by

Jeremy M. Hamilton

Submitted in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in the
Mathematics
Program

YOUNGSTOWN STATE UNIVERSITY
August, 2010

AN EXPLORATION OF THE ERDÖS-MORDELL INEQUALITY

Jeremy M. Hamilton

I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:
Jeremy M. Hamilton, Student \quad Date

Approvals:
Thomas D. Smotzer, Thesis Advisor Date

Abstract

We investigate the Erdös-Mordell Inequality for triangles through the literature: proving the result in its original form, modifying the result, looking at applications of the result, providing other inequalities resembling the Erdös-Mordell Inequality, and finding a comparable inequality for quadrilaterals.

Table of Contents

1 Background 1
2 Preliminaries 2
3 The Erdös-Mordell Inequality 18
4 Twists on the Erdös-Mordell Inequality 66
5 Inequalities Resembling the Erdös-Mordell Inequality 85
6 Problem Solving with the Erdös-Mordell Inequality 136
7 Extension to Quadrilaterals 145
8 Conclusion 158
9 References 159

1 Background

In the "Advanced Problems" section of the June-July 1935 issue of The American Mathematical Monthly, noted mathematician Paul Erdös posed exactly what is written below [ERD]
3740. Proposed by Paul Erdös, The University, Manchester, England.

From a point O inside a given triangle $A B C$ the perpendiculars $O P, O Q, O R$ are drawn to its sides. Prove that

$$
O A+O B+O C \geq 2(O P+O Q+O R)
$$

The first published proof of this solution would be given in the April 1937 issue of The American Mathematical Monthly, offered by L. J. Mordell [EMB]. In [MOR], Mordell explains how the solution came into existence. Apparently, Erdös mentioned his conjecture to Mordell around 1937. Mordell proved the result, and Erdös sent the solution into the Monthly for publication. Thus, we have the Erdös-Mordell Inequality today.

This one problem, dealing with an interior point of a triangle, has given rise to a number of publications. Various mathematicians have devised alternate proofs, have determined a myriad of consequences, or have investigated similar inequalities that arise when considering an interior point of a triangle. We explore these items in this paper.

Throughout this paper, we adopt a common notation when considering this problem and its extensions. Thus, we will consider the problem in the following way:

Given $\triangle A_{1} A_{2} A_{3}$ and interior point P of $\triangle A_{1} A_{2} A_{3}$, let p_{i} denote the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i}, for each $1 \leq i \leq 3$, as shown in Figure 1.1. Then the following result holds.

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right)
$$

Figure 1.1
We now begin our journey into the world of the Erdös-Mordell Inequality!

2 Preliminaries

Before proving the Erdös-Mordell Inequality, we need to establish a few results.
Theorem 2.1. Pappus's Theorem.
[KAD; KAN pg 84]
Given $\triangle A B C$, let $A B D E$ and $A C F G$ be two parallelograms, of which either both or neither lies entirely outside of $\triangle A B C$. Let H be the point where the extensions of $\overline{D E}$ and $\overline{F G}$ intersect, and let parallelogram $B C K L$ be where $\overline{C K}$ is a translate of $\overrightarrow{A H}$. Then the sum of the areas of $A B D E$ and $A C F G$ is equal to the area of $B C K L$.

Proof of Theorem 2.1.
Based on
[KAN pg 84]
By cases.
Case 1: \quad Both $A B D E$ and $A C F G$ lie entirely outside of $\triangle A B C$, as shown in Figure 2.1.

Figure 2.1

We first extend $\overline{D E}$ and $\overline{F G}$ to their point of intersection, which we will call H. This point exists since $\overline{D E}\|\overline{A B}, \overline{G F}\| \overline{A C}$, and $\overline{A B}$ intersects $\overline{A C}$. Moreover, it will intersect outside of $\triangle A B C$ on the same side of $\overline{B C}$ as A. This is shown in Figure 2.2.

Figure 2.2

Next, we let D_{1} be on the line containing $\overline{D E}$ and F_{1} be on the line containing $\overline{F G}$ such that $\overline{B D_{1}} \| \overline{A H}$ and $\overline{C F_{1}} \| \overline{A H}$, as shown in Figure 2.3.

Figure 2.3

From there, we construct parallelogram $B C K L$ so that $\overline{C K} \| \overline{A H}$ and $C K=A H$, to meet the given description in the statement of Pappus's Theorem. We draw BCKL outside of $\triangle A B C$ for clarity and so that both K and F_{1} are distinct. This is shown in Figure 2.4.

Figure 2.4

Now, we note the area of $A B D_{1} H$ is the same as the area of $A B D E$, as they share $\overline{A B}$ as a base, and the distance between $\overline{A B}$ and $\overline{D E}$ is the same as the distance between $\overline{A B}$ and $\overline{D_{1} H}$ since $\overline{D E}$ and $\overline{D_{1} H}$ are part of the same line which is parallel to $\overline{A B}$.

Similarly, the area of $A C F_{1} H$ is the same as the area of $A C F G$.
Next, we extend $\overline{A H}$ in order to make some additional observations. We let M be the point where this extension intersects $\overline{B C}$, and we let N be the point where this extension intersects $\overline{L K}$.

We note that points M and N must exist as described, as H must be on the opposite side of $\overline{A B}$ as C, since $A B D E$ is a parallelogram completely outside $\triangle A B C$ and H must be on the opposite side of $\overline{A C}$ as B, since $A C F G$ is also a parallelogram completely outside $\triangle A B C$. Further, since $\overline{B D_{1}}\|\overline{A H}\| \overline{C F_{1}}$ and $\overline{B L}\|\overline{A H}\| \overline{C K}$, it follows that B is on $\overline{L D_{1}}$ and C is on $K F_{1}$. From this, we gather that the extension of $\overline{A H}$ must intersect $\overline{B C}$ and $\overline{L K}$, as shown in Figure 2.5.

Now, by the choice of K, we know $A H=C K$. Since $A C F_{1} H$ is a parallelogram, we know $A H=C F_{l}$. This gives us that $C F_{I}=C K$.

Since $B C K L$ is a parallelogram, $A H=C K=B L$. Using that $A B D_{1} H$ is also a parallelogram, we gather that $A H=B D_{1}$. This gives us that $B D_{l}=B L$.

Figure 2.5

At this point we notice that $\overline{K F_{1}} \| \overline{H N}$. Since $\overline{A H}$ and $\overline{M N}$ are both subsets of $\overline{H N}$ as well as $\overline{C F_{1}}$ and $\overline{C K}$ are both subsets of $\overline{K F_{1}}$, it follows that the distance between $\overline{A H}$ and $\overline{C F_{1}}$ is equal to the distance between $\overline{M N}$ and $\overline{C K}$, for which we will use the notation $d\left(\overline{A H}, \overline{C F_{1}}\right)=d(\overline{M N}, \overline{C K})$.

Similarly, $d\left(\overline{A H}, \overline{B D_{1}}\right)=d(\overline{M N}, \overline{B L})$.
So, we have the following:

$$
\text { Area } A B D E+\text { Area } A C F G=\text { Area } A B D_{l} H+\text { Area } A C F_{l} H
$$

Which, based on the formula for area of parallelograms is

$$
=B D_{1} \cdot d\left(\overline{A H}, \overline{B D_{1}}\right)+C F_{1} \cdot d\left(\overline{A H}, \overline{C F_{1}}\right)
$$

But since $B D_{1}=B L$ and $C F_{1}=C K$, this is

$$
=B L \cdot d\left(\overline{A H}, \overline{B D_{1}}\right)+C K \cdot d\left(\overline{A H}, \overline{C F_{1}}\right)
$$

Now using $d\left(\overline{A H}, \overline{B D_{1}}\right)=d(\overline{M N}, \overline{B L})$ and $d\left(\overline{A H}, \overline{C F_{1}}\right)=d(\overline{M N}, \overline{C K})$, this becomes

$$
=B L \cdot d(\overline{M N}, \overline{B L})+C K \cdot d(\overline{M N}, \overline{C K})
$$

Using $B L=\mathrm{CK}$, this becomes

$$
=B L \cdot d(\overline{M N}, \overline{B L})+B L \cdot d(\overline{M N}, \overline{C K})
$$

Factoring out $B L$, we get

$$
=B L \cdot[d(\overline{M N}, \overline{B L})+d(\overline{M N}, \overline{C K})]
$$

Now, using the properties of parallelogram $B C K L$, we get

$$
\begin{aligned}
& =B L \cdot d(\overline{B L}, \overline{C K}) \\
& =\text { Area } B C K L
\end{aligned}
$$

Thus, we have established

$$
\text { Area } A B D E+\text { Area } A C F G=\text { Area } B C K L
$$

and Case 1 holds.

Case 2: \quad Neither $A B D E$ nor $A C F G$ lie entirely outside of $\triangle A B C$, as shown in Figure 2.6.

Figure 2.6
We first extend $\overline{D E}$ and $\overline{F G}$ to their point of intersection, which we will call H, as shown in Figure 2.7. This point exists since $\overline{D E}\|\overline{A B}, \overline{G F}\| \overline{A C}$, and $\overline{A B}$ intersects $\overline{A C}$.

Figure 2.7

Next, we let D_{1} be on the line containing $\overline{D E}$ and F_{1} be on the line containing $\overline{F G}$ such that $\overline{B D_{1}} \| \overline{A H}$ and $\overline{C F_{1}} \| \overline{A H}$, as shown in Figure 2.8.

Figure 2.8
From there, we construct parallelogram $B C K L$ so that $\overline{C K} \| \overline{A H}$ and $C K=A H$, to meet the given description in the statement of Pappus's Theorem. We draw $B C K L$ so that it is not entirely outside of $\triangle A B C$. This is done in Figure 2.9.

Figure 2.9

For the same reasons as in Case 1, we note that:

$$
\text { Area } A B D_{1} H=\text { Area } A B D E \quad \text { and } \quad \text { Area } A C F_{1} H=\text { Area } A C F G
$$

Next, we extend $\overline{A H}$. We let M be the point where this extension intersects $\overline{B C}$, and we let N be the point where this extension intersects $\overline{L K}$.

We note that points M and N must exist as described, as H must be on the same side of $\overline{A B}$ as C, since $A B D E$ is a parallelogram opening inside $\triangle A B C$ and H must be on the same side of $A C$ as B, since $A C F G$ is also a parallelogram opening inside $\triangle A B C$. Further, since $\overline{B D_{1}}\|\overline{A H}\| \overline{C F_{1}}$ and $\overline{B L}\|\overline{A H}\| \overline{C K}$, it follows that B is on $\overline{L D_{1}}$ and C is on $\overline{K F_{1}}$. From this, we gather that the extension of $\overline{A H}$ must intersect $\overline{B C}$ and $\overline{L K}$. This is shown in Figure 2.10.

Figure 2.10
Following the same rationale as described in Case 1, we get each of the following results:

$$
C F_{l}=C K ; \quad B D_{1}=B L ; \quad d\left(\overline{A H}, \overline{C F_{1}}\right)=d(\overline{M N}, \overline{C K}) ; \quad d\left(\overline{A H}, \overline{B D_{1}}\right)=d(\overline{M N}, \overline{B L}) .
$$

Which yields the same process as we had in Case 1, where the rationale is identical for each step, so it will not be repeated again.

$$
\begin{aligned}
\text { Area ABDE + Area ACFG } & =\text { Area } \mathrm{ABD}_{1} \mathrm{H}+\text { Area } \mathrm{ACF}_{1} \mathrm{H} \\
& =B D_{1} \cdot d\left(\overline{A H}, \overline{B D_{1}}\right)+C F_{1} \cdot d\left(\overline{A H}, \overline{C F_{1}}\right) \\
& =B L \cdot d\left(\overline{A H}, \overline{B D_{1}}\right)+C K \cdot d\left(\overline{A H}, \overline{C F_{1}}\right) \\
& =B L \cdot d(\overline{M N}, \overline{B L})+C K \cdot d(\overline{M N}, \overline{C K}) \\
& =B L \cdot d(\overline{M N}, \overline{B L})+B L \cdot d(\overline{M N}, \overline{C K}) \\
& =B L \cdot[d(\overline{M N}, \overline{B L})+d(\overline{M N}, \overline{C K})] \\
& =B L \cdot d(\overline{B L}, \overline{C K}) \\
& =\text { Area } B C K L .
\end{aligned}
$$

Thus, we have established

$$
\text { Area } A B D E+\text { Area } A C F G=\text { Area } B C K L
$$

so Case 2 holds.
By Case 1 and Case 2, Pappus's Theorem holds.

It is worth noting that the key to Pappus's Theorem is that both of the parallelograms $A B D E$ and $A C F G$ must either be both completely outside the original triangle or both not completely outside the original triangle. If one of them was completely outside the triangle and the other wasn't, we would be unable to guarantee the properties of M and N that make the proof work.

Given $\triangle A B C$, let D be the point on $\overline{B C}$ so that $\overline{A D}$ is an altitude of $\triangle A B C$, and let O be the center of the circumscribed circle of $\triangle A B C$. Then, the bisector of $\angle B A C$ is also the bisector of $\angle D A O$.

Proof of Lemma 2.2.
Based on [ALT pg 53]
Let E be the such that $\overline{A E}$ is a diameter of the circumcircle, and let F be such that $\overline{A F}$ bisects $\angle B A C$.

Case 1: $\quad \angle A B C$ is acute.
We see a diagram of the situation in Figure 2.11.

Figure 2.11
First, notice that $\angle A B C$ and $\angle A E C$ are both inscribed angles in the circumcircle intercepting arc $A C$. Thus, we conclude that $m \angle A B C=m \angle A E C$.

Looking at $\triangle A B D$, we conclude that

$$
m \angle B A D=90^{\circ}-m \angle A B D .
$$

Looking at $\triangle A E C$, we notice that $m \angle A C E=90^{\circ}$ since $\angle A C E$ is inscribed in the circumcircle and it intercepts arc $A B E$, which is a semicircle. Further, we conclude that

$$
m \angle C A E=90^{\circ}-m \angle A E C .
$$

Thus, we conclude $m \angle B A D=m \angle C A E$.

Figure 2.12
Next, since $\overline{A F}$ bisects $\angle B A C$, we get

$$
m \angle B A F=m \angle C A F .
$$

We also have

$$
m \angle B A F=m \angle B A D+m \angle D A F \quad \text { and } \quad m \angle C A F=m \angle C A E+m \angle E A F .
$$

Thus, since $m \angle B A F=m \angle C A F$, we have:

$$
m \angle B A D+m \angle D A F=m \angle C A E+m \angle E A F .
$$

When substituting $m \angle B A D=m \angle C A E$, we get:

$$
m \angle B A D+m \angle D A F=m \angle B A D+m \angle E A F,
$$

which, when subtracting, gives us

$$
m \angle D A F=m \angle E A F .
$$

Equivalently,

$$
m \angle D A F=m \angle O A F
$$

which means that $\overline{A F}$ bisects $\angle D A O$, and Lemma 2.2 holds for Case 1.

Case 2: $\quad \angle A B C$ is a right angle.
We see a diagram of the situation in Figure 2.13.

Figure 2.13
This case is trivial, as $\angle D A O=\angle B A C$.

Case 3: $\quad \angle A B C$ is an obtuse angle.
We see a diagram of the situation in Figure 2.14.

First, notice that $\angle A B C$ intercepting arc $A E C$ and $\angle A E C$ intercepting arc $A B C$ are both inscribed angles in the circumcircle. Thus, we have

$$
m \angle A B C+m \angle A E C=180^{\circ}
$$

so we conclude

$$
m \angle A B C=180^{\circ}-m \angle A E C .
$$

Since $\angle A B D$ and $\angle A B C$ are supplementary, we have

$$
m \angle A B D=m \angle A E C .
$$

Looking at $\triangle A B D$, we get

$$
m \angle B A D=90^{\circ}-m \angle A B D .
$$

Looking at $\triangle A E C$, we notice that $m \angle A C E=90^{\circ}$ since $\angle A C E$ is inscribed in a semicircle. Further, we conclude that

$$
m \angle C A E=90^{\circ}-m \angle A E C .
$$

Thus, we conclude $m \angle B A D=m \angle C A E$.

Figure 2.15

Next, since $\overline{A F}$ bisects $\angle B A C$, we get

$$
m \angle B A F=m \angle C A F .
$$

We also have

$$
m \angle D A F=m \angle B A D+m \angle B A F \quad \text { and } \quad m \angle E A F=m \angle C A E+m \angle C A F
$$

Combining $m \angle B A D=m \angle C A E$ and $m \angle B A F=m \angle C A F$ from earlier, we have

$$
\begin{aligned}
& m \angle D A F=m \angle B A D+m \angle B A F \\
& m \angle E A F=m \angle B A D+m \angle B A F
\end{aligned}
$$

so that

$$
m \angle D A F=m \angle E A F,
$$

which means that $\overline{A F}$ bisects $\angle D A O$, and Lemma 2.2 holds for Case 3 .

By cases on $\angle A B C$, it follows that Lemma 2.2 holds overall.

Lemma 2.3.

Let $A, B, C>0$ such that $A+B+C=180^{\circ}$, and let $a, b, c>0$. Then the following holds:

$$
b^{2}+c^{2}+2 b c \cos A=(b \sin C+c \sin B)^{2}+(b \cos C-c \cos B)^{2} .
$$

Proof of Lemma 2.3.

This is an original proof.
Based on the trigonometric identity $\cos x=-\cos \left(180^{\circ}-x\right)$, we have:
$b^{2}+c^{2}+2 b c \cos A$

$$
=b^{2}+c^{2}-2 b c \cos \left(180^{\circ}-A\right)
$$

Then, since $A+B+C=180^{\circ}$, it follows that $B+C=180^{\circ}-A$, which yields

$$
=b^{2}+c^{2}-2 b c \cos (B+C)
$$

And using the sum of angles identity for cosine, we have:

$$
=b^{2}+c^{2}-2 b c[\cos B \cos C-\sin B \sin C]
$$

Simplifying, we get

$$
=b^{2}+c^{2}-2 b c \cos B \cos C+2 b c \sin B \sin C
$$

Recalling the Pythagorean Identity $\left(\sin ^{2} x+\cos ^{2} x=1\right)$, we have:

$$
=b^{2} \sin ^{2} C+b^{2} \cos ^{2} C+c^{2} \sin ^{2} B+c^{2} \cos ^{2} B-2 b c \cos B \cos C+2 b c \sin B \sin C
$$

Rearranging terms, we have

$$
\begin{aligned}
& =b^{2} \sin ^{2} C+2 b c \sin B \sin C+c^{2} \sin ^{2} B+b^{2} \cos ^{2} C-2 b c \cos B \cos C+c^{2} \cos ^{2} B \\
& =(b \sin C+c \sin B)^{2}+(b \cos C-c \cos B)^{2}
\end{aligned}
$$

Combining everything, we have

$$
b^{2}+c^{2}+2 b c \cos A=(b \sin C+c \sin B)^{2}+(b \cos C-c \cos B)^{2},
$$

which establishes Lemma 2.3.

Lemma 2.4.

Let $\triangle A_{1} A_{2} A_{3}$ be any triangle, O be the center of its circumscribed circle, and R be the length of the radius of its circumscribed circle. Let a_{i} be the length of the side opposite A_{i} for each $1 \leq i \leq 3$. Finally, let α_{i} be the measure of the angle at vertex A_{i} of the original triangle. Then, for each $1 \leq i \leq 3$, we have:

$$
a_{i}=2 R \sin \left(\alpha_{i}\right)
$$

Proof of Lemma 2.4.

This result, based on the Law of Sines, can be found, for example, in [LAW].
First, consider $i=1$, as shown in Figure 2.16.

Figure 2.16
Since $\angle A_{2} A_{1} A_{3}$ is inscribed in circle O with corresponding central angle $\angle A_{2} O A_{3}$, it follows that $m \angle A_{2} O A_{3}=2 \alpha_{1}$. Further, $\triangle A_{2} O A_{3}$ is isosceles, so if B_{1} denotes the foot of the perpendicular from O to $\overline{A_{2} A_{3}}$, we have: $m \angle A_{2} O B_{1}=\alpha_{1}$ and $A_{2} B_{1}=a_{1} / 2$. Considering $\triangle A_{2} O B_{1}$, this gives:

$$
\sin \left(\alpha_{1}\right)=\frac{a_{1} / 2}{R}=\frac{a_{1}}{2 R} .
$$

Multiplying through by $2 R$, we get $a_{1}=2 R \sin \left(\alpha_{1}\right)$.
The result holds similarly for $i=2$ and $i=3$.

3 The Erdös-Mordell Inequality

This section centers on proofs of the Erdös-Mordell Inequality. We state the result again before proceeding.

Theorem 3.1. Erdös-Mordell Inequality

Given $\triangle A_{1} A_{2} A_{3}$ and interior point P of $\triangle A_{1} A_{2} A_{3}$, let p_{i} denote the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i}, for each $1 \leq i \leq 3$. Then the following result holds:

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right)
$$

Figure 3.1

Comment.

In this section, we will show three proofs of the Erdös-Mordell Inequality. The first proof is based on the solution by L. J. Mordell [EMB], the second proof, based on a solution by D. K. Kazarinoff, [KAD] includes a condition for equality and expands the location of P, and the third proof deals with a "signed" inequality based on the work of Clayton W. Dodge [DOD].

This is based on the solution by L. J. Mordell, but it has been adapted for this paper.
First, we let H_{i} be the foot of the perpendicular from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite A_{i}, for each $1 \leq i \leq 3$. Additionally, We let α_{i} be the measure of the angle at the vertex A_{i} in the original triangle. This is shown in Figure 3.2.

Figure 3.2
We notice that in quadrilateral $A_{1} H_{2} P H_{3}$, based on its interior angles summing to 360°, we have $m \angle H_{2} P H_{3}=180^{\circ}-\alpha_{1}$.

Additionally, $A_{1} H_{2} P H_{3}$ is a cyclic quadrilateral since two of its opposite angles are right angles (so it has a circumscribed circle). If we consider the circumscribed circle of $A_{1} H_{2} P H_{3}$, we note that $\overline{P A_{1}}$ would be a diameter of this circle (since $\angle P H_{3} A_{1}$ and $\angle P H_{2} A_{1}$ are both right angles). Applying the result of Lemma 2.4 specifically to $\triangle H_{2} A_{1} H_{3}$, and using $\overline{P A_{1}}$ as the diameter of the circumcircle:

$$
H_{2} H_{3}=P A_{1} \sin \alpha_{1} \quad \text { or } \quad P A_{1}=\frac{H_{2} H_{3}}{\sin \alpha_{1}} .
$$

Similarly, analyzing the other quadrilaterals, we conclude:

$$
m \angle H_{1} P H_{3}=180^{\circ}-\alpha_{2} \quad \text { and } \quad m \angle H_{1} P H_{2}=180^{\circ}-\alpha_{3},
$$

so that

$$
P A_{2}=\frac{H_{1} H_{3}}{\sin \alpha_{2}} \quad \text { and } \quad P A_{3}=\frac{H_{1} H_{2}}{\sin \alpha_{3}} .
$$

Using the Law of Cosines on $\triangle H_{2} P H_{3}$ as shown in Figure 3.3, (with the fact that $m \angle H_{2} P H_{3}=180^{\circ}-\alpha_{1}$), we have

$$
H_{2} H_{3}=\sqrt{p_{2}^{2}+p_{3}^{2}-2 p_{2} p_{3} \cos \left(180^{\circ}-\alpha_{1}\right)}
$$

Figure 3.3

Recalling the trigonometric identity, $\cos x=-\cos \left(180^{\circ}-x\right)$, we get

$$
H_{2} H_{3}=\sqrt{p_{2}^{2}+p_{3}^{2}+2 p_{2} p_{3} \cos \alpha_{1}} .
$$

Similarly, when looking at $\triangle H_{1} P H_{3}$ and $\triangle H_{1} P H_{2}$, we get:

$$
H_{1} H_{3}=\sqrt{p_{1}^{2}+p_{3}^{2}+2 p_{1} p_{3} \cos \alpha_{2}} \quad \text { and } \quad H_{1} H_{2}=\sqrt{p_{1}^{2}+p_{2}^{2}+2 p_{1} p_{2} \cos \alpha_{3}} .
$$

Now, combining these gives:

$$
\begin{aligned}
P A_{1}+ & P A_{2}+P A_{3} \\
& =\frac{H_{2} H_{3}}{\sin \alpha_{1}}+\frac{H_{1} H_{3}}{\sin \alpha_{2}}+\frac{H_{1} H_{2}}{\sin \alpha_{3}} \\
& =\frac{\sqrt{p_{2}^{2}+p_{3}^{2}+2 p_{2} p_{3} \cos \alpha_{1}}}{\sin \alpha_{1}}+\frac{\sqrt{p_{1}^{2}+p_{3}^{2}+2 p_{1} p_{3} \cos \alpha_{2}}}{\sin \alpha_{2}}+\frac{\sqrt{p_{1}^{2}+p_{2}^{2}+2 p_{1} p_{2} \cos \alpha_{3}}}{\sin \alpha_{3}}
\end{aligned}
$$

Using Lemma 2.3, this gives

$$
\begin{aligned}
=\quad & \frac{\sqrt{\left(p_{2} \sin \alpha_{3}+p_{3} \sin \alpha_{2}\right)^{2}+\left(p_{2} \cos \alpha_{3}-p_{3} \cos \alpha_{2}\right)^{2}}}{\sin \alpha_{1}} \\
& +\quad \frac{\sqrt{\left(p_{1} \sin \alpha_{3}+p_{3} \sin \alpha_{1}\right)^{2}+\left(p_{1} \cos \alpha_{3}-p_{3} \cos \alpha_{1}\right)^{2}}}{\sin \alpha_{2}} \\
& +\quad \frac{\sqrt{\left(p_{1} \sin \alpha_{2}+p_{2} \sin \alpha_{1}\right)^{2}+\left(p_{1} \cos \alpha_{2}-p_{2} \cos \alpha_{1}\right)^{2}}}{\sin \alpha_{3}}
\end{aligned}
$$

And since, for real values of x and $y, \sqrt{x^{2}+y^{2}} \geq \sqrt{x^{2}}$, we get

$$
\begin{aligned}
\geq \quad & \frac{\sqrt{\left(p_{2} \sin \alpha_{3}+p_{3} \sin \alpha_{2}\right)^{2}}}{\sin \alpha_{1}} \\
& +\quad \frac{\sqrt{\left(p_{1} \sin \alpha_{3}+p_{3} \sin \alpha_{1}\right)^{2}}}{\sin \alpha_{2}} \\
& +\quad \frac{\sqrt{\left(p_{1} \sin \alpha_{2}+p_{2} \sin \alpha_{1}\right)^{2}}}{\sin \alpha_{3}}
\end{aligned}
$$

Simplifying yields

$$
=\frac{p_{2} \sin \alpha_{3}+p_{3} \sin \alpha_{2}}{\sin \alpha_{1}}+\frac{p_{1} \sin \alpha_{3}+p_{3} \sin \alpha_{1}}{\sin \alpha_{2}}+\frac{p_{1} \sin \alpha_{2}+p_{2} \sin \alpha_{1}}{\sin \alpha_{3}}
$$

Rearranging terms provides

$$
\begin{array}{ll}
= & \frac{p_{1} \sin \alpha_{3}}{\sin \alpha_{2}}+\frac{p_{1} \sin \alpha_{2}}{\sin \alpha_{3}}+\frac{p_{2} \sin \alpha_{3}}{\sin \alpha_{1}}+\frac{p_{2} \sin \alpha_{1}}{\sin \alpha_{3}}+\frac{p_{3} \sin \alpha_{2}}{\sin \alpha_{1}}+\frac{p_{3} \sin \alpha_{1}}{\sin \alpha_{2}} \\
=\quad p_{1} \cdot\left(\frac{\sin \alpha_{3}}{\sin \alpha_{2}}+\frac{\sin \alpha_{2}}{\sin \alpha_{3}}\right)+p_{2} \cdot\left(\frac{\sin \alpha_{3}}{\sin \alpha_{1}}+\frac{\sin \alpha_{1}}{\sin \alpha_{3}}\right)+p_{3} \cdot\left(\frac{\sin \alpha_{2}}{\sin \alpha_{1}}+\frac{\sin \alpha_{1}}{\sin \alpha_{2}}\right)
\end{array}
$$

which, when using the Arithmetic Mean - Geometric Mean Inequality on each piece becomes

$$
\geq \quad 2 p_{1} \cdot \sqrt{\frac{\sin \alpha_{3}}{\sin \alpha_{2}} \cdot \frac{\sin \alpha_{2}}{\sin \alpha_{3}}}+2 p_{2} \cdot \sqrt{\frac{\sin \alpha_{3}}{\sin \alpha_{1}} \cdot \frac{\sin \alpha_{1}}{\sin \alpha_{3}}}+2 p_{3} \cdot \sqrt{\frac{\sin \alpha_{2}}{\sin \alpha_{1}} \cdot \frac{\sin \alpha_{1}}{\sin \alpha_{2}}}
$$

$$
\begin{aligned}
& =\quad 2 p_{1}+2 p_{2}+2 p_{3} \\
& =\quad 2\left(p_{1}+p_{2}+p_{3}\right) .
\end{aligned}
$$

Therefore, we have established

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right),
$$

the Erdös-Mordell Inequality.

Theorem 3.2. Modified Erdös-Mordell Inequality
As proposed by D. K. Kazarinoff.
Given $\triangle A_{1} A_{2} A_{3}$ and interior or boundary point P of $\triangle A_{1} A_{2} A_{3}$, let p_{i} denote the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i}, for each $1 \leq i \leq 3$. Then the following result holds:

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right),
$$

with equality happening only when $\triangle A_{1} A_{2} A_{3}$ is equilateral and P is its circumcenter.

Figure 3.4

This is based on the solution by D. K. Kazarinoff, but it has been adapted for this paper.

We will prove this result by cases, contingent on the location of P. Before proceeding, let a_{i} be the length of the side of $\triangle A_{1} A_{2} A_{3}$ across from vertex A_{i}.

Case 1: $\quad P$ is interior to $\triangle A_{1} A_{2} A_{3}$.
Notice that our condition requires P to be interior to each of the three angles of the original triangle. We begin by focusing on $\angle A_{3} A_{1} A_{2}$.

Let B be the point where the bisector of $\angle A_{3} A_{1} A_{2}$ intersects $\overline{A_{2} A_{3}}$, and let D be the foot of the altitude from A_{1} to $\overline{A_{2} A_{3}}$, as shown in Figure 3.5.

Figure 3.5

Now, we reflect $\triangle A_{1} A_{2} A_{3}$, including its altitude, across $\overline{A_{1} B}$, calling the new figure $\triangle A_{1} \tilde{A}_{2} \tilde{A}_{3}$. Based on Lemma 2.2, we know that since $\overline{A_{1} B}$ bisects $\angle A_{3} A_{1} A_{2}$ in this setup where O is the circumcenter of the circle, $\overline{A_{1} B}$ must also bisect $\angle D A_{1} O$.

Since $\overline{A_{1} B}$ bisects $\angle D A_{1} O$, it follows that the reflection of $\overline{A_{1} D}$ must go through O. Based on the reflection properties and the property that $\overline{A_{1} D} \perp \overline{A_{2} A_{3}}$, we let D be the reflection of D, and we conclude $\overline{A_{1} \tilde{D}} \perp \overline{\tilde{A}_{2} \tilde{A}_{3}}$. This yields Figure 3.6.

Figure 3.6
We now wish to apply the result from Theorem 2.1 (Pappus's Theorem) to $\triangle A_{1} \tilde{A}_{2} \tilde{A}_{3}$.
Pappus's Theorem applies for the following reason:

Since P is an interior point of $\angle A_{3} A_{1} A_{2}$ and we reflect across $\overline{A_{1} B}$, the bisector of $\angle A_{3} A_{1} A_{2}, P$ cannot change sides relative to $\overline{A_{1} \tilde{A}_{2}}$ nor relative to $\overline{A_{1} \tilde{A}_{3}}$.

Based on this, neither the parallelogram formed by the side $\overline{A_{1} \tilde{A}_{3}}$ and P nor the parallelogram formed by the side $\overline{A_{1} \tilde{A}_{2}}$ and P will fall completely outside $\triangle A_{1} \tilde{A}_{2} \tilde{A}_{3}$.

Essentially, P must remain interior to $\angle A_{3} A_{1} A_{2}=\angle \tilde{A}_{3} A_{1} \tilde{A}_{2}$ throughout this process, as it is being reflected across the bisector of that angle.

Create parallelograms $A_{1} \tilde{A}_{3} W P$ and $A_{1} \tilde{A}_{2} X P$. Since P is interior to $\angle \tilde{A}_{3} A_{1} \tilde{A}_{2}$, it follows that $A_{1} \tilde{A}_{3} W P$ is not completely outside $\triangle A_{1} \tilde{A}_{2} \tilde{A}_{3}$ and $A_{1} \tilde{A}_{2} X P$ is not completely outside $\triangle A_{1} \tilde{A}_{2} \tilde{A}_{3}$ either. Hence, the conclusion of Theorem 2.1 (Pappus's Theorem) applies for $\triangle A_{1} \tilde{A}_{2} \tilde{A}_{3}$. That is, we create parallelogram $\tilde{A}_{2} \tilde{A}_{3} Y Z$ by using $\overrightarrow{P A_{1}}$ to create $\overrightarrow{\tilde{A}_{3} Y}$. (We would not have a scenario where $\overrightarrow{P A_{1}} \| \overrightarrow{\tilde{A}_{2}} \overrightarrow{\tilde{A}}_{3}$, thereby not yielding a parallelogram, since this would require $\overline{P A_{1}} \| \tilde{A}_{2} \tilde{A}_{3}$, which can't happen since P is interior to $\angle \tilde{A}_{3} A_{1} \tilde{A}_{2}$.)

This is shown in Figure 3.7 on the next page.

Figure 3.7
We will focus on the following properties of these parallelograms:
$A_{1} \tilde{A}_{3} W P \quad A_{1} \tilde{A}_{2} X P \quad \tilde{A}_{2} \tilde{A}_{3} Y Z$
Base: $A_{1} \tilde{A}_{3}=A_{1} A_{3}=a_{2}$ Base: $A_{1} \tilde{A}_{2}=A_{1} A_{2}=a_{3} \quad$ Base: $\tilde{A}_{2} \tilde{A}_{3}=A_{2} A_{3}=a_{1}$
Height: p_{3}
Height: p_{2}
Height: $h=P A_{1} \cdot \cos \angle P A_{1} O$
Note: $\cos \angle P A_{1} O>0$ since $\overline{O A_{1}}$ is a radius of a circle, and we know that if P is interior to the circle, this angle must be acute. (It becomes a right angle if $\overline{P A_{1}}$ were tangent to the circle - which isn't the case, and therefore, it could only be obtuse if P were exterior to the circle - which isn't the case.)

So, by Theorem 2.1 (Pappus's Theorem),
Area $\tilde{A}_{2} \tilde{A}_{3} Y Z=$ Area $A_{1} \tilde{A}_{3} W P+$ Area $A_{1} \tilde{A}_{2} X P$.
Or, when substituting the appropriate bases and heights listed earlier:

$$
a_{1} \cdot P A_{1} \cos \angle P A_{1} O=a_{2} p_{3}+a_{3} p_{2}
$$

Since $1 \geq \cos x$, having $a_{1} \cdot P A_{1} \cos \angle P A_{1} O=a_{2} p_{3}+a_{3} p_{2}$ means

$$
a_{1} \cdot P A_{1} \geq a_{2} p_{3}+a_{3} p_{2} \quad \text { so that } \quad P A_{1} \geq \frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}
$$

Similarly, we obtain

$$
P A_{2} \geq \frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}} \quad \text { and } \quad P A_{3} \geq \frac{a_{2} p_{1}+a_{1} p_{2}}{a_{3}}
$$

by focusing on $\angle A_{1} A_{2} A_{3}$ and $\angle A_{1} A_{3} A_{2}$ respectively.
(Note: In each of those two additional situations, P is interior to the original angle, and it would be interior to the angle formed after reflecting the triangle across the corresponding angle bisector. Thus, akin to what we saw, neither parallelogram formed by the reflected triangle and P would fall completely outside the reflected triangle, meaning Theorem 2.1 would apply for both of those situations as well.

Thus, we have

$$
\begin{aligned}
& P A_{1}+P A_{2}+P A_{3} \\
& \geq \quad \frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}+\frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}+\frac{a_{2} p_{1}+a_{1} p_{2}}{a_{3}} \\
&=\quad \frac{a_{3} p_{1}}{a_{2}}+\frac{a_{2} p_{1}}{a_{3}}+\frac{a_{1} p_{2}}{a_{3}}+\frac{a_{3} p_{2}}{a_{1}}+\frac{a_{2} p_{3}}{a_{1}}+\frac{a_{1} p_{3}}{a_{2}} \\
&=\quad p_{1}\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}\right)+p_{2}\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right)+p_{3}\left(\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}\right)
\end{aligned}
$$

Using the Arithmetic Mean - Geometric Mean Inequality, we obtain

$$
\begin{aligned}
& \geq \quad 2 p_{1} \sqrt{\frac{a_{3}}{a_{2}} \cdot \frac{a_{2}}{a_{3}}}+2 p_{2} \sqrt{\frac{a_{1}}{a_{3}} \cdot \frac{a_{3}}{a_{1}}}+2 p_{3} \sqrt{\frac{a_{2}}{a_{1}} \cdot \frac{a_{1}}{a_{2}}} \\
& =\quad 2 p_{1}+2 p_{2}+2 p_{3} \\
& =\quad 2\left(p_{1}+p_{2}+p_{3}\right)
\end{aligned}
$$

and therefore, we have established

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right)
$$

for Case 1.
Additionally, since we had $a_{1} \cdot P A_{1} \cos \angle P A_{1} O=a_{2} p_{3}+a_{3} p_{2}$ and said that $a_{1} \cdot P A_{1} \geq a_{2} p_{3}+a_{3} p_{2}$, for equality to happen, we must have $\cos \angle P A_{1} O=1$, which requires $\angle P A_{1} O$ to be a straight angle. This means P would have to be on $\overline{A_{1} O}$.

From the repeated use of this property, we gather that P would likewise need to be on $\overline{A_{2} O}$ and $\overline{A_{3} O}$ for equality to hold. Thus, P must be the center of the circumscribed circle when equality is achieved.

Furthermore, when applying the Arithmetic Mean-Geometric Mean inequality, we have equality if and only if $a_{1}=a_{2}=a_{3}$, which forces the triangle to be equilateral.

Therefore, both the inequality and the condition for equality both hold in Case 1.

Case 2: $\quad P$ is on the boundary of $\triangle A_{1} A_{2} A_{3}$, but it is not a vertex point.
Without loss of generality, assume P is on $\overline{A_{2} A_{3}}$. Draw semicircle m centered at P so that m is interior to $\triangle A_{1} A_{2} A_{3}$. Let ϵ_{1} be the radius of this semicircle. Let $P_{1} \in m$ such that P_{1} is interior to $\triangle A_{1} A_{2} A_{3}$, as shown in Figure 3.8.

Figure 3.8
Let $\left\{\epsilon_{n}\right\}_{n=1}^{\infty}$ be such that ϵ_{1} is as defined above and $\epsilon_{n+1}<\epsilon_{n}$ for all n. For each n, define P_{n} such that P_{n} is on the semicircle centered at P with radius ϵ_{n} interior to $\triangle A_{1} A_{2} A_{3}$ (with P_{n} also interior to the triangle).

By Case 1, the desired inequality (and its condition for equality) holds for each P_{n}, namely:

$$
P_{n} A_{1}+P_{n} A_{2}+P_{n} A_{3} \geq 2\left(p_{n, 1}+p_{n, 2}+p_{n, 3}\right) .
$$

From this, as $n \rightarrow \infty, \epsilon_{n} \rightarrow 0$, and $P_{n} \rightarrow P$, which means the inequality (and it's condition for equality) will also hold for P.

Thus, Case 2 holds.

Case 3: $\quad P$ is a vertex of the triangle.
Without loss of generality, assume P is A_{1}. In this case, we notice that $P A_{1}=0, p_{2}=0$, and $p_{3}=0$. Let D be the foot of the perpendicular from P to $\overline{A_{2} A_{3}}$. This is shown in Figure 3.9.

Figure 3.9
When looking at $\triangle P A_{3} D$, we get

$$
\sin \angle P A_{3} D=\frac{p_{1}}{P A_{3}} \quad \text { or } \quad P A_{3} \cdot \sin \angle P A_{3} D=p_{1}
$$

Similarly, looking at $\triangle P A_{2} D$, we get

$$
\sin \angle P A_{2} D=\frac{p_{1}}{P A_{2}} \quad \text { or } \quad P A_{2} \cdot \sin \angle P A_{2} D=p_{1} .
$$

Putting these results together, we have

$$
\begin{aligned}
P A_{1}+P A_{2}+P A_{3} & =0+P A_{2}+P A_{3} \\
& =P A_{2}+P A_{3} \\
& \geq \quad P A_{2} \cdot \sin \angle P A_{2} D+P A_{3} \sin \angle P A_{3} D \\
& =\quad p_{1}+p_{1} \\
& =2 p_{1}
\end{aligned}
$$

$$
\begin{aligned}
& =2\left(p_{1}+0+0\right) \\
& =\quad 2\left(p_{1}+p_{2}+p_{3}\right) .
\end{aligned}
$$

Thus

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right)
$$

and the inequality holds.
Notice, for equality, we are required to have $\sin \angle P A_{2} D=1$ and $\sin \angle P A_{3} D=1$, which would require both $\angle P A_{2} D$ and $\angle P A_{3} D$ to be right angles, but there cannot be two right angles in a single triangle. Thus, in this case, we cannot have equality.

Therefore, Case 3 holds.
It follows that the Erdös-Mordell Inequality holds, with equality occurring only when $\triangle A_{1} A_{2} A_{3}$ is equilateral and P is its circumcenter.

Comments:

We do consider what happens if the point P falls outside the triangle, and the next example applies.

Example 3.3. What happens when P is an exterior point?
Consider $\triangle A_{1} A_{2} A_{3}$ with $A_{1}=(0,0) ; A_{2}=(1,1) ; A_{3}=(2,0)$. We will investigate two choices of P, namely $P_{1}=(1,2) ; P_{2}=(0,1)$.

In the first case (Figure 3.10), we have:

$$
\begin{array}{ll}
P_{1} A_{1}=\sqrt{1^{2}+2^{2}}=\sqrt{5} & p_{1}=\frac{\sqrt{2}}{2} \\
P_{1} A_{2}=1 & p_{2}=2 \\
P_{1} A_{3}=\sqrt{1^{2}+2^{2}}=\sqrt{5} & p_{3}=\frac{\sqrt{2}}{2}
\end{array}
$$

so that

$(0,0) \quad$ Figure $3.10(2,0)$

$$
P_{1} A_{1}+P_{1} A_{2}+P_{1} A_{3}=1+2 \sqrt{5} \approx 5.47 \quad \text { and } \quad p_{1}+p_{2}+p_{3}=2+\sqrt{2} \approx 3.41
$$

We notice that $P_{1} A_{1}+P_{1} A_{2}+P_{1} A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right)$ does not hold in this case, but if we consider p_{1} to be "negative" since P_{1} and A_{1} are on different sides of $\overline{A_{2} A_{3}}, p_{2}$ to be "positive" since P_{1} and A_{2} are on the same side of $\overline{A_{1} A_{3}}$, and p_{3} to be "negative" since P_{1} and A_{3} are on different sides of $\overline{A_{1} A_{2}}$, then we get

$$
P_{1} A_{1}+P_{1} A_{2}+P_{1} A_{3}=1+2 \sqrt{5} \approx 5.47 \geq 1.18 \approx 2(2-\sqrt{2})=2\left(p_{1}+p_{2}+p_{3}\right)
$$

so that the inequality holds.
In the second case (Figure 3.11), we have:

$$
\begin{array}{ll}
P_{2} A_{1}=1 & p_{1}=\frac{\sqrt{2}}{2} \\
P_{2} A_{2}=1 & p_{2}=1 \\
P_{2} A_{3}=\sqrt{2^{2}+1^{2}}=\sqrt{5} & p_{3}=\frac{\sqrt{2}}{2}
\end{array}
$$

so that

$$
P_{1} A_{1}+P_{1} A_{2}+P_{1} A_{3}=2+\sqrt{5} \approx 4.24
$$

$$
\text { and } \quad p_{1}+p_{2}+p_{3}=1+\sqrt{2} \approx 2.41
$$

Again, the inequality does not hold in this case. However, if we adopt the convention that p_{1} is positive since P_{2} and A_{1} are on the same side of $\overline{A_{2} A_{3}}, p_{2}$ is positive since P_{2} and A_{2} are on the same side of $\overline{A_{1} A_{3}}$, and p_{3} is negative since P_{2} and A_{3} are on different sides of $\overline{A_{1} A_{2}}$, then we get

$$
P_{2} A_{1}+P_{2} A_{2}+P_{2} A_{3}=2+\sqrt{5} \approx 4.24>2=2(1)=2\left(\frac{\sqrt{2}}{2}+1-\frac{\sqrt{2}}{2}\right)=2\left(p_{1}+p_{2}+p_{3}\right)
$$

so the inequality holds.

Example 3.3 provides the motivation for a "signed" Erdös-Mordell Inequality, in order to account for what happens if P is an exterior point. Before getting such a result, we develop a precursor.

Theorem 3.4

[DER]
Given $\triangle A_{1} A_{2} A_{3}$, and let P be a point in the same plane.
Let p_{i} denote the signed distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i}, for each $1 \leq i \leq 3$.

That is:
p_{1} is positive if P and A_{1} are on the same side of $\overline{A_{2} A_{3}}, p_{1}$ is negative otherwise;
p_{2} is positive if P and A_{2} are on the same side of $\overline{A_{1} A_{3}}, p_{2}$ is negative otherwise; and p_{3} is positive if P and A_{3} are on the same side of $\overline{A_{1} A_{2}}, p_{3}$ is negative otherwise.

Then the following result holds:

$$
P A_{1}+P A_{2}+P A_{3} \geq p_{1}\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}\right)+p_{2}\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right)+p_{3}\left(\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}\right) .
$$

Comment.

The statement of this theorem and its corresponding proof are based on the work of Nikolaos Dergiades in [DER], but it has been adapted for this paper.

We let h_{1} denote the length of the altitude from A_{1} to $\overline{A_{2} A_{3}}$, we let a_{i} be the length of the side of $\triangle A_{1} A_{2} A_{3}$ opposite A_{i}, and we let K be the area of $\triangle A_{1} A_{2} A_{3}$.

The first item we observe is that, regardless of the location of P relative to the triangle, as long as we have the signed distances defined above,

$$
\text { Area } \triangle A_{1} A_{2} A_{3}=\text { Area } \triangle A_{1} P A_{2}+\text { Area } \triangle A_{2} P A_{3}+\text { Area } \triangle A_{1} P A_{3} .
$$

(When P is interior to the triangle, as shown in Figure 3.12, this is obvious. We notice that in the case where P is outside the triangle - one such example being shown in Figure 3.13 - we have to take $\triangle A_{2} P A_{3}$ away from $\triangle A_{1} P A_{2}$ and $\triangle A_{1} P A_{3}$ to get $\triangle A_{1} A_{2} A_{3}$, which is exactly what we have with the signed value of $p_{1}<0$.)

Upon substitution, this equation becomes

$$
K=\frac{a_{1} h_{1}}{2}=\frac{a_{1} p_{1}}{2}+\frac{a_{2} p_{2}}{2}+\frac{a_{3} p_{3}}{2} \quad \text { or } \quad 2 K=a_{1} h_{1}=a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}
$$

Next, we notice that $P A_{1}+p_{1} \geq h_{1}$, no matter the location of P (with the $p_{1}<0$ possibility). This is a simple consequence of the fact that the altitude is the shortest distance from a vertex of a triangle to its opposite side, and it is pictured in Figure 3.14

Figure 3.14

Figure 3.15

Also, it is clear that we get equality if and only if P is on the line containing the altitude.
Now, combining $a_{1} h_{1}=a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}$ with $P A_{1}+p_{1} \geq h_{1}$, we get

$$
a_{1} P A_{1}+a_{1} p_{1}=a_{1}\left(P A_{1}+p_{1}\right) \geq a_{1} h_{1}=a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3},
$$

which means $a_{1} P A_{1}+a_{1} p_{1} \geq a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}$, so that

$$
\begin{equation*}
a_{1} P A_{1} \geq a_{2} p_{2}+a_{3} p_{3} \quad \text { or equivalently } \quad P A_{1} \geq \frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}} . \tag{3.4.A}
\end{equation*}
$$

Similarly, we obtain

$$
P A_{2} \geq \frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}} \text { and } P A_{3} \geq \frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}} .
$$

We let $\triangle A_{1} \tilde{A}_{2} \tilde{A}_{3}$ be the image of $\triangle A_{1} A_{2} A_{3}$ when reflected across the bisector of $\angle A_{2} A_{1} A_{3}$. When doing this, we realize the bisector of $\angle A_{2} A_{1} A_{3}$ is also the bisector of the angle formed by the altitude from A_{1} of the original triangle and the radius of the circumcircle of the original triangle. (See Lemma 2.2).

Figure 3.16
Applying the inequality $a_{1} P A_{1} \geq a_{2} p_{2}+a_{3} p_{3}$ to $\triangle A_{1} \tilde{A}_{2} \tilde{A}_{3}$, (which essentially switches a_{2} and a_{3} in our inequality), we realize that $a_{1} P A_{1} \geq a_{3} p_{2}+a_{2} p_{3}$, with equality being the case only if P is on the altitude through A_{1} in $\triangle A_{1} \tilde{A}_{2} \tilde{A}_{3}$, which is the same line containing $\overline{O A_{1}}$.

The rationale for this is supported through Figure 3.19 and Figure 3.20 on the next page.

Figure 3.17

Figure 3.18

So now, like in Kazarinoff's proof, we have $a_{1} P A_{1} \geq a_{3} p_{2}+a_{2} p_{3}$, which means

$$
\begin{equation*}
P A_{1} \geq \frac{a_{3} p_{2}}{a_{1}}+\frac{a_{2} p_{3}}{a_{1}} \tag{3.4.B}
\end{equation*}
$$

Similarly, we obtain

$$
P A_{2} \geq \frac{a_{3} p_{1}}{a_{2}}+\frac{a_{1} p_{3}}{a_{2}} \quad \text { and } \quad P A_{3} \geq \frac{a_{1} p_{2}}{a_{3}}+\frac{a_{2} p_{1}}{a_{3}} .
$$

(There is no problem with obtaining these results similarly, as we saw the location of P was not problematic, and each of the angles of the original triangle will have a bisector.)

Akin to the earlier proof, we get:

$$
\begin{aligned}
P A_{1}+P A_{2}+P A_{3} & \geq \frac{a_{3} p_{2}+a_{2} p_{3}}{a_{1}}+\frac{a_{3} p_{1}+a_{1} p_{3}}{a_{2}}+\frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}} \\
& =\frac{a_{3} p_{1}}{a_{2}}+\frac{a_{2} p_{1}}{a_{3}}+\frac{a_{1} p_{2}}{a_{3}}+\frac{a_{3} p_{2}}{a_{1}}+\frac{a_{2} p_{3}}{a_{1}}+\frac{a_{1} p_{3}}{a_{2}} \\
& =p_{1}\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}\right)+p_{2}\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right)+p_{3}\left(\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}\right)
\end{aligned}
$$

Thus, we have established

$$
P A_{1}+P A_{2}+P A_{3} \geq p_{1}\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}\right)+p_{2}\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right)+p_{3}\left(\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}\right),
$$

our desired result.

Corollary 3.5.

Under the premise of Theorem 3.4, we have (from 3.4.A)

$$
P A_{1} \geq \frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}, \text { and } \quad P A_{3} \geq \frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}}
$$

as well as (from 3.4.B)

$$
P A_{1} \geq \frac{a_{3} p_{2}+a_{2} p_{3}}{a_{1}}, \quad P A_{2} \geq \frac{a_{3} p_{1}+a_{1} p_{3}}{a_{2}}, \quad \text { and } \quad P A_{3} \geq \frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}}
$$

Comment.

The second set of inequalities were also formed by D. K. Kazarinoff in [KAD] in the case where P is interior to the triangle.

Comment.

At the conclusion of Theorem 3.4, it is tempting to use the Arithmetic Mean - Geometric Mean Inequality on each piece to yield the following:

$$
\begin{aligned}
P A_{1}+P A_{2}+P A_{3} & \geq p_{1}\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}\right)+p_{2}\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right)+p_{3}\left(\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}\right) \\
& \geq 2 p_{1} \sqrt{\frac{a_{3}}{a_{2}} \cdot \frac{a_{2}}{a_{3}}+2 p_{2} \sqrt{\frac{a_{1}}{a_{3}} \cdot \frac{a_{3}}{a_{1}}}+2 p_{3} \sqrt{\frac{a_{2}}{a_{1}} \cdot \frac{a_{1}}{a_{2}}}} \\
& =2 p_{1}+2 p_{2}+2 p_{3} \\
& =2\left(p_{1}+p_{2}+p_{3}\right)
\end{aligned}
$$

and therefore, claim $P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right)$.

However, for example, if $p_{1}<0$, we cannot conclude $p_{1}\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}\right) \geq 2 p_{1} \sqrt{\frac{a_{3}}{a_{2}} \cdot \frac{a_{2}}{a_{3}}}$.
We want to show a "signed" Erdös-Mordell Inequality, namely, under the signed versions of $p_{1,} p_{2,} p_{3}$ described above, that we can conclude $P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right)$ for any point P in the same plane as $\triangle A_{1} A_{2} A_{3}$.

In fact, this exact problem appeared in the "Elementary Problems" section of the March 1974 issue of The American Mathematical Monthly as "E 2462" [DEM].

One referee assigned to this problem was Clayton W. Dodge. In [DOD], Dodge describes the situation emerging from this seemingly innocent problem. Three solutions were submitted in 1974. Each author used the methods of Kazarinoff and extended them for the signed values of p_{i}. Each author made the error referenced in the comment above: the incorrect application of the Arithmetic Mean - Geometric Mean inequality.

Dodge, working with the other referees, attempted to find a way around this hurdle; nothing immediately presented itself. Over the years, Dodge relates in the same article, he kept being drawn back to this problem until he finally devised a solution in 1984.

What we present next is the Signed Erdös-Mordell Inequality, which is based on the solution by Dodge [DOD], involving ideas from Kazarinoff [KAD].

Given $\triangle A_{1} A_{2} A_{3}$, and let P be a point in the same plane.
Let p_{i} denote the signed distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i}, for each $1 \leq i \leq 3$.

That is:
p_{1} is positive if P and A_{1} are on the same side of $\overline{A_{2} A_{3}}, p_{1}$ is negative otherwise;
p_{2} is positive if P and A_{2} are on the same side of $\overline{A_{1} A_{3}}, p_{2}$ is negative otherwise; and
p_{3} is positive if P and A_{3} are on the same side of $\overline{A_{1} A_{2}}, p_{3}$ is negative otherwise.

Then the following result holds:

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right) .
$$

Comment.

This result and its proof are based on the works of Clayton W. Dodge in [DOD], incorporating ideas from Kazarinoff [KAD].

We begin by stating that Theorem 3.2 handles the case where P is either interior to $\triangle A_{1} A_{2} A_{3}$ or on its boundary.

Thus, we need to consider all other possible locations of P.
As shown in Figure 3.19, we have the possibility that P is outside the triangle and:
(Case 1) $\quad P$ lies inside an angle vertical to one of the interior angles of $\triangle A_{1} A_{2} A_{3}$;
(Case 2) $\quad P$ is interior to only one of the interior angles of $\triangle A_{1} A_{2} A_{3}$; or
(Case 3) $\quad P$ is on the extension of one of the sides of $\triangle A_{1} A_{2} A_{3}$.

Figure 3.19

Before proceeding into cases, we establish some groundwork.
Let $d_{i}=\left|p_{i}\right|$.
Based on the Proof of Theorem 3.2 (based on [KAD]), we have, for P interior to $\triangle A_{1} A_{2} A_{3}$,

$$
\begin{align*}
& a_{1} \cdot P A_{1} \cos \left(\angle P A_{1} O\right)=a_{2} p_{3}+a_{3} p_{2} \\
& a_{2} \cdot P A_{2} \cos \left(\angle P A_{2} O\right)=a_{1} p_{3}+a_{3} p_{1} \tag{3.6.A}\\
& a_{3} \cdot P A_{3} \cos \left(\angle P A_{3} O\right)=a_{1} p_{2}+a_{2} p_{1} .
\end{align*}
$$

From this, in that same proof, we said

$$
\begin{align*}
P A_{1}+ & P A_{2}+P A_{3} \\
& \geq \quad P A_{1} \cos \left(\angle P A_{1} O\right)+P A_{2} \cos \left(\angle P A_{2} O\right)+P A_{3} \cos \left(\angle P A_{3} O\right) \tag{3.6.B}\\
& =\quad \frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}+\frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}+\frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}} \tag{3.6.C}\\
& =\left(\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}\right) p_{1}+\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right) p_{2}+\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) p_{3} \tag{3.6.D}\\
& \geq 2\left(p_{1}+p_{2}+p_{3}\right) . \tag{3.6.E}
\end{align*}
$$

Of course, in that scenario, $p_{i} \geq 0$, so that the Arithmetic Mean - Geometric Mean Inequality applied to go from (3.6.D) to (3.6.E).

Now, we base the proof for any location of P off this same basic concept.

Case 1: $\quad P$ is outside $\triangle A_{1} A_{2} A_{3}$ and P lies inside an angle vertical to one of the interior angles of $\triangle A_{1} A_{2} A_{3}$;

Without loss of generality, assume P lies inside the angle vertical to $\angle A_{2} A_{1} A_{3}$. Let F be the foot of the perpendicular from P to $\overline{A_{2} A_{3}}$ as shown in Figure 3.20.

Figure 3.20
Now, in this scenario, $p_{1}>0, p_{2}<0$, and $p_{3}<0$, so that

$$
p_{1}=d_{1}, \quad p_{2}=-d_{2}, \text { and } p_{3}=-d_{3} .
$$

Seeing that $\overline{P A_{2}}$ and d_{1} are the hypotenuse and leg, respectively, of $\triangle P F A_{2}$, we have

$$
P A_{2} \geq d_{1} .
$$

Similarly, since $\overline{P A_{3}}$ and d_{1} are the hypotenuse and leg, respectively, of $\triangle P F A_{3}$, we have

$$
P A_{3} \geq d_{1} .
$$

Thus $P A_{1}+P A_{2}+P A_{3} \geq P A_{2}+P A_{3} \geq d_{1}+d_{1} \geq 2 d_{1} \geq 2\left(d_{1}-d_{2}-d_{3}\right)$.
In this case, we have $p_{1}>0, p_{2}<0$, and $p_{3}<0$, so that

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right),
$$

as desired.

Case 2: $\quad P$ is outside $\triangle A_{1} A_{2} A_{3}$ and P is interior to only one of the interior angles of $\triangle A_{1} A_{2} A_{3}$.

Without loss of generality, assume P is interior to $\angle A_{2} A_{1} A_{3}$
Case 2. $A: \quad P$ is outside $\triangle A_{1} A_{2} A_{3}$ and P is interior to an interior angle of $\triangle A_{1} A_{2} A_{3}$, but it is far enough outside the triangle that the foot of the perpendicular F_{i} from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite A_{i} lies outside $\triangle A_{1} A_{2} A_{3}$ for either or both of the two vertex points to which P is not interior.

Under the conditions of Case 2.A, assume that P is far enough outside $\triangle A_{1} A_{2} A_{3}$ that both F_{2} and F_{3} do not lie on the triangle.

Then we have $p_{1}=-d_{1}<0$.
Choose point $A_{2}{ }^{\prime}$ such that F_{3} is the midpoint of $\overline{A_{2} A_{2}{ }^{\prime}}$, and let $F_{1}{ }^{\prime}$ be the foot of the perpendicular from P to $\overline{A_{2}{ }^{\prime} A_{3}}$ as shown in Figure 3.21.

Figure 3.21
Then, we have $P A_{2}=P A_{2}{ }^{\prime}$, and so the distances from P to the vertices of $\triangle A_{1} A_{2}{ }^{\prime} A_{3}$ are the same as the distances from P to the vertices of $\triangle A_{1} A_{2} A_{3}$.

Additionally, we note that when considering $\triangle A_{1} A_{2}{ }^{\prime} A_{3}$ compared to $\triangle A_{1} A_{2} A_{3}$, we have d_{2} and d_{3} remaining unchanged, but d_{1} changes to $d_{1}{ }^{\prime}=P F_{1}{ }^{\prime}$.

If, as shown in Figure $3.23, P$ is outside $\triangle A_{1} A_{2}{ }^{\prime} A_{3}$, then we get $d_{1}{ }^{\prime}<d_{1}$, so that $p_{1}=-d_{1}<-d_{1}{ }^{\prime}=p_{1}{ }^{\prime}$, or $p_{1}<p_{1}{ }^{\prime}$.

If, however, P is inside $\triangle A_{1} A_{2}{ }^{\prime} A_{3}$, then we get $p_{1}<0<p_{1}{ }^{\prime}$, so that $p_{1}<p_{1}{ }^{\prime}$.
Either way, $p_{1}<p_{1}{ }^{\prime}$.

Thus,

$$
p_{1}^{\prime}+p_{2}+p_{3}>p_{1}+p_{2}+p_{3} .
$$

Similarly, we apply the same process on $\triangle A_{1} A_{2}{ }^{\prime} A_{3}$:
Choose point $A_{3}{ }^{\prime}$ such that F_{2} is the midpoint of $\overline{A_{3} A_{3}{ }^{\prime}}$, and let $F_{1}{ }^{\prime \prime}$ be the foot of the perpendicular from P to $\overline{A_{2}{ }^{\prime} A_{3}{ }^{\prime}}$ as shown in Figure 3.22.

Figure 3.22
Then, we have $P A_{3}=P A_{3}{ }^{\prime}$, and so the distances from P to the vertices of $\triangle A_{1} A_{2}{ }^{\prime} A_{3}{ }^{\prime}$ are the same as the distances from P to the vertices of $\triangle A_{1} A_{2}{ }^{\prime} A_{3}$.

Additionally, we note that when considering $\triangle A_{1} A_{2}{ }^{\prime} A_{3}{ }^{\prime}$ compared to $\triangle A_{1} A_{2}{ }^{\prime} A_{3}$, we have d_{2} and d_{3} remaining unchanged, but $d_{1}{ }^{\prime}$ changes to $d_{1}{ }^{\prime \prime}=P F_{1}{ }^{\prime \prime}$.

Akin to the earlier reasoning, $p_{1}{ }^{\prime}<p_{1}{ }^{\prime \prime}$.
Thus, we get $p_{1}{ }^{\prime \prime}+p_{2}+p_{3}>p_{1}{ }^{\prime}+p_{2}+p_{3}>p_{1}+p_{2}+p_{3}$.
So, we have $p_{1}{ }^{\prime \prime}+p_{2}+p_{3}>p_{1}+p_{2}+p_{3}$, which means that if the Signed Erdös-Mordell result

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right)
$$

holds in the newly constructed triangle whose feet of the perpendiculars from P are all on the sides of the triangle, it must hold for the original triangle.

Therefore, it suffices to reduce Case 2 to the situation where all of the feet of the perpendiculars from P to the sides of $\triangle A_{1} A_{2} A_{3}$ lie on $\triangle A_{1} A_{2} A_{3}$.

This is how we conclude Case 2.A.

A further consequence of the idea from Case 2.A is the idea that our point P must fall within the circumscribed circle of $\triangle A_{1} A_{2} A_{3}$.

To see this, consider Figure 3.23 below, where we have constructed D to be such that $\overline{A_{1} D}$ is a diameter of the circumscribed circle.

Since we are only working with P outside the triangle, and within Case 2 , we have assumed (without loss of generality) that P is interior to $\angle A_{2} A_{1} A_{3}$, it follows that we only need to consider P possibly being in the shaded region (that inside $\triangle D A_{2} A_{3}$).

Figure 3.23
Given the constraints that P is outside $\triangle A_{1} A_{2} A_{3}$, interior to $\angle A_{2} A_{1} A_{3}$, and is such that the feet of the perpendiculars from P to the sides of $\triangle A_{1} A_{2} A_{3}$ are assumed to be on the triangle itself, these are the only possibilities for P.

Next, we seek to establish the validity of the results (3.6.A) - (3.6.D) for points in this region.

We let P be in the region specified, within $\triangle D A_{2} A_{3}$.
We notice $p_{1}<0, p_{2}>0$, and $p_{3}>0$.
We consider reflecting $\triangle A_{1} A_{2} A_{3}$ over the bisector of $\angle A_{2} A_{1} A_{3}$ to obtain $\triangle A_{1} \tilde{A}_{2} \tilde{A}_{3}$ and parallelograms $A_{1} \tilde{A}_{3} X P, A_{1} \tilde{A}_{2} Y P$, and $\tilde{A}_{2} \tilde{A}_{3} X Y$ as in the Proof of Theorem 3.2. This is shown in Figure 3.24.

Figure 3.24
Here, we see that since P is interior to $\angle A_{2} A_{1} A_{3}$ and exterior to both $\angle A_{1} A_{2} A_{3}$ and $\angle A_{1} A_{3} A_{2}$, it follows that neither parallelogram $A_{1} \tilde{A}_{3} X P$ nor $A_{1} \tilde{A}_{2} Y P$ lies completely outside $\triangle A_{1} \tilde{A}_{2} \tilde{A}_{3}$. So Pappus's Theorem applies (akin to the Proof of Theorem 3.2).

We will focus on the following properties of these parallelograms:
$A_{1} \tilde{A}_{3} X P$
$A_{1} \tilde{A}_{2} Y P$
$\tilde{A}_{2} \tilde{A}_{3} X Y$

Base: $A_{1} \tilde{A}_{3}=A_{1} A_{3}=a_{2} \quad$ Base: $\quad A_{1} \tilde{A}_{2}=A_{1} A_{2}=a_{3} \quad$ Base: $\quad \tilde{A}_{2} \tilde{A}_{3}=A_{2} A_{3}=a_{1}$ Height: $d_{3} \quad$ Height: $d_{2} \quad$ Height: $h=P A_{1} \cdot \cos \angle P A_{1} O$

Note: $\cos \angle P A_{1} O>0$ since $\overline{O A_{1}}$ is a radius of a circle, and we know that if P is interior to the circle, this angle must be acute. (It becomes a right angle if $\overline{P A_{1}}$ were tangent to the circle - which isn't the case, and therefore, it could only be obtuse if P were exterior to the circle - which isn't the case.)

So, by Theorem 2.1 (Pappus's Theorem),

$$
\text { Area } \tilde{A}_{2} \tilde{A}_{3} X Y=\text { Area } A_{1} \tilde{A}_{3} X P+\text { Area } A_{1} \tilde{A}_{2} Y P
$$

Or, when substituting the appropriate bases and heights listed earlier:

$$
a_{1} \cdot P A_{1} \cos \left(\angle P A_{1} O\right)=a_{2} d_{3}+a_{3} d_{2} .
$$

Since $p_{2}>0$, and $p_{3}>0$, this gives

$$
a_{1} \cdot P A_{1} \cos \left(\angle P A_{1} O\right)=a_{2} p_{3}+a_{3} p_{2} .
$$

Within the Proof of Theorem 3.2, we similarly obtained

$$
\begin{aligned}
& a_{2} \cdot P A_{2} \cos \left(\angle P A_{2} O\right)=a_{1} d_{3}+a_{3} d_{1} \\
& a_{3} \cdot P A_{3} \cos \left(\angle P A_{3} O\right)=a_{1} d_{2}+a_{2} d_{1}
\end{aligned}
$$

since P was interior to each of the angles. However, that is no longer the case.
Now, we consider reflecting $\triangle A_{1} A_{2} A_{3}$ over the bisector of $\angle A_{1} A_{2} A_{3}$ to obtain $\triangle \tilde{A}_{1} A_{2} \tilde{A}_{3}$, following the same notation and process as before. This is shown in Figure 3.25 .

Figure 3.25
Here, we see that since P is interior to $\angle A_{2} A_{1} A_{3}$ and exterior to both $\angle A_{1} A_{2} A_{3}$ and $\angle A_{1} A_{3} A_{2}$, it follows that both parallelograms $A_{2} \tilde{A}_{1} X P$ and $\tilde{A}_{1} \tilde{A}_{3} Y X$ lie completely outside $\triangle \tilde{A}_{1} A_{2} \tilde{A}_{3}$. So Pappus's Theorem applies.

We will focus on the following properties of these parallelograms:
$A_{2} \tilde{A}_{1} X P$
$A_{2} \tilde{A}_{3} Y P$
$\tilde{A}_{1} \tilde{A}_{3} Y X$

Base: $A_{2} \tilde{A}_{1}=A_{2} A_{1}=a_{3} \quad$ Base: $A_{2} \tilde{A}_{3}=A_{2} A_{3}=a_{1}$ Base: $\tilde{A}_{1} \tilde{A}_{3}=A_{1} A_{3}=a_{2}$ Height: d_{1} Height: $d_{3} \quad$ Height: $h=P A_{2} \cdot \cos \angle P A_{2} O$

Note: $\cos \angle P A_{2} O>0$ since $\overline{O A_{2}}$ is a radius of a circle, and we know that if P is interior to the circle, this angle must be acute. (It becomes a right angle if $\overline{P A_{2}}$ were tangent to the circle - which isn't the case, and therefore, it could only be obtuse if P were exterior to the circle - which isn't the case.)

So, by Theorem 2.1 (Pappus's Theorem), with $A_{2} \tilde{A}_{1} X P$ and $\tilde{A}_{1} \tilde{A}_{3} Y X$ completely outside the triangle, we have:

$$
\text { Area } A_{2} \tilde{A}_{3} Y P=\text { Area } A_{2} \tilde{A}_{1} X P+\text { Area } \tilde{A}_{1} \tilde{A}_{3} Y X
$$

Or, when substituting the appropriate bases and heights listed earlier:

$$
a_{1} d_{3}=a_{3} d_{1}+a_{2} \cdot P A_{2} \cos \left(\angle P A_{2} O\right),
$$

or equivalently

$$
a_{2} \cdot P A_{2} \cos \left(\angle P A_{2} O\right)=a_{1} d_{3}-a_{3} d_{1} .
$$

Since $p_{1}<0$, and $p_{3}>0$, this gives

$$
a_{2} \cdot P A_{2} \cos \left(\angle P A_{2} O\right)=a_{1} p_{3}+a_{3} p_{1},
$$

as desired.

When reflecting $\triangle A_{1} A_{2} A_{3}$ over the bisector of $\angle A_{1} A_{3} A_{2}$ to obtain $\triangle \tilde{A}_{1} \tilde{A}_{2} A_{3}$, we will have the same process as seen most recently, as P was interior to $\angle A_{2} A_{1} A_{3}$ and exterior to both $\angle A_{1} A_{2} A_{3}$ and $\angle A_{1} A_{3} A_{2}$.

So, similarly,

$$
a_{3} \cdot P A_{3} \cos \left(\angle P A_{3} O\right)=a_{1} p_{2}+a_{2} p_{1} .
$$

Thus, Kazarinoff's formulas (3.6.A) - (3.6.D) hold for points in the region under consideration, namely those inside of $\triangle D A_{2} A_{3}$.

Recalling that within this case, we are concerned with P being in the region formed by $\triangle D A_{2} A_{3}$ only, we may assume $m \angle D A_{2} A_{3}<90^{\circ}$ and $m \angle D A_{3} A_{2}<90^{\circ}$ (otherwise the shaded region in Figure 3.26 is empty).

Figure 3.26
We have $p_{1}<0, p_{2}>0$, and $p_{3}>0$ in this region, so that we wish to show:

$$
P A_{1}+P A_{2}+P A_{3} \geq-2 d_{1}+2 d_{2}+2 d_{3} .
$$

Case 2.B: $\quad P$ lies in $\triangle D A_{2} A_{3}$ and at least one of $m \angle A_{1} A_{2} A_{3}$ or $m \angle A_{1} A_{3} A_{2}$ does not exceed 30°.

Without loss of generality, assume $m \angle A_{1} A_{2} A_{3} \leq 30^{\circ}$.
Let $\alpha=m \angle A_{1} A_{2} A_{3}$ and $\epsilon=m \angle P A_{2} A_{3}$, as noted in Figure 3.27.

Figure 3.27
Then, since $\alpha \leq 30^{\circ}$, we know

$$
\sin (\alpha) \leq \frac{1}{2}
$$

Additionally, based off Figure 3.27,

$$
\sin (\alpha+\epsilon)=\frac{d_{3}}{P A_{2}} \quad \text { so that } \quad d_{3}=\left(P A_{2}\right) \sin (\alpha+\epsilon)
$$

and

$$
\sin (\epsilon)=\frac{d_{1}}{P A_{2}} \quad \text { so that } \quad d_{1}=\left(P A_{2}\right) \sin (\epsilon) .
$$

We notice

$$
\begin{aligned}
\sin (\alpha+\epsilon)-\sin (\epsilon) \quad & =\sin (\alpha) \cos (\epsilon)+\cos (\alpha) \sin (\epsilon)-\sin (\epsilon) \\
& =\quad \sin (\alpha) \cos (\epsilon)+\sin (\epsilon)[\cos (\alpha)-1]
\end{aligned}
$$

Since $\cos (\alpha)-1 \leq 0$,

$$
\leq \quad \sin (\alpha) \cos (\epsilon)
$$

Since $\cos (\epsilon) \leq 1$

$$
\begin{aligned}
& \leq \quad \sin (\alpha) \\
& \leq \quad \frac{1}{2} .
\end{aligned}
$$

So we have $\sin (\alpha+\epsilon)-\sin (\epsilon) \leq \frac{1}{2}$, which means $2 \sin (\alpha+\epsilon)-2 \sin (\epsilon) \leq 1$.
Using this combined with $d_{1}=\left(P A_{2}\right) \sin (\epsilon)$ and $d_{3}=\left(P A_{2}\right) \sin (\alpha+\epsilon)$, we get

$$
\begin{aligned}
P A_{2} & \geq \quad P A_{2}[2 \sin (\alpha+\epsilon)-2 \sin (\epsilon)] \\
& =2 P A_{2} \sin (\alpha+\epsilon)-2 P A_{2} \sin (\epsilon) \\
& =2 d_{3}-2 d_{1} .
\end{aligned}
$$

Letting F_{2} be the foot of the perpendicular from P to $\overline{A_{1} A_{3}}$ as in Figure 3.28, we notice the following:
since $\overline{P A_{3}}$ and d_{2} are the hypotenuse and leg, respectively, of $\triangle P A_{3} F_{2}$, we have

$$
P A_{3} \geq d_{2}
$$

and since $\overline{P A_{1}}$ and d_{2} are the hypotenuse and leg, respectively, of $\triangle P A_{1} F_{2}$,

$$
P A_{1} \geq d_{2} .
$$

Figure 3.28

Putting everything together, we have (since $p_{1}<0, p_{2}>0$, and $p_{3}>0$)

$$
\begin{aligned}
P A_{1}+P A_{2}+P A_{3} & \geq d_{2}+\left(2 d_{3}-2 d_{1}\right)+d_{2} \\
& =-2 d_{1}+2 d_{2}+2 d_{3} \\
& =2\left(p_{1}+p_{2}+p_{3}\right) .
\end{aligned}
$$

Thus, we have $P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right)$, and Case 2.B holds.

Case 2.C: $\quad P$ lies in $\triangle D A_{2} A_{3}$ and $\angle A_{2} A_{1} A_{3}$ is the largest interior angle of $\triangle A_{1} A_{2} A_{3}$.

Figure 3.29
Without loss of generality, assume

$$
m \angle A_{2} A_{1} A_{3} \geq m \angle A_{1} A_{2} A_{3} \geq m \angle A_{1} A_{3} A_{2} .
$$

This means we have $a_{1} \geq a_{2} \geq a_{3}$ and $d_{1} \leq d_{2}$ (the former because of the assumption on the angles, the latter because of the location of P guarantees the distance from P to $\overline{A_{2} A_{3}}$ to be smaller than the distance from P to the extension of $\overline{A_{1} A_{3}}$).

Notice $a_{1} \geq a_{2} \geq a_{3}>0$ means $\left(a_{1}-a_{2}\right) a_{3}^{2} \leq a_{1} a_{2}\left(a_{1}-a_{2}\right)$, so that

$$
\frac{a_{1} a_{2}^{2}+a_{1} a_{3}^{2}}{a_{1} a_{2} a_{3}} \leq \frac{a_{2} a_{3}^{2}+a_{1}^{2} a_{2}}{a_{1} a_{2} a_{3}}
$$

Simplifying, we get

$$
\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}} \leq \frac{a_{3}}{a_{1}}+\frac{a_{1}}{a_{3}} .
$$

Recalling the Arithmetic Mean - Geometric Mean Inequality, we have

$$
2 \leq \frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}} \leq \frac{a_{3}}{a_{1}}+\frac{a_{1}}{a_{3}} .
$$

Set $W=\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}} \geq 2$ and $V=\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}} \geq 2$.
For any number N such that $W d_{1} \geq V d_{2}+N$, since $W \leq V$ we have

$$
W d_{1} \geq W d_{2}+N
$$

Realizing $W-2 \geq 0$ and $d_{1} \leq d_{2}$, we also have

$$
(W-2) d_{1} \leq(W-2) d_{2} .
$$

Subtracting these inequalities yields

$$
2 d_{1} \geq 2 d_{2}+N
$$

Thus, for any N making $\left(\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}\right) d_{1} \geq\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right) d_{2}+N$, we have $2 d_{1} \geq 2 d_{2}+N$.
Now, by (3.6.A-3.6.D), with $p_{1}<0, p_{2}>0$, and $p_{3}>0$, we have

$$
\begin{aligned}
P A_{1}+P A_{2}+P A_{3} & \geq\left(\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}\right) p_{1}+\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right) p_{2}+\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) p_{3} \\
& =-\left(\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}\right) d_{1}+\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right) d_{2}+\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) d_{3}
\end{aligned}
$$

so that

$$
\left(\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}\right) d_{1} \geq\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right) d_{2}+\left[\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) d_{3}-P A_{1}-P A_{2}-P A_{3}\right]
$$

By our most recent result, we must have

$$
2 d_{1} \geq 2 d_{2}+\left[\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) d_{3}-P A_{1}-P A_{2}-P A_{3}\right],
$$

or equivalently

$$
P A_{1}+P A_{2}+P A_{3} \geq-2 d_{1}+2 d_{2}+\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) d_{3} .
$$

But we can use the Arithmetic Mean - Geometric Mean Inequality on the last term to get

$$
\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) d_{3} \geq 2 \sqrt{\frac{a_{1}}{a_{2}} \cdot \frac{a_{2}}{a_{1}}} d_{3}=2 d_{3},
$$

so that

$$
P A_{1}+P A_{2}+P A_{3} \geq-2 d_{1}+2 d_{2}+2 d_{3} .
$$

Recall, we have $p_{1}<0, p_{2}>0$, and $p_{3}>0$ in this region, so that this gives us

$$
P A_{1}+P A_{2}+P A_{3} \geq 2 p_{1}+2 p_{2}+2 p_{3},
$$

which is our desired inequality

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right) .
$$

Thus, Case 2.C holds.

Before handling our last sub-case for Case 2, we consider two lemmas.

Lemma 3.6.1.

The function $f(x)=1-\cos (x)-\frac{1}{2} \sin \left(x-15^{\circ}\right)$ is positive on $\left[15^{\circ}, 90^{\circ}\right]$.

Proof of Lemma 3.6.1.

Calculating the derivative of f, we have

$$
f^{\prime}(x)=\sin (x)-\frac{1}{2} \cos \left(x-15^{\circ}\right) .
$$

Finding critical points (setting $f^{\prime}(x)=0$), we have

$$
\begin{aligned}
2 \sin (x) & =\cos \left(x-15^{\circ}\right) \\
& =\cos (x) \cos \left(15^{\circ}\right)+\sin (x) \sin \left(15^{\circ}\right)
\end{aligned}
$$

Thus $2 \sin (x)=\cos (x) \cos \left(15^{\circ}\right)+\sin (x) \sin \left(15^{\circ}\right)$. Rearranging gives

$$
2 \sin (x)-\sin (x) \sin \left(15^{\circ}\right)=\cos (x) \cos \left(15^{\circ}\right)
$$

which becomes

$$
\sin (x)\left[2-\sin \left(15^{\circ}\right)\right]=\cos (x) \cos \left(15^{\circ}\right)
$$

or

$$
\tan (x)=\frac{\cos \left(15^{\circ}\right)}{2-\sin \left(15^{\circ}\right)} .
$$

Based on properties of the tangent function, this only has one solution on $\left[15^{\circ}, 90^{\circ}\right]$. Namely, it is

$$
x=\arctan \left[\frac{\cos \left(15^{\circ}\right)}{2-\sin \left(15^{\circ}\right)}\right] \approx 29.0194659^{\circ}
$$

Thus, to find the absolute minimum of f on $\left[15^{\circ}, 90^{\circ}\right]$, we evaluate the function at the endpoints of the interval and its critical point:

$$
\begin{aligned}
& f\left(15^{\circ}\right)=1-\cos \left(15^{\circ}\right)-\frac{1}{2} \sin \left(0^{\circ}\right) \approx 0.304074 \\
& f\left(\arctan \left[\cos \frac{\left(15^{\circ}\right)}{2-\sin \left(15^{\circ}\right)}\right]\right) \approx 0.0044192876 \\
& f\left(90^{\circ}\right)=1-\cos \left(90^{\circ}\right)-\frac{1}{2} \sin \left(75^{\circ}\right) \approx 0.517037
\end{aligned}
$$

It follows that f achieves its absolute minimum on $\left[15^{\circ}, 90^{\circ}\right]$ at the point with approximate coordinates $\left(29.019^{\circ}, 0.0044192876\right)$.

Therefore, Lemma 3.6.1 holds as $f(x)>0$ on this interval.

Lemma 3.6.2.

Let $g(x)=x+\frac{1}{x}$. Then $g(x) \leq 2.5$ on the interval $[1,2]$.

Proof of Lemma 3.6.2.

We notice $g^{\prime}(x)=1-\frac{1}{x^{2}}>0$ for x on the interval [1,2], so g is increasing on [1,2].
It follows that g achieves its maximum at $x=2$:

$$
g(2)=2+\frac{1}{2}=2.5
$$

and Lemma 3.6.2 holds.

To finish off Case 2, we first realize that we have already considered the following:
Case 2.B: $\quad P$ lies in $\triangle D A_{2} A_{3}$ and at least one of $m \angle A_{1} A_{2} A_{3}$ or $m \angle A_{1} A_{3} A_{2}$ does not exceed 30°.

Case 2.C: $\quad P$ lies in $\triangle D A_{2} A_{3}$ and $\angle A_{2} A_{1} A_{3}$ is the largest interior angle of $\triangle A_{1} A_{2} A_{3}$.

Our last sub-case for Case 2 will be the following: P lies in $\triangle D A_{2} A_{3}$ where both $m \angle A_{1} A_{2} A_{3}>30^{\circ}$ and $m \angle A_{1} A_{3} A_{2}>30^{\circ}$, and $\angle A_{2} A_{1} A_{3}$ is not the largest interior angle of $\triangle A_{1} A_{2} A_{3}$.

Without loss of generality, we will assume $\angle A_{1} A_{2} A_{3}$ is the largest interior angle of $\triangle A_{1} A_{2} A_{3}$. Additionally, from Figure 3.30, we can tell that $m \angle A_{1} A_{2} A_{3}<90^{\circ}$.

Figure 3.30

Case 2.D: $\quad P$ lies in $\triangle D A_{2} A_{3}$ where $30^{\circ}<m \angle A_{1} A_{3} A_{2} \leq m \angle A_{1} A_{2} A_{3}$ and $m \angle A_{2} A_{1} A_{3} \leq m \angle A_{1} A_{2} A_{3}<90^{\circ}$.

Figure 3.31
Since $30^{\circ}<m \angle A_{1} A_{3} A_{2}$, we know $m \angle A_{2} A_{1} A_{3}+m \angle A_{1} A_{2} A_{3}<150^{\circ}$. With the requirement that $\angle A_{1} A_{2} A_{3}$ is the largest interior angle of $\triangle A_{1} A_{2} A_{3}$, that means we must have

$$
m \angle A_{2} A_{1} A_{3}<75^{\circ}
$$

$\angle A_{2} A_{1} A_{3}$ is an inscribed angle in the circumscribed circle of $\triangle A_{1} A_{2} A_{3}$ having the corresponding central angle $\angle A_{2} O A_{3}$, so that

$$
m \angle A_{2} O A_{3}<150^{\circ}
$$

Realizing that $\triangle A_{2} O A_{3}$ is isosceles with base angles summing to at least 30°, we have

$$
m \angle O A_{3} A_{2}>15^{\circ}
$$

The Law of Sines gives

$$
\frac{a_{2}}{\sin \left(\angle A_{1} A_{2} A_{3}\right)}=\frac{a_{3}}{\sin \left(\angle A_{1} A_{3} A_{2}\right)},
$$

so that

$$
\frac{a_{2}}{a_{3}}=\frac{\sin \left(\angle A_{1} A_{2} A_{3}\right)}{\sin \left(\angle A_{1} A_{3} A_{2}\right)} .
$$

Coupling this with $30^{\circ}<m \angle A_{1} A_{3} A_{2} \leq m \angle A_{1} A_{2} A_{3}<90^{\circ}, \quad a_{2} \geq a_{3}$, and the notion that the sine function is increasing on $\left[0^{\circ}, 90^{\circ}\right]$, we have:

$$
1 \leq \frac{a_{2}}{a_{3}}=\frac{\sin \left(\angle A_{1} A_{2} A_{3}\right)}{\sin \left(\angle A_{1} A_{3} A_{2}\right)}<\frac{\sin \left(90^{\circ}\right)}{\sin \left(30^{\circ}\right)}=\frac{1}{1 / 2}=2 .
$$

This means

$$
1 \leq \frac{a_{2}}{a_{3}}<2 .
$$

Applying Lemma 3.6.2, we have

$$
\begin{equation*}
\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}=g\left(\frac{a_{2}}{a_{3}}\right) \leq 2.5 \tag{3.6.E}
\end{equation*}
$$

Now, from Figure 3.32, we have

$$
\sin \left(\angle P A_{3} A_{2}\right)=\frac{d_{1}}{P A_{3}} \quad \text { so that } \quad P A_{3} \sin \left(\angle P A_{3} A_{2}\right)=d_{1} .
$$

Figure 3.32
But

$$
m \angle P A_{3} A_{2} \quad=\quad m \angle P A_{3} O-m \angle O A_{3} A_{2}
$$

Recalling $m \angle O A_{3} A_{2}>15^{\circ}$ gives

$$
<\quad m \angle P A_{3} O-15^{\circ} .
$$

Let $\delta=m \angle P A_{3} O$. Then we have $m \angle P A_{3} A_{2}<\delta-15^{\circ}$.
Combining with $P A_{3} \sin \left(\angle P A_{3} A_{2}\right)=d_{1}$, we have

$$
d_{1}<P A_{3} \sin \left(\delta-15^{\circ}\right) .
$$

Lemma 3.6.1 tells us (since $\delta=m \angle P A_{3} O>15^{\circ}$)

$$
1-\cos (\delta)-\frac{1}{2} \sin \left(\delta-15^{\circ}\right)>0
$$

Equivalently,

$$
P A_{3}(1-\cos (\delta))>\frac{1}{2} P A_{3} \sin \left(\delta-15^{\circ}\right)>\frac{1}{2} d_{1} .
$$

Thus, we have

$$
P A_{3}(1-\cos (\delta))>\frac{1}{2} d_{1} .
$$

Now,

$$
\begin{aligned}
P A_{1}+ & P A_{2}+P A_{3}+2 d_{1} \\
& =\quad P A_{1}+P A_{2}+P A_{3} \cos (\delta)+P A_{3}(1-\cos (\delta))+2 d_{1} \\
& >\quad P A_{1}+P A_{2}+P A_{3} \cos (\delta)+\frac{1}{2} d_{1}+2 d_{1} \\
& =\quad P A_{1}+P A_{2}+P A_{3} \cos (\delta)+2.5 d_{1} \\
& \geq \quad P A_{1} \cos \left(\angle P A_{1} O\right)+P A_{2} \cos \left(\angle P A_{2} O\right)+P A_{3} \cos (\delta)+2.5 d_{1}
\end{aligned}
$$

Since $\delta=m \angle P A_{3} O$

$$
=\quad P A_{1} \cos \left(\angle P A_{1} O\right)+P A_{2} \cos \left(\angle P A_{2} O\right)+P A_{3} \cos \left(\angle P A_{3} O\right)+2.5 d_{1}
$$

By (3.6.A) - (3.6.D)

$$
=\quad-\left(\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}\right) d_{1}+\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right) d_{2}+\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) d_{3}+2.5 d_{1}
$$

By (3.6.E)

$$
\begin{aligned}
& >\quad-\left(\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}\right) d_{1}+\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right) d_{2}+\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) d_{3}+\left(\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}\right) d_{1} \\
& =\quad\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right) d_{2}+\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) d_{3}
\end{aligned}
$$

By the Arithmetic Mean - Geometric Mean Inequality

$$
\begin{aligned}
& \geq \quad 2 \sqrt{\frac{a_{1}}{a_{3}} \cdot \frac{a_{3}}{a_{1}}} d_{2}+2 \sqrt{\frac{a_{1}}{a_{2}} \cdot \frac{a_{2}}{a_{1}}} d_{3} \\
& =\quad 2 d_{2}+2 d_{3} .
\end{aligned}
$$

Overall, this means we must have

$$
P A_{1}+P A_{2}+P A_{3}+2 d_{1}>2 d_{2}+2 d_{3},
$$

or equivalently,

$$
P A_{1}+P A_{2}+P A_{3}>-2 d_{1}+2 d_{2}+2 d_{3} .
$$

Recalling that we have $p_{1}<0, p_{2}>0$, and $p_{3}>0$ in this region, this gives us

$$
P A_{1}+P A_{2}+P A_{3}>2\left(p_{1}+p_{2}+p_{3}\right)
$$

which certainly requires

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right)
$$

as desired.
So Case 2.D holds.

By the combined results of Case 2.A, Case 2.B, Case 2.C, and Case 2.D, we conclude that the Signed Erdös-Mordell Inequality holds in Case 2 overall.

Case 3: $\quad P$ is outside $\triangle A_{1} A_{2} A_{3}$ and P is on the extension of one of the sides of $\triangle A_{1} A_{2} A_{3}$.

This case parallels that of Case 2 of the Proof of Theorem 3.2.
Without loss of generality, assume P is on the extension of $\overline{A_{2} A_{3}}$. Draw circle m centered at P. Let ϵ_{1} be the radius of this circle. Let $P_{1} \in m$ such that P_{1} is not on the extension of $\overline{A_{2} A_{3}}$, as shown in Figure 3.33.

Figure 3.33
Let $\left\{\epsilon_{n}\right\}_{n=1}^{\infty}$ be such that ϵ_{1} is as defined above and $\epsilon_{n+1}<\epsilon_{n}$ for all n. For each n, define P_{n} such that P_{n} is on the circle centered at P with radius ϵ_{n} but is not on the extension of $\overline{A_{2} A_{3}}$.

By earlier considerations in Case 2, the Signed Erdös-Mordell Inequality holds for each P_{n}, namely:

$$
P_{n} A_{1}+P_{n} A_{2}+P_{n} A_{3} \geq 2\left(p_{n, 1}+p_{n, 2}+p_{n, 3}\right) .
$$

From this, as $n \rightarrow \infty, \epsilon_{n} \rightarrow 0$, and $P_{n} \rightarrow P$, so the inequality will also hold for P, namely

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{1}+p_{2}+p_{3}\right) .
$$

By Cases, we have concluded the Proof of Theorem 3.6. We have seen the following:
Theorem 3.2 handles the case where P is interior to $\triangle A_{1} A_{2} A_{3}$ or on its boundary.
Then, within this proof, for P outside $\triangle A_{1} A_{2} A_{3}$, we handled exhaustive cases:

Figure 3.34

Case 1: $\quad P$ lies inside an angle vertical to one of the interior angles of $\triangle A_{1} A_{2} A_{3}$;
Case 2: $\quad P$ is interior to only one of the interior angles of $\triangle A_{1} A_{2} A_{3} ;$ or
Case 3: $\quad P$ is on the extension of one of the sides of $\triangle A_{1} A_{2} A_{3}$.
In each of these situations, the Signed Erdös-Mordell Inequality holds, so overall the Signed Erdös-Mordell Inequality holds, and Theorem 3.6 is proven.

4 Twists on the Erdös-Mordell Inequality

This section involves new inequalities we get from slight changes to the inequality proposed by Erdös.

The question of whether weighting each of the sides would influence the inequality provides the motivation for the next result. Originally stated and proven by Seannie Dar and Shay Gueron in The American Mathematical Monthly [DAR], this theorem is proven differently here; in this paper, we offer our own proof based off common ideas.

Theorem 4.1. Dar-Gueron Theorem.

Let $\triangle A_{1} A_{2} A_{3}$ be given, let P be an interior point of the triangle, let p_{i} denote the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i} for each $1 \leq i \leq 3$, let a_{i} denote the length of the side of $\triangle A_{1} A_{2} A_{3}$ across from A_{i} for each $1 \leq i \leq 3$, and let $\lambda_{1}, \lambda_{2}, \lambda_{3}>0$. Then

$$
\lambda_{1} P A_{1}+\lambda_{2} P A_{2}+\lambda_{3} P A_{3} \geq 2\left(\sqrt{\lambda_{2} \lambda_{3}} p_{1}+\sqrt{\lambda_{1} \lambda_{3}} p_{2}+\sqrt{\lambda_{1} \lambda_{2}} p_{3}\right) .
$$

Equality holds if and only if $a_{1}: a_{2}: a_{3}=\sqrt{\lambda_{1}}: \sqrt{\lambda_{2}}: \sqrt{\lambda_{3}}$ and P is the circumcenter of $\triangle A_{1} A_{2} A_{3}$.

Proof of Theorem 4.1.

We realize this is the same setup as we had for the Erdös-Mordell Inequality. Given this setup, we realize the inequalities paramount to proving the Erdös-Mordell Inequality apply, as stated in Corollary 3.5, namely:

$$
P A_{1} \geq \frac{a_{2} p_{3}}{a_{1}}+\frac{a_{3} p_{2}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{3}}{a_{2}}+\frac{a_{3} p_{1}}{a_{2}}, \text { and } \quad P A_{3} \geq \frac{a_{1} p_{2}}{a_{3}}+\frac{a_{2} p_{1}}{a_{3}} .
$$

So that we have:

$$
\begin{aligned}
\lambda_{1} P A_{1} & +\lambda_{2} P A_{2}+\lambda_{3} P A_{3} \\
& \geq \quad \lambda_{1}\left(\frac{a_{2} p_{3}}{a_{1}}+\frac{a_{3} p_{2}}{a_{1}}\right)+\lambda_{2}\left(\frac{a_{1} p_{3}}{a_{2}}+\frac{a_{3} p_{1}}{a_{2}}\right)+\lambda_{3}\left(\frac{a_{1} p_{2}}{a_{3}}+\frac{a_{2} p_{1}}{a_{3}}\right)
\end{aligned}
$$

By regrouping terms:

$$
=\quad\left(\frac{a_{3}}{a_{2}} \lambda_{2}+\frac{a_{2}}{a_{3}} \lambda_{3}\right) p_{1}+\left(\frac{a_{3}}{a_{1}} \lambda_{1}+\frac{a_{1}}{a_{3}} \lambda_{3}\right) p_{2}+\left(\frac{a_{2}}{a_{1}} \lambda_{1}+\frac{a_{1}}{a_{2}} \lambda_{2}\right) p_{3}
$$

By application of the Arithmetic Mean - Geometric Mean Inequality

$$
\begin{aligned}
& \geq \quad 2 \sqrt{\frac{a_{3}}{a_{2}} \lambda_{2} \cdot \frac{a_{2}}{a_{3}} \lambda_{3}} p_{1}+2 \sqrt{\frac{a_{3}}{a_{1}} \lambda_{1} \cdot \frac{a_{1}}{a_{3}} \lambda_{3}} p_{2}+2 \sqrt{\frac{a_{2}}{a_{1}} \lambda_{1} \cdot \frac{a_{1}}{a_{2}} \lambda_{2}} p_{3} \\
& =\quad 2 \sqrt{\lambda_{2} \lambda_{3}} p_{1}+2 \sqrt{\lambda_{1} \lambda_{3}} p_{2}+2 \sqrt{\lambda_{1} \lambda_{2}} p_{3} .
\end{aligned}
$$

Thus, we have established

$$
\lambda_{1} P A_{1}+\lambda_{2} P A_{2}+\lambda_{3} P A_{3} \geq 2\left(\sqrt{\lambda_{2} \lambda_{3}} p_{1}+\sqrt{\lambda_{1} \lambda_{3}} p_{2}+\sqrt{\lambda_{1} \lambda_{2}} p_{3}\right)
$$

the desired result.

Additionally, based on the application of the Arithmetic Mean - Geometric Mean Inequality, equality holds if and only if

$$
\frac{a_{3}}{a_{2}} \lambda_{2}=\frac{a_{2}}{a_{3}} \lambda_{3}, \quad \frac{a_{3}}{a_{1}} \lambda_{1}=\frac{a_{1}}{a_{3}} \lambda_{3}, \text { and } \frac{a_{2}}{a_{1}} \lambda_{1}=\frac{a_{1}}{a_{2}} \lambda_{2},
$$

which is equivalent to saying

$$
\frac{a_{3}^{2}}{a_{2}^{2}}=\frac{\lambda_{3}}{\lambda_{2}}, \frac{a_{3}^{2}}{a_{1}^{2}}=\frac{\lambda_{3}}{\lambda_{1}}, \text { and } \frac{a_{2}^{2}}{a_{1}^{2}}=\frac{\lambda_{2}}{\lambda_{1}},
$$

which implies

$$
\frac{a_{3}}{a_{2}}=\frac{\sqrt{\lambda_{3}}}{\sqrt{\lambda_{2}}}, \frac{a_{3}}{a_{1}}=\frac{\sqrt{\lambda_{3}}}{\sqrt{\lambda_{1}}}, \text { and } \frac{a_{2}}{a_{1}}=\frac{\sqrt{\lambda_{2}}}{\sqrt{\lambda_{1}}},
$$

or equivalently $a_{1}: a_{2}: a_{3}=\sqrt{\lambda_{1}}: \sqrt{\lambda_{2}}: \sqrt{\lambda_{3}}$.
Also, by the application of the inequalities essential to proving the Erdös-Mordell Inequality, we know that P must be the circumcenter of $\triangle A_{1} A_{2} A_{3}$ for equality to hold. Thus, the criteria for equality are established, and Theorem 4.1 holds.

After investigating Erdös's conjectured inequality, we might wonder if the inequality would apply when considering other aspects of the triangle. This brings us to Barrow's Inequality:

Theorem 4.2. Barrow's Inequality. [EMB and LEE]
Given $\triangle A_{1} A_{2} A_{3}$ and interior point P of $\triangle A_{1} A_{2} A_{3}$. Let W_{i} be the point on the side of $\triangle A_{1} A_{2} A_{3}$ opposite A_{i} such that $\overline{P W_{i}}$ bisects the angle whose vertex is at P and whose sides are formed by the two vertices of $\triangle A_{1} A_{2} A_{3}$ other than A_{i}. Further, let $w_{i}=P W_{i}$. Then

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(w_{1}+w_{2}+w_{3}\right) .
$$

Figure 4.1

Comment.

We offer two proofs of Barrow's Inequality. The first is an adapted blend between the original proof by David F. Barrow [EMB] and that of Hojoo Lee [LEE]. The second is adapted from that of L. J. Mordell [MOR] and includes a condition for equality (the triangle must be equilateral and P must be its incenter).

Before proving Barrow's Inequality, we need a few results.

Lemma 4.2.1.

[LEE]
Let $x, y, z, \theta_{1}, \theta_{2}, \theta_{3}>0$ such that $\theta_{1}+\theta_{2}+\theta_{3}=\pi$. Then

$$
x^{2}+y^{2}+z^{2} \geq 2\left(y z \cos \theta_{1}+x z \cos \theta_{2}+x y \cos \theta_{3}\right)
$$

Proof of Lemma 4.2.1.
Based on
[LEE]
We first aim to show that

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}-2\left[y z \cos \left(\theta_{1}\right)+x z \cos \left(\theta_{2}\right)+x y \cos \left(\theta_{3}\right)\right] \\
& \quad=\left[z-\left[x \cos \left(\theta_{2}\right)+y \cos \left(\theta_{1}\right)\right]\right]^{2}+\left[x \sin \left(\theta_{2}\right)-y \sin \left(\theta_{1}\right)\right]^{2} .
\end{aligned}
$$

Notice $\theta_{1}+\theta_{2}+\theta_{3}=\pi$ means $\theta_{3}=\pi-\left[\theta_{1}+\theta_{2}\right]$.

$$
\left[z-\left[x \cos \left(\theta_{2}\right)+y \cos \left(\theta_{1}\right)\right]\right]^{2}+\left[x \sin \left(\theta_{2}\right)-y \sin \left(\theta_{1}\right)\right]^{2}
$$

$$
=\quad z^{2}-2 z\left[x \cos \left(\theta_{2}\right)+y \cos \left(\theta_{1}\right)\right]+\left[x \cos \left(\theta_{2}\right)+y \cos \left(\theta_{1}\right)\right]^{2}
$$

$$
+\quad x^{2} \sin ^{2}\left(\theta_{2}\right)-2 x y \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+y^{2} \sin ^{2}\left(\theta_{1}\right)
$$

$$
=z^{2}-2 x z \cos \left(\theta_{2}\right)-2 y z \cos \left(\theta_{1}\right)
$$

$$
+\quad x^{2} \cos ^{2}\left(\theta_{2}\right)+2 x y \cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+y^{2} \cos ^{2}\left(\theta_{1}\right)
$$

$$
+\quad x^{2} \sin ^{2}\left(\theta_{2}\right)-2 x y \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+y^{2} \sin ^{2}\left(\theta_{1}\right)
$$

$$
=\quad z^{2}+\left[y^{2} \sin ^{2}\left(\theta_{1}\right)+y^{2} \cos ^{2}\left(\theta_{1}\right)\right]+\left[x^{2} \sin ^{2}\left(\theta_{1}\right)+x^{2} \cos ^{2}\left(\theta_{2}\right)\right]
$$

$$
+\quad-2 x z \cos \left(\theta_{2}\right)-2 y z \cos \left(\theta_{1}\right)
$$

$$
+\quad 2 x y \cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-2 x y \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)
$$

$$
=\quad z^{2}+y^{2}\left[\sin ^{2}\left(\theta_{1}\right)+\cos ^{2}\left(\theta_{1}\right)\right]+x^{2}\left[\sin ^{2}\left(\theta_{1}\right)+\cos ^{2}\left(\theta_{2}\right)\right]
$$

$$
+\quad-2 x z \cos \left(\theta_{2}\right)-2 y z \cos \left(\theta_{1}\right)
$$

$$
+\quad 2 x y\left[\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right]
$$

$$
=z^{2}+y^{2}+x^{2}-2 x z \cos \left(\theta_{2}\right)-2 y z \cos \left(\theta_{1}\right)+2 x y \cos \left(\theta_{1}+\theta_{2}\right)
$$

Since $\pi-\left[\theta_{1}+\theta_{2}\right]=\theta_{3}$ and $\cos (\pi-x)=-\cos (x)$, we have $\cos \left(\theta_{1}+\theta_{2}\right)=-\cos \left(\theta_{3}\right)$ and

$$
\begin{aligned}
& =\quad x^{2}+y^{2}+z^{2}-2 x z \cos \left(\theta_{2}\right)-2 y z \cos \left(\theta_{1}\right)-2 x y \cos \left(\theta_{3}\right) \\
& =\quad x^{2}+y^{2}+z^{2}-2\left[y z \cos \left(\theta_{1}\right)+x z \cos \left(\theta_{2}\right)+x y \cos \left(\theta_{3}\right)\right] .
\end{aligned}
$$

Thus, we have shown

$$
\begin{aligned}
x^{2}+y^{2} & +z^{2}-2\left[y z \cos \left(\theta_{1}\right)+x z \cos \left(\theta_{2}\right)+x y \cos \left(\theta_{3}\right)\right] \\
& =\left[z-\left[x \cos \left(\theta_{2}\right)+y \cos \left(\theta_{1}\right)\right]\right]^{2}+\left[x \sin \left(\theta_{2}\right)-y \sin \left(\theta_{1}\right)\right]^{2} \\
& \geq 0
\end{aligned}
$$

so that $\quad x^{2}+y^{2}+z^{2} \geq 2\left[y z \cos \left(\theta_{1}\right)+x z \cos \left(\theta_{2}\right)+x y \cos \left(\theta_{3}\right)\right]$.

Lemma 4.2.2.

Let $a, b, c, \theta_{1}, \theta_{2}, \theta_{3}>0$ such that $\theta_{1}+\theta_{2}+\theta_{3}=\pi$. Then

$$
a \cos \left(\theta_{1}\right)+b \cos \left(\theta_{2}\right)+c \cos \left(\theta_{3}\right) \leq \frac{1}{2}\left(\frac{b c}{a}+\frac{a c}{b}+\frac{a b}{c}\right) .
$$

Proof of Lemma 4.2.2.
Based on
[LEE]
We take $x=\sqrt{\frac{b c}{a}}, y=\sqrt{\frac{a c}{b}}$, and $z=\sqrt{\frac{a b}{c}}$ in Lemma 4.2.1. Then we have $2\left(a \cos \theta_{1}+b \cos \theta_{2}+c \cos \theta_{3}\right)$

$$
\begin{aligned}
& =2\left(\sqrt{a^{2}} \cos \theta_{1}+\sqrt{b^{2}} \cos \theta_{2}+\sqrt{c^{2}} \cos \theta_{3}\right) \\
& =2\left(\sqrt{\frac{a c}{b}} \sqrt{\frac{a b}{c}} \cos \theta_{1}+\sqrt{\frac{b c}{a}} \sqrt{\frac{a b}{c}} \cos \theta_{2}+\sqrt{\frac{b c}{a}} \sqrt{\frac{a c}{b}} \cos \theta_{3}\right) \\
& \leq\left(\sqrt{\frac{b c}{a}}\right)^{2}+\left(\sqrt{\frac{a c}{b}}\right)^{2}+\left(\sqrt{\frac{a b}{c}}\right)^{2} \\
& =\frac{b c}{a}+\frac{a c}{b}+\frac{a b}{c} .
\end{aligned}
$$

Thus, we have

$$
2\left(a \cos \theta_{1}+b \cos \theta_{2}+c \cos \theta_{3}\right) \leq \frac{b c}{a}+\frac{a c}{b}+\frac{a b}{c},
$$

or equivalently,

$$
a \cos \theta_{1}+b \cos \theta_{2}+c \cos \theta_{3} \leq \frac{1}{2}\left(\frac{b c}{a}+\frac{a c}{b}+\frac{a b}{c}\right)
$$

which proves the lemma.

Given $\triangle A B C$, let W denote the intersection of the bisector of $\angle A B C$ with $\overline{A C}$, and let $\theta=m \angle A B C$. Then

$$
B W=\frac{2(A B)(B C)}{A B+B C} \cos \left(\frac{\theta}{2}\right) .
$$

Figure 4.2

Proof of Lemma 4.2.3.

This is an original proof.
First, notice if $A B=B C$, then the result is trivial, as we would have $\triangle A B W$ is a right triangle and

$$
B W=A B \cos \left(\frac{\theta}{2}\right)=\frac{2(A B)(A B)}{A B+A B} \cos \left(\frac{\theta}{2}\right) .
$$

Thus, we proceed assuming that $A B \neq B C$.
By the Law of Cosines, we have

$$
(A W)^{2}=(A B)^{2}+(B W)^{2}-2(A B)(B W) \cos \left(\frac{\theta}{2}\right)
$$

and

$$
(C W)^{2}=(B C)^{2}+(B W)^{2}-2(B C)(B W) \cos \left(\frac{\theta}{2}\right) .
$$

Using the fact that the angle bisector of a triangle splits the opposite side of the triangle and the sides of the angle proportionally, we have

$$
\frac{C W}{A W}=\frac{B C}{A B} \quad \text { or equivalently } \quad(A W)^{2}(B C)^{2}=(C W)^{2}(A B)^{2} .
$$

To apply this relation, we first note:

$$
(A W)^{2}(B C)^{2}=(A B)^{2}(B C)^{2}+(B W)^{2}(B C)^{2}-2(A B)(B W)(B C)^{2} \cos \left(\frac{\theta}{2}\right)
$$

and

$$
(C W)^{2}(A B)^{2}=(B C)^{2}(A B)^{2}+(B W)^{2}(A B)^{2}-2(B C)(B W)(A B)^{2} \cos \left(\frac{\theta}{2}\right)
$$

and setting their right hand sides equal, we get

$$
\begin{aligned}
& (A B)^{2}(B C)^{2}+(B W)^{2}(B C)^{2}-2(A B)(B W)(B C)^{2} \cos \left(\frac{\theta}{2}\right) \\
& \quad=\quad(B C)^{2}(A B)^{2}+(B W)^{2}(A B)^{2}-2(B C)(B W)(A B)^{2} \cos \left(\frac{\theta}{2}\right)
\end{aligned}
$$

which means

$$
\begin{aligned}
& (B W)^{2}(B C)^{2}-2(A B)(B W)(B C)^{2} \cos \left(\frac{\theta}{2}\right) \\
& \quad=\quad(B W)^{2}(A B)^{2}-2(B C)(B W)(A B)^{2} \cos \left(\frac{\theta}{2}\right) .
\end{aligned}
$$

Dividing through by $(B W)^{2}$ gives

$$
(B C)^{2}-\frac{2(A B)(B C)^{2} \cos \left(\frac{\theta}{2}\right)}{B W}=(A B)^{2}-\frac{2(B C)(A B)^{2} \cos \left(\frac{\theta}{2}\right)}{B W}
$$

Manipulating this equation gives

$$
(B C)^{2}-(A B)^{2}=\frac{2(A B)(B C)^{2} \cos \left(\frac{\theta}{2}\right)}{B W}-\frac{2(B C)(A B)^{2} \cos \left(\frac{\theta}{2}\right)}{B W},
$$

so that

$$
(B C-A B)(B C+A B)=2(A B)(B C) \cos \left(\frac{\theta}{2}\right) \cdot \frac{(B C-A B)}{B W} .
$$

Multiplying both sides by $\frac{B W}{(B C-A B)(B C+A B)}$ yields

$$
\begin{aligned}
B W & =\frac{2(A B)(B C) \cos \left(\frac{\theta}{2}\right)}{B C+A B} \\
& =\frac{2(A B)(B C) \cos \left(\frac{\theta}{2}\right)}{A B+B C} .
\end{aligned}
$$

Thus, we have established $B W=\frac{2(A B)(B C)}{A B+B C} \cos \left(\frac{\theta}{2}\right)$, and the lemma holds.

First Proof of Theorem 4.2.

We let $2 \theta_{1}=m \angle A_{2} P A_{3}, 2 \theta_{2}=m \angle A_{1} P A_{3}$, and $2 \theta_{3}=m \angle A_{1} P A_{2}$.
By Lemma 4.2.3, we have

$$
\begin{aligned}
& w_{1}=\frac{2\left(P A_{2}\right)\left(P A_{3}\right)}{P A_{2}+P A_{3}} \cos \left(\theta_{1}\right), \\
& w_{2}=\frac{2\left(P A_{1}\right)\left(P A_{3}\right)}{P A_{1}+P A_{3}} \cos \left(\theta_{2}\right), \text { and } \\
& w_{3}=\frac{2\left(P A_{1}\right)\left(P A_{2}\right)}{P A_{1}+P A_{2}} \cos \left(\theta_{3}\right),
\end{aligned}
$$

Figure 4.4

So, we obtain

$$
\begin{aligned}
& w_{1}+w_{2}+w_{3} \\
&= \frac{2\left(P A_{2}\right)\left(P A_{3}\right)}{P A_{2}+P A_{3}} \cos \left(\theta_{1}\right)+\frac{2\left(P A_{1}\right)\left(P A_{3}\right)}{P A_{1}+P A_{3}} \cos \left(\theta_{2}\right)+\frac{2\left(P A_{1}\right)\left(P A_{2}\right)}{P A_{1}+P A_{2}} \cos \left(\theta_{3}\right) \\
&=\left(\frac{2}{P A_{2}+P A_{3}}\right)\left(P A_{2}\right)\left(P A_{3}\right) \cos \left(\theta_{1}\right) \\
&+\left(\frac{2}{P A_{1}+P A_{3}}\right)\left(P A_{1}\right)\left(P A_{3}\right) \cos \left(\theta_{2}\right) \\
&+\left(\frac{2}{P A_{1}+P A_{2}}\right)\left(P A_{1}\right)\left(P A_{2}\right) \cos \left(\theta_{3}\right)
\end{aligned}
$$

And by the Arithmetic Mean - Geometric Mean Inequality's reciprocal

$$
\begin{aligned}
\leq & \frac{1}{\sqrt{\left(P A_{2}\right)\left(P A_{3}\right)}}\left(P A_{2}\right)\left(P A_{3}\right) \cos \left(\theta_{1}\right) \\
& +\frac{1}{\sqrt{\left(P A_{1}\right)\left(P A_{3}\right)}}\left(P A_{1}\right)\left(P A_{3}\right) \cos \left(\theta_{2}\right) \\
& +\frac{1}{\sqrt{\left(P A_{1}\right)\left(P A_{2}\right)}}\left(P A_{1}\right)\left(P A_{2}\right) \cos \left(\theta_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sqrt{\left(P A_{2}\right)\left(P A_{3}\right)} \cos \left(\theta_{1}\right) \\
& +\sqrt{\left(P A_{1}\right)\left(P A_{3}\right)} \cos \left(\theta_{2}\right) \\
& +\sqrt{\left(P A_{1}\right)\left(P A_{2}\right)} \cos \left(\theta_{3}\right)
\end{aligned}
$$

By Lemma 4.2.2, with $a=\sqrt{\left(P A_{2}\right)\left(P A_{3}\right)}, b=\sqrt{\left(P A_{1}\right)\left(P A_{3}\right)}$, and $c=\sqrt{\left(P A_{1}\right)\left(P A_{2}\right)}$ we get

$$
\begin{aligned}
& \leq \quad \frac{\sqrt{\left(P A_{1}\right)\left(P A_{3}\right)} \sqrt{\left(P A_{1} P A_{2}\right)}}{2 \sqrt{\left(P A_{2}\right)\left(P A_{3}\right)}} \\
& +\quad \frac{\sqrt{\left(P A_{1}\right)\left(P A_{2}\right)} \sqrt{\left(P A_{2} P A_{3}\right)}}{2 \sqrt{\left(P A_{1}\right)\left(P A_{3}\right)}} \\
& +\quad \frac{\sqrt{\left(P A_{1}\right)\left(P A_{2}\right)} \sqrt{\left(P A_{1} P A_{3}\right)}}{2 \sqrt{\left(P A_{2}\right)\left(P A_{3}\right)}} \\
& =\quad \frac{P A_{1}}{2}+\frac{P A_{2}}{2}+\frac{P A_{3}}{2} .
\end{aligned}
$$

Thus, we have

$$
w_{1}+w_{2}+w_{3} \leq \frac{P A_{1}}{2}+\frac{P A_{2}}{2}+\frac{P A_{3}}{2} .
$$

Multiplying through by 2 gives the desired result,

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(w_{1}+w_{2}+w_{3}\right) .
$$

Comment.

It is worth noting that Barrow used this proof as his proof of the Erdös-Mordell Inequality, as we have $w_{i} \geq p_{i}$ for each i.

Second Proof of Theorem 4.2

Based on [MOR]
Let p_{i} denote the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ across from vertex A_{i}, and let $2 \theta_{1}=m \angle A_{2} P A_{3}, 2 \theta_{2}=m \angle A_{1} P A_{3}$, and $2 \theta_{3}=m \angle A_{1} P A_{2}$.

Before proceeding, we say that Mordell [MOR] adds a condition for equality, namely the triangle must be equilateral and P must be its incenter.

Figure 4.5

We begin by considering the area of $\triangle A_{2} P A_{3}$. On the one hand, we have:
Area $\triangle A_{2} P A_{3}$

$$
\begin{aligned}
& =\quad \frac{P A_{2} \cdot P A_{3} \sin \left(2 \theta_{1}\right)}{2} \\
& =\quad \frac{2 P A_{2} \cdot P A_{3} \sin \left(\theta_{1}\right) \cos \left(\theta_{1}\right)}{2} \\
& =\quad P A_{2} \cdot P A_{3} \sin \left(\theta_{1}\right) \cos \left(\theta_{1}\right) .
\end{aligned}
$$

Figure 4.6
On the other hand, we obtain:
Area $\triangle A_{2} P A_{3}$

$$
=\quad \text { Area } \triangle A_{2} P W_{1}+\text { Area } \triangle A_{3} P W_{1}
$$

Since $\overline{P W_{1}}$ bisects $\angle A_{2} P A_{3}$, we get

$$
\begin{aligned}
& =\quad \frac{P A_{2} \cdot w_{1} \sin \left(\theta_{1}\right)}{2}+\frac{P A_{3} \cdot w_{1} \sin \left(\theta_{1}\right)}{2} \\
& =\frac{\left(P A_{2}+P A_{3}\right) w_{1} \sin \left(\theta_{1}\right)}{2}
\end{aligned}
$$

And by the Arithmetic Mean - Geometric Mean Inequality, this becomes

$$
\begin{aligned}
& \geq \quad \frac{2 \sqrt{P A_{2} P A_{3}} w_{1} \sin \left(\theta_{1}\right)}{2} \\
& =\quad w_{1} \sqrt{P A_{2} P A_{3}} \sin \left(\theta_{1}\right),
\end{aligned}
$$

with equality requiring $P A_{2}=P A_{3}$. Thus, using our expressions for Area $\triangle A_{2} P A_{3}$, we have

$$
P A_{2} \cdot P A_{3} \sin \left(\theta_{1}\right) \cos \left(\theta_{1}\right) \geq w_{1} \sqrt{P A_{2} P A_{3}} \sin \left(\theta_{1}\right),
$$

so that we conclude

$$
\begin{equation*}
w_{1} \leq \sqrt{P A_{2} P A_{3}} \cos \left(\theta_{1}\right) . \tag{4.2.A}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
w_{2} \leq \sqrt{P A_{1} P A_{3}} \cos \left(\theta_{2}\right) \quad \text { and } \quad w_{3} \leq \sqrt{P A_{1} P A_{2}} \cos \left(\theta_{3}\right), \tag{4.2.A}
\end{equation*}
$$

with $P A_{1}=P A_{3}$ and $P A_{1}=P A_{2}$ as necessary requirements for equality, respectively.
We notice

$$
\begin{align*}
& 0 \leq\left(\sqrt{P A_{1}}-\sqrt{P A_{2}} \cos \left(\theta_{3}\right)-\sqrt{P A_{3}} \cos \left(\theta_{2}\right)\right)^{2} \tag{4.2.B}\\
& +\quad\left(\sqrt{P A_{2}} \sin \left(\theta_{3}\right)-\sqrt{P A_{3}} \sin \left(\theta_{2}\right)\right)^{2} \\
& =\quad P A_{1}+P A_{2} \cos ^{2}\left(\theta_{3}\right)+P A_{3} \cos ^{2}\left(\theta_{2}\right) \\
& +\quad-2 \sqrt{P A_{1} P A_{2}} \cos \left(\theta_{3}\right)-2 \sqrt{P A_{1} P A_{3}} \cos \left(\theta_{2}\right) \\
& +\quad 2 \sqrt{P A_{2} P A_{3}} \cos \left(\theta_{2}\right) \cos \left(\theta_{3}\right) \\
& +\quad P A_{2} \sin ^{2}\left(\theta_{3}\right)+P A_{3} \sin ^{2}\left(\theta_{2}\right) \\
& +\quad-2 \sqrt{P A_{2} P A_{3}} \sin \left(\theta_{2}\right) \sin \left(\theta_{3}\right) \\
& =\quad P A_{1}+P A_{2}\left[\sin ^{2}\left(\theta_{3}\right)+\cos ^{2}\left(\theta_{3}\right)\right] \\
& +\quad P A_{3}\left[\sin ^{2}\left(\theta_{2}\right)+\cos ^{2}\left(\theta_{2}\right)\right] \\
& +\quad-2 \sqrt{P A_{1} P A_{2}} \cos \left(\theta_{3}\right)-2 \sqrt{P A_{1} P A_{3}} \cos \left(\theta_{2}\right) \\
& +\quad 2 \sqrt{P A_{2} P A_{3}} \cos \left(\theta_{2}\right) \cos \left(\theta_{3}\right) \\
& +\quad-2 \sqrt{P A_{2} P A_{3}} \sin \left(\theta_{2}\right) \sin \left(\theta_{3}\right)
\end{align*}
$$

And using both the Pythagorean Identity with the identity for the sum of angles, we have

$$
\begin{aligned}
=\quad & P A_{1}+P A_{2}+P A_{3} \\
& +\quad-2 \sqrt{P A_{1} P A_{2}} \cos \left(\theta_{3}\right)-2 \sqrt{P A_{1} P A_{3}} \cos \left(\theta_{2}\right) \\
& +\quad 2 \sqrt{P A_{2} P A_{3}} \cos \left(\theta_{2}+\theta_{3}\right)
\end{aligned}
$$

Since $2 \theta_{1}+2 \theta_{2}+2 \theta_{3}=2 \pi$, we have $\theta_{1}+\theta_{2}+\theta_{3}=\pi$, so that

$$
\begin{aligned}
=\quad & P A_{1}+P A_{2}+P A_{3} \\
& +\quad-2 \sqrt{P A_{1} P A_{2}} \cos \left(\theta_{3}\right)-2 \sqrt{P A_{1} P A_{3}} \cos \left(\theta_{2}\right) \\
& +\quad 2 \sqrt{P A_{2} P A_{3}} \cos \left(\pi-\theta_{1}\right)
\end{aligned}
$$

And since $\cos (\pi-x)=-\cos (x)$, we get

$$
\begin{aligned}
= & P A_{1}+P A_{2}+P A_{3} \\
& +\quad-2 \sqrt{P A_{1} P A_{2}} \cos \left(\theta_{3}\right)-2 \sqrt{P A_{1} P A_{3}} \cos \left(\theta_{2}\right) \\
& +\quad-2 \sqrt{P A_{2} P A_{3}} \cos \left(\theta_{1}\right)
\end{aligned}
$$

Which from (4.2.A)

$$
\begin{equation*}
\leq \quad P A_{1}+P A_{2}+P A_{3}-2 w_{3}-2 w_{2}-2 w_{1} . \tag{4.2.C}
\end{equation*}
$$

Thus, we have established $P A_{1}+P A_{2}+P A_{3}-2\left(w_{1}+w_{2}+w_{3}\right) \geq 0$, so that

$$
P A_{1}+P A_{2}+P A_{3} \geq 2\left(w_{1}+w_{2}+w_{3}\right)
$$

and the inequality is proven.

For equality to hold overall, we need equality in (4.2.C), which requires equality in (4.2.A) so that

$$
P A_{1}=P A_{2}=P A_{3} .
$$

For equality to then hold in (4.2.B) given the fact above, we need

$$
\sqrt{P A_{1}} \sin \left(\theta_{3}\right)-\sqrt{P A_{1}} \sin \left(\theta_{2}\right)=0 \quad \text { which means } \quad \sin \left(\theta_{3}\right)=\sin \left(\theta_{2}\right),
$$

so that $\theta_{2}=\theta_{3}$ or $\theta_{2}=\pi-\theta_{3}$.

Additionally, for equality to then hold in (4.2.B), we need

$$
\sqrt{P A_{1}}-\sqrt{P A_{1}} \cos \left(\theta_{3}\right)-\sqrt{P A_{1}} \cos \left(\theta_{2}\right)=0 .
$$

If $\theta_{2}=\pi-\theta_{3}$, then recalling $\cos (x)=-\cos (\pi-x)$, we have

$$
\begin{aligned}
\sqrt{P A_{1}} & -\sqrt{P A_{1}} \cos \left(\theta_{3}\right)-\sqrt{P A_{1}} \cos \left(\theta_{2}\right) \\
& =\sqrt{P A_{1}}-\sqrt{P A_{1}} \cos \left(\theta_{3}\right)-\sqrt{P A_{1}} \cos \left(\pi-\theta_{3}\right) \\
& =\sqrt{P A_{1}}-\sqrt{P A_{1}} \cos \left(\theta_{3}\right)+\sqrt{P A_{1}} \cos \left(\theta_{3}\right) \\
& =\sqrt{P A_{1}} \\
& >\quad 0,
\end{aligned}
$$

so we cannot get equality in this situation. If, however, $\theta_{2}=\theta_{3}$, we have

$$
\begin{aligned}
\sqrt{P A_{1}} & =\sqrt{P A_{1}} \cos \left(\theta_{3}\right)-\sqrt{P A_{1}} \cos \left(\theta_{2}\right) \\
& =\sqrt{P A_{1}}-\sqrt{P A_{1}} \cos \left(\theta_{3}\right)-\sqrt{P A_{1}} \cos \left(\theta_{3}\right) \\
& =\sqrt{P A_{1}}\left(1-2 \cos \left(\theta_{3}\right)\right)
\end{aligned}
$$

so that $\sqrt{P A_{1}}-\sqrt{P A_{1}} \cos \left(\theta_{3}\right)-\sqrt{P A_{1}} \cos \left(\theta_{2}\right)=0$ requires

$$
\sqrt{P A_{1}}\left(1-2 \cos \left(\theta_{3}\right)\right)=0 .
$$

This means $\cos \left(\theta_{3}\right)=\frac{1}{2}$, so that $\theta_{3}=\frac{\pi}{3}$. It immediately follows that $\theta_{2}=\frac{\pi}{3}$.

Since $2 \theta_{1}+2 \theta_{2}+2 \theta_{3}=2 \pi$ (see Figure 4.7), it follows that $\theta_{1}=\frac{\pi}{3}$. Thus,

$$
\frac{2 \pi}{3}=m \angle A_{2} P A_{3}=m \angle A_{1} P A_{3}=m \angle A_{1} P A_{2} .
$$

Figure 4.7
Therefore, equality overall requires both

$$
P A_{1}=P A_{2}=P A_{3}
$$

and

$$
\frac{2 \pi}{3}=m \angle A_{2} P A_{3}=m \angle A_{1} P A_{3}=m \angle A_{1} P A_{2},
$$

so that the triangles $\triangle A_{2} P A_{3}, \triangle A_{1} P A_{3}$, and $\triangle A_{1} P A_{2}$ are all congruent and isosceles.

Based on these triangles being congruent and isosceles, we have $A_{1} A_{2}=A_{2} A_{3}=A_{1} A_{3}$ and

$$
\begin{aligned}
& m \angle P A_{3} A_{1}=m \angle P A_{3} A_{2} \\
& m \angle P A_{1} A_{2}=m \angle P A_{1} A_{3} \\
& m \angle P A_{2} A_{1}=m \angle P A_{2} A_{3} .
\end{aligned}
$$

This requires $\triangle A_{1} A_{2} A_{3}$ to be equilateral and P to be its incenter.

Corollary 4.2.4.

Given $\triangle A_{1} A_{2} A_{3}$. Let W_{i} be the point on the side of $\triangle A_{1} A_{2} A_{3}$ opposite A_{i} such that $\overline{A_{i} W_{i}}$ bisects the interior angle of $\triangle A_{1} A_{2} A_{3}$ angle whose vertex is at A_{i}, let $w_{i}=A_{i} W_{i}$, let a_{i} denote the length of the side of $\triangle A_{1} A_{2} A_{3}$ across from vertex A_{i}, let α_{i} be the interior angle of $\triangle A_{1} A_{2} A_{3}$ with vertex A_{i}, and let h_{i} be the length of the altitude of $\triangle A_{1} A_{2} A_{3}$ from A_{i}. Then

$$
h_{1} \leq \sqrt{a_{2} a_{3}} \cos \left(\frac{\alpha_{1}}{2}\right), \quad h_{2} \leq \sqrt{a_{1} a_{3}} \cos \left(\frac{\alpha_{2}}{2}\right), \quad \text { and } \quad h_{3} \leq \sqrt{a_{1} a_{2}} \cos \left(\frac{\alpha_{3}}{2}\right),
$$

with $a_{2}=a_{3}, a_{1}=a_{3}$, and $a_{1}=a_{2}$ being necessary conditions for equality in each, respectively.

Figure 4.8

Proof of Corollary 4.2.4.

The Second Proof of Theorem 4.2 (see 4.2.A) gives

$$
w_{1} \leq \sqrt{a_{2} a_{3}} \cos \left(\frac{\alpha_{1}}{2}\right), \quad w_{2} \leq \sqrt{a_{1} a_{3}} \cos \left(\frac{\alpha_{2}}{2}\right), \quad \text { and } \quad w_{3} \leq \sqrt{a_{1} a_{2}} \cos \left(\frac{\alpha_{3}}{2}\right)
$$

with $a_{2}=a_{3}, a_{1}=a_{3}$, and $a_{1}=a_{2}$ being necessary conditions for equality in each, respectively.

This, coupled with $h_{1} \leq w_{1}, h_{2} \leq w_{2}$, and $h_{3} \leq w_{3}$ (as the altitude is the shortest distance from a vertex to the opposite side of a triangle) yields the desired result. We comment that in the situation where the triangle is isosceles, the angle bisector from the vertex angle and the altitude from the vertex angle coincide, establishing the condition for equality.

Since we have investigated the distances involving P with the perpendiculars and P with the angle bisectors, one might wonder about P with the midpoints.

Example 4.3.

An Erdös-Mordell form inequality does not hold when pairing P with the midpoints of a triangle.

Consider $\triangle A_{1} A_{2} A_{3}$, an equilateral triangle with side lengths of 12 . Let M_{i} be the midpoint of the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i}.

Figure 4.9
We note that $\triangle A_{2} M_{3} M_{2}, \triangle A_{3} M_{3} M_{1}, \triangle A_{1} M_{2} M_{1}$, and $\triangle M_{1} M_{2} M_{3}$ are all equilateral with side lengths of 6 . This can be used to determine the values below:

$$
\begin{array}{ll}
P M_{1}=3 \sqrt{3} & P A_{1}=\sqrt{(3 \sqrt{3})^{2}+6^{2}}=\sqrt{63}=3 \sqrt{7} \\
P M_{2}=3 & P A_{2}=3 \sqrt{3} \\
P M_{3}=3 & P A_{3}=3 \sqrt{7} .
\end{array}
$$

Thus, we have $P M_{1}+P M_{2}+P M_{3}=3 \sqrt{3}+3+3=3 \sqrt{3}+6 \approx 11.20$
and $P A_{1}+P A_{2}+P A_{3}=3 \sqrt{7}+3 \sqrt{3}+3 \sqrt{7}=6 \sqrt{7}+3 \sqrt{3} \approx 21.07$.
From this, we gather that

$$
2\left(P M_{1}+P M_{2}+P M_{3}\right) \approx 22.40>21.07 \approx P A_{1}+P A_{2}+P A_{3},
$$

so that an inequality of the form $2\left(P M_{1}+P M_{2}+P M_{3}\right) \leq P A_{1}+P A_{2}+P A_{3}$ does not hold for midpoints.

5 Inequalities Resembling the Erdös-Mordell Inequality

In this section, we investigate inequalities involving triangles whose general structure resembles that of the Erdös-Mordell Inequality.

We begin by outlining the examples, for ease of reference.
Given $\triangle A_{1} A_{2} A_{3}$ and interior point P, let a_{i} denote the length of the side of $\triangle A_{1} A_{2} A_{3}$ across from vertex A_{i} for each $1 \leq i \leq 3$, let p_{i} denote the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i} for each $1 \leq i \leq 3$, and let K be the area of $\triangle A_{1} A_{2} A_{3}$. Then the following inequalities hold:

Example 5.1.

$$
a_{1} P A_{1}+a_{2} P A_{2}+a_{3} P A_{3} \geq 4 K
$$

Example 5.2.

$$
p_{1} P A_{1}+p_{2} P A_{2}+p_{3} P A_{3} \geq 2\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} p_{3}\right)
$$

Stated and proved in [OP1].

Example 5.3. $\quad P A_{1} \cdot P A_{2} \cdot P A_{3} \geq 8 p_{1} p_{2} p_{3}$
Stated and proved in [OP1; KAN pg 87 and 115].

Example 5.4. $\quad P A_{1} \cdot P A_{2} \cdot P A_{3} \geq\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right)$
Stated in [MOR; OP2; KAN pg 88].
Proved in [MOR; OP2].

Example 5.5. $\quad P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3}$

$$
\geq \quad\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right) .
$$

Stated in [OP2; KAN pg 88].
Proved in [OP2].

Example 5.1.

Given $\triangle A_{1} A_{2} A_{3}$ and interior point P, let a_{i} denote the length of the side of $\triangle A_{1} A_{2} A_{3}$ across from vertex A_{i} for each $1 \leq i \leq 3$, and let K be the area of $\triangle A_{1} A_{2} A_{3}$. Then

$$
a_{1} P A_{1}+a_{2} P A_{2}+a_{3} P A_{3} \geq 4 K .
$$

Comment.

We present two solutions to this problem. Although neither is based off any solution in particular, they use concepts seen in numerous references, including those of Oppenheim [OP 1].

Before beginning, we let p_{i} denote the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ across from vertex A_{i}.

First Solution to Example 5.1.

Figure 5.1
We first notice that $2 K=a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}$.
It is clear that $P A_{1}+p_{1} \geq h_{1}$, since h_{1} is the shortest distance from A_{1} to $\overline{A_{2} A_{3}}$. Thus, multiplying through the inequality by a_{1}, we get

$$
a_{1} P A_{1}+a_{1} p_{1} \geq a_{1} h_{1}=2 K \quad \text { or } \quad a_{1} P A_{1} \geq 2 K-a_{1} p_{1} .
$$

Similarly, we obtain

$$
a_{2} P A_{2} \geq 2 K-a_{2} p_{2} \text { and } a_{3} P A_{3} \geq 2 K-a_{3} p_{3} .
$$

Summing these inequalities gives

$$
a_{1} P A_{1}+a_{2} P A_{2}+a_{3} P A_{3} \geq 6 K-\left(a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}\right)=6 K-2 K=4 K .
$$

Second Solution to Example 5.1.

With a slight modification from Corollary 3.5, we have

$$
a_{1} P A_{1} \geq a_{2} p_{2}+a_{3} p_{3}, \quad a_{2} P A_{2} \geq a_{1} p_{1}+a_{3} p_{3}, \text { and } a_{3} P A_{3} \geq a_{1} p_{1}+a_{2} p_{2} .
$$

Thus,

$$
\begin{aligned}
a_{1} P A_{1}+a_{2} P A_{2}+a_{3} P A_{3} & \geq\left(a_{2} p_{2}+a_{3} p_{3}\right)+\left(a_{1} p_{1}+a_{3} p_{3}\right)+\left(a_{1} p_{1}+a_{2} p_{2}\right) \\
& =2\left(a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}\right) \\
& =2(2 K) \\
& =4 K,
\end{aligned}
$$

so the result holds.

Given $\triangle A_{1} A_{2} A_{3}$ and interior point P, let a_{i} denote the length of the side of $\triangle A_{1} A_{2} A_{3}$ across from vertex A_{i} for each $1 \leq i \leq 3$ and let p_{i} denote the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i} for each $1 \leq i \leq 3$. Then:

$$
p_{1} P A_{1}+p_{2} P A_{2}+p_{3} P A_{3} \geq 2\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} p_{3}\right) .
$$

Solution to Example 5.2.
Based on
[OP1]
By Corollary 3.5, we have

$$
P A_{1} \geq \frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}, \text { and } P A_{3} \geq \frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}} .
$$

So, we obtain

$$
\begin{aligned}
& p_{1} P A_{1}+p_{2} P A_{2}+p_{3} P A_{3} \\
& \quad \geq \quad p_{1}\left(\frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}\right)+p_{2}\left(\frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}\right)+p_{3}\left(\frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}}\right)
\end{aligned}
$$

By rearranging terms

$$
=\left(\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{2}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{1}}\right) p_{1} p_{3}
$$

Through the use of the Arithmetic Mean - Geometric Mean Inequality

$$
\begin{aligned}
& \geq \quad 2 \sqrt{\frac{a_{2}}{a_{1}} \cdot \frac{a_{1}}{a_{2}}} p_{1} p_{2}+2 \sqrt{\frac{a_{3}}{a_{2}} \cdot \frac{a_{2}}{a_{3}}} p_{2} p_{3}+2 \sqrt{\frac{a_{1}}{a_{3}} \cdot \frac{a_{3}}{a_{1}}} p_{1} p_{3} \\
& =\quad 2 p_{1} p_{2}+2 p_{2} p_{3}+2 p_{1} p_{3},
\end{aligned}
$$

so that we have established $p_{1} P A_{1}+p_{2} P A_{2}+p_{3} P A_{3} \geq 2\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} p_{3}\right)$.

Given $\triangle A_{1} A_{2} A_{3}$ and interior point P. Let a_{i} denote the length of the side of $\triangle A_{1} A_{2} A_{3}$ across from vertex A_{i} for each $1 \leq i \leq 3$ and let p_{i} denote the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i}, for each $1 \leq i \leq 3$. Then:

$$
P A_{1} \cdot P A_{2} \cdot P A_{3} \geq 8 p_{1} p_{2} p_{3} .
$$

Comment.

We offer two solutions, the first being more of an original solution.

First Solution to Example 5.3.

From Corollary 3.5, we have

$$
P A_{1} \geq \frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}, \text { and } P A_{3} \geq \frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}} .
$$

So

$$
\begin{aligned}
& P A_{1} \cdot P A_{2} \cdot P A_{3} \\
& \geq \quad\left(\frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}\right) \cdot\left(\frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}\right) \cdot\left(\frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}}\right) \\
& =\quad \frac{\left(a_{1} a_{3} p_{2} p_{3}+a_{3}^{2} p_{1} p_{2}+a_{1} a_{2} p_{3}^{2}+a_{2} a_{3} p_{1} p_{3}\right)\left(a_{1} p_{2}+a_{2} p_{1}\right)}{a_{1} a_{2} a_{3}} \\
& =\quad \\
& \quad \frac{a_{1}^{2} a_{3} p_{2}^{2} p_{3}}{a_{1} a_{2} a_{3}}+\frac{a_{1} a_{3}^{2} p_{1} p_{2}^{2}}{a_{1} a_{2} a_{3}}+\frac{a_{1}^{2} a_{2} p_{2} p_{3}^{2}}{a_{1} a_{2} a_{3}}+\frac{a_{1} a_{2} a_{3} p_{1} p_{2} p_{3}}{a_{1} a_{2} a_{3}} \\
& =\quad \frac{a_{1} a_{2} a_{3} p_{1} p_{2} p_{3}}{a_{1} a_{2} a_{3}}+\frac{a_{2} a_{3}^{2} p_{1}^{2} p_{2}}{a_{1} a_{2} a_{3}}+\frac{a_{1} a_{2}^{2} p_{1} p_{3}^{2}}{a_{1} a_{2} a_{3}}+\frac{a_{2}^{2} a_{3} p_{1}^{2} p_{3}}{a_{1} a_{2} a_{3}} \\
& = \\
& \\
& \quad \frac{a_{1} p_{2}^{2} p_{3}}{a_{2}}+\frac{a_{3} p_{1} p_{2}^{2}}{a_{2}}+\frac{a_{1} p_{2} p_{3}^{2}}{a_{3}}+p_{1} p_{2} p_{3} \\
& \\
&
\end{aligned}
$$

By regrouping
$=\quad 2 p_{1} p_{2} p_{3}+\left(\frac{a_{1} p_{2}^{2} p_{3}}{a_{2}}+\frac{a_{2} p_{1}^{2} p_{3}}{a_{1}}\right)+\left(\frac{a_{3} p_{1} p_{2}^{2}}{a_{2}}+\frac{a_{2} p_{1} p_{3}^{2}}{a_{3}}\right)+\left(\frac{a_{1} p_{2} p_{3}^{2}}{a_{3}}+\frac{a_{3} p_{1}^{2} p_{2}}{a_{1}}\right)$

By the Arithmetic Mean - Geometric Mean Inequality

$$
\begin{aligned}
& \geq \quad 2 p_{1} p_{2} p_{3}+2 \sqrt{\frac{a_{1} p_{2}^{2} p_{3}}{a_{2}} \cdot \frac{a_{2} p_{1}^{2} p_{3}}{a_{1}}}+2 \sqrt{\frac{a_{3} p_{1} p_{2}^{2}}{a_{2}} \cdot \frac{a_{2} p_{1} p_{3}^{2}}{a_{3}}}+2 \sqrt{\frac{a_{1} p_{2} p_{3}^{2}}{a_{3}} \cdot \frac{a_{3} p_{1}^{2} p_{2}}{a_{1}}} \\
& =\quad 2 p_{1} p_{2} p_{3}+2 \sqrt{p_{1}^{2} p_{2}^{2} p_{3}^{2}}+2 \sqrt{p_{1}^{2} p_{2}^{2} p_{3}^{2}}+2 \sqrt{p_{1}^{2} p_{2}^{2} p_{3}^{2}} \\
& =\quad 2 p_{1} p_{2} p_{3}+2 p_{1} p_{2} p_{3}+2 p_{1} p_{2} p_{3}+2 p_{1} p_{2} p_{3} \\
& =\quad 8 p_{1} p_{2} p_{3} .
\end{aligned}
$$

Thus, we have established $\quad P A_{1} \cdot P A_{2} \cdot P A_{3} \geq 8 p_{1} p_{2} p_{3}$.

Again, we start with the result of Corollary 3.5:

$$
P A_{1} \geq \frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}, \text { and } P A_{3} \geq \frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}} .
$$

Then we have

$$
\begin{aligned}
P A_{1} \cdot P & A_{2} \cdot P A_{3} \\
& \geq \quad\left(\frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}\right) \cdot\left(\frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}\right) \cdot\left(\frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}}\right) \\
& =\frac{1}{a_{1}}\left(a_{2} p_{3}+a_{3} p_{2}\right) \cdot \frac{1}{a_{2}}\left(a_{1} p_{3}+a_{3} p_{1}\right) \cdot \frac{1}{a_{3}}\left(a_{1} p_{2}+a_{2} p_{1}\right)
\end{aligned}
$$

By the Arithmetic Mean - Geometric Mean Inequality, we have

$$
\begin{aligned}
& \geq \quad \frac{2}{a_{1}} \sqrt{a_{2} p_{3} a_{3} p_{2}} \cdot \frac{2}{a_{2}} \sqrt{a_{1} p_{3} a_{3} p_{1}} \cdot \frac{2}{a_{3}} \sqrt{a_{1} p_{2} a_{2} p_{1}} \\
& =\quad \frac{8}{a_{1} a_{2} a_{3}} \sqrt{a_{1}^{2} a_{2}^{2} a_{3}^{2} p_{1}^{2} p_{2}^{2} p_{3}^{2}} \\
& =\quad \frac{8}{a_{1} a_{2} a_{3}}\left(a_{1} a_{2} a_{3} p_{1} p_{2} p_{3}\right) \\
& =8 p_{1} p_{2} p_{3} .
\end{aligned}
$$

Thus, we have established $\quad P A_{1} \cdot P A_{2} \cdot P A_{3} \geq 8 p_{1} p_{2} p_{3}$.

Given $\triangle A_{1} A_{2} A_{3}$ and interior point P, let a_{i} denote the length of the side of $\triangle A_{1} A_{2} A_{3}$ across from vertex A_{i} for each $1 \leq i \leq 3$ and let p_{i} denote the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i} for each $1 \leq i \leq 3$. Then:

$$
P A_{1} \cdot P A_{2} \cdot P A_{3} \geq\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right) .
$$

Comment.

We first need two lemmas.

Lemma 5.4.1.

Let a, b, and c be positive, real numbers, and let $0 \leq x \leq 2 \pi$. Then

$$
a^{2}+b^{2}+2 a b \cos (x)=(a+b)^{2} \cos ^{2}\left(\frac{x}{2}\right)+(a-b)^{2} \sin ^{2}\left(\frac{x}{2}\right)
$$

Proof of Lemma 5.4.1.

This is an original proof.

$$
\begin{aligned}
& (a+b)^{2} \cos ^{2}\left(\frac{x}{2}\right)+(a-b)^{2} \sin ^{2}\left(\frac{x}{2}\right) \\
& = \\
& =\quad\left(a^{2}+2 a b+b^{2}\right)\left(\frac{1+\cos (x)}{2}\right)+\left(a^{2}-2 a b+b^{2}\right)\left(\frac{1-\cos (x)}{2}\right) \\
& =\quad \frac{a^{2}+2 a b+b^{2}}{2}+\frac{a^{2}-2 a b+b^{2}}{2}+\left(\frac{a^{2}+2 a b+b^{2}}{2}\right) \cos (x)+\left(\frac{-a^{2}+2 a b-b^{2}}{2}\right) \cos (x) \\
& =\quad \frac{2 a^{2}+2 b^{2}}{2}+\left(\frac{4 a b}{2}\right) \cos (x) \\
& =\quad a^{2}+b^{2}+2 a b \cos x,
\end{aligned}
$$

which establishes the desired result:

$$
a^{2}+b^{2}+2 a b \cos (x)=(a+b)^{2} \cos ^{2}\left(\frac{x}{2}\right)+(a-b)^{2} \sin ^{2}\left(\frac{x}{2}\right) .
$$

Lemma 5.4.2.

Let $x, y, z>0$ such that $x+y+z=\frac{\pi}{2}$. Then $\sin (x) \sin (y) \sin (z) \leq \frac{1}{8}$.

Proof of Lemma 5.4.2.
Based on
[MOR]
We first note that $z=\frac{\pi}{2}-(x+y)$, and therefore $\sin (z)=\sin \left(\frac{\pi}{2}-(x+y)\right)=\cos (x+y)$.
Thus, we have $\sin (x) \sin (y) \sin (z)=\sin (x) \sin (y) \cos (x+y)$.
Now, by using the well-known identity

$$
\sin (A) \cos (B)=\frac{1}{2} \sin (A+B)+\frac{1}{2} \sin (A-B)
$$

with $A=y$ and $B=x+y$, we have

$$
\begin{aligned}
\sin (x) & {[2 \sin (y) \cos (x+y)] } \\
& =\quad \sin (x)[\sin (x+2 y)+\sin (-x)]
\end{aligned}
$$

and since sine is an odd function

$$
=\sin (x)[\sin (x+2 y)-\sin (x)] .
$$

Now take $f(x, y)=\sin (x)[\sin (x+2 y)-\sin (x)]$.
To find the maximum of f, we investigate where its partial derivatives are zero:

$$
f_{y}(x, y)=\sin (x)[2 \cos (x+2 y)]=0,
$$

which means $\sin (x)=0$ or $\cos (x+2 y)=0$, so that on our interval of consideration,

$$
x+2 y=\frac{\pi}{2} .
$$

Now, we also find, under this condition

$$
\begin{aligned}
f_{x}(x, y) & =\sin (x)[\cos (x+2 y)-\cos (x)]+\cos (x)[\sin (x+2 y)-\sin (x)] \\
& =\sin (x)[0-\cos (x)]+\cos (x)[1-\sin (x)] \\
& =-\sin (x) \cos (x)+\cos (x)-\sin (x) \cos (x) \\
& =\cos (x)-2 \sin (x) \cos (x) \\
& =\cos (x)[1-2 \sin (x)] .
\end{aligned}
$$

So that $f_{x}(x, y)=0$ means $\cos (x)=0$ or $\sin (x)=\frac{1}{2}$.
Thus, on our interval of consideration, $\sin (x)=\frac{1}{2}$, as the other yields the boundary as solutions.

To find the absolute maximum of f, we check the boundary and this critical point. First, the boundary is the rectangle formed by $x=0, y=0, x=\frac{\pi}{2}$, and $y=\frac{\pi}{2}$:

Recalling $f(x, y)=\sin (x)[\sin (x+2 y)-\sin (x)]$:

$$
\begin{aligned}
& f(0, y)=\sin (0)[\sin (2 y)-\sin (0)]=0 \\
& f(x, 0)=\sin (x)[\sin (x)-\sin (x)]=0 \\
& f\left(\frac{\pi}{2,} y\right)=\sin \left(\frac{\pi}{2}\right)\left[\sin \left(\frac{\pi}{2}+2 y\right)-\sin \left(\frac{\pi}{2}\right)\right]=1\left[\sin \left(\frac{\pi}{2}+2 y\right)-1\right] \leq 0 \\
& f\left(x, \frac{\pi}{2}\right)=2 \sin (x)[\sin (x+\pi)-\sin (x)]=\sin (x)[-\sin (x)-\sin (x)] \leq 0
\end{aligned}
$$

So, on the boundary, the function never exceeds zero.

At its critical value, though, we have $\sin (x)=\frac{1}{2}$ and $x+2 y=\frac{\pi}{2}$ so that

$$
f(\text { Critical })=\frac{1}{2}\left[\sin \left(\frac{\pi}{2}\right)-\frac{1}{2}\right]=\frac{1}{2}\left[1-\frac{1}{2}\right]=\frac{1}{4} .
$$

Thus, we know f attains its maximum value in our desired region at this critical point, and we have

$$
\begin{aligned}
\frac{1}{4} \quad & \geq \quad f(x, y) \\
& =\quad \sin (x)[\sin (x+2 y)-\sin (x)] \\
& =\sin (x)[2 \sin (y) \cos (x+y)] \\
& =2 \sin (x)[\sin (y) \cos (x+y)] \\
& =2 \sin (x) \sin (y) \sin (z)
\end{aligned}
$$

so that

$$
2 \sin (x) \sin (y) \sin (z) \leq \frac{1}{4}
$$

which means

$$
\sin (x) \sin (y) \sin (z) \leq \frac{1}{8}
$$

and the lemma holds.

First Solution to Example 5.4.

We begin by denoting P_{2} and P_{3} as the feet of the perpendiculars from P to $\overline{A_{1} A_{3}}$ and $\overline{A_{1} A_{2}}$ respectively. Also, let α_{i} be the interior angle of the triangle having vertex A_{i}.

Figure 5.2

Noting that $P P_{3} A_{1} P_{2}$ has opposite angles that are both right angles, we realize that it must be cyclic. Additionally, $\overline{P A_{1}}$ is its diameter. By Lemma 2.4 applied to $\triangle A_{1} P_{2} P_{3}$, we get

$$
P_{2} P_{3}=P A_{1} \sin \left(\alpha_{1}\right) .
$$

Now, we notice that $P P_{3} A_{1} P_{2}$ must have its interior angles add to 2π, so that $m \angle P_{2} P P_{3}=\pi-\alpha_{1}$. Recalling a trigonometric identity, we know $\cos \left(m \angle P_{2} P P_{3}\right)=\cos \left(\pi-\alpha_{1}\right)=-\cos \left(\alpha_{1}\right)$.

When applying our the Law of Cosines to $\triangle P P_{2} P_{3}$ to where we left off, we get:
$\left(P A_{1}\right)^{2} \sin ^{2}\left(\alpha_{1}\right)$

$$
\begin{array}{ll}
= & \left(P_{2} P_{3}\right)^{2} \\
= & p_{2}^{2}+p_{3}^{2}-2 p_{2} p_{3} \cos \left(\pi-\alpha_{1}\right) \\
= & p_{2}^{2}+p_{3}^{2}+2 p_{2} p_{3} \cos \left(\alpha_{1}\right)
\end{array}
$$

By Lemma 5.4.1

$$
=\quad\left(p_{2}+p_{3}\right)^{2} \cos ^{2}\left(\frac{\alpha_{1}}{2}\right)+\left(p_{2}-p_{3}\right)^{2} \sin ^{2}\left(\frac{\alpha_{1}}{2}\right)
$$

$$
\geq \quad\left(p_{2}+p_{3}\right)^{2} \cos ^{2}\left(\frac{\alpha_{1}}{2}\right),
$$

since $\left(p_{2}-p_{3}\right)^{2} \sin ^{2}\left(\frac{\alpha_{1}}{2}\right)$ is non-negative.
Thus, we have $\left(P A_{1}\right)^{2} \sin ^{2}\left(\alpha_{1}\right) \geq\left(p_{2}+p_{3}\right)^{2} \cos ^{2}\left(\frac{\alpha_{1}}{2}\right)$, or equivalently

$$
\left(P A_{1}\right) \sin \left(\alpha_{1}\right) \geq\left(p_{2}+p_{3}\right) \cos \left(\frac{\alpha_{1}}{2}\right) .
$$

By the double-angle identity,

$$
2\left(P A_{1}\right) \sin \left(\frac{\alpha_{1}}{2}\right) \cos \left(\frac{\alpha_{1}}{2}\right) \geq\left(p_{2}+p_{3}\right) \cos \left(\frac{\alpha_{1}}{2}\right),
$$

which yields

$$
2\left(P A_{1}\right) \geq \frac{p_{2}+p_{3}}{\sin \left(\frac{\alpha_{1}}{2}\right)} .
$$

Similarly, we obtain

$$
2\left(P A_{2}\right) \geq \frac{p_{1}+p_{3}}{\sin \left(\frac{\alpha_{2}}{2}\right)} \quad \text { and } \quad 2\left(P A_{3}\right) \geq \frac{p_{1}+p_{2}}{\sin \left(\frac{\alpha_{3}}{2}\right)} .
$$

Thus, we get

$$
\begin{aligned}
& 8 P A_{1} \cdot P A_{2} \cdot P A_{3} \\
&=\left(2 P A_{1}\right)\left(2 P A_{2}\right)\left(2 P A_{3}\right) \\
& \geq \quad\left[\frac{p_{2}+p_{3}}{\sin \left(\frac{\alpha_{1}}{2}\right)}\right]\left[\frac{p_{1}+p_{3}}{\sin \left(\frac{\alpha_{2}}{2}\right)}\right]\left[\frac{p_{1}+p_{2}}{\sin \left(\frac{\alpha_{3}}{2}\right)}\right] .
\end{aligned}
$$

Now, $\frac{\alpha_{1}}{2}+\frac{\alpha_{2}}{2}+\frac{\alpha_{3}}{2}=\frac{\pi}{2}$ since α_{1}, α_{2}, and α_{3} are the interior angles of the original triangle. Hence, we know Lemma 5.4.2 must apply to the term in the denominator, so that

$$
\sin \left(\frac{\alpha_{1}}{2}\right) \sin \left(\frac{\alpha_{2}}{2}\right) \sin \left(\frac{\alpha_{3}}{2}\right) \leq \frac{1}{8} \text { or equivalently } \frac{1}{\sin \left(\frac{\alpha_{1}}{2}\right) \sin \left(\frac{\alpha_{2}}{2}\right) \sin \left(\frac{\alpha_{3}}{2}\right)} \geq 8
$$

Therefore, we have

$$
8 P A_{1} \cdot P A_{2} \cdot P A_{3}=\left[\frac{p_{2}+p_{3}}{\sin \left(\frac{\alpha_{1}}{2}\right)}\right]\left[\frac{p_{1}+p_{3}}{\sin \left(\frac{\alpha_{2}}{2}\right)}\right]\left[\frac{p_{1}+p_{2}}{\sin \left(\frac{\alpha_{3}}{2}\right)}\right] \geq 8\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right)
$$

so that

$$
8 P A_{1} \cdot P A_{2} \cdot P A_{3} \geq 8\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right),
$$

which means

$$
P A_{1} \cdot P A_{2} \cdot P A_{3} \geq\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right),
$$

and the result holds.

Based on Corollary 3.5, we have

$$
a_{1} P A_{1} \geq a_{2} p_{2}+a_{3} p_{3}, \quad a_{2} P A_{2} \geq a_{1} p_{1}+a_{3} p_{3}, \quad \text { and } \quad a_{3} P A_{3} \geq a_{1} p_{1}+a_{2} p_{2}
$$

as well as

$$
a_{1} P A_{1} \geq a_{2} p_{3}+a_{3} p_{2}, \quad a_{2} P A_{2} \geq a_{1} p_{3}+a_{3} p_{1}, \quad \text { and } \quad a_{3} P A_{3} \geq a_{1} p_{2}+a_{2} p_{1} .
$$

Summing those inequalities involving $P A_{1}$, we have

$$
\begin{aligned}
2 a_{1} P A_{1} & \geq a_{2} p_{2}+a_{3} p_{3}+a_{2} p_{3}+a_{3} p_{2} \\
& =a_{2}\left(p_{2}+p_{3}\right)+a_{3}\left(p_{2}+p_{3}\right) \\
& =\left(a_{2}+a_{3}\right)\left(p_{2}+p_{3}\right) .
\end{aligned}
$$

So we get

$$
2 a_{1} P A_{1}=\left(a_{2}+a_{3}\right)\left(p_{2}+p_{3}\right) .
$$

Similarly, we obtain

$$
2 a_{2} P A_{2}=\left(a_{1}+a_{3}\right)\left(p_{1}+p_{3}\right) \quad \text { and } \quad 2 a_{3} P A_{3}=\left(a_{1}+a_{2}\right)\left(p_{1}+p_{2}\right) .
$$

Thus, we have
$8 a_{1} a_{2} a_{3} P A_{1} P A_{2} P A_{3}$

$$
\begin{aligned}
& =\quad\left(2 a_{1} P A_{1}\right)\left(2 a_{2} P A_{2}\right)\left(2 a_{3} P A_{3}\right) \\
& \geq \quad\left(a_{2}+a_{3}\right)\left(p_{2}+p_{3}\right)\left(a_{1}+a_{3}\right)\left(p_{1}+p_{3}\right)\left(a_{1}+a_{2}\right)\left(p_{1}+p_{2}\right), \\
& =\quad\left(a_{2}+a_{3}\right)\left(a_{1}+a_{3}\right)\left(a_{1}+a_{2}\right)\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right)
\end{aligned}
$$

and using the Arithmetic Mean - Geometric Mean inequality gives

$$
\begin{aligned}
& \geq \quad 2 \sqrt{a_{2} a_{3}} \cdot 2 \sqrt{a_{1} a_{3}} \cdot 2 \sqrt{a_{1} a_{2}}\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right) \\
& =\quad 8 \sqrt{a_{1}^{2} a_{2}^{2} a_{3}^{2}}\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right) \\
& =\quad 8 a_{1} a_{2} a_{3}\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right) .
\end{aligned}
$$

So we have

$$
8 a_{1} a_{2} a_{3} P A_{1} P A_{2} P A_{3} \geq 8 a_{1} a_{2} a_{3}\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right),
$$

and when we divide each side by $8 a_{1} a_{2} a_{3}$, we get our desired result:

$$
P A_{1} \cdot P A_{2} \cdot P A_{3} \geq\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right) .
$$

Given $\triangle A_{1} A_{2} A_{3}$ and interior point P, let p_{i} denote the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ across from vertex A_{i}. Then

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right) .
\end{aligned}
$$

Solution to Example 5.5.
Though this solution is based on Oppenheim's [OP2], his omits many of the details, and does not discuss each case.

Let a_{i} denote the length of the side of $\triangle A_{1} A_{2} A_{3}$ across from vertex A_{i}. Without loss of generality, assume $a_{1} \geq a_{2} \geq a_{3}$. First, we notice that

$$
\begin{aligned}
& \left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right) \\
& =\quad p_{1} p_{2}+p_{2} p_{3}+p_{1} p_{3}+p_{3}^{2} \\
& +\quad p_{1} p_{2}+p_{2}^{2}+p_{1} p_{3}+p_{2} p_{3} \\
& +\quad p_{1}^{2}+p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3} \\
& =\quad p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) .
\end{aligned}
$$

Thus, to prove the desired inequality, it suffices to show

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) .
\end{aligned}
$$

To do this, we use Corollary 3.5, which gives

$$
P A_{1} \geq \frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}, \text { and } P A_{3} \geq \frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}},
$$

in addition to

$$
P A_{1} \geq \frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}, \text { and } P A_{3} \geq \frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}},
$$

so that

$$
\begin{align*}
& P A_{1} \geq \max \left\{\frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}, \frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}\right\} ; \\
& P A_{2} \geq \max \left\{\frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}, \frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}\right\} ; \text { and } \tag{5.5.A}\\
& P A_{3} \geq \max \left\{\frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}}, \frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}}\right\} .
\end{align*}
$$

To complete this proof, we will consider cases based on the ordering of p_{1}, p_{2}, and p_{3}. Cases are handled similarly. In each case, we use the maximum option to pair the larger values of a_{i} and p_{i} together and the smaller values of a_{i} and p_{i} together.

Case 1. $\quad p_{1} \geq p_{2} \geq p_{3}$.
Here, we choose

$$
P A_{1} \geq \frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}, \text { and } P A_{3} \geq \frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}} .
$$

so that

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \\
& \\
& \quad+\quad\left(\frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}\right)\left(\frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}\right) \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{a_{1} a_{2} p_{1} p_{2}+a_{2} a_{3} p_{2} p_{3}+a_{1} a_{3} p_{1} p_{3}+a_{3}^{2} p_{3}^{2}}{a_{1} a_{2}} \\
& +\quad \frac{a_{1} a_{2} p_{1} p_{2}+a_{2}^{2} p_{2}^{2}+a_{1} a_{3} p_{1} p_{3}+a_{2} a_{3} p_{2} p_{3}}{a_{1} a_{3}} \\
& +\quad \frac{a_{1}^{2} p_{1}^{2}+a_{1} a_{2} p_{1} p_{2}+a_{1} a_{3} p_{1} p_{3}+a_{2} a_{3} p_{2} p_{3}}{a_{2} a_{3}} \\
=\quad & p_{1} p_{2}+\frac{a_{3}}{a_{1}} p_{2} p_{3}+\frac{a_{3}}{a_{2}} p_{1} p_{3}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \\
& +\quad \frac{a_{2}}{a_{3}} p_{1} p_{2}+\frac{a_{2}^{2}}{a_{1} a_{3}} p_{2}^{2}+p_{1} p_{3}+\frac{a_{2}}{a_{1}} p_{2} p_{3} \\
& +\frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{1}}{a_{3}} p_{1} p_{2}+\frac{a_{1}}{a_{2}} p_{1} p_{3}+p_{2} p_{3}
\end{aligned}
$$

And by rearranging terms, we get

$$
\begin{aligned}
= & \frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{2}^{2}}{a_{1} a_{3}} p_{2}^{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \\
& +\quad\left(1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{2}+\left(1+\frac{a_{3}}{a_{2}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{3}+\left(1+\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{1}}\right) p_{2} p_{3}
\end{aligned}
$$

We need to show this is at least $p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right)$.
To do this, we will show that

$$
\frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{2}^{2}}{a_{1} a_{3}} p_{2}^{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2}
$$

and

$$
\left(1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{2}+\left(1+\frac{a_{3}}{a_{2}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{3}+\left(1+\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{1}}\right) p_{2} p_{3} \geq 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) .
$$

First, to show $\frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{2}^{2}}{a_{1} a_{3}} p_{2}^{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2}:$
Let

$$
A=\frac{a_{1}^{2}}{a_{2} a_{3}}, \quad B=\frac{a_{2}^{2}}{a_{1} a_{3}}, \text { and } \quad C=\frac{a_{3}^{2}}{a_{1} a_{2}} .
$$

Then, since $a_{1} \geq a_{2} \geq a_{3}$, we know $a_{1}^{2} \geq a_{2} a_{3}$ so that

$$
A \geq 1
$$

We also have $A+B=\frac{a_{1}^{2}}{a_{2} a_{3}}+\frac{a_{2}^{2}}{a_{1} a_{3}}$, and since $a_{1} \geq a_{2} \geq a_{3}$ meaning $a_{1} a_{2} \geq a_{3}^{2}$ coupled with the use of the Arithmetic Mean - Geometric Mean Inequality yields

$$
A+B \geq 2 \sqrt{\frac{a_{1}^{2} a_{2}^{2}}{a_{1} a_{2} a_{3}^{2}}}=2 \sqrt{\frac{a_{1} a_{2}}{a_{3}^{2}}} \geq 2
$$

so that

$$
A+B \geq 2 \text {. }
$$

We also have $A+B+C=\frac{a_{1}^{2}}{a_{2} a_{3}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{3}^{2}}{a_{1} a_{2}}$, and the Arithmetic Mean - Geometric Mean Inequality tells us

$$
A+B+C \geq 3 \sqrt[3]{\frac{a_{1}^{2} a_{2}^{2} a_{3}^{2}}{a_{1}^{2} a_{2}^{2} a_{3}^{2}}}=3,
$$

so that

$$
A+B+C \geq 3
$$

This combines to mean

$$
\left.\begin{array}{l}
\frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{2}^{2}}{a_{1} a_{3}} p_{2}^{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \\
= \\
=A p_{1}^{2}+B p_{2}^{2}+C p_{3}^{2} \\
= \\
\\
\quad A p_{1}^{2}-A p_{2}^{2} \\
\\
\quad+\quad A p_{2}^{2}+B p_{2}^{2}-A p_{3}^{2}-B p_{3}^{2} \\
=
\end{array} \quad A p_{3}^{2}+B p_{3}^{2}+C p_{3}^{2}-p_{2}^{2}\right)+(A+B)\left(p_{2}^{2}-p_{3}^{2}\right)+(A+B+C) p_{3}^{2} .
$$

Since $p_{1} \geq p_{2} \geq p_{3}$, we know $p_{1}^{2}-p_{2}^{2} \geq 0$ and $p_{2}^{2}-p_{3}^{2} \geq 0$, so

$$
\begin{aligned}
& \geq \quad 1\left(p_{1}^{2}-p_{2}^{2}\right)+2\left(p_{2}^{2}-p_{3}^{2}\right)+3 p_{3}^{2} \\
& =\quad p_{1}^{2}-p_{2}^{2}+2 p_{2}^{2}-2 p_{3}^{2}+3 p_{3}^{2} \\
& =
\end{aligned} p_{1}^{2}+p_{2}^{2}+p_{3}^{2}, ~ l
$$

So we have

$$
\frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{2}^{2}}{a_{1} a_{3}} p_{2}^{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2}
$$

To show

$$
\left(1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{2}+\left(1+\frac{a_{3}}{a_{2}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{3}+\left(1+\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{1}}\right) p_{2} p_{3} \geq 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right):
$$

We begin by realizing that this case requires $p_{1} p_{2} \geq p_{1} p_{3} \geq p_{2} p_{3}$, and we let

$$
A=1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{3}}, \quad B=1+\frac{a_{3}}{a_{2}}+\frac{a_{1}}{a_{2}}, \quad \text { and } \quad C=1+\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{1}} .
$$

Then, we have $A=1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{3}}$, and since $a_{1} \geq a_{2} \geq a_{3}$, we know

$$
A \geq 3
$$

We have $A+B=2+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{2}}+\frac{a_{1}}{a_{2}}$, and the Arithmetic Mean - Geometric Mean Inequality coupled with $a_{1} \geq a_{2} \geq a_{3}$, meaning $a_{1}^{2} \geq a_{2} a_{3}$, tells us

$$
A+B \geq 2+4 \sqrt[4]{\frac{a_{1}^{2} a_{2} a_{3}}{a_{2}^{2} a_{3}^{2}}}=2+4 \sqrt[4]{\frac{a_{1}^{2}}{a_{2} a_{3}}} \geq 2+4=6
$$

so that

$$
A+B \geq 6
$$

We also have $A+B+C=3+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{3}}+\frac{a_{3}}{a_{2}}+\frac{a_{1}}{a_{2}}+\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{1}}$, and the Arithmetic Mean Geometric Mean Inequality tells us

$$
A+B+C \geq 3+6 \sqrt[6]{\frac{a_{1}^{2} a_{2}^{2} a_{3}^{2}}{a_{1}^{2} a_{2}^{2} a_{3}^{2}}}=3+6=9
$$

so that

$$
A+B+C \geq 9
$$

This combines to mean

$$
\begin{aligned}
\left(1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{3}}\right) & p_{1} p_{2}+\left(1+\frac{a_{3}}{a_{2}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{3}+\left(1+\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{1}}\right) p_{2} p_{3} \\
& =A p_{1} p_{2}+B p_{1} p_{3}+C p_{2} p_{3} \\
& =A p_{1} p_{2}-A p_{1} p_{3} \\
& +\quad A p_{1} p_{3}+B p_{1} p_{3}-A p_{2} p_{3}-B p_{2} p_{3} \\
& +\quad A p_{2} p_{3}+B p_{2} p_{3}+C p_{2} p_{3} \\
& =A\left(p_{1} p_{2}-p_{1} p_{3}\right)+(A+B)\left(p_{1} p_{3}-p_{2} p_{3}\right)+(A+B+C) p_{2} p_{3}
\end{aligned}
$$

Since $p_{1} p_{2} \geq p_{1} p_{3} \geq p_{2} p_{3}$, we know $p_{1} p_{2}-p_{1} p_{3} \geq 0$ and $p_{1} p_{3}-p_{2} p_{3} \geq 0$, so

$$
\begin{aligned}
& \geq \quad 3\left(p_{1} p_{2}-p_{1} p_{3}\right)+6\left(p_{1} p_{3}-p_{2} p_{3}\right)+9 p_{2} p_{3} \\
& =\quad 3 p_{1} p_{2}-3 p_{1} p_{3}+6 p_{1} p_{3}-6 p_{2} p_{3}+9 p_{2} p_{3} \\
& =\quad 3 p_{1} p_{2}+3 p_{1} p_{3}+3 p_{2} p_{3},
\end{aligned}
$$

so that

$$
\begin{gathered}
\left(1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{2}+\left(1+\frac{a_{3}}{a_{2}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{3}+\left(1+\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{1}}\right) p_{2} p_{3} \\
\geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right),
\end{gathered}
$$

as desired.

So Case 1 holds, as we have shown

$$
\begin{array}{ll}
P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
\geq & \frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{2}^{2}}{a_{1} a_{3}} p_{2}^{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \\
& +\left(1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{2}+\left(1+\frac{a_{3}}{a_{2}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{3}+\left(1+\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{1}}\right) p_{2} p_{3} \\
& \quad p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) \\
= & \left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right),
\end{array}
$$

which gives

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right) .
\end{aligned}
$$

Case 2. $\quad p_{2} \geq p_{3} \geq p_{1}$.
Again, we use the maximum option to pair the larger values of a_{i} and p_{i} together and the smaller values of a_{i} and p_{i} together in (5.5.A):

$$
P A_{1} \geq \frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}, \text { and } P A_{3} \geq \frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}} .
$$

so that

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad\left(\frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}\right)\left(\frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}\right) \\
& +\quad\left(\frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}\right)\left(\frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}}\right) \\
& +\quad\left(\frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}\right)\left(\frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}}\right) \\
& =\quad \frac{a_{1} a_{2} p_{2} p_{3}+a_{2} a_{3} p_{1} p_{2}+a_{1} a_{3} p_{3}^{2}+a_{3}^{2} p_{1} p_{3}}{a_{1} a_{2}} \\
& +\quad \frac{a_{1} a_{2} p_{2}^{2}+a_{2}^{2} p_{1} p_{2}+a_{1} a_{3} p_{2} p_{3}+a_{2} a_{3} p_{1} p_{3}}{a_{1} a_{3}} \\
& +\quad \frac{a_{1}^{2} p_{2} p_{3}+a_{1} a_{2} p_{1} p_{3}+a_{1} a_{3} p_{1} p_{2}+a_{2} a_{3} p_{1}^{2}}{a_{2} a_{3}} \\
& =\quad p_{2} p_{3}+\frac{a_{3}}{a_{1}} p_{1} p_{2}+\frac{a_{3}}{a_{2}} p_{3}^{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{1} p_{3} \\
& +\quad \frac{a_{2}}{a_{3}} p_{2}^{2}+\frac{a_{2}^{2}}{a_{1} a_{3}} p_{1} p_{2}+p_{2} p_{3}+\frac{a_{2}}{a_{1}} p_{1} p_{3} \\
& +\quad \frac{a_{1}^{2}}{a_{2} a_{3}} p_{2} p_{3}+\frac{a_{1}}{a_{3}} p_{1} p_{3}+\frac{a_{1}}{a_{2}} p_{1} p_{2}+p_{1}^{2}
\end{aligned}
$$

And by rearranging terms, we get

$$
\begin{aligned}
= & \frac{a_{2}}{a_{3}} p_{2}^{2}+\frac{a_{3}}{a_{2}} p_{3}^{2}+p_{1}^{2} \\
& +\left(2+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{2}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{3}
\end{aligned}
$$

We need to show this is at least $p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right)$.
Again, to do this, we will show that

$$
\frac{a_{2}}{a_{3}} p_{2}^{2}+\frac{a_{3}}{a_{2}} p_{3}^{2}+p_{1}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2}
$$

and

$$
\begin{gathered}
\left(2+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{2}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{3} \\
\geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) .
\end{gathered}
$$

First, to show $\frac{a_{2}}{a_{3}} p_{2}^{2}+\frac{a_{3}}{a_{2}} p_{3}^{2}+p_{1}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2}$:
Let

$$
A=\frac{a_{2}}{a_{3}}, \quad B=\frac{a_{3}}{a_{2}}, \text { and } \quad C=1 .
$$

Then, since $a_{1} \geq a_{2} \geq a_{3}$, we know

$$
A \geq 1
$$

We also have $A+B=\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}$, and the Arithmetic Mean - Geometric Mean Inequality yields

$$
A+B \geq 2 \sqrt{\frac{a_{2} a_{3}}{a_{2} a_{3}}}=2
$$

so that

$$
A+B \geq 2
$$

We also have $A+B+C=1+\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}$, and the Arithmetic Mean - Geometric Mean Inequality tells us

$$
A+B+C \geq 1+2 \sqrt{\frac{a_{2} a_{3}}{a_{2} a_{3}}}=1+2=3
$$

so that

$$
A+B+C \geq 3
$$

This combines to mean

$$
\begin{aligned}
\frac{a_{2}}{a_{3}} p_{2}^{2} & +\frac{a_{3}}{a_{2}} p_{3}^{2}+p_{1}^{2} \\
& =A p_{2}^{2}+B p_{3}^{2}+C p_{1}^{2} \\
& =A p_{2}^{2}-A p_{3}^{2} \\
& +\quad A p_{3}^{2}+B p_{3}^{2}-A p_{1}^{2}-B p_{1}^{2} \\
& +A p_{1}^{2}+B p_{1}^{2}+C p_{1}^{2} \\
& =A\left(p_{2}^{2}-p_{3}^{2}\right)+(A+B)\left(p_{3}^{2}-p_{1}^{2}\right)+(A+B+C) p_{1}^{2}
\end{aligned}
$$

Since $p_{2} \geq p_{3} \geq p_{1}$, we know $p_{2}^{2}-p_{3}^{2} \geq 0$ and $p_{3}^{2}-p_{1}^{2} \geq 0$, so

$$
\begin{aligned}
& \geq \quad 1\left(p_{2}^{2}-p_{3}^{2}\right)+2\left(p_{3}^{2}-p_{1}^{2}\right)+3 p_{1}^{2} \\
& =\quad p_{2}^{2}-p_{3}^{2}+2 p_{3}^{2}-2 p_{1}^{2}+3 p_{1}^{2} \\
& =\quad p_{1}^{2}+p_{2}^{2}+p_{3}^{2},
\end{aligned}
$$

So we have

$$
\frac{a_{2}}{a_{3}} p_{2}^{2}+\frac{a_{3}}{a_{2}} p_{3}^{2}+p_{1}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2} .
$$

To show

$$
\begin{gathered}
\left(2+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{2}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{3} \\
\geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right):
\end{gathered}
$$

We begin by realizing that this case requires $p_{2} p_{3} \geq p_{1} p_{2} \geq p_{2} p_{3}$, and we let

$$
A=2+\frac{a_{1}^{2}}{a_{2} a_{3}}, \quad B=\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{2}}, \text { and } \quad C=\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{3}} .
$$

Then, we have $A=2+\frac{a_{1}^{2}}{a_{2} a_{3}}$, and since $a_{1} \geq a_{2} \geq a_{3}$, we know $a_{1}^{2} \geq a_{2} a_{3}$, so that

$$
A \geq 3 .
$$

We have $A+B=2+\frac{a_{1}^{2}}{a_{2} a_{3}}+\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{2}}$, and the Arithmetic Mean - Geometric Mean Inequality coupled with $a_{1} \geq a_{2} \geq a_{3}$, meaning $a_{1} \geq a_{3}$, tells us

$$
A+B \geq 2+4 \sqrt[4]{\frac{a_{1}^{3} a_{2}^{2} a_{3}}{a_{1}^{2} a_{2}^{2} a_{3}^{2}}}=2+4 \sqrt[4]{\frac{a_{1}}{a_{3}}} \geq 2+4=6
$$

so that

$$
A+B \geq 6 \text {. }
$$

We also have $A+B+C=2+\frac{a_{1}^{2}}{a_{2} a_{3}}+\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{2}}+\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{3}}$, and the Arithmetic Mean - Geometric Mean Inequality tells us

$$
A+B+C \geq 2+7 \sqrt[7]{\frac{a_{1}^{4} a_{2}^{3} a_{3}^{3}}{a_{1}^{4} a_{2}^{3} a_{3}^{3}}}=2+7=9,
$$

so that

$$
A+B+C \geq 9
$$

This combines to mean

$$
\begin{aligned}
& \left(2+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{2}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{3} \\
& =\quad A p_{2} p_{3}+B p_{1} p_{2}+C p_{1} p_{3} \\
& =A p_{2} p_{3}-A p_{1} p_{2} \\
& +\quad A p_{1} p_{2}+B p_{1} p_{2}-A p_{1} p_{3}-B p_{1} p_{3} \\
& +\quad A p_{1} p_{3}+B p_{1} p_{3}+C p_{1} p_{3} \\
& =\quad A\left(p_{2} p_{3}-p_{1} p_{2}\right)+(A+B)\left(p_{1} p_{2}-p_{1} p_{3}\right)+(A+B+C) p_{1} p_{3}
\end{aligned}
$$

Since $p_{2} p_{3} \geq p_{1} p_{2} \geq p_{1} p_{3}$, we know $p_{2} p_{3}-p_{1} p_{2} \geq 0$ and $p_{1} p_{2}-p_{1} p_{3} \geq 0$, so

$$
\begin{aligned}
& \geq \quad 3\left(p_{2} p_{3}-p_{1} p_{2}\right)+6\left(p_{1} p_{2}-p_{1} p_{3}\right)+9 p_{1} p_{3} \\
& =\quad 3 p_{2} p_{3}-3 p_{1} p_{2}+6 p_{1} p_{2}-6 p_{1} p_{3}+9 p_{1} p_{3} \\
& =\quad 3 p_{1} p_{2}+3 p_{1} p_{3}+3 p_{2} p_{3},
\end{aligned}
$$

so that

$$
\begin{gathered}
\left(2+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{2}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{3} \\
\geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right),
\end{gathered}
$$

as desired.

So Case 2 holds, as we have shown

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad p_{1}^{2}+\frac{a_{2}}{a_{3}} p_{2}^{2}+\frac{a_{3}}{a_{2}} p_{3}^{2} \\
& \quad+\quad\left(2+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{2}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{3}
\end{aligned}
$$

$$
\begin{array}{ll}
\geq & p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) \\
= & \left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right)
\end{array}
$$

which gives

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right)
\end{aligned}
$$

Case 3. $\quad p_{3} \geq p_{2} \geq p_{1}$.
Again, we use the maximum option to pair the larger values of a_{i} and p_{i} together and the smaller values of a_{i} and p_{i} together in (5.5.A):

$$
P A_{1} \geq \frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}, \text { and } P A_{3} \geq \frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}} .
$$

so that

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad\left(\frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}\right)\left(\frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}\right) \\
& +\quad\left(\frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}\right)\left(\frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}}\right) \\
& +\quad\left(\frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}\right)\left(\frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}}\right) \\
& =\quad \frac{a_{1} a_{2} p_{3}^{2}+a_{2} a_{3} p_{1} p_{3}+a_{1} a_{3} p_{2} p_{3}+a_{3}^{2} p_{1} p_{2}}{a_{1} a_{2}} \\
& +\quad \frac{a_{1} a_{2} p_{2} p_{3}+a_{2}^{2} p_{1} p_{3}+a_{1} a_{3} p_{2}^{2}+a_{2} a_{3} p_{1} p_{2}}{a_{1} a_{3}} \\
& +\quad \frac{a_{1}^{2} p_{2} p_{3}+a_{1} a_{2} p_{1} p_{3}+a_{1} a_{3} p_{1} p_{2}+a_{2} a_{3} p_{1}^{2}}{a_{2} a_{3}} \\
& =\quad p_{3}^{2}+\frac{a_{3}}{a_{1}} p_{1} p_{3}+\frac{a_{3}}{a_{2}} p_{2} p_{3}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{1} p_{2} \\
& +\quad \frac{a_{2}}{a_{3}} p_{2} p_{3}+\frac{a_{2}^{2}}{a_{1} a_{3}} p_{1} p_{3}+p_{2}^{2}+\frac{a_{2}}{a_{1}} p_{1} p_{2} \\
& +\quad \frac{a_{1}^{2}}{a_{2} a_{3}} p_{2} p_{3}+\frac{a_{1}}{a_{3}} p_{1} p_{3}+\frac{a_{1}}{a_{2}} p_{1} p_{2}+p_{1}^{2}
\end{aligned}
$$

And by rearranging terms, we get

$$
\begin{aligned}
= & p_{1}^{2}+p_{2}^{2}+p_{3}^{2} \\
& +\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{3}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{2} .
\end{aligned}
$$

We need to show this is at least $p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right)$.
In this case, this merely amounts to showing

$$
\begin{gathered}
\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{3}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{2} \\
\geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) .
\end{gathered}
$$

We begin by realizing that this case requires $p_{2} p_{3} \geq p_{1} p_{3} \geq p_{1} p_{2}$, and we let

$$
A=\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}, \quad B=\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}, \text { and } \quad C=\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}} .
$$

Then, we have $A=\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}$, and by the Arithmetic Mean - Geometric Mean Inequality and since $a_{1} \geq a_{2} \geq a_{3}$, we know $a_{1}^{2} \geq a_{2} a_{3}$, so that

$$
A=\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}} \geq 2 \sqrt{\frac{a_{2} a_{3}}{a_{2} a_{3}}}+1=2+1=3 .
$$

Thus

$$
A \geq 3 .
$$

We have $A+B=\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}+\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}$, and the Arithmetic Mean - Geometric Mean Inequality coupled with $a_{1} \geq a_{2} \geq a_{3}$, meaning $a_{1} a_{2} \geq a_{3}^{2}$, tells us

$$
A+B \geq 6 \sqrt[6]{\frac{a_{1}^{3} a_{2}^{3} a_{3}^{2}}{a_{1}^{2} a_{2}^{2} a_{3}^{4}}}=6 \sqrt[6]{\frac{a_{1} a_{2}}{a_{3}^{2}}} \geq 6
$$

so that

$$
A+B \geq 6 \text {. }
$$

We also have $A+B+C=\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}+\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}+\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}$, and the Arithmetic Mean - Geometric Mean Inequality tells us

$$
A+B+C \geq 9 \sqrt[9]{\frac{a_{1}^{4} a_{2}^{4} a_{3}^{4}}{a_{1}^{4} a_{2}^{4} a_{3}^{4}}}=9,
$$

so that

$$
A+B+C \geq 9 .
$$

This combines to mean

$$
\begin{aligned}
& \left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{3}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{2} \\
& =A p_{2} p_{3}+B p_{1} p_{3}+C p_{1} p_{2} \\
& =\quad A p_{2} p_{3}-A p_{1} p_{3} \\
& +\quad A p_{1} p_{3}+B p_{1} p_{3}-A p_{1} p_{2}-B p_{1} p_{2} \\
& +\quad A p_{1} p_{2}+B p_{1} p_{2}+C p_{1} p_{2} \\
& =\quad A\left(p_{2} p_{3}-p_{1} p_{3}\right)+(A+B)\left(p_{1} p_{3}-p_{1} p_{2}\right)+(A+B+C) p_{1} p_{2}
\end{aligned}
$$

Since $p_{2} p_{3} \geq p_{1} p_{3} \geq p_{1} p_{2}$, we know $p_{2} p_{3}-p_{1} p_{3} \geq 0$ and $p_{1} p_{3}-p_{1} p_{2} \geq 0$, so

$$
\begin{aligned}
& \geq \quad 3\left(p_{2} p_{3}-p_{1} p_{3}\right)+6\left(p_{1} p_{3}-p_{1} p_{2}\right)+9 p_{1} p_{2} \\
& =\quad 3 p_{2} p_{3}-3 p_{1} p_{3}+6 p_{1} p_{3}-6 p_{1} p_{2}+9 p_{1} p_{2} \\
& =\quad 3 p_{1} p_{2}+3 p_{1} p_{3}+3 p_{2} p_{3},
\end{aligned}
$$

so that

$$
\begin{gathered}
\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{3}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{2} \\
\geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right),
\end{gathered}
$$

as desired.

So Case 3 holds, as we have shown

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad p_{1}^{2}+p_{2}^{2}+p_{3}^{2} \\
& \quad+\quad\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{1} p_{3}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}}{a_{1}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{2} \\
& \geq \quad p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) \\
& =\quad\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right),
\end{aligned}
$$

which gives

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right) .
\end{aligned}
$$

Case 4. $\quad p_{1} \geq p_{3} \geq p_{2}$.
Again, we use the maximum option to pair the larger values of a_{i} and p_{i} together and the smaller values of a_{i} and p_{i} together in (5.5.A):

$$
P A_{1} \geq \frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}, \text { and } P A_{3} \geq \frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}} .
$$

so that
$P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3}$

$$
\begin{aligned}
& \geq\left(\frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}\right)\left(\frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}\right) \\
&+\left(\frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}\right)\left(\frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}}\right) \\
&+\quad\left(\frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}\right)\left(\frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}}\right) \\
&=\quad \frac{a_{1} a_{2} p_{1} p_{3}+a_{2} a_{3} p_{3}^{2}+a_{1} a_{3} p_{1} p_{2}+a_{3}^{2} p_{2} p_{3}}{a_{1} a_{2}} \\
& \quad \frac{a_{1} a_{2} p_{1} p_{3}+a_{2}^{2} p_{2} p_{3}+a_{1} a_{3} p_{1} p_{2}+a_{2} a_{3} p_{2}^{2}}{a_{1} a_{3}} \\
&=\quad p_{1} p_{3}+\frac{a_{3} a_{2} p_{1} p_{2}+a_{1} a_{3} p_{1} p_{3}+a_{2} a_{3} p_{2} p_{3}}{a_{2} a_{3}}+\frac{a_{3}}{a_{2}} p_{1} p_{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{2} p_{3} \\
&+\frac{a_{2}}{a_{3}} p_{1} p_{3}+\frac{a_{2}^{2}}{a_{1} a_{3}} p_{2} p_{3}+p_{1} p_{2}+\frac{a_{2}}{a_{1}} p_{2}^{2} \\
& \quad+\quad \frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{1}}{a_{3}} p_{1} p_{2}+\frac{a_{1}}{a_{2}} p_{1} p_{3}+p_{2} p_{3}
\end{aligned}
$$

And by rearranging terms, we get

$$
\begin{aligned}
= & \frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{3}}{a_{1}} p_{3}^{2}+\frac{a_{2}}{a_{1}} p_{2}^{2} \\
& +\quad\left(1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{3}+\left(\frac{a_{3}}{a_{2}}+1+\frac{a_{1}}{a_{3}}\right) p_{1} p_{2}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+1\right) p_{2} p_{3}
\end{aligned}
$$

We need to show this is at least $p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right)$.
Again, to do this, we will show that

$$
\frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{3}}{a_{1}} p_{3}^{2}+\frac{a_{2}}{a_{1}} p_{2}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2}
$$

and

$$
\begin{gathered}
\left(1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{3}+\left(\frac{a_{3}}{a_{2}}+1+\frac{a_{1}}{a_{3}}\right) p_{1} p_{2}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+1\right) p_{2} p_{3} \\
\geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) .
\end{gathered}
$$

First, to show $\frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{3}}{a_{1}} p_{3}^{2}+\frac{a_{2}}{a_{1}} p_{2}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2}$:
Let

$$
A=\frac{a_{1}^{2}}{a_{2} a_{3}}, \quad B=\frac{a_{3}}{a_{1}}, \text { and } \quad C=\frac{a_{2}}{a_{1}},
$$

Then, we have $A=\frac{a_{1}^{2}}{a_{2} a_{3}}$, and since $a_{1} \geq a_{2} \geq a_{3}$, we know $a_{1}^{2} \geq a_{2} a_{3}$, so that

$$
A \geq 1 .
$$

We have $A+B=\frac{a_{1}^{2}}{a_{2} a_{3}}+\frac{a_{3}}{a_{1}}$, and the Arithmetic Mean - Geometric Mean Inequality coupled with $a_{1} \geq a_{2} \geq a_{3}$, meaning $a_{1} \geq a_{2}$, tells us

$$
A+B \geq 2 \sqrt{\frac{a_{1}^{2} a_{3}}{a_{1} a_{2} a_{3}}}=2 \sqrt{\frac{a_{1}}{a_{2}}} \geq 2,
$$

so that

$$
A+B \geq 2 .
$$

We also have $A+B+C=\frac{a_{1}^{2}}{a_{2} a_{3}}+\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{1}}$, and the Arithmetic Mean - Geometric Mean Inequality tells us

$$
A+B+C \geq 3 \sqrt[3]{\frac{a_{1}^{2} a_{2} a_{3}}{a_{1}^{2} a_{2} a_{3}}}=3
$$

so that

$$
A+B+C \geq 3 .
$$

This combines to mean

$$
\begin{aligned}
\frac{a_{1}^{2}}{a_{2} a_{3}} & p_{1}^{2}+\frac{a_{3}}{a_{1}} p_{3}^{2}+\frac{a_{2}}{a_{1}} p_{2}^{2} \\
= & A p_{1}^{2}+B p_{3}^{2}+C p_{2}^{2} \\
= & A p_{1}^{2}-A p_{3}^{2} \\
& +\quad A p_{3}^{2}+B p_{3}^{2}-A p_{2}^{2}-B p_{2}^{2} \\
& +\quad A p_{2}^{2}+B p_{2}^{2}+C p_{2}^{2} \\
= & A\left(p_{1}^{2}-p_{3}^{2}\right)+(A+B)\left(p_{3}^{2}-p_{2}^{2}\right)+(A+B+C) p_{2}^{2}
\end{aligned}
$$

Since $p_{1} \geq p_{3} \geq p_{2}$, we know $p_{1}^{2}-p_{3}^{2} \geq 0$ and $p_{3}^{2}-p_{2}^{2} \geq 0$, so

$$
\begin{aligned}
& \geq \quad 1\left(p_{1}^{2}-p_{3}^{2}\right)+2\left(p_{3}^{2}-p_{2}^{2}\right)+3 p_{2}^{2} \\
& =\quad p_{1}^{2}-p_{3}^{2}+2 p_{3}^{2}-2 p_{2}^{2}+3 p_{2}^{2} \\
& =\quad p_{1}^{2}+p_{2}^{2}+p_{3}^{2},
\end{aligned}
$$

so we have

$$
\frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{3}}{a_{1}} p_{3}^{2}+\frac{a_{2}}{a_{1}} p_{2}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2} .
$$

To show

$$
\begin{aligned}
& \left(1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{3}+\left(\frac{a_{3}}{a_{2}}+1+\frac{a_{1}}{a_{3}}\right) p_{1} p_{2}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+1\right) p_{2} p_{3} \\
& \quad \geq 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right):
\end{aligned}
$$

We begin by realizing that this case requires $p_{1} p_{3} \geq p_{1} p_{2} \geq p_{2} p_{3}$, and we let

$$
A=1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{2}}, \quad B=\frac{a_{3}}{a_{2}}+1+\frac{a_{1}}{a_{3}}, \text { and } \quad C=\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+1,
$$

Then, we have $A=1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{2}}$, and since $a_{1} \geq a_{2} \geq a_{3}$, we know

$$
A \geq 3 .
$$

We have $A+B=2+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{2}}+\frac{a_{3}}{a_{2}}+\frac{a_{1}}{a_{3}}$, and the Arithmetic Mean - Geometric Mean Inequality coupled with $a_{1} \geq a_{2} \geq a_{3}$, meaning $a_{1}^{2} \geq a_{2} a_{3}$, tells us

$$
A+B \geq 2+4 \sqrt[4]{\frac{a_{1}^{2} a_{2} a_{3}}{a_{2}^{2} a_{3}^{2}}}=2+4 \sqrt[4]{\frac{a_{1}^{2}}{a_{2} a_{3}}} \geq 2+4=6,
$$

so that

$$
A+B \geq 6
$$

We also have $A+B+C=3+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{2}}+\frac{a_{3}}{a_{2}}+\frac{a_{1}}{a_{3}}+\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}$, and the Arithmetic Mean - Geometric Mean Inequality tells us

$$
A+B+C \geq 3+6 \sqrt[6]{\frac{a_{1}^{2} a_{2}^{3} a_{3}^{3}}{a_{1}^{2} a_{2}^{3} a_{3}^{3}}}=3+6=9
$$

so that

$$
A+B+C \geq 9
$$

This combines to mean

$$
\begin{aligned}
& \left(1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{3}+\left(\frac{a_{3}}{a_{2}}+1+\frac{a_{1}}{a_{3}}\right) p_{1} p_{2}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+1\right) p_{2} p_{3} \\
& =A p_{1} p_{3}+B p_{1} p_{2}+C p_{2} p_{3} \\
& =\quad A p_{1} p_{3}-A p_{1} p_{2} \\
& +\quad A p_{1} p_{2}+B p_{1} p_{2}-A p_{2} p_{3}-B p_{2} p_{3} \\
& +\quad A p_{2} p_{3}+B p_{2} p_{3}+C p_{2} p_{3} \\
& =\quad A\left(p_{1} p_{3}-p_{1} p_{2}\right)+(A+B)\left(p_{1} p_{2}-p_{2} p_{3}\right)+(A+B+C) p_{2} p_{3}
\end{aligned}
$$

Since $p_{1} p_{3} \geq p_{1} p_{2} \geq p_{2} p_{3}$, we know $p_{1} p_{3}-p_{1} p_{2} \geq 0$ and $p_{1} p_{2}-p_{2} p_{3} \geq 0$, so

$$
\begin{aligned}
& \geq \quad 3\left(p_{1} p_{3}-p_{1} p_{2}\right)+6\left(p_{1} p_{2}-p_{2} p_{3}\right)+9 p_{2} p_{3} \\
& =\quad 3 p_{1} p_{3}-3 p_{1} p_{2}+6 p_{1} p_{2}-6 p_{2} p_{3}+9 p_{2} p_{3} \\
& =\quad 3 p_{1} p_{2}+3 p_{1} p_{3}+3 p_{2} p_{3},
\end{aligned}
$$

so that

$$
\begin{aligned}
& \left(1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{3}+\left(\frac{a_{3}}{a_{2}}+1+\frac{a_{1}}{a_{3}}\right) p_{1} p_{2}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+1\right) p_{2} p_{3} \\
& \geq 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right),
\end{aligned}
$$

as desired.
So Case 4 holds, as we have shown

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad \frac{a_{1}^{2}}{a_{2} a_{3}} p_{1}^{2}+\frac{a_{2}}{a_{1}} p_{2}^{2}+\frac{a_{3}}{a_{1}} p_{3}^{2} \\
& \quad+\quad\left(1+\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{2}}\right) p_{1} p_{3}+\left(\frac{a_{3}}{a_{2}}+1+\frac{a_{1}}{a_{3}}\right) p_{1} p_{2}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+1\right) p_{2} p_{3}
\end{aligned}
$$

$$
\begin{array}{ll}
\geq & p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) \\
= & \left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right)
\end{array}
$$

which gives

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right) .
\end{aligned}
$$

Case 5. $\quad p_{2} \geq p_{1} \geq p_{3}$.

Again, we use the maximum option to pair the larger values of a_{i} and p_{i} together and the smaller values of a_{i} and p_{i} together in (5.5.A):

$$
P A_{1} \geq \frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}, \text { and } P A_{3} \geq \frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}} .
$$

so that

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad\left(\frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}\right)\left(\frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}\right) \\
& +\quad\left(\frac{a_{2} p_{2}+a_{3} p_{3}}{a_{1}}\right)\left(\frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}}\right) \\
& +\quad\left(\frac{a_{1} p_{1}+a_{3} p_{3}}{a_{2}}\right)\left(\frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}}\right) \\
& =\quad \frac{a_{1} a_{2} p_{1} p_{2}+a_{2} a_{3} p_{2} p_{3}+a_{1} a_{3} p_{1} p_{3}+a_{3}^{2} p_{3}^{2}}{a_{1} a_{2}} \\
& +\quad \frac{a_{1} a_{2} p_{2}^{2}+a_{2}^{2} p_{1} p_{2}+a_{1} a_{3} p_{2} p_{3}+a_{2} a_{3} p_{1} p_{3}}{a_{1} a_{3}} \\
& +\quad \frac{a_{1}^{2} p_{1} p_{2}+a_{1} a_{2} p_{1}^{2}+a_{1} a_{3} p_{2} p_{3}+a_{2} a_{3} p_{1} p_{3}}{a_{2} a_{3}} \\
& =\quad p_{1} p_{2}+\frac{a_{3}}{a_{1}} p_{2} p_{3}+\frac{a_{3}}{a_{2}} p_{1} p_{3}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \\
& +\quad \frac{a_{2}}{a_{3}} p_{2}^{2}+\frac{a_{2}^{2}}{a_{1} a_{3}} p_{1} p_{2}+p_{2} p_{3}+\frac{a_{2}}{a_{1}} p_{1} p_{3} \\
& +\quad \frac{a_{1}^{2}}{a_{2} a_{3}} p_{1} p_{2}+\frac{a_{1}}{a_{3}} p_{1}^{2}+\frac{a_{1}}{a_{2}} p_{2} p_{3}+p_{1} p_{3}
\end{aligned}
$$

And by rearranging terms, we get

$$
\begin{aligned}
=\quad & \frac{a_{2}}{a_{3}} p_{2}^{2}+\frac{a_{1}}{a_{3}} p_{1}^{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \\
& +\quad\left(1+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{1} p_{2}+\left(\frac{a_{3}}{a_{1}}+1+\frac{a_{1}}{a_{2}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{1}}+1\right) p_{1} p_{3} .
\end{aligned}
$$

We need to show this is at least $p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right)$.
Again, to do this, we will show that

$$
\frac{a_{2}}{a_{3}} p_{2}^{2}+\frac{a_{1}}{a_{3}} p_{1}^{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2}
$$

and

$$
\begin{aligned}
& \left(1+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{1} p_{2}+\left(\frac{a_{3}}{a_{1}}+1+\frac{a_{1}}{a_{2}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{1}}+1\right) p_{1} p_{3} \\
& \geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) .
\end{aligned}
$$

First, to show $\frac{a_{2}}{a_{3}} p_{2}^{2}+\frac{a_{1}}{a_{3}} p_{1}^{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2}$:
Let

$$
A=\frac{a_{2}}{a_{3}}, \quad B=\frac{a_{1}}{a_{3}}, \text { and } C=\frac{a_{3}^{2}}{a_{1} a_{2}} .
$$

Then, we have $A=\frac{a_{2}}{a_{3}}$, and since $a_{1} \geq a_{2} \geq a_{3}$, we know

$$
A \geq 1
$$

We have $A+B=\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{3}}$, and since $a_{1} \geq a_{2} \geq a_{3}$, we know

$$
A+B \geq 2 .
$$

We also have $A+B+C=\frac{a_{2}}{a_{3}}+\frac{a_{1}}{a_{3}}+\frac{a_{3}^{2}}{a_{1} a_{2}}$, and the Arithmetic Mean - Geometric Mean Inequality tells us

$$
A+B+C \geq 3 \sqrt[3]{\frac{a_{1} a_{2} a_{3}^{2}}{a_{1} a_{2} a_{3}^{2}}}=3
$$

so that

$$
A+B+C \geq 3
$$

This combines to mean

$$
\begin{aligned}
\frac{a_{2}}{a_{3}} p_{2}^{2} & +\frac{a_{1}}{a_{3}} p_{1}^{2}+ \\
= & A p_{2}^{2}+B p_{1}^{2}+C p_{3}^{2} \\
= & A p_{2}^{2}-A p_{1}^{2} \\
= & A p_{1}^{2}+B p_{1}^{2}-A p_{3}^{2}-B p_{3}^{2} \\
& +\quad A p_{3}^{2}+B p_{3}^{2}+C p_{3}^{2} \\
& =A\left(p_{2}^{2}-p_{1}^{2}\right)+(A+B)\left(p_{1}^{2}-p_{3}^{2}\right)+(A+B+C) p_{3}^{2}
\end{aligned}
$$

Since $p_{2} \geq p_{1} \geq p_{3}$, we know $p_{2}^{2}-p_{1}^{2} \geq 0$ and $p_{1}^{2}-p_{3}^{2} \geq 0$, so

$$
\begin{array}{ll}
\geq & 1\left(p_{2}^{2}-p_{1}^{2}\right)+2\left(p_{1}^{2}-p_{3}^{2}\right)+3 p_{3}^{2} \\
= & p_{2}^{2}-p_{1}^{2}+2 p_{1}^{2}-2 p_{3}^{2}+3 p_{3}^{2} \\
= & p_{1}^{2}+p_{2}^{2}+p_{3}^{2},
\end{array}
$$

So we have

$$
\frac{a_{2}}{a_{3}} p_{2}^{2}+\frac{a_{1}}{a_{3}} p_{1}^{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2} .
$$

To show

$$
\begin{aligned}
& \left(1+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{1} p_{2}+\left(\frac{a_{3}}{a_{1}}+1+\frac{a_{1}}{a_{2}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{1}}+1\right) p_{1} p_{3} \\
& \geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right):
\end{aligned}
$$

We begin by realizing that this case requires $p_{1} p_{2} \geq p_{2} p_{3} \geq p_{1} p_{3}$, and we let

$$
A=1+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}, \quad B=\frac{a_{3}}{a_{1}}+1+\frac{a_{1}}{a_{2}}, \text { and } \quad C=\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{1}}+1 .
$$

Then, we have $A=1+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}$, and since $a_{1} \geq a_{2} \geq a_{3}$, we know by using the Arithmetic Mean-Geometric Mean Inequality and the fact that $a_{1} a_{2} \geq a_{3}^{2}$,

$$
A \geq 1+2 \sqrt{\frac{a_{1}^{2} a_{2}^{2}}{a_{1} a_{2} a_{3}^{2}}}=1+2 \sqrt{\frac{a_{1} a_{2}}{a_{3}^{2}}} \geq 1+2=3
$$

so that

$$
A \geq 3
$$

We have $A+B=2+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}+\frac{a_{3}}{a_{1}}+\frac{a_{1}}{a_{2}}$, and the Arithmetic Mean - Geometric Mean Inequality coupled with $a_{1} \geq a_{2} \geq a_{3}$ tells us

$$
A+B \geq 2+4 \sqrt[4]{\frac{a_{1}^{3} a_{2}^{2} a_{3}}{a_{1}^{2} a_{2}^{2} a_{3}^{2}}}=2+\sqrt[4]{\frac{a_{1}}{a_{3}}} \geq 2+4=6,
$$

so that

$$
A+B \geq 6 \text {. }
$$

We also have $A+B+C=3+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}+\frac{a_{3}}{a_{1}}+\frac{a_{1}}{a_{2}}+\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{1}}+1$, and the Arithmetic Mean - Geometric Mean Inequality tells us

$$
A+B+C \geq 3+6 \sqrt[6]{\frac{a_{1}^{3} a_{2}^{3} a_{3}^{2}}{a_{1}^{3} a_{2}^{3} a_{3}^{2}}}=3+6=9
$$

so that

$$
A+B+C \geq 9
$$

This combines to mean

$$
\begin{aligned}
& \left(1+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{1} p_{2}+\left(\frac{a_{3}}{a_{1}}+1+\frac{a_{1}}{a_{2}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{1}}+1\right) p_{1} p_{3} \\
& =\quad A p_{1} p_{2}+B p_{2} p_{3}+C p_{1} p_{3} \\
& =\quad A p_{1} p_{2}-A p_{2} p_{3} \\
& \quad+\quad A p_{2} p_{3}+B p_{2} p_{3}-A p_{1} p_{3}-B p_{1} p_{3} \\
& \quad+\quad A p_{1} p_{3}+B p_{1} p_{3}+C p_{1} p_{3} \\
& \quad=\quad A\left(p_{1} p_{2}-p_{2} p_{3}\right)+(A+B)\left(p_{2} p_{3}-p_{1} p_{3}\right)+(A+B+C) p_{1} p_{3}
\end{aligned}
$$

Since $p_{1} p_{2} \geq p_{2} p_{3} \geq p_{1} p_{3}$, we know $p_{1} p_{2}-p_{2} p_{3} \geq 0$ and $p_{2} p_{3}-p_{1} p_{3} \geq 0$, so

$$
\begin{aligned}
& \geq \quad 3\left(p_{1} p_{2}-p_{2} p_{3}\right)+6\left(p_{2} p_{3}-p_{1} p_{3}\right)+9 p_{1} p_{3} \\
& =\quad 3 p_{1} p_{2}-3 p_{2} p_{3}+6 p_{2} p_{3}-6 p_{1} p_{3}+9 p_{1} p_{3} \\
& =\quad 3 p_{1} p_{2}+3 p_{1} p_{3}+3 p_{2} p_{3},
\end{aligned}
$$

so that

$$
\begin{gathered}
\left(1+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{1} p_{2}+\left(\frac{a_{3}}{a_{1}}+1+\frac{a_{1}}{a_{2}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{1}}+1\right) p_{1} p_{3} \\
\geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right),
\end{gathered}
$$

as desired.

So Case 5 holds, as we have shown

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad \frac{a_{1}}{a_{3}} p_{1}^{2}+\frac{a_{2}}{a_{3}} p_{2}^{2}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{3}^{2} \\
& \quad+\quad\left(1+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{1} p_{2}+\left(\frac{a_{3}}{a_{1}}+1+\frac{a_{1}}{a_{2}}\right) p_{2} p_{3}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}}{a_{1}}+1\right) p_{1} p_{3} \\
& \geq \quad p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) \\
& =\quad\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right)
\end{aligned}
$$

which gives

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right)
\end{aligned}
$$

Case 6. $\quad p_{3} \geq p_{1} \geq p_{2}$.
Again, we use the maximum option to pair the larger values of a_{i} and p_{i} together and the smaller values of a_{i} and p_{i} together in (5.5.A):

$$
P A_{1} \geq \frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}, \text { and } P A_{3} \geq \frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}} .
$$

so that
$P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3}$

$$
\begin{aligned}
& \geq\left(\frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}\right)\left(\frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}\right) \\
&+\left(\frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}\right)\left(\frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}}\right) \\
&+\quad\left(\frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}\right)\left(\frac{a_{1} p_{1}+a_{2} p_{2}}{a_{3}}\right) \\
&=\quad \frac{a_{1} a_{2} p_{3}^{2}+a_{2} a_{3} p_{1} p_{3}+a_{1} a_{3} p_{2} p_{3}+a_{3}^{2} p_{1} p_{2}}{a_{1} a_{2}} \\
&+\quad \frac{a_{1} a_{2} p_{1} p_{3}+a_{2}^{2} p_{2} p_{3}+a_{1} a_{3} p_{1} p_{2}+a_{2} a_{3} p_{2}^{2}}{a_{1} a_{3}} \\
&=\quad p_{3}^{2}+\frac{a_{3} a_{2} p_{2} p_{3}+a_{1} a_{3} p_{1}^{2}+a_{2} a_{3} p_{1} p_{2}}{a_{2} a_{3}} p_{1}+\frac{a_{3}}{a_{2}} p_{2} p_{3}+\frac{a_{3}^{2}}{a_{1} a_{2}} p_{1} p_{2} \\
&+\frac{a_{2}}{a_{3}} p_{1} p_{3}+\frac{a_{2}^{2}}{a_{1} a_{3}} p_{2} p_{3}+p_{1} p_{2}+\frac{a_{2}}{a_{1}} p_{2}^{2} \\
& \quad+\quad \frac{a_{1}^{2}}{a_{2} a_{3}} p_{1} p_{3}+\frac{a_{1}}{a_{3}} p_{2} p_{3}+\frac{a_{1}}{a_{2}} p_{1}^{2}+p_{1} p_{2}
\end{aligned}
$$

And by rearranging terms, we get

$$
\begin{aligned}
= & p_{3}^{2}+\frac{a_{1}}{a_{2}} p_{1}^{2}+\frac{a_{2}}{a_{1}} p_{2}^{2} \\
& +\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{1} p_{3}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+2\right) p_{1} p_{2}
\end{aligned}
$$

We need to show this is at least $p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right)$.
Again, to do this, we will show that

$$
p_{3}^{2}+\frac{a_{1}}{a_{2}} p_{1}^{2}+\frac{a_{2}}{a_{1}} p_{2}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2}
$$

and

$$
\begin{gathered}
\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{1} p_{3}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+2\right) p_{1} p_{2} \\
\geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) .
\end{gathered}
$$

First, to show $p_{3}^{2}+\frac{a_{1}}{a_{2}} p_{1}^{2}+\frac{a_{2}}{a_{1}} p_{2}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2}$:
Let

$$
A=1, \quad B=\frac{a_{1}}{a_{2}}, \text { and } \quad C=\frac{a_{2}}{a_{1}} .
$$

Then, we clearly have $A=1$.

We also have $A+B=1+\frac{a_{1}}{a_{2}}$, and since $a_{1} \geq a_{2} \geq a_{3}$, we know

$$
A+B \geq 2
$$

We also have $A+B+C=1+\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}$, and the Arithmetic Mean - Geometric Mean Inequality tells us

$$
A+B+C \geq 1+2 \sqrt{\frac{a_{1} a_{2}}{a_{1} a_{2}}}=1+2=3
$$

so that

$$
A+B+C \geq 3
$$

This combines to mean

$$
\begin{aligned}
p_{3}^{2}+\frac{a_{1}}{a_{2}} & p_{1}^{2}+\frac{a_{2}}{a_{1}} p_{2}^{2} \\
& = \\
& =A p_{3}^{2}+B p_{1}^{2}+C p_{2}^{2} \\
& =A p_{3}^{2}-A p_{1}^{2} \\
& +\quad A p_{1}^{2}+B p_{1}^{2}-A p_{2}^{2}-B p_{2}^{2} \\
& +\quad A p_{2}^{2}+B p_{2}^{2}+C p_{2}^{2} \\
& =A\left(p_{3}^{2}-p_{1}^{2}\right)+(A+B)\left(p_{1}^{2}-p_{2}^{2}\right)+(A+B+C) p_{2}^{2}
\end{aligned}
$$

Since $p_{3} \geq p_{1} \geq p_{2}$, we know $p_{3}^{2}-p_{1}^{2} \geq 0$ and $p_{1}^{2}-p_{2}^{2} \geq 0$, so

$$
\begin{aligned}
& \geq \quad 1\left(p_{3}^{2}-p_{1}^{2}\right)+2\left(p_{1}^{2}-p_{2}^{2}\right)+3 p_{2}^{2} \\
& = \\
& =p_{3}^{2}-p_{1}^{2}+2 p_{1}^{2}-2 p_{2}^{2}+3 p_{2}^{2} \\
& = \\
& p_{1}^{2}+p_{2}^{2}+p_{3}^{2},
\end{aligned}
$$

So we have

$$
p_{3}^{2}+\frac{a_{1}}{a_{2}} p_{1}^{2}+\frac{a_{2}}{a_{1}} p_{2}^{2} \geq p_{1}^{2}+p_{2}^{2}+p_{3}^{2} .
$$

To show

$$
\begin{gathered}
\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{1} p_{3}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+2\right) p_{1} p_{2} \\
\geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right):
\end{gathered}
$$

We begin by realizing that this case requires $p_{1} p_{3} \geq p_{2} p_{3} \geq p_{1} p_{2}$, and we let

$$
A=\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}, \quad B=\frac{a_{3}}{a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}, \text { and } \quad C=\frac{a_{3}^{2}}{a_{1} a_{2}}+2 .
$$

Then, we have $A=\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}$, and since $a_{1} \geq a_{2} \geq a_{3}$ coupled with the use of the Arithmetic Mean - Geometric Mean Inequality

$$
A \geq 3 \sqrt[3]{\frac{a_{1}^{2} a_{2} a_{3}}{a_{1} a_{2} a_{3}^{2}}}=3 \sqrt[3]{\frac{a_{1}}{a_{3}}} \geq 3
$$

so that

$$
A \geq 3 .
$$

We have $A+B=\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}+\frac{a_{3}}{a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}$, and the Arithmetic Mean - Geometric Mean Inequality coupled with $a_{1} \geq a_{2} \geq a_{3}$, meaning $a_{1} a_{2} \geq a_{3}^{2}$, tells us

$$
A+B \geq 6 \sqrt[6]{\frac{a_{1}^{3} a_{2}^{3} a_{3}^{2}}{a_{1}^{2} a_{2}^{2} a_{3}^{4}}}=6 \sqrt[6]{\frac{a_{1} a_{2}}{a_{3}^{2}}} \geq 6
$$

so that

$$
A+B \geq 6 \text {. }
$$

We also have $A+B+C=2+\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}+\frac{a_{3}}{a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}+\frac{a_{3}^{2}}{a_{1} a_{2}}$, and the Arithmetic Mean - Geometric Mean Inequality tells us

$$
A+B+C \geq 2+7 \sqrt[7]{\frac{a_{1}^{3} a_{2}^{3} a_{3}^{4}}{a_{1}^{3} a_{2}^{3} a_{3}^{4}}}=2+7=9,
$$

so that

$$
A+B+C \geq 9
$$

This combines to mean

$$
\begin{aligned}
& \left(\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{1} p_{3}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+2\right) p_{1} p_{2} \\
& =\quad A p_{1} p_{3}+B p_{2} p_{3}+C p_{1} p_{2} \\
& =\quad A p_{1} p_{3}-A p_{2} p_{3} \\
& +\quad A p_{2} p_{3}+B p_{2} p_{3}-A p_{1} p_{2}-B p_{1} p_{2} \\
& +\quad A p_{1} p_{2}+B p_{1} p_{2}+C p_{1} p_{2} \\
& =\quad A\left(p_{1} p_{3}-p_{2} p_{3}\right)+(A+B)\left(p_{2} p_{3}-p_{1} p_{2}\right)+(A+B+C) p_{1} p_{2}
\end{aligned}
$$

Since $p_{1} p_{3} \geq p_{2} p_{3} \geq p_{1} p_{2}$, we know $p_{1} p_{3}-p_{2} p_{3} \geq 0$ and $p_{2} p_{3}-p_{1} p_{2} \geq 0$, so

$$
\begin{aligned}
& \geq \quad 3\left(p_{1} p_{3}-p_{2} p_{3}\right)+6\left(p_{2} p_{3}-p_{1} p_{2}\right)+9 p_{1} p_{2} \\
& =\quad 3 p_{1} p_{3}-3 p_{2} p_{3}+6 p_{2} p_{3}-6 p_{1} p_{2}+9 p_{1} p_{2} \\
& =
\end{aligned} \quad 3 p_{1} p_{2}+3 p_{1} p_{3}+3 p_{2} p_{3},
$$

so that

$$
\begin{gathered}
\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{1} p_{3}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+2\right) p_{1} p_{2} \\
\geq \quad 3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right),
\end{gathered}
$$

as desired.
So Case 6 holds, as we have shown

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad \frac{a_{1}}{a_{2}} p_{1}^{2}+\frac{a_{2}}{a_{1}} p_{2}^{2}+p_{3}^{2} \\
& \quad+\quad\left(\frac{a_{3}}{a_{1}}+\frac{a_{2}}{a_{3}}+\frac{a_{1}^{2}}{a_{2} a_{3}}\right) p_{1} p_{3}+\left(\frac{a_{3}}{a_{2}}+\frac{a_{2}^{2}}{a_{1} a_{3}}+\frac{a_{1}}{a_{3}}\right) p_{2} p_{3}+\left(\frac{a_{3}^{2}}{a_{1} a_{2}}+2\right) p_{1} p_{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\geq & p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+3\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}\right) \\
= & \left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right)
\end{array}
$$

which gives

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right) .
\end{aligned}
$$

Since all six cases hold, and these cases exhaust the possibilities for the ordering of the values p_{1}, p_{2}, and p_{3}, it follows that the inequality

$$
\begin{aligned}
& P A_{1} \cdot P A_{2}+P A_{1} \cdot P A_{3}+P A_{2} \cdot P A_{3} \\
& \geq \quad\left(p_{2}+p_{3}\right)\left(p_{1}+p_{3}\right)+\left(p_{2}+p_{3}\right)\left(p_{1}+p_{2}\right)+\left(p_{1}+p_{3}\right)\left(p_{1}+p_{2}\right)
\end{aligned}
$$

holds overall.

6 Problem Solving with the Erdös-Mordell Inequality

This section pertains to problems that have arisen in journals and competitions involving the use of the Erdös-Mordell Inequality.

One interesting application of the Erdös-Mordell Inequality was presented as a problem in the 1991 International Mathematical Olympiad (IMO). The notation has been adapted to fit with this paper, and the problem is given in Example 6.1. A solution was given in [IEQ] that has been adapted to this paper.

Example 6.1.

[TIMO and IEQ]
Let $A_{1} A_{2} A_{3}$ be a triangle and P an interior point of $\triangle A_{1} A_{2} A_{3}$. Show that at least one of the angles $\angle P A_{1} A_{2}, \angle P A_{2} A_{3}, \angle P A_{3} A_{1}$ is less than or equal to 30°.

Solution to Example 6.1.
[IEQ]
We adopt our familiar notation, with p_{i} denoting the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i} and a_{i} denoting the length of the side opposite vertex A_{i} for each $1 \leq i \leq 3$.

Suppose this is not true. Then $m \angle P A_{1} A_{2}>30^{\circ}, m \angle P A_{2} A_{3}>30^{\circ}$, and $m \angle P A_{3} A_{1}>30^{\circ}$.

Figure 6.1
Now we have

$$
\begin{aligned}
& \sin \left(m \angle P A_{1} A_{2}\right)=\frac{p_{3}}{P A_{1}} \text { so that } P A_{1}=\frac{p_{3}}{\sin \left(m \angle P A_{1} A_{2}\right)}, \\
& \sin \left(m \angle P A_{2} A_{3}\right)=\frac{p_{1}}{P A_{2}} \text { so that } P A_{2}=\frac{p_{1}}{\sin \left(m \angle P A_{2} A_{3}\right)}, \text { and } \\
& \sin \left(m \angle P A_{3} A_{1}\right)=\frac{p_{2}}{P A_{3}} \text { so that } P A_{2}=\frac{p_{2}}{\sin \left(m \angle P A_{3} A_{1}\right)} .
\end{aligned}
$$

We notice that if $m \angle P A_{1} A_{2} \geq 150^{\circ}$, this would contradict that the sum of the measures of the interior angles of $\triangle A_{1} A_{2} A_{3}$ has to equal 180°, as we would have

$$
\begin{aligned}
& m \angle A_{3} A_{1} A_{2}+m \angle A_{1} A_{2} A_{3}+m \angle A_{2} A_{3} A_{1} \\
&>\quad m \angle P A_{1} A_{2}+m \angle P A_{2} A_{3}+m \angle P A_{3} A_{1} \\
&>150^{\circ}+30^{\circ}+30^{\circ} \\
&>\quad 180^{\circ} .
\end{aligned}
$$

Thus, we conclude $m \angle P A_{1} A_{2}<150^{\circ}$, and similarly $m \angle P A_{2} A_{3}<150^{\circ}$ and $m \angle P A_{3} A_{1}<150^{\circ}$.

Also, since $\sin x$ is a continuous function strictly increasing on $\left(0^{\circ}, 90^{\circ}\right)$ and strictly decreasing on $\left(90^{\circ}, 180^{\circ}\right)$ with $\sin 30^{\circ}=\sin 150^{\circ}$, we conclude that

$$
\begin{array}{ll}
\sin \left(m \angle P A_{1} A_{2}\right)>\sin 30^{\circ} \text { so that } & \frac{1}{\sin \left(m \angle P A_{1} A_{2}\right)}<\frac{1}{\sin 30^{\circ}}, \\
\sin \left(m \angle P A_{2} A_{3}\right)>\sin 30^{\circ} \text { so that } & \frac{1}{\sin \left(m \angle P A_{2} A_{3}\right)}<\frac{1}{\sin 30^{\circ}}, \text { and } \\
\sin \left(m \angle P A_{3} A_{1}\right)>\sin 30^{\circ} \quad \text { so that } & \frac{1}{\sin \left(m \angle P A_{3} A_{1}\right)}<\frac{1}{\sin 30^{\circ}} .
\end{array}
$$

So we have

$$
\begin{aligned}
P A_{1}+ & P A_{2}+P A_{3} \\
& =\frac{p_{3}}{\sin \left(m \angle P A_{1} A_{2}\right)}+\frac{p_{1}}{\sin \left(m \angle P A_{2} A_{3}\right)}+\frac{p_{2}}{\sin \left(m \angle P A_{3} A_{1}\right)} \\
& <\quad \frac{p_{3}}{\sin 30^{\circ}}+\frac{p_{1}}{\sin 30^{\circ}}+\frac{p_{2}}{\sin 30^{\circ}} \\
& =\frac{p_{3}}{1 / 2}+\frac{p_{1}}{1 / 2}+\frac{p_{2}}{1 / 2} \\
& =2\left(p_{1}+p_{2}+p_{3}\right) .
\end{aligned}
$$

This means

$$
P A_{1}+P A_{2}+P A_{3}<2\left(p_{1}+p_{2}+p_{3}\right),
$$

which contradicts the Erdös-Mordell Inequality.
Therefore, our original assumption was incorrect, and we conclude that at least one of the angles $\angle P A_{1} A_{2}, \angle P A_{2} A_{3}, \angle P A_{3} A_{1}$ has measure less than or equal to 30°.

The next example was published in the "Problems and Solutions" section as 11491 of The American Mathematical Monthly, March 2010 [ANG]. Notation has been adapted to fit this paper.

Example 6.2.
[ANG]
11491: Proposed by Nicolae Anghel, University of North Texas, Denton, TX.
Let P be an interior point of a triangle having vertices A_{1}, A_{2}, and A_{3} opposite sides of length a_{1}, a_{2}, and a_{3}, respectively, and circumradius R. Show that

$$
\frac{P A_{1}}{a_{1}^{2}}+\frac{P A_{2}}{a_{2}^{2}}+\frac{P A_{3}}{a_{3}^{2}} \geq \frac{1}{R} .
$$

Comment.

We will offer two proofs to Example 6.2, both of which are original work and were submitted to The American Mathematical Monthly.

Comment.

Let p_{i} denote the distance from P to the side of $\triangle A_{1} A_{2} A_{3}$ opposite vertex A_{i} for each $1 \leq i \leq 3$, and let θ_{i} be the measure of the interior angle of $\triangle A_{1} A_{2} A_{3}$ with vertex A_{i} for each $1 \leq i \leq 3$.

We require a lemma first.

Lemma 6.2.1.

Under the conditions of Example 6.2, we have:

$$
\frac{p_{1}}{\sin \left(\theta_{2}\right) \sin \left(\theta_{3}\right)}+\frac{p_{2}}{\sin \left(\theta_{1}\right) \sin \left(\theta_{3}\right)}+\frac{p_{3}}{\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)}=2 R .
$$

Figure 6.2

Proof of Lemma 6.2.1.

Notice that the area of $\triangle A_{1} A_{2} A_{3}$ is $\frac{a_{2} a_{3} \sin \left(\theta_{1}\right)}{2}$.
This area can also be found by taking the combined areas of $\triangle A_{2} P A_{3}, \triangle A_{1} P A_{3}$, and $\triangle A_{1} P A_{2}$.

Using this concept, we have:

$$
\frac{a_{1} p_{1}}{2}+\frac{a_{2} p_{2}}{2}+\frac{a_{3} p_{3}}{2}=\frac{a_{2} a_{3} \sin \left(\theta_{1}\right)}{2} .
$$

Multiplying through by $\frac{2}{a_{2} a_{3} \sin \left(\theta_{1}\right)}$ gives

$$
\frac{a_{1} p_{1}}{a_{2} a_{3} \sin \left(\theta_{1}\right)}+\frac{a_{2} p_{2}}{a_{2} a_{3} \sin \left(\theta_{1}\right)}+\frac{a_{3} p_{3}}{a_{2} a_{3} \sin \left(\theta_{1}\right)}=1
$$

or, when simplifying, we get

$$
\frac{a_{1}}{a_{2} \sin \left(\theta_{1}\right)} \cdot \frac{p_{1}}{a_{3}}+\frac{p_{2}}{a_{3} \sin \left(\theta_{1}\right)}+\frac{p_{3}}{a_{2} \sin \left(\theta_{1}\right)}=1
$$

Noticing that the Law of Sines $\left(\frac{\sin \left(\theta_{2}\right)}{a_{2}}=\frac{\sin \left(\theta_{1}\right)}{a_{1}}\right)$ implies $\frac{a_{1}}{a_{2} \sin \left(\theta_{1}\right)}=\frac{1}{\sin \left(\theta_{2}\right)}$, we get

$$
\frac{p_{1}}{\sin \left(\theta_{2}\right) a_{3}}+\frac{p_{2}}{\sin \left(\theta_{1}\right) a_{3}}+\frac{p_{3}}{\sin \left(\theta_{1}\right) a_{2}}=1 .
$$

By Lemma 2.4, we know $a_{2}=2 R \sin \left(\theta_{2}\right)$ and $a_{3}=2 R \sin \left(\theta_{3}\right)$, which gives

$$
\frac{p_{1}}{\sin \left(\theta_{2}\right) \cdot 2 R \sin \left(\theta_{3}\right)}+\frac{p_{2}}{\sin \left(\theta_{1}\right) \cdot 2 R \sin \left(\theta_{3}\right)}+\frac{p_{3}}{\sin \left(\theta_{1}\right) \cdot 2 R \sin \left(\theta_{2}\right)}=1 .
$$

Multiplying through by $2 R$ gives

$$
\frac{p_{1}}{\sin \left(\theta_{2}\right) \sin \left(\theta_{3}\right)}+\frac{p_{2}}{\sin \left(\theta_{1}\right) \sin \left(\theta_{3}\right)}+\frac{p_{3}}{\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)}=2 R,
$$

which establishes Lemma 6.2.1.

First Solution to Example 6.2.

First, we have

$$
\begin{aligned}
& \frac{P A_{1}}{a_{1}^{2}}+\frac{P A_{2}}{a_{2}^{2}}+\frac{P A_{3}}{a_{3}^{2}} \\
= & \quad \frac{1}{a_{1}^{2}} P A_{1}+\frac{1}{a_{2}^{2}} P A_{2}+\frac{1}{a_{3}^{2}} P A_{3}
\end{aligned}
$$

Seeing this, we apply Theorem 4.1 (Dar-Gueron) with $\lambda_{1}=\frac{1}{a_{1}^{2}}, \lambda_{2}=\frac{1}{a_{2}^{2}}$, and $\lambda_{3}=\frac{1}{a_{3}^{2}}$:

$$
\begin{aligned}
& \geq \quad 2\left(\sqrt{\frac{1}{a_{2}^{2}} \cdot \frac{1}{a_{3}^{2}}} p_{1}+\sqrt{\frac{1}{a_{1}^{2}} \cdot \frac{1}{a_{3}^{2}}} p_{2}+\sqrt{\frac{1}{a_{1}^{2}} \cdot \frac{1}{a_{2}^{2}}} p_{3}\right) \\
& =\quad 2\left(\frac{p_{1}}{a_{2} a_{3}}+\frac{p_{2}}{a_{1} a_{3}}+\frac{p_{3}}{a_{1} a_{2}}\right)
\end{aligned}
$$

By Lemma 2.4, $a_{1}=2 R \sin \left(\theta_{1}\right), a_{2}=2 R \sin \left(\theta_{2}\right)$ and $a_{3}=2 R \sin \left(\theta_{3}\right)$, which gives

$$
\begin{aligned}
& =\quad 2\left(\frac{p_{1}}{4 R^{2} \sin \left(\theta_{2}\right) \sin \left(\theta_{3}\right)}+\frac{p_{2}}{4 R^{2} \sin \left(\theta_{1}\right) \sin \left(\theta_{3}\right)}+\frac{p_{3}}{4 R^{2} \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)}\right) \\
& =\quad \frac{2}{4 R^{2}}\left(\frac{p_{1}}{\sin \left(\theta_{2}\right) \sin (\theta)_{3}}+\frac{p_{2}}{\sin \left(\theta_{1}\right) \sin (\theta)_{3}}+\frac{p_{3}}{\sin \left(\theta_{1}\right) \sin (\theta)_{2}}\right)
\end{aligned}
$$

By Lemma 6.2.1

$$
\begin{aligned}
& =\quad \frac{2}{4 R^{2}}(2 R) \\
& =\quad \frac{1}{R} .
\end{aligned}
$$

Thus, we have proven Example 6.2, namely $\frac{P A_{1}}{a_{1}^{2}}+\frac{P A_{2}}{a_{2}^{2}}+\frac{P A_{3}}{a_{3}^{2}} \geq \frac{1}{R}$.

Second Solution to Example 6.2.

Let K be the area of $\triangle A_{1} A_{2} A_{3}$. Then, as we started the proof of Lemma 6.2.1, we have

$$
K=\frac{a_{1} p_{1}}{2}+\frac{a_{2} p_{2}}{2}+\frac{a_{3} p_{3}}{2},
$$

so that

$$
2 K=a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3} .
$$

A common formula for area of a triangle says:

$$
4 R K=a_{1} a_{2} a_{3} .
$$

Figure 6.3

$$
\frac{P A_{1}}{a_{1}^{2}}+\frac{P A_{2}}{a_{2}^{2}}+\frac{P A_{3}}{a_{3}^{2}}=\frac{1}{a_{1}^{2}} P A_{1}+\frac{1}{a_{2}^{2}} P A_{2}+\frac{1}{a_{3}^{2}} P A_{3} .
$$

From Corollary 3.5, we have

$$
P A_{1} \geq \frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}, \quad P A_{2} \geq \frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}} \text { and } \quad P A_{3} \geq \frac{a_{2} p_{1}+a_{1} p_{2}}{a_{3}}
$$

We apply these inequalities here, to obtain

$$
\begin{aligned}
& \frac{1}{a_{1}^{2}} P A_{1}+\frac{1}{a_{2}^{2}} P A_{2}+\frac{1}{a_{3}^{2}} P A_{3} \\
& \quad \geq \quad \frac{1}{a_{1}^{2}}\left(\frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}}\right)+\frac{1}{a_{2}^{2}}\left(\frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}}\right)+\frac{1}{a_{3}^{2}}\left(\frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}}\right) \\
& \quad=\quad\left(\frac{a_{2} p_{3}+a_{3} p_{2}}{a_{1}^{3}}\right)+\left(\frac{a_{1} p_{3}+a_{3} p_{1}}{a_{2}^{3}}\right)+\left(\frac{a_{1} p_{2}+a_{2} p_{1}}{a_{3}^{3}}\right)
\end{aligned}
$$

Rearranging terms gives

$$
=\left(\frac{a_{3}}{a_{2}^{3}}+\frac{a_{2}}{a_{3}^{3}}\right) p_{1}+\left(\frac{a_{3}}{a_{1}^{3}}+\frac{a_{1}}{a_{3}^{3}}\right) p_{2}+\left(\frac{a_{2}}{a_{1}^{3}}+\frac{a_{1}}{a_{2}^{3}}\right) p_{3}
$$

Applying the Arithmetic Mean - Geometric Mean Inequality on each of the three terms gives

$$
\begin{aligned}
& \geq \quad 2 \sqrt{\frac{a_{3}}{a_{2}^{3}} \cdot \frac{a_{2}}{a_{3}^{3}}} p_{1}+2 \sqrt{\frac{a_{3}}{a_{1}^{3}} \cdot \frac{a_{1}}{a_{3}^{3}}} p_{2}+2 \sqrt{\frac{a_{2}}{a_{1}^{3}} \cdot \frac{a_{1}}{a_{2}^{3}}} p_{3} \\
& =\quad 2\left(\sqrt{\frac{1}{a_{2}^{2} a_{3}^{2}}} p_{1}+\sqrt{\frac{1}{a_{1}^{2} a_{3}^{2}}} p_{2}+\sqrt{\frac{1}{a_{1}^{2} a_{2}^{2}}} p_{3}\right) \\
& =\quad 2\left(\frac{p_{1}}{a_{2} a_{3}}+\frac{p_{2}}{a_{1} a_{3}}+\frac{p_{3}}{a_{1} a_{2}}\right) \\
& =\quad 2\left(\frac{a_{1} p_{1}}{a_{1} a_{2} a_{3}}+\frac{a_{2} p_{2}}{a_{1} a_{2} a_{3}}+\frac{a_{3} p_{3}}{a_{1} a_{2} a_{3}}\right) \\
& =\quad 2\left(\frac{a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}}{a_{1} a_{2} a_{3}}\right)
\end{aligned}
$$

Recalling that $2 K=a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}$, this gives

$$
\begin{aligned}
& =\quad 2\left(\frac{2 K}{a_{1} a_{2} a_{3}}\right) \\
& =\quad \frac{4 K}{a_{1} a_{2} a_{3}}
\end{aligned}
$$

And knowing $4 R K=a_{1} a_{2} a_{3}$ as a well regarded formula, we have

$$
\begin{aligned}
& =\frac{4 K}{4 R K} \\
& =\quad \frac{1}{R} .
\end{aligned}
$$

Thus, we have established $\frac{P A_{1}}{a_{1}^{2}}+\frac{P A_{2}}{a_{2}^{2}}+\frac{P A_{3}}{a_{3}^{2}} \geq \frac{1}{R}$, as desired.

7 Extension to Quadrilaterals

We now examine the possibility of an Erdös-Mordell type inequality for quadrilaterals.
Theorem 7.1.
Let $A_{1} A_{2} A_{3} A_{4}$ be a convex quadrilateral, and let P be an interior point of the quadrilateral.

Let
$p_{i j}$ denote the (positive) distance from P to $\overline{A_{i} A_{j}}$, and let
$p_{i j, i j k}$ denote the "signed distance" - as defined in Theorem 3.6 - from P to $\overline{A_{i} A_{j}}$ when considering $\triangle A_{i} A_{j} A_{k}$.

Then we have

$$
P A_{1}+P A_{2}+P A_{3}+P A_{4} \geq \frac{4}{3}\left(p_{12}+p_{23}+p_{34}+p_{14}\right)
$$

Comment.

Clayton W. Dodge discusses this result and its proof in [DOD].
Figure 7.1 shows one possible scenario. In the proof, we regard P relative to each of the triangles $\triangle A_{1} A_{2} A_{3}, \triangle A_{2} A_{3} A_{4}, \triangle A_{3} A_{4} A_{1}$, and $\triangle A_{4} A_{1} A_{2}$ and apply the result of Theorem 3.6 - the Signed Erdös-Mordell Inequality.

Figure 7.1

Applying the result of Theorem 3.6, to each specified triangle, we get the results below:
With $\triangle A_{1} A_{2} A_{3}: \quad P A_{1}+P A_{2}+P A_{3} \geq 2\left(p_{12 ; 123}+p_{23 ; 123}+p_{13 ; 123}\right) ;$
With $\triangle A_{2} A_{3} A_{4}: \quad P A_{2}+P A_{3}+P A_{4} \geq 2\left(p_{23 ; 234}+p_{34 ; 234}+p_{24 ; 234}\right)$;
With $\triangle A_{1} A_{3} A_{4}: \quad P A_{1}+P A_{3}+P A_{4} \geq 2\left(p_{34 ; 134}+p_{14 ; 134}+p_{13 ; 134}\right) ;$ and
With $\triangle A_{1} A_{2} A_{4}: \quad P A_{1}+P A_{2}+P A_{4} \geq 2\left(p_{14 ; 124}+p_{12 ; 124}+p_{24 ; 124}\right)$.

Figure 7.2
Though Figure 7.2 is merely one example of a possible location of P, the following relationships hold since P must be interior to $A_{1} A_{2} A_{3} A_{4}$:
$p_{13 ; 123}=-p_{13 ; 134}$ since P can be interior to at most one of $\triangle A_{1} A_{2} A_{3}$ and $\triangle A_{1} A_{3} A_{4} ;$ $p_{24 ; 124}=-p_{24 ; 234}$ since P can be interior to at most one of $\triangle A_{1} A_{2} A_{4}$ and $\triangle A_{2} A_{3} A_{4} ;$ $p_{12 ; 123}=p_{12 ; 124}=p_{12}$ since P is must be on the same side of $\overline{A_{1} A_{2}}$ as both A_{3} and A_{4}; $p_{23 ; 123}=p_{23 ; 234}=p_{23}$ since P is must be on the same side of $\overline{A_{2} A_{3}}$ as both A_{1} and A_{4}; $p_{34 ; 134}=p_{34 ; 234}=p_{34}$ since P is must be on the same side of $\overline{A_{3} A_{4}}$ as both A_{1} and A_{2}; $p_{14 ; 124}=p_{14 ; 134}=p_{14}$ since P is must be on the same side of $\overline{A_{1} A_{4}}$ as both A_{2} and A_{3}.

Thus, the four inequalities to start the proof become:

$$
\begin{aligned}
& P A_{1}+P A_{2}+P A_{3} \geq 2 p_{12}+2 p_{23}-2 p_{13 ; 134} ; \\
& P A_{2}+P A_{3}+P A_{4} \geq 2 p_{23}+2 p_{34}+2 p_{24 ; 234} ; \\
& P A_{1}+P A_{3}+P A_{4} \geq 2 p_{34}+2 p_{14}+2 p_{13 ; 134} ; \text { and } \\
& P A_{1}+P A_{2}+P A_{4} \geq 2 p_{14}+2 p_{12}-2 p_{24 ; 234} .
\end{aligned}
$$

Summing these inequalities gives

$$
\begin{aligned}
3\left(P A_{1}\right. & \left.+P A_{2}+P A_{3}+P A_{4}\right) \\
& =3 P A_{1}+3 P A_{2}+3 P A_{3}+3 P A_{4} \\
& \geq 4 p_{12}+4 p_{23}+4 p_{34}+4 p_{14} \\
& =4\left(p_{12}+p_{23}+p_{34}+p_{14}\right),
\end{aligned}
$$

so that we achieve

$$
3\left(P A_{1}+P A_{2}+P A_{3}+P A_{4}\right) \geq 4\left(p_{12}+p_{23}+p_{34}+p_{14}\right),
$$

or equivalently our desired result:

$$
P A_{1}+P A_{2}+P A_{3}+P A_{4} \geq \frac{4}{3}\left(p_{12}+p_{23}+p_{34}+p_{14}\right) .
$$

Comment.

One might wonder if this is as strong of an inequality as could be achieved for the quadrilateral. This question provides the motivation for Example 7.2 and Example 7.3.

Example 7.2.

Consider the situation where $A_{1} A_{2} A_{3} A_{4}$ is a square of side length 2, as in Figure 7.3. Then we have $p_{12}=p_{23}=p_{34}=p_{14}=1$, so that

$$
P A_{1}=P A_{2}=P A_{3}=P A_{4}=\sqrt{2} .
$$

This gives $P A_{1}+P A_{2}+P A_{3}+P A_{4}=4 \sqrt{2}$ and $p_{12}+p_{23}+p_{34}+p_{14}=4$, so that

Figure 7.3

$$
P A_{1}+P A_{2}+P A_{3}+P A_{4}=\sqrt{2}\left(p_{12}+p_{23}+p_{34}+p_{14}\right) .
$$

Example 7.3.

Consider the situation with $A_{1} A_{2} A_{3} A_{4}$ being a rectangle pictured in Figure 7.4. Then we have $p_{12}=4, p_{23}=10, p_{34}=2$, and $p_{14}=2$.

Also

$$
\begin{aligned}
& P A_{1}=\sqrt{2^{2}+4^{2}}=2 \sqrt{5}, \\
& P A_{2}=\sqrt{4^{2}+10^{2}}=2 \sqrt{29}, \\
& P A_{3}=\sqrt{2^{2}+10^{2}}=2 \sqrt{26}, \text { and } \\
& P A_{4}=\sqrt{2^{2}+2^{2}}=2 \sqrt{2} .
\end{aligned}
$$

So

Figure 7.4

$$
P A_{1}+P A_{2}+P A_{3}+P A_{4}=2 \sqrt{5}+2 \sqrt{29}+2 \sqrt{26}+2 \sqrt{2} \approx 28.27
$$

and

$$
p_{12}+p_{23}+p_{34}+p_{14}=18 .
$$

Since $28.27>25.46 \approx 18 \sqrt{2}$, this shows that, when regarding this example.

$$
P A_{1}+P A_{2}+P A_{3}+P A_{4} \geq \sqrt{2}\left(p_{12}+p_{23}+p_{34}+p_{14}\right) .
$$

Comment.

Example 7.2 and Example 7.3 combine to provide the motivation for Theorem 7.4.

Theorem 7.4.

Let $A_{1} A_{2} A_{3} A_{4}$ be a convex quadrilateral, let P be an interior point of the quadrilateral, and let $p_{i j}$ denote the (positive) distance from P to $\overline{A_{i} A_{j}}$. Then

$$
P A_{1}+P A_{2}+P A_{3}+P A_{4} \geq \sqrt{2}\left(p_{12}+p_{23}+p_{34}+p_{14}\right) .
$$

Equality requires $A_{1} A_{2} A_{3} A_{4}$ is a square and P is its center.

Figure 7.5

Comment.

This result has not been stated in many places. In fact, to our knowledge, the only place such a result is explicitly stated is by Shay Gueron and Itai Shafrir in [GUE]. While Gueron and Shafrir offer a more generalized result and associated proof, we confine ourselves to this situation.

We offer a proof that is not given explicitly in the literature (to our knowledge), but that is based off the ideas of Mordell in [MOR] involving finding a quadratic form.

Thus, our proof essentially extends Mordell's proof of Barrow's Inequality to the quadrilateral.

Comment.

Before proving this theorem, we must establish a few lemmas.

Lemma 7.4.1.

Given $\triangle A_{1} A_{2} A_{3}$. Let a_{i} denote the length of the side of $\triangle A_{1} A_{2} A_{3}$ across from vertex A_{i}, let α_{i} be the interior angle of $\triangle A_{1} A_{2} A_{3}$ with vertex A_{i}, and let h_{i} be the length of the altitude of $\triangle A_{1} A_{2} A_{3}$ from A_{i}. Then

$$
h_{1} \leq \sqrt{a_{2} a_{3}} \cos \left(\frac{\alpha_{1}}{2}\right)
$$

Equality requires $a_{2}=a_{3}$.

Comment.

This is essentially Corollary 4.2.4, based on Mordell. For explanation, see that earlier result.

Lemma 7.4.2.

Let $A_{1} A_{2} A_{3} A_{4}$ be a convex quadrilateral, let P be an interior point of the quadrilateral, and let $p_{i j}$ denote the (positive) distance from P to $\overline{A_{i} A_{j}}$. Also, let

$$
\theta_{12}=m \angle A_{1} P A_{2}, \quad \theta_{23}=m \angle A_{2} P A_{3}, \quad \theta_{34}=m \angle A_{3} P A_{4}, \text { and } \theta_{14}=m \angle A_{1} P A_{4} .
$$

Then

$$
\begin{aligned}
& p_{12} \leq \sqrt{\left(P A_{1}\right)\left(P A_{2}\right)} \cos \left(\frac{\theta_{12}}{2}\right), \text { with equality requiring } P A_{1}=P A_{2} ; \\
& p_{23} \leq \sqrt{\left(P A_{2}\right)\left(P A_{3}\right)} \cos \left(\frac{\theta_{23}}{2}\right), \text { with equality requiring } P A_{2}=P A_{3} ; \\
& p_{34} \leq \sqrt{\left(P A_{3}\right)\left(P A_{4}\right)} \cos \left(\frac{\theta_{34}}{2}\right), \text { with equality requiring } P A_{3}=P A_{4} ; \text { and } \\
& p_{14} \leq \sqrt{\left(P A_{1}\right)\left(P A_{4}\right)} \cos \left(\frac{\theta_{14}}{2}\right), \text { with equality requiring } P A_{1}=P A_{4} .
\end{aligned}
$$

Proof of Lemma 7.4.2.
We apply the result of Lemma 7.4.1 to each of $\triangle A_{1} P A_{2}, \triangle A_{2} P A_{3}, \triangle A_{3} P A_{4}$, and $\triangle A_{1} P A_{4}$, as shown in Figure 7.6. The result follows immediately.

Figure 7.6

We base this proof off the methods Mordell employed in proving Barrow's Inequality (see Second Proof of Theorem 4.2), but Mordell never specifically used his methods to establish this result in the literature, to our knowledge. We additionally use the notation from Lemma 7.4.2.

Figure 7.7
Begin by noting that since $\theta_{12}+\theta_{23}+\theta_{34}+\theta_{14}=2 \pi$, we have $\frac{\theta_{12}+\theta_{14}}{2}=\pi-\frac{\theta_{23}+\theta_{34}}{2}$.
We have $-\cos (x)=\cos (\pi-x)$. Also, from Lemma 7.4.2, we can say (since $p_{i j}>0$)
$-\sqrt{2} p_{12} \geq-\sqrt{2 P A_{1} P A_{2}} \cos \left(\frac{\theta_{12}}{2}\right)$ with equality requiring $P A_{1}=P A_{2}$;
$-\sqrt{2} p_{23} \geq-\sqrt{2 P A_{2} P A_{3}} \cos \left(\frac{\theta_{23}}{2}\right)$ with equality requiring $P A_{2}=P A_{3}$;
$-\sqrt{2} p_{34} \geq-\sqrt{2 P A_{3} P A_{4}} \cos \left(\frac{\theta_{34}}{2}\right)$ with equality requiring $P A_{3}=P A_{4}$; and
$-\sqrt{2} p_{14} \geq-\sqrt{2 P A_{1} P A_{4}} \cos \left(\frac{\theta_{14}}{2}\right)$ with equality requiring $P A_{1}=P A_{4}$.
Putting this together, we have

$$
\begin{align*}
0 & \left(\sqrt{P A_{1}}-\frac{\sqrt{P A_{2}}}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\frac{\sqrt{P A_{4}}}{\sqrt{2}} \cos \left(\frac{\theta_{14}}{2}\right)\right)^{2} \tag{7.4.B}\\
& +\left(\frac{\sqrt{P A_{2}}}{\sqrt{2}} \sin \left(\frac{\theta_{12}}{2}\right)-\frac{\sqrt{P A_{4}}}{\sqrt{2}} \sin \left(\frac{\theta_{14}}{2}\right)\right)^{2} \\
& +\left(\sqrt{P A_{3}}-\frac{\sqrt{P A_{2}}}{\sqrt{2}} \cos \left(\frac{\theta_{23}}{2}\right)-\frac{\sqrt{P A_{4}}}{\sqrt{2}} \cos \left(\frac{\theta_{34}}{2}\right)\right)^{2} \\
& +\left(\frac{\sqrt{P A_{2}}}{\sqrt{2}} \sin \left(\frac{\theta_{23}}{2}\right)-\frac{\sqrt{P A_{4}}}{\sqrt{2}} \sin \left(\frac{\theta_{34}}{2}\right)\right)^{2}
\end{align*}
$$

$$
\begin{aligned}
& =\quad P A_{1}+\frac{P A_{2}}{2} \cos ^{2}\left(\frac{\theta_{12}}{2}\right)+\frac{P A_{4}}{2} \cos ^{2}\left(\frac{\theta_{14}}{2}\right) \\
& +\quad-\frac{2 \sqrt{P A_{1} P A_{2}}}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\frac{2 \sqrt{P A_{1} P A_{4}}}{\sqrt{2}} \cos \left(\frac{\theta_{14}}{2}\right) \\
& +\quad \frac{2 \sqrt{P A_{2} P A_{4}}}{2} \cos \left(\frac{\theta_{12}}{2}\right) \cos \left(\frac{\theta_{14}}{2}\right) \\
& +\quad \frac{P A_{2}}{2} \sin ^{2}\left(\frac{\theta_{12}}{2}\right)+\frac{P A_{4}}{2} \sin ^{2}\left(\frac{\theta_{14}}{2}\right) \\
& +\quad-\frac{2 \sqrt{P A_{2} P A_{4}}}{2} \sin \left(\frac{\theta_{12}}{2}\right) \sin \left(\frac{\theta_{14}}{2}\right) \\
& +\quad P A_{3}+\frac{P A_{2}}{2} \cos ^{2}\left(\frac{\theta_{23}}{2}\right)+\frac{P A_{4}}{2} \cos ^{2}\left(\frac{\theta_{34}}{2}\right) \\
& +\quad-\frac{2 \sqrt{P A_{2} P A_{3}}}{\sqrt{2}} \cos \left(\frac{\theta_{23}}{2}\right)-\frac{2 \sqrt{P A_{3} P A_{4}}}{\sqrt{2}} \cos \left(\frac{\theta_{34}}{2}\right) \\
& +\frac{2 \sqrt{P A_{2} P A_{4}}}{2} \cos \left(\frac{\theta_{23}}{2}\right) \cos \left(\frac{\theta_{34}}{2}\right) \\
& +\quad \frac{P A_{2}}{2} \sin ^{2}\left(\frac{\theta_{23}}{2}\right)+\frac{P A_{4}}{2} \sin ^{2}\left(\frac{\theta_{34}}{2}\right) \\
& +\quad-\frac{2 \sqrt{P A_{2} P A_{4}}}{2} \sin \left(\frac{\theta_{23}}{2}\right) \sin \left(\frac{\theta_{34}}{2}\right) \\
& =\quad P A_{1}+\frac{P A_{2}}{2}\left[\cos ^{2}\left(\frac{\theta_{12}}{2}\right)+\sin ^{2}\left(\frac{\theta_{12}}{2}\right)\right]+\frac{P A_{4}}{2}\left[\cos ^{2}\left(\frac{\theta_{14}}{2}\right)+\sin ^{2}\left(\frac{\theta_{14}}{2}\right)\right] \\
& +\quad-\sqrt{2 P A_{1} P A_{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\sqrt{2 P A_{1} P A_{4}} \cos \left(\frac{\theta_{14}}{2}\right) \\
& +\sqrt{P A_{2} P A_{4}} \cos \left(\frac{\theta_{12}}{2}\right) \cos \left(\frac{\theta_{14}}{2}\right)-\sqrt{P A_{2} P A_{4}} \sin \left(\frac{\theta_{12}}{2}\right) \sin \left(\frac{\theta_{14}}{2}\right) \\
& +\quad P A_{3}+\frac{P A_{2}}{2}\left[\cos ^{2}\left(\frac{\theta_{23}}{2}\right)+\sin ^{2}\left(\frac{\theta_{23}}{2}\right)\right]+\frac{P A_{4}}{2}\left[\cos ^{2}\left(\frac{\theta_{34}}{2}\right)+\sin ^{2}\left(\frac{\theta_{34}}{2}\right)\right] \\
& +\quad-\sqrt{2 P A_{2} P A_{3}} \cos \left(\frac{\theta_{23}}{2}\right)-\sqrt{2 P A_{3} P A_{4}} \cos \left(\frac{\theta_{34}}{2}\right) \\
& +\sqrt{P A_{2} P A_{4}} \cos \left(\frac{\theta_{23}}{2}\right) \cos \left(\frac{\theta_{34}}{2}\right)-\sqrt{P A_{2} P A_{4}} \sin \left(\frac{\theta_{23}}{2}\right) \sin \left(\frac{\theta_{34}}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
&=\quad P A_{1}+\frac{P A_{2}}{2}+\frac{P A_{4}}{2}+P A_{3}+\frac{P A_{2}}{2}+\frac{P A_{4}}{2} \\
&+\quad-\sqrt{2 P A_{1} P A_{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\sqrt{2 P A_{1} P A_{4}} \cos \left(\frac{\theta_{14}}{2}\right) \\
&+\quad-\sqrt{2 P A_{2} P A_{3}} \cos \left(\frac{\theta_{23}}{2}\right)-\sqrt{2 P A_{3} P A_{4}} \cos \left(\frac{\theta_{34}}{2}\right) \\
&+\quad \sqrt{P A_{2} P A_{4}}\left[\cos \left(\frac{\theta_{12}}{2}\right) \cos \left(\frac{\theta_{14}}{2}\right)-\sin \left(\frac{\theta_{12}}{2}\right) \sin \left(\frac{\theta_{14}}{2}\right)\right] \\
&=\quad \sqrt{P A_{2} P A_{4}}\left[\cos \left(\frac{\theta_{23}}{2}\right) \cos \left(\frac{\theta_{34}}{2}\right)-\sin \left(\frac{\theta_{23}}{2}\right) \sin \left(\frac{\theta_{34}}{2}\right)\right] \\
& \quad P A_{1}+P A_{2}+P A_{3}+P A_{4} \\
& \quad-\sqrt{2 P A_{1} P A_{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\sqrt{2 P A_{1} P A_{4}} \cos \left(\frac{\theta_{14}}{2}\right) \\
& \quad-\sqrt{2 P A_{2} P A_{3}} \cos \left(\frac{\theta_{23}}{2}\right)-\sqrt{2 P A_{3} P A_{4}} \cos \left(\frac{\theta_{34}}{2}\right) \\
&+\sqrt{P A_{2} P A_{4}} \cos \left(\frac{\theta_{12}+\theta_{14}}{2}\right)+\sqrt{P A_{2} P A_{4}} \cos \left(\frac{\theta_{23}+\theta_{34}}{2}\right)
\end{aligned}
$$

$$
=P A_{1}+P A_{2}+P A_{3}+P A_{4}
$$

$$
+\quad-\sqrt{2 P A_{1} P A_{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\sqrt{2 P A_{1} P A_{4}} \cos \left(\frac{\theta_{14}}{2}\right)
$$

$$
+\quad-\sqrt{2 P A_{2} P A_{3}} \cos \left(\frac{\theta_{23}}{2}\right)-\sqrt{2 P A_{3} P A_{4}} \cos \left(\frac{\theta_{34}}{2}\right)
$$

$$
+\sqrt{P A_{2} P A_{4}} \cos \left(\frac{\theta_{12}+\theta_{14}}{2}\right)+\sqrt{P A_{2} P A_{4}} \cos \left(\pi-\frac{\theta_{12}+\theta_{14}}{2}\right)
$$

$$
=\quad P A_{1}+P A_{2}+P A_{3}+P A_{4}
$$

$$
+\quad-\sqrt{2 P A_{1} P A_{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\sqrt{2 P A_{1} P A_{4}} \cos \left(\frac{\theta_{14}}{2}\right)
$$

$$
+\quad-\sqrt{2 P A_{2} P A_{3}} \cos \left(\frac{\theta_{23}}{2}\right)-\sqrt{2 P A_{3} P A_{4}} \cos \left(\frac{\theta_{34}}{2}\right)
$$

$$
+\sqrt{P A_{2} P A_{4}} \cos \left(\frac{\theta_{12}+\theta_{14}}{2}\right)-\sqrt{P A_{2} P A_{4}} \cos \left(\frac{\theta_{12}+\theta_{14}}{2}\right)
$$

$$
\begin{align*}
&= P A_{1}+P A_{2}+P A_{3}+P A_{4} \\
&+\quad-\sqrt{2 P A_{1} P A_{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\sqrt{2 P A_{1} P A_{4}} \cos \left(\frac{\theta_{14}}{2}\right) \\
&+\quad-\sqrt{2 P A_{2} P A_{3}} \cos \left(\frac{\theta_{23}}{2}\right)-\sqrt{2 P A_{3} P A_{4}} \cos \left(\frac{\theta_{34}}{2}\right) \\
&= P A_{1}+P A_{2}+P A_{3}+P A_{4} \\
&+\quad-\sqrt{2 P A_{1} P A_{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\sqrt{2 P A_{2} P A_{3}} \cos \left(\frac{\theta_{23}}{2}\right) \\
&+\quad-\sqrt{2 P A_{3} P A_{4}} \cos \left(\frac{\theta_{34}}{2}\right)-\sqrt{2 P A_{1} P A_{4}} \cos \left(\frac{\theta_{14}}{2}\right) . \\
& \leq \quad P A_{1}+P A_{2}+P A_{3}+P A_{4}-\sqrt{2} p_{12}-\sqrt{2} p_{23}-\sqrt{2} p_{34}-\sqrt{2} p_{14} \tag{7.4.C}\\
&= P A_{1}+P A_{2}+P A_{3}+P A_{4}-\sqrt{2}\left(p_{12}+p_{23}+p_{34}+p_{14}\right) .
\end{align*}
$$

So we have

$$
0 \leq P A_{1}+P A_{2}+P A_{3}+P A_{4}-\sqrt{2}\left(p_{12}+p_{23}+p_{34}+p_{14}\right) .
$$

This means

$$
P A_{1}+P A_{2}+P A_{3}+P A_{4} \geq \sqrt{2}\left(p_{12}+p_{23}+p_{34}+p_{14}\right)
$$

our desired inequality.

To establish the condition for equality:
For equality to hold in (7.4.C), we need equality in (7.4.A), which requires

$$
P A_{1}=P A_{2}=P A_{3}=P A_{4} .
$$

For equality to then hold in (7.4.B) given the above criteria,

$$
\frac{\sqrt{P A_{1}}}{\sqrt{2}} \sin \left(\frac{\theta_{12}}{2}\right)-\frac{\sqrt{P A_{1}}}{\sqrt{2}} \sin \left(\frac{\theta_{14}}{2}\right)=0 \quad \text { which means } \quad \sin \left(\frac{\theta_{12}}{2}\right)=\sin \left(\frac{\theta_{14}}{2}\right)
$$

so that $\frac{\theta_{12}}{2}=\frac{\theta_{14}}{2}$ or $\frac{\theta_{12}}{2}=\pi-\frac{\theta_{14}}{2}$.

Additionally, for equality to hold in (7.4.B) given the above requirements, we need

$$
\sqrt{P A_{1}}-\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{14}}{2}\right)=0 .
$$

If $\frac{\theta_{12}}{2}=\pi-\frac{\theta_{14}}{2}$, then recalling $\cos (x)=-\cos (\pi-x)$, we have

$$
\begin{aligned}
\sqrt{P A_{1}} & -\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{14}}{2}\right) \\
& =\sqrt{P A_{1}}-\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\pi-\frac{\theta_{12}}{2}\right) \\
& =\sqrt{P A_{1}}-\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right)+\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right) \\
& =\sqrt{P A_{1}} \\
& >0
\end{aligned}
$$

so we cannot get equality in this situation. If, however, $\frac{\theta_{12}}{2}=\frac{\theta_{14}}{2}$, we have

$$
\begin{aligned}
\sqrt{P A_{1}} & -\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{14}}{2}\right) \\
& =\sqrt{P A_{1}}-\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right) \\
& =\sqrt{P A_{1}}\left(1-\frac{2}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right)\right)
\end{aligned}
$$

so that $\sqrt{P A_{1}}-\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right)-\frac{\sqrt{P A_{1}}}{\sqrt{2}} \cos \left(\frac{\theta_{14}}{2}\right)=0$ requires

$$
\sqrt{P A_{1}}\left(1-\frac{2}{\sqrt{2}} \cos \left(\frac{\theta_{12}}{2}\right)\right)=0 .
$$

This means $\cos \left(\frac{\theta_{12}}{2}\right)=\frac{\sqrt{2}}{2}$, so that $\theta_{12}=\frac{\pi}{2}$. It immediately follows that $\theta_{14}=\frac{\pi}{2}$.
Similarly, the other requirements for equality from (7.4.B), namely

$$
\sqrt{P A_{3}}-\frac{\sqrt{P A_{2}}}{\sqrt{2}} \cos \left(\frac{\theta_{23}}{2}\right)-\frac{\sqrt{P A_{4}}}{\sqrt{2}} \cos \left(\frac{\theta_{34}}{2}\right)=0
$$

and

$$
\frac{\sqrt{P A_{2}}}{\sqrt{2}} \sin \left(\frac{\theta_{23}}{2}\right)-\frac{\sqrt{P A_{4}}}{\sqrt{2}} \sin \left(\frac{\theta_{34}}{2}\right)=0
$$

give rise to the conditions

$$
\theta_{23}=\frac{\pi}{2} \quad \text { and } \quad \theta_{34}=\frac{\pi}{2} .
$$

So, overall, for equality we require (see Figure 7.8)

$$
P A_{1}=P A_{2}=P A_{3}=P A_{4} \quad \text { and } \quad \theta_{12}=\theta_{23}=\theta_{34}=\theta_{14}=\frac{\pi}{2} .
$$

Figure 7.8
Therefore P must be on both $\overline{A_{2} A_{4}}$ and $\overline{A_{1} A_{3}}$, so that P is the point where the diagonals of $A_{1} A_{2} A_{3} A_{4}$ intersect.

Additionally, the diagonals intersect at P to form right angles with $P A_{1}=P A_{2}=P A_{3}=P A_{4}$, so $A_{1} A_{2} A_{3} A_{4}$ is a square.

Finally, since $A_{1} A_{2} A_{3} A_{4}$ is a square and P is the point where its diagonals intersect, P must be the center of $A_{1} A_{2} A_{3} A_{4}$.

8 Conclusion

Throughout this exploration, we have seen how one conjectured inequality by Paul Erdös gave rise to numerous publications and results. This paper provided an overview of some of the extensions and applications of the Erdös-Mordell Inequality, and it shows just how far one conjecture can lead.

9 References

[ALT] Altshiller-Court, Nathan. College Geometry: A Second Course in Plane Geometry for Colleges and Normal Schools. New York: Johnson Publishing Company, 1925.
[ANG] Anghel, Nicolae. "11491." The American Mathematical Monthly 117 (2010) 278.
[DAR] Dar, Seannie and Shay Gueron. "A Weighted Erdös-Mordell Inequality." The American Mathematical Monthly 108 (2001) 165-167.
[DEM] Demir, Huseyin. "E 2462." The American Mathematical Monthly 81 (1974) 281.
[DER] Dergiades, Nikolaos. "Signed Distances and the Erdös-Mordell Inequality." Forum Geometricorum 4 (2004) 67-68.
[DOD] Dodge, Clayton W. "The Extended Erdös-Mordell Inequality." Crux Mathematicorum 10(1984) 274-281.
[EMB] Erdös, Paul, L. J. Mordell and David F. Barrow. "3740." The American Mathematical Monthly 44 (1937) 252-254.
[ERD] Erdös, Paul. "3740." The American Mathematical Monthly 42 (1935) 396.
[GUE] Gueron, Shay and Itai Shafrir. "A Weighted Erdös-Mordell Inequality for Polygons." The American Mathematical Monthly 112 (2005) 257-263.
[IEQ] "Inequalities: Unit 3 Geometric Inequalities." Mathematical Database. http://www.mathdb.org/notes_download/elementary/algebra/ae_A5d.pdf.
[KAD] Kazarinoff, Donat K. "A Simple Proof of the Erdös-Mordell Inequality for Triangles." Michigan Mathematical Journal 4 (1957), 97-98.
[KAN] Kazarinoff, Nicholas D. Geometric Inequalities. New York: Random House, 1961.
[LAW] "Law of Sines." Art of Problem Solving. http://www.artofproblemsolving.com/Wiki/index.php/Law_of_Sines
[LEE] Lee, Hojoo. "Topics in Inequalities - Theorems and Techniques." The IMO Compendium Group: Olympiad Training Manuals. http://geomath.do.am/_ld/0/13_ineq_hl.pdf.
[MOR] Mordell, L. J. "On Geometric Problems of Erdös and Oppenheim." The Mathematical Gazette 46 (1962) 213-215.
[OP1] Oppenheim, A. "The Erdös Inequality and Other Inequalities for a Triangle." The American Mathematical Monthly 68 (1961) 226-230.
[OP2] Oppenheim, A. "New inequalities for a triangle and an internal point." Annali di Matematica Pura ed Applicata 53 (1961) 157-163.
[TIMO] "32nd International Mathematical Olympiad." International Mathematical Olympiad.
http://www.imo-official.org/year_info.aspx?year=1991.

