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ABSTRACT

HOTROCKS: AN ANALYTICAL SOLAR ENERGY

PACKED BED THERMAL STORAGE MODEL

Wayne Carl Boncyk

Master of Science, Electrical Engineering

Youngstown State University, 1982

A need for a packed bed heat storage model for solar energy

heat storage applications that is both computationally efficient and

accurate enough to properly simulate packed bed transient response

has been shown to exist. HOTROCKS, a FORTRAN-coded packed bed model

based upon analytical solutions to the Schumann heat transfer equa

tions, is presented and is shown to satisfy both requirements.

HOTROCKS is accurate for a wide variety of bed parameters corresponding

to typical solar heat storage beds both for the step input and sinu

soidal input air temperature cases. HOTROCKS may be used as a stand

alone model, or as part of an integrated solar energy system, computer

aided design package.
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CHAPTER I

INTRODUCTION

The concept of obtaining limitless, free heat energy from the

sun for a variety of low temperature (less than 200°F) applications,

including domestic space and water heating, is not new. Solar heat

has been used with varying degrees of success from antiquity to the

present day. Yet at present, solar heated dwellings comprise only a

small percentage of those in existence. Further, few new house

builders are willing to "take a chance" on solar. Why has such a

readily available energy source not been utilized more fully in this

time of energy uncertainty?

There are a variety of reasons, but the one concern cited more

often than any other is that while solar energy may be free, its col

lection is difficult and collection hardware is expensive. Since in

the past many solar heat designs were effected using incomplete data

both about the insolation available and about the components com

prising the collection and storage systems, many systems were designed

and built with high margins of safety. This technique produced systems

that performed well enough but were sized larger than optimum. Such

designs consequently cost more (sometimes much more) than necessary.

Other solar systems were designed to closer tolerances but due to the

incomplete nature of the data set upon which the design was based,

they failed to work as well as predicted. Mistakes such as these are

costly when solar system hardware is involved.
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Recently the need to expand the solar system design data base

has been recognized. Along with obtaining more complete information

about the amount of solar energy available at different locations around

the world, analytic tools are being developed to more accurately predict

the behavior of the various components of a solar heat system. Such

mathematical models allow designers to optimize their systems without

resorting to "best guess" engineering techniques.

One of the commonly used methods of heat storage in a solar

energy heat system is a packed bed. The packed bed is simply a room

full of loosely packed solid material (usually rocks of several inches

diameter) through which air, or some other fluid medium, can be made to

flow freely. Heat is stored in the bed when the fluid being pumped

through is at a temperature higher than that of the surrounding solid.

Heat is then transferred into the solid. If lower temperature fluid is

subsequently pumped through the bed, heat is extracted by the moving

fl ui d.

This intuitively simple process is not easy to model analytically.

Due to the complexity of the problem, all packed bed models developed

in the past suffer from one or more of several shortcomings. Either

they have simplified the problem to the point where the model does not

accurately predict the behavior of a real world packed bed, or they

only solve part of the problem~-the steady state for example, or they

remain so complex in solution as to be totally impractical for use as

a des i gn aid.

A clear need exists for a packed bed thermal model that is of

high enough resolution to accurately describe heat transfer within a

bed used for solar energy heat storage and yet remains computationally



3

simple enough to serve as a system design optimizing tool. The FORTRAN

coded HOTROCKS packed bed computer model fulfills this need.

HOTROCKS is developed from analytical expressions recognized as

the physically "correct" formulation of the packed bed heat transfer

problem. The theoretical development of this formulation is presented

in detail in Chapter 2 of this paper. Also in Chapter 2 is a discus

sion of other packed bed models that have been developed in the past

along with a description of the shortcomings of each.

Some simplifying assumptions had to be made in order to ensure

that HOTROCKS remained computationally efficient, however each assump

tion was investigated thoroughly to guarantee that its inclusion would

not significantly degrade the resultant model. Chapter 3 describes the

sensitivity analysis performed for each assumption considered.

Chapter 4 relates the development of HOTROCKS as a model to be

implemented on a computer. Structured programming techniques have been

used in the coding of HOTROCKS, to facilitate model validation. The

actual verification and validation process is presented in Chapter 5.

As part of the validation procedure HOTROCKS has been compared with

two other packed bed models. Results of the comparison are also in

Chapter 5.

Finally, Chapter 6 summarizes the results of the process that

led to the creation of HOTROCKS, discusses how HOTROCKS compares with

other models and suggests some potential approaches to take if it is

determined that further refinement of the HOTROCKS model should ever

be necessary.
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CHAPTER II

PARTICLE BED HEAT TRANSFER: A HISTORICAL OVERVIEW

A detailed summary of significant work accomplisned in the past

on packed particle bed heat transfer models is presented in this chapter.

Although solar energy heat storage was not the application intended by

the designers of most of these models, their results are more or less

applicable to solar energy heat storage systems. Where it has been

discovered that two or more authors working independently have developed

similar models, the earliest model developed will be discussed in this

text. A complete list of all applicable models researched are contained

in the References.

The Schumann Model

The earliest analytical packed bed heat transfer model was

developed by T. Schumann and published in 1929 [lJ. Schumann considers

a fluid with a mean velocity "V " flowing through a prism (a polyhedron

having parallel polygons as ends and rectangles as sides) or a cylinder

of great length. The prism is filled with loosely packed solid material,

as shown in figure 1.

Schumann makes six assumptions about his system. Most of these

assumptions are (as will be shown in a subsequent chapter) with minor

changes completely compatible with a model of rock bed storage for solar

heat systems. The assumptions are:
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a) Each solid particle is at any time at a uniform temperature

(thermal gradients within individual particles do not

exist);

b) Conductive heat transfer between particles or within the

fluid may be ignored;

c) The rate of heat transfer from fluid to solid is propor

tional to the temperature difference between them

(according to the Fourier rate equation);

d) The prism (or cylinder) walls are perfect thermal insu

lators;

e) Changes in the volume of the fluid or solid due to tem

perature change may be neglected (the fluid and solid are

"incompressible");

f) The thermal characteristics of the fluid and the solid

(i.e., specific heats, densities, etc.) are constant.

With these six assumptions, Schumann models the response qf

his system (which is initially at uniform temperature) to a step input

temperature change; for convenience in calculation the initial bed

temperature is referenced to zero. To generate the equations de

scribing his system, he applies the concept of conservation of energy.

The amount of heat transferred to the fluid in a region dx in

time dt must be proportional to the difference in temperature between

the solid and the fluid in that region,

(1)
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The heat carried into dx by the moving fluid is,

(2)

These quantities must sum to yield the heat that will be

carried out of the region by the air in time dt,

(3)

Thus,

(4)

or,

(5)

dx and dt, common to all three terms, have been dropped.

Equation (5) describes the air temperature in the bed as a

function of position and time. By again employing the conservation of

energy to the heat within the solid in a region dx, the solid tempera-

ture function can be modeled. Of course, the solid is stationary in a

fixed bed, so any heat transfer within the region is simply proportional

to the temperature difference between fluid and solid;

-hA*(T -T )saO (6)



Equations (5) and (6) must be solved simultaneously to yield

the functions Ta(x,t) and Ts(x,t), which describe fluid and solid

temperatures as functions of location in the bed and of time.

Schumann could not find a general analytical solution of (5) and (6)

for any arbitrary input conditions. However, he did find an analytic

solution for a bed of uniform initial temperature and a step change in

temperature input. Schumann's results are expressed in terms of in

finite series

8

and

[exp-(y+z)) I zn Mn(yz)
n=l

(7)

T 00

~ = [exp-(y+z)) I zn M(yz)
o n=O n

(8)

The variables y and z are transformations of the position variable x
"-

and the time variable t and the function Mn(yz) is a special form of

Bessel function of order n (see the "List of Symbols ll section).

Schumann uses two transformations of the variables x and t to arrive

at equations for Ta and Ts which are forms of Bessel's equation, and

are readily solvable. Figures 2 and 3 graphically depict Schumann's

results for various values of y and z (and hence x and t).

The Schumann solution is exact for the constraints and con-

ditions noted, though it is not expressible in closed form. The solu

tion agrees very well with experimental data derived from systems
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Fig. 2. Air Temperature Response to Step
Input (Schumann Model) [1]

Fig. 3. Solid Temperature Response to Step
Input (Schumann Model) [2]

[l,2] T. E. W. Schumann, "Heat Transfer: A Liquid Flowing
Through a Porous Prism," Journal of the Franklin Institute, CCVIII.
(September 1929), p. 407.

9
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built to Schumann's constraints, and it is generally accepted as the

reference standard model to which other models are compared.

The Schumann model is not without problems. Its most severely

limiting disadvantage is that it only predicts response to a step

function input. Also, the infinite series solutions do not converge

rapidly. Hence, calculations designed to produce numerical results

are slow and tedious, even if done with the aid of a computer. These

difficulties make the Schumann model impractical for use in a real

time energy storage simulation routine.

The Amundson Model

Given the same particle bed geometry as Schumann's model, a

more accurate representation of heat transfer within the bed is ob

tained when the effects of axial and radial conduction are considered.

Obviously for radial heat conduction to occur, there must be a radial

temperature gradient across the bed. This implies that there must be

some heat loss through the walls of the bed. Axial conduction implies

that heat may be propagated through the bed in the x-direction even

when the mean fluid velocity is zero (see figure 4). Amundson [2] has

considered just such a model in which both axial and radial conduction

are allowed, and in which turbulent flow is assumed.

Thermal conduction is described by the Laplace equation, v2T = 0

for steady state and v2T = aT/at for the transient case. In cylin

drical coordinates for the transient case,
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Radial Conduction in Air

Radial Conduction in Rock

Convective ROCk
Air Heat Exchange

Axial Conduction
in Rock

Fig 4. Methods of Heat Transfer in a Packed Bed
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With a cylindrical bed given homogeneous insulation in the walls and

uniform ambient outside temperature, there is no variation of Ta with

$. Equation (9) then becomes,

[
a
2
Ta + ~ aTa]

ar2 r ar
+ (l0)

Equation (10) can be used to describe the energy transfer in a region

dx due to conduction alone;

(ll)

Now, using (11), the energy balance relationship for air

according to Amundson is,

or,

(l2)

a\
-vc p f --- + hA*(T -T )

a a ax s a

(l3)
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Since the rocks only contact each other at points of extremely

small surface area, conduction from rock-to-rock is assumed negligible

so the rock temperature equation remains,

a\
c p (l-f) --- = -hA*(T -T )s s at sa· (14 )

Amundson solves (13) and (14) for appropriate boundary con-

ditions;

a) -kr aTa/arlr=R = UTalr=R' heat loss through the wall is a

function of wall temperature,

b) Ta(O,r,O) = Tf(r), where Tf(r) is an initial fluid input

temperature at the top of the bed (a function of r),

c) T (x,r,O) = T o(x,r), an initial rock temperature distri-s s,.

bution in the bed (a function of x and r),

d) T (x,r,O) = T o(x,r), an initial fluid temperature distri-a a,

bution in the bed (a function of x and r),

e) aT/axlx=2 = 0, a condition that assumes that fluid is>

removed from the bottom of storage instantaneously.

Amundson transforms the equations into relations involving

dimensionless quantities (for ease of manipulation). Then he transforms

the resultant equations into a form on which a Finite Fourier Transform

can be applied. The resultant expressions are first order partial dif

ferential equations, to which he applies a Laplace transform. Solving

the resultant polynominal expressions and subjecting the result to an

inverse transform yields the final solution for both fluid temperature

and solid temperature. The fluid temperature result is,
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1Y [ ~ ~ 2 J (s ~ )
Ta = T'\ + 4 e' L nOn

a t=O n=l (~ 2+E2) J (~ )2non

I
n=l

~ (y2+4a 2) sin (a y)m m (15)

The heretofore unused symbols represent combinations of the various

constants in (13) and (14) with the variables x, rand t (see the

"List of Symbo1s ll
).

The Amundson model is applicable for all physically possible

initial conditions, making it perhaps the most all-encompassing parti~le

bed heat transfer model available with an exact analytic solution. How

ever, from the form of (15) it is seen that the model is extremely

cumbersome to evaluate as series of transforms of transformed quan- _

tities must be calculated in order to obtain a solution. Amundson's

model then, like Schumann's, cannot be used practically in a real time

heat storage simulation routine.

Interpretation of Hughes, Klein and Close

It is clear from the previous two summaries that an absolutely

accurate model, while obtainable, is going to require much computational

effort and hence is impractical for simulation purposes. It
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is advisable to consider, alternatively, a simp1ication of the model

or an approximate method of solution. Care must be taken to insure

that such simplification or approximation does not degrade the model's

accuracy by a significant amount. Hughes, Klein and Close have sug

gested that the wall losses in a particle bed used for solar energy

heat storage can be made nearly insignificant [3J. Further, they main

tain that since the air, the fluid in the particle bed, is of such a

low density with respect to the rock that at any given instant most of

the heat energy in storage is contained within the rock; the air has

near zero thermal capacitance. Consequently, the Hughes, Klein and Close

equations closely resemble Schumann's model with the air energy term

set to zero (fcaPa 3Ta/at = 0);

(16 )

and,

(17)

Notice that the radial and axial transfer terms from Amundson's

model have been replaced by an overall wall loss term. Implicit in

this simplification is the assumption that wall losses, if they exist,

are but a very small amount of the system's energy and can be averaged

over the entire bed without significant loss in accuracy. At this

point the authors suggest (but do not develop) a finite difference

numerical approach to the solution of their equations.
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They also state that for most practical systems, experimental

data have shown that the effect of arbitrarily increasing the parameter

hA*/fvcaPa in (16) and (17) has a negligible influence on the perfor

mance of the bed. If hA*/fvcaPa is allowed to become infinite, the

difference between Ts and Ta must become zero for the equations to

remain meaningful. So they propose, as do Duffie and Beckman [4] and

Riaz [5], [6] that for the low air velocities encountered in a solar

energy packed bed, hA*/fvcaPa can be treated as infinite, reducing (16)

and (17) to one first order equation,

(18)

There is a clear disadvantage to simplifying the model this

extensively; one is constrained to operating only within the region

where hA*/fvcaPa approaches infinity. This limits what values the

indicated parameters may take on, and necessitates an error analysis

be performed on the model for all cases where hA*/fvPaca drifts out of'

"practical system" limits. Since none of the authors offer a satisfac

tory definition of "practical system" limits, one is required to perform

the error analysis for almost every new case, until a working knowledge

of the sensitivity of the model to change is established.

Numerical Methods of Solution

Most of the recent particle bed heat transfer models used to

describe solar energy heat storage systems are based upon numerical

methods of solution. These numerical methods share a common drawback;

since they are based upon breaking the bed into a finite number of dis-
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crete elements and solving the resultant difference equations, they are

inherently iterativeo That is, all computations are based upon calcu

lating temperatures in each of the elements of the bed, over relatively

small time increments. Therefore, to get the air temperature of a cer-

tain bed segment after, say, fifteen time increments have elapsed, a

minimum of fifteen different calculations are required. All but one

of these numerical models use a "brute force" approach to the calcu-

lation that is accurate, but extremely time consuming. Duffie,

Beckman and Klein [4J, Mumma and Marvin [7], Clark, Nabozny and

Heetderks [8], and Eshleman, Baird and Mears [9] have all developed

such "brute force" schemes, with minor variations. The Duffie,

Beckman and Klein (DBK) model is perhaps best representative of the

numerical "finite difference" approach. DBK uses all the approxi-

mations of Hughes, et. ale discussed earlier to simplify Schumann's

equations to the form of equation (18).

Given that all the simplifications performed are valid, equa

tion (18) will describe both the air and rock temperature in the bed.

To this equation an axial mixing term is added, because DBK believe

axial mixing in the bed is significant;

aT-A*c p -
s s at

= fp c v aT + h A (T-T )
a a ax 0 s 0

k A* a2
T

x ax2
(19 )

The bed is then considered to be divided into N segments and

the governing difference equations are expressed,

A*t dTl
-N- Pscs dt = (20)
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for the first segment, or

A*Q, dTi
--N-- Pscs dt = fCaPav(Ti_l-Ti)

k A*
+ ; (T. 1-T. )

:<. 1- 1

k A*x
R-

(21)

for the intermediate segments (i = 2 to i = N-1) or,

A*R- dTN
N Pscs dt =

+
k A*x

Q, (22)

for the final segment.

This technique produces a set of N simultaneous first order

differential equations, which are solved for successive time increments

to yield an air/rock temperature profile as a function of time.

Obviously,· since the time increments must be kept small to preserve

accuracy, a large amount of computational time is necessary for solut-ion.

The one rather unique, discrete numerical method of solution

has been developed by Taft, Bailey and Alexander [10]. They start

from a difference equation model of the air and rock temperature

derived directly from "Schumann's conservation of energy concept,

and

= (l-a) T (m-l)(k) + a T (m)(k) ,a 5
(23)
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Combining equations (23) and (24) one obtains

which is now of the same form as equation (22), but with the distinc-

tion between air and rock temperatures maintained.

The equations (23) and (25) are also a system of 2N simul-

taneous difference equations and can be written in matrix form,

T(k+l) = AT(k) + Bu •

In this form, u is the outlet temperature and

···
Ta(N)(k+l)

Ts(l)(k+l)

··

A, T(k) and S are also written to conform to this matrix format.

solution to such a time invariant system may be written,

T(k) = (A)k T(o) + (.I (A)i-l s]u .
1=1

(26)

(27)

The

(28)
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What makes this technique so powerful is that once the matrices

{~)k and.~ {A)i-1 S are computed (they need only be done once since
1=1

A and B are time invariant) the solution profile T{k) can be had by

merely performing a bit of matrix algebra, saving significant compu-

tational time over classical time step-by-time step numerical tech

niques. The only disadvantages of this technique are that the input

temperature must be approximated by a series of step temperature

changes (a minor concern), the solution temperature profile appears as

a series of stepped layers rather than a continuous distribution, and

the solution accuracy depends upon the number of layers (N) chosen.

The more layers used, the more accurate the profile, but more layers

require more computational time. Taft, Bailey and Alexander have

shown that usable accuracy may be obtained using as few as five bed

segments.

The Klinkenberg and Harmens Solution

A rather unique method of solution to the Schumann equations

is presented by Klinkenberg and Harmens [11]. They use the variable-

transformations,

and z = (29)

to transform equations (5) and (6) into,

3Ta-hA* --- + hA*{T -T )ay s a (30)
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and,

aT
hA* s = -hA*(T -T )az sa· (31 )

Now, by combining equation (31) with (30) and by making use of

the Hughes, et. al., idea that since Pa « Ps ' the air stores little

heat compared with the rock, the two differential equations that remain

to be solved are

(32)

and

(33)

These are minor variants of Schumann's equations and have been

solved by Schumann (as have been shown) for a step input into a bed

initially at uniform temperature. The interesting (and useful) fact

about Klinkenberg's method is that it provides a solution for arbitrary

initial bed temperature (as long as the distribution is a piecewise

continuous function) and arbitrary inlet temperature. The solution is

not in terms of relatively slowly converging Bessel functions (as with

Amundson) but is expressed as simple integral relations. The only dis

advantage of the method is a minor one; it ignores completely the

effects of losses at the walls. However, this can easily be corrected

if it is determined that wall losses are significant in the system

under consideration.
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The method is as follows. Let a function of y and z, called

F(y,z) represent the total amount of heat transferred in the bed from

air to rock. Notice that F(y,z) can be expressed as an equivalent

function in terms of x and t, but in its present form it has no physical

"un its" associated with it. Conservation of energy requires that the

heat lost by the air equal the heat picked up by the solid,

(34)

This integral equation is an equivalent representation of the

governing differential equations (32) and (33). Equation (34) implies

that there is a close relationship between the partial derivatives of

F(y,z) and the functions Ta(y,z) and Ts(y,z);

aF
= l-Taz a

and

~ = Tay s

(35)

(36)

Consider now the step input, initial uniform bed temperature

case where,

and

Ta(O,Z) = 1 (normalized) (37)

Ts(y,O) = 0 (initialized to reference zero). (38)



23

It is obvious from equations (35) and (37) that

1- ~; = response of air temperature to a unit step input

change

and from equations (36) and (38),

aF = response of solid temperature to a unit step input change •.ay

up until now nothing has been done that was not obvious from

Schumann's equations. But Klinkenberg now uses F(y,z) in such a way

that its exact form need not be found; only the properties of its

derivations need to be determined.

First, substituting (35) and (36) into (33), one obtains

1 • (39)

This produces a second order partial differential equation descri~1ng

F(y,z). To obtain suitable conditions then substitute (35) and (36)

into (37) and (38);

(40)

and

(41)
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Now consider equation (39) at the boundary y = 0 (equivalent to

setting x = 0). It becomes a simple first order differential equation

due to condition (41);

becomes

Let aF/ay = y and solve,

to yield

y = l_e-z

or

(aF~ = l_e-z.
ay) O,z

Likewise it can be shown that

[aF) = l-e-y
az] •y,O

(42)

(43)

Equations (39) through (43), although they refer to the con-

stant temperature step input problem, will be useful in solving the

more general problem of arbitrary temperature distribution and arbi-

trary input air temperature.
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To tackle the general problem, change the initial conditions

to reflect arbitrary temperature distribution and input,

(44)

and

(45)

Remember that these are at least piecewise continuous functions (it is

not likely that a solar heat storage system will be subjected to a true

limpu1se" input). Thus, the principle of superposition may be employed

to describe both air and rock temperatures in the bed. Consider the

air passing point y, at time z. It will have lost (or gained) heat

exponentially provided no other disturbances had entered the bed before;

(46)

But this transfer will be increased by the contributions of

all air temperature peaks which have entered between zQ and zl and by

the contributions of all solid temperature peaks originally existing

between Yo and Y1' This way of visualizing the problem is called the

method of superposition of "heat po1es" and was first presented by

Hausen in 1931. The general equation describing the air temperature

at any point in the bed at any time can then be written
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(47)

and the solid temperature is described by,

(48)

The order of the partial derivates within the integrals may be

reduced by partial integration to yield,

T (y,z) = e (z) - [e (o)-e (O)](aFJ
a a a s az y,z

and

- (z e"(a) (a Fl da + JY e"(s) (aF) dS
Jo a azJ y,z-a 0 s az] (Y-S),z

Ts(y,z) = e(y) + [6 (o)-e (0)] [aFJ
s a s ay y,z

rz (aFJ JY (aF)+ J e"(a) - da - e"(S) t·- ds •
o a ay y,(z-a) 0 s ay (Y-S),z

(49)

( 50)
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Equations (49) and (50) are general solutions of the original

problem ((32) and (33)). They are expressed in closed, definite integral

form and depend upon knowing the partial derivatives aF/ay and aF/az.

Klinkenberg has demonstrated that without having to determine F(y,z)

directly, the partial derivatives may be approximated by,

aF 1 1
ay = 2 + 2 erf

and

F 1 1
y = 2 + 2 erf

for values of y and z > 2 or,

l
( 111
IZ - IY - 81Z - 8IYJ

( 1 1 JlIZ - IY + alZ - alY

(51)

(52 )

aF 1 1
ay = 2 + 2 erf

zl/4 ()
~r'""'7"7"-""""-:"" • e- y+z I (2/YZz)

- 1/4 + 1/4 0y z

and

aF 1 1 [ j)az = 2 - 2 erf IZ - IY

1/4y -(y+z) (~
- 1/4 1/4' e 10 2iyZ)

Y + Z

for values of y and z between 1 and 2.

( 53)

(54)
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Unfortunately, the values of y and z for solar energy storage

packed beds are very often <1. This necessitates the development of an

alternate form for the partial derivatives of F(y,z). Nusselt [12] has

developed a series representation for F(y,z) which is

0Cl

F(y,z) = I
n=

-[ z n zkJ [ n k-jIl-e- • I - l-e-y. I'Ll
k=O k! k=O, k!

- -

(55)

Initially, this looks like a rather cumbersome form to work with,

but with an added restriction applied and a little manipulation performed

the partial derivations of F(y,z) can be had in a usable form. The added

restriction is that neither y nor z can equal zero. Then F(y,z) may be

rewritten,

F = (l-e-z)(l-e-y) + I [l-e-y - e-y I yk][l_e-Z
• r. lJ (56)

n=l k=l k! k= 0 k!

Then aF/ay becomes,

0Cl
(

n zkJaF = (l-e-z)(e-y) + L ll-e-z I -ay n=l k=O k!

I-_y [-y n l n k (k-ll]. I~ - -e
. I -' + e-y • I y

k=l k! k=l k!
(57)

which when simplified is,

( 58)
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and,

aF =
az

co [ n kJ[ n-JIe-Z (l-e-y) + r l-e-y L l-.!- I
n=l k=O k! n! •

(59)

These expressions for aF/ay and aF/az, while still in series form,

are very rapidly convergent for all values of y and z not equal to zero.

This makes the calculation of Ta and Ts using equations (49) and (50)

a relatively quick process. In addition, these partial derivative forms

do not suffer from the weakness of the Klinkenberg approximations;

equations (58) and (59) are exact expressions, so no error due to approxi

mation is introduced into the final solution.

Klinkenberg and Harmens' solution is a good compromise between

the analytic solutions of Amundson which are so complex as to be imprac

tical and the solution of Schumann which is too limited to be of wide

applicability. It is interesting to note that all models presently used

to describe solar heat storage in packed rock beds are based upon numer

ical techniques of solution to difference equations. The contention of

the other models' authors is that the governing equations cannot be
-

practically solved by analytical methods. One can only assume that the

work of Klinkenberg (which was published in a rather obscure British

journal) has escaped widespread notice. The packed bed model to be

developed in this paper will use the Klinkenberg technique, with partial

derivatives developed from Nusselt's function for F(y,z) as a starting

point.
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CHAPTER III

AN INVESTIGATION OF THE PHYSICAL SYSTEM

DETERMINATION OF VALID ASSUMPTIONS

In the last chapter several different packed bed modeling schemes

were discussed; each model had certain assumptions either expressed out

right or implied by the nature of the model. In this chapter a "standard

packed bed" (one that in size and shape closely resembles the packed rock

beds used in solar heat storage systems) shall be closely examined to

determine which assumptions, if any, are not valid. Axial and radial

conduction in the standard bed shall be investigated, as shall the effect

of losing energy through the walls of the bed due to turbulent convective

transfer at the bed-wall interface. Finally, the heat content of a

standard bed volume of air shall be compared to the heat content of a

standard bed filled entirely with rock, to determine just what fraction

of the heat in a packed bed system is likely to be stored in the air.

The Standard Model

For purposes of analysis and comparison the "standard model"

shall be taken to be as depicted in figure 5. It is cylindrical with a

radius of 1 meter and height of 2 meters. During the charging mode, hot

air is forced down through the bed at a mean velocity,v. For analysis,

the assumed air velocity shall be 1.0 meters/second unless otherwise

noted. This is faster than the speed at which air normally moves through

a packed bed, but it shall be treated as an upper limiting case here.

The rock within the bed is dry sandstone, with a thermal conductivity of
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0.534 watt/m·K [13]. The air within the bed, over the temperature range

of interest and at the low velocities encountered within the bed, is

taken to be an incompressible fluid [14]. The thermal conductivity of

air at 1 atm pressure and 3600 K is 0.0308 watt/m·K [15]. The convective

film heat transfer coefficient is a function of air velocity through the

bed, but a reasonable guess as to its upper bound is 25 watt/m2 ·K [16].

Axial Conduction Through Rock

As an initial assumption, let the bed be composed entirely of

rock (no air) and let the side walls be lossless. Then the only mode of

heat transfer is via conduction through the rock from the top to the

bottom. As absolute maximum steady-state conditions consider the temper

ature at the top of the bed to be 80°C (176°F) and the bottom temperature

to be 10°C (50°F). Heat conduction through a solid is described by

Laplace's equation, here taken in only one dimension (a 2T/ax2 = 0). The

solution to this form of Laplace's equation gives the temperature through

the bed as a linear function of the distance down from the top of the bed,

so the power transferred from the top to the bottom of the bed may be

modeled using a simple thermal resistance between the two temperature

regions; this model is shown in figure 6.

The power transferred is given by the equation

where

t.T
q = If

t.T = the temperature difference between the top and

bottom of the bed (in CO),

(60)
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q = power transferred (in watts).

The thermal resistance for sandstone is 1.192 K/watt s hence the

net power flow in this standard bed is 58.72 watts s or in terms of power

density for any sized bed is q/Area = 18.69 watts/m2 •

Of course the axial condition through rocks in a typical rock bed

would be even less than the above power density term indicates s since the

rocks only touch each other over an extremely small areas and the entire

bed is not made of rock. It is then safe to assume that axial conduction

within the rocks of a packed bed is a negligible component of the heat

transfer process within the bed.

Axial Conduction Through Air

Again make the same limiting assumptions as in the rock axial

conduction cases but consider a standard bed filled entirely with air.

Of course in any such system thermal convection will occurs but constrain

the system to have no forced convection; then convection1s effect i~

contained within the previously mentioned air conductivity term (it is

a turbulent conductivity term). The resulting air thermal resistance

is 20.• 67 K/watt s making the net power flow in the standard bed just

30.3 watts. More generally, the power density is 1.08 watts/m2 • Thus s

it is also safe to assume that axial conduction through air is insig

nificant in the overall heat transfer picture. In fact, the worst case

air conduction power density value is only 1/17 the magnitude of the

rock axial conduction power density.
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Radial Conduction Through Rock

As suitable limiting case assumptions for this analysis it can be

said that the storage bed is composed entirely of solid rock and there is

a hole of radius 0.2 m (7.5 in. t a figure selected arbitrarily; any small

radius hole will serve) drilled axially through the center of the bed (see

the cross section t figure 7). If the radius of the hole is called rht

and that of the bed rb and if it is now assumed that the top and bottom of

the bed are loss1ess t heat transfer can only take place radially through

the bed. If the hole medium is kept at a temperature different from that

surrounding the outside of the bed t the Fourier Heat Transfer equation (17]

can be used to determine the power flow from the hole to the outside wall

in the steady-state case. The applicable equation is

where

and

SOt

dT
q = -kA-dr

k = the thermal conductivitYt

A = the surface area of either the inner wall or the

outer wall of the bed (= 2~r~)t

dT/dr = the radial change of temperature in the bed.

dTq = -2~r~k-dr

(61)



or after solving this first order differential equation,

2'11"tk (Trh-Trb )
q = ---.;....;.:..--:..~

ln (rb/rh)

where

Trh = temperature within the hole,

and

Trb = temperature outside the bed.

(62)
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For Trh = 80°C and Trb = 10°C, q = 282.8 watts in the standard

bed. The power density at the outer wall is 22.5 watts/m2 • This analysis

shows that while the power lost through radial conduction in rock is

greater than rock axial conduction power loss, it is still an insignifi

cantly small value.

Radial Conduction Through Air

The same procedure, with the same resultant equation, is used to

obtain air radial conduction. Again, the bed is assumed to be entirely

made up of dry air at 1 atm. For the standard bed at the outer wall the

power lost is 16.42 watts, resulting in a power density through the outer

wall of 1.31 watts/m2 •

This is so small that it can also be considered insignificant,

especially since the effect of insulating bed walls (which will reduce

all of the above power densities still further) has not been investigated.
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Convective Wall Losses

It should be noted that (as was seen in Chapter 2) of all the

models developed present1y~ most neglect the effects of axial and radial

conduction. About half of them use some term within the modeling equa

tions to account for convective losses out of the walls of the bed.

Obviously it is of extreme importance to know if these losses are sig

nificant because if they are not~ allowing for them in the model is

inserting an extra measure of complication into a problem that is already

very complex. A1so~ if much energy is lost out the side wa11s~ the

simple "average loss" terms used in many of those models that allow for

convective losses may not be adequate to describe what really goes on

in the bed.

Again performing a worst case ana1ysis~ consider the standard

bed model. Assume the bed is filled entirely with air. Let the air

temperature within the main body of the bed equal 80°C; let the outside

air temperature equal lOoC. The typical solar energy packed bed wall is

constructed of concrete block. Assume it is lined on the inside by a

2 inch thi.ckness of styrofoam covered by a 1 inch thickness of plywood.

The thermal conductivity of concrete is 1.20 watt/m-K. The conduc

tivities of styrofoam and plywood are 0.043 watt/m-K and 0.029 watt/m-K~

respectively. Figure 7 presents the wall in cross section. Assume air

is flowing into the bed~ so the convective film heat transfer coefficient

at the wall is 40 watt/m2 -K. Assume natural convection is taking place

outside the bed~ so the heat transfer coefficient on the outside is

4 watt/m-K. The air space in normal concrete block shall be neg1ected~

so the block is modeled as a 2 inch thickness of concrete. Ignoring any



1"

2"

9"

rh = 0.2 m
r b = 1.0 m

~~ Rock Bed

~2~~22~IT~~~~~-- Plywood
~-- StyrofoamJ---------------l

~ .~. ~ '.: . ~ ' ..::,' :;.. '. . "
. ...

'.\ ' ". ~ ',:. ; ':.". '.' '; ..~:... e-I--_ Concrete
, ."'. ~ , "...' ::. ~', _.... :' ,.' ., Block
'. . '. "., -
. ..... '. --:....' . '.

~~-----Outside Air----

37

Fig. 70 Conduction/Convection Analytic Model
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possible shape factor arising from the fact that the wall is cylindrical~

the heat transfer model is again a simple resistive network. (See

figure 7.) The surface area of the wall is 2~ x wall radius x wall height~

which equals (for the standard bed) 12.57 m2 • The resistance of the

wood, styrofoam and concrete are given by the equation:

Rthermal = thickness of wall
(conductivity) (area)

(63)

So, Rwood = 0.0157 K/watt, Rstyrofoam = 0.0940 K/watt, Rconcrete =
0.0034 K/watt. The equivalent thermal resistance of convective air is

given in the equation:

Rconvective =
1

(heat transf. coeff.)(area) (64 )

Thus, Rconv • inside = 0.002 K/watt and Rconv • outside =
0.020 K/watt. The total thermal resistance in the network is Rtotal =
0.1351 K/watt. The amount of heat escaping from the side walls of the

bed is given by:

liT
q = If (65)

So the II standard bed ll is losing q = 518 watts. The power density

through the side walls in the q/A = 41.22 watts/m2 •

This is clearly quite a low power density, yet it is by no means

insignificant. It indicates that a fully charged (i.e.~ TA = TS =

80°C everywhere) bed will lose about 1.85 x 106 joules (about 1800 Btu)

in a period of one hour just out of the side walls. Whether or not this

is a significant fraction of the energy that is stored in the bed will be

investigated in the following section.
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Heat Content Of Air/Rock In The Bed

This section serves two purposes. Herein will be determined

how much enerqy is stored within a fully charged packed bed, and what

. percentage of that heat energy is stored in each of the two phases,

air and rock, which make up the system. Previous sections dealt with

temperature limits of 80 0 r and 10°C: 80°C because that is very near

to the maximum temperature the collectors in a practical solar energy

home heating system wi 11 supply, and lQoC because that is approximately

the temperature of the earth ten feet below the surface, hence it is

the lowest temperature one would expect to encounter in an unheated

basement. Yet, the average ambient temperature of a house is about

20°C (68°F), hence the useful, extractable, energy within the packed

bed will be at a temperature of about 20°C. Thus, the reference tem

perature limit for this analysis is 20°C.

The amount of useful heat energy stored in a substance depends

upon its temperature above the reference (here 20°C), its specific"

heat, and its density according the the relation,

where

w = pVc liT

w = heat energy in a given amount of material,

p = density of the material,

V = volume of the material,

c = specific heat of the material, and

liT = temperature above the reference.

(66)



Assuming the standard bed is filled completely with air at

80°C, the heat contained in that volume of air is

or

Wair = 3.73xlOs joules (about 355 Btu).

Now consider the standard bed filled completely with rock at

or

Wrock = 9.5xl08 joules (90,000 Btu).

Obviously for a bed void fraction of 0.5 (50 percent of the

bed is rock, 50 percent is air) the air component of stored energy is

only 0.4 percent of the total bed energy. Also one may conclude that

the bed is losing only about 5 percent of its stored energy per given

hour to the outside, including losses both from the side walls and

the top and bottom.

40
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Results

The analyses performed in the preceding sections of this

chapter have shown that axial and radial conduction within a packed

bed used for solar heat energy storage may be neglected in the modeling

of the bed. Also, losses to the outside due to convection within the

bed may also be neglected without significant degradation in the

performance of the model, provided adequate thermal insulation is

assumed to exist. However, for the model to describe a real system

most accurately, some provision to allow for convective losses may be

made.
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CHAPTER IV

THE HOTROCKS MODEL

The HOTROCKS particle bed heat storage computer model, which

will be described in detail within the body of this chapter, is devel

oped from the analytical work done by Klinkenberg. Klinkenberg's

solutions are used as a starting point for several good reasons.

Initially, his solutions are analytical; they are readily checked

merely by substitution into the original system equations. Also,

Klinkenberg avoids unnecessary complication of the model. In Chapter

III it was shown that many of the second order mechanisms of heat trans

fer in a packed bed (such as axial and radial conduction transfer) are

an insignificant fraction of the complete heat transfer phenomenon.

Ignoring these second order effects greatly simplifies the model, and

one is justified in doing so. Further, Kl inkenbergmakes no simplifying

assumptions that would tend to degrade the accuracy of the model, as

is the case with some of the discrete segment models discussed in

Chapter II.

The HOTROCKS Model, Step by Step

The HOTROCKS computer model is designed to provide an hourly

simulation of the thermal transfer between air and rock within a

packed bed solar heat energy storage system. The HOTROCKS routine

furnishes as output a hard copy table of air and rock temperatures of

ten equispaced locations within the bed, updated every hour. The
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resultant temperature profile may be used (using methods similar to

those detailed in Chapter III) to determine the amount of thermal

energy stored within the bed as a function of time. The output may

also be used to furnish hourly energy availability information for a

real time solar energy system simulation model (i.e., with minor mod

ifications, HOTROCKS can be easily incorporated into a larger simulation

routine). In addition, the time increment of calculation is not con

strained to be one hour; it may be varied to suit any constraints

imposed by the larger routine.

Figure 8 shows a block diagram of HOTROCKS. To make validation

of the final program easy, a modular structured programming approach

. was used in developing the model. Detailed flow charts, using the

IBM-tUT conceived structured flow symbology, describing the logic

behind each of the HOTROCKS routines, are contained in Appendix A.

Appendix B includes a complete FORTRAN listing of the HOTROCKS program,

and Appendix Ccontains a listing of each of the test modules built

to verify the operation of each of the HOTROCKS routines.

The routine MAIN is nothing more than a supervisor. It ensur~s

that all computational routines are called in the proper order.

Since the model is designed as an hour-by-hour simulation, MAIN must

also determine (from input data) just how many hours the simulation

is to run.

The routine INPUT reads from input data all the values of the

physical constants and initial parameters necessary for the operation

of the simulator. When a current simulation run is complete, OUTPRT

prints an hourly listing of air and rock temperatures within the rock

bed. A table of the initially input constants is also printed.



Fig. 8. Block Diagram of the HOTROCKS Program
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Calculation of the solutions to Klinkenberg's heat transfer

equations is greatly simplified when dimensionless parameters (i.e.,

parameters which have no physical units associated with them, but are

proportional to quantities such as position or time) are used.

HOTROCKS uses the transformations for position (x + y) and time (t + z)

devised by Klinkenberg to provide workinq dimensionless parameters.

The PRECOM routine precomputes numerical values for y and z at the

start of each hour's calculations.

Just as the MAIN routine ensures that each of the other rou

tines of HOTROCKS gets executed in the proper order, CYCLE ensures

that each hourly calculation of air and rock temperature is performed

using the correct set of initial data for each hour. CYCLE keeps

track of each hour of calculations as they are being performed. CYCLE

also determines, from the value of input air velocity, whether the

system :is in the charge, discharge or off mode of operation for each

qiven hour. Positive air velocity corresponds to flow from the top

of the bed down (charge), whereas negative velocity indicates flow

from the bottom up (discharge). A different routine within CYCLE is

used for each case. If during any given hour there is no air flow

(velocity equals zero), the system is shut off and quasi-steady-state

(no change in segment temperatures) is assumed. The air and rock

temperatures that are returned from routines called by CYCLE are

placed in a matrix to be output after the simulation is complete.

A close examination of the Klinkenberg solutions (equations

49 and 50, Chapter II) reveals that they can be even further simplified

for the case where the input air temperature is constant over a par-
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ticular time increment. Since insignificant loss in accuracy occurs

by approximating the continuous input into a packed by by a series of

step inputs of sufficiently short time duration, and since the thermal

inertia of a solar energy packed bed is great enough to allow one-hour

increments to be considered as sufficiently short, appropriately sim

plified Klinkenberg solutions are adequate for HOTROCKS. These solu-

tions are,

and

(67)

= 0 (y) + [0 -0 (O)J (aF} + JY 0"(n) (aF) dn
s a s ayJ z s aYJ y zy, 0 -n,

(68)

These are the equations that are solved by the HOTROCKS rou

tines COMPTA and COMPTS. Inputs to these routines include the initial

rock temperature distribution (as ten discrete elements, 0s (y)), the

constant input air temperature (0a), the time increment of the calcu-

lation (z) and the position coordinates (as ten elements, y) of the

locations in the bed for which calculations are to be performed. At

the end of the execution of these routines, a list of ten elements

corresponding to air temperature Ta (or rock temperature Ts ) is re

turned to CYCLE.

The partial derivative functions aF/ay and aF/az are computed

in routines DFDY and DFDZ using the variation of Nusselt's heat trans

fer function developed in Chapter 2 (equations 58 and 59). To avoid
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excessive computation time, the series are only expanded to the number

of terms that will insure accuracy of aF/ay or aF/az to ~O.OOl percent;

at no time will more than the first twelve terms of the series be

needed. Since factorials must be evaluated as part of DFDY and DFDZ,

and since many FORTRAN compilers do not have available a factorial

library function, the routine IFACT was created. IFACT will calculate

the factorial of any integer n, where 0 ~ n ~ 12. The modified Nusselt

series do not work at values of y or z equal to zero. So, if y = 0 or

z = 0 is input to either DFDY or DFDZ, the routines replace those zero

values with a very small positive number. Since aF/ay and aF/az are

well-behaved functions, this substitution will not degrade the accuracy

of the resultant air and rock temperature calculations.

Both the air and rock temperature calculations require the

evaluation of a definite integral. The routines FITGL and SITGL per

form the integration function. Both routines use a Romberg integration

algorithm, similar to the algorithm presented in Burden, Faires and

Reynolds [18], but modified somewhat to fit a structured FORTRAN form.

The Romberg algorithm was chosen as a good compromise between compu

tational speed and accuracy. FITGL (or SITGL) will calculate the

numerical value of its integrand to within ~O.Ol percent.

The integrands needed for the evaluation performed by FITGL and

SITGL are produced by the routines FINTGD and SINTGD. These routines

require that the variation in rock temperature as a function of bed

position (i.e., e~(y)) be known. This derivative is calculated from

the ten initial rock bed segment temperatures by the routine DTHETA.

DTHETA simply calculates the slope of the line between the two known

rock temperature values nearest to the input bed position, as an approxi

mation to the actual derivative at that input position.
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Those are the modules that make up HOTROCKS. The HOTROCKS pro

gram has been subjected to an extensive verification process, both at

the modular and the complete program level. These verification and

testing procedures are the subject of Chapter 5.
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CHAPTER V

HOTROCKS MODEL VERIFICATION

Module Verification

Although the structure of HOTROCKS was planned from the "top

down", actual coding and verification of each of the modules was accom

plished from the "bottom up"; each module, beginning with IFACT, was

built and verified before the next module above it in the hierarchy

was begun. As was noted in Chapter 4, the test routines used to verify

each of the modules are listed in Appendix C; only the results of

those tests will be presented in this chapter.

The routine IFACT was the first built and the first tested.

It is a simple integer calculation algorithm, and as table 1 shows,

the comparison between actual factorials and those calculated by IFACT
.~-

are exact for at least those values of N < 13. Those values of N > 13

result in incorrect data only because the integer precision of the

machine used to test the module is exceeded for N > 13.

Next to be written and tested were the modules DFDY and DFDZ.

The test routine built for these two modules was designed as a reason

ableness check. A range of y and z values representative of all the

values that HOTROCKS is likely to encounter was input, with the results

shown in table 2. Several values of aF/ay and aF/az were calculated

by hand, using an HP 25 calculator; these are listed as expected values

in the table. Notice that the computed module solutions compare favor-



TABLE 1

RESULTS OF MODULE IFACT VERlFICATION

N N! Computed N! Expected

0 1 1
1 1 1
2 2 2
3 6 6
4 24 24
5 120 120
6 720 720
7 5040 5040
8 40320 40320
9 362880 362880

10 3628800 3628800
11 39916800 39916800
12 479001600 479001600
13 6227020800 6227020800

50



TABLE 2

RESULTS OF MODULES DFDY/DFDZ VERIFICATION

51

Y

1.0
0.1
1.0

Y

1.0
0.1
1.0

Z

1.0
10.0
10.0

Z

1.0
10.0
10.0

DFDY HOTROCKS

.34574

.99900

.99792

DFDZ HOTROCKS

.34575
6.8610x10- 6

5. 7267x1 0-1+

DFDY Expected

.34574

.99995

.99812

DFDZ Expected

.34574
6.860x10- 6

5.7270x10-1+

/). DFDY (%)

o
-0.09%
-0.02%

/). DFDZ (%)

+0.01%
+0.01%
-0.01 %
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ably with the expected values in every case. The complete DFDY and

DFDZ test outputs along with a sample aF/ay expected value calculation

are included with the DFDY test listing in Appendix C.

The routine DTHETA was verified by comparing its output against

expected values for both a linear and sinusoid input. These two test

temperature functions were chosen because the actual rock temperature

distribution in a packed bed will be somewhere in between the two, for

any realistic input. Table 3 graphically depicts the linear and sinu

siod functions, and lists both the module's generated and expected

values of 0~ for ten positions in the bed. Initial inspection sug

gests that the DTHETA response to sinusoidal input may be a potential

problem. But since the 0~ term is only used in the integral portion

of the Ta andTs solutions, and since the integral portion is a rel

atively small component of the total expressions for Ta and Ts ' the

module DTHETA can afford to sacrifice some accuracy in return for speed

of computation.

The modules FINTGD and SINTGD are FORTRAN coding of the alge

braic function found in the integrand of the air temperature or rock

temperature integral. These routines can be verified by inspection,

so no formal test procedures were developed for them.

The modules FITGL and SITGL are identical with the exception

of the integrands used in the routines. Thus, a test of FITGL will

serve to validate the function of SITGL as well. The test chosen is

basic; three functions, representing forms close to those likely to be

encountered by the integrator during actual HOTROCKS execution, are

entered in FITGL as the integrand FINTGD. Then FITGL is made to inte-



TABLE 3

RESULTS OF MODULE DTHETA VERIFICATION

A. Linear Temperature Distribution

Input DTHETA Expected Del ta
y e e' e' e'
o. 70. -25. -25. o.

e, 0.2 65. -25. -25. o.
0.4 60. -25. -25. o.
0.6 55. -25. -25. o.

Si
0.8 50. -25. -25. o.

-------- 1.0 45. -25. -25. o.I
I 1.2 40. -25. -25. O.,

S,
I 1.4 35. -25. -25. o.-------1------, 1.6 30. -25. -25 0 o.
I 1.8 25 0 -25. -25. o.I

Yi '110
Linear Distribution:
e = -25y + 70

B. Sinusoid Temperature Distribution

Input DTHETA Expected Delta
y e e' e' e'
o. 70.0 -7.0 o. +7.0

e. 0.2 68.6 -13.3 -13.4 -0.1
0.4 64.7 -24.8 -25.2 -0.4
0.6 58.8 -33.5 -34.0 -0.5
0.8 51.4 -38.0 -38.7 -0.7

ei 1.0 43.6 -38.0 -38.7 -0.7
I 1.2 36.3 -37.0 -34.0 +3.0I

I 1.4 30.3 -29.5 -25.3 +4.2
6'0 -----'-- --I 1.6 26 0 4 -13.0 -13.5 -0 0 5

I 1.8 25.0 -6.5 o. +6 0 5I

'Ii Y'·
Sinusoid Distribution
e = 22.5 cos(1.745y) + 47.5
e' = -39.26 sin(1.745y)

53
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grate each of those functions three times, from zero to three different

input argument values. The FITGL result is then compared to an analyt

ically derived expected result. Results of this test are summarized

in table 4. Obviously, the FITGL and SITGL routines will be accurate

to at least five significant figures for continuous functions.

The routines COMPTA and COMPTS are algebraic statements,

FORTRAN coded, which correspond to the equations used to calculate air

and rock temperature. So again, no formal testing is required for

these two modules.

PRECOM does several things; it determines the x coordinate

value of the ten test points located within the bed, and it develops

the dimensionless length and time parameters, y and z, for each of

these ten locations. The test for PRECOM is as follows; input values

for the constants used to calculate the parameters y and z, and confirm

by an independent calculation that PRECOM is performing the proper

calculation. As can be seen from table 5, PRECOM is performing satis

factorily.

The module CYCLE oversees the proper execution of most of the

program. Therefore, all modes of CYCLE must be confirmed. The pro

gram used to test CYCLE checks all three operating modes: the v > 0

(charge) mode, the v < 0 (discharge) mode and the v = 0 (off) mode.

As shown in table 6, all modes work properly; test values and expected

values compare identically.



TABLE 4

RESULTS OF MODULE FITGL VERIFICATION
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A. Linear Integration FINTGD = -4.5x + 70

Input (x)
1.0
3.0

10.0

FITGL Resu1 t
67.750

189.75
475.00

Expected Result
67.750

189.75
475.00

Del ta
o
o
o

B. Exponential Integration FINTGD = 71.2 e-(O.lx) - 1.2

Input (x)

1.0
3.0

10.0

FITGL Resul t
66.556

180.94
438.07

Expected Result
66.556

180.94
438.07

Delta
o
o
o

C. Sinusoid Integration FINTGD = 22.5 cos (x~/lO) +47.5

Input (x)

1.0
3.0

10.0

FITGL Resul t
69.632

200.44
474.97

Expected Result
69.632

200.44
474.97

..,..

Delta
o
o
o



TABLE 5

RESULTS OF MODULE PRECOM VERIFICATION

Input Constants: h =1, A* =2, Pf =3, Ps =4, Cf = 3, Cs = 2,
F =0.5, v =1, x =2, t = 3600.

Output Parameter Computed Expected Delta

Y(l J Top 0.0 0.0 0.0
Y(2 ) 0.09877 0.09877 0.0
Y(3) 0.1975 0.1975 0.0
Y(4 ) 0.2963 0.2963 0.0
Y(5) 0.3951 0.3951 0.0
Y(6) 0.4938 0.4938 0.0
Y(l) 0.5926 0.5926 0.0
y(8) 0.6914 0.6914 0.0
Y(9) 0.7901 0.7901 0.0
yO 0) 0.8889 0.8889 0.0

Z 1. 80xl 03 1.80xl0 3 0.0
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TABLE 6

RESULTS OF MODULE CYCLE VERIFICATION
(For test PRECOM, COMPTA, COMPTS as given in Appendix C.)

57

Bed TA TA TS TS
Mode Hour Segment Computed Expected Computed Expected

v>O 1 1 90 90 80 80
v>O 1 2 110 110 90 90
v>O 1 3 130 130 100 100
v>O 1 4 150 150 110 110
v>O 1 5 170 170 120 120
v>O 1 6 190 190 130 130
v>O 1 7 210 210 140 140
v>O 1 8 230 230 150 150
v>O 1 9 250 250 160 160
v>O 1 10 270 270 170 170
v>O 2 1 150 150 110 110
v>O 2 2 250 250 160 160
v>O 2 3 370 370 220 220
v>O 2 4 510 510 290 290
v>O 2 5 670 670 370 370
v>O 2 6 850 850 460 460
v>O 2 7 1050 1050 560 560
v>O 2 8 1270 1270 670 670
v>O 2 9 1510 1510 790 790
v>O 2 10 1770 1770 920 920
v=O 3 1 150 150 110 110
v=O 3 2 250 250 160 160
v=O 3 3 370 370 220 220
v=O 3 4 510 510 290 290
v=O 3 5 670 670 370 370
v=O 3 6 850 850 460 460
v=O 3 7 1050 1050 560 560
v=O 3 8 1270 1270 670 670
v=O 3 9 1510 1510 790 790
v=O 3 10 1770 1770 920 920
v<O 4 1 180 180 125 125
v<O 4 2 390 390 230 230
v<O 4 3 730 730 400 400
v<O 4 4 1230 1230 650 650
v<O 4 5 1920 1920 995 995
v<O 4 6 2830 2830 1450 1450
v<O 4 7 3990 3990 2030 2030
v<O 4 8 5430 5430 2750 2750
v<O 4 9 7180 7180 3625 3625
v<O 4 10 9270 9270 9270 9270

All computed values compare with expected values identically.



58

The routine INPUT is a very convenient way to get values of the

HOTROCKS input constants into the program; it needs no formal test pro

cedure. OUTPRT consists only of WRITE and FORMAT statements; it can be

verified by inspection of any HOTROCKS output. A sample of HOTROCKS

output format is shown in tables 7 and 8. Note that the output shown is

for test sinusoid input, and does not represent "real world" data.

Finally, MAIN is a simple supervisor consisting of only a few CALL state-

ments; it requires no formal verification.

Complete Model Verification

With the individual modules tested and verified, the next step

in the verification procedure is to see how well HOTROCKS performs as a

complete model. The standard of comparison chosen for the first complete

test is the Schumann model, since it is universally accepted as the "cor-

rect" response of a packed bed to a step input. The constants chosen,

Pf = 1.15 kg/m 3 , Ps = 2400 kg/m 3 , Cf = 1006 joule/kg·C, Cs = 1046 joule/

kg·C, f = 0.5, x - 2 m, h = 7.076 joule/m2 ·sec·C, and A* = 23.62 m';;'i,

are taken from the work of Duffie, Beckmann and Klein [19J and represent

typical solar energy packed bed values. Ambient temperature is set at

22°C (72°F) and input air temperature at 70°C (158°F). Since the

Schumann model's computational inefficiency makes producing Schumann

data a long process and since the input parameters for this comparison

allow a significant portion of the bed to be fully charged after a few

Hours, three hours was chosen as a good first simulation period. The

Schumann model, of course, can only be used to calculate air and rock

temperatures for the uniform initial condition, step input response
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case. A comparison between the Schumann values and the HOTROCKS

values is given in table 9 and the error between the Schumann and

HOTROCKS models is graphically shown in figure 9. The results of this

test make it quite clear that HOTROCKS tracks the Schumann model very

well, at least for the given set of input constants.

The next test performed on HOTROCKS is a comparison between

its step reponse output and that of the Alexander-Taft (AT) model.

Because the AT model uses only five bed segments (as shown in figure

10) a direct number-by~number comparison of the HOTROCKS and AT outputs

is not practical. A graphical comparison is the best method available

to illustrate the differences between the two models. Only a limited

amount of output data is available for the AT model, and much of it is

not directly comparable to HOTROCKS, but a step response and sinusoid

input response are available, and are enough to serve to assist in the

validation of HOTROCKS.

The AT model uses parameters in the English system of units,

but after conversion of the AT constants to the SI system the constants

used in this comparison are: Pf = 2.851 kg/m 3 , Ps = 2400. kq/m3 ,

Cf = 1012 joule/kg·C, Cs = 837. joule/kg'C, f = 0.42, h = 6.076 joule/

m2 'sec'C and A* = 72.42 m- 1 • The bed length is set at 1.829 m and the

input air velocity is 0.051 m/sec. Ambient temperature is set at

-17.80°C (O°F) and input air temperature is set at 37.78°C (100°F).

Notice there are significant differences between these parameters and

those used earlier for the HOTROCKS-Schumann comparison. The hiqher

air density indicates that the AT model was simulated for a relatively

high positive pressure differential between the bed and ambient, and



TABLE 9

COMPARISON OF HOTROCKS AND SCHUMANN SOLUTIONS
HOTROCKS-Schumann Comparison: Air Temperature

Hour Bed Segment TA- HOTROC KS TA-Schumann l1TA

1 1 (top) 70. oC 70. oC O.oC
1 3 32.14°C 32.14°C O.oC
1 5 23.90°C 23.90°C O.oC
1 7 22.33°C 22.33°C O.oC
2 1 70. oC 70. oC O.oC
2 3 37.27°C 36.94°C +0.33°C
2 5 25.81 °C 25.69°C +O.12°C
2 7 22.85°C 22.80°C +0.05°C
3 1 70. oC 70. oC O.oC
3 3 41.99°C 41.49°C +0.5°C
3 5 28.14°C 27.88°C +0.26°C
3 7 23.62°C 23.52°C +0. lOoC

HOTROCKS-Schumann Compari son: Rock Temperature

Hour Bed Segment TS-HOTROCKS TS-Schumann l1TA

1 1 38.20°C 38.20°C O.oC
1 3 24.66°C 24°66°C O.oC
1 5 22.42°C 22.42°C O.oC
1 7 22.06°C . 22.06°C O.oC
2 1 48.93°C 48.93°C O.oC
2 3 28.17°C 28.05°C +0.12°C
2 5 23.27°C 23.23°C +0.04°C
2 7 22.24°C 22.23°C +O.Ol°C
3 1 56.04°C 56.04°C O.oC
3 3 32.13°C 31.88°C +0.25°C
3 5 24.55°C 24.44°C +0.1 PC
3 7 22.58°C 22.55°C +0.03°C
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Fig. 10. Comparison of HOTROCKS and AT Model Geometry
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the greater A* term implies that the rocks used in the AT bed were of

smaller diameter than those used in the earlier HOTROCKS simulation.

These differences are useful to test whether HOTROCKS will perform

well for widely varying sets of input data. Note that the time incre

ments of calculation are not hours, as with the earlier comparison,

but are now time segments of 7100 second duration. The 7100 second

time segment was chosen to make HOTROCKS output time compatible with

the available AT output data. With a 7100 second time segment, the

entire bed is fully charged after approximately ten time segments. A

comparison of the first six time segments is all that is necessary to

demonstrate the differences between HOTROCKS and AT.

Results of this comparison are illustrated in figures 11 through

18. Figures 11 and 12 show a temperature versus time comparison be

tween two HOTROCKS data points and the AT data points that are physi

cally closest to them. The next six figures are temperature versus

bed segment (from top to bottom) maps of both the HOTROCKS and AT

models for six successive time segments. For reference, the Schumann

model predictions for these input data are also shown. Note that the

Schumann and HOTROCKS data compare identically in every case. As shown

on the graphs, a temperature difference between the curves of approxi

mately 6 centigrade degrees corresponds to a difference in stored

energy of 10 percent, with respect to the total amount of energy that

can be stored in the bed.

One can conclude from inspection of this output data that

HOTROCKS is also an accurate model for the AT input parameters, for

the step response. Note also that the transient response of the
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HOTROCKS model is better (i.e., the HOTROCKS data compare to Schumann

more favorably than AT for the first few time segments) especially for

the topmost bed segments. Since these are the highest temperature bed

segments during nominal bed operation, HOTROCKS provides a truer model

of the high energy bed positions than AT. This may be the result of

the fact that HOTROCKS models twice the number of bed segments as does

AT. Whether this difference in the models is significant enough to

warrant concern is dependent upon how the model is to be used; in no

case is the difference much greater than 15 percent and the deviation

rapidly converges to near zero for all bed segments as the fully charged

bed condition is approached.

The final validiation test to be performed on HOTROCKS is a

comparison between its sinusoid input response and the AT sinusoid

response. Unfortunately, no other model documented has published

results for a sinusoid input, so this is the only comparison possible.

Again AT input data is used; the constants are the same as the other

AT comparison but the initial bed conditions are different. The bed

starts the simulation with a linear temperature gradient, from 43.3°C_

at the bottom to -12.2°C at the top. These conditions would never

occur in the real world but serve as an extreme test of the model.

The input forcing function is Tin = 100 sin (TI I/25)OF where I

is a time step equal (for given input constants) to 3590 seconds.

Considering time steps for HOTROCKS of T = 7180 seconds, approximately

20 time steps must elapse before the effect of the initial condition



75

transient is damped out. This allows the input forcing function to

swing from zero through maximum value (100°F or 37.78°C) to minimum

value (-100°F or -73.3°C). The resulting 20 time step comparison then

will look at three-fourths of one input period.

Figures 19 through 29 detail the differences between the HOT

ROCKS and AT models for sinusoidal input. Again, figures 19 and 20

are temperature versus time maps of two comparably located bed test

points, and the other nine graphs are temperature versus bed position

maps for succeeding time segments.

What could be predicted from inspection of the step input com

parison is evident from the sinusoid plots. HOTROCKS responds to the

initial system transient quicker than AT, but both models' response to

the slower input forcing function is approximately identical. This

produces a phase shift between the HOTROCKS and AT outputs that is

most pronounced in the topmost bed segments (where the HOTROCKS and AT

models showed the greatest discrepancy in transient response for the

step input) and less obvious in the lower bed seqments.

Again, the shift is not very pronounced, amounting to an instan

taneous energy stored difference between HOTROCKS and AT of less than

20 percent in almost all cases and a total integrated energy difference

over one-half period of less than 10 percent for the topmost segments

(determined by graphically summing the area under the two curves in

fiqure 19 over the first one-half period, to include the effect of

transients). The bottommost segments compare even more favorably for

both instantaneous and integrated energy differences.
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As a final note, only the air temperatures have been compared

in the AT comparison analysis. This is solely because the AT model

only produces an air temperature profile as output, so no rock tempera

ture data were available from AT. However, since air is the energy

transport medium in a packed bed system, an air temperature comparison

is sufficient to validate the system model.
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CHAPTER VI

SUMMARY AND CONCLUSION

It was shown in Chapter I of this paper that a clear need

exists for a packed bed thermal energy storage model that is accurate

enough to adequately describe transient behavior of a packed bed used

for solar energy heat storage, yet uncomplicated enough to be easily

used as a system design tool. No other model currently documented in

the literature has these two desirable features. It was decided that

an expansion of the work conducted by Klinkenberg on an analytical

solution to the heat transfer equations developed by Schumann was the

most promising approach to build a model that could meet both criteria.

The FORTRAN coded packed bed model HOTROCKS was so developed.

After an analysis to ensure that the simplifying assumptions

made during the initial phase of model development were valid, HOTROCKS

was coded using structured programming techniques. Due to the modular

format of the resultant HOTROCKS program, an extensive module-by-modul~

verification procedure was made possible. This modular verification

confirmed that the complete program should work satisfactorily for a

wide variety of input conditions.

A two-stage validation process was then followed to establish

the proper operation of the entire HOTROCKS model. Initially a com

parison of HOTROCKS with the step input response Schumann model was

made. The HOTROCKS model produced output data virtually identical to
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the accepted standard Schumann model for two varied sets of input

data; this established a level of confidence in HOTROCKS which was

futher enhanced by a favorable comparison of HOTROCKS to the A1exander

Taft numerical packed bed model, for both the step and sinusoidal

input cases.

HOTROCKS works. Not only does it produce accurate output, but

it also does so quickly. Because the baseline model equations are

expressed in terms of easily calculated standard functions (sine,

cosine, exponential, etc.) and rapidly converging series instead of

difficult to evaluate sets of simultaneous difference equations, HOT

ROCKS executes quickly. The typical CPU time spent on the generation

of one time segment's set of air and rock temperatures, for typical

solar packed bed input parameters, is on the order of one to two sec

onds using a UNIVAC 1110. Also, the HOTROCKS routine is relatively

immune to large changes in time segment length. Where numerical dif

ference equation models will need to spend twice as long in brute

force number crunching to arrive at a solution for a 2~ second time

step as opposed to a solution for a 1t second time step, the variable

integration step size provision built into HOTROCKS will not require

such a large increase in calculation time.

The HOTROCKS model was built as a stand-alone unit, complete

with output processing and formatting capabilities, in order to facil

itate verification and validation. It can be used as is, to simply

predict the behavior of a packed bed, or it can be integrated into a

larger, more complete solar energy analysis program which may then be

used for computer-aided design and optimization of complete solar energy

heat systems.
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It has been determined, both from the analysis completed in

Chapter II and from data available from the AT model, that for initial

development purposes allowance for a convective wall loss term is not

necessary as part of HOTROCKS. However, one can envision the case where

significant wall losses are a necessary part of a specific packed bed

design. Also, many times the design of a packed bed for solar home

heating will include within the bed a tank for heating water. Additions

such as these to the basic HOTROCKS model will be possible, but are be

yond the scope of this presentation. One need only construct a new

module to account for the addition, the incorporate that module in the

routines that calculate air and rock temperatures. Thus, expansion of

the basic model is possible to allow for any off-nominal bed configura

tion.

It must be noted that HOTROCKS has been shown to perform in a

manner comparable to other models of particle bed heat storage, but has

not yet been demonstrated accurate by comparison with real experimental

packed bed data. Unfortunately, these data do not exist in the current

literature, or such a comparison would have been attempted.

Finally, it should be noted that HOTROCKS, except for the rou

time OUTPRT, is constructed with ANSI standard FORTRAN and should be com

patible with any machine capable of executing a FORTRAN program. During

the course of its development, HOTROCKS was successfully brought up and

running on an Amdahl 470, an IBM 370, an IBM 360, a Univac 1110 and a

PDP-ll/45. One need only take care to verify that the integer arith

metic precision in the machine on which one wishes to run HOTROCKS is

adequate to handle the computations required.



APPENDIX A

Routine Overview

The HOTROCKS computer model is designed to provide an hour-

by-hour simulation of the thermal tra'nsfer between air and rock with-

in a packed bed solar thermal energy storage system. The HOTROCKS

routine furnishes a map of air and rock temperatures at ten points

within the bed, updated every hour. This temperature profile can

then be used to determine the amount of thermal energy stored with-

in the bed, and can be used to furnish hourly energy availability

information for a real time solar thermal system model.

The routine is based upon Klinkenberg's solutions to the

two-phase energy transfer problem first developed by Schumann in

1929. He expresses the temperature within a packed bed (for both

air and rock within the bed) as a function of the rate of heat trans-

fer, the position within the bed, and time. The equations for air

and rock temperatures are:
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and

Ta = ea(Z) - {ea(O)-es(O)} (~~J Z
y,

Z Y

- J e~(a)(~~} da + J e~(s)(~~} dS
o y,(Z-a) 0 )y-S,z



Ts = e (y) + {e (0) - e (0)} (aF)
s a s ay]y,z

z y

+ Jr e~(cd(~~J . dCL - f e;(s)(~~) dS
o y, (z- CL ) 0 Jy- s,z

where

Ta = air temperature

Ts = rock temperature

ea(z) = the inlet air temperature distribution

(function of time)

es(y) = the initial rock temperature distribution

(function of position)

F = the heat transfer function

Applicable derivatives of the heat transfer function are

developed from Nusselt's series expression for F:

F = I [l-e-Y • I yk][l_e- Z
• I ZkJ

n=O k=O k~ k=O k~

Explicitly, those derivatives are:

and
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~~ = (e-zJ (l_e-i } + I [l-e-Y I l] [zn]
J n=l k=Q k! n!

valid for Y r 0 and z r O.

Detailed flowcharts of each of the HOTROCKS routines

follow overleaf.
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Program Flowchart Descriptors

This section presents flowchart symbols with a detailed

explanation of the mnemonics necessary to understand the program flows

presented in the following appendix.

Four basic symbols are used:

C.....__T_E_R_M_IN_A_L )

STATEMENT

The terminal block designates the

beginning or end of a division of

the software (i.e., a routine).

Within the block is contained either

the word BEGIN or END and the soft

ware name of the diagrammed routine.

The statement block may contain

either a mathematical expression or

a logical statement. It may also

reference another flow diagram if

the software is designed to call

another routine at this location.

To indicate that another routine is

being called, the statement block

will contain the software name of

the called routine followed by a



CONDITIONAL >
I..-...--_~

brief description of the called

routine's function in parentheses.

The conditional (Le., "IF") state

ment transfers flow to another sec

tion of software, provided the con

dition within the block is met.

The symbo1 is used in two ways

dependent upon whether the decision

is an I F-THEN- ELSE type 0 r an I F

THEN (no explicit ELSE clause) type:

I 1£: P )I-QJ
This case has no explicit ELSE

clause. If P is true do Q, then

return to the next statement imm~

diately below the decision. NOTE:

Qmay be more than just a single

statement block.
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IF: P



OOLOOP >
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This case has an explicit ELSE

clause. If P is true do Q, if P is

not true do R, then return to the

next statement below the decision.

The DO loop is a special kind of

conditional statement which trans

fers flow to another section of

software for a prescribed number of

iterations or until a particular

test condition is met. There are

four distinct types of DO state

ment, described below:

I DO UNTIL: P~

Do Q, then check to see if P is true.

Continue to do Q until P is true,

then transfer to the next statement_

below the DO loop block.

DO WHILE: P~

If P is true, do Qo Continue to

check P, doing Q as long as P is

true; then transfer to the next

statement below the decision block.



DO FOR: ~ 1/
P=a TO b BY c~

Do Qwhile P increments from a to b

(each increment step = c), then

return to the next statement fol-

lowing the decision block.
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ROUTINE INPUT

( BEGIN INPUT

I
READ: ALL SCALAR
WORKING CONSTANTS
(TAMB, C, R, RHOF,
RHOS, CF, CS, F,
XBED, MAX HRS)

I
DO FOR: I = 1 TO READ: ALL CONSTANT
r4AX HRS INPUT VECTORS

I
(VT(!), TIN(!))

( END INPUT
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BEGIN CYCLE

DO FOR: IHRS=l
TO MAX HRS

END CYCLE

TS(N)=TAMB
TA(N)=TAMB

V=VT(IHRS)
THETA=TIN( IHRS)

~
c::
-i....
Z
IT'I

n
-<n
r
IT'I

1.0
\.0



A

IF: V=O

DO FOR: J=l TO
10 BY 1

DO FOR: K=l TO
10 BY 1

DO FOR: J=l
TO 10 BY 1

DO FOR: K=l
TO 10 BY 1

DO FOR: J=l
TO 10 BY 1

TSW( J)=TS(ll-J)

TS(K)=TSW(K)

TSNW(J)=TSNEW(ll-J)
TAW(J)=TANEW(ll-J)

TSNEW(K)=TSNW(K)
TANEW(K)=TAW(K)

TSNEW(J)=TS(J)
TANEW(J)=TA(J)

--'
a
o
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ROUTINE PRECOM

102

DO FOR: I = 1
TO 10 BY 1

X(N) = (N-l)*XBEO/9



ROUTINE COMPTA/COMPTS
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BEGIN COMPTA

I

y

= 8 -[8 -8 (0)] (aFJ. + J 8'(n) (laFt dn
A A SaZ z 2 azJ z

~/s 0 y-n s

)

DO FOR: I = 1 TA(I)=THETA-(THETA-TS(l ))*DFDZ(YT(I)sZ)
TO 10 +FITGL (TS sYT sZsH( 1))

I
END COMPTA )



ROUTINE DFDY

BEGIN DFDY(Y,Z)

Y=O T Y=l E-10

END DFDY Z=O T Z=l E-10

DELSO=l
N=l
SO=O
SI=l
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E

DO UNTIL: N>17
OR DELSO<l E-10

DFDY=EXP(-Y)*
((1- EXP (- Z) )+SO)

DFDY=O

SI=SI+(Z**N/IFACT(N))

SO=S)+(l-EXP(-Z)*SI)*(Y**N/IFACT(N))

DELSO=ABS((SO-SLD)/SO)



ROUTINE DFDZ

BEGIN DFDZ(Y,Z)
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V=O

Z=O

T

T

Y=l E-10

Z=l E-10

DELSO=l
N=l
SO=O
ST=l

DO UNTI L: N>17
OR DELSO<l E-10

DFDZ = EXP(-Z)*
((l-EXP( -'() )+SO)

E DFDZ=O

SI=SI+(V**N/IFACT(N»

DELSO=ABS((SO-SLD)/SO)



ROUTINE FITGL/SITGL

I=l
U=O
H(l )=Y

R(l ,1 )=H(l )/2*
(FINTGD(TS,YT,U,Z,Y)+
FINTGD(TS,YT,Y,Z,Y)
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T DO UNTIL: ABS(R(I-1,I-1)
-R(I-2, I-2) )<1 E-5

E DO UNTIL: ABS(R(I-1 ,I-1)
-R(I-2,I-2)/R(I-2,I-2))
<1 E-5



H(I)=0.5*H(I-l)
SUM=O

DO FOR: K=l TO
2**0-2) BY 1

DO FOR: J=2 TO
I BY 1

SUM=SUM+FINTGD((K-0.5)*H(I-l))

107



BEGIN FINTGD

FINTGD=DTHETA(S}
*DFDZ( (Y-S) ,Z}

END FINTGD

ROUTINE FINTGD/SINTGD

108



IF: S<YT(9)
AND S~YT(2)

ROUTINE DTHETA

T DTHETA=(TS(2)-TS(l ))/DY

DTHETA=(TS(l 0)-TS(9) )/DY

DTHETA=(TS(IDX+l )-TS(IDX-l))/(2*DY)

109

JE.: YTCI OX) <A
T

END DTHETA

DTHETA=(TS(IDX+l)-TS(IDX))/DY



ROUTINE IFACT

BEGIN IFACT (N)

110

DO FOR: I=1
TO N BY 1 I FACT=I FACT* I
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~LINES:5' FIELDATA
~@PRT,S SPSDATA.CYCLE

~FURPUR 27R3A E35 SL73Rl 05/13/81 16:56:15
~EJ5-N055'5-SPSDATA(1).CYCLE

~ 1 SUBROUTINE CYCLE(TAMB,MAXURS,VT,TIN,C,A,RHOF,RHOS,CF,CS,F,XBE
o,
~

~

~

2

3

,

!TAMAT , TSMAT)

DIMENSION VT(2'),TIN(2'),YT(10),TS(10),TA(10),YTW(10),TSW(10)

DIMENSION TSNEW(10),TANEW(10),TSNW(10),TAW(10) ,TAMAT(10,2')

~ 5

~ I)

~ 7

~ 8

~ 9

~ 10
~ 11

~ 12
~ 13
~ 1'1-

~ -OUTPUT

DIMENSION TSMAT(10,2')
00 1 N=1,10
TS(N)=TAMB
TtHN)=TAMB

1 CONTINUE

DO 2 IHRS=l,MAXHRS
C WRITE(I),99)

C 99 FORMAT(10X,'HELLO')
V=VT(IHRS)
THETA=TIN(IHRS)

INTERRUPT

--0

--0

N



~ 15
~ 16

~ 17

~ 18

~ 19

~ 20

~ 21

~ 22

~ 23

~ 2't
~ 25

~ 26

~ 27

~ 28

~ 29

~ 30

~ 31

~ 32

~ 33
~ 3 't
~·OUTPUT

IF(V .LE. 0.) GO TO 3

CALL PRECOM(C,A,RHOF,RHOS,CF,CS,F,V,XBEO,YT,Z)
CALL COMPTA(TS,YT,Z,THETA,TANEW)
CALL COMPTS(TS,YT,Z,THETA,TSNEW)

3 CONTINUE
IF(V .GE. 0.) GO TO 't
V=-V

CALL PRECOM(C,A,RHOF,RHOS,CF,CS,F,V,XBEO,YT,Z)
00 5 J=1,10
TSW (J) =T 5 ( 11- J)

5 CONTINUE
DO 6 K=1,10
TS(K)=TSW(K)

6 CONTINUE

CALL COMPTA(TS,YT,Z,THETA,TANEW)
CALL COMPTS(TS,YT,Z,THETA,TSNEW)
DO 7 J=1,10
TSNW(J)=TSNEW(ll-J)
TAW(J)=TANEW(ll-J)

7 CONTINUE
INTERRUPT

..........
w



~ 35 DO 8 K=l,10
~ 36 TSNEW(K)=TSNW(K)
~ 37 TANEW(K)=TAW(K)
~ 38 8 CONTINUE
~ 39 'I- CONTINUE
~ '1-0 IF(V .NE. 0.) GO TO 9
~ '1-1 DO 10 J=l,10
~ '1-2 TSNEW(J)=TS(J)
~ '1-3 TANEW(J)=TA(J)
~ '1-'1- 10 CONTINUE
~ '1-5 9 CONTINUE
~ '1-6 00111=1,10
~ '1-7 TAMAT(I,IHRS)=TANEW(I)
~ '1-8 TSMAT(I,IHRS)=TSNEW(I)
~ '1-9 TA(1)=TANEW(I)
~ 50 TS(1)=TSNEW(I)
~ 51 11 CONTINUE
~ 52 2 CONTINUE
~ 53 RETURN
~ 5'1- END
~DATA IGNORED - IN CONTROL MODE
~

'j

............
-1=>0



~@PRT,S SPSOATA.PRECOM
~EJ5-N055~5-SPSOATA(1).PRECOM

~ 1

~ 2

~ 3
~ . 't

~ 5

~ 6

~ 7
~ 8

~ 9
~ 10
~ 11
~

SUBROUTINE PRECOM(C,A,RHOF,RHOS,CF,CS,F,V,XBEO,YT,Z)
OIMENSION X(10),YT(10)
DO 1 N=1,10
X(N)=CN-1)-XBEO/9.

1 CONTINUE
DO 2 1=1,10
YTCI)=X(I)-C-A/(RHOF-CF-F-V)

2 CONTINUE
Z=3600.-C-A/(RHOS-CS-(1.-F»
RETURH
EHO

-'
-'
0"1



~

~EJ5-N@55~5-SPSOATA(1).COMPTA

~

~

~

~

»
~

~

~

~

1

2

3

~

5

6

7

SUBROUTINE COMPTA(TS,YT,Z,THETA,TANEW)
DIMENSION TS(1@),YT(1@),TANEW(10)
00 1 1=1,10
TANEW(I)=THETA-(THETA-TS(1»-OfDZ(YT(I),Z)+fITGl(TS,YT,Z,YT(I

1 CONTINUE
RETURN
END

-'
-'
O"l



1 CONTINUE
RETURN
END

5

6

7

~

~EJ5-N055~5-SPSoATA(1).CoMPTS

~ 1 SUBROUTINE COMPTS(TS,YT,Z,THETA,TSNEW)
~ 2 DIMENSION TS(10),YT(10),TSNEW(10)
~ 3 00 1 1=1,10
~ ~ TSNEW(I)=TS(I)+(THETA-TS(1»-oFoY(YT(I),Z)-SITGl(TS,YT,Z,YT(I
) )

~

~

~

~

............

.......



~@PRT,5 5P50ATA.OFOY

~FURPUR 27R3A E35 5L73R1 05/13/81 17:12:~5

~EJ5-N055~5-SPSOATA(1).OFOY

~ 1

~ 2

~ 3

~ ~

~ 5

~ 6

~ 7

~ 8

~ 9

~ 10
~ 11

~ 12
~ 13
~ 1~

~ 15
~ 16

~ 17

~ 18
~ -OUTPUT

FUNCTION DFDY(Y,Z)
OFDY=0.
IF(Y .NE. 0.) GO TO 2
Y=1.E-10

2 CONTINUE

IF(Z .NE. 0.) GO TO 3

Z=1.E-10
3 CONTINUE

DEL50=1.
N=1
50=0.
51 =1.

~ CONTINUE

SI=SI+(Z--N/IFACT(N»
5LO=50

SO=SO+(1.-EXP(-Z)-5I)-(Y--N/IFACT(N»
N=N+1
DEL50=AB5(50-SLO)

INTERRUPT

........
co
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~@PRT,S SPSDATA.DFDZ

~FURPUR 27R3A E35 SL73R1 05/13/81 17:1~:~1

~EJ5-N055~5-SPSDATA(1).DFDZ

~ 1

~ 2

~ 3

~ ~

~ 5

~ 6

~ 7

~ 8

~ 9

~ 10
~ 11

~ 12
~ 13
~ lit

~ 15
~ 16

~ 17
~ 18
~ -OUTPUT

FUNCTION DFDZCY,Z)

DFOZ=0.

IFCY .Ea. 0.. AND. Z .Ea. 0.) GO TO 1

IFCY .NE. 0.) GO TO 2

Y=1.E-10

2 CONTINUE

IFCZ .NE. 0.) GO TO 3

Z=1.E-10

3 CONTINUE

OEL50=1.

N=1
50=0.
51 =1.

~ CONTINUE

5I=5I+CY--N/IFACTCN»

5LD=50

50=50+C1.-EXPC-Y)-5I)-CZ--N/IFACTCN»

N=N+1
INTERRUPT

--'
N
a



~

~ 19

~ 20

~ 21

~ 22

~ 23

~ 2 It

~ 25

~OATA IGNOREO
~

OELSO=ABS(SO-SLD)
IF(ABS(SO) .GT. 1.) DELSO=OELSO/ABS(SO)
IF(OELSO .GT. 1.E-10 .ANO. N .LT. 13) GO TO It

OFOZ=EXP(-Z)-«l.-EXP(-Y»+SO)
1 CONTINUE

RETURN
ENO

- IN CONTROL MOOE

--'
N
--'



~FURPUR 27R3A E35 SL73R1 05/13/81 17:16:38
~EJ5-N055~5-SPSOATA(1).FITGL

~ 1

~ 2

~ 3

~ ~

~ 5

~ 6

~ 7

~ 8

~ 9

~ 10
~ 11

~ 12
~ 13
~ n
~ 15
~ 16
~ 17
~ 18
~ 19

~-OUTPUT

FUNCTION FITGL(TS,YT,Z,Y)
DIM EN 5ION T5 ( 10) , YT ( 10) , R<12 , 12) , H( 12 )
1=1
U=0.0
H(1)=Y

R(1,1)=H(1)/2.-CFINTGOCTS,YT,U,Z,Y)+FINTGOCTS,YT,Y,Z,Y»
1=1+1

C BEGIN '00 UNTIL' CONSTRUCT 1
1 CONTINUE

HCI)=HCI-1)/2.
SUM=0.
KN=2--(!-2)
00 2 K=1,KN
WY=(K-0.5)-HCI-1)

SUM=SUM+FINTGOCTS,YT,WY,Z,Y)
2 CONTINUE

RCI,1)=0.S-(RCI-1,1)+HCI-1)-SUM)
00 3 J=2,I

RCI,J)=(2--C2-CJ-1»-RCI,J-1)-RCI-1,J-1»/(2 __ C2_CJ-1))-1)
INTERRUPT

N
N



~

~ 20
~ 21
~ 22
~ 23

~ 2't

~ 25 C
~ 26

~ 27

~ 28

~DATA IGNORED
~

3 CONTINUE
1=1+1
DET=ABS(R(I-1,I-1)-R(I-2,1-2»
1F(ABS(R(I-2,I-2» .GT. 1.) DET=DET/ABS(R(1-2,I-2»
IF(DET .GE. 1.E-05 .AND. I .LT. 12) GO TO 1

END 'DO UNTIL' 1
FITGL=R(I-1,I-l)
RETURN
END

- IN CONTROL MODE

.......
N
W



C. EJ5-N055't5-SPSOATA (1) .SITGL

~ 1~ FUNCTION SITGL(TS,YT,Z,Y)
~ 2 OIMENSION TS(10),YT(10),R(12,12),H(12)
~ 3 1=1
~ 't U=0.0
~ 5 H(l)=Y

~ bo R(1,1)=H(1)/2.-(SINTGO(TS,YT,U,Z,Y)+SINTGO(TS,YT,Y,Z,Y»
~ 7 1=1+1

~ 8 C BEGIN '00 UNTIL' CONSTRUCT 1
~ 9 1 CONTINUE
~ 10 H(I)=H(I-l)/2.
~ 11 SUM=0.
~ 12 KN=2--(I-2)
~ 13 00 2 K=l,KN
~ 1't WV=(K-0.5)-H(I-l)

~ 150 SUM=SUM+SINTGO(TS,YT,WV,Z,Y)
~ 16 2 CONTINUE

~ 17 R(I,1)=0.5-(R(I-l,1)+H(I-1)-SUM)
~ 18 00 3 J=2,I

~ 19 R(I,J)=(2--(2-(J-l»-R(I,J-l)-R(I-1,J-1»/(2 __ (2_(J-l))-1)
~ 20 3 CONTINUE
~-OUTPUT INTERRUPT

......
N
-t:o



~

~ 21
~ 22
~ 23

~ 21t

~ 25 C
~ 26"

~ 27

~ 28

~ OATA I GNOREO
~

1=1+1
OET=ABS(R(I-1,I-1)-R(I-2,I-2»
IF(ABS(R(I-2,I-2» .GT. 1.) OET=OET/ABS(R(I-2,I-2»
IF(OET .GE. 1.E-05 .ANO. I .LT. 12) GO TO 1

ENO '00 UNTIL' 1
SITGL=R<I-1,I-1)
RETURN
ENO

- IN CONTROL MOOE

-N
U1



~

~FURPUR 27R3A E35 SL73R1 0~/16/81 21:10:23
~EJ5-N055~5-SPSOATA(1).FINTGO

~ 1 FUNCTION FINTGO(TS,YT,S,Z,Y)
~ 2 OIMENSION TS(10),YT(10)
~ 3 FINTGO=OTHETA(TS,YT,S)-OFOZ«Y-S),Z)
~ ~ RETURN
~ 5 ENO
~

~EJ5-N055~5-SPSOATA(1).SINTGO

~ 1 FUNCTION SINTGO(TS,YT,S,Z,Y)
~ 2 OIMENSION TS(10),YT(10)
~ 3 SINTGO=OTHETA(TS,YT,S}-OFOY«Y-S),Z)
~ ~ RETURN
~ 5 ENO
~

.....
N
0'1



~EJ5-N055~5-TPFS(0).OTHETA

~ 1 FUNCTION OTHETA(TS,YT,S)
~ 2 OIMENSION TS(10),YT(10)
~ 3 OY=YT(2)-YT(1)
~ ~ IF(S .GE. YT(2» GO TO 1
~ 5 OTHETA=(TS(2)-TS(1»/OY
~ £) 1 CONTINUE
~ 7 IF(S .LE. YT(9» GO TO 2
~ 8 OTHETA=(TS(10)-TS(9»/OY
~ 9 2 CONTINUE
~ 10 IF(S .GT. YT(9) .OR. 5 .LT. YT(2» GO TO 3
~ 11 X=S/OY
~ 12 IOX=INT(X)+1
~ 13 IF(YT<IOX) .NE. 5) GO TO ~

~ n OTHETA=(TS(IOX+1)-TS(IOX-1»/(2.-OY)
~ 15 ~ CONTINUE
~ 16 IF(YT<IOX) .GE. 5) GO TO 5
~ 17 OTHETA=(TS(IOX+1)-TS(IOX»/OY
~ 18 5 CONTINUE
~ 19 3 CONTINUE
~ 20 RETURN
~ 21 ENO
~

N
""-J



~@PRT,S IFACT
~FURPUR 27R3A E35 SL73R1 03/10/81 17:~0:23

~EJ5-N055~5-TPFS(0).IFACT

~ 1 FUNCTION IFACTCN)
~ 2 IFACT=1
~ 3 IFCN .EQ. 0) GO TO 1
~ ~ 00 2 I=1,N
~ 5 IFACT=IFACT-I
~ 6 2 CONTINUE
~ 7 1 CONTINUE
~ 8 RETURN
~ 9 END
~

.....
N
co



~

~EJ5-Ne55~5·SPSDATA(1).OUTPRT

~ 1 SUBROUTINE OUTPRT(VT,TIN,TAMAT,TSMAT,MAXHRS,C,A,RHOr,RHOS,CF,

~

~

~

~

~

~

~

o
~

~

~

~

~

~

2

3

~

5

6

7

8

9

1e
11

12
13
n

1CS,F,XBED,TAMB)
DIMENSION TAMAT(1e,2~),TSMAT(1e,2~),VT(2~),TIN(2~)

WRITE (6,99)
99 FORMAT('1',8X,'AIR AND ROCK TEMPERATURE PROFILE FOR EACH HOUR

1 PERIOD, ON AN HOURLY BASIS, GIVEN THE LISTED PARAMETERS',///

29X, 'TIME' ,3X, 'MODE' ,2X, 'VEL' ,2H, 'INPUT TEMP' J 3H J 'TOP .

3 AIR TEMPERATURE PROFILE BOTT

~M ' J /)

001I=1,MAHHRS
MOOE=e
IF(VT(J) .GT. e.) MODE=+1
IF(VT(J) .LT. e.) MODE=-1
ZW=I

......
w
o



~ 15

~ 16

~ 17

~ 18
~ 19
~ 20
~ 21
~ 22
~ 23
~ 2't

~ 25

~ 26
~ 27
~ 28
~ 29
~ 30

WRITE(6,98) ZW,MODE,VT(I),TIN(I),TAMAT(1,I),TAMAT(2,I),TAMAT

1(3,I),TAMAT('t,I),TAMAT(5,I),TAMAT(6,I),TAMAT(7,I),TAMAT(8,I)

2,TAMAT(9,I),TAMAT(10,I)
98 fORMAT(8X,f5.2,'tX,I2,lX,f6.3,2X,f6.2,5X,10(f6.2,2X),/)

1 CONTINUE
WRITE (6,97>

97 fORMAT(25X,'MODE KEY: 0=Off, 1=SOLAR LOOP ON, -1=OUTPUT
1 L00P ON', / , , 1' )
WRITE(6,96)

96 fORMAT(9X,'TIME',3X,'MOOE',2X,'VEL',2X,'INPUT TEMP',3X,'TOP

1 ROCK TEMPERATURE PROfILE .

2 BOTTOM',/)
DO 2 I=1,MAXHRS
MODE=0
If(VT(J) .GT. 0.) MODE=1
If(VT(J) .LT. 0.) MODE=-l

W
".....
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PRECOM TEST

This routine verifies that PRECOM is correctly calculating

both the bed segment lengths and the 'V' transformed equivalent values

of bed length.

CODE DIMENSION X(10),VT{10)
DATA K/l./,A/2./,RHOF/3./,RHOS/4./,CF/3./,CS/2./,F/

2.5/,V/l./,XBED/2./
CALL PRECOM (K,A,RHOF,RHOS,CF,CS,F,V,XBED,VT,Z)
DO 1 1=1,10
WRITE (6,99)I,VT{I)

99 FORMAT {lX,'I= ',I3,5X,'V= ',lX,Ell.4}
1 CONTINUE

WRITE {6,98}Z
98 FORMAT {lZ,'Z= ',lX,E11.4}

STOP
END



134

CYCLE TEST

The following program and its given supporting subroutines

will test all the logic paths contained in the routine CYCLE. Unique

answers for TA and TS will be supplied for the V > 0, V < 0, and

V = a cases.

DIMENSION VT(6),TIN(6),TAMAT(10,6)TSMAT(10,6)
DATA TAMB/20./MAXHRS/6/VT/.5,.5,0.,0,-.5,-.5/TIN/6*70./
DATA C/l./A/2./RHOF/3./RHOS/4./CF/3./CS/2./F/.5/XBED/2./
CALL CYCLE (TAMB,MAXHRS,VT,TIN,C,A,RHOF,RHOS,CF,CS,F

2XBED,TAMAT,TSMAT
DO 1 I=l,MAXHRS
DO 2 J=l,lO
WRITE (6,99)I,J,TAMAT(J,I),TSMAT(J,I)

99 FORMAT (lX,'HR. ' ,lX,I3,2X'BED SEG.',lX,i3,2X,'TA',lX,
2F7.3,2X,'TS',lX,F7.3)

2 CONTINUE
1 CONTINUE

STOP
END

SUBROUTINE PRECOM (C,A,RHOF,RHOS,CF,CS,F,V,XBED,YT,Z)
DIMENSION YT(10)
DO 1'1=1,10
YT(I)=lO.*I

1 CONTINUE
Z=lO.
RETURN
END

SUBROUTINE COMPTA (TS,YT,Z,THETA, TANEW)
DIMENSION TS(lO),YT(lO),TANEW(lO)
DO 1 1=1,10
TANEW(I)=(TS(I)*YT(I)/Z)+THETA

1 CONTINUE
RETURN
END

SUBROUTINE COMPTS (TS,YT,Z,THETA,TSNEW)
DIMENSION TS(lO),YT(lO),TSNEW(lO)
DO 1 1=1,10
TSNEW(I)=(TS(I)*YT(I))/(2*Z)+THETA

1 CONTINUE
RETURN
END
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DFDY/DFDZ TEST

This test routine will calculate values of aF/aY for a range

of Y and Z input values, using the function DFDY. Since the analyt

ical form of aF/aY is so complex, a complete verification of the

routine is not possible. Rather this test evaluates DFDY at enough

different values of Y and Z to allow an assessment of the reasonableness

of the routine DFDY.

CODE DO 1 1=1,5
DO 2 J=1,5
Y=10.**(J-3)
Z=10.**(I-3)
ANS=DFDY(Y,Z)
WRITE (6,99)Y,Z,ANS

99 FORMAT (5X,F7.3,5X,F7.3,5X,E22.l4)
2 CONTINUE
1 CONTINUE

Y=O.
Z=O.
ANS=DFDY(Y,Z)
WRITE (6,99)Y,Z,ANS
STOP
END

.
(INSERT DYDY,IFACT)

NOTE: The same test program may be used for DFDZ, by simply changing
DFDY to DFDZ in the above code.



136

FITGL TEST

The routine FITGL (and its complement for rock temperature,

SITGL) is nothing more than an integration routine. As such, it

should supply reasonable values when used to integrate several common

functions. This routine has FITGL perform the integral of three common

functions, a straight line, an exponential and a sinusoid over three

different intervals.

FINTGD

70

25

F

70

25

F

70

25

1 Y
Function A

FINTGD=-4.5Y+70

1 Y 1 Y
Function B Function C

F=7l.2e-· 1Y-l.2 F=22.5 cos .3l42Y+47.5

CODE DIMENISON TS(10),YT(10),Y(3)
DATA TS/10*1./YT/10*1/Y/1.,3.,10./Z/1.0/
ANS1=FITGL(TS,YT,Z,Y(1))
ANS2=FITGL(TS,YT,Z,Y(2))
ANS3=FITGL(TS,YT,Z,Y(3))
WRITE (6,99)Y(1),ANS1,Y(2),ANS2, Y(3),ANS3

99 FORMAT (lX,F6.2,5X,E10.3,10X,F6.2,5X,E10.3,10X,F6.2,5X,E10.3)
STOP
END
(INSERT FITGL AND APPROPRIATE FINTGD)

TEST FCN #1 FUNCTION FINTGD(TS,YT,S,Z,y)
DIMENSION TS(10),YT(10)
FINTGD=-4.5*S+70.
RETURN
END



TEST FCN #2 FUNCTION FINTGD{TS,YT,S,Z,Y)
DIMENSION TS{lO),YT{lO)
FINTGD=71.2*EXP{-O.1*S)-1.2
RETURN
END

TEST FCN #3 FUNCTION FINTGD{TS,YT,S,Z,Y)
DIMENSION TS{lO),YT{lO)
FINTGD=22.5*COS{O.3142*S)+47.5
RETURN
END

137
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DTHETA TEST

In order to test DTHETA, a routine has been structured to

accept as input ten values of Ts assuming a linear temperature distri

bution and ten values of Ts assuming a cosine function distribution.

(see figures). These input data are similar to the data that will

actually be supplied to DTHETA within the running of HOTROCKS o

CODE DIMENSION TS(l 0), YT(l 0) ,SOUT(l3)
DATA YT/0.,0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8/

FOR LIN -+- DATA TS/70.,65.,60.,55.,50.,45.,40.,35.,30.,25./ +
FOR COS -+- DATA TS/70.,68.6,64.7,58.7,51 ,3,43.5,36 0 1,30.2,26.3,25./ +

DO 1 J=l,19
S=(O.l ,*J)-O.l
ARG=DTHETA(TS,YT,S)
WRITE (6,99)S,ARG

99 FORMAT (5X,'Y= I, F5.2,10X,'DTHETA= ',E12.4)
1 CONTINUE

STOP
END

81 INPUT EXPECTED

82
Y e &'"

I 0 70 -25-4--
83 I I 0.2 65 -25

I , 0.4 60 -25
I I 0.6 55 -25

8.
,

I 0.8 50 -251 -r-,----
1.0 45 -25I I

I I 1.2 40 -25
I I 1.4 35 -25

810
I , I 1.6 30 -25-I--r----r----- 1.8 25 -25
I I I I
I I I I Add.
I I Test:I I I I
I I I

0.1 -25
Y2 Y3 Y. . Y10 1.1 -251

1.7 -25
Linear Test

-25y + 70 = 8
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INPUT EXPECTED
Y 0 0'

0 70. 0
0.2 68.6 -13.4
0.4 64.7 -25.2
0.6 58.8 -34.0
0.8 51.4 -38.7
1.0 43.6 -38.7
1.2 36.3 -34.0
104 30.3 -25.3
1.6 26.4 -13.5
1.8 25. 0

Cosine Test
22.5 cos/.745y + 47.5 = 0

Add.
Test:

0.1

1.1
1.7

same as
Y=O

-36.9
same as

Y=1.8



IFACT TEST

The following code is used as a test program for IFACT. It

will output a list of integer numbers corresponding to the factorial

of input N, where N shall range from 0 to 20. Values of IFACT for

N > 20 will not be needed for HOTROCKS. This test shall also serve

to demonstrate the limitations particular computers may have in

handling integer arithmetic. Validity of output will be confirmed

by comparing to known factorial integers.

CODE DO 1 N=0,20
IF=IFACT(N)
WRITE (6,99)N,IF

99 FORMAT (10X,I2,5X,I30)
1 CONTINUE

STOP
END

(INSERT FUNCTION IFACT)

140
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