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ABSTRACT

We will begin with basic definitions in the study of differentiable manifolds, including
relevant definitions and properties from point set topology. After developing both the
geometric and coordinate dependent approaches to the study of tensors on a manifold,
we will investigate some of the applications of the mathematical ideas to the study of

electricity and magnetism, and to its mathematical generalization,

Yang-Mills field theory.
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INTRODUCTION

The purpose of this thesis is to show a detailed analysis of the difficult concepts based on

differential geometry, tensor theory, and some of their applications to mathematical
physics. We are going to explain all of the concepts and notation in such a manner that
will lead to a readable presentation of inherently difficult material. Some of the material
appears together in a manner which is hard to find elsewhere.

First in this thesis we introduce the concept of a differentiable manifold (a knowledge of
which has become useful in an increasing number of areas of mathematics and of its
applications) and the concept of vectors and tensors, which are the natural geometric
objects defined on the manifold. We will treat the manifold as being a space which is
locally similar to Euclidean space and will study important concepts defined by the
manifold structure which are independent of the choice of a coordinate system.

A discussion of maps of manifolds will lead to the definitions of the induced maps of
tensors. We will study the operation of exterior differentiation, which depends only on the
manifold structure. And by imposing extra structure, the connection, we will define the
covariant derivative and the curvature tensor.

We will also give a brief discussion of fibre bundles since these are used in some
applications of mathematical physics.

We will investigate some of the applications of the mathematical ideas to the study of
electricity and magnetism, and to its mathematical generalization, Yang-Mills field

theory.
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Some Topological Preliminaries.

Definition 1 : A subset U of R” is defined to be an open subset of R" if for each p €U,
there is an ¢ > 0 such that N(p) €U (N:(p) = {g € R": 6(p, q) <e}).
Definition 2 : The collection of all open subsets of R” is called the topology of R™.
A topological space is a set S equipped with a topology on it.
We refer to the pair ( S,T) as a topological space.
Definition 3 : Suppose (S,7) is a topological space and A4 < S.
Let 7/ ={4NO suchthat OeT}.Then {4, 7/} is called the topology of 4  derived
from (S,) ( or the relative topology).
Definition 4 : A manifold M of dimension n , or n-manifold, is a topological space
with the properties:

i) M is Hausdorff.

ii) M is locally Euclidean of dimension n.

iii) M has a countable basis of open sets.
- M is a Hausdorff space if for any distinct points x,y € M such that x #y there exist U,V
eTsuchthatxeU,yeVandUNV=4.
- Each point p has a neighborhood U homeomorphic to an n-ball in R”*. (Example: a
manifold of dim 1 is locally homeomorphic to an open interval , a manifold of dim 2 is
locally homeomorphic to an open disk , etc.)
So VxeM 3 U, e Tsuchthatxe Uand Uis homeomorphic to a subset of R” ; that is,
3 ¢, : U— ¢,(U) < R" such that ¢, is one to one and continuous with continuous

inverse , ¢~1.




Figure 1.
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Let (X,7) be given, and Y X.

Define Ty={Uy: Ur=UNY,YU € T}.
Denote by (Y, Ty), the subspace Y with relative topology.
Lemma 1: If (X, ) is Hausdorff, then ( ¥, Ty) is Hausdorff,
Proof: Show Vp,qgeY 3Uy,Vysuch thatp Uy, qgely, UrNVy=0.
Letp,q€ Y. Since Y < Xthen p,geX.
Since ( X, T) is Hausdorff then 3U, ¥ € 7T such thatpe U,q e V, unrv=4g.
ThenUNY=Uy(Ue")
VNY=Vy (VeT),andcleatlyp e Uy,qe Vy.
Show UrNVy=@.
Suppose that UyNVy+@ .Let ze UyNVy,s0ze Uy andze Vy.
thenz e U‘nYandze 420 4

| then ze UandzeY,ze Vandze ¥

thenz € UN ¥, contradicting UNV=a.




SoUyNVy=@.

So ( Y, Ty) is Hausdorff.

Definition 5 :Let (S, T) be a topological space. A collection B < T is a basis for the

topology T if every open subset in T is a union of elements of

(K € T=> 3B < B such that UB= X).
BeB

Let B3 be a countable basis of (X, 7).

Lemma 2. : If (X,T) has a countable basis then ( ¥, Ty) has a countable basis.

Define By={BNY:BeB}
Show By is a basis for (¥,Ty).
So we need to show

VYUye Ty 3BY < Bysuchthat Uy=UBy

B yeﬂly
Proof ;

Let UyeTy.SoUy=UNY forsome UeJ.Since Ue T

Then Uy=UnY=[ UB ]nY= U [BnY]
B BeB/cBh

cf/cB
Foreach Be B, BNYe By,

sotake By={BNY : Be B’} then Uy= UBy .

ByEB/yQBy
So Uy=UBy.

So 3 B% = By such thatUy= UBy .
Byeﬂlygﬁy

3 B’ < B such that U= UB

BeB/ch

So By is abasis for (¥,Ty). And since By is a collection of sets which is indexed by B

(which is countable), we have that By is countable.




Differentiable functions and Mappings.

Definition 6 : let " be a function on an open set U < R”. We shall say that f is

differentiable at a € U if there is a (homogeneous) linear expression 3, b;(x' — a’) such
i=1

that the (inhomogeneous) linear function defined by fla) + Y, b/(x* — a’) approximates
i=1

Sf(x) near a in the following sense :

) xfa)>- D, bilxi-a’)
llmﬂ S, =0,

g1 lx~all

or equivalently, if there exist constants b1, ...,b, and a function (x, a) defined on a
neighborhood ¥ of a € U which satisfy the following two conditions :
) =fla)+ 2 b(x'-a)+x—alrlx,a) onV¥V ,and
lim Ax,a) =0.
If f1s differentiable for every a € U, we say it is differentiable on U .
Definition 7 : A mapping F : U — R™, U an open subset of R”, is differentiable at
a € U (or on V) if there exists an m x n matrix 4 of constants (respectively, functions on
U)and an m-tuple R(x,a) = (' (x,a), ...,r™(x,a)) of functions defined on U (on Ux U)
such that [|R(x,a)|l — 0 as x » a and for each x € U we have
F(x) =F(a) + A(x — a) + llx— allR(x, a).

A is called the Jacobian matrix.

The Definition of a Differentiable Manifold
Each pair U, ¢ ,where U is an open subset of M and @ is a homeomorphism of Uto an
open subset of R” , is called a coordinate neighborhood : to g € U we assign the n

Coordinates x!(g), ..., x"(g) of its image ¢(q) in R” - each x¥(g) is a real-valued function

4




on U, the ith coordinate function.
If g lies also in a second coordinate neighborhood V, i , then it has coordinates
¥'(q), ..y™(q) in this neighborhood. Since ¢ and w are homeomorphisms, this defines a

homeomorphism
wopl 1 p(UNV)->w(UNVY),

the domain and range being the two open subsets of R” which correspond to the points of
UNV by the two coordinate maps ¢, y, respectively. In coordinates , y o ¢! is given by

continuous functions

giving the y-coordinates of each g € UN ¥ in terms of its x —coordinates.
Similarly ¢ o ™! gives the inverse mapping which expresses the x —coordinates as

functions of the y —~coordinates

The fact that g oy and y o ¢! are homeomorphisms and are inverse to each other is
equivalent to the continuity of A'(x) and ¢/(y) ,7,j= 1, ....n together with the identities

hg'Qy),.....g"0) =y i=1,..n,

and
g, ... b)) =x j=1,..n.

These two mappings ¢ o ! and y o ¢! are called transition functions.

Thus every point of a #—manifold M lies in a very large collection of coordinate
neighborhoods, but whenever two neighborhoods overlap we have the formulas just given
for a change of coordinates. The basic idea that leads to differentiable manifolds is to try

to select a family or subcollection of neighborhoods so that the change of coordinates

h' and g’ are always given by differentiable functions.
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Figure 2.

pelUnvy

¢:U-p(U)cR"
o(p) =(x1,...x")

w:V->y(cSR

¢ and y are homeomorphisms

Definition 8 : U,p and ¥,y are C* —compatibleif UN V= & implies that the change

of coordinates is always given by C* functions; this is equivalent to requiring
¢ oy and y o ™ to be differentiable from w(UN ¥) to o(UN V) inR” and o(UN V)
to y(UN V) in R™, respectively.

Definition 9 : A differentiable or C= structure on a topological manifold M is a

family o ={U,, @a} of coordinates neighborhoods such that;




1) the U, cover M (M=UU,),
2) for any a, B the neighborhoods Us, ¢, and Up, ¢p are C*-compatible,
3) any coordinate neighborhood ¥, y compatible with every U, pq € o isitself in .

A C* manifold is a topological manifold together with a C® —differentiable structure.

Theorem 1. Let M be a Hausdorff space with a countable basis of open sets. If
V= {Vp,wp} is a covering of M by C*-compatible coordinate neighborhoods, then there

is a unique C* structure on M containing these coordinate neighborhoods.

The reason this Theorem is important is that using the Theorem, we only need to produce
a specific covering of M (a Hausdorff space with countble basis of an open sets ) which
consists of C*- compatible coordinate neighborhoods. Then all 3 conditions of the
definition of C* structure will be satisfied. In particular the Theorem gives an alternate
way establishing condition 3, which generally would be too difficult to verify.

The following is an example of differentiable manifold and we will show that all
properties of a definition C* structure are satisfied. Consider a sphere S? in R3.

We will now discuss how we can think of S§? as a cross-section of what we will call

a light cone at a point in 4-dimention spacetime by which we will mean a set of points of
a form (t, x, y, z), where the concept of distance will be replaced by what we will call an
interval.

These concepts will be further elucidated as this thesis progresses.

First consider a three-dimensional coordinate system. Consider point P in a spacetime as

being on earth.




Figure 3.
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Suppose you see a star which is very far away. That means when you see the light from
that star you see the light that was emitted several years ago. You are seeing this from
the past. The light is coming in from the past. Future is where you are headed, so after
you leave that point you imagine yourself moving along the ct-ray. Yoﬁ are still in the
same point but you are moving in a sense of advancing time. You are moving to a future,
light moves on the cone. That way is called a light cone. The cross-section of that light
cone is a circle. The entiré cone could be generated by taking a single ray and rotating it

around the ct-axis, so as to form a circular cross-section. So the way of describing a




direction that light can travel in a three-dimensional system is in any one of the directions
on that circle.
But in reality we are in a 4-dimensional system, where the light-cone still exists but its
cross-section is a sphere. So the direction the light can travel from the past or into a future
is a sphere.
It is important to anybody studying the universe to be able to describe the various
paths that light might travel. Since light is going to play such a major role in study of the
universe, it would be nice to have a coordinate system that somehow incorporates this
traveling light as part of a coordinate system. It becomes important to be able to
coordinatize a sphere, because a sphere is representative of how light travels. There are a
lot of ways to put the coordinates on a sphere. We are going to use a spherical coordinate
system. We are going to use the xy-plane as a basis of our coordinate system where
instead of thinking of points in the xy-plane as being labeled with a pair (x,y), you think
of it as being labeled with a single complex number a + bi, where i>=1. Making a
coordinate system based on a complex number allows easier study on that sphere.
So P(6,¢) — Ze C, where Z=x+1iy, i*=-1

= d(cos 0 +isin#) = d e (exponential form).

Define N and S to be the north pole and the south pole respectively .

We will show that all properties of the definition C®structure ar satisfied.




Figure 4.

1) Consider U; = 8%\ {N}
U, =82\ {S}

$2=U;UU,.
So the first condition of the definition is satisfied.
2) Using stereographic projection from the north pole N determine a coordinate
neighbprhood U1, 1. In the same way determine by projection from the south pole S a
neighborhood U, 5. We need to show that these two neighborhoods determine a C*
~ structure on S2. , |
Note UiNU,=Q.

Let p eUy, N U, with —coordinate 6.
10
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We will consider the plane 6 = 0 and the geometry of raij;)) in this plane.

p=(1,80,9).

H

Np N (xy - plane) = O(d, 60) = y1(p),

e 167 p

Sp N (xy —plane) = Q'(d', 0) = y»(p)

(WI :U1—> RZ ) ZU2—> sz

We are going to look for some relationships between (d’,8') and (4, ) . So we try to find

transition function such that (¢’,8') = F[(d, 0)].

First we need to find d and d’.

Consider ANOP: ON=0OP=1= /NOP=/NPO,so2p=180°-¢=p=90° —% |

ANOQ : /. NOQ =90%, ON=1, L ONQ =90° -2 |
tan(90°—-?) T d=tan(90°—%) =cot%

Now consider ASOP: OB=0P=1,

180°-(180%°-¢) ¢
L OSP=( Ops="0%0 _ ¢
/
480Q": tn%=%2 =00 =tan? =d=tan?

So we have shown that d=cot% and o' = tan?

we can see that d’ = tang =<,

dand d' = are functions of two variables and they are differentiable functions.
So Fis C* .

Thus the coordinate neighborhoods Ui, w1 and Us, w2 are C* compatible.

3) property number 3 can be checked by using the Theorem : we have a covering by C®

compatible neighborhoods U; and U, , and S? is Hausdorff and has a countable basis

11




(by Lemma 1 and Lemma 2), therefore there is a unique C* structure on S? .

So we can say that S? is a differentiable manifold.

Diffeomorphism.
Let f be areal-valued function defined on an open set Wy of a C* manifold M.

fiW—R

[Clearly, a C*function is continuous. ]

Figure 5.

( + ) aunwy 4 U—pU)SR

1 HU)->U
R” ' ¢k, ..., x")eU
:Wr—R

12




| } ¢(U%) - Ris differentiable.

It is a consequence of the definition that if fis C* on Wand ¥ < W is an open set , then

S 1 Vis C® on V. Moreover, if Wis aunion of open'séts on each of which a real-valued
function fis C*, then fis C* on W7

Figure 6. _
fiW—R

fIV: V=R, VcW
FlI M) =Ax) VxeV

Suppose that M and N are C* manifolds, W< M is an open subset and F: W — Nisa |
mapping, then we have the following definition.

‘Figure 7.

é1 i | : $2 |

| (V) / | / $:(7) !
R ‘ R™ 1

A 13




i . e

Definition 11 : Fis a C* mapping of W into N if for every D € W there exist coordinate
neighborhoods U, ¢, of p and V¥, ¢, of F(p) with

F(U) c Vsuch that ¢, 0 Fo ¢7' : ¢, (U) — ¢2(¥) is C= .

Definition 12 : A C* mapping F : M — N between C* manifolds is a diffeomorphism
if it is a homeomorphism and F~'is C* . M and N are diffeomorphic if there exists a
diffeomorphism F: M — N .

For example, the transition functions ¢ o ! and w o ¢~! which were discussed in the
section, the definition of a differentiable manifold, are diffeomorphisms of open subsets

in R”.

Dual Vector Space.
Definition 13 : Let ¥ be a finite dimensional vector space over F . The dual vector
space V* of V is defined to be the vector space of linear transformations from (L, F))
where F is identified with the vector space overitself. The elements of V* are simply
functions f from V' into F suchthat (v +v;) =fv1)+f(v;) Vvi,v; € Vand
flav)=aflv), ae F, ve V. Elements of V* are called linear functions on V.
Lemma3: Let{v,....,v,} be abasis for  over F . Then there exist linear functions
{fi,.....fn} such that foreach i, filv)=1, fi(y)=0, j=#i.

The linear functions {f, .....,/»} form a basis for ¥* over F, called the dual basis to

Proof. See [3].

14




Tangent space.

We begin with a discussion of the tangent space at a point a of R”.

Let us denote by C*(a) the collection of all C* functions whose domain includes a ,

since we are only interested in their derivatives ata. Let X, = Z a’ Eis be an expression
p

for a vector of T,(R") in the canonical basis; we define the directional derivative Af of f

at a in the “direction of X,” by Af= Z al ax, evaluated at a = (a!, ...,a"). This is a

slight extension of the usual definition in that we do not require X, to be a unit vector.

Since Af'depends on f,a, and X, we shall write it as X /. Thus

Xf ia((’?x'

We may take the directional derivative in the “direction of X,” of any C* function
defined in a neighborhood of a. Hence f— X f defines a mapping assigning to each

fe C*(a) areal number; X} :C®(a) — R.

M:

It is reasonable to denote this mapping by X} = a‘( pr ) where we must remember that

-~
N
—

the derivatives are to be evaluated at ¢ . We remark that X2 n’ =a’, i=1,...,n.
Indeed, X n' = LZ azfaa | 4 }n = 2 af | a —Z afé’ = ¢'. Since X, is completely
=1

determined by the a’, we now see that X, is determined by what it does to each of the
coordinate functions 7/, 1 <i < n. In other words, the vectors which comprise T,(R") are
defined by the above discussion.

Now we will define the tangent space T,(M) to a more general manifold, M,

at p to be the set of all mappings X, : C*(p) — R satisfying for

15




Va,peR, f,g€ C°(p) the two conditions
) Xplaf+fg) =aXpN+P(Xpg)  (linearity)
ii) X,(2) =X Nep) +(p)(X,g)  (Leibniz rule)
with the vector space operations in T,(M) defined by
Xp + Yp ) =Xpf +Y o
(aX,)f = a(X,f)
A tangent vector to M at p is any X, €T,(M).

We see that T,(M) is a vector space over R for if

: X1p, X2 : C*(p) > R and a,feR, then we define
(aX1p + fXop)f = a(X1/) + f(X2,f) , where the operations on the right are in R . This

defines in T,(M) both vector addition and multiplication by real numbers a, 3 .

Theorem2. LetF:M — N bea C* map of manifolds. Then for p € M the map ‘}

F* : C*(F(p)) — C>(p) defined by F*(f) = fo F is a homomorphism ( linear

transformation ) of algebras and induces a dual vector space homomorphism ‘

Fy Tp(M) =T g, (N) , defined by F.(X, )f =X,(F*f) , which gives F.(X,) as a map of

|
1 CF) to R.
|

16




Figure 8.

B T e s
M — | N
_F .
.P' T F )
T, -
P

Ty W)

Define F, :T,(M) —Tp,,(N) by F.(X,) =X mp)-

X, :C*(p) >R,

Xppy : C*(F(p)) >R .
What does F,(X,) do to fe C*(F(p))?

FuXo) X =X =Xp(f o F) = [ X, J(#(1)).
Corollary 1. fF:M—N isa diffeomorphism of M onto an openset UC Nand p € M,
then F, :T,(M) —Tp,)(N) is an isomorphism.
Remembering that any open subset of a manifold is a (sub)manifold of the same
dimension, we see that if U, ¢ is a coordinate neighborhood on A, then the coordinate
map ¢ induces an isomorphism ¢, ‘Tp(M) —T 4,)(R") of the tangent space at each point
P €U onto T,(R"), a=¢(p) . The map ¢ on the other hand , maps T,(R")

isomorphically onto T »(M) 47" is a linear transformation which is one-to-one and onto,

17




so it takes a basis for T.(R") into a basis for T,(M) . A basis for T,(M) is this ¢5'(Z

The images Ejp = ¢3! (Z),i=1,...,n of the basis =, ..., -2 ateach a € $(U) cR”

coordinate frames.
When we do calculus on M we can essentially treat it as though we are doing calculus in
R” (locally M is R" ). So when we do calculus on a manifold it is often customery to

drop the notation of the ¢3! as though 2 form a basis for the tangent space at a point

of a manifold.
Figure 9. | ‘
M , ' . R"
7,00 | = T 4 (R")
-1
P : a=4.0)

¢'

Covollary 2. To each coordinate neighborhood Uon M there corresponds a natural
basis Eip, .....,Enp of T,(M) for every p € U ; in particular , dimT (M) =dim M . Let

fbe a C* function defined in a neighborhood of p , and f=fo ¢! its expression in local

A

coordinates relative to U, ¢ .Then Epf= (-gf;) o

18
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Figure 10.

M

w/

Tangent Covectors. |
Suppose Vs a finite-dimensional vector space over R and let ¥* denote its dual space.

Then V* is the space whose elements are linear functions from V'to R , and we
call them covectors.
If e V*,then ¢:¥V— Rand for Vv e ¥ we denote the value of \
gonvbyo(v) orby(v,0). |
The vector addition and multiplication by scalars in V* are defined by the equations :
(01 +02)) = 61(v) + 52(v)

(a0)(v) = ala(v)),

giving the values of 51 + a5 aﬁd ao,a € R, on an arbitrary v € ¥, the right hand

operations taking place in R .
19




1)IfF. : ¥V — W is a linear map of vector spaces , then it uniquely determines a dual
linear map F* : W* — V* by (F*0)(¥) =a(F.(v)) or (,F*(6)) =(F.(v),0).

When F, is injective (smjecfive) , then F* is surjective (injective).

Figure 11.
F,
- |
a | w
F(WeWw

Vand V*, Wand W* are dual of each other
n

Fw v if D o€ W, then F*(v) € V* (so there exists an element x of

V*suchthat u=F*@):V—R)
velV

is givenby F*()() = o(F.(+)).

2)If ey, .....,en is a basis of V', then there exists a unique dual basis wl,.....,w" of V*

; 0l=0 if i=j
s vr-s (422412
i = =

(each element of the basis is a linear function on ¥)

IfveV,then wl(v),....., w'(v) are exactly the components of v with respect to the basis

20




In other words v = il w(v)e;.
j:

Proof. Let {ei,. .., e,} be abasis for V. Then v =j§31 aje;.

, . n n . n . , .
Consider w(v) = w‘O[,ZJ1 ajej) =X aw"(e;) =jZ1 @07 =a107 + . . . +a,0% = a,,, where
= J= =
ip=1,...,n;and since iy is a dummy letter, we can replace it by .
n i
Sov=2 w()e;.
J:
3) There is a natural isomorphism of ¥ onto (V*)* given by v — (v,.); thatis, vis

mapped to the linear function on V* whose value on any o € V* is (v, o) . Note that (v, g)

is linear in each variable separately (with the other fixed).

Covectors on Manifolds.
Let M be a C* manifold, p € M. T;(M) is the dual space to T,(M); thus o, €T3(M) isa
linear mapping o, :T,(M) — R and its value on X, €T,(M) is denoted by
op(X,) or <Xp, p ).
1

Given a basis Eip, .....Eq of T,(M), there is a uniquely determined dual basis w}, ....., w?

satisfying by definition , w},(E;,) = 8} . The components of o, relative to this basis w’, are

equal to the values g, on the basis vectors Ey,.....E,, , that is
op =2, 0p(Ep)wh , i=1,..,n. And now we are going to prove it.

Proof. Let o, €T;(M). Since {w!,...,w"} isabasis of Ty(M), 6, =2 a;w), ,a;eR

op(E;p) = (T aiw’, )(Ej)

21




s

0,i+j

va(EJr)=5}={ 1,i=j

n

then Y[awi(E;)] = ;.

=
so 6p(Ep)=0a; ,1<j<n.

Then o,=2 gp(Ep)wl ,i=1,..,n

T, is a set of linear mappings from T, to R , and we can view elements of T, as
linear mappings from T, to R.
From the space T, of vectors at p and the space T, which consists of elements we call

one-forms at p , we can-form the Cartesian product,

I1:=T}%...X Ty xTpX.... XTp ,
r factors s factors
——_— Sy

i.e. the ordered set of one-forms and vectors ', ...n", Y, :‘..Ys) where the Y’s and #’s

are arbitrary vectors and one-forms respectively.

Example J]!=T;xT,

A tensor of type (r,s) at p is a function on 11 : which is linear in each argument .
If T is a tensor of type (r,s) at p , we write the real number into which T maps the
element (4!,....,%",Y1,..Ys)of [ 1§ as T(n',...,n", Y1,...Ys) . So,
T:J1:—R
(we write T(s,Y) when r=1,s =‘1).
For example , for Va,be R, u,0eT,:
T(au + bu,Yl o Ys)=aT(, Y1,..., Ys) +6T(0, Y1,..., Ys)

and for Va,beR, X, YeT,:
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TG, aX +bY, Y2, Y ) =T, .. 1", XY, . Y) + 6T, ., Y, Y 5, oY)

The space of all such tensors is called the tensor product

TP)=T,®..8T,®T; ®...0T; .

I
r factors s factors

In particular ,
Ti(p) =T,
) =T;.
Addition 6f tensors of type (r,s) is defined by the rule :
(T+T') is the tensor of type (r,s) at p such that for VY, e T M eTy:
(T+T)7,s ", Y1, 0, Y5) =T, 7, Y, 0, Y +T/(p!, ...,777’, Yi,...,Ys)
Similarly , multiplication of a tensor by ascalar a € R is defined by the rule:
(aT ) is the tensor such that V¥, €T, ,#/ €Ty :
@D, .’ Y1, 0, Y)=aT(G, o, Y1, Y
With these rules of addition and scalar multiplication, the tensor product space Ti(p)is
a vector space of dimension n™* over R, since each factor of T,(M) and T} (M) is of
dimension n.
LetX; €T, (i=1,..,r), o €T, ,(G=1,..,s5). We denote by
X1©...0X;®®' ®.... @ w* that element of T’(p) which maps the element
.o’ Y1,..,Ys) of TT¢ into
', X1) e ", X X, Y1) - - 0, Y,) e R,
Letw €T;(M) ,and let {dx', ....,dx"} be a basis for T3(M)

ae'(F) 1, =0f, & T, R, 1<izn.

So w=Y w; dr’, where w; = w(E;).

=1
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n
We are going to introduce the Einstein summation convention : ¢ = co;dx’ = Y, cw;dx’ .
=

Now, suppose we have a different basis for T;(M) : {dx?, ..., dx"}; then o=y dx?
(like two different basis from two different neighborhoods U and V')
What is the relationship between dx’ and dx” , @; and 0, ?

Figure 12.

* $.0) | ' ‘) . “

- The®) |

R" C Te®) R"

We know ¢, : U— (1), ¢3! : ¢(U) U
By Theorem3 we have ($u). :Tp(U) —T 44)(¢(1)) ‘

#D). T i) —T,(V)

Now since - is a basis for Tg,)(R*) and Ty, (R") is isomorphic to T,(M) , then [4

basis - is a basis for T,(M).
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So, a basis for TP(UQM ) is technically given by

and technically a basis for T;(U) is
{05 1ap)) s woes S5 100}
So we say that {(¢;l)* 5‘3,— | 4u0) } is a basis for T,(U)
- and {$2 (@' 14,67)} is abasis for T3 . (85 :T},0,($(U) —T3(0)).
That is, a basis for T,;(U) is identified with and written as {'a%’ | p }, i=1,..,n

and abasis for Tj(U) is identified with and written as {dx’ |, }, i=1,....%.

Consider a vector o which has two different coordinate representations x' and x¥ with
respect to old and new coordinates .
Then we have transition functions : x* =x"(x') (1)

#=xG") @) , i,i’=1,...,n'

Figure 13.
RO |
(")
$)  C o)

Before we going further let us consider the following: iffis a C* function on M, then we
can define df b& the formula

Xp, dfp) =2pf  or  dfp(Xp) =Xf.
As p varies we obtain df,'th.e differéntia.l of p. In the case of an open set U < R”, the

coordinates x! of a point of U are functions on U and, by our definition, dx’ assigns to

each vector X at p € U a number X,x’, its ith component in the natural basis of R".
25




In paricular (-2 5 X'y = 55 =0} sowe see that dx!,...,dx" is exactly the field of

coframes dual to gfl—, - axi,,. Now if fis a C* function on U, then we may express df

as a linear combination of dx!, ..., dx". We know that the coefficients in this

combinations, that is the components of df, are given by d](;a;,—) 6x‘ Thus we have
df=ZLdx! +... +ZLdx.

Now using the above result we have

/

i
. al 1
def = Zgel 4 g2y 8 e

So dx’ —E | 4py dx* (recall summation on i) i, = 1,.

(this dx is expressed in terms of a linear combination of the dx’).
Now take arbitrary fe C*(¢(p)) or C*(w(p)) : Ax)=fx"(x?)). By the Chain rule,

of &

we have ax, Z T o -

n i i
8 a3 o & b S .
So 35 |4 =i§ o on L) = 57 = o | éw) ax,.,lv,(p) (Einstein Summation

Convention).
So F*('a%‘)‘ oxi |¢(p) ax,/ ) 3)
and F* (dx’ = ax' |¢(p) dx’. 4)

Consider a covector @ = w; dx’ = dx? (same covector with different basis)
Consider UNVand peUNV.

The function ¢ takes p into ¢(U) < R, the function y takes p into w(¥) < R".

26




Figure 14.

| Ti,WUNP)

AN

wewny [/
- ¢(P)=(xi) -
F1 p»
T UNP))
Rn
F=yog™ . HUNV) —y(Unv),

Fl=goy™: w(UNV)-¢UNY)

By the Theorem2 we can define linear transformations

Fu Typ($(UN 1) =T @0 1)
F* IT;,(p)(!//(Un ")) —>T;(p)(¢(Uﬂ V)

We would like to answer several questions :

Tv@)(W(U nw)

Rn

- what happens to a basis for T 4(,)(¢(UN 7)) underF, ;

- what happens to a basis for T},,(w(UN 7)) under F*;

- what happens to the coordinates of a general tangent vector under F, ;

- what happens to the coordinates of a general covector under F* .
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We have a vector in T,(M) ( zand z/ are coordinate representations of this vector) and

a covector in T3(M) ( w and ' are coordinate representations of this vector).

Consider a covector = ; dx’, w;€R w €T, (W(UNP))
a covector o’ = w; dx” w =F *(0')
avectorz=z' 2 | 40 z€Typ)(@UN V)

a vector z/ = z” % | v z/ =F.(z)

Wehave F*(dx')= %c;'r |4y dx' by (3)

( dx? is a basis for Ty w(UN7P)) and

Fo(F g )= %’i—/ lo0) 27 | wpy BY (4)
( = is abasis for Ty,)(¢(UN V)
Given a covector ( or vector ) at p , we can express it in terms of x’ or x
w; dv = 0 =F*(0y dx') = 0y FH (@) "9 oy & |4, dx

Since {dx’} form a basis it follows that

Wi =Wy 57 ax, | ) (#/ represents the column of a matrix , i represents the row of a
matrix).
The (G,i’) entry of the matrix corresponding to the linear transformation F* with respect

to the bases {dx” } in the domain and {dx’} in the codomain of F* is given by

o
o | 4=t ,
d ) ) i 0 i oxf 0
Next z' 2y =2/ =F.@) =Fu(Z' 25 140 ) =2 Fu( G Lo ) =7 % st o |yt -

Since { } form a basis, we have that

oxi il

i _ - il =1
2 =2 55 L4 LI'=Ll.,n
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(i',7) entry of the matrix corresponding to the linear transformation F, with respect to
e basis { e } in the domain and {77 | in the codomain of F. is givenby %5 | 4p) -
Thus the matrices representing F* and F, with respect to the bases given are the

transposes of each other . -

Example : Consider a sphere. p e spherebut p =N, p#S.

Figure 15. | Ta(s?)
5 T,(5) ?
v | | V €T, (52)
W
/ |
11 |
o) | | - w(p)
F-
Tn(R?) - TR
RY Tp®) T;®) R

Determine two neighborhoods
¢:p— ¢p)
v p— yp)
We have defined earlier that ¢(p) =(d, 8); w(p) = (&, ') , and we found a relationship
between d and d', eandB/‘;i.e. d=% ¢<9.
At p define the tangent space T,(S?) . At §(p) define Ty(,)(R?)

And ¢, :TH(S?) =T 4)(R?)
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Also we have a tangent space T, (R?) with
W Tp(82) —T ) (R?)
By the Theorem (2) we can define
Fy T yp)(R?) —T,n(R?)
. 2y : o a y
the basis for T 4,)(R?) is {53 | 60} » 35 | pip) }, and
the basis for T,,(,)(R?) is {Z | v > |vip) |3 U

and we can define
Fr TR =T, (R?) |

Find the matrix corresponding to F, - linear transformation with respect to the basis
0 0 . . o F;) . .
{5 L6003 » 26 | 60p) } in the domain and {W | wip} s 207 | wip) } in the codomain . i

ox’

o .
(28 =2" 57 l4)
This is going to be a 2x2 matrix since we are in R

Since d' =%, 0 =6 we will have

ad _ (1Y o _L ad _ |
ad = d) =Tz o =0 ‘i
iy
‘:H
0 _ o _ f
aa =0 a6 =1 |
{ ~1 3\
= 0 . . \
So we have 0 1 for our transformation matrix v
L0 1)

0 .
1)¢(p) z

Since the matrix is diagonal then we have the special case when the matrix corresponding

to F* with respect to the basis {dd’ | v > 40" | ) } in the domain and

=L
. . . . dz
{dd | 60y » 40 | 40) } in the codomain is the same as before, i.c. [ 0 1 J .So
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w 01 o) w

Now take an element T of T%, the tensor product. We want to write down the

form that T takes with respect to a basis for this tensor product :

T=Ti-r ;. -673‘1- ®..... ® afir Q' ® ... Qdxs

(implying r+ s summation symbols )
That is‘for each iy,...,i, take a basis vector from T, ;

for each jy,...,js take a basis vector from T} ;

Ilyeeir 5 J1,...,Js Tange from 1 to n where n is the dimension of the our manifold .
T is a mapping from [ [, into R:
T:II; - R.

What does it do to a general element of set ] [, ?
Given Xel]) , define T(X).
We also know that T is a multilinear mapping by definition, which means that it is linear
in each factor, which means that just like a linear transformation what T does to an
arbitrary element of our vector space is completely determined by what T does to a basis.

Thus it is sufficient to find T on a basis for ], .

T ((axk, ..., dx* |, 355, s 35 ) )=
(kiyenrkr,er,..,es=1,..,n; dim(H:)=ns+r)

(take each corresponding operator and operate on the corresponding argument )

= Thedr ;22 (k) v 55 (@9 - (G5 e - A9 ()

..... s 6xi1

(32 and dx*' are dual of each other )
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=T;} """ '::5;‘1‘ Cat 5{5’&’;‘1 ....»0%  (where “” denotes ordinary multiplication of real

0,k| *+ 11

Lk =i, and so on).

numbers and 5;‘1‘ = {

So the only terms surviving will be when i1 =ki,...,ir =k, , j1i=e€1,....js =€

= T((dh, ., dx?, 2o, 52r)) =Thb L,

Example 1). T(dx!,dx?, 2, &) =T"2
(we are not saying how big the dimension of our manifold is )

Example 2). Suppose T=% ® . ® 27 ax ® dx!' ® ... ® dx! . Inother words, T1+1 =1,

; S times 0 T T T Tl
r times —_—

all other components of T are zero.
Find TX) vXell, (II; isthe domain).
1. Find T on a basis for ] | .

2. Write X in terms of a basis for [ |} and apply T.

=TI 22 @k e 25 (b)) - de! (G) < e d (B55)
=Tl 6. .. 6% .6l -...6l (everything will go away unless .

k1 = l,...,kr= 1,e1 = 1,...,es = 1)

=2 ®.0 Z@dr'®...@dx!.

s times
So T(X) = 5%((01) e gi-;(a)’) cdx!(zy) - ... - dxl(zs)

(co‘ dx“) ,a%(w; dxi,) ) dxl(zlil aij]) dxl(z]s ax“)
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=l (F dx) - o (F av) - Z(axt 2-) - et 2

= co,lé'i‘ e }OY z’i‘é}l S ;’5}, (the only terms surviving will be with

Now we have a question: what happens to the components of a general tensor when we
change the coordinates?
Suppose we have a tensor TeT(p) . Geometricélly, this means that we have a point p on

the manifold, and we have a space attached to that point p .

This spaceis T;®....0 T, ® T; ® ... ® T; , which is a vector space with dim M =n;
r factors s factors

hence the dimension of this vector space is n™*.

Figure 16.

V4 x=xf(xt) N
¢(@) = (') =
' X = x‘(x’l) W(P) &)
R . R»

For a point p in the intersection of two coordinate neighborhoods, (U, ¢) and (V, y),
we have two mappings ¢ and v : ¢ produces coordinates ¢(p)

w produces coordinates w(p) .
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And we have transition functions : x” = x* (x’) and

xi=xi(x") .
We know how tangent vectors change in their coordinate representations and how
covectors change in their coordinate representations. Now we are going to do this for a
general tensor.
The tensor T is the same object regardless of what coordinate system we use , but has two
different representations; one representation, with respect to the old coordinates:

(*) =Ti1....ir Giods —a% ® _____ ® af”' ®dle ® ..... ®dxj: ,

and a second representation with respect to the new coordinates:

(**) T=Th-# , . ﬁ@ ..... ® 2 @dx' @ ... ®dr: .

Suppose we know (*). So we can replace each of the factors in (**) individually in terms

of factors in (*). So we replace a_ with ax/ 6%,1 and so on. Thus we have (with all

partial derivatives evaluated at “p”)

il S il
T=T#~" , 2 ... ® 2 @d¥ @ ... @dx
15 g Bxir

VR it B axir ax’I xz:
=T1----3 &= = —_—
ST g o 7 © o ® a ® o O ® .. ® - dw

i A
i J. . L.
but 2’5;,— yers g;‘ — are just numbers, so they can be pulled out in front.
ax't
. . o
i oxi1 . . oxir . ox'1 . 6x1s ad d J1 s
=Th-dr PR T g e o ® e ® 5 @AY ® . @ dx

Now setting this equal to the right-hand side of (*) and using the fact that these two

expressions for T are now with respect to the same basis, and coordinates are unique,

yields
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i . o 7
Thedr . =THlr L Lot e . o
J1eds Jids ax,-/1 ----- ot a1 T owis 2

which is called the Tensor Transformation Law.

But the important fact is that the tensor itself as an object does not change. Since we
want physical laws of the universe to not depend on which coordinate system we use, we
do not want what happens to us in the universe to depend on how we label where we are.
This is called the covariance of the laws of physics, which basically means that we want
our basic physical principles to remain unchanged when we change our coordinate
system.

For example, let us consider an arbitrary element TeT,(M) given by

T=T! % (in unprime coordinates) and T’ =T"/ga‘.,— (in prime coordinates).

We need to show that T=T".

i

We know that T? =T* % ( by the Transformation Law) and

0 _ o & _ 3 &
axt! T oxi gxi! T o gy

(changing i to j). !

N i ‘
/_i/a_iax'[a_éﬂ_] |
So we have T’ =T it S ipwipwr; |

[
=T o o ] ol |
=V e o Jow \

_ridd o
=T Oxi ox/ |

i/ 6 |
=T'5; o !

=Tj?§;7 :Tf% =T (change j to i)

Thus T’ =T (tensors are independent of coordinate system).

a — dvP a
Now consider a special kind of tensor : F=F,,b(dx ® de’ 3 G B ) ,a,b=0,1,2,3.

T,(M) has a basis {dx*}, so {dx® ® dx’} is an element of T} ®T}, and
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dim(T; ® T;)=16 (4 elements for @, 4 elements for b).

Also note that dx? ®dx? is not the same as dx® ®dx*.

Example : for a =0,b =1 consider dx° ®dx! versus dx! @dx°.

These are different mappings in T; ®Tj.

Remember that T, ®T} acts on T, ®T, where the first covector acts on the first vector
in our pair and the second covector acts on the second vector. But if we switch the
mappings then acting on the first vector with dx° and acting on the second vector

with dx! is not necessarily the same thing as acting on the first vector with dx!

and acting on the second vector with dx° .( e.g. dx! (a%) =0, but dxo(gao) =1).

Thus dx® ®dx! is not the same as dx! ®dx? . Of course if a = b then they are the same.
In fact if a = b, then dx? ®dx? —dx? ®dx* =0.

Later in this thesis, we will describe how the F given above can be interpreted as the
electromagnetic field tensor in physics.

So let us look at F,, more closely :  Fg will be a skew-symmetric 4 X 4 matrix.

When a=b5,itis goingtobe 0: Fg=0,2=0,1,2,3.

Next compare Fq, and Fp, . We have Fop=-Fjq .

Now F,; =—Fp, and F,, =0 are properties which define a skew-symmetric matrix:

thatis FT = —F,

0 =
Fab= %x 0

Q Q& & 8
o n
W N = O

0
b=0 b=1 b=2 b=3

Maxwell was able to write down equations that show how E’s (electric) and B’s

(magnetic) fields are related to each other. And those relationships became known as
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Maxwell’s equations, which describe the behavior between electric and magnetic fields.

F .5 will consist of entries giving the various components of E and B.

Next suppose g =ga (dxa ® dr’ ;’dxb 8y ), a,b=0,1,2,3.
If we change a and b, we will get the same matrix .

g becomes as a matrix

8goo *
g11
g22
* £33 |

and |

g is symmetric; thatis gT=g.
We would like to prove that every element of T; ®T, (dim M = n ) can be uniquely

|

\

written as the sum of a symmetric and skew symmetric tensor . |

Proof: Take §eT; ®Tj ,then S§=S dx* @dx®

First define  Sg) = % (Sap + Sba)

and define S[ab] = % (Sab —Sba) .

Show  Su = S(p) + Stas] -

" Show  S() is symmetric. ( That is, show Ss) = Sea) )
Soa) = +(Sta +Sap) = 5(Sap + Ssa) = Sap)-

Show  Spu is skew-symmetric ( that is, show Sz = —S(pa1)- |

Sisa) = 2(Sba — Sab) = =5 (Sab = Ssa) = —Sas)-

Show  Sap = S(ap) + Slabl

S(ab) +S[ab] =—;—(Sab+Sba)+%(Sab—Sba) - ‘ :

1 1 1 1
=5Sab + '2_Sba + 7Sab - bea
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P e e e R

=18+ 5Sab
=Sab
So every element of T, ®T, can be written as the sum of a symmetric and
skew-symmetric tensor .
Finally, show that this decomposition is unique.
Let Abe nxnmatrix; A=B+C suchthat BT=Band CT=-C.
Then AT =(B+C) =BT+CT =B-C, A=B+C, and 2C=A-AT.
So C=3(A-AT)
and B= 7(A+AT")
and these are unique solutions for B and C, with B symmetric and
C skew-symmetric.
Thus we have shown that every element of T, ®T can be uniquely written as the
sum of a symmetric and skew-symmetric tensor. And the components of B and C
are as given above.

Now we will look at /\” - skew-symmetric elements of T,® ... T, .

r times
rumes,

Example : Tigpea) =

T aved — Tacd + Teavd — T dabe — Tacvd + T adve — T aved + T acdp
"‘Tadcb + Tbcaa’ - deac - Tbcda + deca + Tbadc - Tcadb - chad
+T cbda + Tedab — T cdva + Tdacs + T abac — Tabca = Tdcab + Tacba

L
24
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A basis for A\ is dx® Adx® A.... Adx> (wecall A a wedge product )
Example : Consider = T, ®T;;
if T=Ta dx® @dx®, then Tiudx® @ dx=1[Tap ~ Tpeldx® @dx?
=3 {Tapdr® ® dx® — Tpadr? ® dx?] = 7[Tapdx? @ dx® — Topdx® ® dx“]
=Tw (ﬂeﬂxl’;‘—m) =T »dx® Adx? and  dx® Adx? is a basis for A’

A typical element of /\2 with n=4 can be represented by

0 a B vy
-a 0 ¢ €
- < 0 ¢
-y —€ —¢ 0
01 23
. . . -1 0 45
Example. Consider a skew-symmetric matrix | , , o - |- dx® Adx? = —dx® Adx?,
-3-5-70

and the entries above the main diagonal will have the property that the row number is less

than the column number ( e.g. (a,0)=(1,2) : b>a).
So consider {dx? Adx?:a,5=0,1,2,3 such that 5> a} . Then since dx® Adx? =—
dx? Adx?, this set will form a basis for A%

-find the dimension of this space :

when dim(M) = 4 , the dimension of this space is 6,

-write out a basis for A\’(M) when dim M =4 :

2 { A0 Adx!, dx® Adx?, dx® Adi®, dx! Adx?, dr' Adx? , dx? Adx® ).
Now find dim(A*(M)) if dimM=n.

i Then we have 1+2+3+.....+n-1= S, independent entries in our n X n skew-symmetric
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matrix.
So S, = M;ll . We will prove this by induction :
20-1)
Dforn=2 , 1=5-=1
n(n-1) .
2

2) suppose S, = —5— istrue forsome n—1(n=3).

3) show itis true for (n—1)+1 (forn).

14243+t (=1 +n="80 4 p= 20D _g
By the principle of mathematical induction , we conclude that S,; = L('in)_ is true

for all positive integers n—1.

We want to define a differentiation operation, d, on this set /\"(Af), which is

known as the exterior derivative. (d operates on /\"(M) )

Theorem 3. Let Mbeany C* manifold and let A(M) be the algebra of

skew-symmetric forms on M . Then there exists a unjque R-linear map
d : ANM) — AM) such that
1)if fe A°() =C=(M), then dnf=df , the differential of f;
2)if 6e AN'M) and oe A°(M),then du(BAc)=dnd Ac +(=1)"0 Adno ;
3) d2=0.
Explanations :
1)If »=0, then /\°(M) = C* functions from M into R.
If r=1 weuse {dx?} asabasis for A' ).
If r=2 weuse {dx* Adx?,b>a } asabasis for A\°(M).
Let fe C*.How does d act on it ?

df=ZL dx' (fromcalculus), i=1,..,n , n=dimofM.
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Since dx’is a basis for T; then df=-Z dx' is an element of T}
2take 0 A (M) : O=adx A..... Adx*

ge N°M) : o=bd¥! A ... A dw

=(dpma Adx" A ... Adx) A (Bdx A ... Adxs) +
+ (1) (adx1 A ..... Adxr ) Adub Ad A ... Adx/s) , where we can
explain this last step by the following :

we are going use the fact that db = % dxe .

Now we have a22dx® A(dx™ A ... Adx™) A(AAT A ... AdP).
We are going to interchange the dx¢ factor with each of the dx’* factors (where
k=1,...,r) . And we are going to have r interchanges.

(-1) dxt Adx® A .......

(-1)* dx’' Adx™2 AdX A ...

(1) dxit Adxi2 Adx® AdXE A ...t

(-1)" (dxr A ... Adxr) Adb

The exterior differentiation operator d maps r—form fields linearly to (» + 1) —form
fields:

d . /\r(M) - /\r+1(M) .

Let 0=0,, ; dx'' A..Adx" . What does df belong to ?
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0:... s N°M) (r=0)
By 1) d6’,~1,_,,-, = %ei dxe

By?2) df=(d6;. ., )dx" A... Adxr +6;,. (-1)°d (dx" A ... A dx*)

30;, i : . 5
=— d* AdX" A A" +0 (d°=0)

36;,..ir . .
= =T dx® Adx't AL A dx

oxe

r+l

we can see that we have extra factor in our wedge product, so dde A" (M) .

So d: AW—-A"w).

Now we give an example of the calculation of an exterior derivative in the case that
we have a 1-form covector in 3 dimensions.
Let ye A iy=y. &, a=1,2,3 or (x,,2).
We will write out in detail what dy looks like ( dy € A*(M)) and give a
“calculus/vector analysis” interpretation to this.
dy =d(y, dx®) = (dya) dx® + 74 d (dx?)
= 2o dxb A dx? +0

_ Ha dxb/\dxa

T oxb

=Y AP A dx?.
Now we are going to show that y,pdx® Adx? =y, 5dx® Adx.
First consider an example. Suppose a=1,2 and b=1,2 then
Yasdre? Adx® = (y(ap) + Vi )dX” Adx®

=%—(Va,b +Ybat Yab— ya,b)dxb Adx?

=%(71,2 + 921 + 712 —p2,0)dx2 Adx! + %(V2,1 +y12+ 721 —71,2)dx! Adx?
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=5p1.2dx Adx! +5y2,1dx? Adx! + -;-yl,zdxz Adx! + Lyp dx! Adx?
Ly idx? Adx' - T712dx2 Adx! - Ly 1dx? Adx! - Ly 2dx! Adx?
=2y12dx? Adx' — Ty21dx? Adx! + Fy2,1dx! Adx? — Ty1,2dx! Adx?
=yu1dx? Adx! +ypndr! Adx?

—iapydx® Adx®

In general we have
Yapdx? Adx® = (7o) + Vap))dx® Adx®
=1 (Vap + Vb + Vb — V5.a)dx® Adx?

=% %E (Yap +Vbat+ Vab— Vb,a)dxb Adx*?
‘% %} (Yap +VbatVab— Vb,a)dxb Adx*®

Each % 74dx? Adx® will be canceled with each 7 yp.dx® Adx? and
a<b

a>b

3 yzi,dxb Adx® with Va fdx” Adx® ( since dx? Adx® = —dx® Adx” ).

Each  yapdx? Adx® will be combined with L yapdxb Adx? = =3 yapdx® Adx” and
a<b

a>b a>b

L e Adw = § pigdn® ADR? with —3 7pds” Ad,
a

a<b a>b

so we would have ygpdx® Adx“.
SO Papdx? Adx® = [ap1dx® Adx".
But yapdx” Adx
=1(y12 - Y21) de? Adx! +3 (13 —p3) A A dxl + $(pa3 - y32)dx® Adx?

%()’x,y - 'J/'y,x)dy Adx + ?lg'(yx,z - Vz,x)dz Adx + ';_('})y,z - '}’z,y)dz /\dy

=-;—(yy,x —yxp)dx Ady + '%'(Vz,x — yxz)dx Adz + 32y — ¥y2)dy Ndz
(2 2) e ndy+ H(% - B aradz+ 3H(F - ) s

2
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In this case y = (x, 7y, 72), and we have from calculus/vector analysis that

i j k

9 9o 2 | _ (P O ay: 6yx &y o kY
o oy & —Curly—z(-g y) ( - +k a_;—% i
Yx Yy Yz B

where 3dy Adz corresponds to i

%dx Adz corresponds to —j b

1dxAdy correspondsto k. 1

Now consider A=A, dxt AL AdxT. A

The question is how the components of dA transform under a change of coordinates using )
the transition functions. We have (using properties 2 and 3 on pg38) i il
dA=dA;, i, dx" A ... Adx",

and next we are going to take dA using the primed coordinates and show that we get the i
same answer as if we take dA using the unprimed coordinates. That way we can say that | \
the exterior differentiation operator is covariant ( the coordinates might change but the N
basic form of the rule should not change).

So consider another set of coordinates {x"} . Then A=Ay 4 dx¥t A ... Addx” , where the

components Ay are given by

A _ il axh2 oxir A
i A o | eseses M P10y -
1 e ax2 Ox'r

Thus the (r+ 1) —form, dA, defined by these coordinates is

dA=d(Ay_ydx' A ...\ dx¥)=d (“;’;—1 =% An. .,) Adrit A o A d

(using the fact that d> =0)
= (‘ax—il‘ . 'aiif;‘ dAil...i,) Adxt A A dxir

T .
ox'l ox'r
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22xi1 ox™2 6x"
prrwib & dx¢ Adxf A L A

o i 62 in a ir .
+ x./ ./x = A11 iy dxtl /\dxe /\dx'z Ao A dxt + ... +
axt ax20x axt

axh ax"z 62 ir / i
+ . . All lr dxll /\d-xl2 /\ e /\ dxe /\ dx"
ax'l 6x’2 ax"a el

=3in/1 . axr dA” 1,/\dxi/l /\."/\dxi/,

ax'l T r

—dA. . A[ZE dxh 22 gt & it
_dA,l___,,/\(axi,l dxl)/\(axi,z dxzz)/\.../\(ax¢ dx )

=dA;, i, ANdx" A dx?2 A ... Adx*r

n

(Since 2 dx Adeh =3 S 2 gx¢ Adxt =0, and similarly for all terms

i=1 el=1 Ox' '\ el

involving second order mixed partial derivatives.

For example, suppose ij = 1,¢/ =2 and then

2 i dx1 de_dXZ dxl
i| =2,¢' = 1, in the double sum given. Then aala; 8’ dredr )

! dr?@dx! ~dx! @dx? )=
Ox20x! 2

9%x1 (dx’@dxz—dxz®dx‘ )_ 92xit (dx‘@dxz—dxztsdx‘ )_0
T ox'ox2 -

2 ax2ox! 2

32 iy 62 iy
(SINCe 5,757~ ax2an! prr)l

Now let y €T,(M) : y=yb2 .

Consider % =3¢ axc (pamal derivative of y? with respect to x° )

We will show that the components 5, do not transform as a tensor should when we

change coordinates. h

At each point of M select a tangent vector in such a way that we now have a function
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on M where the function’s codomain is the tangent space associated with each point

of M. They connect up in a nice way that we can differentiate them, but the problem is

when we do that the components of what we get are not going to transform in a way that

a tensor should transform when we change coordinates.

/ / / boay
; iy (&L p) =& o I [ S, oty O | o
Spec1ﬁca11y, (6% ),cl = (axb ')  Tlee ot Y axc | oxcoxb Vot o Taxd |

_ o2b  ax° b o &
= Zreont axd Y + 50 Ve a2

/
p! p o oxf
and we can see that Yy Ve 5 3 -

Thus the conclusion would be that y% are not the components of the tensor, and hence

are not covariant . That is going to motivate us looking at another kind of derivative, the

covariant derivative.

Covariant differentiation.

Definition 14 : A connection V (del) atapoint p of M is a rule which assigns to

each vector field X a differential operator Vx which maps any C " (7 continuous
derivatives) vector field Y into a vector field vx Y where:
1) vVx Y is a tensor inX,1e.
for all functions f,g and vectors X,Y,Z - C 1 yector fields,

Upxagy Z=fVX Z+gVyZ.

2) Vx Yis linear in'Y (usual derivative rules )

vx (@Y +PZ) = aVx Y+fVxZ y
3) for any C' function fand C' vector field Y, |

vx fY) =X(Y+ Vx Y.
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Then we call Vx Y the covariant derivative of Y with respect to V in the direction of the

vector field X. Vx Y is a vector field, which is a tensor field of type (1,0).

We can define VY, the covariant derivative of Y, as a tensor of type (1,1), which means
it is a tensor of a vector field and covector field. When the covector field part acts

on the vector field X, we call this contraction of VY with X.

Now define VY, the covariant derivative of Y, as a tensor of type (1,1) which, when
contracted with X, produces the vector Vx Y. Then we have that

(3) bolds if and only if V(Y) =df @Y+ VY.

(Since fVY contracted with X gives us fvxY,

v(fY) contracted with X gives us Vx ().

Now consider df @Y, where df is a covector field, Y is a vector field.
#X) = ZLdxi(X) = (57
= oxi a} dx’ (

= Lol 5

=a a 2L (which is a real number when evaluated at some point p).

So when df ®Y is contracted with X, we get a’3; 2Ly, which is the same as X(f)Y, since

X(f) = ai-Z;, where X=a i-2,

Given any C™* vector basis 5 ax,, and dual one-form basis dx“ on 2 neighborhood U , we b

shall write the components of VY as Y% ,s0 VY=Y} dx’ ® 5?—; . W

The connection is determined on U by »3 C ' functions, I'% , defined by |
v =Tf dt® L

For any C' vector field Y,
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T¥=v(r &) = @ & +3° v () = @ = +yT(dr’ & 3) Wi

&y° ‘
L ey Ti@t o) | f

=Y$, dxb @ 2 +)° 2.(dx* ® =) ' Al

=Y4% dx’ ® -a%,- +y° ‘g,_.(dx” ® —a;"—,,) ( since we are summing on ¢ which is just 2 o
dummy index, we can replace cby a) i

vgoTal@ed)

Now let us compare VY=Y dx’® 'ai—a and VY= [ GHry° gc](dxb ® 5,,?: .
The components of VY with respect to coordinate basis i—; and dx? are %
: )

4 = :‘b +Y°T?., : -
' I

wherea,b,c=1,...,n.

And Y% transforms as the components of a tensor should transform, under a change in g

coordinates.

Suppose we have a manifold and a vector field. So for each point ona M we have a i
vector. it
In other words, Y4(xo) 2= | €Tx(M)

Figure 17.

Then Y* is a vector field on M . At each point we select a vector from the tangent space

at that point, and we put them together in such a way that if we move from point to point

we get a function..
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Let us suppose Y* are the differentiable components of a vector field, and x on M has
coordinates x? in some coordinate neighborhood . Let us take a point x® +dx? ,

where dx? is a small change in each of the coordinates. dx“ can be thought of as a vector
going from one point to another. If a vector field is differentiable, we can express the
value of Y(x? +dx?) in terms of Y?(x), using a Taylor expansion.

We want to write Yo(x¢ +dx?) ~Y(x*) +Y4%dx® (approximation to first order; two
terms of Taylor expansion).

As we change from point to point we are going to have different values of a vector field.
Now we are going to introduce a very important concept: parallel transfer (transport).
We are going to define a new vector field Yj, at the new point x“ +dx® as follows:
Definition 15: Y&, (x* + dxe) =Y(x?) - T4.(x*) Y°(x?) dx?,a,b,c=1,..,n

(we have n? given functions, ', or Ya, (x+dx) =y a(x) -T4,(x) Ye(x*) dx?)

In this interpretation the I'g, define the parallel transport.

Figure 18.

Ya(x +dx) Y4, (x+dx)

Ye(x) Z
- x+dx

X

We wrote Y¢ as the components of a vector ina tangent space. We can think of Y as

cither the components of a vector in a tangent space or the components of a vector in the

manifold, since the tangent space at a point has the same dimension as the manifold and a

49

s




manifold is locally homeomorphic to R". So we can think of Y* as being in a manifold
instead of being in a tangent space. Hence if we draw a tangent vector in a tangent space
it will have “n” components and dx will give us a direction.

In Euclidean space the connection terms are zero (because we have the same vector in
terms of components (vectors are parallel and have the same length)). It is true if you are

in R" in Euclidean space. Euclidean space is flat (zero curvature).

Now what is the difference between Y“(x + dx) and Y&, (x+dx)?
This will give us a formula for of Y3,
So we need to find
Ya(x +dx) -Y%, G +dx) =Yx) +Y%dx? -Y(x) + 4. (x)Y¢(x)dx®
=Y 4 dx® + 2. (x)Ye(x)dx®
=[ve +TL()Y*] dxP.
Put [Y¢+TE(x)Y¢] dx? =DY?. Then ¥} + ()Y = e
B= -?jxl,,“- is called the total or absolute derivative.
Now let @ = wqdx? , and find an expression for wa;e -
We start with any Y? components of an arbitrary vector and consider
(Yowa)p=(Y@a)p -
[ Y? - components of a vector ; @a - components of a covector ; Y* and @, are real
valued functions, a=1,...,n
note : ; “ on a real valued function is the ordinary partial derivative .
The definition of a covariant derivative can be extended to any C” tensor field if r>1.

One of the rules is v/ =df .(see definition of “d” on pg 40)
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So (Ywa),=(Ywa)p]-

Consider (Y?@a)p=Y% @a+Y* @a;b =Y} ©a +Y T8, 0, +Y® Wa;b
and (Yowg) p =Y %wa+Y Wap
= 4 wa+Y° '} @a +Y% g6 = Y500 +Y ' @ap
= Yewa:p =Y wap—YThwa OF YWc;b =Y wep—Y T G500
So YC¢we.p-Ywep+YThwa=0
Yelwe:p— wep + el =0  forany Y€
= [we;0— Wep+ T 5c0al =0
= We;b = Dep —'§cDa
Now we will write down the formula for the covariant derivative of the components
of a general tensor.
Suppose the tensor is called T and suppose the components (with respect to a basis) are
given by

Tbe ¢ g.a (Do.lu.- “upstairs” indices , c....l.... - “downstairs” indices ).

_TY, Tb-* s — ... — similarly for each downstairs index.
Suppose we start with the components of a vector. We would like to take (A‘jb) . Of Adpe
(take covariant derivative with respect to x? and then take covariant derivative of that

answer with respect to x¢ ) and take (A2) ., -Then find (Afb> e (12) ,, (1tisnot

necessarily 0).
The expression we get leads us to the components of the Riemann curvature tensor
() o= (25,+ 24T%) = (ag,+ 24Tg) .t F'c'/(l{b + AT, = T4, (A% + AFT )
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= A8+ A TG+ MK T + T My + T A* Ty =Ty A% DL 24T,

Next find (42), = A% + A% T+ A¥ T4, + T Ao + T A* DL~ T, A% - T, AFTF,

(This second expression can be easily found from the first by simply interchanging the b
and c).
So A%, — A%, =A%, + Ak T4+ AF T + TG M, + T AF T} =Ty AG—TL, AF T
—A%, — Ak T8 — A¥ T, -T4 M.~ T AFTL +Th, A%+ 1%, AF T
(inT% A, and A4 TG, A% T'f and ', J/, the indices k and f are dummy , so replace k 7

by f) |
= k[T, + T8 Ty =T, ~ D5 Th | + (A%+ A% TR )T ~ %)

We will deal only with torsion-free connections , i.e. we will assume Th = I -T%,=0, !
where this is the torsion tensor. In this case , the coordinate components of the connection j I
obey T =T7},sosucha connection is often called a symmetric connection. |
(In physics we use that assumption.)
So (I}, -T4,)=0
Now replace k by d and get :

200 = Ao = Alep = A7 (P40 +T4Thy—Thap Tl Y] = A9 RY,, , where R, is
called the Riemann (curvature ) tensor.
So A% — Al =19 RY%, .
R, can be represented in terms of the coordinate components of the connection.
We can define 2%, - 2% =Rieg 2 = (Do = Tfoq— T5 Th ~T5TE)) 2 .
Note: this is skew-symmetric in ¢ and d.
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So we can define R¢ =R¢,,; dx° Adx? to be the curvature two-form and define
a = ¢, dx? as a 1-form representing > functions, when dim M =n.
We would like to find the exterior derivative d["j and wedge-product of the two
one-forms I'§ AT'¢ and then consider 2[dI'§ —T'; A '] and compare what we get with
the expression for RZ =R, dx¢ Adx? .
So find dI"% =d(I"%, dx) = [, dx® Adx? =Tg, dx° Adx? (skew-symmetric on ¢ and d)
Now find T'§ ATE =g dx¢ AT G dx? =T I'Gdx° Adx4 =T¢ T, dxe Adx? .
Find 2[dT'% 5 ATS]=2[T, . dx¢ Adx? — T, T, dx Adx?]
=2 = Do T, ] dee Adx?
2 4 (P4 ~Thes) = F T5 T — T5Te) ] dx° Adx?
= (Tgue ~Thea) = (5 T ~ [T ] dx Ade?
=R&,, dx¢ Adx? =R}
So we can conclude that

Ry=2[dr§ - T{ATE] (5)

Fibre bundles.
We will find it useful to examine a concept of fibre bundles since these are used in some
applications of mathematical physics. We can construct a manifold M called a fibre
bundle which is a direct product of M and a suitable space. We start with a manifold M
and take its Cartesian product with R*: MxR"=E. dimM=4, dmR"=n2>1.
In a special case when 7 = 1 we sometimes call this a “line bundle”.

We have a manifold and at each point of the manifold there is a line attached to it,
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because the point in E is descﬁbed by specifying a point of the manifold together with a
point in R”. But if n = 1, then points are in R' which are specified by giving a real
number.

For example, MxR! = {(x,a) :xe M,aeR'}.

Figure 19.

n=1

So, E={(x,a1, ...,d,,) :xeM,a; eR}.

I1: E — M , is a projection that takes ué from one of the points of £ and maps us down
to the point of M that it is attached to . That is why M is called the base space. This
mapping is not one-to-one because all points on a line get mapped to the same point X.
Given pe M, i‘I:E-—»M,wedeﬁne I(p) = {z€ E: I1{z} =p}

A C*bundle overa C* (s> k) manifold M is a C* manifold E and a C* surjective map
'II: E — M .The manifold E is called the total space , M is called the base space, and IT,

the projection. |

The simplest example of a bundle is a product bundle (M x 4, M, IT), where 4 is some

manifold and the projection IT is defined by [1(p,v) =p forallpe M, ve 4.

For example, if one chooses M as the circle S' and 4 is the real line R!, one constructé

the cylinder C? as a‘product bundle over S! .

 In this thesis we are mostly coticerned with the mathematical-physics application where

\ the base is 4-dimensional space-time and A is R .
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The metric.
From geometry, if we are in 3-dimensional space and want to find a distance,

we are going to have

ps= J(A)7 + () +(82)* (82 =(A0)* + (&) +(A2)")

It turns out that we can recognize As? as being like a product of a matrix with 2 vectors :

100 ) Ax Ax
(AxayAz) 010 &y =(Ax Ay &z )| Ay = (a0 +(&)" +(82)" = 257
001 )\ Az Az

Now consider R* , (t,x,y,2) = (x%,x!,x%,x%);

t is going to be treated a little bit differently than x, y,z . It turns out that the distance is n

replaced with the concept of the interval, and is going to be ‘1“
(A1)? - (Ax)* + (W) +(A2)). 1
(If we have two people - one is at a certain space and time, another is at a certain space

and time - then we have the interval between them.) |

10 0 O
. 0-10 O
We have thematrix A=| o o, and .
00 0 -1
At
Ax 2 2 2 2
(At, Ax, Ay, Az)A Ay = (A1) - ((Ax)* + (Ap)” +(A2)")
Az

The matrix A is called a metric in flat 4-dimensional space-time. That 4-dimensional
space-time has a special name, Minkowski space, and the metric is not positive definite;
that is, it is possible for two different points in our space-time to have a zero interval
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between them . That can happen when

(A1)? = (Ax)? +(ay) +(Aa2).
Now consider (xo,x1,%2,X3), where xo = ct and c (speed of light) is constant.

The speed (velocity) of light is independent of the motion of the source . For example,

suppose I shine a flashlight at you and we are standing still relative to each other, and
suppose you measure how fast the light is coming at you from that flashlight. Now
suppose I am running toward you with flashlight and you again measure the speed of the
| light coming at you. Then the two speeds will be the same. But this is not true (for
example) about sound.

Now we going to consider how to define the components of a tensor, \
3 f
aa=gapaﬂ=zgaﬁaﬂ . %1\
p=0 !

We can think of ge30# as gap operating on the components of the vector of. But there i :
is a free index , a , and so we can think of g.p & as components of a covector in the |
following way :
first write g,p as the components of a tensor
g = gap dx® @dxf = gap ( 2(dx® ® dxf + dxf ® dx*))

(i.e.,we know that gag = gga ( symmetric ) is given),
and think of gag 08 as operating on vectors, to produce a real number answer.
To see this , let x have components x = (x*) and

let y have components y = (y#).

Then g(x,y) is a real number.

This is defined by taking a pair of vectors from the tangent space and giving us a number
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(g:T,xT, — R).

Now suppose we have g(__, y) :T, — R . This mapping now has only one argument.
So it is a mapping from T, — R which is linear in the argument. Such mappings are
covectors.

So this mapping can be identified with a covector (an element of the dual space of T,
whichis T; ).

The question is what should we call this element of T} ? Every element can be
expressed in terms of a basis : wq dx® . And we are going to identify @q

with the symbol 8, . Thus we are defining the components of a tensor by the formula

Oa =gap o .
10 0 O o°
Now in our case , gqf = g _01 _01 8 , 0F = g;
00 0 -1 0*
8°
So gap 0F = —gl
=03
But 0! = —a—i; (byo*= 5—%, - V) ), where V is the usual 3-dimensional gradient
0% = —-;—2 . operator.
0=
So 9o = 8°
o1=-0'=%
0r=—0"=%
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Application to Electrodynamics.

Using this notation, we will now illustrate the covariance of electrodynamics by

casting Maxwell’s equations in tensor form.

First, the electromagnetic fields E and B are expressed in terms of the potentials as

-
=—1 2 _vp - electric field

_)
B=V XA - magnetic field.
— e -
E=—td-vp=—tch -vo=-5 -4

because G = 5, “ar = Caxo

_.>
The potentials ¢ (a scalar function) and A (a 3-vector) form a 4-vector potential

=(¢,A) = {AO’AI’AZ’A3} , where Ao = ¢ is the time part.
v A

1) Define 0 = 6xo V) (axo, 3xg) and write down the x,y,z i

components of E and B :

Ey=— 2L _(Vh), =~ 5t — G =— O"Al +0'A" = ~(0°A! - 3'A”)

a_AZ__( ¢) =_6Az __Q_A_O=_60A2+62A0=_(60A2_62A0:

Ey=- %o dxo ox2
e 2 (-2 B AN =N A

So E,=—(8°A! -9'A%)
E, = —(3°A% - 0*A%)

E, =—(3°A% - 33A%)
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i j ok

B=vxA =det] & = = |=i(5-
Al Az A;
By=22 2 o 5277+ PAZ=—(0?A° -
B, =222 = PA +3'A’=—(A" -
B, =22 _ 2= 5A?+5?A! =—(0'A’
So By=-(8?A’-0°A%)
B, =—(8°A' -0'A%)
B, =—(0'A?-3*A")

0A;, ) (6A3
Ox3 oxy

°A?)

o'A%)

—92A1)

F% = 5 AP — 9P A

0 -E, -E, -E;
pup_| Bx O -B: By
E, B, 0 -B; ’
E. B, B 0
Indeed ,F® =0

0l = gOA! - 9'A® = —Ex
02 =80A2—52A0 =—Ey
03 = J0A3 -3A% =-E;

13 =5IA3 '—63A1 =By

20 aon —60A2 =Ey

F21 — aZAl —51A2 =Bz
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Explicitly, the field-strength tensor is, in matrix form,

aAl)
- 6x3 +

the elements of a second-rank, anti symmetric field-strength tensor:

a,8=0,1,2,3.
Fi0=5'A®—9°Al =B,

1 _plAl—5!A =0

12 _51A2 — 32A! =B,
F30 = 33A9 - 3°A° =E,
Fl=0°A!-0'A’ =-B,

32 - 53A2 — 52A% =B,
F¥=0

0A,

ox

O0A
~ Oxz

)

These equations imply that the electric and magnetic fields, six components in all, are
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F2 =0

F23 = 32A3 - 0°A?=-B;
For reference, we record the field-strength tensor with two covariant indices,

0 E. E, E:
"'E_x 0 —Bz By
-E, B, 0 -B; ©)
_‘Ez _By Bx 0

Fop=gay F gop =

and in fact ggy F» gspisan ordinary matrix product.

In particular, the expression, gay F” gsp , represents the matrix product

37 3
> ( Z':o girFrs J gs (the inner summation is the (i,s) entry, the outer summation is the

(1) entry).
10 00
.. 0-10 O
Explicitly, let gay = 00 <10 . Then
00 0 -1
10 0 O 0 -E, -E, -E; 10 00
0-10 0| Ex 0 -B, B, | 0-10 0 )_
00 -1020 E, B. 0 -B: 00 -10 | i
00 0 -1} Ez-By, Bx O 00 0 -1
0 -E, -E, -E; |10 0 0 0 E. E, E: %ﬁ“
E, 0 B, B, ||0-10 0| | -Ex 0 -B:B !
E,-B, 0 B, [00-10}|)-E B 0 -B; !
""Ez By ""Bx 0 O 0 O —1 "'Ez —By Bx 0 !
We note that the elements of Fgp are obtained from F* by putting E— —E.
!
Another useful quantity is the dual field-strength tensor F%. We first define the totally i
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+1,fora=0,=1,y=2,6=3,
and any even permutation

-1, for any odd permutation 3

0, if any two indices are equal 1‘1 ‘

anti-symmetric fourth rank tensor ghr =

Note : €qpys =€ .

The dual field-strength tensor is defined by

0 -B, -B, —-B;
B, 0 E, -E
By, -E: 0 E:
B: E, -Ex O

F*¥ = 3% Fp =

For example, F*® =3€%? Fy;3=0
3 3

1 5 1 5 1 1 1 1
F*Ol — 7eOl}!() F}@ =7 22 622 eowo Fy() = '2‘60123F23 + ‘2'60132F32 — EFZB _ 7}:32 —
y: =,

=-3B,—7Bx=-B;

1 ) 1 295 1 1 1 1
F*02 — _Z_GOZyo Fy(i = Z E e VOFYO, — 7602131::13 + E_60231F31 =—+F13+5F =
y+0,2 0+0,2 2 2

1
= '%By —-2By=-By
Analogously we can do the rest.
But what does it mean physically? The elements of the dual tensor F**#are obtained from

F4 by putting E—B and B— -E in F% (physically we changed fields).

0 -E, -E, -E,

Indeed , put E—B and B— -E in F¥ = E. 0 -B. B , and we would have
E, B. 0 -B; |
E. -B, B, 0 |
0 -B, -B, -B.
B, 0 E, -E,
B, -E. 0 Es
B, E, -E; 0

Every one of the components of the electric and magnetic fields is included in F*,
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It is important because we want to put all information about our fields into a single object

called the field-strength or dual field-strength tensor.

We are trying to come up with a more compact version of the equations, and we want to

show that we can write them in terms of tensors, so that we know it is covariant in the
sense that if we change the coordinates, the laws of electricity and magnetism are

the same no matter what our reference frame is.

So we must write the Maxwell equations themselves in an explicitly covariant form.

The inhomogeneous equations are
_—
V-E =4np, @)

®)

These two equations lead us to an equation for F* and we can write them in terms of this

_)
field-strength tensor . So in terms of F*® and the 4-current J® = (cp, T ) these take on the

covariant form,

0B =215 . )

Indeed , for f=0, oF® +8F'0+3,F? +3;F® = ZE, + 5B, + 2E,=VE,

for B=1, BoF® +1F" +8,F% +03F% = +2(-E,)+ §B. + 5(-B)) =

B oB OB OBy
Pz _ =2 where &t — = is an x -component of a curl, |

_10E
c t ay 0z oy oz

for f=2,, 80F% +O1F ™ + 02 + 037 = 15y + 5 (-Bo) + 5B = |

13 0B B __ 105 0B 0B
—c o ox 5z € o Vo | ox

8By  9B; .
where 5, — 5. is a y- component of a curl,

andfor =3, GF® +0,F1 +8;F + 53F% = +2(-E;) + By + %(-Bx) =
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1 o8y B B .
1% S22 where X - %= s a 7z -component of a curl.

Similarly, the homogeneous Maxwell equations
\% I—3> =0 (10)
UxB ++E =0, (1n)
can be written in terms of the dual field-strength tensor as
0. F*%=0.
So these four equations (7, 8, 10, 11) can be replaced by a pair of equations which are

written in a tensor form.

In terms of F%, rather than F*%, these homogeneous equations are the four equations,
O9FP + PE™ + O'F¥ =0 (12)
where a, B,y are any three of the integers 0, 1, 2, 3.

Let us consider
BeF*%# = 0. (13)

Indeed, for f=0 we have ~0'By—0’By - 0°B; =0;

for f=1, —0°B, +3*E, -8%E, =0;
for B=2, B, — 3'E; + 0°E; =0,
for =3, 0B, +0'E, — 0°E; = 0.

Now consider (12) : fora,B,7 = 0,1,2,3 we are going to have 64 equations. These
equations can be reduced to 12 equations:

—0°B, +0'E, - 0?E, =0,

~-9°B, +8°E; - 90'E; =0,
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_0'E, +8°B, + 0%E, =0,

—9'By ~ 0?B, - 8°B, =0,

—0%E, +0°B; +3°E, =0,

0°B, +0'Bx + 0°B. =0,

—-0%E, +0°B, +0'E. =0,

~&%E, —0°B; +0°E; =0,

-9°B,-0'B,-0"B, =0.
When we look closer, we see that these 12 equations can be reduced to the 4 equations
in (13) we are looking for.
Thus (12) and (13) are equivalent.

These four equations are the Bianchi identities for F%.

Applications to Yang-Mills Field Theory.
On Minkowski space M we will consider the vector bundle B (each fiber being an
n-complex-dimensional vector space), i.e. B=MXC".

The global vector fields e4 (vector-valued functions ofx,a=0,1,2,3,A=1,..,n)

form a basis set as does

! . . . .
e =G4 ep , where G5 is a non-singular matrix-valued function on M.

The connection or parallel transfer of vectors is introduced by defining V, by

Va€d = Yﬁa €B, (14)

with 72 =5, dx® being the connection (matrix-valued) one-form
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(y2, is a matrix and is a component of a one-form with respect to a basis dx®).
By the definition of covariant derivative, the covariant derivative of a vector field is a
vector field, so V4 e4 is a vector field. Thus we can express V€4 asa linear
combination of a basis e, and for each e we will get different linear combinations
ofep since a= 6, 1,2,3, thus leading to (14).
Now suppose we have an arbitrary vector V'= V4e 4. We can define the covariant
derivative of an arbitrary vector Vby
Va V=V o+ VPyhdes, (13

with a comma denoting the partial derivatives with respect to the Minkowski coordinates
x°.
Indeed, Vo V=4 (Ved) = VA seqa+VAVaea

VA geq+VAYiaes

=VA Leqa+ VB yhaeq

=(VA o+ VP y5a) ens
which establishes (15).
We will be interested in examining how the connection and other related quantities
transform if we choose a different basis labeled by e:‘, ,A=1,.,n.In other words we can
rewrite (14) as

Vees=7vimes, (16
where 7 are the new connection components when we change to the new basis.

. ' _ Y]
For given e, = G} ep We can find es = G5 €4
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then Vae,=Va(GEes)=Gj.es+ G5 Vaes
=G}, aG_lcec*' GY v5. ec
=GE,G3'¢ ec+GS vE. es
=G5 ,G5'¢ ec+GS 78 G3'P ep

_ ~C (-1B
=G4, Gc eB+GA VCa GD eB

= (GAa GZ8+GS 78, Gp B) ep-
If we compare this with (16) , we can conclude that

pE =G, GP+GG 78 Gp
or in matrix notation,

yo=G, oG+ Gy, G (17
This is also refered to as a gauge transformation.

We say 7/, and y, are gauge- equivalent.

The curvature tensor or gauge field of this connection is defined by
Fop = Vba—Vab — Var Vb1 = Vba=Vab— Ways —vval,  (18)
which is skew-symmetric in a and b. We are going to examine how this expression 18
| consistent with how we define curvature in (5).

l We start with 2[dl'§ —T3 A '] and establish a new notation.

| Think of the 1-form ['§ =T dx* asbeing y4 = yB, dx*, the connection (matrix-valued) “‘

one form, where 4,B=1,...,n; k=0,1,2,3.

Then 2[dT'¢ T4 AT2]1=2[dy3- vE AvE] |
= 2[d(y4e dxk) - [y dxe Ay dx*]] |

= Z[ygkc dxe A dxk = [yfeyie] dx® A dxk]
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= 2[7§[k,c] —Vh V'i]E] dxe Adx*

LV — Vhes) ~ 3Bt —vhirle) | ax et
= [y~ Vo~ Ghevts — vEerde) | dxe Adet
Now let us examine the components of this expression.
We see that F z» becomes Fex, which is skew-symmetric inc and %, i.e.
Fioe = Ve — Yok — Whevie — VBeyee)s OF
Fek =Vie—Yek— (yeyi— yiye), which is the curvature tensor or gauge field.

So Fex =Vke—Vek— (chk - kac) =2YVkel — 2Y1e ¥ l-

Now we will examine how the Yang-Mills field Fap transforms under the gauge

transformation given by (17).

Consider Fap = Vb — Yap — [Vas Vb ). Now letus write down F/, using the fact that
yo=G G +Gya G-
Note that G} = -GGG Since (GG™H =L
(GG ,=0,
(GG™) = GG +GGy =0.
S0 -G .G = GG
So G =—G1G.G™ .

So F/ab = Vé,a - yiz,b - [Viu ?2]

= [G,bG“A + G'ybG_l]’a - [G,aG.—l + G'yaG_l ],b - i
(GG + GyaG NG G + GysG™)]+ i

+{(G 4G + GG NG G + Gy.G™)]

— GyuG + GGy + GappGl +Gy5aG ™+ G1oGoa = GG~ G.aGY |

67

25—




~GpyaG - GyapG™ — Gy.Gp
[GaG GyG + GaG GysG™ + GG GG +GyaG GG
+[G,1,G_1 G,aG_l + G,bG_l GyaG”l + G’VbG'1 G,aG_l + G’)/[,G'1 GyaG‘l]

= G,bG’—,,1 + G,aybG“ + Gyb,aG‘l - G,aG,—bl - G,byaG'1 - Gya,[,G‘1

GG 'GpG - G aypG = GyaysG™ + GGG oG +GpyaG + GypyaG™

GGG G + GG GpG = G.GGyG + GG GG
+Glypa—Vab—Va¥bt PoYal G
= G['J’b,a —Yab— Yalb + yb'ya]G-l

= GFabG—] .

In a similar manner to what we did with the Maxwell electromagnetic field we have the

following Bianchi identities, which are satisfied by the curvature tensor F a, where the

partial derivative for the Maxwell case is replaced by the covariant derivative
Vie Fas) =0- (19)

Now we will define the dual field by

Bt = L apeaF, Labed = (-2) T €apea » (20) |

with Egbea the alternating symbol with €g123 =—1 (€apw =~ chr ) y

We now write the Yang-Mills equations are given by the following two sets of equations.
One of them is g% VeFa»=Ja (21)

where g is Minkowski metric and J, is the current, and the other one

v FE=0 (D T

which is equivalent to the Bianchi identities given by Vic Fau =0 which is

68




always satisfied because F.s is given by
Fab = Yba — Yab — Vs Vb1

Now consider (20). If we take J, = 0, then the Yang-Mills equations become
g*V:Fa=0, (23)

which is equivalent to
Vie Fip =0 (24)

In the case that F%, =+ iFq (i.e. Fap s self-dual or anti-self dual) then (24) implies

Vie iIF a1 =0 or V[ Fu1=0,

which is identically satisfied by (19).

Therefore saying that the Fp is self-dual or anti-self dual is equivalent to saying that Fap
satisfies the Yang-Mills equations with J, = 0.

Now consider the special case when n=1. We are going to show that all parts of the
above discussion reduce to the Maxwell case, where (21), which is g VeFaw=Ja

is a generalization of 0q Fof =42 Jb,

On Minkowski space M we will consider the vector bundle B, i.e. B=MxC I(n=1), which

now becomes a line bundle. The global vector fields e4 (4 = 1) form a basis set as does |
e, = GE (x*) ep, with the matrix-valued function G2 (x) becoming a scalar function
onM, callit g(x*),a=0,1,2,3.

Va €1 =7Ya €1, Where yq is the connection (electromagnetic potential) and is simply a
one-form on Minkowski space.

Under a change in basis (gauge transformation), the new potential V=848 +7a

(since gg~! = 1).
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Note that (log £),a = +8a=8a gt

So we can rewrite this as Y= QatVa where ¢ =log g

And (18) becomes Fap = Yba ~Vab (Ya¥b = YbYa)-

And under a change in basis F, =Fas. In other words when we change the potential by
adding a gradient of some scalar function @, the Maxwell field remains unchanged.
And thisis a well-established fact of electricity and magnetism.

We also note that the Yang-Mills field equation (21) reduced to the Maxwell equations.
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CONCLUSION

In this thesis we started with a discussion of the concept of a differentiable manifold,
which is a topological manifold with a C* differentiable structure, and the concepts of
vectors and tensors which are defined on the manifold.

We were able to show the important fact that the tensor itself does not change as an
object, independent of the choice of 2 coordinate system. This is important because it is
used to illustrate the covariance of the laws of physics as well as therefore in the study of
these laws. Covariance of these laws means that we want our basic physical principles to
remain unchanged when we change our coordinate system.

In our study of an exterior diﬁ'erentiation, a differential operation which depends only on
the manifold structure, we were able to show that the exterior differentiation operator is
covariant.

An extra structure, the connection, defined the covariant derivative and the Riemann
curvature tensor, which gives us an indication of the curvature of the manifold.

We were mostly concerned with the mathematical-physics application where the
4-dimensional space-time has a special name, Minkowski space.

We were able to show the covariance of electrodynamics by casting Maxwell’s equations,
which describe the behavior of electromagnetic fields, in tensor form.

We examined the definition of a Yang-Mills field and how it could be thought of as a
generalization of a Maxwell field as well as illustrating many of the mathematical concepts

earlier discussed as becoming part of the definition of the Yang-Mills field equations.
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This thesis could be used as a starting point for somebody interested in studying an area
of mathematical physics which makes use of differential geometry, for example,
general relativity or fluid mechanics. This work can lead us to the subject of Bécklund
transformations, where the basic idea is to generate new solutions of the self-dual or

anti-self-dual Yang-Mills equations from a seed solution.
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APPENDIX
In this Appendix we include a derivation of some basic relationships from elementary
vector analysis which would be useful in obtaining the left hand sides of some of
Maxwell’s equations in terms of the electric and magnetic potentials, ¢ and 4,
respectively, instead of the electric and magnetic fields, E and B, respectively.

_)
Let @ =(aj,a2,a3), b =(by,b2,b3) and ¢ at a scalar function ofx,y,z, and t.

- -
1)Showv-[71>— b):v-'c?—v-b :

_9
Let @ =(ai,a2a3), b =(b1,b2,b3)

V-(_) —)) (a1 -b)+% (az—b2)+-§;(a3—b3)=

_da b Om Ok Oa O

ox —6—x-+ oy —-é—y_ 5z oz

oy o d (B B Y

- -
2) Show v -2 =;f;’;[v-A) .

Take V-4 =—ai‘-+a§y2 +6g‘; ; now take a,(v A)

04y aAz 043 ) 62A1 azAz 62A3 824, 62A2 8243

a:( ax ot oy T e = aa T oo + G T
—
04, 04, 043 A
) ay( ) Vo
a4
=V

3) Show V (V) =v?¢

v (V§) = V'(¢,x,¢,y,¢,z) =Pty tPz== v é

73




8
4) Show %(v¢) = VT(}: )
o9 0 3
a0 oy oz

at z;f,a;b,%f _(%’%’% = S;g;’gjg’%):(gf(%t ( )62( )) V

5y show vx(vx@)=v(v-2)-v2d.

i J
- _ _6_ _@_ __a_ s @_3_ 6a2 6111 aa; aaz 601
vXa = ox oy Oz =1 oy ~ oz Tz T @ ) 3 —73}—
ai az as
i Jj k
- 2 2 2
VX(VXa)= ox oy oz =
‘ day _ Oaz dar _ %o fay _ Om
3y oz %  ox o oy
_-[i fay _m_o(%n 223_)]
=i\ ~ oy Ndz o o

[ (6{13_6«2) 2 5a2 day ]+k[ day da3. 8 Oaz. _622_]
oz ox & =\ — ax ./  y\dy oz :

27 | otd , &4 . 24 (alal *a 6203)

Vd=5+50+
a="7g2 T T a ox ox2 > ox? 0 ox?

_5_2_71)__(3201 &a; azas)

oy ? ayz » y?
P2 _ (& da o8
az2 922 » 022 > 022

6:11 + Qﬂ ?ﬂ_) ad 6a1 3412 6(13) + (6a1 6az das ) +

V(V a) V& 6y+ oz "'lax

Oay aaz da 3
+k z\ ox +5

Consider x components from both sides :

6a2 day 9 (dar day\ 9%y 9%a 8a,  0%as
x component for ¥V X(V X a) is = ay -5 -2 - —>=—8y6x Zo_So+
da | Bmy 2 Pay  Fay | O
x component for V(V a) v2d is 6x( o - )—( 5+ "‘ 6:2’) =
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_ d%a, dlay  0%ay Py %ay ey _ 82a, Olay Day d%as
=2 t oy T w2 o =%y~ a2 a2 T owoz

and the X component for V x(v x_a)) is the same as the X component for

V(V _a)) -v? a. (using the fact that the mixed partial derivatives in the two expressions

are equal)
Similarly we can show for the y and z components .

Son(VXa) v(v- )~ v2a

_9
7) Show 1 2L A =vxEB —%%—.

c2 or

= 10E N 19 184 :
VXB -<c73 =V x(v x A ) - ?5;(—?—3,— - vqﬁ) ( say from where these equations)

- -
=v(v-A)—v2 A+55 6;,2‘ ++2(v9)
—v(-1+%)-v2 A+ 124, 12(99)
\

Lg% 2+ L4 4 12(g4)= 184 g2
-c ot 2 o c ot c2 o2 . |
\

8) Show ?-67—?72 ¢=V" .
> 7 —
v B v (-t E-vp)=vth-v: wh=-+4{vA)-v*4=

O o
L1a(t % _v2p=tF -V
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