
RSA, Public-Key Cryptography, and

Authentication Protocols

by

Moriah E. Wright

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in the

Mathematics

Program

YOUNGSTOWN STATE UNIVERSITY

May, 2012

RSA, Public-Key Cryptography, and Authentication Protocols

Moriah E. Wright

I hereby release this thesis to the public. I understand that this thesis will be made

available from the OhioLINK ETD Center and the Maag Library Circulation Desk

for public access. I also authorize the University or other individuals to make copies

of this thesis as needed for scholarly research.

Signature:

Moriah E. Wright, Student Date

Approvals:

Jacek Fabrykowski, Thesis Advisor Date

Thomas Smotzer, Committee Member Date

George Yates, Committee Member Date

Peter J. Kasvinsky, Dean of School of Graduate Studies & Research Date

c©
Moriah E. Wright

2012

ABSTRACT

In the modern electronic age, secure communication is vital to the efficient workings
in all areas of life. From governmental proceedings and military devices to personal
banking and email, securely communicating between parties has become a necessity
that has furthered research in the field of cryptography. This thesis is an introduc-
tion to a particular type of cryptography, public-key cryptography, and examines the
basics of RSA and ElGamal cryptosystems. Worked-out examples for these types of
encryption, decryption and authentication protocols are explored, as well.

iv

Contents

1 Background 1
1.1 Theorems and Definitions . 1
1.2 Useful Algorithms . 3

2 The Discrete Log Problem 6
2.1 Silver-Pohlig-Hellman Algorithm . 7

3 Public-Key Cryptosystems 8
3.1 Symmetric vs. Asymmetric Systems 8
3.2 Diffie-Hellman Key-Exchange . 9
3.3 RSA Cryptography . 11

3.3.1 RSA Encryption Example . 12
3.3.2 Attacks on RSA . 15
3.3.3 RSA Authentication Protocol 16

3.4 ElGamal Public Key Cryptographic System 18
3.4.1 ElGamal Example . 19
3.4.2 ElGamal Authentication Protocol 21

3.5 Massey-Omura Cryptosystem . 22

4 Difficulty of Factorization 23
4.1 Quadratic Sieve . 23
4.2 Running Time of Computing Discrete Logs 24

5 References 26

v

1 Background

History is saturated with the need and solution to implementing secure and private
communications between different parties. From the ancient Roman emperor’s in-
famous encryption of military strategy using the “Caesar cipher” to the encrypting
of transaction and communications in the modern electronic age, there is a need to
protect information from those with malicious intent.

Even with the best precautions, it is difficult to maintain secrecy and security when
there are many parties involved in the ring of communication. Thus, it is the goal
of modern encryption to reduce the number of components of the cryptosystem that
must be kept confidential and rely more heavily on the difficulty - even infeasibility
- of decryption given modern computing capabilities. As advances in mathematical
techniques and hardware are made in the coming years, encryption methods need to
be adapted to ensure continued security.

The branch of modern cryptography known as “public-key cryptography” is explored
in this paper with the intent of providing an deeper look at the mathematical pro-
cesses implemented in the encryption and authentication of messages. Sophisticated
software and significantly larger values are used in practice with these encryption
schemes, but for illustration in this paper, we will use unrealistically small examples.

Before proceeding any further, I would like to introduce to you Alice and Bob, our
friends who wish to send messages to each other in a secure manner. Eve is the
malicious eavesdropper who is persistently trying to intercept and decipher Alice and
Bob’s messages. These three will be very familiar characters in the “stories” of the
following pages.

1.1 Theorems and Definitions

The theory behind encryption is heavily rooted in the field of number theory and
abstract algebra. Many of the concepts and computations stem from the definitions
and theorems below.

Definition 1 (Divisibility). An integer a �= 0 divides b if b
a
∈ Z, that is, b = ka for

some k ∈ Z. We denote it by a | b; otherwise, a � b.

Theorem 1 (The Division Algorithm). Let a, b ∈ Z, a > 0 and b ≥ a. Then, there
exist unique integers q and r with 0 ≤ r < a such that b = aq + r.

Theorem 2 (The Euclidean Algorithm). Let a, b ∈ Z, (a ≥ b > 0), and set a =
r−1, b = r0. By repeatedly applying the Division Algorithm, we get rj−1 = rjqj+1+rj−1

1

with 0 < rj+1 < rj for all 0 ≤ j < n, where n is the least nonnegative integer such
that rn+1 = 0, in which case gcd(a, b) = rn.

Theorem 3 (The Chinese Remainder Theorem). Let ni ∈ N for natural numbers
i ≤ k ∈ N be pairwise relatively prime, set n =

∏k
j=1 nj and let ri ∈ Z for i ≤ k.

Then the system of k simultaneous linear congruences given by:

x ≡ r1 mod n1,

x ≡ r2 mod n2,

...

x ≡ rk mod nk,

has a unique solution modulo n.

Definition 2 (Euler’s φ-Function). For any n ∈ N the Euler φ-function, also known
as Euler’s Totient, φ(n), is defined to be the number of m ∈ N such that m < n and
gcd(m, n) = 1 For a prime p, φ(p) = p − 1.

Definition 3 (Order). Let m be a positive integer and suppose that gcd(a, m) = 1.
The order of a modulo m, denoted by ord a, is the smallest positive integer h such
that ah ≡ 1 mod m.

Theorem 4. Let m be a positive integer and suppose that gcd(a, m) = 1.

1. as ≡ 1 mod m if and only if (ord a)|s. In particular, (ord a)|φ(m).

2. as ≡ at mod m if and only if s ≡ t (mod ord a).

Definition 4 (Primitive Root). Let m be a positive integer, and suppose that gcd(a, m) =
1. If the order of a mod m is φ(m), then a is called a primitive root of m.

Theorem 5. If gcd(g,m) = 1, then g is a primitive root of m if and only if

gφ(m)/q �= 1 mod m

for every prime divisor q of φ(m).

Theorem 6 (Euler Theorem). Let a, m ∈ N. If gcd(a, m) = 1, then

aφ(m) ≡ 1 mod m.

Theorem 7 (Fermat’s Little Theorem). Let p be prime and suppose p � a. Then
ap−1 ≡ 1 mod p. Equivalently, if a is any integer, then ap ≡ a mod p.

2

Definition 5 (Modular Order of an Integer). Let m ∈ Z, n ∈ N and gcd(m, n) = 1.
The order of m modulo n is the smallest e ∈ N such that me ≡ 1 mod n, denoted by
e = ordn(m), and we say that m belongs to the exponent e mod n.

Theorem 8. If k = ordna, then the integers a, a2, a3, ..., ak = 1 are all incongruent
modulo n.

Definition 6. If gcd(a, n) = 1, and a has order φ(n), then a is called a primitive
root modn. It is a generator of Z∗n.

Theorem 9. If integer n has a primitive root, then it has exactly φ(φ(n)) of them.

Theorem 10. The only integers that have primitive roots are: pα, 2pα, 2, 4 where p
is an odd prime.

Theorem 11 (Corollary). There are φ(p − 1) incongruent primitive roots modulo p.

Theorem 12. If gcd (g,m) = 1, then g is a primitive root of m if and only if

g
φ(m)

q �≡ 1 mod m

for every prime divisor q of φ(m).

1.2 Useful Algorithms

Changing Between Different Bases

Much of the processes involved in cryptosystems involve changing a block of plain-
text from base 26 (since there are 26 letter in the English alphabet) to base 10 (the
base of our standard number system) and vice versa. The process below describes
changing a number, n, from base 10 into base b.

Using the Division Algorithm, we find the quotients and remainders when dividing
by b until we have a quotient of 0. For the sake of this example, let’s assume that
four iterations had to be performed until a quotient of 0 was achieved.

n = q1 · b + a1

q1 = q2 · b + a2

q2 = q3 · b + a3

q3 = 0 · b + a4

3

Now, we substitute back in each quotient:

n = q1b + a1

= (q2b + a2)b + a1

= ((q3b + a3)b + a2)b + a1

= (((0 · b + a4)b + a3)b + a2)b + a1

Simplifying, we get

n = (((0 · b + a4)b + a3)b + a2)b + a1

= ((0b2 + a4b + a3)b + a2)b + a1

= (0b3 + a4b
2 + a3b + a2)b + a1

= 0b4 + a4b
3 + a3b

2 + a2b + a1

= a4b
3 + a3b

2 + a2b + a1

Thus, a number n in base 10 can be written as (a4 a3 a2 a1)b in base b.

The Repeated Squaring Method for Modular Exponentiation

In theory, we can perform any calculations we wish. However, we are often lim-
ited by the computational power at our disposal. Exponentiation is one of the most
common calculations involved in encryption processes. Even with most powerful com-
puters of today, the task of exponentiation modulo n would overflow the memory of
most supercomputers. Thus, methods for efficiently computing modular exponentia-
tion must be implemented. One of the most useful methods, the Repeated Squaring
Method, is discussed below. We can efficiently square and reduce modulo n using the
algorithm described below to compute the least positive residue modulo n.

Repeated Squaring Method for Modular Exponentiation

We compute br mod n for b, r, n ∈ N as follows. First, write r in its binary (base 2)
representation:

r =
k∑

j=0

aj2
j.

We wish to calculate c ≡ br (mod n) in a stepwise fashion as follows.

4

Initial step: Set b0 = b and

c =

{
1, if a0 = 0,
0, if a0 = 1.

Perform the following step for each j = 1, 2, . . . , k:

j-th Step: Calculate the least nonnegative residue, bj, of (bj−1)
2 mod n. If aj = 1,

then replace c by c · bj, and reduce modulo n. If aj = 0 leave c unchanged. What is
achieved at the jth step is the computation of

cj ≡ brj (mod n),

where cj is the least nonnegative residue of brj modulo n, and

rj =

j∑
i=0

ai2
i.

Hence, at the kth step, we have calculated c ≡ br (mod n).

Example using repeated squaring method

We wish to compute 361 mod 101. For this relatively small exponentiation, 361 is
already a thirty-digit number. To compress the size of computations such as this, we
use the repeated squaring method. First, we write 61 in its binary representation:

61 = 2 · 30 + 1

30 = 2 · 15 + 0

15 = 2 · 7 + 1

7 = 2 · 3 + 1

3 = 2 · 1 + 1

1 = 2 · 0 + 1

Thus, the binary representation of 361 is:

61 = (1 1 1 1 0 1)2

= 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 25 + 24 + 23 + 22 + 1

Thus, 361 mod 101 = 31+22+23+24+25
mod 101.

5

31 ≡ 3 mod 101

322 ≡ (32)2 ≡ 92 ≡ 81 mod 101

323 ≡ ((32)2)2 ≡ (81)2 ≡ (−20)2 ≡ −4 mod 101

324 ≡ (323

)2 ≡ (−4)2 ≡ 16 mod 101

325 ≡ (324

)2 ≡ (16)2 ≡ 54 mod 101

Therefore,
361 ≡ 31 · 322 · 323 · 324 · 325

≡ (3)(81)(−4)(16)(54) mod 101

≡ −94 mod 101

≡ 7 mod 101.

2 The Discrete Log Problem

The security of many of the algorithms involved in encryption rely on the predicted
difficulty in solving a problem known as the discrete log problem (DLP).

Generalized Discrete Logarithm Problem: Given a finite cyclic group, G, of order
n ∈ N, a generator α of G, and an element β ∈ G, find that unique nonnegative
integer e ≤ n − 1 such that αe = β.

The Discrete Logarithm Problem: Finding a unique nonnegative integer e ≤ p−2
such that c ≡ me (mod p) given integers m, c, and prime p,

e ≡ logm (c) mod p. (1)

If the modulus p is chosen properly (a rather ambiguous criterion), the discrete
log is very difficult to solve. As computer software advances, the size of the modulus
p has to be increased to maintain the difficulty of solving the problem. With current
methods and computing capabilities, if p has more than 308 digits (1024 bits) and
p− 1 has at least one large factor (another seemingly arbitrary criterion), then p has
been properly chosen. We choose p in this way since the following algorithm can
efficiently calculate discrete logs when p − 1 has only small prime factors.

6

2.1 Silver-Pohlig-Hellman Algorithm

Silver-Pohlig-Hellman Algorithm for Computing Discrete Logs

Let α be a generator of F∗p and let β ∈ F∗p and assume that we have a factorization:

p − 1 =
r∏

j=1

p
αj

j ,

αj ∈ N, where pj are distinct primes. We compute e = logα β by computing e
mod p

αj

j for j = 1, 2, . . . , r, and apply the Chinese Remainder Theorem.

Pohlig-Hellman Symmetric-Key Exponentiation Cipher

• A secret prime p and a secret enciphering key, e ∈ N with e ≤ p− 2 are chosen.

• A secret deciphering key d is computed via ed ≡ 1 (mod p − 1).

• Encryption of of plaintext message units m is accomplished via c ≡ me (mod p).

• Decryption is achieved via m ≡ cd (mod p).

7

3 Public-Key Cryptosystems

3.1 Symmetric vs. Asymmetric Systems

As mentioned in the introduction, message encryption is not a new art. In the mes-
sages pertaining to military strategy sent from Julius Caesar to his generals, known
as the “Caesar cipher”, an algorithm known as a “shift cipher” (a type of substitution
cipher) was used. This is one of the simplest encryption techniques. In this method,
each letter of the plaintext is replaced with a letter a fixed number of positions further
down the alphabet. The decryption of the message is achieved by simply shifting the
letters a fixed number of positions in the opposite direction. This is an example of
a symmetric-key algorithm in which the key for enciphering the plaintext and deci-
phering the ciphertext are trivially related (or even identical). In modern practice,
the Caesar cipher offers essentially no communication security.

Before sending messages to each other using a symmetric cipher, Alice and Bob must
first decide and agree on their secret key, k. This is feasible if they are able to meet
face-to-face or use another secure channel rather than communicating their secret key
over an insecure channel. This may not always be feasible, however, and the ever-
vigilant Eve will snatch the opportunity to intercept any insecure communication.
Thus, in this electronic age, a system which does not rely on insecure communication
of private keys - an asymmetric encryption system - must be developed.

An non-mathematical example of public-key cryptography is to visualize a safe in the
middle of a public park. Alice is the only one who owns a key to this safe, which locks
as soon as the door is closed. She leaves the safe open so that anyone who wishes
may place a message into this safe, then close the door. Once someone, such as Bob,
puts his message into the safe, only Alice can retrieve the message using her private
key. The encryption process is the process of putting the message in the open safe
and shutting the door - the public key (open door) is available for anyone. The de-
cryption algorithm is the process of opening the safe with the key, owned only by Alice.

So now we examine the formulation of an asymmetric cipher. We have the spaces
of keys K, plaintext M, and ciphertexts C. Each key is comprised of two parts,
k = (kpriv, kpub), known as the private key and public key, respectively. For each
public key, there is an encryption function

ekpub
: M −→ C,

8

and for each private key, there is a decryption function

dkpriv
: C −→ M.

We must have the property that if k ∈ K, then

dkpriv
(ekpub

(m)) = m ∀m ∈ M.

To ensure security, it must be difficult for Eve to be able to compute dkpriv
(c) even with

knowledge of and access to kpub. This “trapdoor function” scheme allows the public
key to be communicated between Alice and Bob over an insecure channel without the
integrity of the message being compromised.

The effective implementation of a public-key cryptographic system relies on the
effectiveness of a one-way function.

Definition 7 (One-way Functions). A one-way function f is a function from a set
M of plaintext to a set C of ciphertext where computing f(m) = c for any m ∈ M
is mathematically “easy” but finding f−1(c) = m for a c ∈ C is computationally
infeasible.

m ∈ M f(m) ∈ C

easy

hard

A cryptosystem consisting of a set of enciphering transformations {Ee} and a set
of deciphering transformations {Dd} is called a Public-key Cryptosystem if, for each
pair (e, d), the enciphering key e, called the public key, is made publicly available,
while the deciphering key d, called the private key, is kept secret. The cryptosystem
must satisfy the property that it is computationally infeasible to compute d from e.

3.2 Diffie-Hellman Key-Exchange

In their 1976 paper, “New Directions in Cryptography”, Whitfield Diffie and Martin
Hellman outlined an effective implementation of an asymmetric cryptosystem. Rely-
ing on sheer difficulty of solving the discrete logarithm problem, the Diffie-Hellman

9

key-exchange solves the problem of sending secure information over an insecure chan-
nel.

Alice and Bob want to share messages over an insecured channel. They agree on a
large prime p and an integer g mod p of F∗p (2 ≤ g ≤ p − 2). Alice chooses a secret
integer a and privately computes A ≡ ga mod p while Bob chooses a secret integer
b and privately computes B ≡ gb mod p. Alice sends A to Bob and Bob sends B to
Alice.

Alice then privately computes B
′ ≡ Ba mod p and Bob privately computes A

′ ≡
Ab mod p. Note that A′ and B′ are actually equal since

A′ ≡ Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab ≡ B′ mod p.

The value A′ ≡ B′ is the shared secret key. Below is a description of the exchange.

Public:
p, g

Alice
A ≡ ga mod p

Bob
B ≡ gb mod p

Alice
Ba ≡ B′ mod p

Bob
Ab ≡ A′ mod p

Shared key
A′ ≡ B′

Alice sends A to Bob.

Bob sends B to Alice.

10

Suppose that Eve observes the exchange of A and B between Alice and Bob over an
insecured channel. The only way that Eve could decipher the secret key A′ ≡ B′ is
to compute

ga ≡ A mod p or gb ≡ B mod p

without knowledge of a or b. Eve could feasibly compute all possible powers of g
modulo p to find A′ ≡ B′ if g and p are small enough. Thus, it is recommended to
choose the prime p as a number of approximately 1000 bits (p ≈ 21000). If Eve can
solve the DLP, she could easily solve this problem. However, Eve is faced with an
easier problem of solving what is known as the Diffie-Hellman Problem.

Theorem 13 (Diffie-Hellman Problem). Let p be a prime and g ∈ Z. The Diffie-
Hellman Problem (DHP) is the problem of computing the value gab mod p from the
known values of ga mod p and gb mod p.

This groundbreaking work provided an outline for implementing a cryptosystem that
relied more heavily on the difficulty of solving a problem equivalent to solving the
DLP.

3.3 RSA Cryptography

Even with the revolutionary concept of the Diffie-Hellman key exchange algorithm
allowing two parties to publicly share information resulting in a private key, a fully-
functioning public-key encryption scheme was not fully developed. The Diffie-Hellman
key exchange allowed for randomly selected numbers to be securely transmitted over
an insecure channel, but what about meaningful messages? It was not until the work
of Rivest, Shamir, and Adelman was published in 1978 that the first public-key cryp-
tosystem was developed. This cryptosystem, known by the initials of its creators, is
currently still one of the most widely used forms of public-key encryption.

Part I: Creating RSA Key

Step 1: Bob generates two large primes (∼100 digits each) and computes both n = pq
and φ(n) = (p − 1)(q − 1) where n is the RSA modulus (which is ∼200 digits
long).

Step 2: Bob selects a random integer e ∈ Z+, 1 < e < φ(n) where gcd(e, φ(n)) = 1;
e is known as the RSA enciphering exponent. Then, he uses the Euclidean
Algorithm to compute d, 1 < d < φ(n) such that de ≡ 1 (mod φ(n)); d is
known as the RSA deciphering element.

11

Step 3: Bob now publishes n and e while keeping d, p, q, and φ(n) private.

Part II: Enciphering and Deciphering Algorithms

Let m ∈ M be the plaintext. Assume that m has a numerical value less than n and
gcd(m, n) = 1.

Step 1: Alice obtains (n, e) from public key database.

Step 2: She encrypts m by computing me ≡ c (mod n) and sends c to Bob.

Step 3: Bob receives c and computes cd ≡ (me)d ≡ med ≡ m (mod n).

If the plaintext message, m, has a numerical value m ≥ n, there is the possibility
that data could be lost between the encoding and decoding processes. Thus, a pro-
cess known as message blocking in which the numerical equivalent of the plaintext is
divided into blocks of equal length must be implemented. Message blocking may be
achieved by choosing that unique integer � such that N � < n < N �+1, then writing
the message as blocks of �-digit, base N integers (with zeros packed to the right of hte
last block if necessary), and encipher each separately. In this way, since each block of
plaintext corresponds to an element of Z/nZ given that N � < n; and since n < N �+1,
then each ciphertext message unit can be uniquely written as an (� + 1)-digit, base
N integer in C = Z/nZ = M. For practical purposes, since the English alphabet has
26 letters, we use N = 26.

3.3.1 RSA Encryption Example

Alice wishes to send the message m: “Santa Claus uses code” to Bob. Bob chose
n = 14, 785, 217, φ(n) = 14, 777, 520 and e = 17 in creating his RSA private key.
He then published (n, e) = (14, 785, 217; 17) in a public key database. Alice obtains
Bob’s RSA public key from the database and proceeds to encode her message.

Alice breaks the plaintext into blocks:

11, 881, 376 = 265 ≤ 14, 785, 217 ≤ 266 = 308, 915, 776

So, break message into blocks of l = 5 digits or less. Since plaintext is 18 letters/digits,
break into 4 blocks of 5 letters 0’s packed on the end of the last block (the letter “A”
has the numerical value of 0). Thus, the blocks to encode are: SANTA, CLAUS,
USESC, ODEAA.

12

Alice then converts each block to number form, then to base 26.

SANTA = (18 0 13 19 0)

= 18 · 264 + 0 · 263 + 13 · 262 + 19 · 26 + 0

= 8234850 (mod n)

CLAUS = (2 11 0 20 18)

= 2 · 264 + 11 · 263 + 0 · 262 + 20 · 26 + 18

= 1107826 (mod n)

USESC = (20 18 4 18 2)

= 20 · 264 + 18 · 263 + 4 · 262 + 18 · 26 + 2

= 1233494 (mod n)

ODEAA = (14 3 4 0 0)

= 14 · 264 + 3 · 263 + 4 · 262 + 0 · 26 + 0

= 6453096 (mod n)

She next encodes each block using me ≡ c (mod n):

823485017 ≡ 8485514 (mod 14785217)

110782617 ≡ 10537779 (mod 14785217)

1233349417 ≡ 655742 (mod 14785217)

645309617 ≡ 2958865 (mod 14785217)

Convert each block into letter form in base 26.

8485514 = (18 14 20 23 21)26 = SOUNY

10537779 = (23 1 14 11 5)26 = XBOLF

655742 = (1 11 8 0 22)26 = BLIAW

2958865 = (6 12 9 0 13)26 = GMJAN

Ciphertext Alice sent to Bob:
SOUNY XBOLF BLIAW GMJAN

Bob will decode using ed+xφ(n) ≡ 1 and his private key d = −6954127 ≡ 7823393 (mod n).
Bob takes the ciphertext sent to him by Alice, SOUNY XBOLF BLIAW GMJAN,
and converts each block to numerical form, then to base 26.

13

SOUNY = (18 14 20 23 21)26

= 8485514 (mod n)

XBOLF = (23 1 14 11 5)26

= 10537779 (mod n)

BLIAW = (1 11 8 0 22)26

= 655742

GMJAN = (6 12 9 0 13)26

= 2958865

Next, Bob decodes each block using d = 7823393.

84855147823393 = 8234850 (mod n)

105377797823393 = 1107826 (mod n)

6557427823393 = 12333494 (mod n)

29588657823393 = 6453096 (mod n)

Bob then converts each block to base 26. With the first block, 8234850, converting
to base 26 can be accomplished using the following algorithm:

8234850 = 316725 · 26 + 0

316725 = 12181 · 26 + 19

12181 = 468 · 26 + 13

468 = 18 · 26 + 0

18 = 0 · 26 + 18

Thus, 8234850 = (18 0 13 19 0)26 Using the same process, we convert the remaining
blocks to base 26:

14

8234850 = (18 0 13 19 0)26

= SANTA

1107826 = (2 11 0 20 18)26

= CLAUS

1233494 = (20 18 4 18 2)26

= USESC

6453096 = (14 3 4 0 0)26

= ODEAA

and thus Bob recovers “Santa Claus uses codeaa”. At this point, the additional “a’s”
that were added to create the equal block sizes are omitted and the message reads
“Santa Claus uses code”.

3.3.2 Attacks on RSA

Even with security of RSA ensured by difficulty of factorization, attacks at breaking
the cryptosystem have not only been attempted, but have succeeded. In many cases,
it is not an inherent weakness of the cryptosystem, but rather poor implementation
in practice.

Common Modulus Protocol Failure

Alice and Bob have the same RSA modulus, n, but different enciphering expo-
nents, say eA and eB. Assume that gcd(eA, eB) = 1. A third party, Sam, wishes to
send the same message, m, to both Alice and Bob. Sam obtains the enciphering ex-
ponents and RSA modulus from the public key database, encodes the plaintext, and
sends the ciphertext Alice and Bob, respectively. Eve intercepts both ciphertexts,
meA mod n and meB mod n.

Eve can obtain Alice and Bob’s enciphering exponents from the public key database.
Since eA and eB are relatively prime, eAx + eBy = 1 can be solved for x and y using
the Euclidean Algorithm. Eve can then calculate

((meA)x(meB)y) mod n = (meAx)(meBy) mod n

= meAx+eBy mod n

= m1 mod n

and recover the plaintext, m, without knowledge of the deciphering exponent or hav-

15

ing to factor the RSA modulus. A protocol failure is not an inherent weakness of the
cryptosystem but rather poor implementation of the cryptosystem.

Man-in-the-Middle Attack

In this type of attack, Alice and Bob’s messages are intercepted by an active, third-
party attacker, Mark. Mark can substitute his own messages from Alice to Bob (after
intercepting the message originally) in such a way that Alice and Bob are not aware
that they are being attacked. A way to circumvent this problem is to require message
authentication and digital signatures, which we describe next.

3.3.3 RSA Authentication Protocol

Thus far, we have discussed the steps that Bob and Alice may take to ensure that
the messages can be sent securely so that it is computationally infeasible for a ma-
licious third party to decrypt the message. However, before two parties can interact
in sending messages, it is essential that the legitimacy of the entities involved in the
protocol be verified, as well. This process is known as authentication.

Suppose that Alice wishes to send a message m to Bob. She requests Bob’s public
enciphering key, e, but Mark (a malicious third party impersonating Bob) sends to
Alice his enciphering key, e′, instead. Alice encrypts her message using e′ and sends
the message me′ to Mark. Mark uses his private deciphering key, d′, to compute
(me′)d′ = m. He now relays the message m to Bob using Bob’s public enciphering
key, e. Neither Alice nor Bob are aware that the message has been intercepted by
Mark since there was no authentication protocol set forth to ensure that communica-
tion occurs only between the intended, legitimate parties. This attack, known as an
impersonation attack, is described by the diagram below.

16

Alice
Mark
(e′, d′)

Bob
(e, d)

1. Mark sends e′ to Alice.

2. Alice sends me′

3. Mark recovers m and sends me.

The following is a description of the implementation of a digital signature scheme
for RSA as a form of authentication protocol.

RSA Digital Signature Scheme

Bob publishes his public key EB = (n, e) and keeps his deciphering exponent, d,
private. Alice sends Bob a message m and so encrypts using Bob’s public key. Bob
receives c ≡ me mod n. Bob recovers m by computing cd ≡ m mod n.

Alice’s public RSA key, EA = (n′, e′) is made available in the public key database
while her deciphering exponent d′ is kept secret.

Signature Stage Alice wants to send a signature m. She computes (md′)e mod n
and sends it to Bob.

Verification Stage Bob recovers md′ by computing ((md′)e)d ≡ md′ mod n. Bob

recovers m by computing (md′)e′ mod n′. Since e′d′ ≡ 1 mod n, Bob recovers Alice’s
signature, m.

17

3.4 ElGamal Public Key Cryptographic System

While RSA is undoubtedly one of the best-known public-key encryption methods, it
is not the only public-key cipher. The security of RSA is based on the difficulty of in-
teger factorization. The following system was developed by Egyptian mathematician
Taher ElGamal and described in his 1985 paper. The ElGamal Cryptosystem bases
its security on the intractability of the discrete log problem.

The ElGamal Cryptosystem

We assume that Alice wishes to send a message, m, to Bob where m ∈ {0, 1, . . . , p−1}.

Key Generation

1. Bob chooses a large prime p and a primitive root α of F∗p.

2. Bob chooses an integer a where 2 ≤ a ≤ q − 2 and computes αa (mod p).

3. Then, Bob’s public key is (p, α, αa (mod p)) and his private key is a.

Enciphering Stage

1. Alice obtains Bob’s public key (p, α, αa (mod p)) from database.

2. She chooses a random integer 2 ≤ b ≤ p − 2.

3. She computes αb (mod p) and mi(α
a)b ≡ miα

ab (mod p) where mi is the plain-
text broken into blocks of appropriate length.

4. She sends the ciphertext c ≡ (αb, mαab) (mod p) to Bob.

Deciphering Stage

1. Bob uses his private key a to compute (αb)−a ≡ (αb)p−1−a (mod p)

2. Then, he deciphers c by computing

(αb)−a · m · αab ≡ m · αab−ab ≡ m (mod p).

18

3.4.1 ElGamal Example

Alice wishes to send the message “Thanks for the memories” to Bob. Bob had chosen
prime p = 178, 301, 561 with primitive root α = 6. Bob’s private key is a = 13 and
Alice chooses b = 71. Alice accesses Bob’s public key from a public key database:

(p, α, αa mod p) = (178301561, 6, 44680063).

To begin the enciphering process, Alice breaks the plaintext, m, into blocks:

11, 881, 376 = 265 ≤ 178, 301, 561 ≤ 266 = 308, 915, 776

and thus breaks her plaintext into blocks of length � = 5 letters or less. Alice then
translates each of the blocks to numerical form, the from base 26 modp.

THANK = (19 7 0 13 10)

= 19 · 264 + 7 · 263 + 0 · 262 + 13 · 26 + 10

= 8805924 mod p

SFORT = (18 5 14 17 19)

= 18 · 264 + 5 · 263 + 14 · 262 + 17 · 26 + 19

= 8323373 mod p

HEMEM = (7 4 12 4 12)

= 7 · 264 + 4 · 263 + 12 · 262 + 4 · 26 + 12

= 3277364 mod p

ORIES = (14 17 8 4 18)

= 14 · 264 + 17 · 263 + 8 · 262 + 4 · 26 + 18

= 6701986 mod p

Alice then calculates (αa)b mod p = (44680063)71 mod 178301561 = 97835431. She
encodes each plaintext block, mi by calculating mi(α

a)b ≡ αa·b mod p.

19

8805924 · (αa)b mod p = 158233247

= (13 8 6 20 22 3)26

= NIGUWD

8323373 · (αa)b mod p = 82188785

= (6 23 22 5 1 3)26

= GXWFBD

3277364 · (αa)b mod p = 126115730

= (10 15 25 11 19 0)26

= KPZLTA

6701986 · (αa)b mod p = 1096175

= (2 10 9 14 15)26

= CKJOP

Alice then sends to Bob the ciphertext:

c = (αb, m · αa·b) = (150151472, NIGUWD GXWFBD KPZLTA CKJOP)

Bob obtains Alice’s ciphertext and proceeds to decode by first calculating

(αb)p−1−a mod p = (150151472)178301547 mod p = (150151472)33·6603761 mod p

(αb)−a mod p = (150151472)−13 mod 178301561 = 104796284

Next, Bob deciphers each block by computing

(αb)−a · m · αab ≡ m · αab−ab ≡ m mod p

For NIGUWD:
158233247 · 104796284 mod p = 8805924

= (19 7 0 13 10)26

= THANK

20

For GXWFBD:
82188785 · 104796284 mod p = 8323373

= (18 5 14 17 19)26

= SFORT

For KPZLTA:
126115730 · 104796284 mod p = 3277364

= (7 4 12 4 12)26

= HEMEM

For CKJOP:
1096175 · 104796284 mod p = 6701986

= (14 17 8 4 18)26

= ORIES

Thus, Bob has recovered Alice’s plaintext “Thanks for the memories”.

3.4.2 ElGamal Authentication Protocol

As is the concern with any communication that takes place over the expanse of elec-
tronic communication, one wishes to ensure that they are indeed communicating
directly with the intended recipient rather than an intermediate or impostor. The
following is a description of implementing authentication while utilizing the ElGamal
cipher.

El Gamal Digital Signature Scheme

Setup: Alice is sending the message m ∈ F∗p to Bob. Her public key generated
using the ElGamal key generation algorithm is (p, α, y), her private key is a, and
y ≡ αa (mod p).

Signing: Alice performs each of the following.

• Select random r ∈ (Z/nZ)∗.

• Compute β ≡ αr (mod p)

• Compute γ ≡ (m − αβ)r−1 (mod p − 1)

• For k = (p, α, a, y), the signed message sigk(m, r) = (β, γ) is sent to Bob.

Verification: Bob performs each of the following.

• Using Alice’s public key, (p, α, y), verify that β ∈ F∗p and reject if not.

21

• Compute δ ≡ yββγ (mod p)

• Compute σ ≡ αm (mod p)

• verk(m, (β, γ)) = 1 if and only if σ ≡ δ (mod p). Otherwise, reject.

3.5 Massey-Omura Cryptosystem

A related encryption scheme that is not truly public-key (or private-key!) is known as
a three-pass protocol uses neither private nor public keys. In this encryption scheme,
let p be a prime, n ∈ N, and m be an element of the multiplicative group Fpn .

1. Alice and Bob independently select random eA, eB ∈ Z where 2 ≤ eA, eB < pn−1
and gcd (ea, p

n − 1) = 1 = gcd (eb, p
n − 1).

2. Alice and Bob compute dA ≡ e−1
A mod pn − 1 and dB ≡ e−1

B mod pn − 1, respec-
tively, using the extended (reverse) Euclidean Algorithm.

3. Alice sends meA to Bob.

4. Bob sends meAeB back to Alice.

5. Alice sends meAeBdA = meB to Bob, since gcd(eA, dA) = 1.

6. Bob computes meBdB = m since gcd(eB, dB) = 1.

A disadvantage to this system is the requirement that three separate transmissions
between Alice and Bob must take place prior to the message being successfully sent.
Without further protection, this scheme is also susceptible to the man-in-the-middle
attack. However, a great advantage to the scheme is that neither shared public nor
shared private keys are necessary to utilize the scheme. New private keys can be
used each time. Yet, the system is secure since prior to Bob’s receiving meAeBdA , he
is faced with the DLP and could not decipher Alice’s message. At each stage, Eve
cannot decipher m since she does not have any of eA, eB, dA, dB and would be faced
with the DLP.

22

4 Difficulty of Factorization

As noted throughout, the beauty of a public-key cryptosystem lies not in the secrecy
in which the encryption is developed, but rather in the ability to make available the
method and public keys while still maintaining security based on the sheer difficulty of
large integer factorization. One method of factorization, Pollard’s p− 1 method, was
discussed earlier in the paper. The following is a description of some “sieve methods”
for factoring large integers.

4.1 Quadratic Sieve

Definition 8 (Quadratic Residue). Let p be an odd prime. We say that an integer,
n, p � n is a quadratic residue modulo p if there is an x ∈ Z such that n ≡ x2 mod p.

Definition 9 (Smooth numbers). An integer n is called B-smooth if all of its prime
factors are less than or equal to B.

Definition 10 (Factor Base). The set of primes less than B is called the factor base.

Credit for the development of the Quadratic Sieve goes to Carl Pommerance, 1981.
Goal: Factor an integer, n. Let

k ≈
√

e
√

ln (n) ln (ln n) =

⌊√
e
√

ln (n) ln (ln n)

⌋

1. Choose a factor base, B = {p1, p2, . . . , pk} such that n
p

= 1.

2. For each j ≥ 0, let t = ±j, compute yt = (
√n�+ t)2−n until k +2 such values
are found to be pk-smooth. For each such t, factor

yt = ±
k∏

i=1

pait
i

and form a binary (k + 1) tuple, vt = (v0t, v1t, . . . , vkt) for each 0 ≤ i ≤ k,
vit = ait mod 2 and v0t = 0 if yt > 0 and v0t = 1 if yt < 0.

3. Obtain a set, S, of the values of t found in step 2 such that for each i =
0, 1, . . . , k, ∑

t∈S

vit ≡ 0 mod 2.

23

In such case,

x2 =
∏
t∈S

x2
t =

∏
t∈S

yt = y2 mod n.

The quadratic sieve method is still the preferred algorithm for factoring numbers
with 50-100 digits. For larger numbers, however, the General Number Field Sieve is
the most efficient method known to date. As an incentive to progress the techniques
of large number factorization, the RSA Factoring Challenge was proposed in 1991
with a list of RSA moduli (denoted by RSA-XXXX, based on the number of bits in
the number). Due to the significant advances in factoring made over the following
decade, the challenge was cancelled and prize offers retracted in 2007.

The largest number factored to date is the RSA-768 (a 232 decimal-digit number)
and was announced in early 2010. Even though the joint effort of 6 research institu-
tions and 2000 CPU years (≈ 3 calendar years), the factorization has confirmed the
concerns of security analysts that the standard of using RSA keys with 1024 bits, and
it is time to increase security to using a standard of keys with 2048 (211) bits. It is
assumed that keys of this length will remain unfactored for the next several decades.

4.2 Running Time of Computing Discrete Logs

As described earlier, the security of RSA lies in the difficulty of large integer factor-
ization. The security of the ElGamal cryptosystem, on the other hand, lies in the
sheer difficulty of solving the DLP. Depending on the method used for solving a DLP,
one may be faced with an algorithm that runs in exponential time (rather than poly-
nomial time). To demonstrate the running time for an algorithm, in this case, the
index calculus method, which can solve the DLP in

L(N) = e
√

ln N ln ln N

operations (addition/subtraction, multiplication/division, and exponentiation). For
this example, assume that our computer performs one billion operations per second.

How long would it take to solve the DLP if we must perform N = 2100 operations?

L(2100) = e
√

ln 2100 ln ln 2100 ≈ 2.7802 × 107

and thus

2.7802 × 107 operations

109 operations per second
≈ 0.0278 sec < 1 sec.

24

Now, consider a computation requiring N = 21000 operations.

L(21000) = e
√

ln 21000 ln ln 21000 ≈ 1.75217 × 1029 operations

and thus

1.75217 × 1029 operations

109 operations per second
≈ 1.751 × 1020 sec ≈ 5.5 trillion years.

Clearly, this computation will not be performed in our lifetime. Unless significant ad-
vances are made in the foreseeable future, we expect our current public-key encryption
schemes to remain secure and usable for quite some time. However, we should never
fall into a state of complacency and remain ever-vigilant to possible attacks while
developing new techniques of encryption.

25

5 References

References

[1] Diffie, W., and Hellman M.E., New Directions in Cryptography, IEEE Transac-
tions on Information Theory, vol. IT-22, Nov. 1976, pp: 644 – 654.

[2] Elgamal, T., A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Transactions on Information Theory, Volume: 31, Issue:
4, Jul 1985, pp 469 – 472.

[3] Hoffstein J., Pipher J., and Silverman J.H., An Introduction to Mathematical
Cryptography, Springer, New York, NY, 2008.

[4] Mollin R.A., RSA and Public-Key Cryptography, Chapman & Hall/CRC, Boca
Raton, FL, 2003.

[5] Pomerance, C., Analysis and Comparison of Some Integer Factoring Algorithms.
Computational Methods in Number Theory, Part I, H.W. Lenstra, Jr. and R.
Tijdeman, eds., Math. Centre Tract 154, Amsterdam, 1982, 89 – 139.

[6] Rivest, R., Shamir, A., Adleman, L., A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM 21 (2), 1978, pp 120
– 126.

26

		2012-06-07T14:43:52-0400
	ETD Program

