0.2382 0.488 0.7617 1.42

500 0.2377 0.4875 0.7622 1.65

Table 3: Comparison of the Algorithms on Different Criterion

27

ror, and accuracy for the MLP occurs with a batch size 10,000. The best trade-off is

attained at a learning rate of 0.3 for the AdaBoost algorithm. Similarly, for XGBoost,

the optimal trade-off is achieved with 500 estimators. Among the three algorithms,

XGBoost has proven to be the most efficient for this task, delivering the highest

accuracy in the shortest training time, which is only 1.65 seconds.

Augmenting the size of the dataset may lead to enhanced accuracy and faster

convergence of the model. The three models used in this study do not account for the

relationship between a vector and its consecutive vectors, which could significantly

enhance model accuracy. These limitations can be addressed in our future work by

incorporating a graph neural network model or sequence processing model to gain a

deeper understanding of the relationships among vectors

7 Conclusion

In this study, we propose a method for conducting a comparative analysis

of 3D design models printed using LPBF with the resultant data generated during

the printing process. We demonstrate that this comparative analysis is valuable for

creating a labeled dataset, which can be employed by machine learning and artificial

neural network models to comprehend the relationships among various parameters of

the printing process. The outcomes of these methods demonstrate their accuracy in

predicting the printability of a new design or identifying commands in the design that

the machine may struggle to print. Looking ahead, we aim to leverage the findings

from this thesis to develop a method capable of analyzing the root causes of issues in

print and modifying the design to address these challenges.

28

8 References

[1] Joran W Booth, Jeffrey Alperovich, Pratik Chawla, Jiayan Ma, Tahira N Reid,

and Karthik Ramani. The design for additive manufacturing worksheet. Journal

of Mechanical Design, 139(10):100904, 2017.

[2] Iwona Jasiuk, Diab W Abueidda, Christopher Kozuch, Siyuan Pang, Frances Y

Su, and Joanna McKittrick. An overview on additive manufacturing of polymers.

Jom, 70:275–283, 2018.

[3] Y Lakhdar, C Tuck, J Binner, A Terry, and R Goodridge. Additive manufactur-

ing of advanced ceramic materials. Progress in Materials Science, 116:100736,

2021.

[4] Dirk Herzog, Vanessa Seyda, Eric Wycisk, and Claus Emmelmann. Additive

manufacturing of metals. Acta Materialia, 117:371–392, 2016.

[5] Terry T Wohlers, Tim Caffrey, et al. Wohlers report 2013: additive manufac-

turing and 3d printing state of the industry: annual worldwide progress report.

(No Title), 2013.

[6] Yuanbin Wang, Robert Blache, Pai Zheng, and Xun Xu. A knowledge man-

agement system to support design for additive manufacturing using bayesian

networks. Journal of Mechanical Design, 140(5):051701, 2018.

[7] Swee Leong Sing, CN Kuo, CT Shih, CC Ho, and Chee Kai Chua. Perspec-

tives of using machine learning in laser powder bed fusion for metal additive

manufacturing. Virtual and Physical Prototyping, 16(3):372–386, 2021.

29

[8] Mohammadhossein Amini and Shing I Chang. Mlcpm: A process monitoring

framework for 3d metal printing in industrial scale. Computers & Industrial

Engineering, 124:322–330, 2018.

[9] Zhongshu Ren, Lin Gao, Samuel J Clark, Kamel Fezzaa, Pavel Shevchenko, Ann

Choi, Wes Everhart, Anthony D Rollett, Lianyi Chen, and Tao Sun. Machine

learning–aided real-time detection of keyhole pore generation in laser powder bed

fusion. Science, 379(6627):89–94, 2023.

[10] Bodi Yuan, Gabriel M Guss, Aaron C Wilson, Stefan P Hau-Riege, Phillip J

DePond, Sara McMains, Manyalibo J Matthews, and Brian Giera. Machine-

learning-based monitoring of laser powder bed fusion. Advanced Materials Tech-

nologies, 3(12):1800136, 2018.

[11] Eckart Uhlmann, Rodrigo Pastl Pontes, Abdelhakim Laghmouchi, and André

Bergmann. Intelligent pattern recognition of a slm machine process and sensor

data. Procedia Cirp, 62:464–469, 2017.

[12] Ying Zhang, Sheng Yang, Guoying Dong, and Yaoyao Fiona Zhao. Predictive

manufacturability assessment system for laser powder bed fusion based on a

hybrid machine learning model. Additive Manufacturing, 41:101946, 2021.

[13] Ying Zhang and Yaoyao Fiona Zhao. Hybrid sparse convolutional neural net-

works for predicting manufacturability of visual defects of laser powder bed fusion

processes. Journal of Manufacturing Systems, 62:835–845, 2022.

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

30

[15] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in

neural networks. Towards Data Sci, 6(12):310–316, 2017.

[16] Leo Breiman. Classification and regression trees. Routledge, 2017.

[17] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algo-

rithm. In icml, volume 96, pages 148–156. Citeseer, 1996.

[18] Li Yang and Abdallah Shami. On hyperparameter optimization of machine learn-

ing algorithms: Theory and practice. Neurocomputing, 415:295–316, 2020.

[19] Jerome H Friedman. Stochastic gradient boosting. Computational statistics &

data analysis, 38(4):367–378, 2002.

[20] HC Taylor, EA Garibay, and RB Wicker. Toward a common laser powder bed

fusion qualification test artifact. Additive Manufacturing, 39:101803, 2021.

[21] Ohio Supercomputer Center. Ohio supercomputer center, 1987.

[22] Ohio Supercomputer Center. Pitzer supercomputer, 2018.

[23] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th international conference on

machine learning (ICML-10), pages 807–814, 2010.

31

	List of Figures
	List of Tables
	Introduction
	Laser Powder Bed Fusion

	Related Works
	Methods
	Multi-Layer Perceptron Neural Network
	Adaptive Boosted Decision Tree
	XGBoost

	Datasets
	Commanded Data
	Actual Data
	Data Pre-processing
	Common Layer Interface
	Point Cloud Data

	Data Labeling

	Experiments and Results
	Multi-Layer Perceptron
	Adaptive Boosting for Decision Tree
	Extreme Gradient Boost (XGBoost)

	Discussion
	Conclusion
	References

		2023-12-11T11:30:03-0500
	Youngstown State Univesity

