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ABSTRACT

GENERALI ZED CONTI NJ TY, MONOTON A TY,
CLCEED GRAPH AND CONTI NU TY

Roy A Mimna
Mast er of Sci ence

Youngstown State University, 1987

In Chapter |I the notion of separate continuity is
I ntroduced and expl ai ned usi ng various exanpl es, including an
exanpl e of a real valued separately continuous function which
has a dense countably infinite set of points of discontinuity.
The latter exanple is explicitly constructed using a nethod
of densifying points in the real plane.

Chapter 11 introduces other kinds of generalized
continuity and presents theorens on generalized continuity -
and nonotonicity. |In particular, the notions of quasi-con-
tinuity, symmetric quasi-continuity, and near continuity are
i ntroduced. The di scussion and analysis deals wth real val-
ued functions of two variabl es which are nonotone in one or
both of the variables. The general question addressed is
what conditions of generalized continuity on such a function
wi Il guarantee that the function is continuous. The Lemma on
page 8, Theorem?2, Theorem 3, and Corollary | are ny results.
Theorem 2 states that a function f: ®*-~®, which is continu-
ous iny for every x, nearly continuous in x for every y, and

nmonotone in x for every y, is continuous. This is a general -




ization of the previously known result presented in Theorem
1. Theorem3 presents a simlar result for a function
. R2»®R which is jointly nearly conti nuous.

In Chapter TII the closed graph property is intro-
duced, and various theorens are presented concerning this
property, generalized continuity and continuity. Theorens 6
and 7 are ny results. Theorem?3 states the well-known result
that a function f£:X—y, where Y is conpact and G(f) is cl osed
in Xx¥, is continuous. Theorens 6 and 7 place a different,
al though related condition on a function £:xxY -2, (nanely,
that £ be bounded), rather than the conpactness of the range

of f.
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ABSTRACT

CGENERALI ZED GONTI NJ TY, MONOTON A TY,
QLCSED GRAPH AND GONTI NU TY

Foy A Mimna
Mast er of Science

Youngstown State University, 1987

In Chapter | the notion of separate continuity is
I nt roduced and expl ai ned usi ng various exanpl es, including an
exanpl e of a real val ued separately continuous function which
has a dense countably infinite set of points of discontinuity.
The latter exanple is explicitly constructed using a net hod
of densifying points in the real plane.

Chapter II introduces other kinds of generalized
continuity and presents theorens on generalized continuity
and nonotonicity. |In particular, the notions of quasi-con- _
tinuity, symmetric quasi-continuity, and near continuity are
i ntroduced. The di scussion and analysis deals with real val -
ued functions of two variabl es which are nonotone in one or
both of the variables. The general question addresséa S
what conditions of generalized continuity on such a function
w Il guarantee that the function is continuous. The Lemma on
page 8, Theorem?2, Theorem 3, and Corollary | are ny results.
Theorem 2 states that a function f: R?>-»1R, which is continu-_
ous iny for every X, nearly continuous in x for every y, and

nonotone in x for every y, is continuous. This is a general -
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CHAPTER |

SEPARATE CONTI NU TY AND JA NT GONTI NJ TY

| nt r oducti on

At least as long ago as 1873 it was known that there
are functions f: R*-= R which are continuous on every strai ght
line parallel to the coordi nate axes of the domain, but are
neverthel ess not continuous at a point of their domnain.

Definition: Consider a function f: R —= ®, The function

£, (¥), given by £ (y) =f(x ,y), is called an x-section of
0 0
f. Simlarly, the function fy (x), given by fy (x) = f(xryo)
4 0
is called a y-section of f. If all x-sections and all y-
sections of f: R?* =R are continuous, we say that f is sepa-

ratel y continuous.

Qearly, continuity inplies separate continuity, but
separate continuity does not inply continuity. Consider, for

exanpl e, the real valued function

i 2xy
f(x,y) = {x + y* , if (x,y) # (0,0)
0 ’ if (le) = (0,0)

At the point (0,0) f is separately continuous, but not con-
tinuous. dearly, £ is separately continuous at (0,0), for
f(o,y) =0and f (x,0) = 0. To see that f is not continuous

at (0,0), let X =r1r cos® and y =r sin®. Then

2r cos r sin _ 2r? sin® cos0® ' .
= FZcos%0FrZsin’d | TZ (sinZ0+cos Z0)= 25inOcost = sin26.

f(x,y)



Then since f depends only on 8, if the domain of f is a
sphere centered at (0,0), no matter how snall the radi us be-
cones, f(x,y) takes on all values between -1 and 1. So |et
¢ =% be given. Then there is no § such that |f (x,y) -
f(0,0)] < . Noticethat f has an oscillation of 2 at the
point (0,0). As indicated in the illustration, f "drops off"

at the origin fromlto 0 and from-1 to 0.

’ 27 2
w L. >
(ZLEF SRR
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(17T T b=
Veesuag =
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g

Hg. 1.--Gaph of a Separately Continuous Functi on

V¢ nay al so use Heine's condition of continuity to -
showthat f is not continuous at (0,0). Recall that Heine's
condition of continuity provides that a function f: R*->R is

continuous iff for all {a_l, lim a = (x,y) = %ig‘g(an) =
- (k1

f(X,y). So, let {an} be a sequence, where a = (=,2).

Aearly, {an} converges to (0,0) as n goes to t «. However,

t he correspondi ng sequence of val ues of f converges as

fol |l ows:

im 1 =1 # £(0,0) = 0.



Thus, by Heine's condition of continuity, we see that £ 1is
not conti nuous at (0,0).
An Exanpl e of a Separately Conti nuous Functi on

which I's D sconti nuous on a Count abl y
Infinite Dense Subset of the DonalLn

V¢ can now use the function illustrated above to
construct a new separately conti nuous function whi ch has

two points of discontinuity. Let

2xy
f (x,y) = x? + yZ , if (x,y) # (0,0)
! 0 , if (x,y) = (0,0)

As we have seen, £, has a point of discontinuity at the
origin. Now, |let

2 (x-%) (y-%)
fz(x,y) = (x-3%)2 + (y=-%)2 , if (x,y) # (%,%)

0  1f (x,y) = O4,%)

(bser ve t hat £ Is of the sane type as £, but wth the
point (%,%) as the "origin". The function f* = £ + £, S
now separat el y conti nuous but has two points of discontin-
ui ty.

VW can continue this process by defining a nethod
of choosi ng the successive points of origin. In fact-, by
this method, we can construct a function which is separately
conti nuous, but whose set of points of discontinuity is
countably infinite. GConsider the closed square
A= [-1,1] x [-1,1] inR?, Let us define a nethod of sel ect-
ing points in A whereby we choose the center of successively
snmal |l er squares as shown in the illustration. The first

point is the center of A and the next four points are the



centers of the first, second, third, and fourth quadrants
In that order. The next sequence of 16 poi nts begi ns agai n
in the first quadrant, with point nunber 6 being the center
of the first quarter-quadrant, point nunber 7 being the
center of the second quarter-quadrant, and so on.

(bserve that the selected points are arranged in a

sequence as follows: (a ,b ) = (0,0), (a ,b ) = (sr'4),

(aa’ba) = (-%,%),

~1

PO

=~
[V

FHg. 2.--Densifying Points in the Rectangle [-1,11%x[-1,1]

Now consi der the sequence of all of the points--

arranged in the indicated order; call it {(an,bn)}," =1

2, 3, ... Qearly, the sequence{(an,bn)} I's countably in-

finite. Let £ (x,y) be the function given by

(2(x-a ) (y=b,)
T\x=a_J7¥ (y-b )% , if (x,y) # (a ,b)

fn(XIY)

0 , if (x,¥) = (a b))



That i s, £ Is simlar to the function given by

;2xy
f(x,y) = ) x7 + y? , if (x,y) # (0,0)
0 , 1f (x,y) = (0,0)

but with the point (an,bn) as the "origin". Nowlet F(x,y)
= %fl(x,y) + %fz(x,y) +...t B E (x,y) +... 7is a function
series in which each termis less than or equal to the
corresponding termof the series % + % +...+ %" +,,,, which
I's convergent. Thus, the oscillation of F does not exceed
two at any point of its domain. Each term£ of F generates
a uni que point of discontinuity of F, and the points of
discontinuity of F are therefore countably infinite. Yet F
I s separately continuous everywhere on its domain, for on
any straight line parallel to the x-axis or the y-axis, each
termof the series is continuous, and therefore F is also
conti nuous on the sane |ine.

V¢ can al so show that the points of discontinuity of
F forma dense subset of the domain, for let (x,y) €
[-1,1]1 x [-1,1] and let r>0 be given. Thenr > yk for sone
kew, and if the square [-1,1] x [-1,1] is divided into quad-
rants k + 2 tinmes, the open sphere S({(x,y),r]l will céﬁtain
at | east one point of discontinuity of F

Thus we have constructed an exanpl e of a separately
conti nuous function f: R*»R which is discontinuous on a

countably infinite dense subset of the donmain. It is well



knomm that the set of points of discontinuity of any real -

val ued function is an Fg set. Thus, we see that the set of
points of discontinuity of f is an F; set which is also

countably infinite and dense in the donmain of E This re-
sult is especially interesting in viewof the well-known
fact? that the set of points of continuity of a real-val ued
separately continuous function fromthe product of, say,

two separabl e and conpl ete spaces, is a dense Gy set. Thus,
F has a dense Gy set of points of continuity and a dense F

set of points of discontinuity.

LR R Goldberg, Methods of Real Analysis, (N. Y.:
John wiley and Sons, 1976), Second Edition, p. 144.

2. Piotrowski, "Separate and joint continuity,"
Real Anal ysis Exchange, vol.11, Nbo. 2(1985-1986),
pp. 293-322.




CHAPTER 11

GENERALI ZED GONTI NU TY AND MONOTON A TY

| nt roduction

Al t hough separate continuity does not inply contin-
uity, a separately continuous function £: R*+R i S conti nuous
if f is nonotone in one of the variables. This chapter pre-
sents theorens and count er exanpl es i nvol vi ng nonot one func-
tions which exhibit not only separate continuity, but other
ki nds of generalized continuity as well. In particular,
functions f: R?2»R, Where f is nonotone in one or both vari -
abl es, are anal yzed to determne what additional conditions

on the function will result in continuity.

Separate Continuity and Monotonicity

VW begi n by defining nonotonicity:

Definition: Let Xand Y be netric spaces. A function

f: Xxy=>mR is nondecreasing [nonincreasing] in x for yeY if

X, < X, I mpl i es that f(xl,yo) < f(xz,yo) [f(xl'yo) 9

f(xz,yo)]. Ve say that f: XxY*R is nonotone in x for yeY

If f is either nondecreasing or nonincreasingin x for ye¥Y.
The definition of nmonotonicity iny for xe X for functions
f: XxYy*Ris simlar to the above.

Continuity clearly inplies separate continuity, but

as we have seen in Chapter |, the converse is not true.



However, the foll ow ng theorempresents a wel | - known resul t
conbi ning the noti ons of separate continuity and monoton-
icity: 3
Theorem1l: Let f: R?»R be separately continuous and suppose
that f is nonotone in x for yey. Then f is continuous.

It is well known? that a function f: ®?-R can be con-

tinuous along every analytic curve through a point (x ,y )
wi t hout bei ng conti nuous at (x .y ). Thi s stronger kind of

generalized continuity clearly inplies separate continuity,
and thus, when conbi ned with nonotonicity with respect to

one of the variables, inplies continuity.

Near Continuity and Monotonicity

Definition: Let Xand Y be netric spaces. A function

f: X>Y is nearly continuous at X, I f, for every open set V
cont ai ni ng f(xo), £ 1(v) is a nei ghborhood of X -

In order to proceed further, we need the foll ow ng:
Lemma: Suppose that a function f: R>R is nearly continuous

and nonotone. Then f 1 s conti nuous.

Proof: WL QG, take f to be nondecreasing. Let X be any

point in the domain of f. Let V be any open interval

rR. L. Kruse and J. J. Deely, "Joint continuity of
nmonot one functions,” Arxer. Math Monthly, Vol. 76 (1969), pp.
74-76. -

4A. Rosenthal, "On the continuity of functions of
several variables, "Math. Zeitschr., Vol. 63 (1955), pp.
31- 38.




containing f (x ). By the near continuity of f, £7'(v) is a
nei ghborhood of x . That is, £ '(v) is dense in some open
set, call it G containing X . Choose r > 0 such that

Ogn (x ,x)c G | clai mthat £[S(x ,x)]c V. Suppose, to the

contrary, that there exists a point X, such t hat x ¢ S(x,,r)

and £(x) ¢ V. WLQG, assume that x >x . Since £71(v)

*
i's dense in S(x_,r), there exists a point x = £71(V) such
*

t hat x* > % and x eS(xO,r). Since f is nondecreasing,
* *
X, <x <x = f(x) < f(x) < £(x ). But thisinplies that
*
f(x ) £V, whichis a contradiction. Thus, for every open

set v contai ni ng £(x ), there exists r>0 and there exists

an open sphere S(x ,r) such that £is(x ,r)]l <V Hence £ S

cont i nuous. [

Appl yi ng the above Lemma, we have the foll ow ng
general i zati on of Theorem L
Theorem 22 Let f: ®m*+r be a function which is nearly con-
tinuous in x for every y and continuous iny for every x
Suppose that f is nonotone in x for every y. Then £ is con-
ti nuous.
Proof: Since the y-sections of £ are nearly conti nuous and
nonot one, by the Lemma, all y-sections are conti nuous.
Sincef is nonotone in x for every y, by Theoreml, f is

conti nuous. [



Gorollary 10 Let f: ®-R be separately nearly continuous

(that is, all of the x-sections and all of the y-sections
of f are nearly continuous.) Suppose that f is nmonotone in
x for every y and nonotone iny for every x. Then f is con-
ti nuous.

The condition in Theorem2 (and hence in the corol -
lary) that the function be nonotone in x for every y is
necessary. To see this, suppose that a function f: R**R is
nearly continuous in x for every y, continuous iny for
every x, but not nonotone in x for every y (even though it
is constant - hence nonotone iny for every x). W shall
construct such a function which will not be continuous. In

fact, consider the real plane. Let all of the lines £,
wher e £, Is parallel to the y-axis, and where x is rational,

be raised to the level one. That is, |et
1, if xis rational and
f(x,y) = _ -
0, otherw se
(bserve that f is nonotone iny for every x, but not nono-
tone in x for everyy. (dearly, all x-sections of f are
continuous. observe further that all y-sections of f are

nearly continuous. That is for each Y, in the donmain of f,

(1, if x is rational
fy (x) = £(x,y ) ) .. .
0 0 _lo, if xisirrational .

Qearly, for every x in the domain of £, and for every open _

set V containing f  (x), £7'(v) is a nei ghborhood of x. That
0



11

is every y-section of f is nearly continuous. |t is easy to
see that f is not continuous, and thus we see the necessity
of the condition that f be nonotone in x for every y.

I't has been shown® that separate near continuity
does not inply (joint) near continuity, and (joint) near
continuity does not inply separate near continuity. In view
of the just stated results of T. Neubrunn, it would be inter-
esting to see an anal ogue of Theorem 2 for (joint) near con-
tinuity.

Recall that a function f: R?»R is nearly continuous at (p,q)

if, for every open set V containing f (p,q), ;:77;7 is a

nei ghbor hood of (p,q).

Theorem 3: Let f: ®*»IR be nearly conti nuous and suppose
that £ is increasing [decreasing] in X for every y and is

I ncreasing [decreasing] iny for every x. Then f is con-

ti nuous.

Proof: WL QG, let f beincreasingin X for every y and -
increasinginy for every Xx. Let (p,g) be any point in the

domain of f. Let v be any open interval containing f£(p,q).

By the near continuity of £, f '(V) is a neighborhood ‘of
(p,q). Then, £ '(v) is dense in sone open set, call it G
containing (p,g). Choose r >0 such that (p-r ,p+r)x(p-r ,g+r)
= AecG | claimthat f(A) <« v. Assune, to the contrary,

that there exists a point (x »y ) €A such t hat £(x ,y ) £V.

_ _ST. Neubrunn, "Generalized continuity and separate
continuity," Math. S ovaca, Vol. 27 (1977), pp. 307-314.




We now show that this assunption | eads to a contradiction.
WL QG, let x >pandy, >q Snce £7Y(v) is dense in
* *

A there exists a point (x ,y ) in £ '(v) such that
* * * *
(x ,y )3 Aand x >x, and y >y, - Since £is increasingin

x for every y and increasinginy for every x, p< ® <X* and
* *
* . . .
q<y <y = f(p,q)<f(x ,y )<¢(x ,y). But this inplies
1
* *
that £(x ,y ) £V, a contradiction. Thus, for every open

set V containing £(p,q), there exists an open rectangl e
(p-r,p+r) x (g=r,g+r) = A such that f(A) c\V Hencef is

continuous.

T
ST ETh
’\
* .
A4 = -

b e d o e, Y,
Viq-t- N
q ) [

t ¢ L
[ N
. t
. vt
AEEETR ¢
1 ;
J'
p x x* X

Fig. 3.--an Illustration of the Proof of Theorem 3



Quasi -continuity, Symmetric
guasl -conti nulty, and Monotonicity

S. Kenpisty first introduced the noti ons of quasi-
continuity and symmetric quasi-continuity.6
Definition: Let X Y, and z be topol ogi cal spaces. A

function f: xxv~+Zis guasi-continuous at the point (p,q)
inits domainif, for every open set V containing £(p,q),

and for every open set ueX containing p, and for every open
set Wc Y containing q, there exi sts an open nonernpty set G,

where G cUxW such that f (G): V

It is well known that separate continuity inplies quasi-con-
tinuity. 7 m exanpl e of a quasi-conti nuous function is the

following: Let f: [-1,1] x [-1,1] IR be defined by:

0 and

0, iIf (0 xx<land 0<y <1l)or (-1 <
< 0)

<
_li

X

(x,¥) ~| 1, otherwise y
(bserve that this function, which is quasi-continuous and i s-
al so nonotone in x for every y, and nonotone iny for every
X, would be actually a counterexanple to a conjecture that
quasi -continuity and nonotonicity with respect to both.vari-~
ables, inply continuity.

However, there i s another counterexanpl e which will

show that a stronger condition of symmetric quasi-continuity

6k. Kempisty, "Sur les fonctions quasicontinues”,
Fundanent a Mat hemati cae, Vol. 19 (1932), pp. 184-197.

7

Zz. Piotrowski, "Separate and joint continuity",
p. 295.
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and nonotonicity with respect to both vari abl es, does not
inply continuity. First, we define symretric quasi-contin-
uity.

Definition: A function f: R*+R is quasi-continuous with re-

spect to x if for every (p,q) eXxY, and for every open set
G containing £(p,q), and for every open set 0 = UxV 3 (p,q),
there exists an open (in X) nonenpty set U'e U and there
exi sts an open (in v) set v'e V, where V contains g, such
that f (U' xv') < G

Quasi-continuity with respect toy is simlarly de-
fined.

Definition: |If a function f: R*+R is quasi-continuous with

respect to x and quasi-continuous with respect to y, then we

say f is symmetrically quasi-continuous.

Again, it is known that separate continuity inplies
symmetric quasi-continuity and that symetric quasi-contin-

8 An exanple of a symmetric-

uity inplies quasi-continuity.
al |y quasi -continuous function, which turns out to be our
counterexanple, is the following: Let f: R+R be the func-
tion defined by

' 1, if y > X

f(x,y) = _

0, otherw se

This function is symmetrical |l y quasi -conti nuous at every
point on the liney = x and is continuous (and thus sym

nmetrically quasi-continuous) at all other points of its

8
p. 295.

z. Piotrowski ,' Separate and joint continuity',



domain. Cbserve further that the function is nonotone in
X for every y and monotone in y for every x. However, the
function is not continuous. Thus it is clear that symetric
quasi - continuity, when conbined with nonotonicity with re-

spect to both variables, does not inply continuity.
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CHAPTER 111

THE CLCSED GRAPH PROPERTY,
GENERALI ZED GCONTI NU TY, AND CONTI NJ TY

| nt roducti on

A function f: x>y, where Xand Y are arbitrary topo-
| ogi cal spaces, has a closed graph if the graph of f, denoted
by G(f) = {(x,f (x)):x<=X} is a closed subset of the product
Xxy. Very littleis required in order that a continuous
function have a closed graph. |In fact, the followingis
true:

Theorem4. Let X and Y be topol ogi cal spaces and Y be
Hausdorff. Suppose that f: X~-Y is continuous. Then G(f)
Is closed in XxY.

Proof: Let p = (xo,yo) be alimt point of G(f). Assune

that p £ G(f). S nce Y is Hausdorff, there exists an open

set Ge Yy such that G contains Y, and G does not contain

f(x ); and there exists an open set Vc y such that v con-
tains f(xo) and cnv =g, By the continuity of f, there
exi sts an open set Ue X such that U contains X, and f (U)c V.

Since the product of open sets is open in the product of the
spaces, UxG is an open set containing p but no other point
of G(f). This is a contradiction and shows that G(f) con-

tains all of its limt points. Hence, G(f) is closed in xxy.(J



The following is a useful characterization of the
cl osed graph property:

Definition: Let f: x>y, where Xand Y are netric spaces.

If {x_ } converges to x and if {f(xn)} converges to y, then
£ has a closed graph if £(x) =y.

Functions with d osed G aph
and Conditions for Continuity

As shown above, continuous functions have cl osed
graphs provided that the range is Hausdorff. W now turn
our attention to functions which have the cl osed graph prop-
erty. An inportant problemis to determne, where a func-
tion has the cl osed graph property, what additional condi-
tions on the function are necessary in order that the func-
tion be conti nuous.

First, we observe that the cl osed graph property
does not, of itself, inply continuity. Consider, for exam -
ple, the function

;l/x,ifx#o
f(x) =
lo , ifx=0
Qearly, G(f) isclosed in XxxY, but £ is discontinuous at
the point x = 0. Thus, we see that the cl osed graph prop-
erty does not inply continuity. However, a well known

t heor en? provides that a function is continuous if it has

%. Dugundjii, Topol ogy, (Boston:Allyn and Bacon,
1966), p. 228.
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the cl osed graph property and the range i s conpact:
Theorem5: Let X and Y be topol ogi cal spaces and | et
f: x>y wth Y conpact. |If G(f) isclosed in XxY, then f
I S conti nuous.

W shal | now present a theoremwhi ch places a condi -
tion on the function £ rather than on the range of f. W
shall require that the function be bounded. This result is
proved first for the real nunbers and then for nore general
spaces.
Theorem6. Let f: ®R?*»R be bounded and suppose that G(f) is
closed in ®R?xR. Then £ i s continuous.
Proof: Let (x,y) be any point in the domain of £. Let

{(xn,yn)} be any sequence of points in the donmain of £ such
that {(x_,y )} converges to (x,y). | claimthat {£(x_,y )}

converges to f£(x,y), and thus by Heine's condition of con-
tinuity, £ is continuous. Assune the contrary, nanely, that

{£(x_,y )} does not converge to f£(x,y). Let Vez be any
open interval containing £(x,y). Then since {f(xn,yn)}

does not converge to f£(x,y), there exists an infinitg set A

consisting entirely of points of {f(xn,yn)} such that ANV =

4. The set Ais bounded because f is bounded. By the
Bol zano- VWi erstrass Theorem A has at least one [imt point.
Let z be alimt point of A Then A contains a subsequence

{f(xn_,yn_)} whi ch converges to z. Qearly z # £(x,y).
i i

Since all subsequences of a convergent sequence of real
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nunbers converge to the sane limt as the mai n sequence, and

si nce {(xni,yni)} i s a subsequence of {(xn,yn)}, t hen

{(xn’yn)} > (x,y) = {(xni,yni)} +(x,y). Butthis is a

contradiction of the closed graph property of f, because
{(Xniryni)} *(x,y) and {f(xni,yni)} +2z, but z # £(x,y).

Hence, the original claimis correct, that {f(xn,yn)} con-

verges to f£(x,y), and by Heine's condition of continuity, f
i s continuous. O

(bserve that Theorem6 is true for nore genera
spaces. Before denonstrating this, let us recall the fol-
| owi ng:

Definition: A space Xis called a Bol zano- Vi erstrass

space provided that every infinite subset of X has at | east-
one limt point.

(bserve that every conpact space is a Bol zano- Wi erstrass -
space, but the converse is not true. Now, we have the fol -
| owi ng:

Theorem7: Let X, Y and Z be netric spaces and |et Z_be

Bol zano- Wi erstrass. Let f: XxxyY~=>Z and suppose that G(f)
Isclosed in xxyxZ Then f is continuous.

Proof: Let (x,y) be any point in the domain of f. Let

{(xn,yn)} be any sequence of points in the domain of f such

that {(x_,y )} converges to (x,y). I claim that {e(x ,y )}

converges to f(x,y). Assune the contrary, nanely that
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{f(xn,ynﬂ does not converge to f(x,y). Let Vc Z be any

open interval in Z such that V3 f(x,y). Then since

{f(xn,yn)} does not converge to f£(x,y), there exists an
infinite set A consisting entirely of points of {f(xn,yn)}

such that Anv = g. Since Zis Bolzano-\Wierstrass, the
set Ahas at least one limt point. Let z be alimt point

of A Then A contains a sequence {f(x_ ,y )} which con-
| i

verges to z. (Jdearly z # £(x,y). Since Xand Y are netric

spaces, and since {(x_ ,y_ )} converges to (x,y), then the

subsequence {(xn.,yn )} al so converges to (x,y). But this

Is a contradiction of the closed graph property of f. Hence,

{f(xn,yn)} converges to £(x,y), and f is continuous. []

(eneralized Continuity and the
(U osed Graph Property

As we inplicitly observed above, continuous func-
tions do not necessarily have the cl osed graph property,
but for real valued functions, continuity does inply cl osed
graph. W shall now showthat for a function f: R*R,
separate continuity does not inply closed graph. Consider
the function
{ZX
h(x,y) =¢x? + y* , if (x,y) # (0,0)
0 , if (x,y) = (0,0)

To showthat G(h) is not closed in ¥xxvYxZ, we shall use thé

characterization of the closed graph property given on page
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17 above. Returning to the function h, observe that the
sequence {1/n,1/n} converges to (0,0), and that {h(1/n,1/n)}
converges to 1. However, h(0,0) # 1L Thus, we see that a
functi an can be separately continuous but not have the
cl osed graph property. Qearly, other kinds of generalized
continuity, such as near continuity, do not inply the
cl osed graph property.

Many interesting results have been obtai ned concern-
Ing nearly continuous functions which have the cl osed graph
property. The general problemis to determ ne what condi -
tions on the domain and range of a function guarantee that
If the function is nearly continuous and has a cl osed graph,
then it is continuous. It has been shown, for exanple, that
If the domain and range are both conpl ete nmetric spaces,
then near continuity and cl osed graph inply continuity.10
It has al so been shown that if f: X*y is nearly continuous,
Yy is locally conpact and either regular or Hausdorff, and -
G(f) is closed, thenf is continuous. 1 An open question is
the following: Let f: Xxy-=+Z be separately nearly contin-
uous and suppose that Zis locally conpact and either-reg-
ular or Hausdorff. If G(f) isclosed in Xxyx2z, isf

cont i nuous?

105, 3. Berner, "A nost continuous functions with
cl osed graphs," Canad. Math. Bull., Vol. 25(4) (1982),
pp. 428-434.

llE, E McGehee, Jr. and P. E Long, "Properties of
al nost continuous functions," Proc. Amer. Math. Soc., \ol.
24 (1970), pp. 175-180.
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ABSTRACT

GENERALI ZED CONTI NJ TY, MONOTON A TY,
CLCEED GRAPH AND CONTI NU TY

Roy A Mimna
Mast er of Sci ence

Youngstown State University, 1987

In Chapter |I the notion of separate continuity is
I ntroduced and expl ai ned usi ng various exanpl es, including an
exanpl e of a real valued separately continuous function which
has a dense countably infinite set of points of discontinuity.
The latter exanple is explicitly constructed using a nethod
of densifying points in the real plane.

Chapter 11 introduces other kinds of generalized
continuity and presents theorens on generalized continuity -
and nonotonicity. |In particular, the notions of quasi-con-
tinuity, symmetric quasi-continuity, and near continuity are
i ntroduced. The di scussion and analysis deals wth real val-
ued functions of two variabl es which are nonotone in one or
both of the variables. The general question addressed is
what conditions of generalized continuity on such a function
wi Il guarantee that the function is continuous. The Lemma on
page 8, Theorem?2, Theorem 3, and Corollary | are ny results.
Theorem 2 states that a function f: ®*-~®, which is continu-
ous iny for every x, nearly continuous in x for every y, and

nmonotone in x for every y, is continuous. This is a general -




ization of the previously known result presented in Theorem
1. Theorem3 presents a simlar result for a function
. R2»®R which is jointly nearly conti nuous.

In Chapter TII the closed graph property is intro-
duced, and various theorens are presented concerning this
property, generalized continuity and continuity. Theorens 6
and 7 are ny results. Theorem?3 states the well-known result
that a function f£:X—y, where Y is conpact and G(f) is cl osed
in Xx¥, is continuous. Theorens 6 and 7 place a different,
al though related condition on a function £:xxY -2, (nanely,
that £ be bounded), rather than the conpactness of the range

of f.
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