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ABSTRACT

This paper presents an original proof of the equivalence of nilpotentcy and

sylow embeddedness for all finite groups whose order is divisible by at least three

distinct primes.
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INTRODUCTION

Let G be a group and H:S G. In 1964, two group theorists, Kegel and

Wielandt, wondered if P n HE Sylp(H) for all P E Sylp(G), would it always be

the case that H <1 <1 G ? Unfortunately, they were unable to answer this question

affinnatively or find a counterexample. This problem became known as the

Kegel-Wielandt Conjecture.

In 1991, some thirty years later, a group theorist named Peter Kleidman [4]

finally proved that the Kegel-Wielandt Conjecture was true. In his intricate,

seventy-page proof, he employed the classification of finite simple groups.

In 1996, not knowing of any of these events, a group theorist named Neil

Flowers asked a question very similar to the Kegel-Wielandt Conjecture. His

question was: If G is a group such that P n H E Sylp (H) for each subgroup H of G

with In-(H)I 2: 2, for all P E Sylp(G), and for all primes p that divide IGI, then

what can we say about G? Flowers claimed that the group would be nilpotent, and

in fact this strange condition was equivalent to nilpotency.

The object of this paper is to provide a proof of the above equivalency, via

mathematical induction, different from that given by Flowers [l] . Our main result

is the following:

Theorem Let G be a group such that In(G)1 2: 3. Then G is nilpotent if and only

if for every H :S G with In-(H)I 2: 2, every prime p, and every P ESylp(G),

P n HE Sylp(H).
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CHAPTER 1

Preliminaries

In this section we give the background concepts and notations that will be

used in our proof Some results in this section are proved, but they all are well

known and can be found in [2] or any intermediate text in finite group theory.

Definition 1.1

n E Z+U{O}.

G is a p-group for some prime p, if IGI = pn for some

The identity group is a p-group for each p.

Definition 1.2 Let G be a group , p be a prime, and pn be the largest integer

power of p dividing IGI. Then a subgroup P of G is called a Sylow p-subgroup if

!PI = pn and we define IGlp = pn. We denote the set of all Sylow p-subgroups of

Gby Sylp(G) ={P ::; GI!PI = pn}.

Definition 1.3 Let G be a group and p be a prime. Then Op(G) = n P.
PESylpCG)

Lemma 1.4 Let G be a group andp be a prime, then Op(G) <l G.

Proof: Let x E Op(G), g E G, and P E Sylp(G). Then IPg·
I I = IPI, and so

pg'! E Sylp(G). Since x E Op(G), x E pg-
I

, which implies xg E P. Therefore,

since P and g were chosen arbitrarily, we have xg
E Op(G) and so Op(G) <l G.•
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Theorem 1.5 (Sylow's Theorem) Let G be a group and p be a prime. Then

(i) Sylp(G) * 0.

(i i) Every p-subgroup of G lies in a Sylow p-subgroup of G.

(iii) G acts transitively on Sylp (G) by conjugation.

(iv) ISylp(G)1 = 1 (modp).

(v) ISylp(G)1 = IGI / ING(P)I for any P E Sylp(G).

Definition 1.6 For each a E S, we define the stabilizer ofa in G by

StabG(a) = {g E G Iag = a}.

Now for the next three lemmas, let G be a group, S be a set, and suppose G acts on

s.

Lemma 1.7 Let a E S. Then StabG(a) :s G.

Lemma 1.8 Suppose G acts transitively on S. Then lSi = IGIIIStabG(a)1 for any

aES.

Lemma 1.9 If G is a p-group, and p does not divide lSI, then es(G) * 0.

Lemma 1.10 Let G be ap-group and H < G. Then H < NG(H).

Proof: Let S ={Hg I g E G and Hg * H}. If H <J G, then G = NG(H) and so

H < NG(H). Therefore, we may assume H is not normal in G. Then since G acts

transitively on SU{H} by conjugation we get,
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and so

Therefore, since G is a p-group, p divides IGIIING(H) I· But since p does not divide

1, we conclude p does not divide 151. Now H is a p-group, and H acts on S by

conjugation. Thus, by Lemma 1.9, there exists Hg E Cs(H). But then

Lemma 1.11 Let G be a group, a E G, H:'S G. Let the centralizer of a in G, the

centralizer ofH in G, and the normalizer ofH in G be defined respectively by:

(i) CG(a) ={g E G Iag = ga }.

(ii) CG(H) ={g E GI gh = hg for each h E H}=n CG(h).
hEH

(iii) NG(H) = {g E G IHg = H}.

Then NG(H), CG(a), and CG(H) are subgroups ofG. Also, CG(H) <1 NG(H) and

Theorem 1.12 (Cauchy's Theorem) If G is a group and p is a prime such that

p I IGI, then there exists 1 "* x E G such that xP = 1.

Lemma 1.13 Let G be a group, N <1 G, H:'S G, L :'S GIN and y : G--+GIN be the

natural map defined by (g)y = gN Then,

(i) (H)y = HNIN

(ii) (HNIN)y-1 = HN

(iii) L = KIN for some N:'S K:'S G.
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Theorem 1.14 (First Isomorphism Theorem) Let G and G' be groups, and

¢> : G--+G' be a homomorphism with Ker¢> = K Then

G/K ~ (G)¢>

Theorem 1.15 (Second Isomorphism Theorem) Let G be a group and H,K be

subgroups of G. IfK <l G, then H n K <l Hand

HK _ H
y= HnK

Lemma 1.16 Let G be a group, P E Sylp(G), N <l G. Then,

PN G)N E Sylp( N .

Lemma 1.17 (Frattini Argument) Let G be a group, N <l G, and P E Sylp(N).

Then G = NG(P)N.

Proof: Let g E G. Then P E Sylp(N) implies pg E Sylp(Ng) = Sylp(N)

because N is normal. By Sylow's Theorem, there exists n E N such that pgn = P.

Hence, gn E Nc;(P) and therefore g E NG(P)N. Thus, G = NG(P)N..

Lemma 1.18 (Frattini Argument 2) Let G be a group and S be a set, and suppose

G acts on S. Suppose further that H:s G and H acts transitively on S. Then

G = StabG(s)H for every s E S.

Proof: Let g E G. Then, since H acts transitively on S, S = sH for every s E S.

But since sg E S, there exists h E H such that gs = hs. Then h-'gs = s and so

h-'g E StabG(s). Hence g E Stabc;(s)H and therefore G = StabG(s)H.•
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Definition 1.]9 A group G is solvable if there exists a series

such that G/Gi+I is abelian for all 0 :"S i :"S n - 1.

Examples of solvable groups include abelian groups, 33, and p-groups. Some of

the properties of solvable groups are the following:

(i) If G is solvable and H :"S G, then H is solvable.

(ii) If G is solvable and N <l G, then GIN is solvable.

(iii) If G is a group and N <l G such that GIN and N are solvable, then G is

solvable.

Definition 1.20 Let G be a group, H :"S G, and a a finite set of primes. Then

(i) n(G) ={p E Z+ I p divides G and p is a prime}.

(ii) a' ={p E Z+ I p is a prime andp ~ a}.

(iii) G is called a a-group ifn(G) Ca.

(iv) H is a Hall a-subgroup of G ifH is a a-group and n(GIH) C a'.

(v) Halla (G) ={H:"S G I H is a Hall a-subgroup ofG}.

Definition 1.21 Let G be a group, H:"S G such that In(H)1 2: 2, and p E neG).

Then H is a sylow p-embedded subgroup of G if P n HE Sylp(H) for each

P E Sylp(G). We denote the set of all sylow p-embedded subgroups of G by

Sylemp(G), and we define

Sylem(G) = n SylempCG).
PETr(G)
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Definition 1.22 Let G be a group. Then

Subgp2(G) = {H::S G Iln(H)1 ~ 2}.

Definition 1.23 A group G is sylow embedded ifSubgp2(G) c Sylem(G).

Definition 1.24 A group G is nilpotent if for each P E Sylp(G), P <l G.

The above definition is equivalent to saying ISylp(G)1 = I, for each p E neG).

Examples of nilpotent groups include abelian groups, p-groups, and D4 x Z3.

Some of the properties ofnilpotent groups are:

(i) If G is nilpotent and H::s G, then H is nilpotent.

(ii) IfG is nilpotent and N <l G, then GIN is nilpotent.

Theorem 1.25 Let G be a nilpotent group. Then G is solvable.

Proof: We are going to use induction on IGI. Since G is nilpotent, we know that

for P E Sylp(G), P <l G. If G is a p-group for some prime p, then G is solvable.

Without loss, we may assume In(G)1 ~ 2. Now, since P is ap-group, P is solvable,

GIP is solvable by induction, and so by 1.19 (iii), G is solvable.•

Theorem 1.26 (Hall's Theorem) Let G be solvable and n c neG). Then

Hall1r (G) *- 0 and G acts transitively on Hall 1r (G) by conjugation.

Theorem 1.27 (Burnside's Theorem) Let G be a group and P E Sylp(G) such

that Ne(P) = Ce(P). Then there exists K <l G such that G = PK and P nK = 1.

Theorem 1.28 (Frobenius' Theorem) Let G be a group and H::s G such that

H = Ne(H) and H nW = 1 for each x E G\H. Then there exists K <l G such that

G = HKandHnK = 1.
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CHAPTER 2

Proofofthe Main Theorem

As stated in the introduction, our goal is to show the equivalence of sylow

embeddness and nilpotency for finite groups, whose order is divisible by at least

three distinct primes. First, we will consider simpler cases and then build our

proof using induction for the general conclusion of our theorem.

Lemma 2.1 Let G be a group and N <1 G. Then N E Sylem(G).

Proof: Let P E Sylp(G). Then P n N:::: N is a p-group and so by Sylow's

Theorem, P nN :::: Po for some Po E Sylp(N). Again, by Sylow's Theorem, there

exists g E G such that Po:::: pg. Now since N <1 G , we have

P nN:::: Po :s pg n N = (P n N)g

Thus, SInce Ip n N1 = I(p n N)gl, we have P n N = Po. Therefore,

P nNE Sylp(N) and so N E Sylemp(G). Since p was chosen arbitrarily

N E Sylem(G)._

Lemma 2.2 Let G be a group and N <1 <1 G. Then N E Sylem(G).

Proof: Let N be subnormal in G. Then there exists a series Nl,N2, ... ,Nk

such that N = Nk <1 ...<1 N i <1...<1 Nl <1 G. Use induction on k. If k = 1, we have

N <1 G. So, by Lemma 2.1, we are done. Now suppose the lemma holds for all
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subnormal subgroups with subnormal length I where I ~ k- 1. Let P E Sylp(G).

Then by induction N, E Sylem(G), and so P n N, E Sylp(N,). Since, N'+l <l N"

again by using Lemma 2.1 we have,

But SInce N'+l ~ N" P n N'+l = P n N, n N'+l which consequently implies

P n N'+l E Sylp(N,+d. Hence, N'+l E Sylem(G) and therefore we have

N E Sylem(G) by induction. _

Lemma 2.3 If G is abelian, then G is a sylow embedded group.

Proof: Since every subgroup in G is normal, by Lemma 2.1, G is a sylow

embedded group._

At this point we can prove one direction ofour main theorem or "the easy half'.

Theorem 2.1 (part I): Let G be a nilpotent group, then G is a sylow embedded

group.

Proof: Let G be a nilpotent group such that H ~ G, In(H)1 2: 2, and

P E Sylp(G). All we need to show is that P n HE Sylp(H). Since P is a p-group

P E Sylp(G) and P n H ~ P implies P n H is a p-subgroup of H. By Sylow's

Theorem, there exists Po E Sylp(H) such that P n H ~ Po. Since P <l G, by
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Hence, P n H = Po, which means P n HE Sylp(H)._

In the next two Lemmas we find out that Sylow embeddness is a fairly rexilant

property.

Lemma 2.4 If G is a sylow embedded group and H:5 G, then H is a Sylow

embedded group.

Proof: Let P E Sylp(H) and K:5 H with IJr(K)1 2: 2. Then there exists

Po E Sylp(G) such that P:5 Po. Now Po nH is a p-subgroup of H, and so there

exists h E H such that Po nH:5 ph. Thus, P :5 Po nH:5 ph and P = Po nH.

Since G is a sylow embedded group, Po n K E Sylp(K). But then,

Since, P was chosen arbitrarily as a Sylow p-subgroup of H, we can conclude that

H is a sylow embedded group._

Lemma 2.5 If G is a sylow embedded group and N <l G, then GIN is a sylow

embedded group.

Proof: Let G = GIN, Po E Sylp(G) and H is a subgroup of G such that the

order of H is divisible by two primes. Then H, Po :5 G, where Hand Po are the

preimages of Po and H in G. Let P E Sylp(Po). Then by Lemma 1.16,

P E Sylp(Po). Also, we have
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lQL=ll~=JQLJfQl
Ip I Ip0I Ip I Ip0I Ip I .

Hence, IGI/!PI is not divisible by p because Po and P are Sylow p-subgroups of G

and Po respectively. Therefore, P E Sylp(G). Now since G is sylow embedded,

we get P n H E Sylp(H). Thus, by Lemma 1.16, P n HE Sylp(H). But,

pnH=p nH=po nH

therefore, Po n H E Sylp(H) and G is a sylow embedded group._

Lemma 2.6 Let G be a sylow embedded group and H E Halln (G) where

Jr C Jr (G). Then,

Proof: First, we want to show that Sylp(H) = Sylp(G). It is enough to show

Sylp(G) c Sylp(H) because H is a Hall subgroup. Let P E Sylp(G). Since G is

sylow embedded P n HE Sylp(H) . But then,

IGlp = !PI 2: IP nHI = IHlp = IGlp

Therefore, IPI = IP nHI and so P = P n H. Thus, P ::; H and so P E Sylp(H).

Now G acts on Sylp(H) by conjugation, and by Sylow's Theorem, H acts

transitively on Sylp(H) by conjugation. Hence, by using the Frattini Argument,

Lemma 1.17, we get G = StabG(P)H = NG(P)H where P is any sylow subgroup

ofH._
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Lemma 2.7 If G is a sylow embedded group and IGI = pqr, where p < q < rare

primes, then G is nilpotent.

Proof Without loss, by Sylow's Theorem, ISylp(G)1 equals l,q,r, or qr. Also,

the possibilities for the ISylq(G)1 and ISylr(G)1 are l,r,pr and l,pq, respectively.

We claim that G has a normal sylow subgroup. Ifnot, then

IGI = pqr ? (p - l)q + r(q - 1) +pq(r - 1) + 1

But then, we get

o ? q(r - 1) - (r - 1) = (r - 1)(q - 1) > 0

which is a contradiction. So, we may assume that without loss, P <l G where

P E Sylp(G) . Let R E Syl r(G) and Q E Sylq(G). Then PQ, PR E Hall(G) and so

by Lemma 2.6, G = NG(Q)P = NG(R)P. Therefore, there exists x,y E G such that

RX ~ NG(Q) and QY ~ NG(R). But then RXQ and QYR E Hall(G). So again by

Lemma 2.6, G = NG(Q)RX = NG(Q) and G = NG(R)QY = NG(R). Thus, R <l G,

Q <l G, and we can conclude that G is nilpotent..

This section includes results about general groups, which are not necessarily sylow

embedded groups. Next, we are going to examine groups with square free order.

The proof of our condition for such groups requires the following four lemmas.
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Lemma 2.8 Let G be a group and H, K ~ G such that

then G = HK.

Proof: Notice that

So, both IG IIIH land IGIIIKJ divide IGI/IH n Kl,and therefore,

JQLJQL d""d -.JQL. d(JQL JQL)-l1H1 IKl IVI es IH n Kj , SInce gc IHl' IKl -

Hence,

JQL JQL < -.JQL
1H1 IKl - IHn Kl"

It follows that IGI ~ IHKj and so G = HK.•

Lemma 2.9 Let G be a group, Hl,H2,H3 ~ G such that Hi are nilpotent for

i = 1,2,3 and

d(ll ll) - 1 .c h"
gc IHil' lH:il - lor eac 1"* j.

Then G is nilpotent.

Proof: Let P E Sylp(G) " Then there exists i,j such that p ..r IGlIlHil and

p ..r IGIIIH:Ji. Thus, there exists x,y such that px ~ Hi and pY ~ Hi- Then
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I -I

pY <J Hj . It follows that P <J 1fJ- and P <J H; . But

and so by Lemma 2.8, G = 1fJ-1
H;-l

nilpotent. _

Hence, P <J W-1Hyl = G and G IS
I J '

Lemma 2.10 Let G be a group and p = min.n(G), and suppose the Sylow

p-subgroups of G are cyclic. Then G = PK, where P E Sylp(G), K <J G and

pnK= 1.

Proof: First let p = min.n(G) and P E Sylp(G). Then P is cyclic by

assumption. Let NG(P) act on P by conjugation. This action induces a

homomorphism from NG(P) into Aut(P) with kernel CG(P). Thus, by the First

Isomorphism Theorem 1.14, Aut(P) contains a subgroup isomorphic to

NG(P)/CG(P). Therefore,

ING(P)/CG(P)I divides IAut(P) I = pn - pn-l = pCp - 1).

Considering the above, we claim that ING(P)/CG(P)I = 1. Suppose

ING(P)/CG(P)I > 1. Then there exists a prime q, such that q divides

ING(P)/CG(P)I. Since P is cyclic, P is abelian. Hence, P :s CG(P). But then p

does not divide ING(P)/CG(P)I since P E Sylp(G). Thus q =I; p. Therefore, q

divides ING(P)I which implies that q divides IGI. Furthermore, q divides IAut(P)I

and so q divides Cp - 1). We have q < p and q divides IGI which contradicts the
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minimality of p. Thus, ING(P)/CG(P)I = 1 and so NG(P) = CG(P). Now by

Burnside's Theorem 1.27, we have G = PK, where K is normal and P n K = I._

Lemma 2.11 If G is a group such that IGI = PIP2P3 ... pn, where Pi are distinct

primes and n is a positive integer, then G is solvable.

Proof: To show that G is solvable, we are going to use induction on IGI. When

IGI = PI, since G is a p-group, G is solvable. Assume that every group with square

free order, whose order is less than IGI, is solvable. Then we want to show that G is

solvable. Let P E Sylp(G) and P = min.n(G). Then P is cyclic, and so by Lemma

2.10, there exists K <l G such that G = PK and P n K = 1. Since

G _ PK _ P _ P _ P
K-K=pnK--I =,

then G/K is a p-group which also means it is solvable. Also IKI < IGI and K has

square free order. Thus K is solvable by our inductive hypothesis. Hence, by

properties of solvable groups, 1.19 (iii), we can conclude that G is solvable._

Lemma 2.12 Let G be a sylow embedded group such that IGI = PIP2P3 ...pn,

where Pi is a prime for all 1 ~ i ~ nand n 2: 3. Then G is nilpotent.

Proof: We use induction on IGI. We may assume In(G)1 2: 4. Since IGI is

square free, G is solvable by Lemma 2.11. Hence, Hall1[(G) :f= 0 for each

n c n(G) by Hall's Theorem. Let Hi E Hallp; (G) for i = 1,2,3. Then H/ s are

square free order and sylow embedded groups by Lemma 2.4. So, by induction Hi

is nilpotent for each i = 1,2,3. But
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d(ll ll) - d(p· .) - 1 £ . .
gc IHil' IHil - gc hPJ - or I =1= j.

Therefore, by Lemma 2.9, G is nilpotent..

Lemma 2.13 Let G be a sylow embedded group and P be a p-subgroup of G such

that Ne(P) is not ap-group. Then P:s Op(G).

Proof: Since Ne(P) is not a p-group, there exists H:s Ne(P) where H is a

p'-group. Then K = PH:S G and P <l K. If R E Sylp(G), then since G is sylow

embedded, R n K E Sylp(K). Therefore, P = R n K and so P :s R. Since R was

chosen arbitrarily we have P :s 0 p ( G).•

Lemma 2.14 If G is a sylow embedded group such that IGI = paqbrc for distinct

primes p,q, and r, then G is nilpotent.

Proof: The proof is by induction on IGI. We claim that it is enough to show

there exists H E Hall1f(G) for some 1r c 1r(G) such that 11r1 = 2. Without loss, we

may assume H = PQ where P E Sylp(G), Q E Sylq(G). Let R E Sylr(G). Then by

Lemma 2.6 we have G = Ne(P)PQ = Ne(P)Q and G = Ne(Q)QP = Ne(Q)P.

Therefore, by Sylow's Theorem, there exists x,y E G such that RX C Ne(P) and

RY C Ne(Q). But then RXP and RYQ are Hall subgroups of G and by the same

Lemma we get:

G = Ne(P)RX = Ne(Q)RY

Hence, G = Ne(P)RX = Ne(P) and so P <l G. Using the same argument, we get

Q <l G. Now PR and QR are Hall subgroups of G. Again by Lemma 2.6, we have
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G = NG(R)P = NG(R)Q. Thus, since P,Q <l G, Q :::; NG(R) and P :::; NG(R) by

the first and the second equalities, respectively. Furthermore, since PQ :::; G, we

get R <l RPQ = G. Therefore, G is nilpotent.

We may assume G has no normal Sylow subgroups and G is nonsolvable. Let

P,Q E Sylp(G) such that !P n QI is maximal. Suppose !p n QI =t= 1. Then

QnP < P and QnP < Q. If Ap(NG(P nQ)) = 1, let R E Sylp(NG(P nQ))

and R :::; S E Sylp(G). Now since P is a p-group, P is nilpotent. Therefore, by

Lemma 1.10, we get

pn Q < Np(pn Q) :::; pnR:::; pns

and so P = S by the maximality of IP n QI. Similarly, we get Q= S. Therefore,

P = Q which is a contradiction. Thus, Ap(NG(P n Q)) > 1 and NG(P n Q) is not

a p-group. Hence, by Lemma 2.13, 1 =t= P n Q :::; Op(G) <l G. Let G = G/Op(G).

Then by Lemma 2.5, G is sylow embedded. Also, In(G)1 = 3. Therefore, by

induction G/Op(G) is nilpotent. Since Op(G) is nilpotent, G is solvable, by

properties of solvable groups 1.19 (iii), we get a contradiction.

Thus, !p nQI = 1 and so P n pg = I for each g E G\NG(P). Since P is not

normal in G, by Lemma 2.13, NG(P) is a p-group. But since P :::; NG(P) and

P E Sylp(G), we get P = NG(P). By Frobenius' Theorem, there exists K <l G

such that G = PK and P n K = 1. Now,

IY1 - ill -~ - Jm - JQL - IGI { } - qbrc
H.I - I -!p n KI - !PI - !PI - q,r-
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Therefore, K E Hall {q,r} (G), and so G is nilpotent..

Lemma 2.15 Let G be a solvable sylow embedded group such that In(G)1 2: 3.

Then G is nilpotent.

Proof: The proof is by induction on IGI. By Lemma 2.14, we may assume

n

In(G)1 2: 4. Let IGI =0 p~i, where n 2: 4, Pi is a prime, and ei is a positive
i=I

integer for all I ~ i ~ n. Since G is solvable, by Hall's Theorem, there exist

Hi E Hallp ;' (G) for i = 1,2,3. Hi is a solvable, sylow embedded group for each i.

Moreover, In(G)1 2: 4 implies In(Hi)1 2: 3 for each i. Therefore, by induction each

Hi is nilpotent. Since,

d(ll ll) - d(pe; eJ ) - I
gc IHil' IHil - gc i ,Pi -

By Lemma 2.9, G is nilpotent..

Theorem 2.1 Let G be group with InCG)I 2: 3. Then G is nilpotent if and only if

G is a sylow embedded group.

Proof: Earlier we gave the proofof one direction of this theorem. Now let G be

a sylow embedded group with In(G)1 2: 3, and we use induction on IGI to prove

that G is nilpotent. From Lemma 2.15, it suffices to show that G is solvable, and

we may assume that In(G)1 2: 4. Let P,Q E Sylp(G) such that IP n QI is maximal.

If IP n QI = I, by Frobenius' Theorem and the argument used in Lemma 2.14,

there exists K <I G with G = PK and P nK = I. Then K E Hallp ' (G) and so

In(K)I 2: 3. Therefore, since K is sylow embedded, K is nilpotent by induction.
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Therefore, K E Hall {q,r} (G), and so G is nilpotent..
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In(G)1 2: 4. Let IGI =0 p~i, where n 2: 4, Pi is a prime, and ei is a positive
i=I

integer for all I ~ i ~ n. Since G is solvable, by Hall's Theorem, there exist

Hi E Hallp ;' (G) for i = 1,2,3. Hi is a solvable, sylow embedded group for each i.

Moreover, In(G)1 2: 4 implies In(Hi)1 2: 3 for each i. Therefore, by induction each

Hi is nilpotent. Since,

d(ll ll) - d(pe; eJ ) - I
gc IHil' IHil - gc i ,Pi -

By Lemma 2.9, G is nilpotent..

Theorem 2.1 Let G be group with InCG)I 2: 3. Then G is nilpotent if and only if

G is a sylow embedded group.

Proof: Earlier we gave the proofof one direction of this theorem. Now let G be

a sylow embedded group with In(G)1 2: 3, and we use induction on IGI to prove

that G is nilpotent. From Lemma 2.15, it suffices to show that G is solvable, and

we may assume that In(G)1 2: 4. Let P,Q E Sylp(G) such that IP n QI is maximal.

If IP n QI = I, by Frobenius' Theorem and the argument used in Lemma 2.14,

there exists K <I G with G = PK and P nK = I. Then K E Hallp ' (G) and so

In(K)I 2: 3. Therefore, since K is sylow embedded, K is nilpotent by induction.
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Moreover, by the Second Isomorphism Theorem 1.15, we have:

G _ PK _ P
K-T=pnK

and so G/K is nilpotent. Hence, G is solvable.

Now, suppose /P n QI *- 1. As before, the maximality of IP n QI implies

Ap(NG(P n Q» > 1. Thus, NG(P n Q) is not ap-group, and therefore,

1 *- P n Q :s 0 p (G) <l G

G = G /Op(G) which is a sylow embedded group, and In(G)1 2: 3. Therefore, Gis

nilpotent (and solvable) by induction. Since Op(G) is a p-group, and therefore

solvable, by properties of solvable groups 1.19 (iii), G is solvable._
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CHAPTER 3

Counterexamples

We want to emphasize that embeddness implies nilpotency and vice versa is

not always true for a group G where In(G)1 = 2. Let's illustrate this by two

counterexamples:

Example 3.1 A4 is a sylow embedded group. 1A41 = 12 = 223. So, if we have a

subgroup H such that In(H)I~ 2 then IHJ = 6. However, A4 does not have a

subgroup H of order 6. If it did, then by Cauchy's Theorem 1.12, there exists

h E H such that Ihl= 3. Since IA 4111HJ = 2, then H <] A 4.

Without loss, let h = (123). Then

(123)(12)(34) = (214) E H

(214)(23)(14) = (341) E H

Also, the squares of the above elements (123),(214),(341) are in H. Hence,

IHJ ~ 7, including the identity, which is a contradiction. However, A4 is not

nilpotent because

< (123) >,< (234) >,< (124) >,< (134) > E SyI3(A4) and ISyI3(A4)1 > 1.

Example 3.2 D6 is a sylow embedded group. Let H:s D6 such that In(H)I~ 2.
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Then IHI = 6. Hence, ID6111H1 = 2 and so H ~ D6. Since H <l D6, by Lemma 2.1,

HE Sylem(D6). Therefore D6 is a sylow embedded group.

8, ~ (
1 2 3 4 5 6 ) ~, ~ ( 1 2 3 4 5 6 )1 6 5 4 3 2 6 5 4 3 2 1

8, ~ (
1 2 3 4 5 6 ) ~,~ ( 1 2 3 4 5 6 )3 2 1 6 5 4 2 I 6 5 4 3

83 ~ ( ~ 2 3 4 5 6 ) ~3 ~ ( :

2 3 4 5 6 )4 3 2 1 6 3 2 1 6 5

So, 81 = 8~ = 8j = 1 = 11,1 = J1~ = J11 By Sylow's Theorem, ISyh(D6)1 = 1 or

3. We know that IFI = 4, where P E Syh(D6), and there are six elements of order

2. Therefore, ISyh(D6)j = 3 1= 1 and so D is not nilpotent.
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1 2 3 4 5 6 ) ~,~ ( 1 2 3 4 5 6 )3 2 1 6 5 4 2 I 6 5 4 3

83 = ( ~ 2 3 4 5 6 ) ~3 ~ ( :

2 3 4 5 6 )4 3 2 1 6 3 2 1 6 5

So, <>1 = <>~ = <>~ = 1 = J11 = J1~ = J1~. By Sylow's Theorem, ISyh(D6)1 = 1 or

3. We know that IFI = 4, where P E Syh(D6), and there are six elements of order

2. Therefore, ISyh(D6)j = 3 * 1 and so D is not nilpotent.
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OPEN QUESTIONS

Now that we have proven the equivalence of nilpotency with sylow

embeddness for certain finite groups, other questions related to this proof have

arisen and still remain unanswered. These open questions include the following:

1 - Are the concepts of nilpotency and sylow embeddedness equivalent for infinite

groups with a sylow theory?

2 - For a given prime p what kinds of groups act transitively on the set Sylemp(G)

by conjugation?

3 - If G is a group such that Sylemp(G) =1= 0 for all primes p, can the structure of

G be determined?

21

OPEN QUESTIONS

Now that we have proven the equivalence of nilpotency with sylow

embeddness for certain finite groups, other questions related to this proof have

arisen and still remain unanswered. These open questions include the following:

1 - Are the concepts of nilpotency and sylow embeddedness equivalent for infinite

groups with a sylow theory?

2 - For a given prime p what kinds of groups act transitively on the set Sylemp(G)

by conjugation?

3 - If G is a group such that Sylemp(G) =1= 0 for all primes p, can the structure of

G be determined?

21



REFERENCES

[1] Flowers, N., A criterion for a group to be nilpotent, Note di Matematica, 20

(2000), to appear.

[2] Gorenstein, D., "Finite Groups," Chelsa Publishing Company, New York,

1982.

[3] Scott, W. R., "Group Theory," Prentice-Hall, New York, 1986.

[4] Kleidman, P., A proof of the Kegel-Wielandt conjecture on subnormal

subgroups, Ann. ofMath. 2 (1991 ), 369-428.

[5] Lyons, R., Sylow p-subgroups and subnormal subgroups of finite groups,

Proc. London Math. Soc. 66 (1993), no. 1, 129-151.

22

REFERENCES

[1] Flowers, N., A criterion for a group to be nilpotent, Note di Matematica, 20

(2000), to appear.

[2] Gorenstein, D., "Finite Groups," Chelsa Publishing Company, New York,

1982.

[3] Scott, W. R., "Group Theory," Prentice-Hall, New York, 1986.

[4] Kleidman, P., A proof of the Kegel-Wielandt conjecture on subnormal

subgroups, Ann. ofMath. 2 (1991),369-428.

[5] Lyons, R., Sylow p-subgroups and subnormal subgroups of finite groups,

Proc. London Math. Soc. 66 (1993), no. 1, 129-151.

22


	Nilpolent Groups001
	Nilpolent Groups002
	Nilpolent Groups003
	Nilpolent Groups004
	Nilpolent Groups005
	Nilpolent Groups006
	Nilpolent Groups007
	Nilpolent Groups008
	Nilpolent Groups009
	Nilpolent Groups010
	Nilpolent Groups011
	Nilpolent Groups012
	Nilpolent Groups013
	Nilpolent Groups014
	Nilpolent Groups015
	Nilpolent Groups016
	Nilpolent Groups017
	Nilpolent Groups018
	Nilpolent Groups019
	Nilpolent Groups020
	Nilpolent Groups021
	Nilpolent Groups022
	Nilpolent Groups023
	Nilpolent Groups024
	Nilpolent Groups025
	Nilpolent Groups026
	Nilpolent Groups027
	Nilpolent Groups028

