Nureri cal Solution of Initial-Value Problems for Odinary
Differential Equations using Taylor Series with

Recursively Defined Coefficients

by
Raynond E Fl anery Jr.

Submtted in Partial Fulfillment of the Requirenents
for the Degree of

Mast er of Science

in the
Mat hemat i cs
Pr ogr am
Qb S Beeon shs fee
Advisor 4] Dat e

ANV AN e b 27 19

Dean of the Graduate School ' -- hate

YOUNGSTOMN STATE UNI VERSI TY

August, 1986

ABSTRACT

Nurerical Solution of Initial-Value Problenms for O dinary
Differential Equations using Taylor Series with
Recursively Defined Coefficients
Raynmond E Fl anery Jr.

Mast er of Science

Youngstown State University, 1986

The Tayl or series nmethod has been neglected as a way
to solve nunerical initial-value problens since obtaining
and evaluating the derivatives of a function is a conplex
and time consum ng process when one uses the traditiona
methods to obtain the derivatives. If one instead uses
recurrence rel ati ons, obtained from the mat hemat i ca
operations which nake up an equation, to evaluate the
derivatives at specific points, then the Taylor series
nmethod is efficient and can be used to obtain information
about the behavior of a solution in the conplex plane about
its singularities.

Software packages are available that wutilize the
Tayl or nethod-, In particular, the ATOMCC tool box,-witten
by Y.F. Chang, is a powerful package capable of handling
almost any initial-value problemor system with extrene

accuracy, even those that are stiff.

TABLE OF CONTENTS

ABSTRACT. & &« u e s e uu s o s e s e s s e s e nm s s w e nesnsnnss
TABLE OF CONTENTS. 4o ivninnnnnsnnsnnsnnsnnsnnsnnsnnsnns
LIST OF TABLES. cvii i i s snsn s snsnnansnsnsnnnnnnns
LIST GF SYMBOLS. sessssssnsansnnsnssnnansnnsnnns
CHAPTER
. FINITE TAYLOR SERI ES APPROXI MATIONS TO FI RST
ORDER | NI TI AL- VALUE PROBLEMS | N ORDI NARY DI FF-
ERENTIAL EQUATIONS.w i v e vnennsnnsnsnnsnnnnnnnss

INtroduCtion. ... e eeeenusennnsnnnssnnnsnns

Recursive Definition of Taylor Series Coef-
ficients. .. tieernnnsnansnnssnassnnsnnnnnnnns

Derivation of the Recurrence Relations......

A Ceneral Al gorithm for Eval uation of Tayl or
Series Coefficients Using the Recurrence
Rel ations. teieterenseneransososasnss

II. TAYLOR SERIES VS, RUNGE-KUTTA........c.cven.n

0] 1 0
Tayl or Series Method Operation Counts.......

EXanpl €S. vvivnenncnnnnnsnasnnsnnsnnsnnnnnnns
SUMTBIY o vt vttt ittt n i asensanssnsanssanss e

III. ERROR ANALYSIS OF TAYLOR SERES..............

Introduction.......coviiiiiiiininnrnnnsnnnnas
Round-of f Error.... cuvevenensnsananansnnnnns
G obal and Local Truncation Error.. «cveusans

Stability and ConvergencCe......ueueuesnsnsns

15

22

22

24

33

-39

40

40

40

43

V. ATOMCC. UTILIZING THE TAYLOR SERI ES METHOD. . ..

Introduction......cveiieiteeicnnnosoceoennnns

Locating Non-Essential Singularities and

Their Order oo e e ittt ininsteeeenraesnnnns

Ve SUMMARY .ttt ittt ittt i it eatanstaneneenneneenns
APPENDI Xu vt e v s sannsannsannssnnssnnssnnssnnsnnnssnnssns
Routines for Evaluating the Actual Solutions........

Routines for Evaluating the Runge- Kutta Functions...

Routines for Evaluating the Taylor Recurrence
[Y= L 0] = S

Main Program for Conparison of Taylor and Runge-
Kutta Order FOUM wovenvanansnsannnsanannnsnnnnnnsnnss

Tayl or Routine to Estimate the Radius of Convergence
and Order of the Singularity.....coviiiiiiiiniinnn.

BIBLIOGRAPHY 4 i v v e s s s s n s s s n s nsnnsnnsnnsnnnnnnnsnnns

54

54

56

63

64

65

66

67

117

83

85

LI ST O TABLES

TABLE PAGE

1. Operation Counts and Timng Analysis for
Exampl e 2 ittt i i i i s i e s e 35

2. Operation Counts and Timng Analysis for
Exanmple 3 cucuenenerasnsnsnnnnnnnnsnsnsnnnnnnnns 36

3. Operation Counts and Tim ng Analysis for
Exanmple 4 cuuiiiiinenananannsnsnsnsnnnnnnnnnnnns 37

4. Operation Counts and Timng Analysis for
Exanpl e 5 cuerernenenenasnsnsnnnnnnsnsnsnnnnnnns 38

5. Three-term Analysis Estimates for Radi us of
Convergence and Order of Singularity at t=0.0 .. 59

6. Three-term Analysis Estimtes for Radius of
Convergence and Order of Singularity at t-0.4 .. 60

7. Three-term Analysis Estimates for Radi us of
Convergence and Order of Singularity at t-0.9 .. 60

8. ATOMCC Results for ExXanple 3 .tucivernnsnnsnnnnns 62

SYMBOL

— or y{M(x)
dx"

a(n)y

3}{(“)

n!

LI ST O SYMBOLS
DEFI NI T ON

The nth derivative of y with respect
to X

The nth partial derivative of y with
respect to X.
n factorial = n(n-1)(n-2).--2.1.

Denotes the sunmation of the terns that
follow the synbol .

Denot e real nunbers.
Denotes 'el enment of'.
Denot es ' subset of'.

Two- di mensi onal space.

CHAPTER

FINI TE TAYLOR SERI ES APPROXI MATI ONS TO FI RST ORDER
I NI TI AL- VALUE PROBLEMS | N ORDI NARY DI FFERENTI AL EQUATI ONS

| nt r oducti on

Finding the solution y(t) to the probl em

y'(t) = £(t,v), a €t €Db, v(a) = «, (1)
where vy(a) =« is referred to as the initial condition, is
called an initial-value problem Nurerical initial-value
problens are like (1), except that one is interested in

finding approximtions of the solution y(t) at the points
e oty e, ty wher e t, = a + ih, h = (b-a)/N,
and i =0, 1, +++-, N Here his a fixed step size for the

pr obl em and ty, t, are the mesh points. Any step

1 e Ty
size used in this paper is assuned to be fixed, unless
ot herw se st at ed. i
Every student of Nunerical Analysis has seen
problems Ilike that in (1), along with several different
met hods for finding nunerical approxi mtions to the solution
v(t). Treatment of initial-value problenms usually begins
with Euler's nethod, Taylor series nmethods of order n, and
t hen Runge- Kutta methods [1;205-207]. These nethods are al
referred to as one-step nethods. This neans that they derive

their approximation at any given nesh point using only

information avail able fromthe previous nesh point.

The Taylor nmethods have been used previously for
deriving |l ower order numerical nethods, such as Euler's and
t he Runge- Kutt a net hods [5;26], rat her t han for
approxi mating solutions to initial-value problenms. This 1is
because nost nethods to find the Taylor series coefficients
involve sone form of synbolic differentiation, whi ch
produces the algebraic formof the coefficients. These
formul as becone conplex and require extensive conputation
time to evaluate [5;26].

A process for deriving the necessary Tayl or
coefficients through the use of recurrence relations can be
used instead of synbolic differentiation to nmake the use of
Taylor nethods efficient [6;24]. Taylor methods utilizing
these recurrence relations are the basis for software
packages, including the ATOMCC tool box [3;215], which wll
be di scussed later.

In the followi ng sections the recurrence relations
used to derive Taylor series coefficients are devel oped, and
a sinple, but general, algorithm for applying these
relations to solve a wide range of initial-value problens is

present ed. -

Recursive Definition of Tavlor Series Coefficients

I n or der to define the recurrence rel ations
necessary to evaluate the Taylor series coefficients of a
function y(t), the derivative of the function nust be-

conposed of rational and/or elenmentary functions. It is also

necessary that y(t) be analytic (infinitely differentiable)

i

in some neighborhood of the point t t,. [f these

conditions are satisfied, then one nay define

1, gf
(¥), = ;![E:E yvit,)] ,

and, in particular, one can see that
(Y)y = v(ty) and (y), = v'(t,).
The finite Taylor series expansion for y(t) about t =t

n k

vit) =2 y) (¢)——2— + R

k=0 k! n’

wher e
_ n+1
(t - tg)
(n+1)!

- (n+l)
R, =Y (§)

, for sone § e (t,,t).

This can be rewitten as

n
v(t) =2 (v), (t - t)k + R,
k=0 k 0 n

where (y)k

coefficient.

(2)

, as defined in (2), is the kth Tayl or

From equations (2) and (3) one has the recurrence

rel ati on

Wy == [— vt |

1 a
k= (k-1)! atk- 1 [EtY(to) 1]
1 k-1

. d
k(- 1[atk1 (Y)1|||

= = ((¥))y 4 (4)
K 1'k-1

This relation is used in the derivation of the recurrence
rel ati ons of the different rational and el ement ary
functions.

Let wu(t) and wv(t) be arbitrary analytic functions

and g sone real constant, then one has the follow ng

recurrence relations [6;26], which will be derived |ater.
(1-'l+V)k = (u)k + (v)k, (5)
(u—V)k = (u)y = (V). (6)
k _
(W), = 2 (w),(v),_ ., (7)
j=0 J J
k
u 1 u
Ay
(=) =- [(), — &4 (V) (=)y], - (8)
v K (V)o k j=1 k v k-j
-1
1 Jj(g+1)
wh, =-[Z -)) wfy)] (9)
(u), 3=0
k-1 3
Ay
("), =24 (1 - =) (u),_,e"),, (10)-
K 520 k k-3 J

k-1

(tog_ w), = = [(w) —i(l—-j-)(u) (log)y _;] (11)
e 'k (w), k421 Kk 3 e "k-j
K-1
. LAY
(sint ~29) j=0(j+1) (u)j+1(cos u)k—l—j' (12)
k-1
1 ¢
(cos u), = - E jé,o(j+1) (u) 4, (sin @)y 4y, (13)

In addition to these recurrence rel ations, one al so has

k-1

(sinh w), = z (1 - d) (u),_;(cosh u) , (14)
j=0 k J 3
and
k-1 .
< J
(cosh u), =jio(1 - ;) (u)k_j(sinh u)j. (15)

From these recurrence relations it is a sinple
matter to develop the relations for (tan u), and (tanh u), .
If t is the independent variable in an initial-value
problemand c is any constant, then there are the follow ng

sinmple, but inportant relations:

(), = t, .

(v), =1,

(t), =0 if k > 1, (16)
and

(€)y = ¢,

(C)k =0 if k > o0,

(Cu)k = c(u)y for all k.

Derivation of the Recurrence Rel ati ons

The recurrence relations, equations (5) to (15), in

the previous section can all be derived using the relations

in (4), sone calculus, and Leibniz's rule for the kth
derivative of the product of two functions:
—=(uv)(t,)= 4 () - u(t,) — v(t,)]. (17)
dek 07320 ji(k-j)! ~atd %7 at¥ 0

The derivation of these recurrence relations is as follows:

1. For equations (5) and (6) one has

1 . af
(ugv), = - | — (u9) (%)]
1 [gk ak]
= - — t ———
ki aek o) ® R VIt
K k
1. 4 1. 4
= - B t - —
k![ack o]+ k![atk vito)]

= (u), £ (V).
2. For equation (7) one has
1 ak
(uV)k = ;![E;E (uv)(to)] .

Appl ying-(17) to the right side this equation becones

3.

18 k! J
(uv)k = - ya [a(t)][v(t)]
k! j=0 ji!(k-j)! atd
K 1
= 2 [u(t)][V(t)]
j=0 k- j) ! atd
k k-1
1 dJ 1 a < J
= Y = [—= ut)] = V(to)]
j=0 ji datJ (k-3)t1 dat*™J
k
= Z (u) ;(v), ..
j=0 J' k-]
u(t)
For equation (8) if one lets £(t) = , then
v(t)
v(t)f(t) = u(t); hence,
(VE), = (u),. (18)

Now, if equation (7) is applied to the left side of

(18), one has

k

j§ (V) (£ 5 = (u)p - (19)

Notice that if j=0, then (f)k_j = (£), = (u/v),. Thus,
by separating the first term fromthe rest of the sum

in (19) and replacing f by u/v one has

u k u

(v) ol = Iy + L (V) (=)y = ().
v K j=1 v K-J k

Solving this equation for (u/v), produces:
u 1 k u

(= =— Ll -2 -1
v K (v), k5= v KJ

4. For equation (9) notice that

i g(uf) (u)
(wf), = pwf) (), = 0o 1

(),

Al 'so, by reordering terns in the summation, one has

k-1 k

LW (W))y gy = 2
j=1 J=

1

NI PP

Now, from equation (4),

=l

(up)k [(up)1]k-l

B
g(u”) (u)
[o'/] .

o B

(),

(20)

Now apply equation (8) to the quantity on the right.

Then
1 1
(why == [2 [(aufr cuyp, .
k n (u)o 0 1'k-1
k-1

and applying equation (7) to the term before

sunmmat i on the equati on becones

('I.IF)k = ; [(;)[jLOP(u ((u)l)k-—l—j
0
k-1

t he

Appl yi ng equation (20) to the second sunmat i on-

transforms this equation into

k-1

(uf) =—[—[2 ewf); ()
k=3 (@), =0 1'k-1-j

k-1

_ 8
J_El(u)k_j((u 11052, 1

One final transformation is required. Apply equation
(4) to the terms in both summations to produce the
equat i on

k—l

why, == [-] 2 puP), jk=3) ()
k Kk [(u)£ j-op k-j

—j§1<u)k s wfy ;]

k-1
1 B (k-3)
)

(up).(u) s
(W), J=0 |k 37k

k-1

J
- - B
j§1 k (W j(u)J]' -

Notice that in the second summation, adding a termfor

j = 0 adds only zero to the sum Hence

k-
g, 1 Y p(k-3)
why =-[2
(u), J=0 k

B
(uf) ()|

k-1

J
- bl 8
j§o " (u)k_j(u)j]

and bringing the two summmations together then produces

t he equation

1 fSlek-3)-3 .
- L (), uf)

(uf)
Ko, 5=0

k-1
1 j(g+1)
2

(u)0 j=0 Kk

) (@) (uf)

For equation (10) one can use the results of equation

(4) and the fact that (e"), = (e") (u), to obtain

1
(e), = i ((e"),)
k k 1'k-1

1
= (™) g)(u);)y -

Now, if equation (7) is applied to the right side, this
becones
2 (e%

u
(e)k = j((u)l)k—l“j,

and by applying equation (4) tothe terns of the

summati on this equation becones

k-1
(&) =2 T (%) (k-
k ~ ; j:o(e j(_J)(u)k—j
Hence,
k-1
k-jJ
u _ v u
(e”) —jﬁo - (e™)j(u)y_y
k-1
- - - u
=2 (1-2) (&) (),

6. For equation (11) one should note that
1
(log, u), = — (u), . (21)
(),

By application of equation (4) one obtains

1w

(log, u), ((log, u),)_4

1 ()
-1,
k (u),

Usi ng equation (8) this now becones

1 1
(log_ u), == [- [((u),),_
e k k (u)o 17k-1

kil (u)l
- (un) .| — .
j=1 u J[(u)o]k—l-J]]

If equations (4) and (21) are applied to the terms
of the summati on, then the above equation becones

1 1
(109, w) = = [(;)[(@))y
0

k-1

_j=1(u)j(k-j)(1°ge u)k_j]]

Now, distributing |/k through the parenthesizeéd term
and applying equation (4) to the term before the

sunmat i on produces the equation

k J

(log, u), = (;)[; (u)k—le-;- (u) (log, u),_;]
k—l
- I lw-Z -2 (e, W]
(u), j=1 K J J

For equation (12) one has

1
- {(sin u)
k

(sin u), 1) k-1

1
= = ((cos u)

(u),) H
K 0 1'k-1

hence, from equation (7) this becones

k-1
(sin u), = - jZ:O((u)) j(cos u)y |
k-1
= - JZO(J+1)(u) sp(c0s)y 4
For equation (13) one has

1

(cos u), == ((cos w)), 4

1

- ; ((sin u)o(u)1

Vk-1
Hence, from equation (7) this becones

k-1

) gisin w)y

||M|

1

(cos u) - -
k K |

k-1

- JEo(j+1)(u)j+1(sin Wy

1

9.

For equation (14), by definition

gl - g7V

(sinhw), = [. 1.
1 u -u

= ; (e - e)k ’

so equation (6) inplies that

1

(sinh w), =) ((e)y - (&™)

k)

Applying equation (10) to the

produces

k-1 3
(sinhu), == [2 (1 - =)(e").
k j =0 k J

N

k-1 j
- 2 (1 -2)(e
j=0

1 k-1 j
== [2 (1 ->)",
2 j=0 J

k-1

j
+2 (1 -=)(e”
j=0 k

terms in parenthesis

(W

(W)

R Y]

Bringi ng-the summati ons together gives the eguation

k-1
1 b
- - Ay - = u -u
(sinh u)k = 5 [L (1 y)(u)k_j((e)j + (e)j)]

j=0
k-1 u -u
j e + e
T D, 152,
k-1 j
=j§0(1 - ;)(u)k_j(cosh u)

10. For equation (15)

ell + e—ll
(cosh u) = [

so equation (5) inplies that

1

(cosh u), = — ((eu)k + (e M)
2

k)

Applying equation (10) to the terms in parenthesis

produces ~
. k-1 3
(cosh u), = ; [jéo(l - p)(e“)j(u)k_j
+ kil(l 22 e]
§=0 k J k-j
, k-1
- - [jzo(l - i) (™) (),

j -u
_jéo(l - = (e 1.

Bringing the summati ons together gives the equation

k-1
1 j _
(cosh u)k = ; [jzo(l - ;)(u)k_j((e“)j - (e u)J.)]
kil j [eu _ e"ll]
= (1 - =)(u) —_]

k-1
_% -2 (sinh w)
j=0 Kk k-3 i

A CGeneral Algorithm for Evaluation of Taylor Series
Coefficients Using the Recurrence Relations

In the previous sections recurrence relations were
introduced which enable one to evaluate Taylor series
coefficients for the arithnetic operators, trigononetric
functions, the logarithmc function, and the exponenti al
function. Wat 1is needed nowis a way to conbine these
recurrence relations to evaluate the coefficients of a
Taylor series which approximates the solution y(t) to an
initial-value problem where y(t) is conposed of a finite
combi nati on of these functions and operators.

Consider the finite Tayl or expansion

n
vty 22 (v), (¢ - £k, (22)
k=0
which is an approximation of the solution to the initial-
val ue problem (1). The Tayl or coefficients (y)kJ
k=1,2, --- ,n, and the approxi mati ons at each mesh point can

be obtained using the followi ng algorithm [6;26]. An exanple

of applying the algorithmcan be found at the end of the

secti on.

ALGORI THM 1

A Initialize (y)O = a.

B. Transform £(t,y), from problem (1), into postfix

not at i on.

C. Cenerate a |list of auxiliary variables {T;,} in the

foll owi ng manner:

1)

2)

3)

Let m= the nunber of operators in £(t,y), this

includes the arithnetic operators and the elenentary

functions.

Set T, = operator, with its operands,
Set T, = operator, with its operands,
Set T = operator, with its operands,

wher e operator , t hrough operator, are the operators
in f£(t,y) in order of evaluation. These auxiliary
variables are generated as if one were evaluating
the postfix string.

If ~any of the above operators has recurrence
relations requiring the use of other operators,
such as the sine function, and if these operators
are not present in the list just created, then one

nmust generate additional auxiliary variables to

handl e these new operators:

+1 = operator ., wi th operands,

&
_|

operator . W th operands.

p
D Set (y)1 = T,.
For each i=1, ...,m+p, generate the code for (Ti)k from

the recurrence relation corresponding to the operator

in each T..
1
K+l
G. For each nesh point ty» 3J=1, «.» , N, onecan now
obtain the approxi mtion of y(tj) by:
1) For each i=1, ... | m+p, evaluate (Ti)0 at the
point t,_,.

2) BEvaluate (y),.

3) For each k=1, ... , n-1
a) For each i=1, ... |, m+p, evaluate (T)
b) Evaluate (¥)y ;-

4) Evaluate equation (22) with t=tj and t0=tj_1.

EXAMPLE 1

Consider the initial-value problem

Y = £(t,y) = sin(t)+exp(-t), 0 €t €1, y(0) = 0.
Let n=5 N= 10, then h = (1-0)/10 = 0. 1. To find the
approximation at t = 0.1 will require one step of the
algorithm which will be sufficient to see howto apply it.
A Set (y), = 0. -
B. The postfix formof £(t,y) is

(t,sin,t, ¢,exp,+) ,

where ¢ represents the unary mnus operation.
C 1) Set m= 4, the nunber of operators in f(t,y).
2) Set T, = sin(t), the postfix string is now
(T;,t,0,exp,+)
Set T, =-t, the postfix string is now
(T,,T,,exp,+)
Set T, = exp(T,), the postfix string is now
(Tl'T3’+)
Set T, =T, t+T,.
3) Since T, = sin(t), add an auxiliary variable for
cos(t):
Set T, = cos(t), the variable p is set to 1.
D. Set (y); = 1T,.

k-1
E 1) set (T,), = _zo(j+1)(t)j+1(T5)k_1_j. (from (12)).
J =

~ Ir

By application of equation (16) this becones
1
(T))p == (Tg)yy -
1’k i 5'k-1
2) Set (Tz)k = —(t)-

By application of equation (16) this becones
(Ty), = -1,
(Ty) =0, for all k > 1L

3) Set (Ty) = 2 (1 -2)(Ty)_;(Ty)

j

[S %
I}
(o}
=~ e

By the definition in E2 above, for j=0,...,k-2

(Tolg-j = 0 and for | = k-1 (T3 = ~1. Thus

1
(Ta)y = = = (T.)p .-
3k e alk-1

4) Set (T4)k = (Tl)k + (Ts)k'

k-1
1

By application of equation (16) this becones

1
(Tghy = - - (Ty)1+
1
. Set (Y)k+1 = I{—l (T4)k.
+

For j=1, t0=o.o, and t1=o.1:

1) (Tl)o = sin(t;) = sin(0) = O,
(T,)g = -ty = O,
(Tg)y = exp((T,),) = exp(0) = 1,
(Ty)g = (Ty)g + (Tg)g =0 + 1 =1,
(T5)0 = cos(t;) = cos(0) = 1.
2) (y); = (T))y = L.
3) For k=1:
a) (T,); = (Tg), = 1,
(Ty)y = -1,
(Tg)y = =(Tglg = -1,
(Ty)y = (Ty)y + (Tg), =1 -1 =0,
(Tg)y = =(Ty)g = 0.
1
b) (y), = - (T,), = O.

2

For

a)

b)

For

a)

b)

For

a)

=2:
1
(1), == (T5), = o,
(T2)2 = 0,
1 1
(T = = = (T, = =
(Tglp = (Ty)p + (Tg), =
1 1
(Tg), = - P (Ty), = - 3
1
(g = = (T = =
k=3:
1 1
(T))g == (Tg)p = = =
(T,), = o,
1 1
(T = = = (Ty), = - =
(Tylg = (Ty)g + (Tg)g =
) 1
(Tg)g = = = (1), = 0 .
1
(V) == (Tg)g = - ;;
k=4:
1
(T,), (Tg)g = O ,

|

wl e

(T,), =0,

1 1
(Tghy = = = (Ty)y = —

1

(Tgly = (Ty)y + (Tg)y = Py

1 1
(Tg)y = = = (T))y = —

1 1
b) (¥)g = = (Tg), = —

4) Now to approxi mate y(0.1) using the above val ues one

has
5
v= 2 (Y)k(O.l)k

k=0

1 1 1 1
=0 1+1: —+0+ —m + = + —m
10 100 6 1000
1 1 1 1
S — +

24 10,000 120 100,000

0.10017167, to 8 significant digits.
The actual solution for y(0.1) to 8 significant

digits is 0.10015842. -

CHAPTER 11

TAYLOR SERI ES VS. RUNGE- KUTTA

| nt r oducti on

One basi s for conparing the efficiency of
approxi mating methods for IVPs is to conpare the nunber of
functional evaluations required at each step [1;226].
Another method for conparing the efficiency of nunerica
methods is to determne the total arithnetic operations and
el ementary function evaluations required. The Tayl or nethod
requires only one evaluation of the function £f(t,y) in
problem (1), but the recurrence relations used to eval uate
the coefficients produce many arithmetic operations. Thus,
the latter conparison method will be used to evaluate the
performance of the Taylor method relative to sonme other
nunerical method, in this case the Runge-Kutta Order Four
met hod.

The operations to be counted are additions/
subtractions,- multiplications/divisions, and elenentary
function eval uations. The operations are grouped this way
because of their simlar conputational tines. To conpare
t he Runge- Kutta Order Four to the Taylor series nethod, it
is not realistic to consider only the total operations at
each step. One nust instead consider the total operations-

required by each nethod over the entire interval of

sol uti on. The total nunber of operations then becones
dependent on the nunber of steps required to reach an
acceptable approxi mation, one within a given error
tolerance, as well as the nunber of operations required at
each step of the solution. The total operations required by
the Taylor series is determned by the length of the series
being used, the type of operations present in the initial-
val ue problem and the nunber of steps involved in reaching
the final approximtion. The total operation count for the
Runge- Kutta method is determined by the initial-value
probl em being approxi mated and the nunber of steps involved

in the approximation.

Runge- Kutta Order Four and its Operati on Counts

The Runge-Kutta Oder Four method is the nost
conmonly wused of the Runge-Kutta nethods, its devel opnent
can be found in [1;225]. The following is a slight
nodi fication of the procedure given in [11. It is designed
to solve the initial-value problemin (1), where N, is the
partition size of the interval [a,b].

ALGORI THM 2 - -

Set h = (b—a)/Nr

to = a
W = «
For j =1to Nr do
(1) _
Set t tj_1 + h/2

_ (1)
K2 = hf(t ,wj_1 + K1/2)
= (1)
K3 = hf(t ,wj_1 + K,/2)
K4 = hf(tj‘1 + h,wJ._1 + K3)
MG = wi-1 + (K1 + 2(K2 + K3) + K4)/6
t. =a+jh
J

Her e W; is the approxi mation of y(t Now, notice that

I
there are 10 additions/subtractions and 9 nultiplications/
divisions required for each step, excluding operations

required to evaluate f(t,w).

Let A = t he nunber of additions/subtractions in £(t,y),
M, = the nunber of multiplications/divisions in
£(t,y),
and
E = the nunber of elenmentary functions in f£(t,y).

r

Then the total nunber of operations required for the Runge-
Kutta nethod to approximte y(b) is as follows:

Total add/sub = (10 + 4R)N_,

Total mult/div = (9 + 4M_)N_,

Total elem. func. evaluations = 4E N .

From these formulas it is obvious that, if the

initial-value probleminvolves a fair anount of operations,
a large nunmber of steps (a very small step sigé) wil |

necessarily produce high operation counts.

Tayl or Seri es Method Operati on Counts

To compute the nunber of operations required by the
Taylor series nmethod one nust first answer these three

guesti ons:

1. \What degree Taylor polynomal wll be used?
2. What recurrence relations will be required to find
each of the Taylor coefficients?
3. How many steps will be required to approximte the
solution to the problenf
The answers to these questions determ ne t he t ot al
operations required by the nethod.

The degree of the Taylor polynom al determ nes the
nunber of additions/subtractions and mul tiplications/
divisions required to evaluate the polynomal. A Taylor
pol ynom al of degree n contributes n additions/subtractions
and n nultiplications/ divisions to the total operation
count of the method at each step of the solution.

Each recurrence relation requires different types of
operations to be perfornmed, as well as different numnbers of
t hese operations. To determ ne the nunber of operations
required to evaluate each of the Taylor coefficients, one
must consider the nunber of operations each different type

of recurrence relation contributes to this total

The first coefficient, (y)o, does not require any
operations, -its value is assigned. To eval uate the second
coefficient, (v) . each recurrence relation contributes

operations as follows:
1. Equations (5) and (6) contribute
1 add/sub.
2. Equations (7) and (8) contribute

1 mult/div.

3. Equations (9) through (15) contribute
1 functional evaluation.
To evaluate the other n-1 coefficients, (y)k, k=2, ..., N,
each recurrence relation contributes the follow ng
nunmber of operations:
1. Equations (5) and (6) contribute
1 add/sub,
for each of the coefficients.
2. Equations (7) and (8) contribute
k add/sub,
K+l mult/div.
The recurrence relation in equation (8) requires
1 mult/div for each of the k terms in the summation,
k-1 add/sub to sum the terns,
1 add/sub to finish evaluation of the brackets,
and
1 division by (V) -
3. Equation (9) contributes
2k add/sub,
3k+2 mult/div,
to evaluate the recurrence rel ation. -

Since g and k are given initially, one can treat

+1

f__ as a constant, to be evaluated before the
k

summation. This wll require

1 add/sub

and
1 mult/div.
To eval uate the sunmation requires
1 add/sub
and
3 mult/div for each of the k terns,
k-1 add/sub to sum the terns, and
1 division by (u),.
Equations (10), (14), and (15) have the sane basic
structure. Thus, they each contribute
2k-1 add/sub,
3k mult/div.
If one considers the recurrence relation in equation
(10), then it is easy to see that it requires
1 add/sub
and
3 mult/div for each of the k ternms and
k-1 add/sub to sum these terns.
Equation (11) contributes
2k- 2 add/sub,
3k-2 mult/div.
These totals come fromthe
1 add/sub
and
3 mult/div for each of the k-1 terns,
k-2 add/sub to sum the terns,

1 add/sub to finish the evaluation in the brackets,

and
1 division by (a)g.

6. Equations (12) and (13) are basically the sane except
for the additional multiplication by -1 required in
(13). Their contribution is

2k-1 add/sub,
2k+1 mult/div, equation (12),

2k+2 mult/div, equation (13).

Si nce only worst case operation counts are
considered, the recurrence relations are grouped into three

types, according to the types of operations that they

produce.
Type | - These are equations (5) and (86), whi ch
contribute only add/sub to the counts.
Type II - These are equations (7) and (8), whi ch

contribute both add/sub and mult/div to the
counts.)
Type III - These are equations (9) through (15), which
contri bute add/sub, mult/div, and functiona
eval uations to the count.
To determine the total nunmber of operations for all n+l co-
efficients in the Taylor polynom al contributed from each of

t hese three types one has the follow ng:

Type | - The second coefficient contributes
1 add/sub.

The remai ning n-1 coefficients contribute

Type II -

™M
[
L]

n-1 add/sub.
k=2

Thus, operations in €£(t,y) using recurrence
relations of Type | contribute
n add/sub
to the total operation count.
The second coefficient contributes
1 mult/div,

and the remaining n-1 coefficients contribute

n n2+n—2
Y k = —— add/sub,
k=2 2
and
n n2+3n-4
Y kt1 = —— mult/div.
k=2 2 -

Thus, operations in £(t,y) using recurrence

rel ati ons of Type II contribute _

n¢+n-2
add/sub,
2
and
n+3n-2
mult/div
2

to the total operation count.

Type III - For these equations, the worst case operation

counts cone from equation (9), which requires
nore operations than any of the other Type III

equations. The second coefficient contributes

1 functional eval uation,

and the remaining n-1 coefficients contribute

Y 2k = n%+n-2 add/sub,
k=2
and
n 3n2+7n-10
Y 3k42 = ——— pult/div.
k=2 2

Thus, operations in £(t,y) using recurrence
rel ati ons of Type III contribute
n2+n-2 add/sub,
3n®+7n-10
— mult/div,
2
and
1 functional evaluation
to the total operation count.

Al three types of equations require an additional
mult/div to solve for the coefficients (Y)z' (Y)g, =-- .,
(y), - This is fromstep F of Algorithm 1.

In a particular problem being solved it is likely
that the actual nunmber of operations required will-be rmnuch
smaller than the worst case counts just given. As an
exanpl e, consider the recurrence relation for equation (8).
If the analytic function v(t) is replaced by the independent

variable t, then one has the recurrence rel ati on

k

v u
Ly -2 000, y]

3= t

u

(=)

!l -

2
If one now applies the results of (16) to the terns in the
summation, then
u 1 u

‘;’k=‘;[‘“’k“;’k—1]
This new relation requires only 1 add/sub and 1 mult/div for
each coefficient after the second, which still requires only
1 mult/div. Thus, for an n'" order Tayl or polynom al. the
relation contributes a total of n-1 add/sub and n mult/div,
a definite savings over the operation counts of the origina
rel ation.

To establish the operation counts for the Taylor

nmet hod, one will need the follow ng variabl es:

>
"

t he nunber of elements of f(t,y) of Type I, ..

X
m

the nunber of elements of f£(t,y) of Type II,

=
L]

t he nunber of elements of f(t,y) of Type III, -

N. = the nunber of steps required to obtain the solution
The worst case total operation counts are then
1. Total additions/subtractions:
For each of the N, steps there are
a) n add/sub for evaluation of the Taylor
pol ynom al ,
b) A, n add/sub from Type | equations,

n2+n-2

c) M. (___E__)y add/sub from Type II equations,

and
d) Et(n2+n—2) add/sub from Type III equati ons.
Thus,

total add/sub
2

n“+n-2 2
= [n + Atn + Mt(—) Et(n +n—2)]Nt
2
Mt 2 M,
= [n(1 + At + ; + E,) +n (; + Et) - M, - 2Et]Nt

Total multiplications/divisions:
For each of the N, steps there are
a) n mult/div for evaluation of the Taylor
pol ynom al ,
b) n-1 mult/div for evaluation of the coefficients

(Y)zl (Y)sr MR ’ (Y)nl

n2+3n—2
c) M () mult/div from Type II equati ons,-
2
and
3n?+7n-10
d) E, (——) mult/div from Type III equations.
2
Thus,

total - mult/div -

n?+3n-2 3n2+7n-10
=[n—1+n+Mt(——)+Et(——————)]Nt
2 2
aM. 1E M. 3E
= [n(2 + —t + —%) + n?(=Y+ —L) - M, - 5B, - 1]N,.
2 2 2 2

Total elenmentary function eval uations

For each of the N, steps there will be E_ elenentary

function eval uati ons. Thus,

total func. eval. = E.N,.
Exanpl es
In the exanples that follow, all results were

obtained on an IBM PC-AT in double-precision arithnmetic,
using a Pascal Turbo-87 conpiler, which utilized the 80287
mat hemati cs coprocessor chip. Both the Runge-Kutta and the
Tayl or series method were run using step sizes of (1/72)1,
for i=1,...,14. For both nmethods, the relative error of the
approxi mation was used to decide if the approximtion was
*

within the given error tolerance. If y is the actua
solution and y the approximation to that solution, then the
relative error is

*

ly -vI
*
ly |

The Taylor series nmethod was able to reach an

acceptable approximation for nost of the step sizes used in
each of the problens. The tabl e values were chosen from
these different results on the basis of which step size
produced the approxi mation nost efficiently in respect to
t he worst case operation counts.

Wiile |ooking over the exanples and conparing the
timng analysis, one should keep in mnd that the run tines
listed are for the routines in the Appendix, which were
designed to elinmnate nost of the unnecessary operations,

whil e the operation counts given are worst case. For this

reason one wWll sonmetines find a time that is less for one
exanpl e than for another exanple having smaller operation
counts.
EXAMPLE 2
Consider the initial-value problem
y' = -y2 (2t +1), 0 <t €1, y(0) = 4,
whi ch has actual sol ution
1
T (t + 1/2)2
Using Algorithm 1, the following list for £(t,y) = y' can be

construct ed:

k
T, = vy, (T,), = j.z: () (Vg
T, = ~Ty» (Tadg = = (Tl -
T, = 2t, (Tg)yp = 2(%)
Ty = T3 + 1, (Tglg = (Tgly + (1)

k
Ts =TTy, (Tg)y = jZO(TZ)j(T4)k-j ’

1
(Y)1 = T5,_ (y)k+1 = ;:; (T5)k .
From this Ilist one can see that the operation count

paraneters for the Taylor method are

A, = 2, M, = 3, and E, = 0,

and from £(t,y) one has the paraneters for the Runge-Kutta

nmet hod

Ar = 2, M, = 3, and E. = 0.

This exanple is non-linear in the dependent variable
y and has a singularity of order two in the solution at the
point t = -1/2. This singularity gives the Taylor nethod
problems at the larger step sizes, but after the step size
is within the radius of convergence for the Taylor series an
accurate approxi mation is quickly obtained.

The results of the Taylor nmethod and the Runge- Kutta
net hod applied to this exanple can be found in TABLE 1 I n
this exanple the Runge-Kutta nmethod is superior to the
Tayl or method for the larger tol erance, which is usually the
case, but the Taylor nethod is superior when nore accuracy

is required in the approximation.

TABLE 1

OPERATION COUNTS AND TIMNG ANALYSIS FOR THE
TAYLOR AND RUNGE- KUTTA METHODS FOR EXAMPLE 2. THE
UNIT O TI ME | S SECONDS

nmet hod tol # of # of add/ mult/ time
[imt steps terns sub di v
TS 5x10 4 8 6 624 664 0.17
RK 5x10 % 8 - 144 168 0.05
TS 5x10"% 16 8 2,064 2,176 0.55
RK 5x10° % 128 -- 2,304 2,688 0.76
EXAMPLE 3

Consider the initial-value problem
y'=-y+t2+1, 0¢<t €1, y(0o) = 1,
whi ch has actual solution

y = - 27t + 2

This exanple is linear in the dependent variable y so the
solution has no singularities which could cause possible
problenms for the Tayl or nethod. TABLE 2 shows that the
Taylor method requires only a small nunmber of steps and
terms to reach an accurate solution, even at the snaller
t ol erance. A the larger tolerance the performance of both
nmethods is excellent, but for the smaller tolerance the
Tayl or nmethod is superior.

The operation count parameters are

At = Ar = 3, Mt = Mr = 1, and Et = Er = 0.

TABLE 2

OPERATION COUNTS AND TIMNG ANALYSIS FOR THE
TAYLOR AND RUNGE- KUTTA METHODS FOR EXAMPLE 3. THE
UNIT OF TIME | S SECONDS

met hod tol # of # of add/ mult/ time
[imt steps terns sub div
TS sxi1074 2 4 50 32 0.01
RK 5x10™ 4 2 - 44 26 0.01
TS 5x10° 8 2 8 134 100 0.03
RK 5x10"% 32 - 704 416 0.17
EXAMPLE 4 T

Consider the initial-value problem
y' = sin(t)+e” %, 0 €t €1, y(0) = 0,
whi ch has actual sol ution
y = -cost - et + 2

Thi s exanpl e was chosen to show how the presence of

elementary functions affects the two nethods. In TABLE 3

the worst case operation counts for the Taylor method are
m sl eadi ng. The actual operation counts are nuch | ower since
both of the elementary functions involve only the
i ndependent variable t. The reduced recurrence relations
can be found in EXAMPLE 1. TABLE 3 does show that the
Runge- Kutta nmethod is slightly better at the | ar ger
tolerance, but the Taylor nethod is definitely superior for
the smaller tolerance. This is principally due to the nunber
of functional evaluations required by the Runge-Kutta

nmet hod.

TABLE 3

OPERATI ON COUNTS AND TIM NG ANALYSIS FOR THE TAYLOR
AND RUNGE- KUTTA METHODS FOR EXAMPLE 4. THE UNIT OF TI ME
| S SECONDS

net hod tol # of # of add/ mult/ func. tine
limt steps terns sub di v eval .
TS 5x10 % 2 5 198 308 6 0.02
RK 5x10 4 2 - 36 18 16 0.01
TS 5x10” 8 2 8 468 728 6 0.03
RK 5x10"% 16 - 288 144 128 0.13
EXAMPLE 5 o

For this last exanple, the initial-value problemis
from [1;284], where it is used as a test problemto observe
how a nethod handles stiff differential equations. The
problemis

y' = -30y, O £t €1, vy(0) = 1/3.

The actual sol ution

y = — e 30t

wl =

has a noderately |arge negative exponent, which causes the
solution to decrease at a rapid rate. In TABLE 4 it is
obvious that the Runge-Kutta nmethod has a very difficult
time with this problemeven at the larger tolerance. A the
smaller tolerance the Runge-Kutta requires an extrenely
small step size. Thus, the tinme required to reach an
accept abl e approxi mation is unreasonable. The Tayl or nethod
requires relatively Ilittle conputational time at either

tol erance to reach an acceptabl e approxi mation.

TABLE 4

OPERATION COUNTS AND TIM NG ANALYSIS FOR THE
TAYLOR AND RUNGE- KUTTA METHODS FOR EXAMPLE 5. THE
UNIT OF TIME | S SECONDS

net hod tol # of # of add/ mult/ tinme
[imt steps terns sub di v
TS 5x10” 4 16 11 1,392 1,376 0.14 _
RK 5x10 4 256 - 3,584 3,328 0.42
TS 5x10° 8 8 23 2,568 2,560 0.14
RK 5x10"8 2,048 - 28,672 26,624 8.21

Sunmary

The exanples in the previous section show that the
Taylor method is capable of producing results superior to
those of the Runge-Kutta nethod, especially if one is
interested in highly accurate approxinations. The main
problem in applying the Taylor nethod efficiently 1is the
need for a way to choose an appropriate step size and order
for the nethod. The choice of these two paraneters will be
i nvestigated in CHAPTER 4.

Assum ng that one can choose the ideal step size and
order for the method, the exanples showthat the Taylor
method is nost useful when one needs high accuracy in the
approxi mation, or when the solution to the problem decays,

or grows, rapidly.

CHAPTER III

ERROR ANALYSI S O TAYLOR SERI ES

| nt r oducti on

Using the Taylor series nmethod to approximte (1)
will involve a certain anmount of error. The anount of error
will depend upon two different types of error - round-off
error and truncation error.

Round- of f error is the result of finite-digit

arithnetic and is a cause of error for any conputations

performed on a conputer. Truncation error _is the result of

using a finite nunber of the Taylor series terms to

approximate the value of the infinite expansion.

Round- of f Error

In [1;10-16] one will find a conpl ete discussion of
round- of f error. Since this type of error is unavoidabl e,
one should be familiar with some ways to reduce its effects
on conputer - calculations. Two of the ways to reduce this
error are:

1. Refornulation of the problemto be sol ved,
and
2. Reduction of the nunber of operations that nust be

per f or med.

Reformul ation of the problemis used to avoid the
subtraction of nearly equal nunbers, the division by nunbers
with small magnitude, or the multiplication of nunbers with
| arge magnitude. In the follow ng exanple [1;18] one can
see the result of reformulating a problem to avoid

cat ast rophi c subtractions.

EXAMPLE 6
Consi der the problem of approximating e d using the
Tayl or polynom al of degree 9 with the fornul a:
9 kck
(-1)75
e_5 - Z —e (23)
k=0 k!
5 5 5 5 5 5 5 5
= 1- 5(1- =(1- =(1- =(1- —(1- =(1- —=(1- ~(1=- =))))))))
2 3 4 5 6 7 8 9
= -1.827, to 4 significant digits,
or with the formula
1 1
e—5 ==z = s (24)
e —_
k=0 k!
1
5 5 5 5 5 5 5 5°
14 5(1+ =(14 =(1+ =(1+ =(1+4 —=(1+ —=(1+ =(1+ =)))))1)))
2 3 4 5 6 7 8 9
= 6.959x10 3, to 4 significant digits.
The actual solution, to 4 significant digits, is

6.738x10 2. The reason that (24) is nore accurate than (23)
i's that the equation for (24) does not involve anj

subtracti ons.

Concerning the nunber of operations, one way to
reduce themis to place polynomals into nested form before
t hey are eval uat ed.

EXAMPLE 7

Consider the ntf degree Taylor polynomal for y(t)

with h=t—t0,

n

y(t) 2 L (v)nF
k=0

To evaluate this polynomal directly one could use the
foll owm ng Pascal code:
Yy := yt[0];
hi := 1;
for k := 1to n do
begi n
hl = hl * h;
y :=y * yt(k] * hl
end; -
The final value for y is the approximation to y(t), and
yt [k] represents the kth Tayl or coefficient.. This algorithm
requires n additions and 2n nmultiplications. _However,
suppose one used instead the Pascal code:
Yy := ytin];
for Kk := n-1 downto 0 do
Yy :=y * h + yt(k];
which evaluates the polynomal in nested form Then
evaluation of the Taylor polynomal requires only n

addi tions and n nultiplications.

d obal and Local Truncati on Error

Suppose y(t) is the solution to the initial-value
problem in (1) and y € c"*'ta,b1, where c"*'[a,b] denotes
the class of functions that are n+l tinmes continuously
differentiable on [a,b]. Expand y(t) about the point t=t,

to obtain the nth degree Tayl or pol ynom al :

hn

- . o n)
yit, 1) = v(t;) + hy'(t;) + -+ + "y y o (t))
hn+1
+ v e, (25)
{n+1)!
wher e ty <6, <ty Since y(t) is the solution to (1),
vty = £V (¢,9(t)), for each k=1,2, --- ,n+l.

Substituting for the appropriate derivatives in (25) gives

hn
Y(E,y) = ¥(E) + RECEY(ED) 4ok — £" 1) (e y(t)))
hn+1
+ £ (e Lyie;0). (26)
(n+1)! --

By neglecting the terminvolving f(n) one can form the

Taylor nmethod of order n [1;216]:

Set W, =« -
and
hn
Set W.,, =W, thi(t;,w;) +- .-+ ;T f(""l)(ti'wi)' (27)

The global error associated with the Taylor method of order
n is the difference between the actual solution v(t,) and
the approximtion w,. This is the error accunulated from

each of the steps taken prior to, and including, the j th

st ep.
To obtain a bound on this error it is necessary to
present the follow ng three | emmas.
Lemma 1
For all x 2 -1 and any positive m
0 € (1+x)™ ¢ "X,
The proof of this lema can be found in [1;208].
The following lema is a generalization [1;208]:
Lenma 2

If s and t are positive real nunbers, n is a

positive integer, and {a.}l;=0 is a sequence satisfying

i
t

3 > - -, and a;,, 6 (1+4s)"a, +t for 1=0,1,-.-,k,
t hen
t t
ai+1 < sn(i+1) [- + ao] - — .
S S
Pr oof
If i is fixed, then

n
a, | € (14s) A, + t

N

(1+4s)" [(1+s)"a, . + t] _

1

< (148)" [(148)[...[(1+s)"ay + t]+- -+ £]+ €] + t
= (1+s)"‘i+1)a0 + [1 + (148)" +-+ .+ (1+s)i0y¢,
Now ’
i
1 + (1+s)® + (148)2" 4. .4 (1+48)1i0 = Z (1+s)30

j=0

which is a geonetric series with ratio (1+s)" and suns to

1-(1+s)0(3+1) g0 (i+1)

1-(1+s)® (1+4s)"-1
Thus,
(14s)0(171) 4
ai+1 € (1+s)n(i+1)a0 + t
(1+s)"-1
, (14s)R(1%1) 4
< (14s)" U ey t
S
t
= (1+s)n(i+1)a + - (1+s)n(i+1) E
0 S S
t t
= (1+4s)0(i+1) [a, + =1 - — ;
s S
therefore, by Lemma 1,
. t t
a,,, e vy -
8
Lemma 3

Let y e clfa,b] be a solution to the initial-value
problem in (1), where f is defined on De R?,
D:{(t,Y) ' atb; _“’<Y<°}l

and f has continuous partial derivatives of all orders |ess

than or equal to n. Then for each k=0,1,..-.,n-1 there
exi sts a non-negative real constant L such that
(k) _ ¢(Kk)
| £ (t,Yz) f (t,Yl) | € Ly, = ¥4l

whenever (t.yl),(t,yz) e D.

Pr oof

It follows inmmediately that

ag (k)
| —ewy | <z,
Iy
for sonme constant L, > o and for all k=0,1,---,n-1. Wth't

k
held fixed, each f(k)(t,y) is a function of the single

variable y and thus, applying the Mean Val ue Theorem there
exi sts a nunber ¢, Y, <& <y, , such t hat
ag (1) £ e,y - £ty

—(t,8) =
ay Y2 - ¥y

whenever (t,yl),(t,yz) € D.

This inplies that

(k) (k) ar (1)
1£F e,y - Mty = l— ol iy, - vy
ay
€ Lk|Y2 - yll n

A definition is required before the follow ng
theorem [1;209] can be used to derive the desired bound for
the global error of the Taylor nethod.

Definition 1

A function f£(t,y) is said to satisfy a Lipschitz
condition in the variable y on a set D R%, provided a
constant L > 0 exists with the property that

1£(t.y,) - £(t,y,)1 € Lly, - v,l
whenever (t,yl),(t,yz) e D The constant L is called a

Li pschitz constant for f. [1;201]

Theorem 1
Let y(t) denote the unique solution to the initial-
val ue probl em
v'(t) = £(t,y(t)), a €t €£b, v(a) = «,
g0t Wy be the approxi mati ons generated by the
Tayl or nethod of order n for some positive integer N If in

and Wy W

addition vy satisfies the hypotheses of Lenma 3, then there
exi sts non-negative constants M and L such that
IY(“+1)(t)| <M for all t e [a,b]
and
h"M

| { —m— [enL(ti—a)—l], for i=0,1,.-.,N. (28)

Iyl - W,
L(n+1)!

1

Proof
By assunption , y(®™*1) is continuous, so there exists
M 2 o such that
Iy e)p €M for all t e [a,b].

Wen 1=0, y(t;) =w, =a, so inequality (28) is true for

i=0.

From (25), for i=0,...,N-1,

hn
V(E,p) = (8] + BECEYIE)) +oook — £ (e Ly(e)
ptt1
+— y(M Dy,
{n+1)!
and fromthe equations in (27),
hn
Wiop =Wy o+ hE(t w4 — 0T e

n!

Using the notation Y, = v(t;) one finds that

Yi+1 - wi"'l = Yl - Wi + h[f(terl) - f(tl'wi)]

hl’l
e (n-1) _ gln-1)
+ + o [f (ti'yi) f (ti,wi)]
hn+1
+ ARAGLITINR
(n+l)!
Hence,
1¥5,7 = Wiql €1y = wil + hIE(t,) - £(t W)
hl’l
e — (n-1) _ ¢(n-1)
+ + o I £ (ti'yi) f (ti’wi)l
hn+1
+ PRSI CINY (29)
{n+1)!

Appl yi ng Lemma 3 and usi ng t he fact t hat
IY‘“+1)(t)I € M, equation (29) becones

Y50 =~ Wil €1yy - wil + hLgly, - wi| +--. .

+ — L }y, - w.| +
nt Ml 1 (n+1) ! .
h? h"
=]y; - w;l (1 + hL + = Ly +-- -+ = L _,)
h"*im

(n+1)!

Let L = max { L,, L,,..., L _;, 1), t hen
(hL) 2 (hL)"
vy, ~ Wy,q0 €1y; - w,i(1 + hL + Feo ot)
2! n!
hn+1M
+
(n+1)!
n"tim

< lyy - owil (1 + hL)® +

Applying Lemma 2 wth a, = |y

i - W, for each

n? iy
i=0,.--,N, s = hLL, and t = , one has
{(n+1)!
h"* 1y
hLn(i+1)
ly -w | € e (+ vy, - w,l)
i+t i+1 hL(n+1) ! 0 0

httiy

hL(n+1)!

and since ly, - wol =0, and h(i+1)=(t; ,-t,)=(t; ,-a),

h"M
nL(t,. - a
IYi+1 - w0l { —m—— e (tig) -1)
L(n+1)!
for each i=0,...,N-1 -8

The bound given in Theorem 1 shows that, neglecting
round-off error, the global error for the Taylor method of

order n is o(h").

The |local truncation error for the Tayl or method of

order n [1;218] is the difference between the exact solution

th step, assuming that

y(t,) and the approximtion at the i
the value fromthe previous step is exact. Under the sanme
assunptions as in Theorem 1, the local truncation error,

T at the (i+1)th step is defined as

i+1’

hn

_ tiv1 — 1y (n) (n)
T, = —— - T (t.,vy.) = f (§.,v(§.))
h 101 (n+1)! 1 !
for each i=0,-..,N-1, where

h
(n) =
T (ti,Yi) = f(ti:Yi) + ; f'(ti,Yi) +e .

-1

— g(n-1)
+ — £ (t,.v;). (30)

Thus, the local truncation error for this nethod is

such that ri=0(h“).

Stability and Convergence

In this section the followng definition is
required.

Definition 2

The Taylor nethod of order n is said to be

convergent wth respect to the differential equation it

approxi mates if

lim max |y, - w,|
h =0 1<igN

:0,
wher e Yy and w, are the same as in Theorem 1. [1;271]

To see that the Taylor series nmethod is convergent
under the hypothesis of Theorem 1 one requires inequality
(28), which gives

h'M Lib
max lyl _ wil € —— en (a) - 1)
1<igN L{n+1)!

Since h is the only non-constant, this tends to zero with h.

Hence the Taylor nethod of order n is convergent as |ong as

t he differential equation being solved satisfies t he
condi tions of Theorem 1.

Definition 3

A method is stable if small changes in the initial
condi tions of an i nitial-value pr obl em produce
correspondingly small changes in the approxinmations of the
problem [1;272]

The following theorem [1;272], whose proof is not
given therein, can be used to establish stability.

Theorem 2
Suppose the initial-value problem
y' = f(t,y), a €t €b, v(a) = a
is approxi mated by a one-step nethod in the form

W0=u

Wi+l = W, + h¢(ti,wi,h). (31)_

If a nunber h0 > 0 exists and #(t,w,h) is continuous and

satisfies a Lipschitz condition in the variable won the set

then the method is stable.

Pr oof

N N
i=1 and {vy}y

Let {u,} -1 satisfy (31) and let i be
fi xed, then upon subtraction one obtains

¥4y - v,,.1 € 1u; - v} + hl#(t,u;,h) - #(t,v;,h)]. (32)

Since #(t,w,h) satisfies a Lipschitz condition in

the variable w, there exists a positive constant L such that

|#(t,u ,h) - #(t,v,,h)| € Lju; - v,].

So inequality (32) becones

)

19501 = Vil €193 - vyl + hhjuy - vy

[4 - -
€ 'ui Vil + hoLlui Vi'

fu; - v, (1+ hyL)

N
=
|

2
v (1 + hOL)

i-1 i-1l

i+l
(1+hL) ",

N

|u0 - vol

Now let X = (1 + hjL y1*1 . Then

N

la, ., Vil Kluy - v,f-

Thus, any small changes in the initial conditions u, and Vo
produce correspondingly small changes in the approxi mations

u.,, and v, .. n
The Taylor method of order n defined in (27) is

stabl e when the initial-value problem being solved satisfies
the hypothesis of Lenma 3. For this nmethod define

#(t,w,h) = (™ (t,u),
where T(®) js defined in (30). Then for any h, > 0, ¢ is
conti nuous on

D={(t,wh) | a€t<b, ~o<w<wm 0<h<h, }.

Since the method does satisfy the hypothesis of
Lemma 3 and since

|¢(t,w1,h) - Q(t,wa,h)l = |f(t,w1) - f(t,w2)|

h
= LE(E,W) ~ EU(t,wy)] A

2

hn—l
+ — |f‘"'1)(t,w1) - f‘"“l)(t,w2)|,

n!

the results of Lemma 3 lead to

I#(t,w,,h) - #(t,wy,h)| < Lolw, - wy| + — Ljw, - w,|

hn—l

Fooo o F am—— -
Ln—llwl w

n! 2|

= 1w, - W,

I

|w1 - w2| (LO + — L1 SR n_1).
2 n!

Thus & satisfies a Lipschitz condition in the variable w on

the set D for any hy, > o with Lipschitz constant

h ' h
=0 Ly +---# 0 n-1) -
2 n!

n-1

So Theorem 2 inplies that the Taylor method of order n is

st abl e.

CHAPTER |V

ATOMCC: UTI LI ZI NG THE TAYLOR SERI ES METHOD

| nt r oducti on

Y. F. Chang 1[2;80-138] has derived nethods used in
the ATOMCC tool box [(3;215] to |ocate the position and order
of non-essential singularities in the solution of an
ordinary differential equation (ODE). He al so discusses
some heuristic approaches to finding the optimmstep size
in the case that the solution of the ODE, or system of ODEs,
is either an entire function or possesses an essential
singularity.

ATOMCC wuses a thirty termseries, unless the user
specifies sone other nunber of terms or ATOMCC discovers
that the ODE, or systemof ODEs, is stiff, in which case the
number of terms used in the series is reduced to fifteen. A
thirty termseries allows ATOMCC to use a very large step
size, relative to nost nunerical methods, which decreases
the chance of conputer round-off error. This long - series
| ength al so enabl es ATOMCC to accurately estimate the radius
of convergence for the series at each step, thus allow ng
for accurate control of the local truncation error [2;141].

ATOMCC allows one to solve ODEs in the conplex
pl ane, thus enabling one to obtain informati on about the-

behavi or of the system near singularities other than just

along the real axis [3;222].

The input for ATOMCC is structured so as to be
easily used, and all inputs are in the form of FORTRAN code.
There are several input blocks to allow one to

1. specify the ODE or system of ODEs,

2. specify the initial conditions or input statements to
be inserted into the FORTRAN source code to be
gener at ed,

3. redefine some of the default paraneters of the package,
such as the error limt or the nunber of ternms in the
series,

and

4. structure the output of information fromthe package.

After the input to the system has been specified,
the ATOMCC program generator is used to produce a FORTRAN
source program to be conpiled and Ilinked wth certain
subroutine libraries in the ATOMCC t ool box.

The program generated by ATOMCC contai ns nost of t he
code necessary for solving the ODEs, the recurrence
relations, structure of the system etc. There are two
external programcalls to the routines RDCV and RSET.- RDCV
contains the routines to estimte the radius of convergence
of the truncated Taylor series. RSET contains the routines
necessary to choose the optinum step size for a particular
expansi on based upon the radius of convergence, the |ength
of the Taylor series being used, and the error tolerance-

specified for the problem

The RDCV routines estimte the radius of convergence
if the problemhas a single singularity onthe circle of
convergence, a conjugate pair of singularities on the circle
of convergence, an essential singularity on the circle of

convergence, or if the solution is an entire function.

Locati ng Non- Essential Sinqularities and Their Oder

When a Taylor polynomial is used to approxinmate the
solution to an initial-value problemit is effected by
singularities occuring in the solution of the problem
These singularities, if the solution is real valued on the
real axis, occur only on the real axis or in conjugate pairs
[4;122-123].

In the nmethods to be discussed, it is assunmed that
only the primary singularities, those on the <circle of
convergence, have any significant effect on the ternms of the
problem's Tayl or series. This assunption is accurate if a
sufficiently long series is used [4;123]. _

Only two of chang's nethods are described here, the

two-term analysis [2;89] and the three-termanalysis [2;91-

92). Both of these methods are able to find the radius of
convergence for a series when the solution has only a single
singularity on the circle of convergence. In addition to
the radius of convergence, the three-term analysis also
gives the order of the singularity, whereas the two-term
analysis requires that this order be known beforehand to

obtain the radius of convergence. These met hods are both

derived through analysis of the npdel problem
v(t) = (t-a) ®. (33)

This equation adequately approximtes the solution to the
initial-value problem being solved as long as there is a
single singularity on the circle of convergence and the
series |s evaluated at a point near the singularity [2;83-
84]. For a conpl ete analysis of Chang's nethods one shoul d
consult [2;80-138].

The two termanalysis is derived by considering the
recurrence rel ations one obtains for the Taylor coefficients
of (33). The derivatives of (33) have the form

y' = -s(t-a)" %71

y'' = -s(-s-1)(t-a) 572

= -s(t-a) ® "1 (-s-1)/(t-a)

y'[(-s-1)/(t-a)]

y(®) = (D) (g n+1)/(t-a)],

so that the general recurrence relation for the Taylor

coefficients, evaluated at t = to is
(Y(“)(to)
) 5 —————
¥'n nt
Y(nﬁl)(to) s+n-1
(n-1)! n(a—to)
(y)__ s+n-1
= n-1 . . (34)
a-t n :

0

Solving for d = a-t, this equation becomes

(Y)n_1 . n+s-1

da =
(v), n

Since the radius of convergence, p, is la-t,] one has

I (¥Y) -1 . n+s-1 ,

p = |d} = (35)

(¥), n
This is the fornmula for the two-term anal ysis.

When one does not possess a priori know edge of the
singularity's order, then two copies of equation (34) can be
sol ved sinmultaneously to yield the radius of convergence, p,
and the order of the singularity, s. The two equations to
be sol ved are

n+s-1

(y), = — (¥)h_4

and

n+s-2

(Y)n_1 = ?;:ITE (Y)p-2

Mul tiplying the equations by n/(y), 4 and

(n-1)/(y),_, , respectively, produces the pair of equations

(Y)n n+s-1

n ==
(y)

n-1 d

and

(n-1) 2 =

(Y)n_2 d

Subtracting the second equation fromthe first produces

(y) (y),_ n+s-1-n~-s+2 1
n—>=_ _ (p-1) —2L = = -
(¥),_4 (¥) -2 d d

Thus,

(36)

e = |I4d])
(v) (v), _
| n — 2 - (n-1) —2-1 |
(Y)n—l (Y)n—z
Now, by solving equation (34) for s, one has the equation

n (y)n
§ = ———d - n + 1 ,

(¥),_4
where d is obtained from equation (36).
EXAMPLE 8
Consider the initial-value problem of Exanple 3
(Chapter 2). The solution has a singularity of order 2 at
the point t = -1/2. Tables 5,6, and 7 showthe results of

applying the three termanalysis to the Taylor coefficients

for this problemusing series lengths of 6, 11, 16,..., 41
(ie. n=5, 10, 15,---, 40 in equations (36) and (37)).
TABLE 5

THREE- TERM ANALYSI S ESTI MATES FOR THE RADI US OF CONVERGENCE
AND ORDER OF THE SINGULARITY FROM THE TAYLOR SERIES
EXPANSI ON ABOUT THE PONT t = 0.0 FOR THE | N TIAL-VALUE
PROBLEM:

y' = —-(2t+1)y%, 0 € t € 1, y(0)=4
radi us or der
n of convergence of singularity--
estimate esti mate

5 5.00000000000000E~001 2.00000000000000E+000

10 5.00000000000000E-001 2.00000000000000E+000

156 5.00000000000000E-001 2.00000000000000E+000
20 5.00000000000000E-001 2.00000000000000E+000

25 5.00000000000000E-001 2.00000000000000E+000
30 5.00000000000000E-001 2.00000000000000E+000 -
35 5.00000000000000E-001 2.00000000000000E+000 -
40 5.00000000000000E-001 2.00000000000000E+000

TABLE 6

THREE- TERM ANALYSI S ESTI MATES FOR THE RADI US OF CONVERGENCE
AND ORDER O THE SINGULARITY FROM THE TAYLOR SERIES
EXPANSION ABOUT THE PONT t = 0.4 FOR THE |N TIAL-VALUE
PROBLEM:

y' = —(2t+1)y?, 0 €t € 1, y(0)=4
radi us or der
n of convergence of singularity
estimte estimate

5 '9.,00000000000001E-001 2.00000000000001E+000
10 9.00000000000006E-001 2.00000000000007E+000
156 9.00000000000041E-001 2.00000000000069E+000
20 8.99999999999914E-001 1.99999999999804E+000
25 8.99999999999966E-001 1.99999999999898E+000
30 9.00000000000308E-001 2.00000000001044E+000
35 8.99999999999094E-001 1.99999999996437E+000
40 8.99999999999888E-001 1.99999999999505E+000

One can see fromthe tables that the approxi mations
for the radius of convergence and order of the singularity
by the three-termanalysis is extremely good, even when

taken from points not very close to the singularity.

TABLE 7

THREE- TERM ANALYSI S ESTI MATES FOR THE RADI US O CONVERGENCE
AND ORDER OF THE SINGULARTY FROM THE TAYLOR SERIES
EXPANSION ABOUT THEPONT t = 0.9 FOR THE IN TIAL-VALUE
PROBLEM:

y' = —(2t+1)y%, 0 € t € 1, y(0)=4
_radius or der .
n of convergence of singularity
estimte estimate

5 1.40000000000000E+000 1.99999999999999E+000
10 1.40000000000000E+000 2.00000000000002E+000
15 1.39999999999998E+000 1.99999999999977E+000
20 1.40000000000002E+000 2.00000000000031E+000
25 1.39999999999987E+000 1.99999999999757E+000
30 1.40000000000013E+000 2.00000000000271E+000
35 1.39999999999952E+000 1.99999999998769E+000 -
40 1.40000000000014E+000 2.00000000000395E+000

If the three-termanalysis fails (i.e. two different
estimates do not agree), then it is assunmed that there is a
conjugate pair, or nore conplex structure, of singularities
on the circle of convergence. Chang derives the four-term

anal ysis [2;104] and the six-termanalysis [2;108] to handle

this situation. In a manner simlar, but nore conplex, to
the developnment of the two and three-term analysis, these
nmet hods are derived from the nodel problem

y(t) = (£t - a)”® (t - a)”%,
where a is the conpl ex conjugate of a. Chang al so derives a
method for finding the radius of convergence if the problem
contains an essential singularity [2;135].

Once the radius of convergence for a particular step
has been estimted, the optinum step size can be conputed.
If 6 1is the error tolerance specified at the start of the
problem and p is the radius of convergence found for the
probl em then Chang [2;141-143] shows t hat

h = p(8)1/“
is a good estimate of the optimum step size for the problem

where n+l is the nunber of ternms in the Taylor series being

used. i
EXAMPLE 9
This exanpl e considers using the ATOMCC tool box to
solve Exanple 3. The error tolerances used are 1.0E-4,

1.0E-8, and 1.0E-12. The ATOMCC results are in TABLE 8.

Using the information above to find the optinum step size,

and knowing that the solution to the problem has a

singularity at t = -0.5 the initial step size used for each

of the tol erances shoul d be

1. h = 0.5(1.0E-4)Y/2% - 363947 ,
2. h = 0.5(1.0E-8)1/2% = 264915 ,
and
3. h=0.5(1.0E-12)1/2% = 192831
TABLE 8

RESULTS OF ATOMCC APPLI ED TO THE | NI Tl AL- VALUE PROBLEM

y' = -(2t + 1)y® | 0 <t €1, y(0) = 4
error numnber initial relative
t ol erance of steps step size gl obal error
1.0E-4 3 0.36 1.1E-3
1.0E-8 3 0.26 4.1E-8
1.0E-12 4 0.192 5.5E-12

TABLE 8 shows that the ATOMCC package can solve an

initial-value problem in very few steps while maintaining

tight control over the global error

CHAPTER V

Sunmmary

As seen in the first two chapters, the recurrence
relations used to obtain the Taylor coefficients are not
difficult to understand or to inplenent. These relations
make it possible to efficiently use the Taylor nethod to
solve initial-value problens. Using long Taylor series to
solve the initial-value problens allows for very good error
control and also allows one to obtain information about the
behavi or of the system near singularities in the solution's
conpl ex pl ane.

Y.F. cChang's ATOMCC toolbox utilizes the Taylor
method to do nuch nore than the standard software packages
available for solving initial-value problens and IS

efficient in ternms of conputer tine. -

64

APPENDI X
Pascal Routines for comparison of the Taylor Series Mthod
and t he Runge-Kutta Order Four Method

functi on actuall(alpha,lend,rend:real):real;

begi n

actual := al pha * exp(300 * rend)
end;
function actual2(alpha,lend,rend:real):real;
begi n

actual := 1 / (rend * rend * rend + 1/alpha)
end;
functi on actual3(alpha,lend,rend:real):real;
begi n

actual : = -2*exp(-rend) t+ rend*rend - 2*rend t 3
end ;
function actual4(alpha,lend,rend:real):real;
begi n

actual = 1 - exp(-rend)
end ;
functi on actual5(alpha,lend,rend:real):real;
begi n

actual := rend t+ exp(-rend)
end;
function actualé(alpha,lend,rend:real):real;
begi n

actual := rend/(1-1n(rend))
end;
function actual7Z(alpha,lend,rend:real):real;
begi n

actual := -cos(rend)-exp(-rend)+2
end ;
functi on actual8(alpha,lend,rend:real):real;
begi n

actual := rend*rend*(exp(rend)+exp(l)) - 2*exp(1)
end;
funption actual9(alpha,lend,rend:real):real;
begi n . .

actual := alpha ™ exp(-30 rend)
end;
function actuallO(alpha,lend,rend:real):real;
begi n

actual := alpha * exp(-300 * rend)

end ;

function £fi(t,y:real):real;

begin { f }
f := 300 *y
end; { f }

function £2(t,y:real):real;
begin (f }

f :=~" (2 * t+1) *y*y
end; { f }

function £3(t,y:real):real;
begin { f }

f = —y+t*t+1
end; ¢ f }

function f4(t,y:real):real;
begin { f }

f = -y+1
end; { f }

function £5(t,y:real):real;
be?in { f 3}

= -~y + t + 1
end; { f }

function f6(t,y:real):real;
begin { f }

£ := (y/t)*(y/t) + y/t
end; { f }

function £7(t,y:real):real;
begin { f }

f = sin(t) *+ exp(-t)
end; { f }

function £8(t,y:real):real;
begin { f }

f := 2%(y+2%exp(1))/t + t*t
end; { f)

function £f9(t,y:real):real;
begin { f } -

f:=-30 %y
end; { f }

function £10(t,y:real):real;
begin { f }

f :=-300 * vy
end; { f)

* exp(t)

procedure yti(k:integer);
{ probl: y' = 300%y, 0 <=1t <=1, vy(0)=1)

begin { vyt }
if Kk = 0 then
ayt[0] = vy
el se
ayt[k] = 300 * ayt{k-11/k
end; { vt }

atl,at2,at3,at4,att:array [0 .. 34] of real;
procedure yt2(k:integer);

{ prob2: y' = —(2*t + 1) * y*y, 0 <= t <=1,

procedure tt(k:integer);
begi n
if Kk =0 then
att[0]:=t
el se
if Kk =1 then
att[1] = 1
el se
att[k] = 0
end;
procedure ti(k:integer);:
begi n
ati[k] = 2*att[k];
end ;
procedure t2(k:integer);
begi n
if k =0 then
at2[k] := ati{k] t 1
el se
at2[k] = ati[k]
end ;
procedure t3(k:integer);
var
j:integer;
begi n
at3[k] = O;
for j := 0to k do
. at3[k] := at3[k] t ayt[jl*ayt[k-j]
enda;
procedure t4(k:integer);
var j:integer;

begi n
at4a[{k] = O;
for j := 0 to k do
ata[k] = at4[k] t at2[jl*at3(k-j]
end ;

begin { main = yt)
if Kk =0 then
ayt{k] = vy
el se
begi n
tt(k-1);
ti(k-1);
t2(k-1);
t3(k-1);
t4(k-1);
ayt[k} = -at4[k-1]1/k
end
end; { vyt }

y(0)=4 }

atl,at2,at3,att:array [0 .. 34] of real;
procedure yt3(k:integer);

{ prob3: y' = -y + t*t + 1, 0<=t<=1, yv(0)=1 }

procedure tt(k:integer);
begi n
if k = 0 then
att{0]:=t
el se
if k =1 then
att{1] = 1
el se
att[k] = 0
end ;
procedure ti(k:integer);
var j,m:integer;

begi n
if k > 2 then
m:= 2
el se
m:= k;
ati[k] = O;
for j := 0 to mdo
ati[{k] := ati[k] t att[jl*att[k-j]
end ;
procedure t2(k:integer);
begi n
at2[k] = ati[k] - ayt[k]
end ;
procedure t3(k:integer);
begi n

if k = 0 then
at3[k] := at2[k] t 1
el se
at3[k] := at2[k]
end ;
begin { main = yt }
if k = 0 then
ayt[k] = vy
el se
begi n
tt(k-1);
ti1(k-1);
t2(k-1);
t3(k-1);
aytik] := at3{k-1]/k
end
end; { yt }

atl,at2,att:array [0 .. 34] of real;
procedure yt4(k:integer);

{ prob4: y' = -y + 1, 0 <=t <=1, vy(0)=0 }

procedure tt(k:integer);
begi n
if Kk =0 then
att[0]:=t
el se
if k =1 then
att[1] = 1
el se
att[k] = 0
end;
procedure ti(k:integer);
begi n
atifk] := -ayt[(k];
end ;
procedure t2(k:integer);
begi n
if Kk =0 then
at2[k] := atifk] + 1
el se
at2[k] = atlfk]
end ;
begin { main = yt }
if Kk = 0 then
ayt[(k] = vy
el se
begi n
tt(k-1);
tl(k~1);
t2{k-1);
aytik] := at2[k-1]/k
end
end; {(vt }

atl,at2,at3,att:array [0 .. 34] of real;
procedure yt5(k:integer);

{ probs5: y' = -y + t + 1, 0 <= t <=1, y(0)=1 }

procedure tt(k:integer);
begi n
if k =0 then
att[0]:=t
el se
if Kk =1 then
att[{1] =1
el se
att[k] := 0
end ;
procedure ti(k:integer);
begi n
atil[k] = -ayt[k];
end ;
procedure t2(k:integer);
begi n
at2[k] = ati[k] *+ att[k]
end;
procedure t3(k:integer);
begi n
if Kk =0 then
at3[k] := at2[{k] *+ 1
el se
at3[k] := at2[k]
end ;
begin { main = yt)
if Kk = 0 then
ayt[k] = vy
el se
begi n
tt(k-1);
tl(k-1);
t2(k-1);
t3(k~1);
ayt{k] := at3[k-1}]/k
end
end; { vyt }

atl,at2,at3,att:array [O
procedure yté(k:integer);

{ prob6: y' = y/t * y/t + y/t,

procedure tt(k:integer);
begi n
if k = 0 then
att[0):=t
el se
if k =1 then
att[1] = 1
el se
att{k] = 0
end;
procedure ti(k:integer);
begi n
if k = 0 then
atif[k] := ayt[kl/attik]
el se

1

<

. 347 of

t

real ;

<

atl[k] = (aytlk] - ati[k-1])/att[0]

end ;
procedure t2(k:integer);
var j:integer;
begi n
at2[(k]) = O;
for j ;= 0 to k do

at2[k] := at2[k] t+ ati[jl*ati[k-j]

end;
procedure t3(k:integer);
begi n
at3[k] = at2[k] T atil[k]
end ;
begin { main - yt }
if k =0 then
aytik] =y
el se
begi n
tt(k-1);
t1(k-1);
t2(k-1);
t3(k-1);
ayt[k] = at3[k-1]/k
end
end; { vyt }

1.

2,

y(1)=1

}

atl,at2,at3,at4,att:array [0 ..

procedure yt7(k:integer);

{ prob?: y' =sint t exp(-t),

procedure tt(k:integer);

begi n
if k = 0 then
att[o]:=t
el se
if k =1 then
att[1] = 1
el se
att[k] := 0
end ;
procedure t1l(k:integer);
begi n
if k =0 then
ati[k] := sin(att[k])
el se
atifk] = at4{k-1]1/k
end ;
procedure t2(k:integer);
begi n
if k = 0 then
at2[k] := exp(-att[k])
el se
at2[k] = -at2{k-1]1/k
end ;
procedure t3(k:integer);
begi n
at3[k] := ati{k] *+ at2[k]
end;
procedure t4(k:integer);
begi n
if k = 0 then
atd4[k] := cos(att[k])
el se
at4a[k] = ~atl[k-1]1/k
end ;

begin { main = yt }
if Kk =0 then
ayt[k] := YV
el se
begi n
tt(k-1);
ti(k-1);
t2(k-1);
t3(k-1);
t4(k-1);
ayt[k] = at3[{k-11/k
end
end; { yt }

0

<

t

34] of

<=1,

real ;

y(0)=0 }

atl,at2,at3,at4,ats5,att:array [0 .. 34] of
procedure yt8(k:integer);

{ prob8: y' = 2*(y+2%exp(1l))/t + t*t*exp(t),

procedure tt(k:integer);
begi n
if Kk =0 then
att[0]:=t
el se
if k =1 then
attf{1] := 1
el se
att[k] = 0
end ;
procedure ti(k:integer);
begi n
if Kk = 0 then
| atl[0] = 2*%(ayt[O0]+2%exp(l))/att[0]
el se
atifk] := (2*ayt[k] - ati[k-1])/att[O0]
end;
procedure t2(k:integer);
var j,m:integer;

begi n
if k > 2 then
m = 2
el se
m:= k;
at2[k] := O;
for j := 0 to mdo
at2[k] := at2[k}] + att{jl*attik~j]
end ;
procedure t3(k:integer);
begi n
if Kk =0 then
at3[k] = exp(att[k])
el se
at3[k] := at3[k-1]/k
end;
procedure t4(k:integer);
var j -integer-;
begi n
at4[k] := O;
for j := 0to k do
at4(k] = atd4[k] t at2[jl*at3[k-j]
end;
procedure t5(k:integer);
begi n
at5[k] = at4[k] + ati[k]
end;

begin { main - yt }
if k =0 then
aytik] := vy

real ;

1 <= t <= 2,

v{(1)=0

el se

begi n
tt(k-1);
ti(k-1);
t2(k-1);
t3(k-1);
t4(k-1);
t5(k-1);
ayt[k] = ats5[{k-1]/k

end

end; { yt }

procedure yt(k:integer);

{ prob9: y' = -30%*y, 0 <=1t <=1,
begin { yt)
if k = 0 then
ayt[0] := Yy
el se
ayt[k] := -30 * ayt[k-11/k

end; { vyt }

procedure yt10(k:integer);

{ probl0: y' = -300*y, O <=1 <= 1,
begin { yt }
if K =0 then
ayt[0] = vy
el se
ayt[k] := -300 * ayt[k-1]1/k

end; { vyt }

y(0)=1/3)

y(0)=1)

program ivpt(input,output);

const
formfeed=#12;
type
vector=array [0 .. 20] of integer;
var
taylorarray:array [4 .. 35,1 .. 14,0 .. 2] of real;
rkd4array:array [1 .. 14,0 .. 2] of real;

lowerlimit,value,a,b,alpha:real;
partition,psize,i, j,k,accuracy,maxdepth,p:integer;
maxpartition:integer;
printflag,rkflag,tyflag,tyflagl,rkflagl:boolean;
answer-:char;

workfile,rktime, tytime: text;

hour:vector;

min:vector;

sec:vector;

frac:vector;

time,count,hourl,secl,mini, fracl:integer;

{$I actual.pas}

procedure timer(var hour,min,sec,frac:integer);

type
regpack = record
ax,bx,cx,dx,bp,si,di,ds,es,flags:integer;
end;
var
regs: regpack;

begi n
with regs do
begi n

ax := $2c00;
msdos(regs) ;

hour := hi(cx);

mn := lo(ex);

sec = hi(dx);

frac = lo(dx);
end

end ;

procedure rkd4(lend,rend,alpha:real; psize:integer);
var

i:integer;

h,t,tl,w,kl1,k2,k3,kd4:real;

{8I f.pas)}

begin { rk4)
writeln('rk4 ',psize);
for count := 1 to 10 do
begi n
timer (hour{count],min[count],sec[count], frac[count]);

h := (rend = lend)/ psize;
t := lend;
w := al pha;
for i := 1to psize do
begi n
kKl :=h * £(t,w);
tl :=t + h/2;
k2 := h * £(t1,w + k1/2);
k3 := h * f(ti,w t k2/2);
k4 :=h * f(t + hw + k3);
w:=wt (kl + 2 7 (k2 + k3) + k4)/6;
t :=t +
end;

timer(hour[count+10]},min{count+10],sec[count+10],
frac[{count+10])

end;
rk4array[partition,0] = abs(value - w)/abs(value);
rk4array[partition,1] := abs(value - W);
rk4array[partition,2] = w,

if (rkd4array[partition,0] <= lowerlimt) or
(partition = maxpartition) then

begi n
hourl := O;
mnl := 0;
secl := 0;
fracl := 0;
for count := 1 to 10 do
begi n
hour[count 1] := hour[count+10] - hour([count];
if min[count+10] < minf{count] then
begi n
hour[count-1] := hour[count-1] - 1;
gin[count+10] := min{count+10] * 60
enda;
min[count-1] = min[count+10] - min{count];
if sec[count+10] < sec[count] then
begi n
min[count-1] := min[count-1] - 1;
sec[count+10] := sec[count+10] *+ 60
end;
sec[count-1] := sec[count+10] - sec[count];
i f- frac[count+10] < frac[count] then -
begi n
sec[count-1] := sec{count-1] - 1;
frac{count+10] := frac{count+10] *+ 100
end ;
frac[count-1] = frac{count+10] - frac[count];
mnl := mnl + min{count-1];
secl := secl + sec[count-1];
fracl := fracl + frac[count-1]
end ;
min{0] := nmnl div 10;
sec[0] := secl div 10;

frac{0] := fracl div 10;

writeln(rktime,psize,' ',min[O0],':',sec[0],':"',
frac{0])
end
end; { rk4)

procedure taylor(lend,rend,alpha:real; psize:integer);
var

ayt:array [0 .. 35] of real;

depth, term, j: integer;

hl,error,app,t,yv,h:real;
{$I yt.pas}

begin { taylor }
writeln('taylor ',psize);
depth := 4;
repeat
for count := 1 to 10 do
begi n
timer (hour[count] ,min[count],sec[count],
frac{count]);

t = | end;
h := (rend-lend)/psize;
y := al pha;
for J := 1 to psize do
begi n
app = 0;
for term:= 0 to depth do
yt(term ;
for term := depth downto 1 do
app := (app * ayt[term])*h;
y = app t ayt[o0]:
t :=t + h
end ;

timer (hour[count+10],min[count+10],sec[count+10],
frac[count+10])
end;
taylorarrayidepth,partition, 0]

abs(value-y)/
abs(value);
taylorarray[depth,partition,1] = abs(value-y);
taylorarray[depth,partition,2] = vV,

depth := depth + 1
until (taylérarray[depth-1,partition,0)] <= lowerlimit) or
(dept h > maxdept h);
hourt = O;
mnl := 0;
secl := 0;
fracl := 0;
for count := 1 to 10 do
begi n
hour{count-1] := hour[count+10] - hour[count];
if min[count+10] < min{count] t hen
begi n

hour[count-1] := hour[count-1] - 1;
min[count+10] := min{count+10] t 60

end;

minfcount-1] = min[count+10] - min[count];
if sec[count+10] < sec[count] then
begi n
min[{count-1] := min[count-1] - 1;
sec[count+10] := sec[count+10] *+ 60
end;
sec[count-1] := sec[count+10] - sec[count];
if frac[count+10] < frac[count] then
begi n
sec[count-1] = sec{count-1] - 1;
frac[count+10] := frac[count+10] * 100
end;
frac[count-1] := frac[count+10] - frac[count];
mnl = mn * min{count-11];
secl := secl + sec[count-1];
fracl := fracl + frac[count-1]
end;
min{0] = mnl div 10;
sec[0] := secl div 10;
frac[0] := fracl div 10;
writeln(tytime,psize,' ! ,depth,’' ',min{0],':"',sec[0],
':',fracf0])

end; { taylor }

begin { main - ivp }
assign(rktime, 'rktime');
rewrite(rktime);
assign(tytime, 'tytime');
rewrite(tytime);
assign(workfile, 'ivpout');
rewrite(workfile);
write('Runge Kutta (y/n): ');
readln(answer);
if answer = 'y' then
rkflag := true
el se
rkflag := fal se;
write('Taylor series (y/n): ');
readln(answer) ;
if answer = 'y' then
tyflag := true
el se
tyflag := fal se;
if tyflag then
begi n
write('enter naxi num series length: ');
readln(maxdepth);
if maxdepth < 4 then
maxdepth := 4,
if maxdepth > 35 then
maxdepth := 35
end
el se

maxdepth := 3;
write('enter accuracy: ');
readln(accuracy);

lowerlinit := 5*exp(accuracy *

in(10));

writeln(workfile,'lowerlimit ',lpwgrlimit);
write('enter naxi num # of subdivisions for partition',

' 'size: ');
readln(maxpartition);
if maxpartition < 1 then

maxpartition := 1;
if maxpartition > 14 then
maxpartition := 14,
write('enter endpoints: ');

readln(a,b);

write('enter initial condition: ');

readln(alpha);
writeln(workfile,a,b,alpha);
writeln(workfile);
val ue := actual(alpha,a,b);
writeln(workfile, 'actual ',value);
for j := 1 to maxpartition do
begi n
for i := 4 to maxdepth do
begi n
taylorarray[i, j, 0]
taylorarray[i,j,1]
taylorarrayi{i,j,2]
end;
rkd4array[j,0] := O;
rkd4array[j,1] = O;
rkdarray[j,2] = 0
end;
psize := 1;
tyflagl =t
rkflagl :=r
partition :=
while (p
(r
begi n
psi ze = psize * 2;
if rkflagl then
rk4(a,b,alpha,psize);
if tyflagl then
taylor{a,b,alpha,psize);
writeln(workfile,psize:5,"'
' *:7,' relative error','
for k := 3 to maxdepth do
begi n
printflag := true;

non ll
00O

xS

iti
agl or tyflagl) do

’

n <= maxpartition) and

absolute errort,

:7,"!

approximation');

if (k = 3) and (rk4array[partition,0]1<>0) then
writeln(workfile,'RK 4':5,

rk4array[partition,1],
rk4array[partition,0},

rkd4array|[partition,2]);

if (k>3) and (taylorarray[k,partition,0]<>0) then
witel n(workfile/TY :2,k:3,
taylorarray[k,partition,1]},
taylorarrayl(k,partition,0],

taylorarray[k,partition,2])
end ;

writeln(workfile);

writeln(workfile);

writeln(workfile);

i f taylorarray[4,partition,0] <= lowerlimt then
tyflagl := fal se;

i f rké4array[partition,0] <= lowerlimt then

rkflagl := false;
partition := partition + 1
end ;
close(workfile);
close(rktime);
close(tytime);

end. { main - ivp }

program taylor(input,output);

type
al=array[O0 .. 40] of real;

const
formfeed=#12;

var
taylorarray:real;
psize:integer;
lowerlimit,value,a,b,alpha:real;
error:real;
outfile,workfile,termfile: text;

{$I actual.pas}

procedure rc(t:real;term:al);
var

rml,rm2:real;

i:integer;

rc,order:array[3 .. 40] of real;
begi n {rc.pas}

for i := 3 to 40 do

begi n
rm = term[i}/term[i-1];
rng := term{i-1]/term[i-2];
rc[i] := U ((i-1) *rm - (i-2) * rm2);
order[i] = (i-2) * refi] *rnm2 - i + 3
end ;

writeln(outfile);

writeln(outfile);

writeln(outfile, 'radius of converge and order}!,
'estimates from expansi on point t=',t);

writeln(outfile);

for i := 3 to 40 do
writeln(outfile,i,' rc= ',abs(rcf[i]),' order= 7,
order[i})

end; {rc.pas}

procedure taylor(lend,rend,alpha:real; psize:integer);
var
ayt:al;
k,depth, term, j:integer; -
hi,app.t,yv,h:real;
{$I yt.pas}
be { taylor }
th := 40;
| end;
({rend-lend)/psize;
al pha;
or j ;= 1to psize do
begi n
hl = 1;
app = 0;

i
e

[eX(e]

TR

< >TSS

for term := o0 to depth do
yt(term;
for term := depth downto 1 do
app := (app t+ ayt[term])*h;
y = app t+ ayt[o0];
if j<4 then
begi n
for k := 0 to 40 do
writeln(termfile,ayt[k]:40:15);
writeln(termfile)
end;
rc(t,ayt);
t := t + h
end;
taylorarray :=vy;
error := abs(value - y)/abs(value)
end; { taylor)

begin { main }
assign(outfile, 'order.rc');
rewrite(outfile);
assign(termfile, 'termfil');
rewrite(termfile);
assign(workfile, 'ivpout');
rewrite(workfile);
write('enter nunber of partions: ');
readln(psize);
write('enter endpoints: ');
readln(a,b);
write('enter initial condition: ‘'):
readln(alpha);
writeln(workfile,a,b,alpha);
writeln(workfile);
val ue := actual(alpha,a,b);
taylor(a,b,alpha,psize); -
writeln(workfile, 'appr: ', taylorarray,' error:. !',error);
close(workfile);
close(termfile);
close(outfile)

end. { nain)

Bl BLI OGRAPHY

Burden, R chard L. and Faires, J. Douglas. Nunerical
Analysis. Third Edition. Boston: Prindle, Wber,
and Schm dt, 1985.

Chang, Y.F. The Autonatic Taylor Series (ATS) Method of

Anal ysis. Unpublished, O arenont McKenna Col | ege,
Cl arenmont, California, 1984.

Chang, Y.F. "The ATOMCC Toolbox," BYTE, Vol. 11, No. 4,
April 1986, 215-224.

Corliss, George and Chang, Y.F. "Solving Odinary D f-
ferential Equations Using Tayl or Series," ACM
Transactions on Mathenmatical Software, Vol. 8,
No. 2, June 1982, 114-144.

Gear, C WIlliam Nunerical Initial Value Problens in
Odinary Differential Equations. Englewod diffs,
New Jersey: Prentice-Hall, Inc., 1971.

Mbore, Ranpbn E Methods and Applicati ons of |nterval
Anal ysis. Phil adel phia: SIAM Studies in Applied
Mat henmati cs, 1979.

