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ABSTRACT

This paper presents an original proof of the equivalence of nilpotentcy and
sylow embeddedness for all finite groups whose order is divisible by at least three

distinct primes.
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INTRODUCTION

Let G be a group and H < G. In 1964, two group theorists, Kegel and
Wielandt, wondered if P N H € Syl,(H) for all P € Syl,(G), would it always be
the case that // I G ? Unfortunately, they were unable to answer this question
affirmatively or find a counterexample. This problem became known as the
Kegel-Wielandt Conjecture.

In 1991, some thirty years later, a group theorist named Peter Kleidman [4]
finally proved that the Kegel-Wielandt Conjecture was true. In his intricate,
seventy-page proof, he employed the classification of finite simple groups.

In 1996, not knowing of any of these events, a group theorist named Neil
Flowers asked a question very similar to the Kegel-Wielandt Conjecture. His
question was: If G 1s a group such that P N H € Syl,(H) for each subgroup H of G
with [n(H)| > 2, for all P € Syl,(G), and for all primes p that divide |G|, then
what can we say about G? Flowers claimed that the group would be nilpotent, and
in fact this strange condition was equivalent to nilpotency.

The object of this paper is to provide a proof of the above equivalency, via
mathematical induction, different from that given by Flowers [1] . Our main result
is the following:

Theorem Let G be a group such that [z(G)| > 3. Then G is nilpotent if and only
if for every H < G with [z (H)| > 2, every prime p, and every P €Syl,(G),

PN H e Syl,(H).

Vi



CHAPTER 1

Preliminaries

In this section we give the background concepts and notations that will be
used in our proof. Some results in this section are proved, but they all are well
known and can be found in [2] or any intermediate text in finite group theory.
Definition 1.1 G 1s a p-group for some prime p, if |G| = p” for some
n e Z* U{0}.

The 1dentity group is a p-group for each p.

Definition 1.2 Let G be a group , p be a prime, and p” be the largest integer
power of p dividing |G|. Then a subgroup P of G is called a Sylow p-subgroup if
|P| = p” and we define |G|, = p”. We denote the set of all Sylow p-subgroups of
G by Sylp(G) ={P < G| |P| = p"}.

Definition 1.3 Let G be a group and p be a prime. Then O,(G) = n P,
PeSyL(G)

Lemma 1.4 Let G be a group and p be a prime, then O,(G) < G.
Proof: Let x € 0,(G), g € G, and P € Syl,(G). Then IP¢"'| = |P|, and so
P&’ e Syl,(G). Since x € O,(G), x € P&, which implies x8 € P. Therefore,

since P and g were chosen arbitrarily, we have x4 € O,(G) and s0 O,(G) < G. g



Theorem 1.5 (Sylow’s Theorem) Let G be a group and p be a prime . Then
(i) Sylp(G) + 2.

(11) Every p-subgroup of G lies in a Sylow p-subgroup of G.

(111) G acts transitively on Syl,(G) by conjugation.

(1v) [Syl,(G)| = 1 (mod p).

(V) [Sylp(G)| = |G|/ [NG(P)| for any P € Syl,(G).

Definition 1.6 For each a € S, we define the stabilizer of a in G by
Stabg(a) = {g € G| ag = a}.

Now for the next three lemmas, let G be a group, S be a set, and suppose G acts on
S.

Lemma 1.7 Leta € S. Then Stabg(a) < G.

Lemma 1.8 Suppose G acts transitively on S. Then [S] = |G|/|Stabg(a)| for any
aes.

Lemma 1.9 If G is a p-group, and p does not divide |S|, then Cs(G) # @.

Lemma 1.10 Let G be a p-groupand H < G. Then H < Ng(H).

Proof: Let S={H8 | ge Gand H8 + H}. If H A G, then G = NG(H) and so
H < Ng(H). Therefore, we may assume H is not normal in G. Then since G acts
transitively on S U{H} by conjugation we get,

6l _ _ld]

SU {H} = =
Isu | Stabg(H)|  |N6(H)|




and so

[ T
ING(H)|

Therefore, since G is a p-group, p divides |G|/|Ng(H)|. But since p does not divide
1, we conclude p does not divide |S|. Now H is a p-group, and H acts on S by
conjugation. Thus, by Lemma 19, there exists H8 € Cs(H). But then
H < NG(H®) and so H8" < NG(H). Since H8 + H, we have H < NG(H). m
Lemma 1.11 Let G be a group, a € G, H < G. Let the centralizer of a in G, the
centralizer of H in G, and the normalizer of A in G be defined respectively by:

() Cqla) ={g € Glag = ga }.

(i) Co(H) ={g € G| gh = hg foreach h € H'=( ) Ci(h).
heH

(i) NG(H) = {g € G| HE = H}.

Then Ng(H), Cg(a), and Cg(H) are subgroups of G. Also, Cg(H) < Ng(H) and
H< Ng(H).

Theorem 1.12 (Cauchy’s Theorem) If G is a group and p is a prime such that
p | |G, then there exists 1 # x € G such thatx? = 1.

Lemma 1.13 LetGbeagroup, NI G, H< G, L < G/Nandy : G=>G/N be the
natural map defined by (g)y = gN. Then,

(i) (H)y = HNIN.

(ii) (HN/N)y~! = HN.

(1i1)) L = K/N forsome N < K < G.



Theorem 1.14 (First Isomorphism Theorem) Let G and G" be groups, and

¢ : G—G’ be a homomorphism with Ker¢ = K. Then

G/K = (G)¢

Theorem 1.15 (Second Isomorphism Theorem) Let G be a group and H,K be

subgroups of G. If K G, then HN K< H and

HK ~ __H

- HNK

Lemma 1.16 Let G be a group, P € Syl,(G), N G. Then,

. e syip(<2).

Lemma 1.17 (Frattini Argument) Let G be a group, N 1 G, and P € Syl,(N).
Then G = Ng(P)N.

Proof’ Let g€ G. Then P € Syl,(N) implies P& € Syl,(N&) = Syl,(N)
because N is normal. By Sylow’s Theorem, there exists n € N such that P& = P.
Hence, gn € Ng(P) and therefore g € Ng(P)N. Thus, G = Ng(P)NV. »

Lemma 1.18 (Frattini Argument 2) Let G be a group and S be a set, and suppose
G acts on S. Suppose further that H < G and H acts transitively on S. Then
G = Stabg(s)H foreverys € S.

Proof’ Let g € G. Then, since H acts transitively on S, S = sH for every s € S.
But since sg € S, there exists 4 € H such that gs = As. Then h7'gs = s and so

h™'g € Stabg(s). Hence g € Stabg(s)H and therefore G = Stabg(s)H. g



Definition 1.19 A group G is solvable if there exists a series
G=GEG,BGBG3B...BG, =1

such that G;/G;; 1sabelian forall0 <i<n-1.

Examples of solvable groups include abelian groups, S3, and p-groups. Some of
the properties of solvable groups are the following:

(1) If G 1s solvable and H < G, then H is solvable.

(11) If G 1s solvable and N < G, then G/N is solvable.

(1) If G 1s a group and N J G such that G/N and N are solvable, then G is
solvable.

Definition 1.20 Let G be a group , H < G, and o a finite set of primes. Then

(1) n(G) ={p € Z" | pdivides G and p is a prime}.

(o' ={p e Z* | pisaprimeandp ¢ o}.

(1i1) G 1s called a o-group if 7(G) < o.

(iv) H is a Hall o-subgroup of G if H is a o-group and n(G/H) S o'

(v) Halls(G) ={H < G | H is a Hall o-subgroup of G}.

Definition 1.21 Let G be a group, H < G such that [7(H)| > 2, and p € n(G).
Then H is a sylow p-embedded subgroup of G if PN H e Syl,(H) for each
P € Syl,(G). We denote the set of all sylow p-embedded subgroups of G by

Sylem,(G), and we define

Sylem(G) = (] Sylem,(G).
pen(G)



Definition 1.22 Let G be a group. Then
Subgp®(G) = {H < G| |z(H)| > 2}.

Definition 1.23 A group G is sylow embedded if Subgp?(G) < Sylem(G).
Definition 1.24 A group G is nilpotent if for each P € Syl,(G), PG .

The above definition is equivalent to saying |Syl,(G)| = 1, for each p € n(G).
Examples of nilpotent groups include abelian groups, p-groups, and D4 x Z5.

Some of the properties of nilpotent groups are:

(1) If G is nilpotent and H < G, then H is nilpotent.

(11) If G is nilpotent and N J G, then G/N is nilpotent.

Theorem 1.25 Let G be a nilpotent group. Then G is solvable.

Proof: We are going to use induction on |G|. Since G is nilpotent, we know that
for P € Syl,(G), P G. If G is a p-group for some prime p, then G is solvable.
Without loss, we may assume |7(G)| > 2. Now, since P is a p-group, P is solvable,
G/P is solvable by induction, and so by 1.19 (ii1), G is solvable.g

Theorem 1.26 (Hall’s Theorem) Let G be solvable and # < n(G). Then
Hall.(G) # @ and G acts transitively on Hall,(G) by conjugation.

Theorem 1.27 (Burnside’s Theorem) Let G be a group and P € Syl,(G) such
that Ng(P) = Cg(P). Then there exists K< G suchthat G = PKand PN K = 1.
Theorem 1.28 (Frobenius’ Theorem) Let G be a group and H < G such that
H = Ng(H) and HN H* = 1 for each x € G\H. Then there exists K J G such that

G=HKand HNK = 1.



CHAPTER 2

Proof of the Main Theorem

As stated in the introduction, our goal is to show the equivalence of sylow
embeddness and nilpotency for finite groups, whose order is divisible by at least
three distinct primes. First, we will consider simpler cases and then build our
proof using induction for the general conclusion of our theorem.

Lemma 2.1 Let G be agroupand NI G. Then N € Sylem(G).
Proof:  Let P € Syl,(G). Then PNN < N is a p-group and so by Sylow’s
Theorem, PN N < Pq for some Py € Syl,(N). Again, by Sylow’s Theorem, there

exists g € G such that Pg < P8. Now since N G, we have
PNN<Py<PEONN=(PNN)8

Thus, since |PNMN =|[(PNN)E, we have PNON =Py Therefore,
PNN € Syl,(N) and so N € Sylem,(G). Since p was chosen arbitrarily
N € Sylem(G). m

Lemma 2.2 Let G be a groupand NI I G. Then N € Sylem(G).

Proof: Let N be subnormal in G. Then there exists a series N|,Na,...,N;
suchthat N= N, .. d N; J.dN; < G. Useinductionon k. If £ = 1, we have

N G. So, by Lemma 2.1, we are done. Now suppose the lemma holds for all



subnormal subgroups with subnormal length / where / < k— 1. Let P € Syl,(G).
Then by induction N; € Sylem(G), and so PN\ N; € Syl,(N;). Since, Niy,y < N,

again by using Lemma 2.1 we have,
POANI NNy € Syl,(Nia)

But since Npyi <N, PNNu = PNN NNy which consequently implies
PN Nu € Sylp(Nig1). Hence, Npp € Sylem(G) and therefore we have
N e Sylem(G) by induction. g

Lemma 2.3 If G is abelian, then G is a sylow embedded group.

Proof’ Since every subgroup in G is normal, by Lemma 2.1, G is a sylow

embedded group.g

At this point we can prove one direction of our main theorem or “the easy half”.

Theorem 2.1 (part I): Let G be a nilpotent group, then G is a sylow embedded
group.

Proof: Let G be a nilpotent group such that H <G, |z(H)|>2, and
P € Syl,(G). All we need to show is that PN H € Syl,(H). Since P is a p-group
P € Syl,(G) and PN H < P implies PN H is a p-subgroup of H. By Sylow’s
Theorem, there exists Py € Syl,(H) such that PNH < Py. Since P & G, by

Sylow’s Theorem Py < P. Therefore,

PNH<Py<PNH



Hence, PN H = Py, whichmeans PN H € Syl,(H). m

In the next two Lemmas we find out that Sylow embeddness is a fairly rexilant

property.

Lemma 2.4 If G is a sylow embedded group and A < G, then H is a Sylow
embedded group.

Prooft Let P e Syl,(H) and K< H with |z(K)| > 2. Then there exists
Po € Syl,(G) such that P < Py. Now Po N H is a p-subgroup of H, and so there
exists # € H such that PoNH < P". Thus, P< PoNH <P" and P = Py N H.

Since G is a sylow embedded group, Py N K € Syl,(K). But then,
PNK=PoNHNK=PyNK € SylP(K)

Since, P was chosen arbitrarily as a Sylow p-subgroup of H, we can conclude that
H is a sylow embedded group.g

Lemma 2.5 If G is a sylow embedded group and N < G, then G/N is a sylow
embedded group.

Proof Let G = G/N, P € Syl,(G) and H is a subgroup of G such that the
order of H is divisible by two primes. Then H, Py < G, where H and P, are the
preimages of Py and H in G. Let P € Syl,(Py). Then by Lemma 1.16,

P € Syl,(Po). Also, we have



6l _ 16| IPo|_ [B1 1Pol
P Tpd P17 P

Hence, |G|/|P| is not divisible by p because Py and P are Sylow p-subgroups of G
and Py respectively. Therefore, P € Syl,(G). Now since G is sylow embedded,

we get PN H € Syl,(H). Thus, by Lemma 1.16, PN H € Syl,(H). But,

POE=-PnH=FsnH

therefore, Po N H € Syl,(H) and G is a sylow embedded group. m
Lemma 2.6 Let G be a sylow embedded group and H € Hallx(G) where

n < 7 (G). Then,
G = Ng(P)H forany P € Syl,(H)

Proof: First, we want to show that Syl,(H) = Syl,(G). It is enough to show
Sylp(G) < Sylp(H) because H is a Hall subgroup. Let P € Syl,(G). Since G is

sylow embedded P N H € Syl,(H) . But then,

IGlp = IPl > [PN H| = |Hlp = |Glp

Therefore, |P| = |PN H]and so P = PN H. Thus, P < Hand so P € Syl,(H).

Now G acts on Syl,(H) by conjugation, and by Sylow’s Theorem, H acts
transitively on Syl,(f{) by conjugation. Hence, by using the Frattini Argument,
Lemma 1.17, we get G = Stabg(P)H = Ng(P)H where P is any sylow subgroup

OfH.-

10



Lemma 2.7 If G is a sylow embedded group and |G| = pgr, where p < g < r are
primes, then G is nilpotent.
Proof’ Without loss, by Sylow’s Theorem, [Syl,(G)| equals 1,q,r, or gr. Also,

the possibilities for the [Syl,(G)| and [Syl(G)| are 1,7,pr and 1,pq, respectively.

We claim that G has a normal sylow subgroup. If not, then

|Gl =pgr>(p-1g+r(g-1)+pgr-1)+1

But then, we get

0>qr-1)-(r-1)=(r-1)g-1)>0

which is a contradiction. So, we may assume that without loss, P < G where
P € Syl,(G) . Let R € Syl,(G) and Q € Syl4(G). Then PQ , PR € Hall(G) and so
by Lemma 2.6, G = Ng(Q)P = Ng(R)P. Therefore, there exists x,y € G such that
R* < Ng(Q) and Q¥ < Ng(R). But then R*Q and QYR € Hall(G). So again by
Lemma 2.6, G = Ng(Q)R* = Ng(Q) and G = Ng(R)Q” = Ng(R). Thus, R 1 G,

Q < G, and we can conclude that G is nilpotent. g

This section includes results about general groups, which are not necessarily sylow

embedded groups. Next, we are going to examine groups with square free order.

The proof of our condition for such groups requires the following four lemmas.

Ll



Lemma 2.8 Let G be a group and H,K < G such that

gca 19l 16l

G _
R "

then G = HK.

Proof: Notice that

Gl Kl _ 6l _ l6l_|H
K| [HNKl  |HNK]  |H| [HNK]

So, both |G |/|H |and |G}/|K] divide |Gl|/|H N K|,and therefore,

JQHQ[— 1vi es—lgj— since gc Qﬁ:
R Ty Rt N 7 TR

Hence,

6l 16l . _ld|

A K]~ lHN K]

It follows that |G| < [HK|and so G = HK . g
Lemma 2.9 Let G be a group, H1,H2,H3 < G such that H; are nilpotent for
i=1,2,3 and

16l 16l

|Hi| " |H)]

ged( ) = 1 foreachi +j.

Then G is nilpotent.
Proof’ Let P € Syl,(G) . Then there exists i,j such that p f |G|/|H;| and

p £ |Gl/|\H;|. Thus, there exists x,y such that P* < H; and PY < H;. Then

12



P* € Syl,(H;) and P¥ € Syl,(H;). But since H;,H; are nilpotent P* < H; and

PY< H;. It follows that P< HY ' and P< H) . But

1

6l _ldl
| | H

) = gea-9 19, -

ged( ’
\Hi| " |H,)|

and so by Lemma 2.8, G = HZ-‘AIH;H. Hence, P & Hfo =G, and G is
nilpotent. g

Lemma 2.10 Let G be a group and p = min.z(G), and suppose the Sylow
p-subgroups of G are cyclic. Then G = PK, where P € Syl,(G), K < G and
PNK=1

Proof: First let p = min.z(G) and P € Syl,(G). Then P is cyclic by
assumption. Let Ng(P) act on P by conjugation. This action induces a
homomorphism from Ng(P) into Aut(P) with kernel Cs(P). Thus, by the First
[somorphism Theorem 1.14, Aut(P) contains a subgroup isomorphic to

Ng(P)/Cg(P). Therefore,
ING(P)/C(P)| divides |Aut(P)| = p" - p"' = p(p - 1).

Considering the above, we claim that |[Ng(P)/Cg(P)|=1. Suppose
ING(P)/C(P)| > 1. Then there exists a prime ¢, such that ¢ divides
[NG(P)/Cs(P)|. Since P is cyclic, P is abelian. Hence, P < Cg(P). But then p
does not divide [Ng(P)/Cs(P)| since P € Syl,(G). Thus g # p. Therefore, g
divides [NG(P)| which implies that g divides |G|. Furthermore, g divides [Aut(P)]

and so g divides (p — 1). We have g < p and ¢q divides |G| which contradicts the

13



minimality of p. Thus, [Ng(P)/Cg(P)| =1 and so Ng(P) = CG(P). Now by
Burnside’s Theorem 1.27, we have G = PK, where Kisnormaland PNK = 1. g
Lemma 2.11 If G 1s a group such that |G| = p1p2ps...ps, Where p; are distinct
primes and # is a positive integer, then G is solvable.

Proof: To show that G is solvable, we are going to use induction on |G|. When
|G| = p1, since G is a p-group, G 1s solvable. Assume that every group with square
free order, whose order is less than |G|, is solvable. Then we want to show that G is
solvable. Let P € Syl,(G) and p = min.w(G). Then P is cyclic, and so by Lemma

2.10, there exists K< G such that G = PKand PN K = 1. Since

I

£

PK . _P __ P
1

_(;_z
K K = PNK

2

then G/K is a p-group which also means it is solvable. Also [K| < |G| and K has
square free order. Thus K 1s solvable by our inductive hypothesis. Hence, by
properties of solvable groups, 1.19 (ii1), we can conclude that G is solvable. g
Lemma 2.12 Let G be a sylow embedded group such that |G| = p1p2ps3...p»,
where p; is a prime forall 1 </ < nand n > 3. Then G is nilpotent.

Proof: We use induction on |G|. We may assume |7(G)| > 4. Since |G| is
square free, G is solvable by Lemma 2.11. Hence, Hall,(G) # & for each
n < n(G) by Hall’s Theorem. Let H; € Hall, (G) for i = 1,2,3. Then H;’s are
square free order and sylow embedded groups by Lemma 2.4. So, by induction H;

1s nilpotent for each i = 1,2,3. But

14



ged(GL 161

, = gcd(p;,p;) = 1 fori .
|H1- |) gc (p p]) or: :#.I

J

Therefore, by Lemma 2.9, G i1s nilpotent. g

Lemma 2.13 Let G be a sylow embedded group and P be a p-subgroup of G such
that NG (P) is not a p-group. Then P < O,(G).

Proof: Since Ng(P) is not a p-group, there exists H < Ng(P) where H is a
p’-group. Then K = PH < G and P 4 K. If R € Syl,(G), then since G 1s sylow
embedded, RN K € Syl,(K). Therefore, P = RN K and so P < R. Since R was
chosen arbitrarily we have P < O,(G). u

Lemma 2.14 If G is a sylow embedded group such that |G| = p?g®r° for distinct
primes p,q, and r, then G is nilpotent.

Proof’ The proof is by induction on |G|. We claim that it is enough to show
there exists H € Hall,(G) for some 7 < 7 (G) such that x| = 2. Without loss, we
may assume H = PQ where P € Syl,(G), Q € Syl4(G). Let R € Syl,(G). Then by
Lemma 2.6 we have G = Ng(P)PQ = Ng(P)Q and G = Ng(Q)QP = Ng(Q)P.
Therefore, by Sylow’s Theorem, there exists x,y € G such that R* € Ng(P) and
R’ < Ng(Q). But then R*P and R¥Q are Hall subgroups of G and by the same

Lemma we get:
G = NGg(P)R* = NGg(Q)R’
Hence, G = NGg(P)R* = Ng(P) and so P < G. Using the same argument, we get

Q < G. Now PR and QR are Hall subgroups of G. Again by Lemma 2.6, we have

15



G = NG(R)P = NG(R)Q. Thus, since P,Q 1 G, O < Ng(R) and P < Ng(R) by
the first and the second equalities, respectively. Furthermore, since PQ < G, we
get R RPQ = G. Therefore, G is nilpotent.

We may assume G has no normal Sylow subgroups and G is nonsolvable. Let
P,Q € Syl,(G) such that [PNQ| is maximal. Suppose |[PNQ|# 1. Then
ONP<Pand QNP < Q. If L,(Ng(PNQ)) =1, let R e Syl,(Nc(PN Q))
and R < S € Syl,(G). Now since P is a p-group, P is nilpotent. Therefore, by

Lemma 1.10, we get
PNO<Np(PNQ)<PNR=<PNS

and so P = S by the maximality of |P N Q|. Similarly, we get Q = S. Therefore,
P = Q which is a contradiction. Thus, A,(Ng(PN Q)) > 1 and Ng(P N Q) is not
a p-group. Hence, by Lemma 2.13,1 # PN Q < 0,(G) 4 G. Let G = G/O0,(G).
Then by Lemma 2.5, G is sylow embedded. Also, |#(G)| = 3. Therefore, by
induction G/O,(G) is nilpotent. Since O,(G) is nilpotent, G is solvable, by
properties of solvable groups 1.19 (ii1), we get a contradiction.

Thus, [PNQ|=1 and so PN P8 =1 for each g € G\Ng(P). Since P is not
normal in G, by Lemma 2.13, Ng(P) is a p-group. But since P < Ng(P) and
P € Syl,(G), we get P = Ng(P). By Frobenius’ Theorem, there exists K J G

such that G = PKand PN K = 1. Now,

_ K _ K _ PR _ 6] — gbpe
K= =Pag = o ~ 19 " Clen =97

16



Therefore, K € Hally, 4 (G), and so G is nilpotent. g
Lemma 2.15 Let G be a solvable sylow embedded group such that [z(G)| > 3.

Then G is nilpotent.

Proof The proof is by induction on |G|. By Lemma 2.14, we may assume

n
Im(G)| = 4. Let |G| =] | p;’, where n >4, p; is a prime, and e; is a positive

i=1
integer for all 1 <i<n. Since G is solvable, by Hall’s Theorem, there exist
H; € Hall,(G) for i = 1,2,3. H; is a solvable, sylow embedded group for each i.
Moreover, [x(G)| > 4 implies [x(H;)| > 3 for each i. Therefore, by induction each
H, 1s nilpotent. Since,

G G e; ej
gcd(%,%> — e ) — |

By Lemma 2.9, G is nilpotent. g

Theorem 2.1 Let G be group with [x(G)| > 3. Then G is nilpotent if and only if
G 1s a sylow embedded group.

Proof: Earlier we gave the proof of one direction of this theorem. Now let G be
a sylow embedded group with |7(G)| > 3, and we use induction on |G| to prove
that G is nilpotent. From Lemma 2.15, it suffices to show that G is solvable, and
we may assume that [7(G)| > 4. Let P,Q € Syl,(G) such that [P N Q] 1s maximal.
If [PNQ| =1, by Frobenius’ Theorem and the argument used in Lemma 2.14,
there exists K < G with G = PK and PNK = 1. Then K € Hall,(G) and so

|mr(K)| > 3. Therefore, since K is sylow embedded, K is nilpotent by induction.
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Moreover, by the Second Isomorphism Theorem 1.15, we have:

PK . P
K - PNK

Q:
K

and so G/K is nilpotent. Hence, G is solvable.
Now, suppose |[PN Q|+ 1. As before, the maximality of |PN Q| implies

Ap(Ng(PNQ)) > 1. Thus, Ng(P N Q) is not a p-group, and therefore,
1+ PNO<0,G) 4G

G = G /0,(G) which is a sylow embedded group, and |z(G)| > 3. Therefore, G is
nilpotent (and solvable) by induction. Since O,(G) is a p-group, and therefore

solvable, by properties of solvable groups 1.19 (iii), G is solvable.g
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CHAPTER 3

Counterexamples

We want to emphasize that embeddness implies nilpotency and vice versa is

not always true for a group G where |7(G)| = 2. Let’s illustrate this by two
counterexamples:
Example 3.1 A4 is a sylow embedded group. |44] = 12 = 223. So, if we have a
subgroup H such that [z(H)|> 2 then |H| = 6. However, A4 does not have a
subgroup H of order 6. If it did, then by Cauchy’s Theorem 1.12, there exists
h € H such that |h|= 3. Since |[44|/|H| = 2, then H ] A4.

Without loss, let 2~ = (123). Then

(123)12D6H = (214) e H

(214)0Y = 341) e H
Also, the squares of the above elements (123),(214),(341) are in H. Hence,
|H] > 7, including the identity, which is a contradiction. However, 44 is not

nilpotent because
< (123) >,< (234) >,< (124) >,< (134) > € Syl5(44) and |Syl;(44)| > 1.

Example 3.2 Ds is a sylow embedded group. Let H < D¢ such that |z(H)[> 2.

19



Then [H| = 6. Hence, |Ds|/|H| = 2 and so H < Ds¢. Since H < D¢, by Lemma 2.1,

H € Sylem(Dg). Therefore Ds is a sylow embedded group.

1 2 3 45 6 1 2 3 4 6
8 = H1 =

1 6 543 2 6 54 3 1

1 23 456 1 23 456
62 = Uy =

321654 2 1 54 3

123456 1 23456
543216 4 32165

So, 82 =82 =62 =1

u? = p3 = u}. By Sylow’s Theorem, [Syl2(Ds)| = 1 or
3. We know that |P| = 4, where P € Syl2(Ds), and there are six elements of order

2. Therefore, [Syl2(Ds)| = 3 # 1 and so D is not nilpotent.

20



OPEN QUESTIONS

Now that we have proven the equivalence of nilpotency with sylow
embeddness for certain finite groups, other questions related to this proof have
arisen and still remain unanswered. These open questions include the following:

1 - Are the concepts of nilpotency and sylow embeddedness equivalent for infinite
groups with a sylow theory?

2 - For a given prime p what kinds of groups act transitively on the set Sylem,(G)
by conjugation?

3 - If G 1s a group such that Sylem,(G) # @ for all primes p, can the structure of

G be determined?

21



REFERENCES

[1] Flowers, N., A criterion for a group to be nilpotent, Note di Matematica, 20
(2000), to appear.

[2] Gorenstein, D., “Finite Groups,” Chelsa Publishing Company, New York,
1982.

[3] Scott, W. R, “Group Theory,” Prentice-Hall, New York, 1986.

[4] Kleidman, P., A proof of the Kegel-Wielandt conjecture on subnormal
subgroups, Ann. of Math. 2 (1991), 369-428.

[5] Lyons, R., Sylow p-subgroups and subnormal subgroups of finite groups,

Proc. London Math. Soc. 66 (1993), no.1, 129-151.

22



	Nilpolent Groups001
	Nilpolent Groups002
	Nilpolent Groups003
	Nilpolent Groups004
	Nilpolent Groups005
	Nilpolent Groups006
	Nilpolent Groups007
	Nilpolent Groups008
	Nilpolent Groups009
	Nilpolent Groups010
	Nilpolent Groups011
	Nilpolent Groups012
	Nilpolent Groups013
	Nilpolent Groups014
	Nilpolent Groups015
	Nilpolent Groups016
	Nilpolent Groups017
	Nilpolent Groups018
	Nilpolent Groups019
	Nilpolent Groups020
	Nilpolent Groups021
	Nilpolent Groups022
	Nilpolent Groups023
	Nilpolent Groups024
	Nilpolent Groups025
	Nilpolent Groups026
	Nilpolent Groups027
	Nilpolent Groups028

