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MATRIX BAlANCING - A COMPARATIVE STUDY

Barbara A. Carothers

Abstract:

The problem of "balancing" a matrix is not new, but there have been many changes
in the methods used to find a balanced matrix. This paper will introduce several different
methods and present the various algorithms using a uniform notation. The algorithms will
be derived, detailed, and fmally applied to the same sample problem in order to compare
the results. Although the first three algorithms are undoubtedly faster, the Modified
Transportation Model offers more flexibility. It returns a fmal matrix that is often in a
more useable form, in light of the various applications.

The software package "EXCEL" by Microsoft was chosen for testing these methods
for a variety of reasons. Although code is readily available for similar algorithms in various
programming languages, the applications of matrix balancing problems are seldom taken
into consideration; these applications are in the fields of business and industry, where this
particular software is already being used and is easy to access.
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Matrix Balancing= a Comparative Study

Applications:
Applications of matrix balancing are found in various fields of study, from accounting to

sociology; the most common application is known as input-output analysis.
Input-output analysis is used in a quantitative analysis of interrelations between various

sectors of an economy, or, on a smaller scale, interrelations between industries, or within a single
industry itself. The matrix may represent all transactions that involve sales of products or
services within an economy. It is a way ofindicating simultaneously the sectors responsible for
production and the sectors receiving the goods or services. The matrix itself is used to analyze
the effects of actual or predicted changes an action may have upon the remaining sectors.

Because the entries in art input-output matrix must be found by statistical methods that
are less than precise, adjustments must necessarily be made. In other words, though one can
accurately account for totals in a given area, specifics must be estimated for practical purposes.
Thus the row and column sums are usually known, while the actual matrix entries are less
accurate. Therefore the need to balance the matrix to known row and column sums becomes an
obvious concern

A Social Accounting Matrix, or SAM, is a square matrix whose entries represent the
flow-of-funds between the national income accounts ofa country's economy at a fixed point in
time. The indices ofthe matrix represent accounts, or agents, in the economy. A cell entry (aij)
is positive ifagentj receives funds from agent i. The agents of an economy include institutions,
factors of production, households, and the rest--of-the-world (to account for transactions with the
economies ofother countries). SAMs are used as the core data base for complex economy-wide
general equilibrium models. Inconsistent data are an inherent problem when statistical methods
are used to estimate underlying economic models. Therefore, balancing the matrix becomes a
necessity.

Networks are used in urban transportation analysis to model traffic flow over physical
transportation systems involving, for example, urban highways, subways, etc. The matrix
representing the number of travelers between each pair of vertices is called the origin-destination
matrix. Matrix balancing problems arise when origin-destination matrices are estimated from
observed traffic flows on selected sets of arcs.

Applications in demography include the estimation of interregional migration flows. The
estimations are based on partial and often outdated information. Such problems arise when
figures are available for net in- and out-migration from every region and an estimate is needed of
the interregional migration patterns. In the United States, for example, flow matrices with
detailed migration characteristics become available once every ten years from the general census.
In the interim, net migration estimates for every region are available as by-products from annual
population estimates.

Contingency tables are used to classify items by several criteria, each ofwhich is
partitioned into a fmite number ofcategories. For many applications, it is important to estimate
the underlying cell probabilities. Detennining the cell probabilities directly by sampling the
population is generally not possible because such a procedure is often quite expensive. Therefore
the probabilities must be found with partial observations. This was the impetus for the first
matrix balancing algorithm, the Least Squares Algorithm, since Deming and Stephan were
working with data from the 1940 census in the United States.

What began with the data from the 1940's remained a necessity through the rest of the
twentieth century. Unless a method ofgathering data can be made perfect, it will remain
necessary to balance matrices from this data. What follows is a collection of algorithms designed
to do so.

1

Matrix Balancing= a Comparative Study

Applications:
Applications of matrix balancing are found in various fields of study, from accounting to

sociology; the most common application is known as input-output analysis.
Input-output analysis is used in a quantitative analysis of interrelations between various

sectors of an economy, or, on a smaller scale, interrelations between industries, or within a single
industry itself. The matrix may represent all transactions that involve sales of products or
services within an economy. It is a way ofindicating simultaneously the sectors responsible for
production and the sectors receiving the goods or services. The matrix itself is used to analyze
the effects of actual or predicted changes an action may have upon the remaining sectors.

Because the entries in art input-output matrix must be found by statistical methods that
are less than precise, adjustments must necessarily be made. In other words, though one can
accurately account for totals in a given area, specifics must be estimated for practical purposes.
Thus the row and column sums are usually known, while the actual matrix entries are less
accurate. Therefore the need to balance the matrix to known row and column sums becomes an
obvious concern

A Social Accounting Matrix, or SAM, is a square matrix whose entries represent the
flow-of-funds between the national income accounts ofa country's economy at a fixed point in
time. The indices ofthe matrix represent accounts, or agents, in the economy. A cell entry (aij)
is positive ifagentj receives funds from agent i. The agents of an economy include institutions,
factors of production, households, and the rest--of-the-world (to account for transactions with the
economies ofother countries). SAMs are used as the core data base for complex economy-wide
general equilibrium models. Inconsistent data are an inherent problem when statistical methods
are used to estimate underlying economic models. Therefore, balancing the matrix becomes a
necessity.

Networks are used in urban transportation analysis to model traffic flow over physical
transportation systems involving, for example, urban highways, subways, etc. The matrix
representing the number of travelers between each pair of vertices is called the origin-destination
matrix. Matrix balancing problems arise when origin-destination matrices are estimated from
observed traffic flows on selected sets of arcs.

Applications in demography include the estimation of interregional migration flows. The
estimations are based on partial and often outdated information. Such problems arise when
figures are available for net in- and out-migration from every region and an estimate is needed of
the interregional migration patterns. In the United States, for example, flow matrices with
detailed migration characteristics become available once every ten years from the general census.
In the interim, net migration estimates for every region are available as by-products from annual
population estimates.

Contingency tables are used to classify items by several criteria, each ofwhich is
partitioned into a fmite number ofcategories. For many applications, it is important to estimate
the underlying cell probabilities. Detennining the cell probabilities directly by sampling the
population is generally not possible because such a procedure is often quite expensive. Therefore
the probabilities must be found with partial observations. This was the impetus for the first
matrix balancing algorithm, the Least Squares Algorithm, since Deming and Stephan were
working with data from the 1940 census in the United States.

What began with the data from the 1940's remained a necessity through the rest of the
twentieth century. Unless a method ofgathering data can be made perfect, it will remain
necessary to balance matrices from this data. What follows is a collection of algorithms designed
to do so.

1

Matrix Balancing= a Comparative Study

Applications:
Applications of matrix balancing are found in various fields of study, from accounting to

sociology; the most common application is known as input-output analysis.
Input-output analysis is used in a quantitative analysis of interrelations between various

sectors of an economy, or, on a smaller scale, interrelations between industries, or within a single
industry itself. The matrix may represent all transactions that involve sales of products or
services within an economy. It is a way ofindicating simultaneously the sectors responsible for
production and the sectors receiving the goods or services. The matrix itself is used to analyze
the effects of actual or predicted changes an action may have upon the remaining sectors.

Because the entries in art input-output matrix must be found by statistical methods that
are less than precise, adjustments must necessarily be made. In other words, though one can
accurately account for totals in a given area, specifics must be estimated for practical purposes.
Thus the row and column sums are usually known, while the actual matrix entries are less
accurate. Therefore the need to balance the matrix to known row and column sums becomes an
obvious concern

A Social Accounting Matrix, or SAM, is a square matrix whose entries represent the
flow-of-funds between the national income accounts ofa country's economy at a fixed point in
time. The indices ofthe matrix represent accounts, or agents, in the economy. A cell entry (aij)
is positive ifagentj receives funds from agent i. The agents of an economy include institutions,
factors of production, households, and the rest--of-the-world (to account for transactions with the
economies ofother countries). SAMs are used as the core data base for complex economy-wide
general equilibrium models. Inconsistent data are an inherent problem when statistical methods
are used to estimate underlying economic models. Therefore, balancing the matrix becomes a
necessity.

Networks are used in urban transportation analysis to model traffic flow over physical
transportation systems involving, for example, urban highways, subways, etc. The matrix
representing the number of travelers between each pair of vertices is called the origin-destination
matrix. Matrix balancing problems arise when origin-destination matrices are estimated from
observed traffic flows on selected sets of arcs.

Applications in demography include the estimation of interregional migration flows. The
estimations are based on partial and often outdated information. Such problems arise when
figures are available for net in- and out-migration from every region and an estimate is needed of
the interregional migration patterns. In the United States, for example, flow matrices with
detailed migration characteristics become available once every ten years from the general census.
In the interim, net migration estimates for every region are available as by-products from annual
population estimates.

Contingency tables are used to classify items by several criteria, each ofwhich is
partitioned into a fmite number ofcategories. For many applications, it is important to estimate
the underlying cell probabilities. Detennining the cell probabilities directly by sampling the
population is generally not possible because such a procedure is often quite expensive. Therefore
the probabilities must be found with partial observations. This was the impetus for the first
matrix balancing algorithm, the Least Squares Algorithm, since Deming and Stephan were
working with data from the 1940 census in the United States.

What began with the data from the 1940's remained a necessity through the rest of the
twentieth century. Unless a method ofgathering data can be made perfect, it will remain
necessary to balance matrices from this data. What follows is a collection of algorithms designed
to do so.

1



Matrix Bahmcing - A Deanition:
Balancing a matrix, simply stated, means adjusting the individual cell entries in order to

achieve specific row and column sums. A weight matrix is included in two of the algorithms,
which allows for individual interpretation of the accuracy ofthe cell entries. Without a weight
matrix, each cell has the same level of "importance" as another; weight matrices will prevent
large changes from occurring in an entry that is considered to be accurate. When a statistically
calculated entry in a matrix is known to be precise, the weight function may enable the balancing
procedure to take this fact into consideration. An exact entry may be given a large weight, where
a less precise entry may be given a smaller weight, depending on the individual's perception of
the entry's accuracy. Once again, this is subj~tive, lending the process to deviations due to
observers' opinions.

Realistically speaking, changing entries arbitrarily will result in a total loss of the original
intent of the matrix, and therefore some sort ofoptimization algorithm is desirable. Again, there
are many methods of achieving this desired optimization, but normally it is found by minimizing
some sort of penalty function that tests the difference between the balanced matrix and the
original matrix.

The PrOblem:
Given an mxn matrix A, and desired row and column totals, u and v (given in vector

form), respectively, calculate an adjusted solution matrix that is "close to" A and has the desired
row and column sums. A weight matrix, W, may also be assigned, ifdesired. This weight matrix
represents the relative importance of each element of the original matrix.

Symbolically speaking:

L:l aij:::; Vj, for j = 1...n,

and

L~=l a jj =Uj, for i = L.m;

where
u represents the desired row sums, and
v represents the desired column sums.

Sample problem:
Let the original A matrix be represented by the following:

A=
783 7426 4709 2145
517 928 622 703
207 373 337 425

and v = {1501, 8849, 5687, 3138} u ={15028, 2844, 1303}

The problem is now to determine a matrix with the row sums equal to the u vector, and
the column sums equal to the v vector. Balancing a matrix is accomplished by minimizing a
penalty function. The penalty function must consider the difference between the original and
final matrices. A weight matrix may be assigned, ifdesired, to stress the relative accuracy ofan
individual cell entry.
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Methods ofAttaining Solutions:
The algorithms that will be introduced in this paper are presented with the proofs of

convergence to each of their minimizing functions. The Least Squares, RAS, Modified RAS
Algorithms and the Modified Transportation Model are coded in VBasic - Microsoft Excel 2000
in appendix A; data and results are included in appendix B.

Over the years, many different algorithms have been developed and proven to converge
to a satisfactory solution matrix. Among those is a method developed in the 1940's by an
economist whose more recent notable accomplishments included the introduction of TQM, or
''total quality management" to the Japanese economy. Since then, many American corporations
have chosen to introduce this concept, and though they are lagging behind the Japanese in this
respect, it should be noted that the late W. E. Deming is still much respected for his contributions
to the field of economics. His algorithm will be the first we explore and it is known as the Least
Squares Approximation.

The next type of algorithm that was introduced used diagonal matrices and was applied to
an original matrix that needed to be square. The method was published in the 1960's by A. W.
Marshall and 1. Olkein. Because of the restrictions on the original matrix, we will not explore this
method. It is known as the "DAD" algorithm, because a diagonal matrix 'D' is both pre- and
post- multiplied with the original A matrix.

Following this algorithm was a similar method that did not require a square original
matrix. The RAS is actually an old method that has been independently discovered and analyzed
by researchers working in different areas and different countries. Kruithof (1937) proposed the
algorithm, which he called the method oftwin factors, as a procedure for predicting traffic flows
between exchanges in a telephone service network. Deming and Stephan used RAS, which they
called the method ofiterative proportions, to find an approximate solution to the least-squares
problem for estimating the cell frequencies of a contingency table. Other results indicate its
development in the 1970's by 1. Grad and improvement upon later in that same decade by A.
Bachem and B. Korte. We will explore this method, as well as the proof of its convergence.
(The "improved" method is called the "MRAS", or modified RAS algorithm.)

Finally, a new algorithm will be introduced which is a modification of a standard
transportation model from linear programming. It was developed in 2000 by N. Ritchey and will
be coded and compared to the preceding methods for efficiency and accuracy. We will refer to
this method as the MTM, or modified transportation model. This model creates a change to the
original matrix in only m+n-l cells, and returns values for those cells that are integer solutions,
two important considerations. It may be more cost-effective to minimize the number of
alterations to the original matrix. One must also consider the feasibility of non-integer solutions;
it would seem as though most applications would lend themselves to whole number answers.

Section I: The Method ofLeast Sqyares
The following is the general fonn of the least squares algorithm. If a weight matrix W is

not given for the problem at hand, Deming and Stephan suggest that the matrix entries for a
weight matrix be estimated to be proportional to the reciprocal of the ~j's.

The Algorithm:
Given Amxn, wrnxn, uDlX1

, VIXIl; initialize the iterative variables as follows:
Let ~o):::=A

U(0) = u

\7(0):::= V

Yi(O} =0, i = 1...m
21(0)::; 0, j ::; L.n
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Begin by calculating it and v, the differences between desired and current row/column sums:

Fori = I tom
n

it (i) ;:: u(i) - L a (ij)
j=1

Next i

Forj;:: 1 to n
m

VCD;:: v(j) - La(ij)
;=1

Nextj

Then calculate the values for the iterative variables, y and z:

For i;:: 1 to m
n

y(i) = y(i) + it (i) / L W (iJ)
j=1

Next i

Forj =1 to n
m

z(j) ;:: z(j) + VCD / La (iJ)
;=1

Nextj

Finally, update the A matrix according to the following algorithm:

For i;:: 1 to m
For j = 1 to n

a(ij) = a(ij) + w(i,j) { y(i) + z(j) }
Nextj

Next i

When the difference of two successive iterations is within a pre-specified tolerance level, the
matrix will be considered balanced. For our purposes, we will specify that tolerance level as 0.1
It should be noted that the solution matrix does not contain integer values.

A=
Example 1: Application to the Sample Problem:

783 7426 4709 2145
517 928 622 703
207 373 337 425

with:
v;:: {1501, 8849, 5687, 3138} and u = {15028, 2844, 1303}
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After the initialization of the iterative variables, a weight matrix must be
determined. This is not considered part of the mathematical process itself, since these
weights are highly subjective. Ifa weight matrix is not given, none should be used. In
this example, the following weight matrix accompanied the original problem:

W=

Zj O,j L.nYI 0,1 L.m

75 455 358 176
52 95 56 70
19 38 31 39

_.(U) = :;::: ,.(U) = =

After one iteration, the iterative variables are:
U(1)= { -35, 74, -39}
v(1)= { -6, 122, 19, -135}
y(l) = {-.0410958904, .2074829932, .0426966292, -.4736842105}
z(1) = {-.0328947368, .2710622711, -.3070866142}

The matrix resulting from the first iteration is:

A(1):
777.4467556 7505.413709 4712.490236 2055.832842 (15051.18354)
528.9582518 973.4618001 639.5704984 688.8164642 (2830.807015)
200.3845324 369.2150624 328.8039105 394.5499378 (1292.953443)
(1506.7894) (8848.090572) (5680.864645) (3139.199244)

(The corresponding row and column totals are noted in parenthesis.)

The next several updates ofthe A matrix are:

A(2):
772.8424461 7496.227367 4709.644459 2051.266648 (15029.989092)
529.4091734 978.199697 643.0488414 691.9047298 (2842.562442)
201.1341273 372.2798914 331.6836264 397.4709939 (1302.568639)
(1503.385747) (8846.706955) (5684.376927) (3140.642372)

A(3):
771.4772586 7497.154643 4711.088194 2049.307197 (15029.02729)
528.8332758 979.0704211 643.6738196 691.6243307 (2843.201847)
200.8881877 372.55715 331.9716502 397.2418714 0302.658859)
(1501.198722) (8848.782214) (5686.733664) 0138.173399)
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A(4):
771.302763 7496.883866 4710.956812 2049.030187 (15028.17363)
528.9041499 979.3643944 643.8598841 691.77274265 (2843.900855)
200.9133635 372.6732983 332.0734746 397.3229029 (1302.983039)
(1501.120276) (8848.921559) (5686.890171) (3138.125516)

A(5):
771.2287385 7496.870315 4711.112657 2048.923955 (15028.13567)
528.8801966 979.4115687 643.913738 691.7670198 (2843.972523)
200.9002486 372.6834426 332.0961684 397.3109356 (1302.990795)
(1501.009184) (8848.965326) (5687.122563) (3138.00191)

Example 2: Sample Problem WITHOUT the Weight Matrix:

A=
783 7426 4709 2145
517 928 622 703
207 373 337 425

with:
v = {1501, 8849, 5687, 3138} and u= {15028, 2844, 1303}

A(I):

Let Wij=1 for i= l..m, j= l..n
Then y(1) ={-2, 40.667, 6.333, -45} and z(1) = {-8.75, 18.5, -9.75}

The first update of the matrix becomes balanced:

772.25 7457.92 4706.58 2091.25 (15028.5)
533.5 987.17 646.83 676.5 (2844.0)
195.25 403.92 333.58 370.25 (1303.0)
(1501.5) (8849.01) (5686.99) (3138.0)

and A(1) ~ Solution

Derivation of the Least Squares Approximation:

The least squares approximation is based on minimizing the following sum:

S =(L (Xij -ll(O)ij) 2 / 3(O)ij )

For the solution we seek those values ofxij's that minimize the sum as found in the
equation above, wherein the Xii'S are subject to the following conditions:

6
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m

L Xij =Ui
1=1

and
n

L Xij ::;: Vj,
j=1

Note that the ui's and vj's are NOT independent, because, by their very design, it is
necessary that:

Theorem 1: (Deming & Stephan, 1940)

The set of all Xij'S that minimize S =(L (Xij - a(O)ij) 2/ a(O)ij) is detennined by

L L {2(xij - aij)/aij - Ai - Jl.i } = 0,
j

Proof:

m

L
1=1

i:
j=1

Xij =Ui, and

Apply the method of LaGrange multipliers:

Minimize:
S = (xu ~ aui/au + (Xl2 - al2i/al2 + + (Xln - alni/aln +

(X21 - a2d/a21 + (xn - a22i/a22 + +(X2n - a2ni/a2n +

(Xrnl - amli/aml + (Xm2 - amzi/amz + .....+(Xmn - amni/amn
Subject to the following conditions:

Xu + Xl2 + + Xln = UI
X21 + X22 + + X2n = U2

Xrol + Xm2 + ..... + Xmn = Urn
and

Xu +x21 + +Xrnl =VI
Xl2 +X22 + + Xm2 = V2

Xln + X2n + ..... + Xmn ::;: Vn
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Applying LaGrange multipliers to the above yields:
2(xl1 - al1)1al1 = Al
2(X21 - a2I)/a21 =A2

and
2(xll - al1)/al1 = J..I.I
2(x12 - a12)1a12 =112

It should be noted that minimizing S is equivalent to minimizing Y2 S, so the application
ofLaGrange multipliers can be simplified to be the following system of equations:

(Xll - al1)/al1 = Al
(X21 - a2I)/a21 = A2

(Xml - aml)laml :::;: Am
(xu - al1)/al1 = J..I.I
(Xl2 - al2)/a12 = J..I.2

which become:

L L {2(xij - aij)/au - Ai - Ilj } =o.
j

m

L Xij = Uj, and

n

L xij =Vj.
J=I

Q.E.D.

From this equation we get a system ofm+n-l equations, which, if the last Il is allowed to
be zero, can easily be solved using any preferred method for the individual LaGrange multipliers
AND the final matrix entries. Since solving systems is much more efficient using modern
technology, it is not much more difficult to solve directly for the Xj/s than it is to solve using the
iterative method.
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Example 3: Solving the Sample Problem Directly:

The direct method applied to the example problem gives the following problem
Given:

A=
783 7426 4709 2145
517 928 622 703
207 373 337 425

with:
v ={I501, 8849, 5687, 3138} and u ={15028, 2844, 1303}

Using the direct method, we arrive at the following system of equations:
2Xll - 783"-1 - 783111 == 2(783)
2x{2 - 7426"-1 - 7426112 == 2(7426)
2x13 - 4709"-1 - 4709113 == 2(4709)
2XI4 - 2145"-1 - 2145f.14 == 2(2145)
2X21 - 51n 2 - 517111 == 2(517)
2X22 - 928"-2 - 928112 == 2(928)
2X23 - 622"-2 - 622113 == 2(622)
2X24 -703"-2 -7031l4 == 2(703)
2X31 - 20n3 - 207111 == 2(207)
2X32 - 373"-3 - 373112 = 2(373)
2X33 - 33n3- 337113 == 2(337)
2X34 - 425"-3 - 425114 == 2(425)
XII + Xl2 + XI3 + XI4 == 15028
X2l + X22 + X23 + X24 == 2844
X31 + X32 + X33 + X34 == 1303
XII + X21 + X31 == 1501
Xl2 + X22 + X32 == 8849
XI3 + X23 + X33 = 5687
XI4 + X24 + X34 = 3138;

1 .o hbut smce 1.4 "'" , t e resu tmg S' stem IS:

2 0 0 0 0 0 0 0 0 0 0 0 ~783 0 0 -783 0 0 1566
0 2 0 0 0 0 0 0 0 0 0 0 -7426 0 0 0 -7426 0 14832
0 0 2 0 0 0 0 0 0 0 0 0 ~4709 0 0 0 0 -4709 9418
0 0 0 2 0 0 0 0 0 0 0 0 -2145 0 0 0 0 0 4290
0 0 0 0 2 0 0 0 0 0 0 0 0 ~517 0 -517 0 0 1034
0 0 0 0 0 2 0 0 0 0 0 0 0 -928 0 0 -928 0 1856
0 0 0 0 0 0 2 0 0 0 0 0 0 -622 0 0 0 -622 1244
0 0 0 0 0 0 0 2 0 0 0 0 0 -703 0 0 0 0 1406
0 0 0 0 0 0 0 0 2 0 0 0 0 0 -207 -207 0 0 414
0 0 0 0 0 0 0 0 0 2 0 0 0 0 -373 0 -373 0 746
0 0 0 0 0 0 0 0 0 0 2 0 0 0 -337 0 0 -337 674
0 0 0 0 0 0 0 0 0 0 0 2 0 0 -425 0 0 0 850
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15028
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 2844
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1303
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1501
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 8849
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 5687
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with the right hand side:
rhs;c; {1566, 14832,9418,4290, 1034, 1856,1244, 1406,414, 746, 674, 850, 15028,2844,
1303, 1501, 8849, 5687}

The following solution was achieved with the use of a hand-held calculator:
A,1 == -.0946861647
A,2 == -.0196645228
A,3 = -.1248800403
f.Ll = .0651333733
fl2 = .1182500736
fl3 = .0949529034
J.4 =0
xu:;: 771.4300822
X12 :;: 7503.492793
X13 =4709.628036
X14:; 2043.449088
X21 = 528.7536979
X22 =973.7436955
X23 = 645.4146864
X24 = 696.0879202
X31 =200.81622
X32 = 371.7635112
X33 :::: 331.9572774
X34 = 398.4629914

Note that this solution is the same as that found using the iterative method earlier.

Section II: The RAS Algorithm
The RAS algorithm is a modification of a method developed by a Russian mathematician.

The RAS technique is a method of adjusting the original matrix by finding a set of multipliers rj
and Sj such that the resulting matrix satisfies the predetermined row and column sums.

This is accomplished by using an iterative technique that alternates between:
i.) adjusting each entry by multiplying by a ratio ofthe desired column

sums with the previous matrix's column sums
ii.) adjusting each entry by multiplying by a ratio of the desired row sums

with the previous matrix's row sums
The Algorithm:

Adjust by rows first:

For i == 1 to m
For j = 1 to n

n

a(iJ) "" f\(iJ) { u(i) / Ia(iJ) }
j=1

Nextj
Next i

10

with the right hand side:
rhs;c; {1566, 14832,9418,4290, 1034, 1856,1244, 1406,414, 746, 674, 850, 15028,2844,
1303, 1501, 8849, 5687}

The following solution was achieved with the use of a hand-held calculator:
A,1 == -.0946861647
A,2 == -.0196645228
A,3 = -.1248800403
f.Ll = .0651333733
fl2 = .1182500736
fl3 = .0949529034
J.4 =0
xu:;: 771.4300822
X12 :;: 7503.492793
X13 =4709.628036
X14:; 2043.449088
X21 = 528.7536979
X22 =973.7436955
X23 = 645.4146864
X24 = 696.0879202
X31 =200.81622
X32 = 371.7635112
X33 :::: 331.9572774
X34 = 398.4629914

Note that this solution is the same as that found using the iterative method earlier.

Section II: The RAS Algorithm
The RAS algorithm is a modification of a method developed by a Russian mathematician.

The RAS technique is a method of adjusting the original matrix by finding a set of multipliers rj
and Sj such that the resulting matrix satisfies the predetermined row and column sums.

This is accomplished by using an iterative technique that alternates between:
i.) adjusting each entry by multiplying by a ratio ofthe desired column

sums with the previous matrix's column sums
ii.) adjusting each entry by multiplying by a ratio of the desired row sums

with the previous matrix's row sums
The Algorithm:

Adjust by rows first:

For i == 1 to m
For j = 1 to n

n

a(iJ) "" f\(iJ) { u(i) / Ia(iJ) }
j=1

Nextj
Next i

10

with the right hand side:
rhs;c; {1566, 14832,9418,4290, 1034, 1856,1244, 1406,414, 746, 674, 850, 15028,2844,
1303, 1501, 8849, 5687}

The following solution was achieved with the use of a hand-held calculator:
A,1 == -.0946861647
A,2 == -.0196645228
A,3 = -.1248800403
f.Ll = .0651333733
fl2 = .1182500736
fl3 = .0949529034
J.4 =0
xu:;: 771.4300822
X12 :;: 7503.492793
X13 =4709.628036
X14:; 2043.449088
X21 = 528.7536979
X22 =973.7436955
X23 = 645.4146864
X24 = 696.0879202
X31 =200.81622
X32 = 371.7635112
X33 :::: 331.9572774
X34 = 398.4629914

Note that this solution is the same as that found using the iterative method earlier.

Section II: The RAS Algorithm
The RAS algorithm is a modification of a method developed by a Russian mathematician.

The RAS technique is a method of adjusting the original matrix by finding a set of multipliers rj
and Sj such that the resulting matrix satisfies the predetermined row and column sums.

This is accomplished by using an iterative technique that alternates between:
i.) adjusting each entry by multiplying by a ratio ofthe desired column

sums with the previous matrix's column sums
ii.) adjusting each entry by multiplying by a ratio of the desired row sums

with the previous matrix's row sums
The Algorithm:

Adjust by rows first:

For i == 1 to m
For j = 1 to n

n

a(iJ) "" f\(iJ) { u(i) / Ia(iJ) }
j=1

Nextj
Next i

10



Then adjust by columns:
For i == 1 to m

For j == 1 to n
m

a(iJ) = a(iJ) {vO) I :La(iJ) }
;=1

Nextj
Next i
The iterative method will be completed when both the row and column sums converge to

the desired totals.

Example 4: Application to the sample problem:

A: 783 7426 4709 2145 (15063)
517 928 622 703 (2270)
207 373 337 425 (1342)
(1507) (8727) (5668) (3273)

v = {1501, 8849, 5687, 3138} and u == {15028, 2844, 1303}

A(1):

A(2):

A(3):

1\.(4):

779.8825481 7529.812536 4724.785286 2056.526123 (15091.00649)
514.9416058 940.9730721 624.0850388 674.0036664 (2754.003383)
206.1758461 378.2143921 338.1296754 407.4702108 (1329.990124)
(1501) (8849) (5687) (3138)

776.626459 7498.374801 4705.058826 2047.939917 (15028)
531.7691096 971.7226324 644.479183 696.029075 (2844)
201.9918213 370.539107 331.2678486 399.2012234 (1303)
(1510.38739) (8840.63654) (5680.805858) (3143.170215)

771.7995547 7505.468448 4710.189049 2044.571251 (15032.0283)
528.4640476 972.641906 645.1818994 694.8841736 (2841.172027)
200.7363977 370.8896461 331.6290509 398.5445755 (1301.79967)
(1501) (8849) (5687) (3138)

771.592727 7503.457124 4708.926801 2044.023344 (15028)
528.9900566 973.6100294 645.824084 695.5758296 (2844)
200.9214876 371.2316265 331.9348309 398.9120552 (1303)
(1501.504271) (8848.29878) (5686.685716) (3138.693695)
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A(5):
771.3335923 7504.051766 4709.187048 2043.571586 (15028.14399)
528.8123985 973.6871871 645.8597765 695.4220977 (2843.78146)
200.8540094 371.2610463 331.9531758 398.8238901 (1302.888206)
(1501) (8849) (5687) (3138)

A(6):
771.3262019 7503.979867 4709.141928 2043.552006 (15028)
528.8530369 973.7620134 645.9094098 695.4755398 (2844)
200.8712436 371.2929023 331.981659 398.8581111 (1303)
(1501.050482) (8849.034783) (5687.032997) (3137.885657)

Derivation of the RAS:

Theorem 2: (Bachem & Korte, 1979)

Given the matrix A=, and the vectors UIDX1 and Vlxn, there exist vectors rIDX1 and
sIxn such that:

Proof:

L rjaijsj == Uj
}

These vectors are unique.*

and

There are m+n-l conditions (each independent) since necessarily the total sum is

L: Uj= L Vj

j }

and there are m + n elements of the two vectors, rand s, to be determined. The
conditions are one too few to determine them uniquely, but since each element of r
appears with each element ofs and never alone, the conditions determine the rand s
uniquely, except for a multiplier Arj, l/ASj. Thus in any case the conditions suffice to
determine the solution matrix uniquely.

Q.E.D.

*Actually, the vectors themselves are not unique, since there is an infinite number of
solutions. They are, however, unique in pairs, since each r has a unique corresponding s.

Theorem 3:

The following:

(Bachem & Korte, 1979)

n n

a;/k+l) =aij(k) (L Xjj / L aij(k)
}=I }=I

and
m m

aij(k+2) =aij(k+I) (L Xij / L al+I)
i=1 i=1

converge to a solution such that:

12
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A(6):
771.3262019 7503.979867 4709.141928 2043.552006 (15028)
528.8530369 973.7620134 645.9094098 695.4755398 (2844)
200.8712436 371.2929023 331.981659 398.8581111 (1303)
(1501.050482) (8849.034783) (5687.032997) (3137.885657)

Derivation of the RAS:

Theorem 2: (Bachem & Korte, 1979)

Given the matrix A=, and the vectors UIDX1 and Vlxn, there exist vectors rIDX1 and
sIxn such that:

Proof:

L rjaijsj == Uj
}

These vectors are unique.*

and

There are m+n-l conditions (each independent) since necessarily the total sum is

L: Uj= L Vj

j }

and there are m + n elements of the two vectors, rand s, to be determined. The
conditions are one too few to determine them uniquely, but since each element of r
appears with each element ofs and never alone, the conditions determine the rand s
uniquely, except for a multiplier Arj, l/ASj. Thus in any case the conditions suffice to
determine the solution matrix uniquely.

Q.E.D.

*Actually, the vectors themselves are not unique, since there is an infinite number of
solutions. They are, however, unique in pairs, since each r has a unique corresponding s.

Theorem 3:

The following:

(Bachem & Korte, 1979)

n n

a;/k+l) =aij(k) (L Xjj / L aij(k)
}=I }=I

and
m m

aij(k+2) =aij(k+I) (L Xij / L al+I)
i=1 i=1

converge to a solution such that:

12



Proof:

L Xij""Ui
j

and

L Xij =: Vj.

Consider the first full iteration:

alP) "" ~j (L Xij I L alj)
j j

:=: alj (L Xlj I L Xlj)( 1 I rl Sj )
j j

where S'i:=: L Xlj ( 1 / Sj ) / L xij
j j

and

where S"j == L Xij ( 1 Is' i ) I L Xij.
i

It is easily found that in general

for k:=: 1,2, .

The expression in parenthesis is a weighted mean multiplied by the
weighted mean of the reciprocal set of such means, the weights being elements of
the columns of the final matrix. If the elements of that matrix are strictly
positive, each operation of taking weighted means will strictly reduce the range
of the sets, with the result that the expression in parenthesis approaches one, and
hence: '

ask ~ 00.

It is however, possible, if some Xij < 0, for the sequence to be divergent.
In the version above, the calculation begins by adjusting rows. If the calculation
begins by adjusting columns, the expressions are the same, with ri's and sj's
being reversed. The sequence may converge much more quickly one way than
the other, and it is possible for the process to converge one way, and not the
other. If both processes are convergent, then they will converge to the same
solution matrix.

Q.E.D.
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Example 5: Comparing Column-First and Row-First Adjustments:

A:

v: {40,50}

Adjusting by columns first:

A(I): 12.85714286
17.14285714

A(2):

A(3):

A(4):

A(5):

A(6):

A(7):

A(1):

13.19285387 13.33944114 13.46770499
16.79341835 16.6534732 16.53102119

13.19889359 13.34259251 13.46827686
16.80110641 16.65740749 16.53172314

13.19567287 13.33933672 13.46499041
16.80438762 16.66066064 16.53495174

13.19564626 13.33933789 13.46501638
16.80435374 16.66066211 16.53498362

13.19564609 13.33933771 13.4650162
16.80435392 16.66066229 16.5349838

13.19564608 13.33933772 13.4650162
16.80435392 16.66066228 16.5349838

Adjusting by rows first:

12.30769231 13.33333333 14.35897436
15.68627451 16.66666667 17.64705882
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A(2): 13.18965517 13.33333333 13.45900094
16.81034483 16.66666667 16.54099906

A(3): 13.19559667 13.33933955 13.46506377
16.80429174 16.66066531 16.53504295

A(4): 13.19564575 13.33933739 13.46501587
16.80435425 16.66066261 16.53498413

A(5): 13.19564608 13.33933772 13.4650162
16.80435392 16.66066228 16.5349838

In the case where rows/columns are already "close" to balanced, the choice of
which adjustment should be made first is obvious. Most other times, however, it makes
little difference. This is especially true when the adjustments are being done by
computer.

Section III: The Modified RAS (MRAS)
The modified RAS algorithm is an improvement over the original RAS algorithm. It

overcomes the main disadvantage of the RAS algorithm by reducing the number of algebraic
operations performed per iteration. It also returns the multipliers without extra computational
cost. Computational results have shown that the above improvements reduce the number of
iterations to reach a given precision and reduce considerably the overall time for solving a sample
problem.

The Algorithm:

Initialize: ~o)=A, k=O
r(l) =1

Calculate the remainder of the diagonal elements of the "R" matrix:
For i = 2 to m

n

r(i) = u(i) / La (iJ)
)=1

Next i

Calculate the diagonal elements of the "s" matrix:
For j = I to n

m

s(i) = v(i) / I a (iJ)
;=1

Nextj
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Finally alternate between adjusting the matrix using the "R" and "S" matrices:
For i;::;: 1 to m

For j == 1 to n
a(ij) =rei) {a(ij) }

Nextj
Nexti

For i = 1 to m
For j ;::;: 1 to n

a(ij) = {a(ij) } sO)
Nextj

Nexti

Example 6: Application to the Sample Problem:

A:

u . {15028, 2844, 1303}

783 7426 4709 2145
517 928 622 703
207 373 337 425

,'I'.v: {1501, 8849, 5687, 3138}

r 1):
1 0 0
0 2844/2770 0
0 0 1303/1342

A(l):
783 7426 4709 2145
530.8115523 952.7913357 638.6166065 721.7805054
200.9843517 362.1602086 327.2064083 412.6490313

s(2):
150111514.795904 0 0 0
0 8849/8740.951544 0 0
0 0 5687/5674.823015 0
0 0 0 3138/3279.429537

A(2):
775.868879 7517.794106 4719.104531 2052.494168
525.9772211 964.5689588 639.9869444 690.6528103
199.1539 366.6369354 327.908525 394.8530211

r 3):
1 0 0
0 2844/2821.185935 0
0 0 1303/1288.552382
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A(3):

775.868879 7517.794106 4719.104531 2052.494168
530.2306375 972.369132 645.1623224 696.2379077
201.3 868705 370.7477736 331.5851292 399.2802262

s(4):
150111507.486387 0 0 0
0 8849/8860.911012 0 0
0 0 5687/5695.851983 0
0 0 0 3138/3148.012302

A(4):
772.5304835 7507.688539 4711.770521 2045.966179
527.94917 971.0620542 644.1596689 694.0235122
200.5203464 370.2494071 331.0698093 398.0103092

r 5):
1 0 0
0 2844/2837.194405 0
0 0 1303/1299.849872

A(5):
772.5304835 7507.688539 4711.770521 2045.966179
529.2155648 973.3913465 645.7048185 695.6882705
201.0062985 371.14669 331.8721421 398.9748694

s(6):
1504/1502.752347 0 0 0
0 8849/8852.226576 0 0
0 0 5687/5689.347482 0
0 0 0 3138/3140.629319

A(6):
771.6296421 7504.952037 4709.826397 2044.253306
528.598451 973.036552 645.4383942 695.1058438
200.7719068 371.0114095 331.7352083 398.6408496

r 7):
1 0 0
0 2844/2842.179241 0
0 0 1303/1302.159374

A(7):
771.6296421 7504.952037 4709.826397 2044.253306
528.9370821 973.6598994 645.8518754 695.551143
200.9015177 371.2509208 331.9493643 398.8981974
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s(8):
150111501.468242 0 0 0
0 8849/8849.862857 0 0
0 0 5687/5687.627637 0
0 0 0 3138/3138.702646

A(8):
771.3890047 7504.220309 4709.306662 2043.795669
528.7721298 973.5649681 645.7806049 695.3954334
200.8388653 371.214724 331.9127333 398.8088981

119):
1 0 0
0 2844/2843.513136 0
0 0 1303/1302.775221

A(9):
771.3890047 7504.220309 4709.306662 2043.795669
528.8626658 973.7316611 645.8911749 695.5144984
200.8735178 371.2787729 331.9700011 398.877708

8(0):
150111501.125188 0 0 0
0 8849/8849.230743 0 0
0 0 5687/5687.167838 0
0 0 0 3138/3138.187875

AOO):
771.3246739 7504.024637 4709.167682 2043.673313
528.8185607 973.7062711 645.8721135 695.4728598
200.8567657 371.2690918 331.9602041 398.8538282

r(11):
1 0 0
0 2844/2843.869805 0
0 0 1303/1302.93989

A(1l):
771.3246739 7504.024637 4709.167682 2043.673313
528.8427705 973.7508483 645.9016822 695.5046992
200.8660321 371.28622 331.9755188 398.872229

8(12):
150111501.033477 0 0 0
0 8849/8849.061705 0 0
0 0 5687/5687.044883 0
0 0 0 3138/3138.050241

18
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200.8388653 371.214724 331.9127333 398.8088981

119):
1 0 0
0 2844/2843.513136 0
0 0 1303/1302.775221

A(9):
771.3890047 7504.220309 4709.306662 2043.795669
528.8626658 973.7316611 645.8911749 695.5144984
200.8735178 371.2787729 331.9700011 398.877708

8(0):
150111501.125188 0 0 0
0 8849/8849.230743 0 0
0 0 5687/5687.167838 0
0 0 0 3138/3138.187875

AOO):
771.3246739 7504.024637 4709.167682 2043.673313
528.8185607 973.7062711 645.8721135 695.4728598
200.8567657 371.2690918 331.9602041 398.8538282

r(11):
1 0 0
0 2844/2843.869805 0
0 0 1303/1302.93989

A(1l):
771.3246739 7504.024637 4709.167682 2043.673313
528.8427705 973.7508483 645.9016822 695.5046992
200.8660321 371.28622 331.9755188 398.872229

8(12):
150111501.033477 0 0 0
0 8849/8849.061705 0 0
0 0 5687/5687.044883 0
0 0 0 3138/3138.050241

18



A(12):
771.3074713 7503.972311 4709.130517 2043.640593
528.8309759 973.7440583 645.8965846 695.493564
200.8615522 371.283631 331.9728988 398.865843

1113\:
1 0 0
0 2844/2843.965183 0
0 0 1303/1302.983925

(13):
771.3074713 7503.972311 4709.130517 2043.640593
528.8374501 973.7559792 645.9044919 695.5020785
200.8640303 371.2882116 331.9769943 398.8707638

A

and A(13) ~ Solution.

Sectipn W: The Modified Transportation Model:

The problem, as applied in this more recent model, is to minimize a penalty function
resulting from a weighted absolute value. This new algorithm is similar to the algorithm that
solves instances of the transportation model. The transportation model solves the following linear
program:

m n

minz= L L CijXij

i=1 j=1

subject to the following constraints:
c··>O1J_

and
xij ~ o.

where Cij represents the cost. The transportation model itself is a linear program that can be
solved using the simplex method. The transportation model is used because it is significantly
faster than the simplex method.

We will use a similar method by making some adjustments, both to the matrix balancing
problem and the transportation model. We begin by adjusting the original A matrix to become a
Ifi.atrix representing the difference between the given matrix (the aij's) and the solution matrix (the
x'J's):

The adjustment to the transportation model becomes an obvious necessity, since the
original transportation model required all non-negative values. We will denote the entries for the
y-matrix in the following manner:

Ify is positive: y/
and

ify is negative: yij-
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We then will adjust the weight matrix, which represents the cost in the transportation
model, in a similar manner. The positive weight will be used when the y-entry is positive, and
the negative weight when the y-entry is negative.

Ifw is positive: w/
and

ifw is negative: Wij-

This presents an opportunity unique to this method of matrix balancing: the ability to
assign different positive and negative weights. Ifwe allow dij to represent the difference between
the original and the final matrix entries, our Modified Transportation Model becomes the
following:

m n

min L L Wij Idij I
i=1 }=I

subject to:
m n

L dij = L (ljj ~ Vj
;=1 i=1

n 11/

L dij L (ljj - Ui
}=I }=I

or, using the notation for possible variations in positive and negative weights:

m n

minL L [w/ Y/ - Wij-YiJ
;=1 }=1

s.t.:
n

L [Yi/ -Yin = 'OJ
}=ol

m

L [y/ -Yin = Ui
;=1

Y·+>O1J -

Yij-<O

Conditions of the Modified Transportation Model:

The dual to the above is:
m n

max{L aiVi+ L bjUj}
;=1 }=1

s.t.:
W ·'- < a· + b· < w·+1J-1 J- 1J
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With the following complementary slackness conditions:
(yi/)( 81 + bj - w/) =0
(Yij-)( -81 - bj + wij-) = 0

n

(aj)[ L (Yi/ - yij-) -it i] = 0
}=1

m

(bj)[ L (Yij+ - Yij-) - vj] =0
;",1

The complimentary slackness conditions ensure that if a feasible solution and the primal
dual variable solutions satisfy these conditions, then the solution is optimal.

The Algorithm:

i.) Find the row and column constraints:

For i = I to m
n

U(i) = u(i) - L a(iJ)
}=1

Next i

For j = I to n
m

VG) =v(j) - L a(iJ)
;=1

Nextj

ii.) Determine the initial tableau in the following format:
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A=

W=

We will use, for simplicity, a rule called the ''Northwest Comer Rule".
The largest possible absolute value is allocated to the Yij entry in row I, column
1. That means either it or v, will become the entry in the first cell.

The satisfied row (or column) is then "crossed out," or eliminated from
the remainder of the procedure. The remaining column (or row) is then satisfied,
followed by a row (or column,) and so on. The procedure continues until there
are m+n~1 "basic variables" and all row and column totals are satisfied.

iii.) Find the values for the dual variables (ai's and bi's).
a.) a, =0
b.) Rj + bj =wij ±;

iv.) Check the tableau for optimality. The tableau is consider optimal when:
w·-<a-+b· <w+1J - 1 J - 1J

v.) Ifthe tableau is not optimal, find a variable to enter the basis. For
simplicity, we will choose the first encountered that does not meet the
criteria for iv.). Determine whether the entering variable violates the
criteria by being too large (bring in a positive value) or too small (bring
in a negative value.) This is crucial to the solution.

vi.) Construct a loop, consisting of horizontal and vertical arcs, containing
only basic variables AND the entering variable. This loop is unique, and
direction is immaterial.

vii.) If the entering variable is to be positive, determine the largest possible
positive value that can be successively added to and subtracted from the
elements of the loop without changing the sign of an individual entry. If
negative, determine the smallest possible negative value. The entry with
this value becomes the leaving variable.

viii.) Update the loop by adding/subtracting the appropriate value. This
becomes the new tableau.

ix.) Repeat the process until the tableau is optimal.

Example 7: Application to the Sample Problem:

783 7426 4709 2145
517 928 622 703
207 373 337 425

With the weight matrix:

75 455 358 176
52 95 56 70
19 38 31 39
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1

2

3

15028-15063

2844-2770

1303-1342

31 32 33 34
1501-1507 8849-8727 5687-5668 3138-3273

Which represents the following transportation model (with the weight matrix entries as
Wij'S, Wij+ for the associated positive cost/weight and Wij- for the associated negative
cost/weight):

min:

s.t.:
Yll +Y12 +Y13 +Y14 =-35

Y21 +Yn + Y23 +Y24 =74
Y31 + Y32 +Y33 +Y44 =-39

Yll +Y21 +Y31 =-6
Y12 +Yn + Y32 = 122

Y13 +Y23 +Y33 = 19
Y14 +Y24 +Y44 =-39

It should be noted that the value used for Wij is dependent on the sign of the entry
for Yij. This is the modification to the general transportation model. Because of the
possibility of negative costs, we also need to restrict the possible values ofwij's to the
following:

This not only simplifies the selection of cost/weight values, but also guarantees
convexity.

The first step in solving the transportation model is to determine a starting basic
feasible solution. We will apply the procedure called the "northwest-comer rule" for this
purpose. It starts by allocating the maximum amount allowable by the row and column
sums to the variable Yll (the one in the northwest comer of the tableau. The satisfied
column (row) is then "crossed" out, indicating that the remaining variables in the column
(row) are non-basic, and therefore not involved in the solution. If a column and a row are
satisfied simultaneously, only one (either one) may be "crossed" out.
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1

2

3

-35

74

-39

It should be noted that the resultant optimal tableau will represent the difference
between the original matrix and the final matrix; i.e.,

ajj + Yij =solution matrix entries

Hereafter, all non-basic variables will not be noted in the sample tableaux, but
rather the entries shall be left blank. It can be assumed that blank entries represent
zeroes.

The marginal values aj and bj , which represent the values for the dual variables,
are then calculated in the following manner:

a2 = 127

-35

74

-39

Next, the tableau is checked for optimality. The tableau represents an optimal
solution when, for each non-basic variable (represented by blank entries in the tableau)
the sum of the corresponding a's and b's is within the interval ofthe costs/weights.
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It is sometimes recommended that the "best" choice for an entering variable
needs to be determined by anyone ofa number ofmethods, but most are highly
subjective. For our purposes, the new entering variable will be the first encountered
when working left to right, top to bottom:

if ai + bj > w/ ,then Yij > 0
if ai + bj < wij- ,then Yij < 0

The leaving variable is found using a network of horizontal and/verticallines,
creating a loop with either a basic variable or the entering variable at the corner points:
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To determine the leaving variable, the entering variable must be made as large in
absolute value as possible, without causing any basic variable to change in sign. In our
example, Y23 must be positive, so its new value is 19. This leaves Y33 with a value of
zero, thus making it the leaving variable. The value 45 could not be used, since it would
cause a sign change in the entry for row 3, column 3. The new tableau is:

a2 = 127

-35

74

-39

Since all sums ofa/s and bj's fall between the costs/weights, this tableau
represents an optimal solution. Therefore, the final solution matrix is represented by:

783 + -35 7426 + 0 4709 +0 2145 + 0
517 + 29 928 + 26 622 + 19 703 +0
207+0 373 + 96 337 + 0 425 + -95

748 7426 4709 2145
546 954 641 703
207 469 337 290

or, finally'

which gives desrred row and colUIl1Il sums.

Example 8: Sample Problem WITHOUT the Weight Matrix:
A=

783 7426 4709 2145
517 928 622 703
207 373 337 425

with:
v= {1501, 8849, 5687, 3138} and u = {15028, 2844, 1303}

become the following tableau:
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zero, thus making it the leaving variable. The value 45 could not be used, since it would
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15028-15063

2844-2770

1303~1342

Which represents the following transportation model:

mm:

s.t.:

Yll + Y12 + Y13 + Y14

Yll
Y12

Y13
Y14

Y21 + Y22 + Y23 + Y24
Y31 + Y32 + Y33

+ Y21 + Y31
+Y22 +Y32

+ Y23 + Y33
+Y24

= ~35

=74
+Y44=-39

=-6
= 122
== 19

+Y44 =-39

The first step again is to determine a starting basic feasible solution. We will
apply the "northwest-corner rule" again:
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The marginal values ai and bj are then calculated in the following manner:

./ al == 0

./ a· + b· ::;:: 1±.
I J '

o it should also be noted that since there is no cost
involved, the cost/weight value ofpositive one will
be used for Yi/S with positive entries, while negative
one will be used for negative entries.

-35

74

-39

Next, check the tableau for optimality. Recall that the tableau represents an
optimal solution when, for each non-basic variable (represented by the blank entries in
the tableau) the sum of the corresponding a's and b's is within the interval of the
costs/weights. The first non-basic variable encountered that does not meet this
requirement will then become the entering variable.

-35

74

-39

This tableau does not represent an optimal solution, so another must be formed.
The leaving variable is found using a network ofhorizontal and/verticallines, creating a
loop with either a basic variable or the entering variable at the comer points:
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To determine the leaving variable, the entering variable must be made as large in
absolute value as possible. In our example, Yt4 must be negative, so its new value is -35.
This leaves Yll with a value ofzero, thus making it the leaving variable. The new tableau
is:

at == 0
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a3 = 0 1

-1'50+-1)~1
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Since all sums ofaj's and b/s fall between the costs/weights, this tableau
represents an optimal solution. Therefore, the solution matrix is represented by:
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or, [mally:

783 7426 4709 2110
511 1008 622 703
207 415 356 325

which gives desired row and column sums.

Example 9: Sample Problem with Varying Weights

One ofthe main advantages of using the modified transportation model is the
ability to assign different values to the positive and negative costs/weights. This is not
true with the preceding algorithms. We will solve the sample problem, applying various
changes in costs/weights:

A== 783 7426 4709 2145
517 928 622 703
207 373 337 425

with:
v== {1501, 8849, 5687, 3138}

W=

and u ::;; {15028, 2844, 1303}

-lor 75 -455 or 1 -lor 358 -176 or 1
-52 or 1 -lor 95 -56 or 1 -lor 70
-lor 19 ~38 or 1 -lor 31 -39 or 1

Solution:

2

3
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Since all sums ofaj's and b/s fall between the costs/weights, this tableau
represents an optimal solution. Therefore, the final solution matrix is represented by:

783 + -157 7426 + 122 4709 +0 2145 + 0
517+190 928+0 622 + 19 703 + -135
207 + -39 373 + 0 337 + 0 425 +0

or, finally:

626 7548 4709 2145
707 928 641 568
168 373 337 425

which gives desired row and column sums.

A Note About EXCEL Software:
Microsoft's EXCEL software was chosen for testing these methods for a variety of

reasons. Although code is readily available for similar algorithms in various programming
languages, the applications ofmatrix balancing problems are seldom taken into consideration.
Most applications are in business and industry, fields where this particular software is already
being used and is easy to access. The algorithms can be run on any computer with simple
business/pc software.

The use ofVisualBasic as a programming language for writing macros in EXCEL made
the testing of the algorithms a relatively simple procedure. The code in Appendix A is taken
directly from each of the macros written for EXCEL; the only changes that might be made are to
the actual worksheets and cells that are used for input/output of the matrices. Appendix B
includes the actual result matrices from the worksheets in EXCEL.

Observations:
In order to determine the accuracy and/or efficiency of any of these algorithms, they need

to be tested on matrices with various weights and ofvarious sizes. Appendix A includes the code
for each algorithm, written as a macro in EXCEL software. Appendix B includes the results from
the various test matrices. Some obvious differences exist between these algorithms.
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First, the initial three algorithms were developed when speed and efficiency ofcomputing
systems was a viable consideration in the use of any algorithm. The Least Squares Algorithm
was developed during a period when the drudgery ofcalculations needed mostly to be done by
hand. The RAS and Modified RAS Algorithms were later developments, but speed (and
accuracy) of computers was still an issue. All three original algorithms minimize the same basic
penalty function, which mayor may not be worth considering. Also, each of these algorithms not
only returns similar results, but also triggers a change in each variable of the original matrix. The
solutions are almost always decimal solutions, another factor to be considered in terms of
practicality.

The final method, the Modified Transportation Model, minimizes a completely different
penalty function. It creates a change to the original matrix in only m+n-l cells, and returns values
for those cells that are integer solutions, two important considerations. It may be more cost­
effective to minimize the number of alterations to the original matrix. One must also consider the
feasibility of non-integer solutions.

Most applications lend themselves to whole number answers. In each of the examples of
the applications ofmatrix balancing, it appears that the majority of the time, integer solutions
should be returned. Since the original matrix entries themselves were integers, it would make
sense that integer solutions would be desired. For this reason; the Modified Transportation
Model, although not always the fastest, will give the best solution.

Dual variables can have significant economic interpretations. What appears to be a
minimal change/cost to a mathematician can have an extreme impact on the financial operations
of a large business or industry.

In addition to returning integer solutions, it should be noted that a minimum number of
cells are altered from their original matrix values. In the case of the SAM, many original entries
changing can produce a larger overall disruption to the original intent ofthe matrix.

The final advantage that the MTM has over the other algorithms is its ability to
differentiate between positive and negative costs/weights. This is an important observation. In
reality, a positive change and a negative change are rarely considered ofequal importance.
Situations generally do not uniformly consider an "overage" to be of the same cost as a
"shortage."

The tests that were run on the algorithms showed very little difference between the results
of the first three algorithms; data has shown that anyone is as effective as another. The MTM
algorithm returned results quite different frDm the others. With the ready availability of efficient
computer software, the choice is no longer determined by speed, but by usability of results.
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SubLSAO
'LSAMacro
t The Least Squares Algorithm for balancing a matrix
, Macro recorded 6/28/2000 by Barbara Carothers
, Maximum matrix size - 200x200
, Keyboard Shortcut: Ctrl+l

Dim m As Integer, n As Integer, i As Integer, j As Integer, k As Integer
Dim a(O To 200,0 To 200) As Variant, result(O To 200, 0 To 200) As Variant
Dim W(O To 200, 0 To 200) As Variant
Dim WRowsum(O To 200) As Variant, WColsum(O To 200) As Variant
Dim u(O To 200) As Variant, v(O To 200) As Variant
Dim y(O To 200) As Variant, z(O To 200) As Variant
Dim test As Variant
Dim udiff(O To 200) As Variant, vdiff(O To 200) As Variant
Dim rowsum(O To 200) As Variant, colsum(O To 200) As Variant

m = Worksheets(l).Cells(ll, 3)
n =Worksheets(l).Cells(l2, 3)

'input number of rows'
'input number of columns'

test = 1
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result(i,j) = Worksheets(1).Cells(lS + i, 2 +j) 'initialize result matrix to "A" matrix'
W(i,j) = Worksheets(l).Cells(39 + i, 2 +j) 'input weight matrix'
Nextj
Nexti
Fori = 1 To m
u(i) = Worksheets(l).Cells(lS + i, 1) 'input desired row sums'
y(i) = 0 'initialize iterative y-variable'
WRowsum(i) = 0 'initialize weight row-sum variable'
Nexti
Forj" 1 To n
vG) = Worksheets(l).Cells(l4, 2 +j) 'input desired column sums'
z(i) = 0 'initialize iterative z-variable'
WColsumG) = 0 'initialize weight column-sum variable'
Nextj

Fori = 1 To m
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WRowsum(i) = WRowsum(i) + W(i,j) 'calculate weight matrix row sum'
Nextj

Nexti
Forj = 1 To n
Fori= 1 Tom
WColsumG) = WColsumG) + W(i, j) 'calculate weight matrix column sum'
Nexti

Nextj
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SubLSAO
'LSAMacro
t The Least Squares Algorithm for balancing a matrix
, Macro recorded 6/28/2000 by Barbara Carothers
, Maximum matrix size - 200x200
, Keyboard Shortcut: Ctrl+l
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'begin iterative loop'
For k '" 1 To 100
test = 1
For i = 1 Tom
rowsum(i) = 0 'initialize variable for summing rows'

Nexti
Forj= 1Ton
colsumy) = 0 'initialize variable for summing columns'
Nextj
For i = 1 To m
Forj= 1 Ton
rowsum(i) = rowsum(i) + result(i, j) 'calculate current row sum'
Nextj

Nexti
Fod = 1 To n
Fori = 1 To m
colsumy) = colsumG) + result(i,j) 'calculate current column sum'
Nexti

Nextj
Fori'" 1 Tom
udiff(i) = u(i) - rowsum(i) 'calculate the difference between desired and actual row sums'
Nexti
Forj= 1 Ton
vdiffy) = vy) - colsumG) 'calculate the difference between desired and actual column sums'
Nextj
Fori = 1 To m
y(i) = y(i) + (udiff(i) / WRowsum(i» 'calculate the value for the iterative y-variable'
Nexti
Forj= 1 Ton
zG) = zy) + (vdiffy) I WColsumy» 'calcualte the value for the iterative z-variable'
Nextj

For i= 1 To m
Forj= 1Ton
result(i, j) = a(i, j) + W(i, j) * (y(i) + zG» 'update the A matrix'
Nextj
Nexti
For i = 1 To m
test = test + udiff(i)
Nexti
For j = 1 To n
test = test + vdiffy)
Nextj
test,., test - 1
Nextk
Fori= 1 Tom
Forj'" 1 Ton
Worksheets(l).Cells(63 + i, 2 + j) = result(i,j) 'write results to worksheet'
Nextj

Nexti
End Sub
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SubRASO
,The RAS algorithm for balancing a matrix
'RAS Macro
, Maximum matrix size - 200 x 200
, Macro recorded 6/28/2000 by Barbara Carothers
, Keyboard Shortcut: Ctrl+r
Dim m As Integer, n As Integer, i As Integer, j As Integer, k As Integer
Dim a(O To 200, 0 To 200) As Variant, result(O To 200, 0 To 200) As Variant
Dim u(O To 200) As Variant, v(O To 200) As Variant
Dim rowsum(O To 200) As Variant, colsum(O To 200) As Variant

m = Worksheets(l).CelIs(ll, 3) 'input the number of rows'
n =Worksheets(I).CelIs(12, 3) 'input the number of columns'

Fori = 1 To m
Forj = 1 To n
a(i,j) = Worksheets(1).Cells(15 + i, 2 +j) 'input the original "N matrix'
result(i,j) = Worksheets(I).CelIs(l5 + i, 2 +j) 'initialize the result matrix to A'
Nextj
Nexti

For i = 1 To m
rowsum(i) = 0 'initialize the variable for summing rows'
u(i) = Worksheets(l).Cells(l5 + i, 1) 'input the desired row sums

Nexti

For j = 1 To n
colsumG) = 0 'initialize the variable for summing columns'
vG) = Worksheets(l).Cells(l4, 2 +j) 'input the desired column sums'
Nextj

For k = 1 To 100
For i = 1 Tom
rowsum(i) = 0

Nexti
For j = 1 To n
colsumG) == 0
Nextj

Fori= 1 Tom
Forj= 1 Ton
rowsum(i) = rowsum(i) + result(i,j) 'calculate current row sums'
Nextj
Nexti
Forj = 1 To n
Fori = 1 Tom
colsumG) = colsumG) + result(i,j) 'calculate current column sums'
Nexti

Nextj
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SubRASO
,The RAS algorithm for balancing a matrix
'RAS Macro
, Maximum matrix size - 200 x 200
, Macro recorded 6/28/2000 by Barbara Carothers
, Keyboard Shortcut: Ctrl+r
Dim m As Integer, n As Integer, i As Integer, j As Integer, k As Integer
Dim a(O To 200, 0 To 200) As Variant, result(O To 200, 0 To 200) As Variant
Dim u(O To 200) As Variant, v(O To 200) As Variant
Dim rowsum(O To 200) As Variant, colsum(O To 200) As Variant

m = Worksheets(l).CelIs(ll, 3) 'input the number of rows'
n =Worksheets(I).CelIs(12, 3) 'input the number of columns'

Fori = 1 To m
Forj = 1 To n
a(i,j) = Worksheets(1).Cells(15 + i, 2 +j) 'input the original "N matrix'
result(i,j) = Worksheets(I).CelIs(l5 + i, 2 +j) 'initialize the result matrix to A'
Nextj
Nexti

For i = 1 To m
rowsum(i) = 0 'initialize the variable for summing rows'
u(i) = Worksheets(l).Cells(l5 + i, 1) 'input the desired row sums

Nexti

For j = 1 To n
colsumG) = 0 'initialize the variable for summing columns'
vG) = Worksheets(l).Cells(l4, 2 +j) 'input the desired column sums'
Nextj

For k = 1 To 100
For i = 1 Tom
rowsum(i) = 0

Nexti
For j = 1 To n
colsumG) == 0
Nextj

Fori= 1 Tom
Forj= 1 Ton
rowsum(i) = rowsum(i) + result(i,j) 'calculate current row sums'
Nextj
Nexti
Forj = 1 To n
Fori = 1 Tom
colsumG) = colsumG) + result(i,j) 'calculate current column sums'
Nexti

Nextj
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SubRASO
,The RAS algorithm for balancing a matrix
'RAS Macro
, Maximum matrix size - 200 x 200
, Macro recorded 6/28/2000 by Barbara Carothers
, Keyboard Shortcut: Ctrl+r
Dim m As Integer, n As Integer, i As Integer, j As Integer, k As Integer
Dim a(O To 200, 0 To 200) As Variant, result(O To 200, 0 To 200) As Variant
Dim u(O To 200) As Variant, v(O To 200) As Variant
Dim rowsum(O To 200) As Variant, colsum(O To 200) As Variant

m = Worksheets(l).CelIs(ll, 3) 'input the number of rows'
n =Worksheets(I).CelIs(12, 3) 'input the number of columns'

Fori = 1 To m
Forj = 1 To n
a(i,j) = Worksheets(1).Cells(15 + i, 2 +j) 'input the original "N matrix'
result(i,j) = Worksheets(I).CelIs(l5 + i, 2 +j) 'initialize the result matrix to A'
Nextj
Nexti

For i = 1 To m
rowsum(i) = 0 'initialize the variable for summing rows'
u(i) = Worksheets(l).Cells(l5 + i, 1) 'input the desired row sums

Nexti

For j = 1 To n
colsumG) = 0 'initialize the variable for summing columns'
vG) = Worksheets(l).Cells(l4, 2 +j) 'input the desired column sums'
Nextj

For k = 1 To 100
For i = 1 Tom
rowsum(i) = 0

Nexti
For j = 1 To n
colsumG) == 0
Nextj

Fori= 1 Tom
Forj= 1 Ton
rowsum(i) = rowsum(i) + result(i,j) 'calculate current row sums'
Nextj
Nexti
Forj = 1 To n
Fori = 1 Tom
colsumG) = colsumG) + result(i,j) 'calculate current column sums'
Nexti

Nextj
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Fori = 1 To m
Forj= 1 Ton
result(i,j) = result(i,j) * (u(i) / rowsum(i)) 'aqjust by rows'
Nextj

Nexti

Fori= 1Tom
rowsum(i) = 0
Nexti
Forj = 1 To n
colsumG) = 0
Nextj

Fori = 1 Tom
Forj = 1 To n
rowsum(i) = rowsum(i) + result(i, j)
Nextj

Nexti
Forj = 1 Ton
Fori= 1 Tom
colsumG) = colsumG) + result(i, j)
Nexti

Nextj

Forj = 1 To n
Fori= 1 Tom
result(i, j) = result(i, j) * (vG) / colsumG)) 'adjust by columns'
Nexti

Nextj
Nextk
Fori= 1 Tom
For j = 1 To n
Worksheets(l).Cells(87 + i, 2 + j) = result(i,j) 'write fmal result to worksheet'
Nextj
Nexti

End Sub
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Sub MRASO
, The Modified RAS algorithm for balancing a matrix
'MRAS Macro
'Macro recorded 6/29/2000 by Barbara Carothers
, Maximum matrix size - 200 x 200

Dim m As Integer, n As Integer, i As Integer, j As Integer, k As Integer
Dim a(O To 200, 0 To 200) As Variant, result(O To 200, 0 To 200) As Variant
Dim u(O To 200) As Variant, v(O To 200) As Variant
Dim r(O To 200) As Variant, s(O To 200) As Variant
Dim rowsum(O To 200) As Variant, colsum(O To 200) As Variant

m = Worksheets(l).Cells(ll, 3)
n = Worksheets(l).Cells(l2, 3)

Fori = 1 To m
Forj = 1 To n
a(i,j) = Worksheets(l).Cells(l5 + i, 2 + j)
result(i, j) = Worksheets(l).Cells(l5 + i, 2 + j)
Nextj
Nexti

Fori = 1To m
u(i) = Worksheets(l).Cells(l5 + i, 1)
rowsum(i) = 0
Nexti
Forj = 1To n
vG) = Worksheets(l).Cells(l4, 2 + j)
colsumG) = 0
Nextj

For k = 1 To 100
r(l) -= 1
Fori = 1To m
rowsum(i) = 0
Nexti
Fori = 1 To m
For j = 1 To n
rowsum(i) = rowsum(i) + result(i, j)
Nextj
Nexti
Fori = 2Tom
r(i) = u(i) / rowsum(i)

Nexti

Fori = 1 To m
Forj = 1 To n
result{i, j) = r(i) * result(i, j)

Nextj
Nexti
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Sub MRASO
, The Modified RAS algorithm for balancing a matrix
'MRAS Macro
'Macro recorded 6/29/2000 by Barbara Carothers
, Maximum matrix size - 200 x 200
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Forj"l Ton
colsumG) "" 0
Nextj

Forj = 1 Ton
Fori = 1 Tom
colsumG) .. colsumG) + result(i, j)

Nexti
Nextj
Forj = 1 To n
sG) = vG) / colsumG)
Nextj
Forj = 1 To n
Fori = 1 To m
result(i, j) = result(i, j) * sG)
Nexti

Nextj

Nextk

Fori= 1 Tom
Forj = 1 To n
Worksheets(l).CelIs(lll + i, 2 + j) = result(i,j)
Nextj
Nexti

End Sub

41
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End Sub
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Sub MTM()
, The Modified Transportation Model for Balancing a Matrix
'MTMMacro
I Macro recorded 7/6/2000 by Barbara Carothers

Dim m As Integer, n As Integer
m = Worksheets(l).Cells(ll, 3)
n" Worksheets(l).Cells(l2, 3)
Dim C(O To 200, 0 To 200) As Variant, y(O To 200, 0 To 200) As Variant
Dim u(O To 200) As Variant, v(O To 200) As Variant
Dim i As Integer, j As Integer, k As Integer
Dim Wp(O To 200, 0 To 200) As Variant, Wn(O To 200, 0 To 200) As Variant
Dim rowsum(O To 200) As Variant, colsum(O To 200) As Variant
Dim udiff(O To 200) As Variant, vdiff(O To 200) As Variant
Dim bv(O To 200, 0 To 200) As Integer
Dim b(O To 200) As Variant, a(O To 200) As Variant
Dim 01 As Integer, ow As Integer, st As Integer, ak(O To 200) As Integer, bk(O To 200) As Integer
Dim optimal As Integer, LoopSize As Integer
Dim Ipv(O To 200, 0 To 200) As Variant, entering(O To 200, 0 To 200) As Variant
Dim checkCols As Integer, checkRow As Integer
Dim Posi As Integer, Posj As Integer, ni As Integer, nj As Integer
Dim LgstNegative As Variant, LgstPositive As Variant, SmlstPositive As Variant, SmlstNegative As
Variant
Dim LoopSize As Integer
Dim previ As Integer, pre\j As Integer
Dim used(O To 200, 0 To 200) As Integer
Dim lasti As Integer, lasti As Integer, q As Integer
Dim Ipi As Integer, Ipj As Integer, spi As Integer, spj As Integer
Dim lni As Integer, lnj As Integer, sni As Integer, snj As Integer
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Nexti
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Nextj

optimal = 0
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Else
Wn(i, j) .. -Wp(i, j) 'if not given, negative weight matrix is the opposite of the positive weight

matrix'
Worksheets(2).Cells(30 + i, 2 + j) = Wn(i,j)
End If
Nextj
Nexti
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Sub MTM()
, The Modified Transportation Model for Balancing a Matrix
'MTMMacro
I Macro recorded 7/6/2000 by Barbara Carothers
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Fori"" 1 Tom
rowsum(i) "" 0
Nexti
Forj"" 1 Ton
colsumG) = 0
Nextj

'initialize row sum variable'

'initialize column sum variable'

Fori = 1 To m
Forj = 1 Ton
rowsum(i) = rowsum(i) + C(i,j) 'calculate row sum of original matrix'
Nextj
Nexti
Forj = 1 To n
Fori = 1 To m
colswnG) = colsumG) + C(i, j) 'calculate column sum of original matrix'
Nexti

Nextj

For i = 1 Tom
udiff(i) = u(i) - rowsum(i) 'calculate the difference between original and desired row sums'
Nexti
Forj = 1 To n
vdifTG) = vG) - colsumG) 'calculate the difference between original and desired column sums'
Nextj

'calculate initial basic feasible solution'
i=l:j=l
Do
If udiff(i) <vdiffG) Then 'use the smallest possible value for each yij until the last column/row is

reached'
y(i, j) = udiff(i)
vdifTG) = vdiffG) - udiff(i)
bv(i, j) >= 1 'indicates that this is now a basic variable'
udiff(i) <= 0
i = i + 1
EIseIf udifT(i) >vdiffG) Then
y(i, j) = vdiffG)
udifT(i) = udiff(i) - vdiffG)
bv(i,j) = 1
vdifTG) "" 0
j = j + 1
Else
y(i, j) "" udiff(i) 'in the instance of a degenerate matrix, a zero must be used as a basic variable'
vdiffG) = 0
bv(i,j) = 1
udiff(i) "= 0
If (n - j) > (m - i) Then
j = j + 1
Else
i = i + 1
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End If
End If

Loop Until i >m - 1 Or j >n· 1

If i > m - 1 Then
ow= 1
st = j
Elselfj > n • 1 Then
01 = 1
st = i
End If
Ifow= 1 Then
Forj = stTo n
y(i, j) = vdiff(j)
bv(i,j) = 1
Nextj

EIself 01 = 1Then
Fori = stTo m
y(i, j) = udiff(i)
bv(i,j) = 1
Nexti

End If

'determine the fmal row/column of the initial basic feasible solution'

'begin the iterative loop'
Do
'determine the values for the dual variables aO and bO'
Fori = 1 To m
ak(i) = 0 'ak indicates that a is known, if its value is l'
Nexti
Forj = 1 To n
bkG) = 0 'bk indicates that b is known, if its value is l'
Nextj

a(l) = 0
ak(l) = 1
For k = 1 To m + n - 1
For i = 1 Tom
Forj = 1 To n
If bv(i, j) = 1 Then
If ak(i) = 1 Then
If bkG) = 0 Then
If y(i, j) >= 0 Then
b(j) = Wp(i, j) - a(i)
bkG) = 1
s=s+1
End If

End If
End If
If ak(i) = 0 Then
If bkG) = 1 Then
If y(i, j) >= 0 Then
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a(i) = Wp(i, j) • bG)
ak(i) = 1
s=s+1
End If

End If
End If
If ak(i) "" 1 Then
If bkG) = 0 Then
If y(i, j) <0 Then
bG) = Wn(i,j) • a(i)
bkG) = 1
s=s+1

End If
End If

End If
If ak(i) = 0 Then
If bkG) = 1 Then
If y(i, j) <0 Then
a(i) = Wn(i,j) - bG)
ak(i) = 1
s=s+1
End If

End If
End If

End If
Nextj

Nexti
Nextk

'determine the entering variable/check for optimality'
ei = 0
ej = 0
Fori= 1 Tom
Forj = 1 To n
If a(i) + bG) >Wp(i, j) Then
ev = 1: ei = i: ej = j
EIself a(i) + bG) <Wn(i,j) Then
ev = -1: ei = i: ej =j
End If

Nextj
Nexti
If ei = 0 And ~ = 0 Then
optimal = 1
GoTo Linel
End If

Line2:
Fori = 1 To m
Forj = 1 To n
If ei = i And ej = j Then
bv(i,j) = 2
End If
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Nextj
Nexti

'fmd the loop'
For i = 1 To m
Forj = 1 Ton
If bv(i, j) = 2 Then
lpv(i,j) = 1
End If

Nextj
Nexti

q = 1: lasti = ei: lasti = ej: k = 2
Do
If q = 1 Then
Do
Forj = 1 To n
If bv(lasti, j) = 1 And used(lasti, j) = 0 And j <> lasti Then
lpv(lasti, j) = k
used(lasti,j) = 1
lasti = j
k=k+l
q =..q
Exit Do

End If
Nextj
Fori = 1To m
For j = 1 To n
If lasti = i And lasti = j Then
Ifbv(i, j) <> 2 Then
lpv(i, j) = -1
used(i, j) = -1
End If

Else
If bv(i, j) = 1 And lpv(i, j) <> -1 Then
lpv(i,j) = 0
used(i, j) = 0

End If
End If
Nextj

Nexti
k=2
q=1
lasti = ei
lasti = ej

Exit Do
Loop

Elselfq = -1 Then
Do
Fori = 1 To m
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Nextj
Nexti

'fmd the loop'
For i = 1 To m
Forj = 1 Ton
If bv(i, j) = 2 Then
lpv(i,j) = 1
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Nextj
Nexti
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If bv(lasti, j) = 1 And used(lasti, j) = 0 And j <> lasti Then
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q =..q
Exit Do

End If
Nextj
Fori = 1To m
For j = 1 To n
If lasti = i And lasti = j Then
Ifbv(i, j) <> 2 Then
lpv(i, j) = -1
used(i, j) = -1
End If

Else
If bv(i, j) = 1 And lpv(i, j) <> -1 Then
lpv(i,j) = 0
used(i, j) = 0

End If
End If
Nextj

Nexti
k=2
q=1
lasti = ei
lasti = ej

Exit Do
Loop

Elselfq = -1 Then
Do
Fori = 1 To m
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Nextj
Nexti

'fmd the loop'
For i = 1 To m
Forj = 1 Ton
If bv(i, j) = 2 Then
lpv(i,j) = 1
End If

Nextj
Nexti

q = 1: lasti = ei: lasti = ej: k = 2
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End If
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used(i, j) = 0

End If
End If
Nextj

Nexti
k=2
q=1
lasti = ei
lasti = ej

Exit Do
Loop

Elselfq = -1 Then
Do
Fori = 1 To m
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Ifbv(i,lasti) = 1 And used(i, lasti) = 0 And i <> lasti Then
lpv(i, lasti) = k
k=k+l
q =-q
lasti = i
used(i, lasti) = 1
Exit Do

EIseIf bv(i, lasti) = 2 Then
endpt = 1
Exit Do

End If
Nexti
For i = 1 To ill

Forj = 1 To n
If i = lasti And j = lasti Then
used(i,j) =-1
lpv(i, j) = -1
ElseIf bv(i, j) = 1 And lpv(i, j) <> -1 Then
used(i, j) = 0
lpv(i,j) = 0
End If

Nextj
Nexti
k=2
q=1
lasti = ei
lasti = ej

Exit Do
Loop

End If
Loop Until endpt = 1
Fori'" 1 To ill

For j '" 1 To n
If lpv(i, j) >0 Then
LoopSize '" LoopSize + 1

End If
Nextj

Nexti
'determine the variable leaving the basis'
Ifev= 1 Then
addme =0
LgstPositive = 0
LgstNegative = -500000
SmlstPositive '" 500000
SmlstNegative = 0
Fori = 1 To ill

Forj = 1 To n
used(i, j) = 0
Nextj

Nexti
For k = 3 To LoopSize Step 2
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Fori = 1 To m
Forj = 1 Ton
If lpv(i, j) = k And y(i, j) >= 0 Then
If y(i,j) > 19stPositive And used(i,j) '" 0 Then
LgstPositive = y(i, j)
Ipi = i
Ipj = j
usedG, j) = 1

End If
End If

Nextj
Nexti
Nextk
For k = 3 To LoopSize Step 2
Fori= 1 Tom
Forj = 1 To n
If lpv(i, j) = k And y(i, j) <0 Then
Ify(i,j) > LgstNegative And used(i,j) = 0 Then
LgstNegative '" y(i,j)
lni = i
lnj = j
used(i, j) = 1

End If
End If

Nextj
Nexti
Nextk
If LgstNegative = -500000 Then
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addrne = SmlstPositive
Ii = spi
lj = spj
End If

Eiself ev = -1 Then
addrne = 0
LgstPositive = 0
LgstNegative = -500000
SmlstPositive = 500000
SmlstNegative = 0
For i = 1To m
Forj = 1 To n
used(i,j) = 0
Nextj

Nexti
For k = 3 To LoopSize Step 2
Fori = 1 To m
For j = 1 To n
If Ipv(i, j) = k And y(i, j) <0 Then
If y(i, j) <SmlstNegative And used(i, j) = 0 Then
SmlstNegative = y(i, j)
sm = 1

snJ = J
used(i, j) = 1

End If
End If

Nextj
Nexti

Nextk
For k = 3 To LoopSize Step 2
For i= 1 To m
Forj = 1 To n
If Ipv(i, j) = k And y(i, j) >= 0 Then
If y(i, j) <SmlstPositive And used(i, j) = 0 Then
SmlstPositive = y(i, j)
Spl = 1

spj = j
used(i, j) = 1

End If
End If

Nextj
Nexti

Nextk
If SmlstPositive = 500000 Then
addrne = SmlstNegative
Ii = sni
Ij = SIU

Else
addme = -(SmlstPositive)
Ii = spi
Ij = spj
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End If
For k .. 2 To LoopSize Step 2
Fori'" 1 To m
Forj .. 1 To n
If lpv(i, j) .. k And y(i, j) <0 Then
Ify(i,j) >LgstNegative And used(i,j) = 0 Then
19stNegative == y(i, j)
lni '" i
lnj = j
used(i, j) = 1

End If
End If

Nextj
Nexti
Nextk
If LgstNegative >addme Then
addme = LgstNegative
Ii = lui
lj = lnj
End If

End If

'adjust the loop'
For k'" 1 To LoopSize Step 2
For i = 1 To m
Forj .. 1 To n
Iflpv(i, j) = k Then
y(i, j) = y(i, j) + addme

End If
Nextj
Nexti

Nextk
For k = 2 To LoopSize Step 2
Fori "" 1 Tom
Forj = 1 To n
Iflpv(i, j) = k Then
y(i, j) = y(i, j) - addme

End If
Nextj
Nexti

Nextk
'reset the loop variables'
Fori= 1 Tom
Forj = 1To n
Ifi '" Ii Andj = lj Then
bv(i,j) "" 0
EIself i .. ei And j = ej Then
bv(i,j) = 1
End If
Nextj

Nexti
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'end the iterative loop'
Line1:
Loop Unti! optimal = 1

'print results to worksheet (1)'
For i = 1 To m
Forj = 1 To n

Worksheets(l).Cells(l35 + i, 2 + j) = C(ij) + y(i,j)
Nextj
Nexti

End Sub
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MATRIX BALANCING - A COMPARATIVE STUDY

Test Matrices and Results

Matrix A:

Matrix
Balancing
Algorithms
I.Carothers
July, 2000

Sample Matrix

Macros:
LSA -- Least Squares Algorithm (Deming/Stephan 1945)
RAS -- RAS Algorithm (BachemlKorle 1972)
MRAS -- Modified RAS Algorithm (BachemlKorle 1975)
MTM -- Modified Transporlation Model (Ritchey 2000)

no of rows:
no of columns:

desired
rowsums:

col.sums:
A Matrix:

enter differing negative weights, if
applicable in the matrix to the right
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Result Matrix--Modified Transportation Model:

Comments/Observations:

Although all four algorithms return solutions, there are differences. It should be
noted that the RAS and Modified RAS Algorithms return the same solution matrix. This
is true for all applications.

The Least Squares Approximation returns a slightly different matrix, but the
difference is not significant. The reason the matrices are so similar is because they
minimize a similar penalty function, as noted earlier. The reason they are different is
because the LSA uses the weight matrix, while the RAS and MRAS do not. It is
interesting to note that difference is not significant, even with the weight matrix.

The Modified Transportation Model, on the other hand, returns a significantly
different matrix. The cell entries are still integers, an important consideration. There are
also changes to only six cells, keeping the alterations to the original matrix to a
minimum.
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Matrix B:

Matrix
Balancing

Igorithms
I.Carothers
July, 2000

Sample Matnx Without a Welght Matrix

Macros:
LSA -- Least Squares Algorithm (Deming/Stephan 1945)
RAS -- RAS Algorithm (Bachem/Korte 1972)
MRAS -- Modified RAS Algorithm (BachemlKorle 1975)
MTM -- Modified Transportation Model (Ritchey 2000)

no of rows:
no of columns:

desired
rowsums:

col.sums:
A Matrix:

enter differing negative weights, if
a Iicable, in the matrix to the ri ht

Result Matrix--RAS Algorithm:

55

Matrix B:

Matrix
Balancing

Igorithms
I.Carothers
July, 2000

Sample Matnx Without a Welght Matrix

Macros:
LSA -- Least Squares Algorithm (Deming/Stephan 1945)
RAS -- RAS Algorithm (Bachem/Korte 1972)
MRAS -- Modified RAS Algorithm (BachemlKorle 1975)
MTM -- Modified Transportation Model (Ritchey 2000)

no of rows:
no of columns:

desired
rowsums:

col.sums:
A Matrix:

enter differing negative weights, if
a Iicable, in the matrix to the ri ht

Result Matrix--RAS Algorithm:

55

Matrix B:

Matrix
Balancing

Igorithms
I.Carothers
July, 2000

Sample Matnx Without a Welght Matrix

Macros:
LSA -- Least Squares Algorithm (Deming/Stephan 1945)
RAS -- RAS Algorithm (Bachem/Korte 1972)
MRAS -- Modified RAS Algorithm (BachemlKorle 1975)
MTM -- Modified Transportation Model (Ritchey 2000)

no of rows:
no of columns:

desired
rowsums:

col.sums:
A Matrix:

enter differing negative weights, if
a Iicable, in the matrix to the ri ht

Result Matrix--RAS Algorithm:

55



Result Matrix--Modified RAS Algorithm:

Comments/Observations:

Without the weight matrix, the minor differences between the entries of the LSA
result and the RAS/MRAS results seem to be larger. Perhaps that is because the weight
matrix itself was estimated to be proportional to the individual cell entries.

The MTM returns a completely different matrix than with the weights added. It
now makes the alterations to different cells than before, noting that the cost of changing
one is the same as the cost of changing any other. It is also the only algorithm to return
integer values.
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MatrixC:

Matrix
Balancing
Algorithms
I.Carothers
July, 2000

Sample Matrix With a VaIJ'1flg We.rght Matrix

Macros:
LSA -- Least Squares Algorithm (Deming/Stephan 1945)
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MRAS -- Modified RAS Algorithm (Sachem/Korle 1975)
MTM - Modified Transporlation Model (Ritchey 2000)

no of rows:
no of columns:

desired
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A Matrix:

enter differing negative weights, if
a licable, in the matrix to the ri ht
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Comments/Observations:

The first three algorithms cannot account for the negative weights/costs, and
therefore must use only the positive costs. The only algorithm that was able to take the
negative weights into account was the MTM. As expected, it also was the only algorithm
to return integer values.

Table I: Run Timesfor Random 50x50 Matrices
(20 random matrices and associated weights were run)

Algorithm Used: Least Squares RAS Modified Modified
Approx. Algorithm RAS Transportation

Model:
Average Run Time 52 48.2 48.2 142.5
(in seconds):
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