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ABSTRACT

A vertex labeling of a graph G is an assignment f of labels to the vertices of G.

Each edge xy is assigned a label depending on the vertex labels f (x) and f (y). One

of the best known type of labeling methods is called graceful labeling. A function f

is called a graceful labeling of a graph G with m edges if f is an injection from the

vertices of G to the set {a, 1, ... ,m} such that, when each edge xy is assigned the

label If(x) - f(y)l, the resulting edge labels are distinct. Over the past few decades,

several different graphs have been gracefully labeled.

Another popular labeling method is harmonious labeling. A function f is called a

harmonious labeling of a graph G with m edges if it is an injection from the vertices

of G to the group of integers modulo m such that when each edge xy is assigned the

label (J(x) + f(y)) (mod m), the resulting edge labels are distinct. If the graph G

is a tree or has components that are trees, then exactly one label may be used on

two vertices. In this case f would not be an injection. In this thesis, we present a

technique for labeling the disjoint union of the path and some cycles. We use both

labeling methods, graceful and harmonious.
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Chapter 1

History and Background

Labeling graphs was popularized in 1967 by Alex Rosa [6]. Rosa called a function f

a /3 - valuation of a graph G with m edges if f is an injection from the vertices of a

graph G to the set {O, 1, ... ,m} such that, when each edge xy is assigned the label

If(x) - f(y)l, the resulting edge labels are distinct. Golomb [2] called this particular

method of labeling graceful, and this is the popular term used today. We call a graph

"graceful" if such an f exists. Alex Rosa, a design theorist, introduced /3-valuations

(i.e. graceful labelings) as well as many other labelings as tools for decomposing the

complete graph into isomorphic subgraphs. First, these /3-valuations were used as a

means of attacking Ringel's [5] conjecture that K 2n+l can be decomposed into (2n+ 1)­

many subgraphs that are all isomorphic to a given tree with n edges. Erdos said most

graphs are not graceful, although most graphs with some "regularity of structure" are

graceful. Sheppard [7] proved there are exactly m! gracefully labeled graphs with m
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edges. It has also been proven that every graph is a subgraph of a graceful graph.

Rosa [6] has given three reasons why a graph fails to be graceful. First of all, a graph

may not be graceful if the graph has "too many vertices" and "not enough edges". A

simple example would be K 2 +K 1 . The reason this fails to be graceful is because there

are three vertices and only two possible labels, 0 and 1. Second, the graph may have

"too many edges". For example, Ps can be gracefully labeled, but adding an edge

between the endpoints of this graph creates a non-graceful graph, namely Cs. Also,

a graph that has the "wrong parity" cannot be labeled gracefully. For example, Rosa

has proved that if every vertex has even degree and the number of edges is congruent

to 1 or 2 (mod 4), then the graph can not be labeled gracefully. Specifically, C4n+l

and C4n+2 are not graceful.

Harmonious graphs came about in the study by Graham and Sloane [3] of modu­

lar versions of additive bases problems stemming from error-correcting codes. They

defined a graph G with m edges to be harmonious if there is an injection from the

vertices of G to the group of integers modulo m such that when each edge xy is

assigned to the label (J(x) + f(y)) (mod m), the resulting edge labels are distinct. If

G is a tree or has a component that is a tree, then exactly one label may be used on

two vertices and the labeling function is not an injection. Graham and Sloane also

proved that if a harmonious graph has an even number m of edges and the degree of

every vertex is divisible by 2k
, then m is divisible by 2k+1. This condition has been

generalized by Liu and Zhang [4]: If a harmonious graph has m edges and the degree

2



sequence d1 , d2 , ... , dp , then gcd(d1 , d2 , .•• , dp , q) divides q(q - 1)/2. They have also

proved that every graph is a subgraph of a harmonious graph.

Since the time labeling graphs was introduced, particularly graceful labelings,

people have been trying to prove that certain types of graphs can be labeled gracefully.

Some have been successful and some have not. For example, in 1964 Ringel and Kotzig

[5] made the following conjecture concerning labelings of trees.

Graceful Tree Conjecture Every tree has a graceful labeling.

Properly named a conjecture, the Graceful Tree Conjecture has not yet been

proven for all trees. However, many families of trees have been gracefully labeled and

there have been over 300 papers with varying and scattering methods to prove that

a certain class of graphs is or is not graceful. One family of trees is known as the

path. It has been proven that paths can always be labeled gracefully. Here are a few

small examples: (Note that the number in italics is the induced edge labeling for each

graph.)

o
• 1

1
•

P3
0 2 1
• • •2 1

P4
0 3 1 2
• • • •3 2 1

We can label the path, denoted Pn , as follows:
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n odd:

Pn
0 n-1 1 n-2 2 n-3 3 n-~ ~

• • • • • • ..... ....

where 1 :::; i :::; n~I

n even:

Pn
0 n-1 1 n-2 2 n-3 3 n-~ ~

• • • • • • ..... ....

where 1 :::; i :::; ~

Another tree that has been proven to be graceful is the n-star which is the complete

bipartite graph KI,n' To gracefully label this graph, first label the center with O. Then

label the remaining vertices 1, ... ,n in succession.

We can also ask if certain cyclic graphs are graceful. Cycles have been a major

focus of attention. Rosa [6] proved that Cn (the n-cycle where n is the number of

vertices) is graceful if and only if n == 0,3 mod 4. Graham and Sloane [3] proved

that Cn is harmonious if and only if n 1,3 mod 4. Here, we investigate the disjoint

union of certain cycles and paths.
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Chapter 2

Graceful Labeling of the Four or

Six Cycle Union the Path

Labeling different types of graphs gracefully has been the focus of many papers. From

the last section, we see that the family of trees known as paths are graceful. Here,

we ask the question: Is the disjoint union of the path Pn and the cycle Cs, denoted

Cs+Pn, graceful? Cycles in general, on the other hand, have not been proven graceful.

In this thesis, an algorithm has been formulated to label C4 + Pn and C6 + Pn .

For the 4-cycle, label a vertex 0 and label its non-neighbor 1. Label the other two

vertices on the cycle n +3 and n + 1. The vertex labels on the cycle will give the four

highest edge labels. To label the path, start at an endpoint and label it n + 2, and

its neighbor 3. This will give the next highest possible edge label. The objective is

to try and label the vertices so that the edge labels decrease in succession. However,
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this is not always possible. If not possible, then use the vertex label that will give

the next highest edge label. At the next step, we will be able to get the edge label

we skipped. By continuing this process of trying to get the largest induced edge label

without repeating a vertex label and still having all the edge labels distinct, C4 + Pn

is seen to be graceful. For example, we will label C4 + P3 to illustrate this algorithm.

To start, label a vertex on the cycle 0 and its non-neighbor 1. The other two vertices

on the cycle are labeled 4 and 6. To label the path start at an endpoint and label

the vertex 5 since n + 2, where n = 3 is 5. Now, label its neighbor 3. This gives us

an induced edge label of 2 which is the next highest possible edge label and the cycle

gave us induced edge labels of 6, 5, 4, and 3. Since 1 is the only possible induced

edge label left, the vertex that is a neighbor of 3 in the path must be labeled 2.

During the proof we will use letters A, B, C, and D to denote a specific part of the

piecewise vertex-labeling function f, to be defined in the proof. We will also be using

these letters to denote the edges used in the proof. We will use, for example, C - A

to denote the edge that is computed when we subtract formula A from formula C in

the function f.

Theorem 1 C4 + Pn , when n is not congruent to 2 modulo 3, is graceful.

Proof. To show that C4 + Pn is graceful, we present a vertex labeling function 9 of

C4 + Pn with m edges that is one-to-one from the vertices of C4 + Pn to the set

{O, 1, ... ,m} such that, when each edge is assigned the label Ig(i) - g(i + 1)1, the

resulting edge labels are distinct. We note that m in this case is n + 3.
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We begin by labeling the 4-cycle as follows: label two of the non-adjacent vertices

n +3 and n +1, and label the other vertices 0 and 1. Note that this results in induced

edge labels of n + 3, n + 2, n + 1, and n.

Next, we present a labeling function for the path Pn . Define i to be the ith vertex

starting at, say, the right endpoint of the path, and so 1 :::; i :::; n. Let

3 if i=2

(i - 2) - 6li~24J ifi 4,6,8 (mod 12)

f(i) = (i - 5) - 6li~~OJ ifi _ 0,2,10 (mod 12) (except i=2) (2.1)

n-((i-3)-6l\i1 J) ifi-l,3,5(mod12)

n-((i-6)-6li~27J) ifi 7,9,11 (mod 12)

We first show that f is one-to-one. Actually, there are some cases where it is

not one-to-one. We identify these cases and handle them separately in the lemma

following the proof. We have several cases to check. In particular we have to show (1)

that if i =1= j and one computes f(i) and f(j) using the same formula in the definition

of f above, then f(i) =1= f(j) (note that there are four cases here) and (2) that if we

use different formulas to compute f(i) and f(j), then we always have f(i) =1= f(j)

(note that there are six cases to check here). To prove (1), we note that formulas A

and B are increasing functions, and that formulas C and D are decreasing functions.

Thus it is clear that f(i) =1= f(j) provided i =1= j and if f(i) and f(j) use the same
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formula.

To prove (2), we first compare formulas A and B. Note that if f(i) is computed by

formula A and f(j) is computed using formula B, then f(i) is even while f(j) is odd.

Thus, they are not equal. Similarly, if we next compare formulas C and D, formula

C will yield n - (an even number) while formula B yields n - (an odd number), thus

they will not equal. Now to the more involved cases.

Case 1. We compare formulas A and C. Noting, as above, that formula A yields

even outputs, and formula C yields n - (even) outputs, then it must be true that n is

even. Note that the assumption n 0,1 (mod 3) implies that n _ 0,1,3,4,6,7,9,10

(mod 12). The last two observations imply that n 0,4,6,10 (mod 12). Thus, we

have four subcases to check:

Subcase (i): n = 12k, for some integer k > O. We prove that a formula A label is

always less than a formula C label. Observe that the the maximum value of a formula

A output is (12k - 4 - 2) - 6l12k~24-4J = 6k (note that we used i = 12k - 4 because

i 4,6,8 (mod 12) and this would be the largest value of i accepted as input). The

minimum value of formula C is 12k - [(12k - 7 - 3) - 6l12k~27+1 J] = 6k + 4. Thus

the minimum value of C exceeds the maximum value of A. However, by the nature of

the graph we are considering, the labeling must be onto. Since there is a gap of four

between the maximum of A and the minimum of C and since these are the only even

label-producing formulas, some odd label must have been repeated. We resolve this

problem in the lemma following the proof.
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Subcase (ii): n = 12k + 4. Using the same argument as in (i), we see that the

maximum value of A is 6k + 2 while the minimum value of C is 6k + 4 (Note that

since there is only a gap of two, the problem mentioned in (i) does not occur).

Subcase (iii): n = 12k + 6. We have the maximum value of A is 6k + 4 while the

minimum value of C is 6k + 4. We consider this later in a separate lemma.

Subcase (iv): n = 12k + 1. We have the maximum value of A is 6k + 6 while the

minimum value of C is 6k + 8.

Case 2. Next, we compare formulas A and D. As reasoned above in the case 1, here

we must have n odd in order for formula D to output an even number. Thus, we

consider n 1,3,7,9 (mod 12), and reason as in the four subcases above.

Subcase (i): n = 12k + 1. The maximum value of A is 6k and the minimum value

of Dis 6k + 2.

Subcase (ii): n = 12k +3. The maximum value of A is 6k and the minimum value

of D is 6k + 4. Again, see the lemma.

Subcase iii: n = 12k + 7. The maximum value of A is 6k + 4 and the minimum

value of D is 6k + 6.

Subcase (iv): n = 12k + 9. The maximum value of A is 6k + 6 and the minimum

value of D is 6k + 6. We consider this case also in the lemma below.

Case 3. We next compare formulas Band C. Here we must have n odd for the

parities to be the same. So n 1,3,7,9 (mod 12).

Subcase (i): n = 12k + 1. The maximum value of formula B is 6k + 1 and the
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minimum value of formula C is 6k + 3.

Subcase (ii): n = 12k + 3. The maximum value of formula B is 6k + 3 and the

minimum value of formula C is 6k + 3. As earlier, we treat this separately.

Subcase (iii): n = 12k + 7. The maximum value of formula B is 6k + 3 and the

minimum value of formula C is 6k + 5.

Subcase (iv): n = 12k + 9. The maximum value of formula B is 6k + 3 and the

minimum value of formula C is 6k + 7. See the lemma.

Case 4. Finally, we compare formulas Band D, noting that n must be one of 0,4,6,10

(mod 12). Again, we consider all subcases.

Subcase (i): n = 12k. The maximum value offormula B is 6k+1 and the minimum

value of formula D is 6k + 1. This case will also be reconsidered in the lemma after

the proof.

Subcase (ii): n = 12k + 4. The maximum value of formula B is 6k + 3 and the

minimum value of formula D is 6k + 5.

Subcase (iii): n = 12k + 6. The maximum value of formula B is 6k + 3 and the

minimum value of formula D is 6k + 7. See the lemma.

Subcase (iv): n = 12k + 10. The maximum value of formula B is 6k + 5 and the

minimum value of formula D is 6k + 7.

Now, we show Ij(i) - j(i + 1)1 =1= Ij(j) - j(j + 1)1. Again, there are many cases

to check, so we use Roman numerals to distinguish them from the cases above.

Case I: We compare the C - A edge and the D - A edge. We show 1j (i) - j (i +1) 1 =1=
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Ij(j) - j(j + 1)1, where i i= j. The C - A edge is In - ((i - 3) - 6l i
i;1 J)) - ((i + 1­

2) - 6l i+;2-
4 J) I. The D - A edge is In - ((j - 6) - 6lj~7J)) - ((j +1 - 2) - 6l ]+11

2
-4 J) I.

Subcase (i): Both i-floors and the j-floors are the same. For this subcase, we are

assuming that both i-floors and the j-floors are the same. Since the floor functions

are assumed to be the same, it does not matter which one is used in the simplification.

After simplifying the C - A edge we get In - 2i + 4 + 12l ii;1 JI. After simplifying the

D - A edge we get In - 2j + 7 + 12l~JI·

Now, 12l ii;1 J and 12l~J must differ by a multiple of 12. (Since when the floor

functions are rounded down, they differ by an integer.) If we set the two induced edge

labelings equal, then - 2i = - 2j + 3 + 12m for some integer m. But this is impossible

since the left hand side is even and the right hand side is odd.

Subcase (ii): Both the i-floors and the j-floors are different. In this subcase, we

are subtracting 6 from both the C - A edge and the D - A edge which does not

change the parity. We get the same result as in subcase (i).

Subcase (iii): The i-floors are different and the j -floors are the same. In this

subcase, we subtract 6 from the C - A edge only. This does not change the parity

since 6 is even. So, we get the same situation as in subcase (ii).

Subcase (iv): The j-floors are different and the i-floors are the same. In this

subcase, we subtract 6 from the D - A edge only. This does not change the parity

since 6 is even. This is the same as in subcase (i).

Hence, the C - A edge and the D - A edge are never equal.
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Case II: We compare the C - B edge and the D - B edge. The C - B edge is

In - ((i - 3) - 6l i i21J) - ((i +1- 5) - 6li+i;10 J)I. The D - B edge is In - ((j - 6)­

6lj~7J) - ((j + 1- 5) - 6li+~~1°J)I.

Subcase (i): Both i-floors and the j-floors are the same. After simplifying the

C - B edge we get In - 2i + 7 + 12lii;1 JI. After simplifying the D - B edge we get

In - 2j + 10 + 12lj~7 J I·

Now, 12lii;1 Jand 12lifi-Jmust differ by a multiple of 12. Since the floor functions

differ by an integer, -2i = -2j + 3 + 12m for some integer m. But this is impossible

since the left hand side is even and the right hand side is odd.

Subcase (ii): Both the i-floors and the j-floors are different. In this subcase, we

are subtracting 6 from both the C - B edge and the D - B edge which does not

change the parity. We get the same result as in Subcase 1.

Subcase (iii): The i-floors are different and the j -floors are the same. In this

subcase, we subtract 6 from the C - B edge only. This does not change the parity

since 6 is even.

Subcase (iv): The j -floors are different and the i-floors are the same. In this

subcase, we subtract 6 from the D - B edge only. This does not change the parity

since 6 is even. Hence, the C - B edge and the D - B edge are never equal.

Case III: We now compare the A - C edge and the B - C edge. The A - C edge is

I(i - 2) - 6l i~24J)) - (n - (i + 1 - 3l i+112+1 J) I. The B - C edge is I((j - 5) - 6lj~~OJ) ­

(n - ((j + 1 - 3) - 6l j +11
2
+1J)) I·
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Subcase (i): Both i-floors and the j-floors are the same. After simplifying the

A - C edge we get 12i - n - 4 - 12l i~24 J I. After simplifying the B - C edge we get

12j - n -7 -12lj~ioJI·

Now, 12li~24J and 12lj~ioJ must differ by a multiple of 12. (Since floor functions

differ by an integer.) Thus, 2i = 2j - 3 + 12m for some integer m. But this is

impossible since the right hand side is even and the left hand side is odd.

Subcase (ii): Both the i-floors and the j-floors are different. In this subcase, we

are subtracting 6 from both the A - C edge and the B - C edge which does not

change the parity. We get the same result as in Subcase 1.

Subcase (iii): The i-floors are different and the j -floors are the same. In this

subcase, we subtract 6 from the A - C edge only. This does not change the parity

since 6 is even.

Subcase (iv): The j-floors are different and the i-floors are the same. In this

subcase, we subtract 6 from the B - C edge only. This does not change the parity

since 6 is even. Hence, the A - C edge and the B - C edge are never equal.

Case IV: We compare the A - D edge and the B - D edge. The A - D edge is

I(i - 2) - 6li~24J) - (n - ((i + 1 - 6) - 6l i+;2-7J))I. The B - D edge is l(j - 5) ­

6lj~ioJ) - (n - ((j + 1- 6) - 6lJ+1;-7J))I.

Subcase (i): Both i-floors and the j-floors are the same. After simplifying the

A - D edge we get 12i - n - 7 + 12l i~24 J I. After simplifying the B - D edge we get

12j - n - 10 + 12lj~iOJ I·
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Now, 12l i~24J and 12lj~iOJ must differ by a multiple of 12. Thus, 2i = 2j -3+12m

for some integer m. But this is impossible since the right hands side is even and the

left hand side is odd.

Subcase (ii): Both the i-floors and the j -floors are different. In this subcase, we

are subtracting 6 from both the A - D edge and the B - D edge which does not

change the parity. We get the same result as in Subcase (i).

Subcase (iii): The i-floors are different and the j-floors are the same. In this

subcase, we subtract 6 from the A - D edge only. This does not change the parity

since 6 is even.

Subcase (iv): The j-floors are different and the i-floors are the same. In this

subcase, we subtract 6 from the B - D edge only. This does not change the parity

since 6 is even. Hence, the A - D edge and the B - D edge are never equal.

Case V: We compare the D - A edge and the C - B edge. The D - A edge is

In - ((i - 6) - 6l i~27J)) - ((i + 1 - 2) - 6l i+;2-
4 J) I. The C - B edge is In - ((j - 3) ­

6l\t;1J)) - ((j + 1- 5) - 6lj+~~1°J)I. In this case, all possible values for i make the

floor functions in the D - A edge round down to the same value. Also, all possible

values for j make the floor functions round down to different values. So the only

case to consider is when the i-floors are the same and the j-floors are different. Here

we subtract 6 from the C - B edge only. After simplifying the D - A edge we get

In - 2i + 7+ 12l i~27J I. After simplifying the C - B edge we get In - 2j +1+ 12l ji;l J I.

Now, 12li~27J and 12lWJ must differ by a multiple of 12. (Since when the floor
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functions are rounded down, they differ by at most 1) Thus, -2i = -2j - 6 + 12m

for some integer m.

But, the only values for i are i 7,9,11 (mod 12) and the only values for j are

j 1,3,5 (mod 12). So, -2i -2j mod 12. Since any multiple of 12 is zero modulo

12, then -2i and -2j + 6 are the same mod 12. This is impossible since 2i 2,6,10

(mod 12) and 2j 2,6,10 (mod 12) and the only possible differences are 4,8 (mod

12). Hence, the D - A edge and the C - B edge are never equal.

Case VI: We compare the A - C edge and the B - D edge. The A - C edge

is I(i - 2) - 6l i;-24J - (n - ((i + 1- 3) - 6l i+;i1J)I. The B - D edge is l(j - 5)­

6lj~ioJ) - (n - ((j + 1- 6) - 6 lJ+112-7j) I. In this case, all possible values for i make

the floor functions in the A - C edge round down to the same value. Also, all possible

values for j make the floor functions round down to the same values. So the only

case to consider is when the i-floors are the same and the j-floors are the same. After

simplifying the A - C edge we get 12i - n - 4+ 12l i;-24J I. After simplifying the B - D

edge we get 12j - n - 10 + 12lj~iO J I·

Now, 12li;-24J and 12lj~ioJ must differ by a multiple of12. Thus, 2i = 2j-6+12m

for some integer m.

But, the only values for i are i 4,6,8 mod 12 and the only values for j are

j = 0,2, 10 mod 12. So, 2i 2j mod 12. Since any multiple of 12 is zero modulo

12, then we have 2i and 2j - 6 modulo 12. This is impossible since 2i _ 0,4,8

mod 12 and 2j 0,4,8 mod 12 and the only possible differences are 4,8 mod 12.

15



Hence, the A - 0 edge and the B - D edge are never equal, and so 0 4 + Pn , when n

is not congruent to 2 modulo 3, is graceful.

o

Lemma For the subcases that were postponed in the proof above, the function f

can be modified to give a graceful labeling.

Proof. We consider the subcases that we postponed above; recall that these were the

subcases where the maximum value of one labeling formula was equal to the minimum

value of some other labeling function. As usual, we do each case separately, with each

one actually being a subcase of its respective case.

Case 1. First we postponed the subcase n = 12k + 6 comparing the A and C

labels. There, we found that the maximum of the A labels is 6k + 4, which is also

the minimum value of the C labels. This occurs at vertices 12k + 6 and 12k + 5,

respectively. These are the last two vertices in the path. We re-Iabel the last vertex

in the path to 6k + 5, giving an induced label of the last edge of 1. We now prove

that 6k + 5 has not been previously used as a vertex label. Note that 6k + 5 is odd,

so could not have been produced by the A or C formulas. Thus considering the B

and D formulas, we see their respective maximum and minimum values are 6k + 3

and 6k + 7, thus 6k + 5 has not been previously used.

We also have to show that 1 has not previously been used as an edge label. Observe

that the smallest edge labels occur whenever the A, B vertices are maximized and
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the C, D vertices are minimized. We note that the maximum values of A and Bare

respectively 6k + 4 and 6k + 3, and that the minimum values of C and D labels are

6k + 4 and 6k + 7. The only possible scenario giving an edge label of 1 would be an

edge whose endpoints are labeled with formulas Band C, but note that the vertices

where their respective maximum and minimum values occur are 12k + 2 and 12k + 5,

which are not the endpoints of an edge (it is worth pointing out that although the A

and B maximum values differ by 1, the formulas only accept even inputs, so that no

two adjacent vertices are labeled with formulas A and B). Thus, 1 does not previously

appear as an edge label. And so our choice of 6k+5 as the last vertex label is justified.

Note also the subcase (i) in the proof where there was a gap of four, and there

we noted that this implies some odd label is repeated. One can easily verify that the

repeated vertex is 6k + 1, and this repetition occurs on the last two vertices in the

path. So we may change the last vertex label to 6k + 2, thus giving the last induced

edge label of 1. Also, notice that the edge label of 1 has not previously occurred; this

is seen by observing the respective maximum and minimum values of A, B, C, and

D, as in the previous subcase in the last paragraph.

Case 2. Second, we postponed the subcase comparing the labels produced by the

A formula and the D formula, where n = 12k + 9. There, we discovered that the

maximum value of formula A is 6k + 6, which is obtained by plugging in 12k + 8,

and the minimum value of formula D is also 6k + 6, obtained by plugging in 12k + 9.

Note that these are the last two vertices of P12k+9. So, re-label the last vertex 6k + 5,
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giving the last induced edge label of 1. Notice that 6k +5 was not used in the labeling

previously. The reason is two-fold: (1) 6k+5 is odd and formulas A and D yield even

outputs and (2) so considering formulas Band C, we see that the maximum value of

B is 6k + 3 and the minimum value of C is 6k + 7, thus leaving 6k + 5.

We claim that 1 is not an induced edge label. As noted above, the maximum

value of the A labels is 6k + 6, the maximum value of the B labels is 6k + 3, the

minimum value of the C labels is 6k + 7, and the minimum value of the D labels is

6k + 6. As reasoned in the last case (see the parenthetical note in that case as to how

we eliminate the other possibilities) we only consider the maximum A label to the

minimum C label. Note, however, that the maximum A label is not adjacent to the

minimum C label because the maximum A label occurs at the 12k + 8 vertex and the

minimum C label occurs at the 12k + 5 vertex, which are non-adjacent. Thus, the

edge label 1 has not appeared thus far. Thus, our choice of the 12k + 9 vertex being

re-Iabeled 6k + 5 is justified.

Again, there was also another subcase where there was a gap of four between the

maximum and minimum values, thus there was a vertex label repeated. And, again,

it occurs on the last two vertices in the path. We modify the last vertex as earlier,

but leave the details to the reader, since the argument is the same.

Case 3. Next, we consider the subcase comparing the labels produced by the B

formula with the labels produced by the C formula when n = 12k + 3. We discovered

in this case that the maximum and minimum values are both 6k + 3, which occurs
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at the 12k + 2 and 12k + 3 vertices, respectively, for Band C, which are the last two

vertices in the path. Now, re-label the last vertex in the path 6k + 2, giving 1 as the

last induced edge label. Again, note that 6k + 2 was not previously used as a vertex

label. This is because (1) 6k + 2 is even and formulas Band C give odd labels and

so (2) considering formulas A and D, we see their respective maximum and minimum

values are 6k and 6k + 4, thus leaving 6k + 2.

We also must check that 1 has not previously been used as an induced edge label.

To do this, we proceed as in the previous case. The maximum values of A and B

are 6k and 6k + 3 respectively. The minimum values of C and Dare 6k + 3 and

6k + 4, respectively. Note that the maximum B value occurs at vertex 12k + 2 and

the minimum D value occurs at vertex 12k - 1, so they are non-adjacent, and so will

not produce a 0 induced edge label. Again, 1 was not previously an induced edge

label, so our re-labeling is justified.

Again, there was also another subcase where there was a gap of four between the

maximum and minimum values, thus there was a vertex label repeated. And, again,

it occurs on the last two vertices in the path. We modify the last vertex as earlier,

but leave the details to the reader, since the argument is the same.

Case 4. Finally, we look at the subcase involving labels produced by the B formula

and those produced by the D formula, where n = 12k. In that case, the respective

maximum and minimum labels are 6k +1, and they occur at vertices 12k and 12k -1,

respectively. So, we change the label of the last vertex to 6k + 2, giving the last edge
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of the path the induced edge label 1. We again show that this is a permissible

change.We note that (1) 6k + 2 is even, and formulas Band D yield odd labels and

so (2) considering formulas A and C, we see their respective maximum and minimum

values are 6k and 6k + 4, respectively. Thus, 6k + 2 has not yet appeared as a vertex

label.

We also have to show that 1 has not previously occurred as an induced edge label.

The maximum values of A and B are, respectively, 6k and 6k + 1. The minimum

values of C and D are, respectively, 6k +4 and 6k + 1. Note that the maximum value

of A occurs at vertex 12k - 8 and the minimum value of D occurs at vertex 12k - 1,

which are non-adjacent. Since this is the only case that might give an induced edge

label of 1 and the vertices are non-adjacent, this induced edge label has yet to be

used. Thus, our re-Iabeling technique is justified.

Again, there was also another subcase where there was a gap of four between the

maximum and minimum values, thus there was a vertex label repeated. And, again,

it occurs on the last two vertices in the path. We modify the last vertex as earlier,

but leave the details to the reader, since the argument is the same.

o

Label 0 6 + Pn in a similar fashion. To illustrate how to label the cycle, we will

start by naming the six vertices consecutively a, b, C, d, e, and f. Now, let a, C, and

e be labeled 0, 1, and 3 respectively. Then label b, d, and f with n + 5, n + 2, and

n +3 respectively. To label the path part of the graph, label an endpoint n + 4. Then
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label the next vertex 2. This will give the next highest edge label. We continue to

label the vertices trying to get the next highest induced edge label at each step. If

this is not possible, then try to get the next highest, and wait until the next vertex

to get the edge label we skipped. This process will always work. Then C6 + Pn , when

n is not congruent to 0 modulo 3, will be seen to be graceful.

Theorem 2 C6 + Pn , when n is not congruent to 0 modulo 3, is graceful.

Proof. We first begin by labeling the 6-cycle as in the paragraph preceding the state­

ment of the theorem.

Next, we define i to be the i th vertex starting at one endpoint of the path. Let

i - 6l i~22J if i 2,4,6 (mod 12)

(i - 3) - 6l i~28J if i _ 0,8,10 (mod 12)
j(i) = (2.2)

n - ((i - 9) - 6l i~25J) if i 1,3,11 (mod 12)

n - ((i - 12) - 6li~~3 J) if i 5,7,9 (mod 12)

We first show that the function j defined above is one-to-one. Again, it is not

always one-to-one, but we do point out the cases where it is not so, and we fix these

cases in the lemma after the proof. We do this in a manner similar to the proof of

Theorem 1. We first note that the A and B formulas are increasing, so that if i # j,

and j(i) and j(j) are both computed by formula A or by formula B, then j(i) # j(j).

Similarly, the C and D formulas are decreasing, and by a similar argument, j(i) # j(j)
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if they use the same formula.

Next, note that formula A yields even labels and formula B yields odd labels,

thus formula A never equals formula B. Similarly, formula C and formula D are never

equal.

Thus we check whether formula A ever equals formula CorD, and whether formula

B ever equals formula C or D, and if so, we modify our labeling to make 0 6 + Pn

graceful.

Case 1. We first compare A labels to C labels. Since A yields even labels, we only con­

sider C labels that are even. Since n 1,2 (mod 3), we have n 1,2,4,5,7,8,10,11

(mod 12). For C labels to be even, n must be even. Thus n 2,4,8,10 (mod 12).

We consider each case separately.

Subcase (i) n = 12k + 2. Proceeding as in the proof of Theorem 1, the maximum

value of formula A is 6k + 2 and the minimum value of formula 0 is 6k + 4.

Subcase (ii) n = 12k + 4. The maximum value of formula A is 6k + 4 and the

minimum value of formula C is 6k +4. We postpone this case to a separate discussion

(see the lemma after the proof).

Subcase (iii) n = 12k + 8. The maximum value of A is 6k + 6 and the minimum

value of C is 6k + 8.

Subcase (iv) n = 12k + 10. The maximum value of A is 6k + 6 and the minimum

value of C is 6k + 10. Again, there is a gap of four, so we pass this along to the

lemma.
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Case 2. We next compare formula A labels to formula D labels. In order for D labels

to be even, n must be odd. Thus, n 1,5,7,11 (mod 12). Again, we consider each

case separately.

Subcase (i) n = 12k + 1. The maximum value of A is 6k and the minimum value

of D is 6k + 4. Again, see the lemma.

Subcase (ii) n = 12k + 5. The maximum value of A is 6k + 4 and the minimum

value of D is 6k + 6.

Subcase (iii) n = 12k + 7. The maximum value of A is 6k + 6 and the minimum

value of D is also 6k + 6. See the lemma after the proof for more on this subcase.

Subcase (iv) n = 12k + 11. The maximum value of A is 6k + 6 and the minimum

value of D is 6k + 8.

Case 3. Next, we compare formula B to formula C. Thus we require n to be odd, so

n 1,5,7,11 (mod 12).

Subcase (i) n = 12k +1. The maximum value of B is 6k +3 and so is the minimum

value of C. Again, see the lemma below.

Subcase (ii) n = 12k + 5. The maximum value of B is 6k + 3 and the minimum

value of C is 6k + 5.

Subcase (iii) n = 12k + 7. The maximum value of B is 6k + 3 and the minimum

value of C is 6k + 7. See the lemma.

Subcase (iv) n = 12k + 11. The maximum value of B is 6k + 7 and the minimum

value of C is 6k + 9.
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Case 4. Finally, we compare formula B to formula D. In this case, n must be even,

so that n 2,4,8,10 (mod 12).

Subcase (i) n = 12k+2. Here, the maximum value ofB is 6k+3 and the minimum

value of D is 6k + 5.

Subcase (ii) n = 12k + 4. The maximum value of B is 6k + 3 and the minimum

value of D is 6k + 7. Once more, see the lemma.

Subcase (iii) n = 12k + 8. The maximum value of B is 6k + 5 and the minimum

value of D is 6k + 7.

Subcase (iv) n = 12k + 10. The maximum value of B is 6k + 7 and so is the

minimum value of D. Once again, see the lemma below.

Now, we show that all the edge labels are distinct.

Case I: We compare the C - A edge and the D - A edge. We show that Ij(i) ­

j (i + 1) I=I Ij (j) - j (j + 1) I, where i =I j. The C-A edge is In - ((i - g) - 6l i~25J)) ­

(i + 1 - 6l i+;2-2 J) I. The D-A edge is In - ((j - 12) - 6lj~i3J) - (j + 1 - 6lJ+112-2 J) I·

Subcase (i): Both i-floors and the j-floors are the same. We add the two floor

functions in both edges using the first specific floor function. Since the floor functions

are assumed to be the same, it does not matter which one is used in the simplification.

After simplifying the C - A edge we get In - 2i + 8 + 12l i~25J I. After simplifying the

D - A edge we get In - 2j + 11 + 12lj~i3J I·

Now, 12li~25J and 12lj~i3J must differ by a multiple of 12. Thus, -2i = -2j +

3 + 12m for some integer m. But this is impossible since the right hand side is even

24



and the left hand side is odd.

Subcase (ii): Both the i-floors and the j -floors are different. In this subcase, we

are subtracting 6 from both the C - A edge and the D - A edge which does not

change the parity. We get the same result as in Subcase (i).

Subcase (iii): The i-floors are different and the j-floors are the same. In this

subcase, we subtract 6 from the C - A edge only. This does not change the parity

since 6 is even.

Subcase (iv): The j -floors are different and the i-floors are the same. In this

subcase, we subtract 6 from the D - A edge only. This does not change the parity

since 6 is even.

Hence, the C - A edge and the D - A edge are never equal.

Case II: We compare the C - B edge and the D - B edge. The C - B edge is

In - ((i - 9) - 6l i~25J) - ((i + 1 - 3) - 6l i+;2-
8 J) I. The D - B edge is In - ((j - 12) ­

6lj~i3J) - ((j + 1- 3) - 6lJ+
1
1
2
-8J)I.

Subcase (i): Both i-floors and the j-floors are the same. After simplifying the

C - B edge we get In - 2i + 11 + 12l i~25JI. After simplifying the D - B edge we get

In - 2j + 14 + 12lj~i3 JI·

Now, 12l i~25J and 12lj~i3J must differ by a multiple of 12. Thus, -2i = -2j +

3 + 12m for some integer m. But this is impossible since the right hand side is even

and the left hand side is odd.

Subcase (ii): Both the i-floors and the j-floors are different. In this subcase, we
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are subtracting 6 from both the C - B edge and the D - B edge which does not

change the parity. We get the same result as in Subcase 1.

Subcase (iii): The i-floors are different and the j -floors are the same. In this

subcase, we subtract 6 from the C - B edge only. This does not change the parity

since 6 is even.

Subcase (iv): The j -floors are different and the i-floors are the same. In this

subcase, we subtract 6 from the D - B edge only. This does not change the parity

since 6 is even.

Hence, the C - B edge and the D - A edge are never equal.

Case III: We compare the A - C edge and the B - C edge. The A - C edge

is I(i - 6li~22J)) - ((n - ((i + 1- 9) - 6l i+;2-5 J))I. The B - C edge is I((j - 3)­

6llf!-J)) - (n - ((j + 1 - 9) - 6li+1
1
2-

5J)) I·

Subcase (i): Both i-floors and the j-floors are the same. After simplifying the

A - C edge we get 12i - n - 8 - 12li~22JI. After simplifying the B - C edge we get

12j - n - 11 - 12 l j;;8JI·

Now, 12l i~22Jand 12lj;;8J must differ by a multiple of 12. Thus, 2i = 2j - 3+ 12m

for some integer m. But this is impossible since the right hand side is even and the

left hand side is odd.

Subcase (ii): Both the i-floors and the j-floors are different. In this subcase, we

are subtracting 6 from both the A - C edge and the B - C edge which does not

change the parity. We get the same result as in Subcase 1.

26



Subcase (iii): The i-floors are different and the j-floors are the same. In this

subcase, we subtract 6 from the A - C edge only. This does not change the parity

since 6 is even.

Subcase (iv): The j -floors are different and the i-floors are the same. In this

subcase, we subtract 6 from the B - C edge only. This does not change the parity

since 6 is even.

Hence, the A - C edge and the B - C edge are never equal.

Case IV: We compare the A - D edge and the B - D edge. The A - D edge is

I(i - 6l i~22J) - (n - ((i + 1 - 12) - 6l i+i213 J)) I. The B - D edge is I(j - 3) - 6l if.!-J­

(n - ((j + 1 - 12) - 6lj+~~13J))I.

Subcase (i): Both i-floors and the j-floors are the same. After simplifying the

A - D edge we get 12i - n - 11 - 12l i~22JI. After simplifying the B - D edge we get

12j - n - 14 - 12lif.!-JI·

Now, 12l i-;}Jand 12lj;;8Jmust differ by a multiple of 12. Thus, 2i = 2j -3+ 12m

for some integer m. But this is impossible since the right hand side is even and the

left hand side is odd.

Subcase (ii): Both the i-floors and the j-floors are different. In this subcase, we

are subtracting 6 from both the A - D edge and the B - D edge which does not

change the parity. We get the same result as in Subcase 1.

Subcase (iii): The i-floors are different and the j-floors are the same. In this

subcase, we subtract 6 from the A - D edge only. This does not change the parity
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since 6 is even.

Subcase (iv): The j-fioors are different and the i-floors are the same. In this

subcase, we subtract 6 from the B - D edge only. This does not change the parity

since 6 is even.

Hence, the A - D edge and the B - D edge are never equal.

Case V: We compare the D - A edge and the C - B edge. The D - A edge is

In - ((i - 12) - 6li~~3 J)) - (i + 1 - 6l i
+;2-2 J)I· The C - B edge is I(n - ((j - 9) ­

6l j;;5 J)) - ((j + 1 - 3) - 6li+1
1
2-

8 J)I. In this case, all possible values for i make the

floor functions in the D - A edge round down to different values. Also, all possible

values for j make the floor functions round down to the same values. So the only

case to consider is when the i-floors are different and the j-floors are the same. Here

we subtract 6 from the D - A edge only. After simplifying the D - A edge we get

In- 2i+5+ 12l i~~3J I. After simplifying the C - B edge we get In- 2j + 11 + 12lj;;5J I·

Now, 12li~~3J and 12l~J must differ by a multiple of 12. Thus, -2i = -2j +

6 + 12m for some integer m.

But, the only values for i are i _ 5, 7,9 mod 12 and the only values for j are

J 1,3,11 mod 12. So, -2i -2j mod 12. Since any multiple of 12 is zero

modulo 12, then we have that -2i and -2j + 6 are the same modulo 12. This is

impossible since 2i 2,6, 10 mod 12 and 2j 2,6, 10 mod 12 and the only possible

differences are 4,8 mod 12.

Hence, the D - A edge and the C - B edge are never equal.
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Case VI: We compare the A - C edge and the B - D edge. The A - C edge is

1(i - 6l i~22J)) - (n - ((i + 1 - 9) - 6l i+112-5 J)) I· The B - D edge is 1(j - 3) - 6l~J) ­

(n - ((j + 1-12) - 6lj+~~13 J))I.

Subcase (i): Both i-floors and the j -floors are the same. After simplifying the

A - C edge, we get 12i - n - 8 -12li~22JI. After simplifying the B - C edge we get

12j - n - 11 - 12lj;;8 J I·

Now, 12l i~22J and 12l~J must differ by a multiple of 12. Thus, 2i = 2j - 6+ 12m

for some integer m.

But, the only values for i are i = 2,4,6 mod 12 and the only values for j are

j _ 0,8, 10 mod 12. So, 2i 2j mod 12. Since any multiple of 12 is zero modulo

12, then we have that 2i and 2j - 6 are the same modulo 12. This is impossible since

2i 0,4,8 mod 12 and 2j 0,4,8 mod 12 and the only possible differences are 4,8

mod 12.

Subcase (ii): Both the i-floors and the j -floors are different. In this subcase, we

are subtracting 6 from both the A - C edge and the B - D edge which does not

change the parity. We get the same result as in Subcase 1.

Subcase (iii): The i-floors are different and the j-floors are the same. This subcase

occurs when i 2 mod 12 and j - 0 mod 12. This implies that 2i 4 mod 12

and 2j 0 mod 12. Since 2i 4 mod 12 then 2i 4 mod 24, and since 2j 0

mod 12 then 2i 0 mod 24. But we know that 4 mod 24 is not the same as 0

mod 24 + 12m for some integer m.
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Subcase (iv): The j -floors are different and the i-floors are the same. In this

subcase, i 4,6 mod 12 and j 8, 10 mod 12. This implies that 2i 0,8 mod 12

and 2j 4,8 mod 12. Since 2i - 0,8 mod 12 then 2i 8,12 mod 24, and since

2j _ 4,8 mod 12 then 2i 16,20 mod 24. Given this information, we need to know

if 8,12 mod 24 is the same as 16,20 mod 24 + 12m for some integer m. If both the

i-floors and the j-floors are the same, then their parity is the same and then they will

differ by an even number. So, we have that both floor functions are a multiple of 12.

If we take the difference of these floor functions, then we have the product of 12 and

an even number. Then we have 24 times an integer k. Thus, 8,12 mod 24 is not the

same as 16,20 mod 24.

If the i-floors and the j-floors have a different parity, then there are two cases to

consider, i < j and j < i.

If i < j, let i = 4 and j = 10. After simplifying, we get 8 = 20. This is impossible.

So if i < j, then 2i + 12l i~22J is not the same as 2j + 12liifJ modulo 12.

If j < i, let i = 16 and j = 10. After simplifying, we get 42 = 20. This is

impossible. So if j < i, then 2i + 12l i~22J is not the same as 2j + 12liifJ modulo 12.

Hence, the A - C edge and the B - D edge are never equal, and so C6 +Pn , when

n is not congruent to 0 modulo 3, is graceful.

o

We now consider those cases we postponed in proving that f was one-to-one.

Lemma For the subcases in the one-to-one proof that were postponed, one can make
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an appropriate change to our labeling function to ensure that C6 + Pn is graceful.

Proof. Again, we break this into four cases, each one actually being a subcase of its

respective case above.

Case 1. We first consider the subcase 12k + 4 for the A label and the C label. We

found that the maximum value of formula A is 6k + 4, and it is also the minimum

value of formula C. This occurs on vertex 12k + 4 and vertex 12k + 3, respectively.

Now, change the label of last vertex in the path to 6k + 5, thus giving a label of 1 to

the last edge in the path. To see that 6k +5 has not yet been used, we consider those

vertices labeled by formulas Band D, since only those produce odd outputs. Note

that the maximum value of B is 6k + 3 and the minimum value of D is 6k + 7, thus

showing that 6k + 5 had not yet been used in the path.

Now we check that 1 has not previously been an edge label. Recall that the

maximum values of A and B are respectively 6k+4 and 6k+3, and that the minimum

values of C and D are respectively 6k + 6 and 6k + 5. The only way one could

conceivably get an induced edge label of 1 using these would be to use A and D,

since they differ by 1 (note that one cannot have a vertex labeled by A and one

labeled by B adjacent to one another, because the functions both only accept even

inputs; similarly, for formulas C and D). Note, however, that the vertices where these

maximum and minimum values occur are 12k + 4 and 12k - 3, respectively, which

are non-adjacent. Thus the edge label of 1 had not been previously used, and so our

choice of our new label to the last vertex in the path is justified.
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Again, there was also another subcase where there was a gap of four between the

maximum and minimum values, thus there was a vertex label repeated. And, again,

it occurs on the last two vertices in the path. We modify the last vertex as earlier,

but leave the details to the reader, since the argument is the same.

Case 2. We next consider the case where n = 12 + 7 for the A and D vertex labels

that we postponed in the proof of the theorem. There, we found that the maximum

A label is 6k + 6 and so is the minimum D label. These occur at vertices 12k + 6

and 12k + 7, respectively, in the path. Now, change the label of the last vertex in the

path to 6k + 5. To see this has not yet been used, we check B labels and C labels.

We note that the maximum B label is 6k + 3 and the minimum C label is 6k + 7, so

that 6k + 5 has not been previously used, and we only have to check that the edge

label 1 has not previously been used on the path.

We note that the maximum values of A and Bare 6k + 6 and 6k + 3, respectively,

and the minimum values of C and D are respectively 6k + 7 and 6k + 6. The only

potential edge label of 1 is seen to be using the A label and the C label. But notice

that their maximum and minimum values occur at vertices 12k +6 and 12k +3, which

are not adjacent. Thus, our new label for the last vertex in the path is justified.

Again, there was also another subcase where there was a gap of four between the

maximum and minimum values, thus there was a vertex label repeated. And, again,

it occurs on the last two vertices in the path. We modify the last vertex as earlier,

but leave the details to the reader, since the argument is the same.
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Case 3. Next, we go back to the case n = 12k + 1 for the comparison between the

B labels and the C labels that was postponed earlier. We found that the maximum

value of the B labels is 6k + 3, which is the same as the minimum C label. These

occur at vertices 12k and 12k + 1, respectively (the last two vertices in the path).

Now, change the label of the last vertex in the path to 6k + 2, giving an edge label

of the last edge equal of 1. We must check that the A and D formulas never give this

vertex label. So note that the maximum value of the A labels is 6k and the minimum

of the D labels is 6k + 4, thus allowing 6k + 2 to be used.

To see that 1 does not occur on any other edge, note that the maximum values

of A and B are respectively 6k and 6k + 3, and the minimum values of C and Dare

6k + 3 and 6k + 4, respectively. Comparing B to D, the maximum value of B occurs

at vertex 12k and the minimum of D occurs at 12k - 3, so they are not adjacent, and

we therefore have that 1 is not used on any prior edge to the last one in the path.

Again, there was also another subcase where there was a gap of four between the

maximum and minimum values, thus there was a vertex label repeated. And, again,

it occurs on the last two vertices in the path. We modify the last vertex as earlier,

but leave the details to the reader, since the argument is the same.

Case 4. Finally, we consider n = 12k + 10, where we compared B labels to D labels.

In this case, we found earlier that the maximum value of the B labels is 6k + 7 which

is the same as the minimum value of the D labels. These occur at vertices 12k + 10

and 12k + 9, respectively, the last two vertices in the path. We change the label of

33



the last vertex in the path to 6k +8, giving the last edge an induced label of 1. To see

that this new label has not been previously used on the path, note that the maximum

value of A is 6k + 6 and the minimum value of C is 6k + 10, so label 6k + 8 has not

been previously used.

To see that edge label 1 has not occurred on the edges, note that the maximum

values of A and B are respectively 6k + 6 and 6k + 7, and that the minimum values

of C and Dare 6k + 10 and 6k + 7, respectively. Thus we consider the the A and D

labels. The maximum value of A occurs at vertex 12k + 6 and the minimum value of

D occurs at 12k + 9. Thus, the edge label of 1 did not occur on any other edge, and

so our new choice of the last last vertex label is justified.

Again, there was also another subcase where there was a gap of four between the

maximum and minimum values, thus there was a vertex label repeated. And, again,

it occurs on the last two vertices in the path. We modify the last vertex as earlier,

but leave the details to the reader, since the argument is the same.

D
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Chapter 3

Harmonious Labeling of the Odd

Cycle Union an Edge

Here, we ask the question: Is the disjoint union of an edge P2 and the odd cycle_Os,

denoted Os + P2 , harmonious? A function f is called a harmonious labeling of a

graph G with m edges if there is an injection from the vertices of G to the group of

integers modulo m such that when each edge xy is assigned the label (j(x) + f(y))

mod m, the resulting edge labels are distinct. In this chapter we present a harmonious

labeling of Os + P2 , s-odd.

Theorem 3 Let s be odd. Then Os + P2 is harmonious.

Proof. To show that Os+ P2 is harmonious, we must present a vertex labeling function,

f, of Os + P2 with m edges that is an injection from the vertices of Os + P2 to the

group of integers modulo m such that when each edge xy is assigned to the label
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(j(x) + f(y)) mod m, the resulting edge labels are distinct. Note that m = s + 1.

Let

i-I if i is odds--2
f(i) = (3.1)

s-i+l if i is even-2-

where i= ith vertex starting at a certain vertex in the cycle, 1 ~ i ~ m.

We must first show that no edge label is repeated. We do this in cases depending

on the endpoints of the edge.

Case I: The endpoints of one edge are s - i;1 and S-(i~I)+1 and the endpoints of

the other edge are s - j;1 and s-(j~I)+I.

We prove that (s - i;1 + s-(i~l)+l) mod m =I- (s - ~ + s-(j~l)+l) mod m, if

i < j. After simplifying, the left hand side is ~s - i - ~ and the right hand side is

~s - j - ~. These do not equal since i < j.

Case II: The endpoints of one edge are S-;+1 and s - (i+~)-1 and the endpoints

of the other edge are S-;+1 and s _ (j+~)-I.

We prove that e-;+l + s - (i+~)-I) mod m =I- e-~+1 + s - (j+~)-I) mod m, if

i < j. After simplifying, the left hand side is ~s - i - ~ and the right hand side is

~s - j - ~. These do not not equal since i < j.

Case III: The endpoints of one edge are s - U21 and s-(U~l)+1 and the endpoints

of the other edge are s - V21 and s _ (V+~)-I.
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We prove that (s - U21 + S-(U;l)+l) mod m =1= (S-~+l + m - (V+~)-l) mod m, if

u < v. After simplifying, the left hand side is ~s - u - ~ and the right hand side is

~s - v - ~. These do not not equal since u < v.

Now, we must show that the label of the edge with endpoints i = 1 and i = s

is not equal to any other edge label. Using our labeling function, f, we get the two

labels of the endpoints of this edge; sand S!l. So, this join-edge label is ~s - ~.

Previously, we found that all the other edge labels are of the form ~s - i - ~ for

1 < i < s. Thus, the label of the join-edge is always different from the other edge

labels. The only edge label thus far not used is S!l mod m. To get this edge label

we use 0 and S!l to label the two vertices in the path, which gives S!l as the induced

edge label. Thus, all edge labels are distinct. Also note that we only used the vertex

label S!l twice, which is the requirement for a harmonious labeling for cyclic graphs.

We must also check that no vertex label has been repeated. First, note that f is

one-to-one. Observe that no two vertices using the first formula are the same since it

is decreasing. Similarly, no two vertices using the second formula are the same. Next,

if we set s = i;l = S-~+l, where i is odd and j is even, the we have s + i - j + 2,

which is a contradiction since s is odd and s + i - j is even.

Also, 0 was not used in the cycle, so that only S!l was repeated. Thus, Cs + P2,

where s is odd, is harmonious.

o

37



Bibliography

[1] J.A. Gallian, A Dynamic Survey of Graph Labeling, University of Minnesota,

Duluth, Minnesota, 2000.

[2] S.W. Golomb, How to number a graph, in Graph Theory and Computing, R.C.

Read, ed. Academic Press, New York (1972) 23-37.

[3] R.L. Graham and N.J.A. Sloane, On additive bases and harmonious graphs,

SIAM J. Alg. Discrete Meth., 1 (1980) 382-404.

[4] B. Liu and X. Zhang, On a conjecture of harmonious graphs, Systems Science

and Math. Sciences, 4 (1989) 325-328.

[5] G. Ringel, Problem 25, In Theory of Graphs and its Applications, Proc. Sympo­

sium Smolenice 1963, Prague (1964) 162.

[6] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs

(Internat. Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod

Paris (1967) 349-355.

38



[7] D.A. Sheppard, The factorial representation of major balanced labeled graphs,

Discrete Math., 15 (1976) 379-388.

[8] West, Douglas B., Introduction to Graph Theory, Prentice-Hall, New York, 2000.

39


