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ABSTRACT 

Numerical Solution of Initial-Value Problems for Ordinary 

Differential Equations using Taylor Series with 

Recursively Defined Coefficients 

Raymond E. Flanery Jr. 

Master of Science 

Youngstown State University, 1986 

The Taylor series method has been neglected as a way 

to solve numerical initial-value problems since obtaining 

and evaluating the derivatives of a function is a complex 

and time consuming process when one uses the traditional 

methods to obtain the derivatives. If one instead uses 

recurrence relations, obtained from the mathematical 

operations which make up an equation, to evaluate the 

derivatives at specific points, then the Taylor series 

method is efficient and can be used to obtain information 
- 

about the behavior of a solution in the complex plane about 

its singularities. 

Software packages are available that utilize the 

Taylor method-, In particular, the ATOMCC toolbox,-written 

by Y.F. Chang, is a powerful package capable of handling 

almost any initial-value problem or system with extreme 

accuracy, even those that are stiff. 
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LIST OF SYMBOLS 

SYMBOL 

dny - or y(n) ( x )  
dx" 

DEFINITION 

The nth derivative of y with respect 
to x. 

The nth partial derivative of y with 
respect to x. 

n factorial = n(n-1) (n-2). 2.1. 

Denotes the summation of the terms that 
follow the symbol. 

Denote real numbers. 

Denotes 'element of'. 

Denotes 'subset of'. 

Two-dimensional space. 



CHAPTER I 

FINITE TAYLOR SERIES APPROXIMATIONS TO FIRST ORDER 

INITIAL-VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS 

Introduction 

Finding the solution y(t) to the problem 

y'(t) = f(t,y), a < t S b, y(a) = a ,  (1 

where y(a) = at is referred to as the initial condition, is 

called an initial-value problem. Numerical initial-value 

problems are like (I), except that one is interested in 

finding approximations of the solution y(t) at the points 

tl, t2, , tN, where t i  - - a + ih, h = (b-a)/N, 

and i = 0, 1, . * a ,  N. Here h is a fixed step size for the 

problem and to, tl, , tN are the mesh points. Any step 

size used in this paper is assumed to be fixed, unless 
- 

otherwise stated. 

Every student of Numerical Analysis has seen 

problems like that in (I), along with several different 

methods for finding numerical approximations to the solution 

y(t). Treatment of initial-value problems usually begins 

with Euler's method, Taylor series methods of order n, and 

then Runge-Kutta methods [1;205-2071. These methods are all 

referred to as one-step methods. This means that they derive 

their approximation at any given mesh point using only 

information available from the previous mesh point. 



The Taylor methods have been used previously for 

deriving lower order numerical methods, such as Euler's and 

the Runge-Kutta methods [5;26], rather than for 

approximating solutions to initial-value problems. This is 

because most methods to find the Taylor series coefficients 

involve some form of symbolic differentiation, which 

produces the algebraic form of the coefficients. These 

formulas become complex and require extensive computation 

time to evaluate [5;26]. 

A process for deriving the necessary Taylor 

coefficients through the use of recurrence relations can be 

used instead of symbolic differentiation to make the use of 

Taylor methods efficient [6;24]. Taylor methods utilizing 

these recurrence relations are the basis for software 

packages, including the ATOMCC toolbox [3;215], which will 

be discussed later. 

In the following sections the recurrence relations 
- 

used to derive Taylor series coefficients are developed, and 

a simple, but general, algorithm for applying these 

relations to solve a wide range of initial-value problems is 

presented. - - 

Recursive Definition of Taylor Series Coefficients 

In order to define the recurrence relations 

necessary to evaluate the Taylor series coefficients of a 

function y(t), the derivative of the function must be- 

composed of rational and/or elementary functions. It is also 



necessary that y(t) be analytic (infinitely differentiable) 

in some neighborhood of the point t = to. If these 

conditions are satisfied, then one may define 

and, in particular, one can see that 

(YI0 = y(to) and (YI1 = ~ ' ( t ~ ) .  (3) 

The finite Taylor series expansion for y(t) about t = to is 

where 

(t - tO)n+l 
Rn = Y (n+l) (4 , for some O e (toft). 

(n+l) ! 

This can be rewritten as 

where ( Y ) ~  , as defined in ( 2 ) .  is the kth Taylor 

coefficient. 

From equations (2) and (3) one has the recurrence 
- - 

relation 



1 dk-l 
= -  [ 

a ( - 1  dtk-I 
( Y ) ~  Ill 

This relation is used in the derivation of the recurrence 

relations of the different rational and elementary 

functions. 

Let u(t) and v(t) be arbitrary analytic functions 

and p some real constant, then one has the following 

recurrence relations [6;26], which will be derived later. 



(sin t ~ ) ~  = - 
k j=O 

\ (COS u ) ~  = - - (j+l) (u)j+l(sin U)k-l-jJ 
k j=O 

In addition to these recurrence relations, one also has 

T' 3 (sinh u ) ~  = L (1 - - ( ~ ) ~ _ ~ ( c ~ s h  u) 
3-0 k j 

and 

From these recurrence relations it is a simple 

matter to develop the relations for (tan u ) ~  and (tanh u ) ~ .  

If t is the independent variable in an initial-value 

problem and c is any constant, then there are the following 

simple, but important relations: 

(tl1 = 1, 

(tIk = 0 if k > 1, 

and 

(elk ' 0 if k > 0, 

( c u ) ~  = c ( u ) ~  for all k. 



Derivation of the Recurrence Relations 

The recurrence relations, equations (5) to (15), in 

the previous section can all be derived using the relations 

in ( 4 ) ,  some calculus, and Leibniz's rule for the kth 

derivative of the product of two functions: 

dk k dk-j 
T' 

( u v ) ( t O ) =  L ( u(tO)l [ dtk- j v(to)l* (17) 
dtk j-0 j! (k-j)! dtj 

The derivation of these recurrence relations is as follows: 

1. For equations (5) and (6) one has 

= ( u ) ~  f ( v ) ~ .  

2. For equation (7) one has 

Applying-(17) to the right side this equation becomes 



k 
1 

= 1 v(tO)l 
0 k - j ) !  dtj 

1 d j 
[ 

dk-j 

= 1 - [ - u(t01] v(tO)l 
j=o j! dtj - dtk-j 

u(t) 
3. For equation (8) if one lets f(t) = - , then 

v(t) 

v(t)f(t) = u(t); hence, 

(vf)k ' ( u ) ~ .  (I8) 

Now, if equation ( 7 )  is applied to the left side of 

(18), one has 

Notice that if j=0, then = (f)k = (u/v)~. Thus, 

by separating the first term from the rest of the sum 
- - 

in (19) and replacing f by u/v one has 

Solving this equation for ( u / v ) ~  produces: 



4. For equation (9) notice that 

Also, by reordering terms in the summation, one has 

Now, from equation (4), 

Now apply equation (8) to the quantity on the right. 

Then 

and applying equation (7) to the term before the 

summation the equation becomes 

Applying equation (20) to the second summation- 

transforms this equation into 



One final transformation is required. Apply equation 

(4) to the terms in both summations to produce the 

equation 

Notice that in the second summation, adding a term for 

j = 0 adds only zero to the sum. Hence 

- 
and bringing the two summations together then produces 

the equation 



5. For equation (10) one can use the results of equation 

(4) and the fact that (eUll = ( e U ) o ( ~ ) l  to obtain 

I 

Now, if equation (7) is applied to the right side, this 

becomes 

and by applying equation (4) to the terms of the 
- 

summation this equation becomes 

Hence, 



6. For equation (11) one should note that 

(log, u) = - (u), 
(u), 

By application of equation (4) one obtains 

Using equation (8) this now becomes 

If equations (4) and (21) are applied to the terms 

of the summation, then the above equation becomes - - 

Now, distributing l/k through the parenthesizes tepm 

and applying equation (4) to the term before the 

summation produces the equation 



7. For equation (12) one has 

hence, from equation (7) this becomes 

8. For equation (13) one has 

(cos u ) ~  = - ( ( ~ 0 s  
k 

Hence, from equation (7) this becomes 

(COS u ) ~  = - - 2i ( ( u ) ~ )  j(sin u)k-l-j 
k j=O 



9. For equation (14), by definition 

eu - e -u 
(sinh u ) ~  = [ 

2 

so equation (6) implies that 

1 
u (sinh u ) ~  = - ((e )k - (e-u)k) . 

2 

Applying equation (10) to the terms in parenthesis 

produces 

I 3 
(sinh u ) ~  = - [ 1 (1 - - u 

)(e )j(u)k-j 
2 j=o k 

Bringing-the summations together gives the equatxon 



1 k-1 
j 

(sinh u ) ~  = - [ 1 (1 - - u 
) ( ~ ) ~ - ~ ( ( e  I j  + (e 

2 j=O k 

10. For equation (15) 

eU + e-' 
(cosh u ) ~  = [ 

2 

so equation (5) implies that 

Applying equation (10) to the terms in parenthesis 

produces - 

1 k-1 
j i u  ( C O S ~  u ) ~  = - [ z  (1 - - )(e )j(u)k-j 

2 3-0 k 



Bringing the summations together gives the equation 

1 
k-1 

j 
( C O S ~  u)k = - [ 1 (1 - - ) ( ~ ) ~ - ~ ( ( e  1, -(e-U)j)] 

2 j=O k 

k-1 
j 

= 1 (1 - - ) (u) k- (sinh u) . 
j=O k j 

A General Algorithm for Evaluation of Taylor Series 
Coefficients Using the Recurrence Relations 

In the previous sections recurrence relations were 

introduced which enable one to evaluate Taylor series 

coefficients for the arithmetic operators, trigonometric 

functions, the logarithmic function, and the exponential 

function. What is needed now is a way to combine these 

recurrence relations to evaluate the coefficients of a 
- 

Taylor series which approximates the solution y(t) to an 

initial-value problem, where y(t) is composed of a finite 

combination of these functions and operators. 

Consider the finite Taylor expansion - - 

which is an approximation of the solution to the initial- 

value problem ( 1 ) . The Taylor coefficients (y) k, 

k=1,2, ,n, and the approximations at each mesh point can 

be obtained using the following algorithm [ 6 ; 2 6 ] .  An example 



of applying the algorithm can be found at the end of the 

section. 

ALGORITHM 1 

A. Initialize ( Y ) ~  = a. 

B. Transform f(t,y), from problem (I), into postfix 

notation. 

C. Generate a list of auxiliary variables {Ti) in the 

following manner: 

1) Let m = the number of operators in f(t,y), this 

includes the arithmetic operators and the elementary 

functions. 

2) Set TI = operatorl with its operands, 

Set T2 = operator2 with its operands, 

... 
Set T, = operatora with its operands, 

where operator through operator, are the operators 
1 

in f(t,y) in order of evaluation. These auxiliary 

variables are generated as if one were evaluating 

the postfix string. 

3) If any of the above operators has recurrence - - 
relations requiring the use of other operators, 

such as the sine function, and if these operators 

are not present in the list just created, then one 

must generate additional auxiliary variables to 

handle these new operators: - 



Set Tm + l  = ~perator,,~ with operands, 

Set T 
m + p  

= operator 
m+P 

with operands. 

D. Set ( Y ) ~  = T,. 

E. For each i=1, ..*,m+p, generate the code for (Ti)k from 

the recurrence relation corresponding to the operator 

in each Ti. 

1 
F. For each k=l, I n-1, set ( Y ) ~ + ~  - - -  (TmIk. 

k+l 

G. For each mesh point t 1 ,  . . . 
j 

, N, one can now 

obtain the approximation of y(t.) by: 
J 

1) For each i-1, * * *  , m+p, evaluate (Ti)0 at the 

point tj-l. 

2) Evaluate ( Y ) ~ .  

3) For each k=l, , n-1 

a) For each i=l, , m+p, evaluate (Ti)k, 

b) Evaluate ( Y ) ~ + ~ .  
- 

4) Evaluate equation (22) with t=t and to=tj-l. 
j 

EXAMPLE 1 

Consider the initial-value problem 
- - 

Y' = f(t,y) = sin(t)+exp(-t), 0 S t S 1, y(0) = 0. 

Let n = 5, N = 10, then h = (1-0)/10 = 0.1. To find the 

approximation at t = 0.1 will require one step of the 

algorithm, which will be sufficient to see how to apply it. 

A. Set (yI0 = 0. - 

B. The postfix form of f(t,y) is: 



where 0 represents the unary minus operation. 

C. 1) Set m = 4, the number of operators in f(t,y). 

2) Set T1 = sin(t), the postfix string is now: 

(Tl,t,O,exp,+) . 
Set TZ = -t, the postfix string is now: 

(T1,TZ,exp,+) . 
Set T3 = exp(TZ), the postfix string is now: 

Set T4 = TI + T3. 

3) Since T1 = sin(t), add an auxiliary variable for 

Set T5 = cos(t), the variable p is set to 1. 

D. Set (yI1 = T ~ .  

E. 1) set ( T ~ ) ~  = - 1 (j+l)(t) j+l(T5)k-l-jn (from (12)). 
k j=O 

By application of equation (16) this becomes 

By application of equation (16) this becomes 

(TZ)k = 0, for all k > 1. 

Y' J 
3) Set (Tg)k = L (1 - - )(T2)k-j(T3)j* 

j=o k 

By the definition in E.2 above, for j-0,- -,k-2 

(T2)k-j = 0 and for j = k-1 (TZ)k-j = -1. Thus 



1 

5) Set (T5)k = - - 
k j=O 

By application of equation (16) this becomes 

G .  F o r  j=1, tO=O.O, and tl=O.l: 

2) ( ~ 1 ~  = (T4I0 = 1. 

3 )  F o r  k=1: 



For k=2: 

For k=3 : 

For k=4 : 



4) Now to approximate y(0.1) using the above values one 

has 

= 0.10017167, to 8 significant digits. 

The actual solution for y(0.1) to 8 significant 

digits is 0.10015842. - - 



CHAPTER I1 

TAYLOR SERIES VS. RUNGE-KUTTA 

Introduction 

One basis for comparing the efficiency of 

approximating methods for IVPs is to compare the number of 

functional evaluations required at each step [1;226]. 

Another method for comparing the efficiency of numerical 

methods is to determine the total arithmetic operations and 

elementary function evaluations required. The Taylor method 

requires only one evaluation of the function f(t,y) in 

problem (I), but the recurrence relations used to evaluate 

the coefficients produce many arithmetic operations. Thus, 

the latter comparison method will be used to evaluate the 

performance of the Taylor method relative to some other 

numerical method, in this case the Runge-Kutta Order   our 
method. 

The operations to be counted are additions/ 

subtractions,- multiplications/divisions, and elementary 

function evaluations. The operations are grouped this way 

because of their similar computational times. To compare 

the Runge-Kutta Order Four to the Taylor series method, it 

is not realistic to consider only the total operations at 

each step. One must instead consider the total operations- 

required by each method over the entire interval of 



solution. The total number of operations then becomes 

dependent on the number of steps required to reach an 

acceptable approximation, one within a given error 

tolerance, as well as the number of operations required at 

each step of the solution. The total operations required by 

the Taylor series is determined by the length of the series 

being used, the type of operations present in the initial- 

value problem, and the number of steps involved in reaching 

the final approximation. The total operation count for the 

Runge-Kutta method is determined by the initial-value 

problem being approximated and the number of steps involved 

in the approximation. 

Runge-Kutta Order Four and its Operation Counts 

The Runge-Kutta Order Four method is the most 

commonly used of the Runge-Kutta methods, its development 

can be found in [1;225]. The following is a slight 

modification of the procedure given in [I]. It is designed 

to solve the initial-value problem in (I), where Nr is the 

partition size of the interval [a,b]. 

ALGORITHM 2 - - - 

Set h = (b-a)/Nr 

to = a 

W = a  0 

For j = 1 to Nr do 

Set t(') = t 
j - 1 

+ h/2 



(1) K, = hf(t , w ~ - ~  + K1/2) 

( 1  1 K3 = hf(t ,wj-l + K2/2) 

K4 = hf(tj-l + h,wj-l + 5 )  

W = w  
j j-1 + (K1 + 2(K2 + K3) + K4)/6 

t = a +  jh 
j 

Here w is the approximation of y(t.). Now, notice that 
j J 

there are 10 additions/subtractions and 9 multiplications/ 

divisions required for each step, excluding operations 

required to evaluate f(t,w). 

Let Ar E the number of additions/subtractions in f(t,y), 

Mr 3 the number of multiplications/divisions in 

f(t*y) * 
and 

Er E the number of elementary functions in f(t,y). 

Then the total number of operations required for the Runge- 

Kutta method to approximate y(b) is as follows: 

Total add/sub = (10 + 4Ar)Nr, 

Total mult/div = (9 + 4M,)Nr, 
- 

Total elem. func. evaluations = 4ErNr. 

From these formulas it is obvious that, if the 

initial-value problem involves a fair amount of operations, 
- - 

a large number of steps (a very small step size) will 

necessarily produce high operation counts. 

Taylor Series Method Operation Counts 

To compute the number of operations required by the 
- 

Taylor series method one must first answer these three 

questions: 



1. What degree Taylor polynomial will be used? 

2. What recurrence relations will be required to find 

each of the Taylor coefficients? 

3. How many steps will be required to approximate the 

solution to the problem? 

The answers to these questions determine the total 

operations required by the method. 

The degree of the Taylor polynomial determines the 

number of additions/subtractions and multiplications/ 

divisions required to evaluate the polynomial. A Taylor 

polynomial of degree n contributes n additions/subtractions 

and n multiplications/ divisions to the total operation 

count of the method at each step of the solution. 

Each recurrence relation requires different types of 

operations to be performed, as well as different numbers of 

these operations. To determine the number of operations 

required to evaluate each of the Taylor coefficients, one 

must consider the number of operations each different type 

of recurrence relation contributes to this total. 

The first coefficient, ( Y ) ~ ,  does not require any 

operations, -its value is assigned. To evaluate the second 

coefficient, ( Y ) ~ ,  each recurrence relation contributes 

operations as follows: 

1. Equations (5) and (6) contribute 

1 add/sub. 

2. Equations (7) and (8) contribute 

1 mult/div. 



3. Equations (9) through (15) contribute 

1 functional evaluation. 

To evaluate the other n-1 coefficients, ( Y ) ~ ,  k=2, . .. r n, 

each recurrence relation contributes the following 

number of operations: 

1. Equations (5) and (6) contribute 

1 add/sub, 

for each of the coefficients. 

2. Equations (7) and (8) contribute 

k add/sub, 

k+l mult/div. 

The recurrence relation in equation (8) requires 

1 mult/div for each of the k terms in the summation, 

k-1 add/sub to sum the terms, 

1 add/sub to finish evaluation of the brackets, 

and 

1 division by ( v ) ~ .  

3. Equation (9) contributes 

to evaluate the recurrence relation. - - 

Since p and k are given initially, one can treat 

8+1 - as a constant, to be evaluated before the 
k 

summation. This will require 



and 

1 mult/div. 

To evaluate the summation requires 

1 add/sub 

and 

3 mult/div for each of the k terms, 

k-1 add/sub to sum the terms, and 

1 division by ( u ) ~ .  

4. Equations (lo), (14), and (15) have the same basic 

structure. Thus, they each contribute 

2k-1 add/sub, 

3k mult/div. 

If one considers the recurrence relation in equation 

(lo), then it is easy to see that it requires 

1 add/sub 

and 

3 mult/div for each of the k terms and 

k-1 add/sub to sum these terms. 

5. Equation (11) contributes 

2k-2 add/sub, 

3k-2 mult/div. 

These totals come from the 

1 add/sub 

and 

3 mult/div for each of the k-1 terms, 

k-2 add/sub to sum the terms, 

1 add/sub to finish the evaluation in the brackets, 



and 

1 division by ( u ) ~ .  

6. Equations (12) and (13) are basically the same except 

for the additional multiplication by -1 required in 

(13). Their contribution is 

2k-1 add/sub, 

2k+l mult/div, equation (12), 

2k+2 mult/div, equation (13). 

Since only worst case operation counts are 

considered, the recurrence relations are grouped into three 

types, according to the types of operations that they 

produce. 

Type I - These are equations (5) and ( 6 ) ,  which 

contribute only add/sub to the counts. 

Type I1 - These are equations (7) and ( 8 ) ,  which 

contribute both add/sub and mult/div to the 

counts. - 

Type I11 - These are equations (9) through (15), which 

contribute add/sub, mult/div, and functional 

evaluations to the count. 

To determine the total number of operations for all n+l co- 

efficients in the Taylor polynomial contributed from each of 

these three types one has the following: 

Type I - The second coefficient contributes 
- 

1 add/sub. 

The remaining n-1 coefficients contribute 



Thus, operations in f(t,y) using recurrence 

relations of Type I contribute 

to the total operation count. 

Type I1 - The second coefficient contributes 

and the remaining n-1 coefficients contribute 

and 

Thus, operations in f(t,y) using recurrence 

relations of Type I1 contribute - 

and 

to the total operation count. 

Type I11 - For these equations, the worst case operation 

counts come from equation ( 9 ) ,  which requires - 

more operations than any of the other Type I11 

equations. The second coefficient contributes 



1 functional evaluation, 

and the remaining n-1 coefficients contribute 

and 

Thus, operations in f(t,y) using recurrence 

relations of Type I11 contribute 

and 

1 functional evaluation 

to the total operation count. 

All three types of equations require an additional 
- 

mult/div to solve for the coefficients ( Y ) ~ ,  ( Y ) ~ ,  . .. I 

(Y),. This is from step F of Algorithm 1. 

In a particular problem being solved it is likely 

that the actual number of operations required will-be much 

smaller than the worst case counts just given. As an 

example, consider the recurrence relation for equation (8). 

If the analytic function v(t) is replaced by the independent 

variable t, then one has the recurrence relation 
- 



If one now applies the results of (16) to the terms in the 

summation, then 

This new relation requires only 1 add/sub and 1 mult/div for 

each coefficient after the second, which still requires only 

1 mult/div. Thus, for an nth order Taylor polynomial. the 

relation contributes a total of n-1 add/sub and n mult/div, 

a definite savings over the operation counts of the original 

relation. 

To establish the operation counts for the Taylor 

method, one will need the following variables: 

At the number of elements of f(t,y) of Type I, - . 

Mt E the number of elements of f(t,y) of Type 11, 

Et s the number of elements of f(t,y) of Type 111, - ~ 

and 

Nt I the number of steps required to obtain the solution. 

The worst case total operation counts are then 
- - 

1. Total additions/subtractions: 

For each of the Nt steps there are 

a) n add/sub for evaluation of the Taylor 

polynomial, 

b) Atn add/sub from Type I equations, 

n2+n-2 
C) Mt( ) add/sub from Type I1 equations, 

2 



and 

d) et(n2+n-2) add/sub from Type 111 equations. 

Thus, 

total add/sub 

2. Total multiplications/divisions: 

For each of the Nt steps there are 

a) n mult/div for evaluation of the Taylor 

polynomial, 

b) n-1 mult/div for evaluation of the coefficients 

C) Mt( ) mult/div from Type I1 equations,- 
2 

and 
- 

3n2+7n-10 
d) Et( ) mult/div from Type I11 equations. 

2 

Thus, 

total- mult/div - - 

- 
3. Total elementary function evaluations 

For each of the Nt steps there will be Et elementary 



function evaluations. Thus, 

total func. eval. = E p t .  

Examples 

In the examples that follow, all results were 

obtained on an IBM PC-AT in double-precision arithmetic, 

using a Pascal Turbo-87 compiler, which utilized the 80287 

mathematics coprocessor chip. Both the Runge-Kutta and the 

Taylor series method were run using step sizes of (l/2)i, 

for i=1,- . * , 1 4 .  For both methods, the relative error of the 

approximation was used to decide if the approximation was 
* 

within the given error tolerance. If y is the actual 

solution and y the approximation to that solution, then the 

relative error is 

The Taylor series method was able to reach an 
- 

acceptable approximation for most of the step sizes used in 

each of the problems. The table values were chosen from 

these different results on the basis of which step size 

produced the approximation most efficiently in respect to 

the worst case operation counts. 

While looking over the examples and comparing the 

timing analysis, one should keep in mind that the run times 

listed are for the routines in the Appendix, which were 
- 

designed to eliminate most of the unnecessary operations, 

while the operation counts given are worst case. For this 



reason one will sometimes find a time that is less for one 

example than for another example having smaller operation 

counts. 

EXAMPLE 2 

Consider the initial-value problem 

2 y' = - y (2t + I), 0 S t d 1, y(0) = 4, 

which has actual solution 

Using Algorithm 1, the following list for f(t,y) = y' can be 

constructed: 

From this list one can see that the operation count 

parameters for the Taylor method are 

A t  = 2, Mt = 3, and Et = 0, 

and from f(tIy) one has the parameters for the Runge-Kutta 
- 

method 

Ar = 2, Mr = 3, and Er = 0. 



This example is non-linear in the dependent variable 

y and has a singularity of order two in the solution at the 

point t = -1/2. This singularity gives the Taylor method 

problems at the larger step sizes, but after the step size 

is within the radius of convergence for the Taylor series an 

accurate approximation is quickly obtained. 

The results of the Taylor method and the Runge-Kutta 

method applied to this example can be found in TABLE 1. In 

this example the Runge-Kutta method is superior to the 

Taylor method for the larger tolerance, which is usually the 

case, but the Taylor method is superior when more accuracy 

is required in the approximation. 

TABLE 1 

OPERATION COUNTS AND TIMING ANALYSIS FOR THE 
TAYLOR AND RUNGE-KUTTA METHODS FOR EXAMPLE 2. THE 
UNIT OF TIME IS SECONDS. 

method to1 # of # of add/ mult/ time 
limit steps terms sub div 

EXAMPLE 3 

Consider the initial-value problem 

y' = - y +  t2 + 1, 0 d t d 1, y(0) = 1, 

which has actual solution 

y = - 2 C t  + t2 . 



This example is linear in the dependent variable y so the 

solution has no singularities which could cause possible 

problems for the Taylor method. TABLE 2 shows that the 

Taylor method requires only a small number of steps and 

terms to reach an accurate solution, even at the smaller 

tolerance. At the larger tolerance the performance of both 

methods is excellent, but for the smaller tolerance the 

Taylor method is superior. 

The operation count parameters are 

At = A r  = 3, Mt = Mr = 1, and Et = E, = 0. 

TABLE 2 

OPERATION COUNTS AND TIMING ANALYSIS FOR THE 
TAYLOR AND RUNGE-KUTTA METHODS FOR EXAMPLE 3. THE 
UNIT OF TIME IS SECONDS. 

method to1 # of # of add/ mult/ time 
limit steps terms sub div 

TS 5x10-~ 2 4 50 32 0.01 

EXAMPLE '4 
- - 

Consider the initial-value problem 

y 1  = sin(t)+e-t, 0 6 t C 1, y(0) = 0, 

which has actual solution 

y = -cos t - e-t + 2. 
- 

This example was chosen to show how the presence of 

elementary functions affects the two methods. In TABLE 3 



the worst case operation counts for the Taylor method are 

misleading. The actual operation counts are much lower since 

both of the elementary functions involve only the 

independent variable t. The reduced recurrence relations 

can be found in EXAMPLE 1. TABLE 3 does show that the 

Runge-Kutta method is slightly better at the larger 

tolerance, but the Taylor method is definitely superior for 

the smaller tolerance. This is principally due to the number 

of functional evaluations required by the Runge-Kutta 

method. 

TABLE 3 

OPERATION COUNTS AND TIMING ANALYSIS FOR THE TAYLOR 
AND RUNGE-KUTTA METHODS FOR EXAMPLE 4. THE UNIT OF TIME 
IS SECONDS. 

method to1 # of # of add/ mult/ func. time 
limit steps terms sub div eval . 

EXAMPLE 5 
- - 

For this last example, the initial-value problem is 

from [1;284], where it is used as a test problem to observe 

how a method handles stiff differential equations. The 

problem is 



The actual solution 

has a moderately large negative exponent, which causes the 

solution to decrease at a rapid rate. In TABLE 4 it is 

obvious that the Runge-Kutta method has a very difficult 

time with this problem even at the larger tolerance. At the 

smaller tolerance the Runge-Kutta requires an extremely 

small step size. Thus, the time required to reach an 

acceptable approximation is unreasonable. The Taylor method 

requires relatively little computational time at either 

tolerance to reach an acceptable approximation. 

TABLE 4 

OPERATION COUNTS AND TIMING ANALYSIS FOR THE 
TAYLOR AND RUNGE-KUTTA METHODS FOR EXAMPLE 5. THE 
UNIT OF TIME IS SECONDS. 

method to1 # of # of add/ mult/ time 
limit steps terms sub div 



Summary 

The examples in the previous section show that the 

Taylor method is capable of producing results superior to 

those of the Runge-Kutta method, especially if one is 

interested in highly accurate approximations. The main 

problem in applying the Taylor method efficiently is the 

need for a way to choose an appropriate step size and order 

for the method. The choice of these two parameters will be 

investigated in CHAPTER 4. 

Assuming that one can choose the ideal step size and 

order for the method, the examples show that the Taylor 

method is most useful when one needs high accuracy in the 

approximation, or when the solution to the problem decays, 

or grows, rapidly. 



CHAPTER I11 

ERROR ANALYSIS OF TAYLOR SERIES 

Introduction 

Using the Taylor series method to approximate (1) 

will involve a certain amount of error. The amount of error 

will depend upon two different types of error - round-off 

error and truncation error. 

Round-off error is the result of finite-digit 

arithmetic and is a cause of error for any computations 

performed on a computer. Truncation error is the result of 

using a finite number of the Taylor series terms to 

approximate the value of the infinite expansion. 

Round-off Error 

- 

In [1;10-161 one will find a complete discussion of 

round-off error. Since this type of error is unavoidable, 

one should be familiar with some ways to reduce its effects 

on computer - calculations. Two of the ways to reduce this 

error are : 

1. Reformulation of the problem to be solved, 

and 

2. Reduction of the number of operations that must be 
- 

performed. 



Reformulation of the problem is used to avoid the 

subtraction of nearly equal numbers, the division by numbers 

with small magnitude, or the multiplication of numbers with 

large magnitude. In the following example [1;18] one can 

see the result of reformulating a problem to avoid 

catastrophic subtractions. 

EXAMPLE 6 

Consider the problem of approximating eV5 using the 

Taylor polynomial of degree 9 with the formula: 

= -1.827, to 4 significant digits, 

or with the formula 

= 6.959~10-~, to 4 significant digits. 

The actual solution, to 4 significant digits, is 

6.738~10-~. The reason that (24) is more accurate than (23) 
- 

is that the equation for (24) does not involve any 

subtractions. 



Concerning the number of operations, one way to 

reduce them is to place polynomials into nested form before 

they are evaluated. 

EXAMPLE 7 

Consider the nth degree Taylor polynomial for y( t) 

with h=t-to, 

To evaluate this polynomial directly one could use the 

following Pascal code: 

for k := 1 to n do 

begin 

hl := hl * h; 

y := y + yt[kJ * hl 

end ; - 

The final value for y is the approximation to y(t), and 

yt [k] represents the kth Taylor coefficient . This algorithm 

requires n additions and 2n multiplications. However, - - 

suppose one used instead the Pascal code: 

Y := ytCn1; 

for k := n-1 downto 0 do 

which evaluates the polynomial in nested form. Then 

evaluation of the Taylor polynomial requires only n 

additions and n multiplications. 



Global and Local Truncation Error 

Suppose y(t) is the solution to the initial-value 

n+l n+l problem in (1) and y e C [a,b], where C [a,b] denotes 

the class of functions that are n+l times continuously 

differentiable on [a,b]. Expand y(t) about the point t=t 
i 

to obtain the nth degree Taylor polynomial: 

where ti < t i  < ti+,. Since y(t) is the solution to (I), 

~ ( ~ ) ( t )  = f(k-l)(t,y(t)), for each k=1,2, * * .  ,n+l. 

Substituting for the appropriate derivatives in (25) gives 

By neglecting the term involving f one can form the 

Taylor method of order n [1;216]: 

Set wo = a - - 
and 

hn 
Set w ~ + ~  = wi + hf(ti,wi) +..a+ - f(n-l) (ti,wi) (27) 

n! 

The global error associated with the Taylor method of order 

n is the difference between the actual solution y(ti) and 

the approximation wi. This is the error accumulated from 

each of the steps taken prior to, and including, the ith 



step. 

To obtain a bound on this error it is necessary to 

present the following three lemmas. 

Lemma 1 

For all x 2 -1 and any positive m, 

The proof of this lemma can be found in [1;208]. 

The following lemma is a generalization [1;208]: 

Lemma 2 

If s and t are positive real numbers, n is a 

positive integer, and {ailiz0 is a sequence satisfying 

t 
n 

a o 2 - -  , and ai+l 6 (l+s) ai + t for i=o,l,...,k, 
S 

then 

Proof 

If i is fixed, then 

a 
i + l  6 (i+slnai + t 

6 (l+s)" I ( l + ~ ) " a ~ - ~  + tl - - 
... 



which is a geometric series with ratio (l+s)" and sums to 

Thus, 

therefore, by Lemma 1, 

Lemma 3 

Let y E cl[a,b] be a solution to the initial-value 
- 

problem in ( 1 ) , where f is defined on D c R' , 

D = {(t,y) I a < t 6 b, -- < y < = 1 ,  

and f has continuous partial derivatives of all orders less 
- - 

than or equal to n. Then for each k=O , 1 , , n-1 there 

exists a non-negative real constant Lk such that 

I f'k'(try2) - f ( k ) ( t l ~ l )  I Lk(y2 - Y1l 
whenever (t,yl),(t,yZ) e D. 



Proof 

It follows immediately that 

for some constant Lk > 0 and for all k=O,l,.. *,n-1. With t 

held fixed, each f(k)(t,y) is a function of the single 

variable y and thus, applying the Mean Value Theorem, there 

exists a number 4 ,  yl < 5 < y2 , such that 

ay y2 - Yl 
whenever ( t r ~ ~ ) ~ ( t , y ~ )  e D. 

This implies that 

' L k 1 ~ 2  ' Y1l -. 
A definition is required before the following 

theorem [1;209] can be used to derive the desired bound for 
- 

the global error of the Taylor method. 

Definition 1 

A function f(t,y) is said to satisfy a Lipschitz 
- - 

condition in the variable y on a set D C R ~ ,  provided a 

constant L > 0 exists with the property that 

whenever (t,yl),(t,y2) e D. The constant L is called a 

Lipschitz constant for f. [1;201] 
- 



Theorem 1 

Let y(t) denote the unique solution to the initial- 

value problem 

and wO,wl,.- ,wN be the approximations generated by the 

Taylor method of order n for some positive integer N. If in 

addition y satisfies the hypotheses of Lemma 3, then there 

exists non-negative constants M and L such that 

~~("+')(t)l C M, for all t e [a,b] 

and 

h " ~  
IY, - wil d [,nL(ti-a) -11, for i = ~ , l , . - * , ~ .  (28) 

L(n+l) ! 

By assumption , y(ntl) is continuous, so there exists 

M 2 0 such that 
- .  

~y(~+')(t)l d M, for all t c [a,b]. 

When i=0, y(tO) = wO = a, so inequality (28) is true for 

From ( 2 5 ) ,  for i=O,ma *,N-1, 

and from the equations in (27), 



Using the notation yi = y(ti) one finds that 

Hence, 

Applying Lemma 3 and using the fact that 

~y("+')(t) 1 6 M I  equation (29) becomes 



Let L = max { Lo, L ~ ,  ..., Ln-l, 1 ) ,  then 

Applying Lemma 2 with ai = lyi - wil for each 

h"+l~ 
i=O,*..,N, s = hL, and t = , one has 

(n+l) ! 

and since ( y - w0( = 0, and h(i+l)=(ti+l-tO)=(ti+l-a), 

for each i=O,... ,N-1 -m 

The bound given in Theorem 1 shows that, neglecting 

round-off error, the global error for the Taylor method of 

order n is O(hn ) . - - 

The local truncation error for the Taylor method of 

order n [1;218] is the difference between the exact solution 

y(ti) and the approximation at the ith step, assuming that 

the value from the previous step is exact. Under the same 

assumptions as in Theorem 1, the local truncation error, 

7 
i + l l  at the (i+l) th  step is defined as 



for each i=O,.*.,N-1, where 

Thus, the local truncation error for this method is 

such that ri=O(hn). 

Stability and Convergence 

In this section the following definition is 

required. 

Definition 2 

The Taylor method of order n is said to be 

convergent with respect to the differential equation it 

approximates if 

lim max lyi - wil = 0, 
h -' 0 l<idN 

where yi and wi are the same as in Theorem 1. [1;271] 

To see that the Taylor series method is convergent - - 

under the hypothesis of Theorem 1 one requires inequality 

(28), which gives 

Since h is the only non-constant, this tends to zero with h.- 

Hence the Taylor method of order n is convergent as long as 



the differential equation being solved satisfies the 

conditions of Theorem 1. 

Definition 3 

A method is stable if small changes in the initial 

conditions of an initial-value problem produce 

correspondingly small changes in the approximations of the 

problem. [1;272] 

The following theorem [1;272], whose proof is not 

given therein, can be used to establish stability. 

Theorem 2 

Suppose the initial-value problem 

y '  = f(t,y), a $ t $ b, y(a) = a 

is approximated by a one-step method in the form 

W i + l  = wi + h+(ti,wi,h). 
(31 - . 

If a number ho > 0 exists and +(t,w,h) is continuous and 

satisfies a Lipschitz condition in the variable w on the set 
- 

D = {(t,w,h) I a d t < b, -a < w < =, 0 < h $ ho ) ,  

then the method is stable. 

Proof 

- - 
N 

Let {Ui)i=l and { v ~ ) ~ = ~  satisfy (31) and let i be 

fixed, then upon subtraction one obtains 

1 ui + 1 - ~ ~ + ~ l  S Iui - viJ + hl+(ttuith) - +(t.vi,h)lg (32) 
Since +(t,w,h) satisfies a Lipschitz condition in 

the variable w, there exists a positive constant L such that 

I+(t,ui,h) - +(t.vi,h)l C Llui - vile 



So inequality (32) becomes 

i + 1 d IuO - v O (  ( 1 + hoL ) . 
Now let K = ( 1 + hoL ) it'. Then 

I U i + l  - vi+1l Kluo - vol 
Thus, any small changes in the initial conditions uo and vo 

produce correspondingly small changes in the approximations 

u 
i + l  and v ~ + ~ .  m 

The Taylor method of order n defined in (27) is 

stable when the initial-value problem being solved satisfies 

the hypothesis of Lemma 3. For this method define 

where T(") is defined in (30). Then for any ho > 0, + 
continuous on 

Since the method does satisfy the hypothesis of - - 
Lemma 3 and slnce 



the results of Lemma 3 lead to 

Thus + satisfies a Lipschitz condition in the variable w on 
the set D for any ho > 0 with Lipschitz constant 

So Theorem 2 implies that the Taylor method of order n is 

stable. - - 



CHAPTER IV 

ATOMCC: UTILIZING THE TAYLOR SERIES METHOD 

Introduction 

Y.F. Chang [2;80-1381 has derived methods used in 

the ATOMCC toolbox [3;215] to locate the position and order 

of non-essential singularities in the solution of an 

ordinary differential equation (ODE). He also discusses 

some heuristic approaches to finding the optimum step size 

in the case that the solution of the ODE, or system of ODEs, 

is either an entire function or possesses an essential 

singularity. 

ATOMCC uses a thirty term series, unless the user 

specifies some other number of terms or ATOMCC discovers 

that the ODE, or system of ODEs, is stiff, in which case the 
- 

number of terms used in the series is reduced to fifteen. A 

thirty term series allows ATOMCC to use a very large step 

size, relative to most numerical methods, which decreases 

the chance of computer round-off error. This long- series 

length also enables ATOMCC to accurately estimate the radius 

of convergence for the series at each step, thus allowing 

for accurate control of the local truncation error [2;141]. 

ATOMCC allows one to solve ODEs in the complex 

plane, thus enabling one to obtain information about the- 

behavior of the system near singularities other than just 



along the real axis [3;222]. 

The input for ATOMCC is structured so as to be 

easily used, and all inputs are in the form of FORTRAN code. 

There are several input blocks to allow one to 

1. specify the ODE or system of ODEs, 

2. specify the initial conditions or input statements to 

be inserted into the FORTRAN source code to be 

generated, 

3. redefine some of the default parameters of the package, 

such as the error limit or the number of terms in the 

series, 

and 

4. structure the output of information from the package. 

After the input to the system has been specified, 

the ATOMCC program generator is used to produce a FORTRAN 

source program to be compiled and linked with certain 

subroutine libraries in the ATOMCC toolbox. 
- 

The program generated by ATOMCC contains most of the 

code necessary for solving the ODEs, the recurrence 

relations, structure of the system, etc. There are two 

external program calls to the routines RDCV and RSEE- RDCV 

contains the routines to estimate the radius of convergence 

of the truncated Taylor series. RSET contains the routines 

necessary to choose the optimum step size for a particular 

expansion based upon the radius of convergence, the length 

of the Taylor series being used, and the error tolerance- 

specified for the problem. 



The RDCV routines estimate the radius of convergence 

if the problem has a single singularity on the circle of 

convergence, a conjugate pair of singularities on the circle 

of convergence, an essential singularity on the circle of 

convergence, or if the solution is an entire function. 

Locating Non-Essential Singularities and Their Order 

When a Taylor polynomial is used to approximate the 

solution to an initial-value problem it is effected by 

singularities occuring in the solution of the problem. 

These singularities, if the solution is real valued on the 

real axis, occur only on the real axis or in conjugate pairs 

[4;122-1231. 

In the methods to be discussed, it is assumed that 

only the primary singularities, those on the circle of 

convergence, have any significant effect on the terms of the 

problem's Taylor series. This assumption is accurate if a 
- 

sufficiently long series is used [4;123]. 

Only two of Changls methods are described here, the 

two-term analysis [2;89] and the three-term analysis [2;91- 

92). Both of these methods are able to find the raaius of 

convergence for a series when the solution has only a single 

singularity on the circle of convergence. In addition to 

the radius of convergence, the three-term analysis also 

gives the order of the singularity, whereas the two-term 
- 

analysis requires that this order be known beforehand to 

obtain the radius of convergence. These methods are both 



derived through analysis of the model problem 

y(t) = ( t - a ~ - ~ .  (33) 

This equation adequately approximates the solution to the 

initial-value problem being solved as long as there is a 

single singularity on the circle of convergence and the 

series Is evaluated at a point near the singularity [2;83- 

841. For a complete analysis of Chang's methods one should 

consult [2;80-1381. 

The two term analysis is derived by considering the 

recurrence relations one obtains for the Taylor coefficients 

of (33). The derivatives of (33) have the form 

y' = -s(t-a) -s-1 I 

y H  = -s(-s-l)(t-a) -s-2 

= -s(t-a) -s-1 (-s-l)/(t-a) 

so that the general recurrence relation for the Taylor 

coefficients, evaluated at t = to, is 



Solving for d a-to this equation becomes 

Since the radius of convergence, p, is la-tol one has 

This is the formula for the two-term analysis. 

When one does not possess a priori knowledge of the 

singularity's order, then two copies of equation (34) can be 

solved simultaneously to yield the radius of convergence, p, 

and the order of the singularity, s. The two equations to 

be solved are 

and 

- 

Multiplying the equations by n/(~),-~ and 

(~-I)/(Y),-~ , respectively, produces the pair of equations 

and 

Subtracting the second equation from the first produces 



Thus, 

Now, by solving equation (34) for s, one has the equation 

where d is obtained from equation (36). 

EXAMPLE 8 

Consider the initial-value problem of Example 3 

(Chapter 2). The solution has a singularity of order 2 at 

the point t = -1/2. Tables 5,6, and 7 show the results of 

applying the three term analysis to the Taylor coefficients 

for this problem using series lengths of 6, 11, 16,*- , 41 

(ie. n=5, 10, 1 5 , * - * ,  40 in equations (36) and (37)). 

TABLE 5 

THREE-TERM ANALYSIS ESTIMATES FOR THE RADIUS OF CONVERGENCE 
AND ORDER OF THE SINGULARITY FROM THE TAYLOR SERIES 
EXPANSION ABOUT THE POINT t = 0.0 FOR THE INITIAL-VALUE 
PROBLEM : 

y' = -(2t+l)y2, 0 C t ( 1, y(0)=4 

radius 
oE convergence 

estimate 

order 
of singularity-- 

estimate 



TABLE 6 

THREE-TERM ANALYSIS ESTIMATES FOR THE RADIUS OF CONVERGENCE 
AND ORDER OF THE SINGULARITY FROM THE TAYLOR SERIES 
EXPANSION ABOUT THE POINT t = 0.4 FOR THE INITIAL-VALUE 
PROBLEM : 

2 y' = -(2t+l)y , 0 S t d 1, y(0)=4 

radius 
of convergence 

estimate 

order 
of singularity 

estimate 

One can see from the tables that the approximations 

for the radius of convergence and order of the singularity 

by the three-term analysis is extremely good, even when 

taken from points not very close to the singularity. 

TABLE 7 

THREE-TERM ANALYSIS ESTIMATES FOR THE RADIUS OF CONVERGENCE 
AND ORDER OF THE SINGULARITY FROM THE TAYLOR SERIES 
EXPANSION ABOUT THE POINT t = 0.9 FOR THE INITIAL-VALUE 
PROBLEM : 

2 y' = -(2t+l)y , 0 d t d 1, y(0)=4 

radius 
of convergence 

estimate 

order 
of singular it<- 

estimate 



If the three-term analysis fails (i.e. two different 

estimates do not agree), then it is assumed that there is a 

conjugate pair, or more complex structure, of singularities 

on the circle of convergence. Chang derives the four-term 

analysis [2;104] and the six-term analysis [2;108] to handle 

this situation. In a manner similar, but more complex, to 

the development of the two and three-term analysis, these 

methods are derived from the model problem 

y(t) = (t - a)-' (t - a)- ' ,  
where a is the complex conjugate of a. Chang also derives a 

method for finding the radius of convergence if the problem 

contains an essential singularity [2;135]. 

Once the radius of convergence for a particular step 

has been estimated, the optimum step size can be computed. 

If 6 is the error tolerance specified at the start of the 
- .  

problem and p is the radius of convergence found for the 

problem, then Chang [2;141-1431 shows that 

is a good estimate of the optimum step size for the problem, 

where n+l is the number of terms in the Taylor series being 
- - 

used. 

EXAMPLE 9 

This example considers using the ATOMCC toolbox to 

solve Example 3. The error tolerances used are 1.OE-4, 

1.OE-8, and 1.OE-12. The ATOMCC results are in TABLE 8. 
- 

Using the information above to find the optimum step size, 

and knowing that the solution to the problem has a 



singularity at t = -0.5, the initial step size used for each 

of the tolerances should be 

1. h = 0.5(1.OE-4) = .363947 , 

2. h = 0.5(1.OE-8) = -264915 , 

and 

3. h = 0.5(1.OE-12) = .I92831 . 

TABLE 8 

RESULTS OF ATOMCC APPLIED TO THE INITIAL-VALUE PROBLEM 

y' = -(2t + Uy2 , 0 6 t s 1, y(0) = 4 

- - --- 

error number initial relative 
tolerance of steps step size global error 

- -- -  -- - - - - 

TABLE 8 shows that the ATOMCC package can solve an 

initial-value problem in very few steps while maintaining 

tight control over the global error. 



CHAPTER V 

Summary 

As seen in the first two chapters, the recurrence 

relations used to obtain the Taylor coefficients are not 

difficult to understand or to implement. These relations 

make it possible to efficiently use the Taylor method to 

solve initial-value problems. Using long Taylor series to 

solve the initial-value problems allows for very good error 

control and also allows one to obtain information about the 

behavior of the system near singularities in the solution's 

complex plane. 

Y.F. Changls ATOMCC toolbox utilizes the Taylor 

method to do much more than the standard software packages 

available for solving initial-value problems and is 

efficient in terms of computer time. - 



APPENDIX 

Pascal Routines for Comparison of the Taylor Series Method 
and the Runqe-Kutta Order Four Method 



function actuall(alpha,lend,rend:real):real; 
begin 
actual := alpha * exp(300 * rend) 

end ; 

function actual2(alpha,lend,rend:real):real; 
begin 
actual := 1 / (rend * rend + rend + l/alpha) 

end ; 

function actual3(alpha,lend,rend:real):real; 
begin 
actual:= -2*exp(-rend) + rend*rend - 2*rend + 3 

end ; 

function actual4(alpha,lend,rend:real):real; 
begin 
actual := 1 - exp(-rend) 

end ; 

function actual5(alpha,lend,rend:real):real; 
begin 
actual := rend + exp(-rend) 

end ; 

function actual6(alpha,lend,rend:real):real; 
begin 
actual := rend/(l-ln(rend)) 

end ; 

function actual?(alpha,lend,rend:real):real; 
begin 
actual := -cos(rend)-exp(-rend)+2 

end ; 

function actual8(alpha,lend,rend:real):real; 
begin 
actual := rend*rend*(exp(rend)+exp(l)) - 2*exp(l) 

end ; 

function actual9(alpha,lend,rend:real):real; 
begin 
actual := alpha * exp(-30 * rend) 

end ; 

function actuallO(alpha,lend,rend:real):real; 
begin 
actual := alpha * exp(-300 * rend) 

end ; 



function fl(t,y:real):real; 
begin { f ) 

f := 300 * y 
end; { f ) 

function f2(t,y:real):real; 
begin { f ) 

f := - ( 2 * t + 1 )  * y * y  
end; { f ) 

function f3(t,y:real):real; 
begin { f ) 

f := -y+t*t+l 
end; { f ) 

function f4(t,y:real):real; 
begin { f ) 

f := -y+l 
end; { f ) 

function f5(t,y:real):real; 
begin { f ) 

f : = - y + t + l  
end; { f ) 

function f6(tfy:real):real; 
begin { f ) 

f := (y/t)*(y/t) + y/t 
end; { f ) 

function f?(t,y:real):real; 
begin { f ) 

f := sin(t) + exp(-t) 
end; { f ) 

function f8(t,y:real):real; 
begin { f ) 
f := 2*(y+2*exp(l))/t + t*t * exp(t) 

end; { f ) 

function fg(t,y:real):real; 
begin { f ) - 

f := -30 * y 
end; { f ) 

function flO(t,y:real):real; 
begin { f ) 
f := -300 * y 

end; { f ) 



procedure ytl(k:integer); 

{ probl: y' = 300*y, 0 <= t <= 1, y(0)=1 ) 

begin { yt 
if k = 0 then 

ayt[O] := y 
else 

ayt[k] := 300 * ayt[k-l]/k 
end; { yt 



atl1at2,at3,at4,att:array [0 .. 341 of real; 
procedure yt2(k:integer); 

procedure tt(k:integer); 
begin 
if k = 0 then 

att[O]:= t 
else 

if k = 1 then 
att[l] := 1 

else 
att[k] := 0 

end ; 
procedure tl(k:integer); 
begin 
atl[k] := 2*att[k]; 

end ; 
procedure t2(k:integer); 
begin 

if k = 0 then 
at2[k] := atl[k] + 1 

else 
at2[k] := atl[k] 

end ; 
procedure t3(k:integer); 
var 

j:integer; 
begin 

at3[k] := 0; 
for j := 0 to k do 
at3[k] := at3[k] + ayt[j]*ayt[k-j] 

end ; 
procedure t4(k:integer); 
var j:integer; 
begin 

at4[k] := 0; 
for j := 0 to k do 

at4[k] := at4[k] + at2[j]*at3[k-j] 
end ; 
begin { main yt ) 
if k = 0 then 

ayt[k] := y 
else 

begin 
tt(k-1) ; 
tl(k-1) ; 
t2(k-1) ; 
t3(k-1) ; 
t4(k-1) ; 
ayt[k] := -at4[k-l]/k 

end 
end; { yt ) 



atl1at2,at3,att:array [0 .. 341 of real; 
procedure yt3(k:integer); 

procedure tt(k:integer); 
begin 
if k = 0 then 

att[O]:= t 
else 

if k = 1 then 
att[l] := 1 

else 
att[k] := 0 

end ; 
procedure tl(k:integer); 
var j,m:integer; 
begin 
if k > 2 then 

m := 2 
else 

m := k; 
atl[k] := 0; 
for j := 0 to m do 

atl[k] := atl[k] + att[j]*att[k-j] 
end ; 
procedure t2(k:integer); 
begin 
at2[k] := atl[k] - ayt[k] 

end ; 
procedure t3(k:integer); 
begin 
if k = 0 then 

at3[k] := at2[k] + 1 
else 

at3[k] := at2[k] 
end ; 
begin { main - yt ) 

if k = 0 then 
ayt[k] := y 

else 
begin 

tt(k-1) ; 
tl(k-1) ; 
t2(k-1) ; 
t3(k-1) ; 
ayt[k] := at3[k-l]/k 

end 
end; { yt ) 



atl,at2,att:array [0 . .  341 of real; 
procedure yt4(k:integer); 

procedure tt(k:integer); 
begin 
if k = 0 then 

att[O]:= t 
else 

if k = 1 then 
att[l] := 1 

else 
att[k] := 0 

end ; 
procedure tl(k:integer); 
begin 
atl[k] := -ayt[k]; 

end ; 
procedure t2(k:integer); 
begin 
if k = 0 then 

at2[k] := atl[k] + 1 
else 

at2[k] := atl[k] 
end ; 
begin { main - yt ) 

if k = 0 then 
ayt[k] := y 

else 
begin 

tt(k-1) ; 
tl(k-1) ; 
t2(k-1) ; 
ayt[k] := at2[k-l]/k 

end 
end; { yt ) 



atl,at2,at3,att:array [0 .. 341 of real; 
procedure yt5(k:integer); 

procedure tt(k:integer); 
begin 
if k = 0 then 

att[O]:= t 
else 

if k = 1 then 
att[l] := 1 

else 
att[k] := 0 

end ; 
procedure tl(k:integer); 
begin 
atl[k] := -ayt[k]; 

end ; 
procedure t2(k:integer); 
begin 
at2[k] := atl[k] + att[k] 

end ; 
procedure t3(k:integer); 
begin 

if k = 0 then 
at3[k] := atZ[k] + 1 

else 
at3[k] := at2[k] 

end ; 
begin { main - yt ) 

if k = 0 then 
ayt[k] := y 

else 
begin 

tt(k-1) ; 
tl(k-1) ; 
t2(k-1) ; 
t3(k-1) ; 
ayt[k] := at3[k-l]/k 

end 
end; { yt ) - 



atl,at2,at3,att:array [0 . .  341 of real; 
procedure yt6(k:integer); 

procedure tt(k:integer); 
begin 

if k = 0 then 
att[O]:= t 

else 
if k = 1 then 

att[l] := 1 
else 

att[k] := 0 
end ; 
procedure tl(k:integer); 
begin 

if k = 0 then 
atl[k] := ayt[k]/att[k] 

else 
atl[k] := (ayt[k] - atl[k-l])/att[O] 

end ; 
procedure t2(k:integer); 
var j:integer; 
begin 

at2[k] := 0; 
for j := 0 to k do 

at2[kl := at2[k] + atl[j]*atl[k-j] 
end; 
procedure t3(k:integer); 
begin 
at3[k] := at2[k] + atl[k] 

end ; 
begin { main - yt } 

if k = 0 then 
ayt[k] := y 

else 
begin 

tt(k-1); 
tl(k-1) ; 
t2(k-1) ; 
t3(k-lj ; 
ayt[k] := at3[k-l]/k 

end 
end; { yt 



atl,at2,at3,at4,att:array [0 .. 341 of real; 
procedure yt?(k:integer); 

{ prob?: y 1  = sint + exp(-t), 0 <= t (=I, y(O)=O ) 

procedure tt(k:integer); 
begin 
if k = 0 then 

att[O]:= t 
else 

if k = 1 then 
att[l] := 1 

else 
att[k] := 0 

end ; 
procedure tl(k:integer); 
begin 

if k = 0 then 
atl[k] := sin(att[k]) 

else 
atl[k] := at4[k-l]/k 

end ; 
procedure t2(k:integer); 
begin 
if k = 0 then 

at2[k] := exp(-att[k]) 
else 

at2[k] := -at2[k-1]/k 
end ; 
procedure t3(k:integer); 
begin 
at3[k] := atl[k] + at2[k] 

end ; 
procedure t4(k:integer); 
begin 
if k = 0 then 

at4[k] := cos(att[k]) 
else 

at4[k] := -atl[k-l]/k 
end ; 
begin { main - yt ) 

if k = 0 then 
ayt[k] := y 

else 
begin 

tt(k-1) ; 
tl(k-1) ; 
t2(k-1) ; 
t3(k-1) ; 
t4(k-1) ; 
ayt[k] := at3[k-l]/k 

end 
end; { yt ) 



atl,at2,at3,at4,at5,att:array [O .. 341 of real; 
procedure yt8(k:integer); 

procedure tt(k:integer); 
begin 

if k = 0 then 
att[O]:= t 

else 
if k = 1 then 

att[l] := 1 
else 

att[k] := 0 
end ; 
procedure tl(k:integer); 
begin 
if k = 0 then 

atl[O] := 2*(ayt[0]+2*exp(l))/att[O] 
else 

atl[k] := (2*ayt[k] - atl[k-l])/att[O] 
end ; 
procedure t2(k:integer); 
var j,m:integer; 
begin 

if k > 2 then 
rn := 2 

else 
m := k; 

at2[k] := 0; 
for j := 0 to m do 

at2[k] := at2[k] + att[j]*att[k-j] 
end ; 
procedure t3(k:integer); 
begin 

if k = 0 then 
at3[k] := exp(att[kJ) 

else 
at3[k] := at3[k-l]/k 

end ; 
procedure t4(k:integer); 
var j : integer-; 
begin 

at4[k] := 0; 
for j := 0 to k do 

at4[kJ := at4[k] + at2[j]*at3[k-j] 
end ; 
procedure t5(k:integer); 
begin 
at5[k] := at4[k] + atl[k] 

end ; 
begin { main - yt ) 

if k = 0 then 
ayt[k] := y 



else 
begin 

tt(k-1) ; 
tl(k-1) ; 
t2(k-1) ; 
t3(k-1) ; 
t4(k-1) ; 
t5(k-1) ; 
ayt[k] := at5[k-l]/k 

end 
end; { yt 1 



procedure yt(k:integer); 

{ prob9: y' = -30*y, 0 <= t <= 1, y(0)=1/3 ) 
begin { yt ) 
if k = 0 then 

ayt[O] := y 
else 

ayt[k] := -30 * ayt[k-l]/k 
end; { yt ) 

procedure ytlO(k:integer); 

{ probl0: y' = -300*y, 0 <= t <= 1, y(0)=1 ) 
begin { yt ) 

if k = 0 then 
ayt[O] := y 

else 
ayt[k] := -300 * ayt[k-l]/k 

end; { yt ) 



program ivpt(input,output); 
cons t 

formfeed=#12; 
type 

vector=array [0 .. 201 of integer; 
var 

tay1orarray:array [4 .. 35,l . .  14,O .. 21 of real; 
rk4array:array [I .. 14,O .. 21 of real; 
lowerlimit,value,a,b,alpha:real; 
partition,psize,i,j,k,accuracy,maxdepth,p:integer; 
maxpartiti0n:integer; 
printflag,rkflag,tyflag,tyflagl,rkflagl:boolean; 
answer:char; 
workfile,rktime,tytime:text; 
hour:vector; 
min:vector; 
sec:vector; 
frac:vector; 
time,count,hourl,secl,minl,fracl:integer; 

procedure timer(var hour,min,sec,frac:integer); 
type 
regpack = record 

ax,bx,cx,dx,bp,si,di,ds,es,flags:integer; 
end ; 

var 
regs: regpack; 

begin 
with regs do 

begin 
ax := $2~00; 
msdos(regs); 
hour := hi(cx); 
min := lo(cx); 
sec := hi(dx); 
frac := lo(dx); 

end 
end ; 

procedure rk4(lend,rend,alpha:real; psize:integer); 
var 

i:integer; 
h,t,tl,w,kl,k2,k3,k4:real; 

begin { rk4 ) 
writeln('rk4 ',psize); 
for count := 1 to 10 do 
begin 

timer(hour[count],min[count],sec[count],frac[count]); 



h := (rend - lend)/ psize; 
t := lend; 
w := alpha; 
for i := 1 to psize do 

begin 
kl := h * f(t,w); 
tl := t + h/2; 
k2 := h * f(t1,w + k1/2); 
k3 := h * f(t1,w + k2/2); 
k4 := h * f(t + h,w + k3); 
w := w + (kl + 2 * (k2 + k3) + k4)/6; 
t : = t + h  

end ; 
timer(hour[count+10],min[count+10],sec[count+10], 

frac[count+lO]) 
end ; 

rk4array[partition10] := abs(va1ue - w)/abs(value); 
rk4array[partitionIl] := abs(va1ue - w); 
rk4array[partition12] := w; 
if (rk4array[partitionIO] <= lowerlimit) or 

(partition = maxpartition) then 
begin 
hour1 := 0; 
minl := 0; 
secl := 0; 
fracl := 0; 
for count := 1 to 10 do 

begin 
hour[count-11 := hour[count+lO] - hour[count]; 
if min[count+lO] < min[count] then 

begin 
hour[count-1] := hour[count-1] - 1; 
min[count+lO] := min[count+lO] + 60 

end ; 
min[count-11 := min[count+lO] - min[count]; - 

if sec[count+lO] < sec[count] then 
begin 
minlcount-11 := min[count-l] - 1; 
sec[count+lO] := sec[count+lO] + 60 

end ; 
sec[count-11 := sec[count+lO] - sec[count]; 
if- frac[count+lO] < frac[count] then - - 

begin 
sec[count-11 := sec[count-11 - 1; 
frac[count+lO] := frac[count+lO] + 100 

end ; 
frac[count-11 := frac[count+lO] - frac[count]; 
minl := minl + min[count-11; 
secl := secl + sec[count-11; 
fracl := fracl + fractcount-1] 

end ; 
min[O] := minl div 10; 
sec[OJ := secl div 10; 
frac[O] := fracl div 10; 



writeln(rktime,psize,' ,min[O],l:',sec[O],l:l, 
frac[O]) 

end 
end; { r k 4 )  

procedure taylor(lend,rend,alpha:real; psize:integer); 
var 

ayt:array [0 .. 353 of real; 
depth,term,j:integer; 
hl,error,app,t,y,h:real; 

($1 yt.pas) 

begin { taylor ) 
writeln('tay1or ',psize); 
depth := 4; 
repeat 
for count := 1 to 10 do 

begin 
timer(hour[count],min[count],sec[count], 

frac[count]); 
t := lend; 
h := (rend-lend)/psize; 
y : = alpha; 
for j := 1 to psize do 

begin 
app := 0; 
for term := 0 to depth do 

yt (term) ; 
for term := depth downto 1 do 

app := (app + ayt[term])*h; 
y := app + ayt[O]; 
t : = t + h  

end ; 
timer(hour[count+l0],min[count+lO],sec[count+lO]I 

frac[count+lO]) - 

end ; 
taylorarray[depth,partition,O] := abs(va1ue-y)/ 

abs(va1ue); 
taylorarray[depth,partition,l] := abs(va1ue-y); 
taylorarray[depth,partition,2] := y; 
depth := depth + 1 

until (taylorarray[depth-l,partition,O] <= lowerlim3t) or 
(depth > maxdepth); 

hour1 := 0; 
minl := 0; 
secl := 0; 
fracl := 0; 
for count := 1 to 10 do 

begin 
hour[count-11 := hour[count+lOl - hour[count]; 
if min[count+lO] < min[count] then 

begin 
hour[count-l] := hour[count-l] - 1; 
min[count+lO] := min[count+lO] + 60 



end ; 
min[count-11 := min[count+lO] - min[count]; 
if sec[count+lO] < sec[count] then 

begin 
min[count-l] := min[count-11 - 1; 
sec[count+lO] := sec[count+lO] + 60 

end ; 
sec[count-1] := sec[count+lO] - sec[count]; 
if frac[count+lO] < frac[count] then 

begin 
sec[count-11 := sec[count-11 - 1; 
frac[count+lO] := frac[count+lO] + 100 

end ; 
frac[count-1] := frac[count+lO] - frac[count]; 
minl := minl + min[count-11; 
secl := secl + sec[count-11; 
fracl := fracl + frac[count-1] 

end ; 
min[O] := minl div 10; 
sec[O] := secl div 10; 
frac[O] := fracl div 10; 

end; { taylor ) 

begin { main - ivp ) 
assign(rktime,'rktimel); 
rewrite(rktime); 
assign(tytime,Itytime'); 
rewrite(tytime); 
assign(workfile,~ivpout'); 
rewrite(workfi1e); 
write('Runge Kutta (y/n): I ) ;  

readln(answer); 
if answer = ' y l  then 

rkflag := true 
else 

rkflag := false; 
write('Tay1or series (y/n): I ) ;  

readln(answer); 
if answer = 'y' then 

tyflag := true 
else 

tyflag := false; 
if tyflag then 

begin 
write('enter maximum series length: I ) ;  

readln(maxdepth); 
if maxdepth < 4 then 

maxdepth := 4; 
if maxdepth > 35 then 

maxdepth := 35 
end 

else 



maxdepth := 3; 
write('enter accuracy: I ) ;  

readln(accuracy); 
lowerlimit := 5*exp(accuracy * ln(10)); 
writeln(~orkfile,~lowerlimit ',lowerlimit); 
write('enter maximum # of subdivisions for partition1, 

size: I ) ;  

readln(maxpartiti0n); 
if maxpartition < 1 then 

maxpartition := 1; 
if maxpartition > 14 then 

maxpartition := 14; 
write('enter endpoints: I ) ;  

readln(a,b); 
write('enter initial condition: I ) ;  

readln(a1pha); 
writeln(workfile,a,b,alpha); 
writeln(workfi1e); 
value := actual(alpha,a,b); 
writeln(workfile,~actual ',value); 
for j := 1 to maxpartition do 

begin 
for i := 4 to maxdepth do 

begin 
taylorarray[i,j,O] := 0; 
taylorarray[i,j,l] := 0; 
taylorarray[i,j,2] := 0 

end ; 
rk4array[j,O] := 0; 
rk4array[j,l] := 0; 
rk4array[j,2] := 0 

end ; 
psize := 1; 
tyflagl := tyflag; 
rkflagl := rkflag; 
partition := 1; 
while (partition <= maxpartition) and 

(rkflagl or tyflagl) do 
begin 
psize := psize * 2; 
if rkflagl then - - 

rk4(a,b,alpha,psize); 
if tyflagl then 

taylor(a,b,alpha,psize); 
~riteln(workfile,psize:5,~ absolute error1, 

7 ,  relative error',' 7 ,  approximation1); 
for k := 3 to maxdepth do 
begin 

printflag := true; 
if (k = 3) and (rk4array[partition,O]<>O) then 

writeln(workfile,'RK 4':5, - 
rk4array[partition,l], 
rk4array[partition,O], 
rk4array[partition,2]); 



if (k>3) and (taylorarray[k,partition,O]<>O) then 
writeln(workfile1

1TY':2,k:3, 
taylorarray[k,partition,l], 
taylorarray[k,partitionI0lI 
taylorarray[k,partition,21) 

end ; 
writeln(workfi1e); 
writeln(workfi1e); 
writeln(workfi1e); 
if taylorarray[4,partition,OI <= lowerlimit then 

tyflagl := false; 
if rk4array[partition,O] <= lowerlimit then 

rkflagl := false; 
partition := partition + 1 

end ; 
close(workfi1e); 
close(rktime); 
close(tytime); 

end. { main - ivp ) 



program taylor(input,output); 
type 

al=array[O .. 401 of real; 
const 

formfeed=#12; 
var 

tay1orarray:real; 
psize:integer; 
lowerlimit,value,a,b,alpha:real; 
error:real; 
outfile,workfile,termfile:text; 

procedure rc(t:real;term:al); 
var 

rml,rm2:real; 
i:integer; 
rc,order:array[3 .. 401 of real; 

begin {rc.pas) 
for i := 3 to 40 do 

begin 
rml := term[i]/term[i-11; 
rm2 := term[i-l]/term[i-2); 
rc[i] := 1/( (i-1) * rml - (i-2) * rm2 ) ;  
order[i] := (i-2) * rc[i] * rm2 - i + 3 

end ; 
writeln(outfi1e); 
writeln(outfi1e); 
writeln(outfile,~radius of converge and order1, 

'estimates from expansion point t=I,t); 
writeln(outfi1e); 
for i := 3 to 40 do 
writeln(outfile,i,' rc= ',abs(rc[i]),I order= I ,  

order [ i ] ) 
end; (rc.pas) 

procedure taylor(lend,rend,alpha:real; psize:integer); 
var 

ayt:al; 
k,depth,term,j:integer; - - 
hl,app,t,y;h:real; 

begin { taylor ) 
depth := 40; 
t := lend; 
h := (rend-lend)/psize; 
y := alpha; 
for j := 1 to psize do 
begin 

hl := 1; 
app := 0; 



for term := 0 to depth do 
yt (term) ; 

for term := depth downto 1 do 
app := (app + ayt[term])*h; 

y := app + ayt[O]; 
if j < 4  then 
begin 
for k := 0 to 40 do 

writeln(termfile,ayt[k]:40:15); 
writeln(termfi1e) 

end ; 
rc(t,a~t); 
t : = t + h  

end ; 
taylorarray := y; 
error := abs(va1ue - y)/abs(value) 

end; { taylor ) 

begin { main ) 
assign(outfile,~order.rc'); 
rewrite(outfi1e); 
assign(termfile,'termfill); 
rewrite(termfi1e); 
as~ign(workfile,~ivpout~); 
rewrite(workfi1e); 
write('enter number of partions: I ) ;  

readln(psize); 
write('enter endpoints: I ) ;  

readln(a,b); 
write('enter initial condition: I ) ;  

readln(a1pha); 
writeln(workfile,a,b,alpha); 
writeln(workfi1e); 
value := actual(alpha,a,b); 
taylor(a,b,alpha,psize); - 

writeln(workfile,'appr: ',taylorarray,' error: ',error); 
close(workfi1e); 
close(termfi1e); 
close(outfi1e) 

end. { main ) 
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