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Abstract

We investigate the Erdos-Mordell Inequality for triangles through the literature: proving
the result in its original form, modifying the result, looking at applications of the result,
providing other inequalities resembling the Erdds-Mordell Inequality, and finding a
comparable inequality for quadrilaterals.
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1 Background

In the “Advanced Problems” section of the June-July 1935 issue of The American
Mathematical Monthly, noted mathematician Paul Erdds posed exactly what is written
below [ ERD |

3740. Proposed by Paul Erdos, The University, Manchester, England.
From a point O inside a given triangle 4ABC the perpendiculars OP, OQ, OR are
drawn to its sides. Prove that

OA+OB+0C=2(OP+00+OR) .

The first published proof of this solution would be given in the April 1937 issue of The
American Mathematical Monthly, offered by L. J. Mordell [ EMB |. In [ MOR |,
Mordell explains how the solution came into existence. Apparently, Erdés mentioned his
conjecture to Mordell around 1937. Mordell proved the result, and Erdos sent the
solution into the Monthly for publication. Thus, we have the Erdos-Mordell Inequality
today.

This one problem, dealing with an interior point of a triangle, has given rise to a number
of publications. Various mathematicians have devised alternate proofs, have determined
a myriad of consequences, or have investigated similar inequalities that arise when
considering an interior point of a triangle. We explore these items in this paper.

Throughout this paper, we adopt a common notation when considering this problem and
its extensions. Thus, we will consider the problem in the following way:

Given A\ A, A, A; and interior point Pof & 4, 4,4, let p; denote the
distance from P to the side of 2\ 4, 4,4, opposite vertex 4;, foreach 1<i<3,
as shown in Figure 1.1. Then the following result holds.

Ay

PA,+ PA,+PA,>2(p,+p,+ p;)

Figure 1.1

We now begin our journey into the world of the Erdos-Mordell Inequality!



2 Preliminaries
Before proving the Erdos-Mordell Inequality, we need to establish a few results.
Theorem 2.1. Pappus's Theorem. | KAD; KAN pg 84 |

Given A ABC | let ABDE and ACFG be two parallelograms, of which either both or
neither lies entlrely outside of /A ABC . Let H be the point where the extens10ns of DE
and FG intersect, and let parallelogram BCKL be where CK is a translate of AH .
Then the sum of the areas of ABDE and ACFG is equal to the area of BCKL.

Proof of Theorem 2.1. Based on [ KAN pg 84 |
By cases.

Case 1: Both ABDE and ACFG lie entirely outside of 2\ ABC , as shown in

Figure 2.1.
B
D
A
E
C
G
F
Figure 2.1

We first extend DE and FG to their point of intersection, which we will call H. This
point exists since DE|[AB, GF||AC ,and AB intersects AC . Moreover, it will
intersect outside of A ABC on the same side of BC as A. This is shown in Figure 2.2.



F

Figure 2.2

Next, we let D, be on the line containing DE and F'; be on the line containing FG
such that BD|||AH and CF||AH , as shown in Figure 2.3.

F
Figure 2.3
From there, we construct parallelogram BCKL so that CK ||[AH and CK =AH , to meet

the given description in the statement of Pappus's Theorem. We draw BCKL outside of
A\ ABC for clarity and so that both K and F, are distinct. This is shown in Figure 2.4.



Fy

F

Figure 2.4

Now, we note the area of ABD | H is the same as the area of ABDE , as they share AB
asa base, and the distance between AB and DE is the same as the distance betweeL
AB and D, H since DE and D, H are part of the same line which is parallel to AB .

Similarly, the area of ACF| H is the same as the area of ACFG .

Next, we extend AH in order to make some additional observations. We let M be the
point where this extension intersects BC , and we let N be the point where this extension
intersects LK .

We note that points M and N must exist as described, as H must be on the opposite side of
AB as C,since ABDE is a parallelogram completely outside A ABC and H must be
on the opposite side of AC as B, since ACFG is also a parallelogram completely
outside A ABC . Further, since BD,||[AH||C F, and BL||AH||CK , it follows that B is
on LD, and Cison K F,. From this, we gather that the extension of AH must
intersect BC and LK , as shown in Figure 2.5.

Now, by the choice of K, we know AH = CK. Since ACF | H is a parallelogram, we
know AH = CF,. This gives us that CF;, = CK.



Since BCKL is a parallelogram, AH = CK = BL. Using that ABD | H is also a
parallelogram, we gather that AH = BD,. This gives us that BD; = BL.

Figure 2.5

At this point we notice that K F|[AN . Since AH and MN are both subsets of HN
as well as C—Fl and CK are both subsets of KF', , it follows that the distance between
AH and C—F] is equal to the distance between MN and CK , for which we will use
the notation d (4H,CF,)=d(MN ,CK)

Similarly, d(4H,BD,)=d(MN ,BL) .
So, we have the following:
Area ABDE + Area ACFG = AreaABD,H + Area ACFH

Which, based on the formula for area of parallelograms is

- BD,d(4H,BD,) + CF,-d(4H,CF))

But since BD; = BL and CF;, = CK, thisis

— BL-d(AH,BD,) + CK-d(4H,CF),)



Now using d (AH, BD,)=d(MN ,BL) and d(AH,CF,)=d(MN ,CK) , this becomes

Using BL = CK, this becomes

Factoring out BL, we get

Now, using the properties of parallelogram BCKL, we get

— BL-d(BL,CK)

Area BCKL.
Thus, we have established
Areca ABDE + Arca ACFG = Area BCKL,

and Case 1 holds.



Case 2: Neither ABDE nor ACFG lie entirely outside of A ABC , as shown in

Figure 2.6.
D

c
Figure 2.6

We first extend DE and FG to their point of intersection, which we will call H, as
shown in Figure 2.7. This point exists since DE|[4B, GF||AC ,and 4B intersects
AC . D

C

Figure 2.7



Next, we let D, be on the line containing DE and F'| be on the line containing FG
such that BD|||AH and CF||AH | as shown in Figure 2.8.

F
C
Figure 2.8

From there, we construct parallelogram BCKL so that CK ||AH and CK = AH, to meet
the given description in the statement of Pappus's Theorem. We draw BCKL so that it is
not entirely outside of A ABC . This is done in Figure 2.9.

D

C

Figure 2.9



For the same reasons as in Case 1, we note that:

Area ABD, H=Area ABDE and Area ACF,H=Area ACFG

Next, we extend AH . We let M be the point where this extension intersects BC , and
we let NV be the point where this extension intersects LK .

We note that points M and N must exist as described, as H must be on the same side of
AB as C, since ABDE is a parallelogram opening inside 2\ 4BC and H must be on
the same side of AC ‘as B, since ACFG is also a parallelogram opening inside A 4BC .
Further, since BD,||AH||C F, and BL||AH||CK , it follows that B is on LD, and C'is
on K'F,. From this, we gather that the extension of AH must intersect BC and LK .
This 1s shown in Figure 2.10.

D

Figure 2.10

Following the same rationale as described in Case 1, we get each of the following results:

CF,=CK: BD,=BL: d(AH,CF)=d(MN,CK): d(AH,BD,)=d(MN,BL).

Which yields the same process as we had in Case 1, where the rationale is identical for
each step, so it will not be repeated again.



Area ABDE + Area ACFG

Thus, we have established

Area ABD\H + Area ACFH

BD,-d (AH ,BD,) + CF,-d (4H,CF))
7

F)

BL-d(4H,BD,) + CK-d(4AH

BL-d(MN,BL) + CK-d(MN,CK)

BL-d(MN,BL) + BL-d(MN,CK)

BL-[d(MN ,BL)+d(MN ,CK)]
BL-d(BL,CK)
Area BCKL.

Area ABDE + Area ACFG = Area BCKL,

so Case 2 holds.

By Case 1 and Case 2, Pappus's Theorem holds.

It is worth noting that the key to Pappus's Theorem is that both of the parallelograms
ABDE and ACFG must either be both completely outside the original triangle or both not
completely outside the original triangle. If one of them was completely outside the
triangle and the other wasn't, we would be unable to guarantee the properties of M and N

that make the proof work.

10



Lemma 2.2. [ALT pg 53 |
Given A\ ABC , let D be the pointon BC so that AD is an altitude of A\ ABC , and let
O be the center of the circumscribed circle of A ABC . Then, the bisector of £ BAC is
also the bisector of £ DAO .

Proof of Lemma 2.2. Based on [ ALT pg 53 |

Let E be the such that AE is a diameter of the circumcircle, and let F be such that AF
bisects £ BAC.

Case I: /. ABC is acute.

We see a diagram of the situation in Figure 2.11.

Figure 2.11

First, notice that £ ABC and £ AEC are both inscribed angles in the circumcircle
intercepting arc AC. Thus, we conclude that m £ ABC=m 2 AEC .

Looking at /A ABD, we conclude that
m £ BAD=90°—m £ ABD .

Looking at A AEC , we notice that m £ ACE=90° since £ ACE is inscribed in the
circumcircle and it intercepts arc ABE, which is a semicircle. Further, we conclude that

m £ CAE=90°—m £ AEC .

Thus, we conclude m £ BAD=m £ CAE .

11
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,—/-"F'/Fﬂf
A by
B
Figure 2.12

Next, since AF bisects £ BAC , we get
m £ BAF=m Z CAF .
We also have
mZ BAF=m 2 BAD+m £ DAF and m £ CAF=mZ CAE+m £ EAF .
Thus, since m £ BAF=m Z CAF , we have:
m 2 BAD+m 2 DAF=m £ CAE+m £ EAF .
When substituting m £ BAD=m £ CAE , we get:
m Z BAD+m £ DAF=m Z BAD+m /£ EAF ,
which, when subtracting, gives us
m Z DAF=m £ EAF .
Equivalently,
m Z DAF=m Z OAF

which means that AF bisects £ DAO , and Lemma 2.2 holds for Case 1.

12



Case 2: Z ABC is aright angle.

We see a diagram of the situation in Figure 2.13.

C=E

-

Figure 2.13

This case is trivial, as £ DAO = / BAC.

13
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Case 3: Z ABC is an obtuse angle.

We see a diagram of the situation in Figure 2.14.

Figure 2.14

First, notice that £ ABC intercepting arc AEC and £ AEC intercepting arc ABC are
both inscribed angles in the circumcircle. Thus, we have

mZ ABC+m Z AEC=180°
so we conclude
mZ ABC=180°—m £ AEC .
Since £ ABD and Z ABC are supplementary, we have
m 2/ ABD=m £ AEC .
Looking at A ABD, we get
m 2 BAD=90°—m £ ABD.

Looking at A AEC , we notice that m £ ACE=90° since £ ACE is inscribed in a
semicircle. Further, we conclude that

m £ CAE=90°—m £ AEC .

Thus, we conclude m £ BAD=m £ CAE .

14



Figure 2.15

Next, since AF bisects £ BAC , we get
m £ BAF=m £ CAF .
We also have
mZ DAF=m 2 BAD+m Z BAF and m £ EAF=mZ CAE+m £ CAF .
Combining m £ BAD=m £ CAE and m £ BAF=m 2 CAF from earlier, we have
m Z DAF=m / BAD+m / BAF
mZ EAF=m Z BAD+m £ BAF
so that
m £ DAF=m £ EAF

which means that AF bisects £ DAO , and Lemma 2.2 holds for Case 3.

By cases on £ ABC, it follows that Lemma 2.2 holds overall.

15



Lemma 2.3. | EMB |
Let A4,B,C>0 suchthat 4+B+C=180° ,andlet a,b,c>0. Then the following
holds:
b*+c’+2bccos A=(bsin C+csin B’ +(bcosC —ccos B)’ .

Proof of Lemma 2.3.
This is an original proof.
Based on the trigonometric identity cos x=—cos(180°—x) , we have:
b*+c*+2bccos 4

= b’+c’—2bccos(180°— A4)
Then, since 4+ B+C=180°, it follows that B+C=180°—4 , which yields

= bp’+c’=2bccos(B+C)
And using the sum of angles identity for cosine, we have:

= b’+c’—2bc|cosBcosC —sin Bsin C|
Simplifying, we get

= b’+c’—2bccos BecosC+2besin BsinC
Recalling the Pythagorean Identity ( sin’x+cos’x=1 ), we have:

= b’sin’C+b"cos’C +¢’sin’ B+ ¢’ cos” B—2bc cos BecosC+2besin Bsin C

Rearranging terms, we have

b*sin’C+2bcsin Bsin C+c’sin” B+b>cos°C —2b ccos Bcos C+c’cos’ B

(bsin C+csin B)’+(bcosC —ccos B)’
Combining everything, we have
b’ +c*+2bccos A=(bsin C+csin B) +(bcosC—ccos B)’,

which establishes Lemma 2.3. l
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Lemma 2.4.

Let A A4, 4, A, be any triangle, O be the center of its circumscribed circle, and R be the
length of the radius of its circumscribed circle. Let a; be the length of the side opposite
A; for each 1<i<3. Finally, let & be the measure of the angle at vertex 4, of the
original triangle. Then, for each 1<i<3 , we have:

a,=2 Rsin («,)
Proof of Lemma 2.4.
This result, based on the Law of Sines, can be found, for example, in [ LAW |.

First, consider i=1, as shown in Figure 2.16.

Figure 2.16

Since £ A, 4, A4; is inscribed in circle O with corresponding central angle £ 4,0 4; ,
it follows that m £ 4,0 A,=2«, . Further, & 4,0 A, is isosceles, so if B, denotes the
foot of the perpendicular from O to 4, 4, , we have: m £ 4,0 B,=«, and

A,B,=a,/2 . Considering A 4,0 B, , this gives:

. _a,/2  a
Sln(O(l)—T—ﬁ .

Multiplying through by 2R , we get a,=2Rsin(«x,) .

The result holds similarly for i=2 and i=3.

17



3 The Erdos-Mordell Inequality

This section centers on proofs of the Erdds-Mordell Inequality. We state the result again
before proceeding.

Theorem 3.1. Erdos-Mordell Inequality [ EMB |

Given A A, 4, A, and interior point P of & 4, 4,4, let p; denote the distance from
P to the side of A\ A, 4,4, opposite vertex 4;, for each 1<i<3. Then the following
result holds:

PA,+PA,+PA,=2(p,+p,+p,).

Figure 3.1

Comment.

In this section, we will show three proofs of the Erdds-Mordell Inequality. The first proof
is based on the solution by L. J. Mordell [ EMB ], the second proof, based on a solution
by D. K. Kazarinoff, [ KAD ] includes a condition for equality and expands the location
of P, and the third proof deals with a “signed” inequality based on the work of Clayton W.
Dodge [ DOD |.

18



Proof of Theorem 3.1. Based on | EMB |
This is based on the solution by L. J. Mordell, but it has been adapted for this paper.

First, we let H; be the foot of the perpendicular from P to the side of A 4, 4,4,
opposite 4, foreach 1<i<3. Additionally, We let &, be the measure of the angle at
the vertex 4, in the original triangle. This is shown in Figure 3.2.

Figure 3.2

We notice that in quadrilateral 4, H,P H;  based on its interior angles summing to 360°,
we have m £ HZPH3:1800 -,

Additionally, 4, H,P H; is a cyclic quadrilateral since two of its opposite angles are

right angles (so it has a circumscribed circle). If we consider the circumscribed circle of
A,H,P H, wenote that P A, would be a diameter of this circle (since £ P H;4,
and £ P H, A, are both right angles). Applying the result of Lemma 2.4 specifically to
ANH,A,H, andusing PA, asthe diameter of the circumcircle:

. H,H
H,H,=PA sinx, or PA1=#.
sin i,
Similarly, analyzing the other quadrilaterals, we conclude:
m 2 H,PH,=180°—«, and m £ H,PH,=180°—q, ,
so that
H, H, H H,
sin«, sin o

19



Using the Law of Cosines on A H,PH ; as shown in Figure 3.3, (with the fact that
m Z H,PH,=180°~«, ), we have

H2H3:\/p§+p§—2p2p3c0s(180"—o<1)

Figure 3.3

Recalling the trigonometric identity, cos x=—cos(180°—x) , we get

H2H3=\/p§+p§+2p2p3coso<1 .

Similarly, when looking at A H, PH, and A H,PH, we get:

H1H3:\/pf+p§+2plp3coscx2 and H1H2=\/pf+p§+2plpzcoso<3 )

Now, combining these gives:
PA,+ PA,+ PA,

H2H3+H1H3+H1H2

sin;, sinx, Sinog

2 2 2 2 2 2
¢p2+p3+2p2p3 cosx, Jpl +p3+2p pscosa, N Vpl +p3+2 p pycoscg
sin sin «, sin o,

Using Lemma 2.3, this gives

20



v p,sinag+ pssin &)’ +( p, coso,— pycos )’

sin

V(p,sina;+ pssine, ) +( p, cos o — pycos , )

sin &,

\/(plsin(szrp2 sinx,)’+(p,cos &, — p,cosa, )’

Sin o,

And since, for real values of x and y, x>+ = Vx? , we get

- V( p,sin o+ p,sin a,)?
sin &,
N V( p,sinoy+ pysina, )’
sin «,
N \/(plsino<2+pzsin(xl)2
Sin ot
Simplifying yields

posincs,+ pysinx,  psine;+ p,sin;  p,sinx,+ p,sing,
- -

sin sin o, sin o,
Rearranging terms provides

P, sinog W sin i, N P,sine, +pzsm (x1+ P,sin o<2+ pssing,

sin , sin o sin o, sin ot sin &, sin &,

sinx; sinc, sinx; sing, sinx, sing,
+——=|+p, + +py +—

= by - :
sinx, sinog

sinx, sino, sinx, sinx,

which, when using the Arithmetic Mean - Geometric Mean Inequality on each piece
becomes

sino sino,

sino siney, . sine, sin &,
3

W%
\S]
=

—+2p2.

sinx, sin &, sin @, Sin &, sinx, sino,

21



2p+2p,+2 p,

= 2(p1+p2+p3),
Therefore, we have established

PA,+PA,+PA,=2(p,+p,+ p;),

the Erdos-Mordell Inequality.

22



Theorem 3.2. Modified Erdos-Mordell Inequality | KAD |
As proposed by D. K. Kazarinoff.

Given A\ A, 4, A4, and interior or boundary point P of & 4, 4,4, let p, denote the
distance from P to the side of &\ 4, 4,4 opposite vertex 4;, for each 1<i<3. Then
the following result holds:

PA,+PA,+PA,>2(p,+p,+ p;),

with equality happening only when A\ 4, 4,4, is equilateral and P is its circumcenter.

Figure 3.4
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Proof of Theorem 3.2. Based on [ KAD |
This is based on the solution by D. K. Kazarinoff, but it has been adapted for this paper.

We will prove this result by cases, contingent on the location of P. Before proceeding, let
a; be the length of the side of A\ 4, 4, A5 across from vertex 4, .

Case 1: Pis interiorto AN A, A, 4, .

Notice that our condition requires P to be interior to each of the three angles of the
original triangle. We begin by focusing on £ 4,4, 4, .

Let B be the point where the bisector of £ 4 4, 4, intersects 4, 4, , and let D be the
foot of the altitude from 4, to 4, 45, as shown in Figure 3.5.

Figure 3.5

24



Now, we reflect A A4, 4, Ay, including its altitude, across 4, B, calling the new figure
A A, 4,4, . Based on Lemma 2.2, we know that since 4, B bisects £ 4, 4,4, in
this setup where O is the circumcenter of the circle, 4, B must also bisect < D 4,0 .

Since 4, B bisects £ D A, O | it follows that the reflection of 4, D must go through O.

Based on the reflection properties and the property that 4, DL A4, 4;, welet D be the
reflection of D, and we conclude A, DL A, A, . This yields Figure 3.6.

Aj

Figure 3.6
We now wish to apply the result from Theorem 2.1 (Pappus's Theorem) to A 4, 4,4, .

Pappus's Theorem applies for the following reason:

25



Since P is an interior point of £ A4; 4,4, and we reflect across 4, B , the bisector of

Z A, A A, P cannot change sides relative to 4, A, nor relative to 4, 4, .

Based on this, neither the parallelogram formed by the side 4, /l3 and P nor the
parallelogram formed by the side 4, /lz and P will fall completely outside 2 4, 4,4, .

Essentially, P must remain interior to £ 454, 4,=Z A, A, A, throughout this process,
as it is being reflected across the bisector of that angle.

Create parallelograms 4, /l3 W P and 4, z‘lz X P . Since Pis interior to £ /l3 A, Alz , it
follows that 4, A,W P is not completely outside 2 4, 4,4, and 4,4, X P isnot

completely outside 2\ 4, 4,4, either. Hence, the conclus1on of Theorem 2.1 (Pappus's
Theorem) apphes for A A 14 AT . That is, we create parallelogram A, 4,Y Z by using

PA to create A Y . (We would not have a scenario where PA, ||A A, , thereby not

yielding a parallelogram, since this would require PA1||A2A3 , which can't happen since
Pis interiorto £ A;A4,4, )

This is shown in Figure 3.7 on the next page.

26



B
X
D 13
0
A, A, \\
Z
Figure 3.7

We will focus on the following properties of these parallelograms:
A AW P A A, X P A, A, Y Z
Base: A,4,=A,A;=a, Base: A4,4,=A4,4,=a; Base: A,4;=4,4;=a,
Height: p; Height: p, Height: h=PA,-cos £ P A,0

Note: cos £ P A,0>0 since O A4, is a radius of a circle, and we know that if P is
interior to the circle, this angle must be acute. (It becomes a right angle if P 4, were

tangent to the circle — which isn't the case, and therefore, it could only be obtuse if P were
exterior to the circle — which isn't the case.)

27



So, by Theorem 2.1 (Pappus's Theorem),
Area A, A,Y Z=Area A, A,W P+Area A, 4, XP.
Or, when substituting the appropriate bases and heights listed earlier:
a,-PA,cos £ PA,O=a,p,+a,p,

Since 1>cosx , having a,"PA,cos £ P A, O=a, p,+a, p, means

a +a
a;-PA,za,ps+a;p, so that PAIZ#.
1
Similarly, we obtain
+ +
PA22a1p3 ap, and PA3Za2p1 a, p,
a2 a3

by focusing on £ 4,4, A4, and £ A, A4, A4, respectively.

(Note: In each of those two additional situations, P is interior to the original angle, and it
would be interior to the angle formed after reflecting the triangle across the
corresponding angle bisector. Thus, akin to what we saw, neither parallelogram formed
by the reflected triangle and P would fall completely outside the reflected triangle,
meaning Theorem 2.1 would apply for both of those situations as well.

Thus, we have

PA,+ PA,+ PA,

a2p3+a3p2+a1p3+a3p1 +a2p1+a1p2
a, a, as

a3p1+a2p1+a1p2+a3p2+a2p3+a1p3

a, as as a, a, a,
a. a a a, a

3 2 1 3 2 1

= pl—t— TP —t+t—|tp|—F+—
a, d, 3 a4 1 4

Using the Arithmetic Mean — Geometric Mean Inequality, we obtain

28



a. a a, a a, a
a, a; as a,; a, a,

= 2p,+2p,+2p,
= 2(p,+p2tps)
and therefore, we have established
PA,+PA,+PA,>2(p,+p,+ p;)
for Case 1.

Additionally, since we had a,-PA4,cos £ P 4,0=a, ps+a,p, and said that
a,"PA,>a, py+as p, , for equality to happen, we must have cos £ P 4, O=1 which
requires £ P 4,0 to be a straight angle. This means P would have to be on 4, O .

From the repeated use of this property, we gather that P would likewise need to be on
A,0 and 4;0 for equality to hold. Thus, P must be the center of the circumscribed
circle when equality is achieved.

Furthermore, when applying the Arithmetic Mean-Geometric Mean inequality, we have
equality if and only if @,=a,=a; , which forces the triangle to be equilateral.

Therefore, both the inequality and the condition for equality both hold in Case 1.

29



Case 2: P is on the boundary of & 4, 4,4, but it is not a vertex point.

Without loss of generality, assume P is on 4, 4; . Draw semicircle m centered at P so
that m is interior to 2\ A, 4,4, . Let €, be the radius of this semicircle. Let P, Em
such that P, is interiorto 2\ 4,4, 4, | as shown in Figure 3.8.

Figure 3.8

Let {€,],_, besuch that €, is as defined above and €,,,<€, for all n. For each n,
define P, such that P, is on the semicircle centered at P with radius €, interior to
A A 4,4, (with P, also interior to the triangle).

By Case 1, the desired inequality (and its condition for equality) holds for each P, ,
namely:

PnAl+PnA2+P11A322(pn,1+pn,2+pn,3) .

From this, as n—o, €,20 and P,— P, which means the inequality (and it's condition
for equality) will also hold for P.

Thus, Case 2 holds.
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Case 3: P is a vertex of the triangle.

Without loss of generality, assume Pis 4, . In this case, we notice that P4,=0 p,=0
and p;=0. Let D be the foot of the perpendicular from Pto 4,4;. This is shown in
Figure 3.9.

Figure 3.9
When looking at A P A; D, we get
SinLPA3D=& or PA,sinZ PA,D=p, .
P A,

Similarly, looking at A P A4,D | we get

Py
P A,

sin/Z PA,D= or PA,sinZ PA,D=p, .

Putting these results together, we have
PA |+ PA,+PA, = 0+PA,+PA,
= PA,+ P4,
> PA,-sin £ PA,D+ PA,sin £ P A, D
= Pt D

= 2p,
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= 2(p,+0+0)
= 2(pi+pytps).
Thus
PA,+PA,+PA=2(p,+p,+p;),
and the inequality holds.

Notice, for equality, we are required to have sin £ PA4,D=1 and sin £ PA;D=1,
which would require both £ PA,D and £ P A;D to be right angles, but there
cannot be two right angles in a single triangle. Thus, in this case, we cannot have
equality.

Therefore, Case 3 holds.

It follows that the Erd6s-Mordell Inequality holds, with equality occurring only when
A A, A, A4, is equilateral and P is its circumcenter.

Comments:

We do consider what happens if the point P falls outside the triangle, and the next
example applies.
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Example 3.3. What happens when P is an exterior point?

Consider A A4, 4,4, with 4,=(0,0);4,=(1,1),4,=(2,0) . We will investigate two

choices of P, namely P,=(1,2); P,=(0,1) Py (1.2)
In the first case (Figure 3.10), we have:
P A,=V1*+2=\35 PF%
P A,=1 p,=2 A,
(1.1)
_Ji2, A2 _ \/5
P A,=V1"+2°=15 p=— A, A,
so that (0.0)] Figure 3.10 (2,0)

P A, +P, A, +P A,=1+25~547 and  p,+ptpi=2+V2~3.41 .

We notice that P, A,+P A,+P A,=2(p,+ p,+ p;) does not hold in this case, but if
we consider p; to be “negative” since P, and 4, are on different sides of zTAg , D
to be “positive” since P, and 4, are on the same side of A, 4, ,and p; to be
“negative” since P, and 4; are on different sides of 4,4, , then we get

P A +P, Ay+ P A;=14+25~5.47=21.18~2(2—2)=2(p,+ p,+ ps)

so that the inequality holds.
In the second case (Figure 3.11), we have: FE?
_ V2
P,4,=1 pIZT (0:7) A2
P,A4,=1 p,=1 {1.1)
S _\2
P,A4,=\2+1°=5 Pi= A, A,
so that (0.0)]  Figure 3.11 (2,0)
P A +P, A+ P, A,=2+5~424 and  p+ pot pi=1+V2~241.

Again, the inequality does not hold in this case. However, if we adopt the convention
that p, is positive since P, and 4, are on the same side of 4, 4;, p, is positive
since P, and 4, are on the same side of 4,4, ,and P, is negative since P, and 4,
are on different sides of m , then we get

V2 o 2

P2A1+P2A2+P2A3:2+ 5N4.24>2:2(1):2 7+1_7):2(p1+p2+p3) s

so the inequality holds.
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Example 3.3 provides the motivation for a “signed” Erdds-Mordell Inequality, in order to
account for what happens if P is an exterior point. Before getting such a result, we
develop a precursor.

Theorem 3.4 [ DER |
Given A A, 4,4, and let P be a point in the same plane.

Let p; denote the signed distance from P to the side of 2\ 4, 4,4, opposite vertex 4,
foreach 1<i<3.

That is:
P, is positive if Pand 4, are on the same side of 4, 4;, p, is negative otherwise;
P, is positive if Pand 4, are on the same side of 4,45, p, is negative otherwise; and

D is positive if P and 4; are on the same side of 4,4, , p; is negative otherwise.

Then the following result holds:

a a

3 2
— 4=
a, 3

PA,+PA,+PA,>p,

Comment.

The statement of this theorem and its corresponding proof are based on the work of
Nikolaos Dergiades in [ DER ], but it has been adapted for this paper.
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Proof of Theorem 3.4. Based on [ DER |

We let /2, denote the length of the altitude from 4, to 4,4, , welet a; be the length of
the side of A\ 4,4, A; opposite 4;, and we let K be the area of A A, 4,4, .

2 A

, 2
P
h,
Aj
Figure 3.12 A Figure 3.13 Aq

The first item we observe is that, regardless of the location of P relative to the triangle, as
long as we have the signed distances defined above,

Area A 4, A, A;=Area A A P A,+Area A\ A, P A,+Area N A, P A, .

(When P is interior to the triangle, as shown in Figure 3.12, this is obvious. We notice
that in the case where P is outside the triangle — one such example being shown in Figure
3.13 — we have to take 2\ 4, PA; away from A\ A4,PA, and 2\ A,PA; to get

A A, A4, Ay, which is exactly what we have with the signed value of p,<0 )

Upon substitution, this equation becomes
ah, ap, a,p, a;p; _ _
= = + or 2K=a,h,=a +a +a .
) 2 > > 1Mm=a, pyTa, Py Tas psy

Next, we notice that PA,+p,=h,  no matter the location of P (with the p,<0
possibility). This is a simple consequence of the fact that the altitude is the shortest
distance from a vertex of a triangle to its opposite side, and it is pictured in Figure 3.14

and Figure 3.15 for clarity. A

7 2

Figure 3.14 Figure 3.15
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Also, it is clear that we get equality if and only if P is on the line containing the altitude.
Now, combining @, h,=a, p,+a, p,+a,p; with PA;+p,=h,  we get
a,PA+a,p,=a,(PA,+p,)za,h,=a,p,+a,p,+a,p,,

which means a, PA1+611P12611[71 +02P2+a3p3 , SO that

a +a
a,PA,za, p,+a;p;  orequivalently PAIZ%_ (3.4.4)
1
Similarly, we obtain
+ +
PAzzM and PA32M_
a, as

We let A\ 4,4, 4, be the image of 2\ A, A, A; when reflected across the bisector of

Z A, A, A, . When doing this, we realize the bisector of £ 4, 4, 4, is also the bisector
of the angle formed by the altitude from A, of the original triangle and the radius of the
circumcircle of the original triangle. (See Lemma 2.2).

Figure 3.16

Applying the inequality @, PA,=a, p,+a;p; to /N A, 4,4, (which essentially
switches @, and a; in our inequality), we realize that a, PA,=a;p,+a, p; , with
equality being the case only if P is on the altitude through 4, in A 4, 1212 153 , which is
the same line containing 0—/11 .

The rationale for this is supported through Figure 3.19 and Figure 3.20 on the next page.
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Figure 3.17

Figure 3.18

So now, like in Kazarinoff's proof, we have @, PA,=a, p,+a, p;, which means

a a
pa, =B Dl (3.4.B)
a a,
Similarly, we obtain
a a a a
paz B Py PA,> 1Py BaPr
a, a, a; as

(There is no problem with obtaining these results similarly, as we saw the location of P
was not problematic, and each of the angles of the original triangle will have a bisector.)

Akin to the earlier proof, we get:

a3pf+a2p3+a3p{+alp3+}ﬁp2+a2p1

PA,+ PA,+ PA, >
a, a, as

a3pl+a2pl+a1p2+a3p2+c@p3+a1p3

a, as a; a, a, a,
a a a a a
3 2 1 3 2 1
= |t |tp| T s| =+ —
a, da; 3 a4 1 4
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Thus, we have established

as 4, a, d, a, 4a;
PA,+PA,+PA>p | =+ |+ p,| —+= |+ ps | =+—],
2 43 a, a, a, a,
our desired result.
Corollary 3.5.
Under the premise of Theorem 3.4, we have (from 3.4.4)
- - +
PAIZazpz a3p3’ PA22a1p1 a3p3, and PA3Za1p1 a, p,
a, a, a3
as well as (from 3.4.B)
PAl_a3p2+a2p3 ’ Az_a3pl+a1p3, and PA3_a1p2+azp1
a, a, as
Comment.

The second set of inequalities were also formed by D. K. Kazarinoff in [ KAD ] in the
case where P is interior to the triangle.
Comment.

At the conclusion of Theorem 3.4, it is tempting to use the Arithmetic Mean — Geometric
Mean Inequality on each piece to yield the following:

a, a, a, d, a, a;
PA,+PA,+ PA, = Pl —t—|tp| Tt |t —+—
2 4 a; a, a, a,
a; a, a, d, a, a;
> 2p\— 2 p\\— —+2p——
a, da; as; a;

= 2p+2p,+2p,
= 2(p1+p2+p3)

and therefore, claim PA,+PA,+PA,=2(p,+p,+p;).
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SR AN LA P

2 45 a, a;
We want to show a “signed” Erdds-Mordell Inequality, namely, under the signed versions
of P, P, P; described above, that we can conclude PA,+PA,+PA;>2(p,+p,+ p;)

for any point P in the same plane as A\ A4, 4,4, .

However, for example, if 7, <0 , we cannot conclude p,

In fact, this exact problem appeared in the “Elementary Problems” section of the March
1974 issue of The American Mathematical Monthly as “E 2462 | DEM ].

One referee assigned to this problem was Clayton W. Dodge. In [ DOD |, Dodge
describes the situation emerging from this seemingly innocent problem. Three solutions
were submitted in 1974. Each author used the methods of Kazarinoff and extended them
for the signed values of p,. Each author made the error referenced in the comment
above: the incorrect application of the Arithmetic Mean — Geometric Mean inequality.

Dodge, working with the other referees, attempted to find a way around this hurdle;
nothing immediately presented itself. Over the years, Dodge relates in the same article,

he kept being drawn back to this problem until he finally devised a solution in 1984.

What we present next is the Signed Erdds-Mordell Inequality, which is based on the
solution by Dodge [ DOD |, involving ideas from Kazarinoff [ KAD ].
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Theorem 3.6. Signed Erdos-Mordell Inequality [ DOD |
Given A A, 4,4, and let P be a point in the same plane.

Let p; denote the signed distance from P to the side of 2\ 4, 4,4, opposite vertex 4,
foreach 1<i<3.

That is:

P, is positive if Pand 4, are on the same side of 4, 4;, p, is negative otherwise;

P, is positive if Pand 4, are on the same side of 4,45, p, is negative otherwise; and

D is positive if P and 4; are on the same side of 4,4, , p; is negative otherwise.

Then the following result holds:

PA,+PA,+PA,=2(p,+ p,+p,) .

Comment.

This result and its proof are based on the works of Clayton W. Dodge in [ DOD |,
incorporating ideas from Kazarinoft [ KAD |.
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Proof of Theorem 3.6. Based on [ DOD |

We begin by stating that Theorem 3.2 handles the case where P is either interior to
A\ A, 4,4, or on its boundary.

Thus, we need to consider all other possible locations of P.

As shown in Figure 3.19, we have the possibility that P is outside the triangle and:

(Case 1) P lies inside an angle vertical to one of the interior angles of 2 4, 4,4, ;
(Case 2) P is interior to only one of the interior angles of 2 4, 4,4, ; or
(Case 3) P is on the extension of one of the sides of A 4, 4,4, .

Figure 3.19
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Before proceeding into cases, we establish some groundwork.

Let d,=

D;

Based on the Proof of Theorem 3.2 (based on [ KAD ]), we have, for P interior to
A A 1 AZ A 3>

a,-PA,cos(£ PA,0)=a,p,+a,p,
a, PA,cos(Z PA,0)=a,ps+a,p, (3.6.4)
a, PAscos(Z PA,0)=a,p,+a,p, .

From this, in that same proof, we said

PA,+PA,+ PA,
> PA,cos(Z PA,0)+PA,cos( L PA,0)+PAscos( £ PA,0) (3.6.B)

a2p3+a3p2+alp3+a3pl +a1p2+a2pl

— . o o (3.6.0)
a a a a a

= _2_|__3 pl+ _1+_3 ) —1+—2 )28 (36D)
a, a, 3 4 a, a

= 2(p+pytps). (3.6.E)

Of course, in that scenario, P,=0 | so that the Arithmetic Mean — Geometric Mean
Inequality applied to go from (3.6.D) to (3.6.E).

Now, we base the proof for any location of P off this same basic concept.
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Case I: Pis outside 2\ 4, 4,4, and P lies inside an angle vertical to one of the
interior angles of & 4, 4,4, ;

Without loss of generality, assume P lies inside the angle vertical to £ A, 4,4, . Let F
be the foot of the perpendicular from P to A4, 4; as shown in Figure 3.20.

Figure 3.20

Now, in this scenario, 7,>0, p,<0 and p;<0, so that

pi=d,, p,=—d,, and p,;=—d;.
Seeing that P 4, and d, are the hypotenuse and leg, respectively, of & PF A, we
have

PA,>d, .

Similarly, since P A4; and d, are the hypotenuse and leg, respectively, of A PF 45, we
have
PA>d, .

Thus PA,+PA,+P A;=PA,+PA,>d +d,=2d ,>2(d,—d,—d,) .
In this case, we have p,>0, p,<0 and p;<0 so that
PA,+PA,+P A,=2(p,+p,+p;),

as desired.
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Case 2: Pis outside 2\ 4, 4,4, and P is interior to only one of the interior angles
of A A A,

Without loss of generality, assume P is interior to £ A, A4, 4,

Case 2.4: Pis outside 2\ 4, 4,4, and P is interior to an interior angle of
A\ A A, 4, butit is far enough outside the triangle that the foot of the
perpendicular F; from P to the side of &N 4, 4,4 opposite 4, lies
outside A 4,4, A4, for either or both of the two vertex points to which P
1S not interior.

Under the conditions of Case 2.A, assume that P is far enough outside /2 4, 4,4, that
both F, and F; do not lie on the triangle.

Then we have p,=—d <0,

Choose point 4," such that F'; is the midpoint of 4, 4,", and let F,’ be the foot of
the perpendicular from Pto 4,"A; as shown in Figure 3.21.

Figure 3.21

Then, we have PA,=PA," and so the distances from P to the vertices of 2\ A, 4," 4,
are the same as the distances from P to the vertices of 2 A4, 4,45 .

Additionally, we note that when considering A 4, 4," Ay compared to A A, A, 45, we
have d, and d; remaining unchanged, but ¢, changesto d,'=PF,’,

If, as shown in Figure 3.23, Pis outside 2\ A4, A4," A5 then we get d,'<d,, so that
p=—d,<—=d,'=p,",or p,<p,’.

If, however, P is inside A A, A," A, thenwe get p,<0<p,’ sothat p,<p, .

Either way, p,<p,’.
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Thus,
Pt ot P>ty tps.
Similarly, we apply the same process on AN A, 4," A5 :

Choose point 45" such that F, is the midpoint of 454;" , andlet F',"’ be the foot of
the perpendicular from Pto 4, A;" as shown in Figure 3.22.

Figure 3.22

Then, we have PA;=PA;", and so the distances from P to the vertices of A A4, 4," 45’
are the same as the distances from P to the vertices of & A4, 4," A4, .

Additionally, we note that when considering A 4, 4," A;" compared to A A4, 4," A, , we
have d, and d; remaining unchanged, but ¢, changesto d,"'=PF,"".

Akin to the earlier reasoning, p,'<p,"".

Thus, we get p," '+ p,+p;>p,'+p,+ps>p+p,+ps.

So, we have p,"'+ p,+ p;>p,+p,+ p;, which means that if the Signed Erdos-Mordell
result

PA,+PA,+P A,=2(p,+p,+p;)

holds in the newly constructed triangle whose feet of the perpendiculars from P are all on
the sides of the triangle, it must hold for the original triangle.

Therefore, it suffices to reduce Case 2 to the situation where all of the feet of the
perpendiculars from P to the sides of A4, 4,4, lieon A A, 4,4, .

This 1s how we conclude Case 2.A.
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A further consequence of the idea from Case 2.A is the idea that our point P must fall
within the circumscribed circle of A A4, 4,4, .

To see this, consider Figure 3.23 below, where we have constructed D to be such that
A, D is a diameter of the circumscribed circle.

Since we are only working with P outside the triangle, and within Case 2, we have
assumed (without loss of generality) that P is interior to £ 4,4, 4, , it follows that we
only need to consider P possibly being in the shaded region (that inside & D A4, 4;).

Figure 3.23

Given the constraints that P is outside 2\ 4, 4,4, , interior to £ A, A4, 4, , and is such
that the feet of the perpendiculars from P to the sides of /A 4, 4, 4; are assumed to be on
the triangle itself, these are the only possibilities for P.

Next, we seek to establish the validity of the results (3.6.4) — (3.6.D) for points in this
region.

We let P be in the region specified, within & DA, 4, .
We notice p,<0, p,>0 and p;>0.
We consider reflecting A\ 4, 4, A5 over the bisector of £ A4, A, 45 to obtain

AAI/IZ/I3 and parallelograms A1/13X P, A, A,Y P and z‘Iz /~13XY as in the Proof of
Theorem 3.2. This is shown in Figure 3.24.
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Figure 3.24

Here, we see that since P is interior to £ 4,4, 4, and exterior to both Z A 4,4, and
Z A, A, A4, | it follows that neither parallelogram A, A; X P nor 4, A4,Y P lies

completely outside A 4, Aiz 1673 . So Pappus's Theorem applies (akin to the Proof of
Theorem 3.2).

We will focus on the following properties of these parallelograms:

A A, XP A A, Y P A, A, XY
Base: A,4,=A4,4,=a, Base: A,4,=A4,4,=a,; Base: A,4,=4,4,=aq,
Height: d; Height: d, Height: #=PA,-cos £ P A4,0

Note: cos Z P A,0>0 since O4, is aradius of a circle, and we know that if P is
interior to the circle, this angle must be acute. (It becomes a right angle if P A, were
tangent to the circle — which isn't the case, and therefore, it could only be obtuse if P were
exterior to the circle — which isn't the case.)

So, by Theorem 2.1 (Pappus's Theorem),

Area A, A, XY=Area A A, X P+Area A, A, Y P
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Or, when substituting the appropriate bases and heights listed earlier:
a,-PA,cos(£ PA,0)=a,d,+a,d, .
Since p,>0,and p;>0, this gives

a,-PA,cos(£ PA,0)=a,p,+a,p,.

Within the Proof of Theorem 3.2, we similarly obtained
a, PA,cos(Z£ PA,0)=a,d,+a,d,
a, PA,cos(Z PA,0)=a,d,+a,d, ,
since P was interior to each of the angles. However, that is no longer the case.

Now, we consider reflecting A 4,4, A, over the bisector of £ 4, 4,4, to obtain

NA 4,4 ; , following the same notation and process as before. This is shown in Figure
3.25.

Y
Figure 3.25

Here, we see that since P is interior to £ 4,4, 4, and exterior to both Z A 4,4, and
Z A A4, , it follows that both parallelograms 4, 4, X P and A,4,Y X lie completely
outside A4, A4,A;. So Pappus's Theorem applies.
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We will focus on the following properties of these parallelograms:

A, A, XP A, A, Y P A A Y X
Base: A,A4=A4,4,=a;, Base: A,A;=A,A;=a, Base: A, A4;=A4 4;5=a,
Height: d, Height: d, Height: #=PA,-cos £ P 4,0

Note: cos Z P A,0>0 since O 4, is aradius of a circle, and we know that if P is
interior to the circle, this angle must be acute. (It becomes a right angle if P 4, were
tangent to the circle — which isn't the case, and therefore, it could only be obtuse if P were
exterior to the circle — which isn't the case.)

So, by Theorem 2.1 (Pappus's Theorem), with 4, 4, X P and A4, 4,Y X completely
outside the triangle, we have:

Area AZ/LYP:Area A, A, X P+ Area 1411/]3YX

Or, when substituting the appropriate bases and heights listed earlier:

a,d,=a,d,+a, PA,cos(£ P A4,0),
or equivalently

a, PA,cos(Z PA,0)=a,d,—a,d, .
Since p2,<0,and p;>0  this gives

a, PA,cos(£ PA,0)=a,ps+a,p,,
as desired.
When reflecting A 4, 4, A5 over the bisector of £ 4, Ay 4, to obtain A /Il 22A3 , we
will have the same process as seen most recently, as P was interior to Z A,A4, 4, and
exterior to both £ 4, 4,4, and £ A4,4,4, .
So, similarly,

a, PAscos(Z PA,0)=a, p,+a,p, .

Thus, Kazarinoff's formulas (3.6.4) — (3.6.D) hold for points in the region under
consideration, namely those inside of A D 4,4,
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Recalling that within this case, we are concerned with P being in the region formed by
JAN DA, A, only, we may assume Z D A2 A3< 90° and m £ D A, 4,<90°

(otherwise the shaded region in Figure 3.26 is empty).

Figure 3.26

We have p,<0, p,>0 and p;>0 in this region, so that we wish to show:

PA+PA,+P A,>—2d +2d,+2d, .

50



Case 2.B: Pliesin ADA,A; and at least one of m £ A, A, A, or m £ A, A, A4,
does not exceed 30°.

Without loss of generality, assume m £ A, 4, 4,<30°

Let x=mZ A AyA; and €=m £ P A, A,  asnoted in Figure 3.27.

Figure 3.27

1
>

Then, since ®x<30°, we know

sin (o) <

Additionally, based off Figure 3.27,

sin(+€)=—- sothat d;=(PA,)sin(x+e)
and
in (€)= d, hat d,=(PA,)sin(e)
sm(:‘—PA2 so that 1= 2 .
We notice
sin (ot+€)—sin (€) = sin (o) cos (€ )+cos (o )sin (e )—sin (€)

sin () cos (€)+sin(€)[cos(ex)—1]

Since cos(x)—1<0,

< sin () cos(€)
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Since cos(€)<1

< sin («x)

IA

N | —

. . 1 . .
So we have sm(cx+e)—sm(e)§5 , which means 2sin(x+¢€)—2sin(e)<1 .
Using this combined with d,=(PA4,)sin(€) and d;=(PA,)sin(x+€)  we get
P4, > PA,|2sin(x+€)—2sin(€) ]
= 2 PA,sin(x+€)—2 PA,sin(¢€)
—  2d,-2d,.

Letting £, be the foot of the perpendicular from Pto 4, 4; as in Figure 3.28, we notice
the following:

since P 4; and d, are the hypotenuse and leg, respectively, of /AP A, F,  we have
PA,>d,
and since P 4, and d, are the hypotenuse and leg, respectively, of AP A, F,

PAz>d,.

Figure 3.28
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Putting everything together, we have (since p,<0, p,>0 and p;>0)

PA,+ PA,+ PA, > d,+(2d,—2d,)+d,

—2d,+2d,+2d,
= 2(p1+p2+p3) .

Thus, we have PA,+ PA,+PA;>2(p,+p,+ p;), and Case 2.B holds.
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Case 2.C: Pliesin ADA,A, and £ A, A, A; is the largest interior angle of
AA A4,

Figure 3.29

Without loss of generality, assume
mZ A, A, As=m L A A, A, =m L A A5 A, .

This means we have a,>a,>a; and d,<d, (the former because of the assumption on
the angles, the latter because of the location of P guarantees the distance from P to 4, 4,
to be smaller than the distance from P to the extension of 4, 4; ).

. 2
Notice @,=a,=a;>0 means (a,—a,)a;<a,a,(a,—a,), so that

2 2 2 2
a,a,taa; <a2a3+a1a2

a,a,a; a,a,a,
Simplifying, we get

a a a a

2 3 3 1
——<—4—
as a, a, a;

Recalling the Arithmetic Mean — Geometric Mean Inequality, we have

a, a, a, a
2243341
as a, da; da;
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a, d; a, a4
Set W=—+—>2 and V="-+—2=22.
as a, as a,

For any number N such that W d, =V d,+N ,since W <V we have
Wd=Wd,+N.
Realizing W —2>0 and d,<d,, we also have
(W=2)d,<(W-2)d, .

Subtracting these inequalities yields

2d,22d,+N .
) a, 4, a, a,
Thus, for any N making |—+—|d ,=| —+—|d,+N,we have 2d,>2d,+N ,
a, 4a, a, a,

Now, by (3.6.4 - 3.6.D), with p,<0, p,>0 and p;>0 we have

a, 4, s )
PA,+ PA,+ PA, > 4= p+H == | pot| —+ | ps
a, a, 3 4 2 4
a, a a a
= —|2+=2d, | S+ 2 |dy =+,
as a, a, a, a, 4a
so that
a, a a, a a, a
2+ 21d, 2 2+=2|d ,+|| —+—2|d,— PA,— PA,— PA,| .
a; a, a 4q a, aq
By our most recent result, we must have
a,; a4
2d,22d ,+|| —+—|d,—PA,— PA,— P4,
a, 4a

or equivalently

a a
1 2
— 4=

PA,+PA,+PA,>2-2d,+2d,+
a, a

d,.
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But we can use the Arithmetic Mean — Geometric Mean Inequality on the last term to get

a, a
d 22\/—1-—%1 =2d
3 612 al 3 3

PA,+PA,+PA,>—2d +2d,+2d, .

a
L&
a, a

4

so that

Recall, we have p;<0, p,>0 and p;>0 in this region, so that this gives us
PA,+PA,+PA,22 p+2p,+2 p, |

which is our desired inequality
PA,+PA,+PA=2(p,+p,+p;).

Thus, Case 2.C holds.

Before handling our last sub-case for Case 2, we consider two lemmas.
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Lemma 3.6.1.

1.
The function f <x>=1—cos(x)—5sm(x—15°) is positive on [15°, 90°].

Proof of Lemma 3.6.1.

Calculating the derivative of f, we have
! . 1 o
f (x)—sm(x)—zcos(x— 15°) .

Finding critical points (setting f '(x)=0), we have

2sin(x) = cos(x—15°)

= cos(x)cos(15°)+sin (x)sin(15°) .

Thus 2sin(x)=cos(x)cos(15°)+sin(x)sin(15°). Rearranging gives

2sin (x)—sin(x)sin (15°)=cos(x)cos(15°)
which becomes

sin(x)[2—sin(15°)]=cos(x)cos(15°)

or

tan(x):% )

Based on properties of the tangent function, this only has one solution on [15°, 90°].
Namely, it is

cos(15°)

—————(=29.0194659° .
2—sin(15°)]

X= arctanl

Thus, to find the absolute minimum of f'on [15° 90°], we evaluate the function at the
endpoints of the interval and its critical point:
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£(15°)=1 —cos(15°)—%sin(0°)N0.304074

f (arctan [cos #5(150) l)m 0.0044192876

£(90°)=1 —cos(90°)—%sin(75°)~0.517037 ,

It follows that f'achieves its absolute minimum on [15°, 90°] at the point with
approximate coordinates (29.019°, 0.0044192876).

Therefore, Lemma 3.6.1 holds as f{x) > 0 on this interval.

Lemma 3.6.2.

1
Let g(x)=x+;. Then g(x)<2.5 on the interval [1, 2].

Proof of Lemma 3.6.2.
: oy—q_ L . - .
We notice g '(x)=1 ——>0 for x on the interval [1, 2], so g is increasing on [1, 2].

X

It follows that g achieves its maximum at x = 2:
1
g(2)=2+§=2.5 ,

and Lemma 3.6.2 holds.
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To finish off Case 2, we first realize that we have already considered the following:

Case 2.B: Pliesin ADA,A; and at least one of m £ A, A, A, or m £ A, A, A4,
does not exceed 30°.

Case 2.C: Pliesin A DA, A, and £ A, A, A; is the largest interior angle of
AA A A, .

Our last sub-case for Case 2 will be the following: P lies in 2\ D A, A; where both
mZ A A,A;>30° and m £ A, A;4,>30° Jand £ A, A, 45 is not the largest interior
angle of A A1 A2A3 .

Without loss of generality, we will assume < 4, 4,4, is the largest interior angle of
A A4, 4, A5 . Additionally, from Figure 3.30, we can tell that m £ 4, A, 4,<90° .

Figure 3.30
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Case 2.D: P lies in ADAZA3 where 30°<m ya AIABAZSmL A1A2A3 and
m 2 A2A1A3Sm ya A1A2A3<90° .

Figure 3.31

Since 30°<m £ A 454, , we know m Z A, A, A+ m Z A, A,A,<150° | With the
requirement that £ A, 4, A; is the largest interior angle of A A, 4, 4, | that means we
must have

m/ A, A, A,<75°.

Z A, A, Ay is an inscribed angle in the circumscribed circle of A 4, 4, 4 having the
corresponding central angle £ 4,0 4, | so that

mZ 4,0 4,<150°
Realizing that A\ 4,0 A, is isosceles with base angles summing to at least 30°, we have
mZ OA,A4,>15°
The Law of Sines gives

a, a,

sin(Z A, 4, 4;) sin(Z 4, A5 4,)°

so that

a, sin(Z A, 4,4,)
a; sin(Z A4,454,)°
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Coupling this with 30°<m £ A, A;A,<m / A, A,A4,<90°, a,>a, and the notion that
the sine function is increasing on [0°, 90°], we have:

ﬁ_sin(é A A,4;) sin(90°) 1

<= <= =—=2,
a, sin(Z£ A4,4;4,) sin(30°) 1/2
This means
a,
I<—<2.
as
Applying Lemma 3.6.2, we have
a, 4 a,
—+—=g|—|=25 .0.
a, a, g(a3) ' (3.6.E)

Now, from Figure 3.32, we have

d
sin (£ PASAz)Zﬁ so that PA;sin(£ PA,4,)=d, .
3

Figure 3.32

But

mZ PA,A, mZ PA,O—m 2 OAsA,

Recalling m £ O 4, 4,>15° gives

< mZ PA,0—15°,
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Let 6=mZ P A;0 . Then we have m £ P A;4,<6—15°,
Combining with PA,sin(Z P A;A4,)=d, , we have
d,<PA,sin(6—15°) .

Lemma 3.6.1 tells us (since 6=m £ P A;0>15°)

1—c05(6)—%sin(6—15°)>0_
Equivalently,

1 N
PA3(1—c05(5))>5PA3sm(6—15 )>§d, _

Thus, we have

|
~

PAs(l—cos(é))>;

Now,
PA |+ PA,+PA,+2d,

= PA,+ PA,+ PA,cos(8)+ PA,(1—cos(6))+2d,
> PA1+PA2+PA3COS(6)+%d1+2dl

—  PA,+PA,+PAcos(5)+2.5d,
> PA,cos(£ P A,0)+ PA,cos( £ PA,0)+ PA,cos(5)+2.5d,
Since 6=m £ P A,0
= PA,cos(Z PA,0)+ PA,cos( L PA,0)+PA,cos( £ PA,0)+2.5d,

By (3.6.4) — (3.6.D)
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By (3.6.E)

By the Arithmetic Mean — Geometric Mean Inequality

al a3 al aZ
> 24t 2d 42424,
a3 al a2 al

= 2d,+2d,.

Overall, this means we must have

PA,+PA,+PA,+2d,>2d,+2d, |
or equivalently,

PA,+PA,+PA,>—2d +2d,+2d, .

Recalling that we have p,<0, p,>0 'and p;>0 in this region, this gives us

PA,+PA,+PA,>2(p,+p,+p;),
which certainly requires

PA,+PA,+PA=2(p,+p,+p;)
as desired.

So Case 2.D holds.

By the combined results of Case 2.A, Case 2.B, Case 2.C, and Case 2.D, we conclude
that the Signed Erdos-Mordell Inequality holds in Case 2 overall.
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Case 3: Pis outside 2\ 4, 4,4, and P is on the extension of one of the sides of
AAAA,

This case parallels that of Case 2 of the Proof of Theorem 3.2.
Without loss of generality, assume P is on the extension of 4, 4; . Draw circle m

centered at P. Let €, be the radius of this circle. Let P,€m such that P, is not on the
extension of 4, 4; , as shown in Figure 3.33.

Figure 3.33

Let {€,|,_, besuch that €, is as defined above and €,,,<€, for all n. For each n,
define P, suchthat P, is on the circle centered at P with radius €, but is not on the
extension of 4, 4; .

By earlier considerations in Case 2, the Signed Erdos-Mordell Inequality holds for each
P, , namely:

P11A1+PnA2+PnA322(pn,l+pn,2+pn,3) .

From this, as n—o, €,20 and P,— P, so the inequality will also hold for P, namely

PA +PA,+PA,22(p,+p,+p,).
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By Cases, we have concluded the Proof of Theorem 3.6. We have seen the following:
Theorem 3.2 handles the case where P is interior to 2\ 4, 4, 4 or on its boundary.

Then, within this proof, for P outside 2\ 4,4, A4, , we handled exhaustive cases:

Figure 3.34
Case 1: P lies inside an angle vertical to one of the interior angles of A\ 4, 4,4, ;
Case 2: P is interior to only one of the interior angles of 2\ 4, 4,4, ; or
Case 3: P is on the extension of one of the sides of 2 4, 4,4, .

In each of these situations, the Signed Erdos-Mordell Inequality holds, so overall the
Signed Erdos-Mordell Inequality holds, and Theorem 3.6 is proven.
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4 Twists on the Erdos-Mordell Inequality

This section involves new inequalities we get from slight changes to the inequality
proposed by Erdos.

The question of whether weighting each of the sides would influence the inequality
provides the motivation for the next result. Originally stated and proven by Seannie Dar
and Shay Gueron in The American Mathematical Monthly | DAR ], this theorem is
proven differently here; in this paper, we offer our own proof based off common ideas.

Theorem 4.1. Dar-Gueron Theorem. [ DAR |

Let A A4, A, A, be given, let P be an interior point of the triangle, let P, denote the
distance from P to the side of 2\ A, 4, 4, opposite vertex 4; for each 1<i<3,let q,
denote the length of the side of A A4, 4, 45 across from A4, for each 1<i<3 and let
A, A,,A;>0 . Then

Ay PA+A, PA+ A, PA=2 (VA A, pi+VA A, p +VAA, s )

Equality holds if and only if a,:a,:a;= \/?Tl : @ \/Ai and P is the circumcenter of
A A A, A4, .

Proof of Theorem 4.1.

We realize this is the same setup as we had for the Erdés-Mordell Inequality. Given this
setup, we realize the inequalities paramount to proving the Erdds-Mordell Inequality
apply, as stated in Corollary 3.5, namely:

a2p3+a3p2 ’ PA22a1p3+a3pl . and PA32a1p2+a2pl .

PA, =
a; a, a, a, as a;

So that we have:

A, PA,+A,PA,+A, PA,

a2p3+a3p2
a, a,

a, p; n as p,
a, a,

a1p2+a2pl

> A,
a, a,

+A, +A,

By regrouping terms:

Pt Pyt D3

as a,
— A +—A,
a; a,

a, a,
—A,+—A,
a, a,
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By application of the Arithmetic Mean — Geometric Mean Inequality

a a a a a a
> 24 2A, A p 24 2A A py 2 24 A
a, 2 a, 3Py a, 1a3 3P a, 1a2 2 P3
= 2\/2\22\3171"‘2VA1A3P2+2\/A1A2P3-

Thus, we have established

Ay PA+A, PA,+ A, PA,>2 (VA A, p+VA A, p, +VALA, py)

the desired result.

Additionally, based on the application of the Arithmetic Mean — Geometric Mean
Inequality, equality holds if and only if

_a, 2, _ 4
—A,=—A Al=—A;, and —A=—A
2 3 1 3> 1 2>
a, as 1 3 a, a,
which is equivalent to saying
2 2 2
a; A Ay d a, _ A
2 2
AT a A a’ A

which implies

a3_\/}T3 as \/E a, \/PTz

, —=——,and -,
a, JA,7 a; A, a, A,
or equivalently a,:a,:a;= \/2\71 \/T2 \/)\73 .
Also, by the application of the inequalities essential to proving the Erdés-Mordell

Inequality, we know that P must be the circumcenter of A 4, 4, 4, for equality to hold.
Thus, the criteria for equality are established, and Theorem 4.1 holds.
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After investigating Erdds's conjectured inequality, we might wonder if the inequality
would apply when considering other aspects of the triangle. This brings us to Barrow's
Inequality:

Theorem 4.2. Barrow's Inequality. [ EMB and LEE |

Given A\ A, 4, A, and interior point P of & 4, 4,4, . Let W, be the point on the side
of AN A, A,A, opposite 4; such that PW, bisects the angle whose vertex is at P and

whose sides are formed by the two vertices of A A4, 4, A; other than 4,. Further, let
Wi:P Wl' . Then

PA,+ PA,+PA,;=2(w,+w,+w,) .

Figure 4.1

Comment.

We offer two proofs of Barrow's Inequality. The first is an adapted blend between the
original proof by David F. Barrow [ EMB ] and that of Hojoo Lee [ LEE ]|. The second
is adapted from that of L. J. Mordell [ MOR | and includes a condition for equality (the

triangle must be equilateral and P must be its incenter).

Before proving Barrow's Inequality, we need a few results.
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Lemma 4.2.1. | LEE |
Let x,»,2,0,,0,,0,>0 such that 6,+6,+0,=1 . Then

X+ Y +2°22(yzcos0,+xzcos0,+ x ycoss) .
Proof of Lemma 4.2.1. Based on [ LEE |

We first aim to show that

x>+’ +2°=2[yzcos(0,)+x zcos(0,)+x ycos(6;)]
=[z—[xcos(0,)+ycos(0,)]['+]xsin(0,)— ysin(0,)]

5.
Notice 0,+0,+0,=T means 0,=m—|0,+0,].
[z—[xcos(0,)+ycos(0,)]]*+[xsin(6,)— ysin(0,) ]
= 22 —2z[xcos(0,)+ycos(0,)]+[x cos(0,)+ ycos(6,)]
+ x*sin’(0,)—2 x ysin (6,)sin (0,)+ y’sin’(6,)
= 2’ —2xzcos(0,)—2yzcos(6,)
+ x”cos’(0,)+2x ycos(6,)cos(0,)+ y* cos’(6,)
+ x*sin’(0,)—2 x ysin (6,)sin (0,)+ y’sin’(0,)
= 224+ y7sin®(0,)+ y’cos’(0,) ]+ x*sin’(0,)+ x* cos’(0,) ]
+ —2xzcos(0,)—2yzcos(0,)
+ 2x ycos(0,)cos(0,)—2xysin(0,)sin(0,)
= 22+ y°[sin?(0,)+ cos’ (0, )]+ x*[sin’(0,)+cos’(6,)]
+ —2xzcos(0,)—2yzcos(0,)

+ 2x y[cos(0,)cos(0,)—sin(0,)sin(0,)]

= 24y +x’=2xzcos(0,)—2 yzcos(0,)+2 x ycos(0,+06,)
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Since ™—[0,+0,]=6, and cos(m—x)=—cos(x) , we have cos(0,+0,)=—cos(0,)
and

xz—i-yz+zz—2xzcos(@z)—Zyzcos(Q1 )—2xycos(6,)
= x4+ Y +22=2[yzcos(0,)+x zcos(0,)+x ycos(6;)] .
Thus, we have shown
x4+ Y +2°=2[yzcos(0,)+x zcos(0,)+x ycos(0,)]
= [z—[xcos(0,)+ ycos(6,)]] +[xsin(6,)— ysin(6,)
> 0,

so that x4+ Y +2°=2[ yzcos(0,)+x zcos(0,)+x ycos(6;)] .
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Lemma 4.2.2.

Let a,b,c, 01,92; 93>O such that 91+92+63:Tr. Then

a cos(@l)+bcos(92)+ccos(93)sl be ac ab
2\ a b c
Proof of Lemma 4.2.2. Based on

We take x:ﬂb_c, V= %,and Z:w/a_b in Lemma 4.2.1. Then we have
a c

Z(a cosf,+bcosf,+ccos 93)

2 \/?00591+\/?00592+\/?c0s93)

ac lab be |ab be |ac
2(1} b A A cos 0,+4 e cos 0,+1] " \l b 00593)
2 2
< be ac ab
a b

+
c
bec ac ab
—+
a

2
+

c

Thus, we have

2 acos@l+bc0592+ccose3)sb—c+% @,
c
or equivalently,
1({bc ac, 6 ab
cosO,+bcosO,+ccos 0, <—|—+—+—
a 1 2 c 3 2( a b c ),

which proves the lemma.
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Lemma 4.2.3. [ EMB and LEE |

Given AN ABC,let W denote the intersection of the bisector of £ ABC with AC ,
and let 0=m £ ABC . Then

B
_2(AB)(BC) 0
BV =="+Bc |2
C
w
A
Figure 4.2
Proof of Lemma 4.2.3.

This is an original proof.

First, notice if 4B =BC , then the result is trivial, as we would have A A BW is a right
triangle and

2

9)_2(AB)(AB)COS(9).

BW=ABcos| 2
Cos(z AB+AB

Thus, we proceed assuming that 4B #BC .

By the Law of Cosines, we have

(AW)=(AB\+(BW)—2(4B)(B W)cos(g)
and
(CW)=(BCY+(BW)=2(BC)(BW )cos (g) .

Using the fact that the angle bisector of a triangle splits the opposite side of the triangle
and the sides of the angle proportionally, we have

cw_BC

1 AB or equivalently (AW (BC)Y'=(CW)(AB) .
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To apply this relation, we first note:

(AW)(BC)Y=(AB(BCY+(BW)(BCY—-2(AB)(B W)(BC)zcos(g)

and

(CW)(AB)=(BCY(ABY+(BW)(4B)'—2(BC)(BW)(4 B)Zcos(g) ,

and setting their right hand sides equal, we get

(AB)(BCY+(BW)*(BCY—2(AB)(BW)(B C)zcos(g)

= (BCY(ABY +(BW ) (ABY—=2(BC)(BW)(4 B)zcos(g) :

which means

(BW)(BCY—2(4B)(B W)(BC)zcos(%)

_ (BW)*(AB)*-2(BC)(B W)(AB)Zcos(

N D

Dividing through by (BW)* gives

2(AB)(BC)2cos(§) 2(BC)(AB)2cos(9)

2

(BCY - (AB)—

BW BW

Manipulating this equation gives

2(AB)(BC)2cos(9) 2(BC)(AB)2cos(Q)

(BCY—(4B) = 2)_ 2/,
BW BW
so that
(BC—AB)(BC+AB) = 2(AB)(BC)COS(%)-(B(;_V;B)
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BW
BC—AB)BC+AB

Multiplying both sides by ( ) yields

N|D

BC+A4B

M| D

2(AB)(BC)cos(

2(AB)(BC)COS(—)
]

AB+BC
2(AB)(BC)C (9

1B+ BC S —) , and the lemma holds.

Thus, we have established B W = 2
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First Proof of Theorem 4.2. Based on [ EMB and LEE |

We let 291:7114 AZPA3’ 292=m4 AIPA3,and 203=m4 AIPAZ.

By Lemma 4.2.3, we have

_2(P4,)(P4,)
w,=——-——"cos(0,),
P A+ P A,
2(P 4,)(PA4,)
e el VA Sl AP
w, PA+PA cos(0,), and

2(P4,)(P4,)

= = 0.).
W=, 0
Figure 4.4
So, we obtain
w,tw,+w,
2(P 4,)(P 4,) 2(PA,)(PA,) 2(P A,)(PA4,)
= T T 08 (0,)+ —— 2 cos(0,) + ——— 2 cos (0
Papa, OO g, coslOr o eos(0y)

= (ﬁ)(PAz)(PAQCOS(Ql)

2z
PA+P A,

)<PA1><PA3>cos<ez>

. (ﬁ)(mmmmsw

And by the Arithmetic Mean — Geometric Mean Inequality's reciprocal

1

= JPa,)(P4,)

1

T (P4 (Pay)

1
+ m(PAI)(PAz)COS(Qs)

(PAz)(PA3)COS(91)

(PAl)(PA3)COS(92)
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= \/(PAz)(PA3>COS(91)
+ \/(PAl)(PA3)COS(92)
+ \/(PAl)(PAz)COS(93)

By Lemma 4.2.2, with a=\(P A4,)(PA,), b=\(PA4,)(PA4,),and ¢c=\(PA,)(PA4,)

we get

V(P A4)(PA)N(P A P4,

= 2P A4;)(P 4y)

V(P A4,))(P A,V (P A,P 45)

2V(P A4,)(P 45)

V(P 4)) (P A)V(P A4, P 45)

2V(P 4,)(P 45)

PA, PA, PA,
+ + :
2 2 2

Thus, we have

PA, PA, PA,
wtw,+w,< > + 5 + >

Multiplying through by 2 gives the desired result,

PA+PA,+PA=2(w+w,+w,) .

Comment.

It is worth noting that Barrow used this proof as his proof of the Erdés-Mordell
Inequality, as we have w,= p, for each i.
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Second Proof of Theorem 4.2 Based on [ MOR |

Let P, denote the distance from P to the side of 2\ A, A, 4; across from vertex 4, and
let 20,=m £ A,PA, 20,=mZL A PA; and 20,=m £ A P A4,

Before proceeding, we say that Mordell [ MOR | adds a condition for equality, namely
the triangle must be equilateral and P must be its incenter.

Figure 4.5

We begin by considering the area of A 4, P A; . On the one hand, we have:
Area A A4,P A,

PA,- PA,sin(20,)
2

2 PA, PA, sin(@l)cos(el)
2

PAZ-PA3sin(91)cos(91) )
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Figure 4.6

On the other hand, we obtain:

Area A A4,P A,
= Area A A,PW +Area A AP W,
Since PW | bisects £ A,P A, , we get

PA,-w,sin(0,) N PA,w,sin(0,)
2 2

(PA,+PA,)w,sin(0,)
2

And by the Arithmetic Mean — Geometric Mean Inequality, this becomes

2\ P4, PA;w,sin(0,
2

= wVPA4, Pd;sin(0)),

with equality requiring PA4,=PA, . Thus, using our expressions for Area AA4,P A,
we have
PAZ'PA3SID(91)COS(91)ZW1 V PA2PA3SIH(91) )

so that we conclude

w, <\ P4, PA;cos(0,) . (4.2.4)
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Similarly, we obtain
w,<+ PA, PA, cos(@z) and  w3=<y PAIPAzcos(93) , (4.2.4)
with PA,=PA; and PA,=PA, as necessary requirements for equality, respectively.

We notice

2

0 < (VPA,—VPA,cos(0,)—V PA;cos(0,)) (4.2.B)
+  (VP4,sin(6,)—VP4,sin(6,)]
= PA,+ PA,c0s’(05)+ PA;cos’(0,)
+ —2+ P4, PA,cos(05)—2+ P4, PA;cos (0,
+ 2+ P4, P4;cos(0,)cos|05]
+ PA,sin*(6;)+ PA,sin’(0, |
+ —2+ P4, P4;sin (0,)sin (0;)

= PAI+PA2[sin2(03)+cos2(93)]

+ PA3[sin2(92)+cosz(92)]
+ —2+PA, P4,c0s(05)—2+ PA, PA;cos (0,

+ 2\/PA2PA3cos(92)cos(93)
+ —2+ P4, PA;sin (0, |sin (0;)
And using both the Pythagorean Identity with the identity for the sum of angles, we have

= PA,+PA,+PA,
+ —2+/ P4, PA,cos(05)—2+ P4, PA;cos (0,

+ 2\ PA4, PA4;cos(0,+0,)
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Since 20,+20,+20,=21  we have 0,+0,1+0,=1 50 that
= PA,+PA,+PA,
+ —ZMCOS(&)—%/mCOS (92)
+ 2MCOS(W—91)
And since cos(m—x)=—cos(x) , we get

- PA,+PA,+PA,

+ —2+PA, P4,c0s(0;)—2+ PA, PA;cos (0,
+ —2+/ P4, PA;cos|0,|
Which from (4.2.4)

< PA,+PA,+PA,—2w,—2w,—2w, .
Thus, we have established PA,+PA,+PA,—2(w,+w,+w;)=0 | so that
PA,+PA,+PA =2 (w,+w,+w,)

and the inequality is proven.

(4.2.C)

For equality to hold overall, we need equality in (4.2.C), which requires equality in

(4.2.4) so that
PA,=PA,=PA, .

For equality to then hold in (4.2.B) given the fact above, we need

\/PiAlsin(ég)— PAlsin(Qz)ZO which means  sin(0,)=sin(0,)

so that 0,=0; or 0,=1m—0, .
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Additionally, for equality to then hold in (4.2.B), we need
VPA4,— P4, cos(93)— P4, cos(92)= 0.
If 6,=1m—05, then recalling cos(x)=—cos(m—x), we have

\/PiAl— PAlcos(93)— PAlcos(Gz)

\/PiAl— PA, cos(93)— PA, COS(7T—93)

VP4, - PAlcos(93)+ PAlcos(93)
-
> 0,
so we cannot get equality in this situation. If, however, 0,=0;, we have

VPA,— P4, cos(05)— P4, cos |0,

\/P—Al— PAlcos(93)— PAlcos(93)
\/PA1(1—2005(93))
so that \/P—Al— PAlcos(93)— PA, cos(92):O requires

M(l —2005(93))20 )

3

1
This means €0s (93)25 , so that 932% . It immediately follows that QZZE
Since 20,+20,+20,=21 (see Figure 4.7), it follows that 912% . Thus,

23—”:m4 A,PA=m/ A PA=m. A PA,.
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A._.

Az
Figure 4.7

Therefore, equality overall requires both
PA,=PA4,=PA,
and

23—”:]1/14 AZPA3:mL AIPA3:mL AIPA2>

so that the triangles A A, P Ay, ANA PAy and A A PA, areall congruent and
1sosceles.

Based on these triangles being congruent and isosceles, we have 4, 4,=4,4,=4, 4,
and

mZ PA,A=m 7 PAA,
mZ PA Ay=m/ PA, A,
mZ PA,A;=m/ PA,A,

This requires & A, A, A; to be equilateral and P to be its incenter.
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Corollary 4.2.4.

Given A A, 4,A;. Let W, be the point on the side of A\ 4, 4, A5 opposite 4; such
that 4,7V, bisects the interior angle of A\ A, A, A; angle whose vertex is at 4, , let

w, =AW, let a, denote the length of the side of A\ 4, 4,4, across from vertex 4, let
«; be the interior angle of A A4, A, A; with vertex 4;,and let /; be the length of the
altitude of &N A, 4,4, from A4;. Then

(.4 —_— X I
h,<+a,a,cos (71) , hzs\/a1a3cos(72) , and h3s\/ala2cos(73) ,

with a,=a;, a,=a; ,and a,=a, being necessary conditions for equality in each,
respectively.

Figure 4.8

Proof of Corollary 4.2.4.

The Second Proof of Theorem 4.2 (see 4.2.4) gives

w,<Va,a,;cos

x (x x
1 2 3
> ) , W,< a1a3cos(—2 ) , and w3s\/a1a2cos(—2 ) ,

with a,=a;, a,=a;  and a,=a, being necessary conditions for equality in each,
respectively.

This, coupled with #,<w,, h,<w, and #;<w; (as the altitude is the shortest distance
from a vertex to the opposite side of a triangle) yields the desired result. We comment
that in the situation where the triangle is isosceles, the angle bisector from the vertex
angle and the altitude from the vertex angle coincide, establishing the condition for
equality.
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Since we have investigated the distances involving P with the perpendiculars and P with
the angle bisectors, one might wonder about P with the midpoints.

Example 4.3.

An Erdds-Mordell form inequality does not hold when pairing P with the midpoints of a
triangle.

Consider A\ A4, 4, A5, an equilateral triangle with side lengths of 12. Let M, be the
midpoint of the side of A\ A, 4, 4, opposite vertex 4, .

Ay
M, P M,
Aq P A
1
Figure 4.9

We note that A142M3M2 , A143,M3M1 , AAIMQMI , and AM1M2M3 are all
equilateral with side lengths of 6. This can be used to determine the values below:

PM,=33 P A,=V(3\3)+6*=\63=37
PM,=3 P A,=33
PM,=3 P A;=37 .

Thus, we have P M+ P M,+PM,=33+3+3=3V3+6~11.20
and P A,+P A+ P A;=3VT+3V3+3V7=6V7+33~21.07 .

From this, we gather that

2(PM,+PM,+P M)~2240>21.07~P A,+P A,+P A,

so that an inequality of the form 2(P M ,+P M,+P M,)<P A+ P A,+P 4; does not
hold for midpoints.

84



5 Inequalities Resembling the Erdos-Mordell Inequality

In this section, we investigate inequalities involving triangles whose general structure
resembles that of the Erdos-Mordell Inequality.

We begin by outlining the examples, for ease of reference.

Given A A, 4, A; and interior point P, let @, denote the length of the side of

AN A, A, A; across from vertex A4, for each 1<i<3,let p, denote the distance from P
to the side of 2\ 4, 4,4, opposite vertex 4, for each 1<i<3 and let K be the area of
A A, 4,4, . Then the following inequalities hold:

Example 5.1. a, PA+a,PA,+a,PA,24K

Example 5.2. p\PA+p, P A+ ps P A=2(p, p,+ p,pst p ps)

Stated and proved in [ OP1 ].

Example 5.3. PA-PA,PA,28p,p,p;

Stated and proved in [ OP1; KAN pg 87 and 115 ].

Example 5.4. PA,-P A4, P A;>(p,+p3)(p,+ ps)(p,+p,)
Stated in [ MOR; OP2; KAN pg 88 |.

Proved in | MOR; OP2 ].

Example 5.5. PA-PA,+PA,-PA,+ PA,-P A,

= (p2+p3)<p1+p3)+(p2+p3)(p1+p2>+(p1+p3>(p1+p2) .
Stated in [ OP2; KAN pg 88 |.

Proved in [ OP2 |].
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Example 5.1.

Given A A4, A, A; and interior point P, let @, denote the length of the side of
A A, A, A; across from vertex A4, for each 1<i<3,and let K be the area of
A A, A, A5 . Then

a, PA+a,PA,+a,PA,>4K .

Comment.

We present two solutions to this problem. Although neither is based off any solution in
particular, they use concepts seen in numerous references, including those of Oppenheim
[OP1].

Before beginning, we let P, denote the distance from P to the side of A\ A, A4, 4, across
from vertex 4, .

First Solution to Example 5.1. A

Figure 5.1

We first notice that 2K =a, p,+a, p,+a; p; .

It is clear that PA,+p,=h,, since h, is the shortest distance from 4, to 4, 4;. Thus,
multiplying through the inequality by @, , we get

a,PA+a, p,za,hj=2K or a, PA,=2K—a,p,.
Similarly, we obtain
a,PA,22K—a,p, and a;PA;=2K—a,p,.

Summing these inequalities gives

a,PA,+a,P A,+a,PA,26 K —(a,p,+a,p,+a,p;)=6K—2K=4K
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Second Solution to Example 5.1.
With a slight modification from Corollary 3.5, we have
a,PA,>a,p,+ayp,, a,PA,za,p,+a,p, and a,PA;>a, p +ta,p,.

Thus,

a,PA,+a,PA,+a,P A, > (a,p,+a,py)+(a, p,+a,p,)+(a, p,+a,p,)
= 2(a, p,+a,p,+a,p,)
= 2(2K)
= 4K,

so the result holds.
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Example 5.2. [ OP1]

Given A A4, A, A; and interior point P, let @, denote the length of the side of
AN A, A, A; across from vertex A4, for each 1<i<3 andlet p; denote the distance
from P to the side of 2\ 4, 4,4, opposite vertex 4, for each 1<i<3. Then:

PP A+ p,PA+ ps PA=2(p, pyt pypstpips).
Solution to Example 5.2. Based on [ OP1 ]

By Corollary 3.5, we have

a +a a +a a +a
PA> 2P Tds Py . PA> 1 P17 A3 P _and PA,> 121 zpz.
a, a, as
So, we obtain
p\PA+p,PA)+p, P A,
- a, p,ta, p; a, py+a;p; a,p,ta,p,
= 1 2 3
a, 2 3
By rearranging terms
a, 1 a; 2 a, 3
= —t— PPttt | Pt T P Ds
a, 2 2 3 3 1

Through the use of the Arithmetic Mean — Geometric Mean Inequality

= 2\/ﬁ&p1 +2\/ p2p3+2\/ p1p3

2p,p,+t2pps+2pps,

so that we have established p,P 4,+ p, P A,+ p, P A,>=2(p, p,+ p, ps+p, P3) .
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Example 5.3. [ OP1; KAN pg 87 and 115 ]

Given A\ A, A, A, and interior point P. Let a; denote the length of the side of
AN A, A, A; across from vertex A4, for each 1<i<3 andlet p; denote the distance
from P to the side of 2 4, 4,4, opposite vertex 4,, for each 1<i<3. Then:

PA-PA,PA=8p, p,p,.
Comment.
We offer two solutions, the first being more of an original solution.
First Solution to Example 5.3.

From Corollary 3.5, we have

+ + +
PA12a2p3 as p, ’ PA22a1p3 as P, and PA32a1p2 a, py .
a, a, as
So
PA-PA,PA,
a,p;ta;p, ) a,pyta;p, ‘ a,p,ta,p,
B a a, a;

2 2
(ala3p2p3+a3plp2+ala2p3+a2a3plpS)(a1p2+a2 pl)
a;a,d,

2 2 2 2 2 2
a1a3p2p3+ala3p1p2+ala2p2p3+a1a2a3p1p2p3
a,d,da, a,a,d, a,a,da, a,a,a,

2 2 2 2 2 2
a1a2a3p1p2p3+a2a3pl p2+a1a2p1p3+a2a3p1p3
a;a,a, a;a,d, a,d,d, a,a,d,

2 2 2
a1P2P3+a3P1P2+a1P2P3
a, a, as

+p,pyD;

2 2 2
aspyp; n a, p Ps n a, p,Ps
a, a; a,

+ PiPrPsyt
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By regrouping

2 2
a1p2p3+a2p1p3
a, a

2 2
a3p1p2+ a, p,pPs
a, as

2 2
a,p;ps i asp,p»
a, a

+

= 2p p,pyt +

By the Arithmetic Mean — Geometric Mean Inequality

\%

2 2 2 2 2 2
a1p2p3'a2p1p3+2\/a3p1p2.azp1p3+2\/a1p2p3_a3p1p2
a, a,

2p1p2p3+2J
a, a; as a,

= 2 py Py s+ 2\ p; i pa+ 23 Pl pa P32 pi i 3
= 2p PPyt 2P pyps 2P P32 PPy s
= 8p1p2p3.

Thus, we have established P A,-P A, P A;=8p, p, p; .
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Second Solution to Example 5.3. Based on [ OP1]

Again, we start with the result of Corollary 3.5:

PA12a2p3+a3pz , PA22a1p3+a3p1 _and PA32a1p2+a2pl .
a, a, a;
Then we have
PA-PA,PA,
S a,p;tasp, _ a,psta,p, . a,p,ta,p,
N a, a, a,

1 1 |
= a—l(azpﬁaspz)-a—z(alp3+a3p1)-a—3(a1pz+azp1)

By the Arithmetic Mean — Geometric Mean Inequality, we have

2 2 2
> —\/a2p3a3p2'—\/a1p3a3p1'—\/a1pzazpl
a, a, as;

8 a2a2a2p2p2p2
= 14231 Py P3
a,a,a,

8
= a1a2a3(a1a2a3p1p2p3>

= 8piPyDs .

Thus, we have established P A,-PA, P A28 p, p, p, .
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Example 5.4. [ MOR; OP2; KAN pg 88 |

Given A A4, A, A; and interior point P, let @, denote the length of the side of
AN A, A, A; across from vertex A4, for each 1<i<3 andlet p; denote the distance
from P to the side of 2\ 4, 4,4, opposite vertex 4, for each 1<i<3. Then:

PA,-P Ay P A;=(p,+ps)(pi+p5)(pi+p,).
Comment.
We first need two lemmas.
Lemma 5.4.1. [ MOR |

Let a, b, and ¢ be positive, real numbers, and let 0 <x <27 . Then

a’+b +2abcos(x)=(a+b) cos’| = 5

5 +(a—b)zsin2(—) _

Proof of Lemma 5.4.1.
This is an original proof.

(a+b) cos’ % +(a—b) sinz(%)

1+cos(x)

(a’+2ab+b°) +(a*—2ab+b%)

1—cos(x)
2

a*+2ab+ b’ —a*+2ab—b*
2

a*+2 ab+b2+ a’*—2ab+h*
2 2

4ab
5 )cos(x)

os(x)+ )COS(X)

2 2
_ 2a —2|-2b +

= a’*+b°+2abcosx,

which establishes the desired result:

% +(a—b)2sin2(§) ,

a’+b*+2abcos(x)=(a+b) cos’
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Lemma 5.4.2. [ MOR |

o0 | —

Let x,y,z>0 such that x+y+z=% . Then sin|x|sin(y]sin(z)<
Proof of Lemma 5.4.2. Based on [ MOR |

We first note that ZZ%—(X-FJ/) , and therefore sin(z)= Sin(%—(x+y))2008(x+y) )

Thus, we have sin(x]sin(y|sin(z)=sin(x|sin(y)cos(x+y]) .
Now, by using the well-known identity

SiIl(A)COS(B):%Sin(A-FB)-i-%SiH(A—B)

with A=y and B=x+y, we have
sin(x)[2sin(y)cos(x+y)]
= sin{x|[sin(x+2 y)+sin(—x)]
and since sine is an odd function

= sin{x)[sin(x+2 y)—sin(x)].

Now take f(x,y)=sin(x|[sin(x+2 y)—sin(x)].
To find the maximum of £, we investigate where its partial derivatives are zero:
fy(x,y)=sin(x)[2005(x+2y)]=0 ,

which means sin(x)=0 or cos(x+2 y)=0, so that on our interval of consideration,

x+2y=%,
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Now, we also find, under this condition

f.(x,p)

sin(x)[cos(x+2 y)—cos(x)]+cos(x)[sin(x+2 y)—sin(x)]

= sin(x)[0—cos(x)]+cos(x)[1—sin(x)]
= —sin (x)cos(x)+cos(x)—sin(x)cos(x)
= cos(x)—2sin(x)cos(x)

— cos(x)[1—2sin(x)].

. 1
So that /. (x, ¥)=0 means cos(x)=0 or sm(x):E.

Thus, on our interval of consideration, sin (x) as the other yields the boundary as

=3,
solutions.

To find the absolute maximum of f, we check the boundary and this critical point. First,
the boundary is the rectangle formed by x=0, y=0, XZ% ,and y= % :
Recalling f (x,y)=sin|(x|[sin(x+2 y)—sin(x)]:

710, y)=sin (0)[sin(2 y)—sin(0)]=0

£x,0)=sin (x)[sin (x)—sin(x)]=0

(el (5 2o}l o

f (x,%)=2 sin(x|[sin (x+ 77)—sin (x| =sin (x)[—sin(x)—sin (x)] <0

So, on the boundary, the function never exceeds zero.
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) 1
At its critical value, though, we have sin (X)ZE and x+2 y:% so that

f(Critical):%[sin(%)—%]zzl1—E]ZZ.

Thus, we know f attains its maximum value in our desired region at this critical point, and
we have

% > f(x,y)

= sin(x|[sin(x+2 y)—sin(x)]
= sin(x)[2sin(y]cos(x+y]]
= 2sinfx|[sin(y]cos(x+y]]
= 2sin(x|sin(y)sin(z],

so that

2sin(x)sin(y]sin(z)<

2

PN

which means
) . ) 1
sm(x)sm(y)sm(z)Sg,

and the lemma holds.
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First Solution to Example 5.4. Based on [ MOR |

We begin by denoting P, and P; as the feet of the perpendiculars from P to 4,4,

and 4,4, respectively. Also, let &; be the interior angle of the triangle having vertex
A

i

Aq

ey
wo

Figure 5.2

Noting that P P, 4, P, has opposite angles that are both right angles, we realize that it

must be cyclic. Additionally, P 4, is its diameter. By Lemma 2.4 applied to
AA1P2P3 , WEC get

P,P,=P A;sin(x,) .

Now, we notice that P P; 4, P, must have its interior angles add to 217 , so that
m Z P,PP,=m—«, . Recalling a trigonometric identity, we know
cos(m £ P,PP,)=cos(m—«,)=—cos(«,) .
When applying our the Law of Cosines to 2 P P, P; to where we left off, we get:
(PA1)ZSin2(O‘1>

= (P2P3)2

= pitpi—2pypscos(m—a,)

= P§+P§+2P2P3COS(O‘1)

By Lemma 5.4.1

04
= (pz+p3)20052 — +(p2_p3)25in2(%)
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= (P2+p3)20052(%) s

. 2 .2 &g )
since (p,— p;) sin —| is non-negative.

. %
Thus, we have (P 4,)’sin*(«,)=( p, +P3)20052(71) , or equivalently

(PAl)sin(al)z(p2+p3)cos(%) .

By the double-angle identity,
.| x x
2(P A1)51n(71)cos (?)Z(p2+p3)cos(71) ,

which yields

2(pA1)ZM

A
mi|—
S5

Similarly, we obtain

+ +
2(PA2)Z pl p3 2(PA3)Z pl p2
sin & and sin &4
2 2
Thus, we get
8P A-PA,PA,

= (2PA1>(2PA2)(2PA3)
Pyt ps Pt p; pitp,

X, . &, . (08
) S ) Sin 5

v

sin
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X & & T o .
Now, 7+7+7—3 since &;, &, ,and &; are the interior angles of the original

triangle. Hence, we know Lemma 5.4.2 must apply to the term in the denominator, so
that
1

sinﬁsin&sin%<l ivalentl 16 16" x
2 2 g |~ Orcduivaiently sin(j)sm(f)sin(f)

Therefore, we have

>8

p,tp p,tp pitp
: 0(3 1 : l - 28(p2+p3)(p1+p3)(p1+p2)
71) sin 7)

& sin %
2

8P A-PA,PA=

3

sin

so that
8P A-P Ay PA;28(p,+ ps)(pi+p3)(p+ 1),
which means
P AP Ay P A>(p,+ps)(p+ps)(p+p,),

and the result holds.
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Second Solution to Example 5.4. Based on [ OP2 ]
Based on Corollary 3.5, we have

a,PA=za,p,+ta,p,, a,PA,>a, p,+ayp,, and ay,PA,>a, p,t+a,p,,
as well as

a,PA,za,p,+a,p,, a,PA,2a,p,+asp,, and a,PA;>a p,+a,p,.

Summing those inequalities involving P4, , we have

2a, PA, > aypytaypyta,pytagp,
_ a,(p,+py)+ay(p,+py)
_ (a,+a,)(p,+ py).

So we get

2a,PA,=(a,+a,)( p,+p,;).
Similarly, we obtain
2a,PA,=(a,+a;)(p,+p;) and 2a,PA,=(a,+a,)(p,+p,).

Thus, we have
8a,a,a,PA, PA, PA,

—  (2a,PA4,)(2a,P4,)(2a, PA,)

> (aytay)(py+ps)la,+a;)(pi+ps)a+a,)(p+p,),

= (a,+a;)(a;+a;)(a,+a,)(py+ps)(pi+ ps) P+ p)

and using the Arithmetic Mean — Geometric Mean inequality gives

= 2Ja2a3~2\/ala3‘2\/a1a2(p2+p3)(p1+p3)(p1+p2)
= 8vVaiasa5( p,+ps)(py+p3)(pi+p,)
= 8a,ayas(p,+ p;)(p+ps)(p+p,).
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So we have
8a,a,a;PA, P4, PA;=8a, Clza3(p2+p3)(pl +p3)(p1+p2) )
and when we divide each side by 8a,a,a; , we get our desired result:

PAI-PAz-PA3Z(p2+p3)(p1+p3)(p1+P2).
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Example 5.5. [ OP2 ]

Given A A4, A, A; and interior point P, let p; denote the distance from P to the side of
A A, A, A; across from vertex 4;. Then

PA-PA,+PA,-PA,+ PA, P A,
= (p2+p3)(p1+p3)+(p2+p3)(p1 +p2)+(p1+p3)(p1+p2) .
Solution to Example 5.5. Based on [ OP2 ]

Though this solution is based on Oppenheim's [ OP2 |, his omits many of the details, and
does not discuss each case.

Let a; denote the length of the side of A 4, 4, 4; across from vertex 4;. Without loss
of generality, assume a,=a,=a; . First, we notice that

(py+p3)(py+ p3)+(pot p3)(p+po)+(py+ py) (2 + py)

P1 Patpapst pipst p3

+ P1 P2+ ot Py Pt pa s

* pit PPt PPt paps

= pitptpit3(pipat pipstpaps) .

Thus, to prove the desired inequality, it suffices to show
PA-PA,+PA,-PA,+PA, P A,
> pitptpit3(pipat pipstpaps).

To do this, we use Corollary 3.5, which gives

+ + +
PAIZazpza as ps , PA22a1p1a aSpS,and PASZalpla a, p,
1 2 3

3

in addition to

a,pstasp, a,pstasp, a,p,ta,p,

PA,> , P> and PA>
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so that

a,p,taspy a,pyta,p,

a, a,

PA,= max

a,p,taspy a,psta;p,
a, ’ a,

PA,> max ; and (5.5.4)

ap,ta,p, a,p,ta,p,
a, ’ a,

PA,> max

To complete this proof, we will consider cases based on the ordering of p,, p,,and
P5 . Cases are handled similarly. In each case, we use the maximum option to pair the
larger values of @, and p; together and the smaller values of @; and p; together.

Case 1. P ZD,Z D5 .
Here, we choose

a, p,ta, p; PA >a1p1+a3p3 and PA >a1p1+a2p2
2= ) 3= .

so that

P A,-P A,+PA,-PA,+PA, P A,

a,p,tasps\| a,p,+a;p;
B a a,
. a,p,tasps\la, pt+a,p,
a a,
. a,p,raspy\la, pta,p,
a, a;
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2 2
a,a,pypytaasp,psta,asp, pst+asp;
aa,

)
a\a,pypyta,prtaaspypstaasp; ps

_l’_
a,a,
2 2
n a,pyta,a,pyp,ta,azp,pstaasp, p;
a,a,
2
= PP 2 py pot 2 py pyt—
12a123a213a1a23
2
a, a, o a,
+ — D\t Pyt Pt PaDs
a; a,d, a,
22
+ 1

P+ p ot b Dt Py p
a2a3 1 a3 1£72 a2 1 3 213

And by rearranging terms, we get

2 2
a; 2 a, as -
pit Pt Ds

a,a; a,d, a,a,
a, a as; a, as 4a,

+ l+—+—|p, p,H|1+—+—|p Py +H|1+—+—|P,p; .
as 4 2y 4y 1 4

We need to show this is at least pi+ p;+ pi+3( p, pat pi ps+ P2 ps) -

To do this, we will show that

2 2 2

a, 2 a, as 2 2 2

pit Pyt Py=Zp it Pyt ps
a,d, a,a, a a,

1

and

a, a
1+;2+a_1 PP+ PPt P20:=3(p Pyt Py 3t Dy 0s)
3 a3

a, a
1+—=+-L
2 @

a, a
1+—=2+-2
1 4
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. a; 2 a, o as 2 2 2
First, to show Pt )25 D3Zpitpytpy
a,a; a,d, a,a,
Let
a2 a2 612
1 2 3
A= , B= ,and C= .
a,a; a,d; a,a,

. 2
Then, since @,=a,=a,, we know a;>a,a; so that

A=>1.
2 2
a; a
_|_
a,d; a,a;
with the use of the Arithmetic Mean — Geometric Mean Inequality yields

2 2

aa a a
A+ B2y =2, [T 250

a,a,a; as

A+B=2.

We also have A+ B=

. . 2
, and since a,=a,=d; meaning a,a,>a; coupled

so that

a a ) ) .
We also have A+ B+C=——+ + , and the Arithmetic Mean — Geometric

2 2 2

a,a,a
A+ B+C=3{—4——==3,

a,a,a;

A+B+(C=3.

Mean Inequality tells us

so that
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This combines to mean

a2 a2 a2
12 2 2 3 2
pit Pyt D3

a,a, a,a; a,a,
= ApitBp+Cp;
= Api—4p
+  Apy+Bp,—Api—Bp;
+ Ap§+B p§+Cp§

= A(pi=p2)+(A+B)(pi= p3)+(4+B+C) p;
Since p,=p,=p;, weknow pi—p3>0 and p;— p3=0, so
2 2

> 1(pi—p2)+2(ps— p3)+3 p3

= Pi— D2 pi—2pi+3ps

2 2 2
= pitptps,
So we have
&2 2
12 2 2 3 2. 2, 2, 2
t Pt ps=pitptps.
a,a; a,a, a,a,
To show
a, a as; a as 4a,
l+—+—|p,py+|1+—+—|p, pyH|1+—+— p2p323(p1p2+p,p3+p2p3):
as 4, a, 4a, a, a

We begin by realizing that this case requires P, P, =P, P;= P, Ps , and we let
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a, a
2 1 .
Then, we have 4=1+—+—, and since a,=a,=a;, we know
as as

A=3.

a, a, a, a
We have A+ B=2+ a_2 + a—1+ a—3 + a—l , and the Arithmetic Mean — Geometric Mean
3 3 2 2

Inequality coupled with @,>a,>a;, meaning a;>a,a; , tells us

2 2
A+B=2+4{ 028 g4 D 50146,
a,as; a,a,

A+ B=6.

so that

a, ap a a; d; da, . .
We also have A+ B+C=3+—+—+—+—+—+— and the Arithmetic Mean —
as as a, a, a; a

Geometric Mean Inequality tells us

2 2 2
A+B+Cz3+6§/a;aja§=3+6:9,
a,a,da,
so that
A+ B+C=9.
This combines to mean
a, a,; a a; as a,
I+—=+—1p, pyt|l+—+—|p, ps+|{1+—+—p, s
as a4, a, 2 a 1
= Ap, p,+Bp p;+Cp,p;
= Ap,p,—Ap, p;s
+ Ap,ps+Bp ps;—Ap,p,—Bp,p;
+ Ap,ps+Bp,p;+C p,p,

= A(plpz—plp3)+(A+B)(p1p3—p2p3)+(A+B+C)p2p3
Since P, P,=p,Ps= P, Ps,weknow p,p,—p,pP;=0 and p, p;— p, ;=0 s0
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= 3(P1P2_P1P3)+6(P1P3_P2P3)+9P2P3
= 3p,p,=3p,ps+6p, ps—6p,p;+9p,p;

= 3p,py+3p pst3p,ps,

so that

a, a,
l+—+—|p, p,+ P PsT P2 Ps
as da,

a, a
1+=2+—
a, a,

a, a
1+—=+-2
a; 1

> 3(p1p2+p1p3+p2p3)9

as desired.

So Case 1 holds, as we have shown

P A,-P A,+PA,-PA,+PA, P A4,

v

g
+

>

a, a,
1+a—+a— )29 2% piPsT D2 Ps
3 3

a, a
1+—=+—
2 4

a, a
1+—=+=
a, 1

\%

pi+ pa+p3+3(p) pat pi ps+paps)

= (P2t p3) (it )+ (pot p3) (P +p)+(p+p3) P+ po)
which gives

P A,-P A,+PA,-PA,+PA, P 4,

= (py+p3)(pi+ p3)+(pot p3) (P +p)+(p+p3) (P +py)

107



Case 2. p22p32p1 .

Again, we use the maximum option to pair the larger values of a
the smaller values of @; and p; together in (5.5.4):

a +a a +a
PAlz—zpza Ll PA22—1p3a 1 and PA>
1 2

so that

P A,-P A,+PA,-PA,+PA, P A,

- a,p,ta;p,\la, py+a;p,
a, a,
n a,p,tasps\la,p,ta,p,
a a,
. a,psta;p\la p,ta,p,
a, a;

2, 2
a,a,p,psta,asp,p,ta,asps+a;p,p;
aa,

2, 2
a\a,prta,pp,ta,as;p, psta,a; p, ps

a,a;

2 2
a,p,pstaa,p,psta,azp, p,taasp,

a,a;

as as - a§
p2p3+a_ p1p2+a_p3 +ﬁ D1 Ds
1

2 19,
2

a, ., 4 a,
+ —pyt—— PPyt PPt D D;

a; a,a; a,

2
a, a, a; 2
+ PoPst—piDst—pipt Dy
a,ay a, a,
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And by rearranging terms, we get

a, , 43 , 2
= — Pyt — pitp,
a; a,

2 2 2
a a a a a a, a
+ 2+— PaPsT S PPyt — PpP; -
a,a; 1 443 4 14, a4y a4y
We need to show this is at least pi+ p5+ p3+3( p, pat pi ps+ P2 ps) -
Again, to do this, we will show that
a, , d; 20 2 2 2
a_p2+a_p3+p12p1+p2+p3
3 2
and
a a a  a a:  a
1 3 2 1 3 2, A
2+ popyt|—+ +—|p Pyt +—+—|p ;s
203 a, aa; a, 14y dyp 4y

> 3(pypytpi st PyDs).

First, to show —

a, , d; , 2. 2 2 2
pryt—pitpiZpitpytps:
as a,

Let

Then, since a,=a,=a; , we know

A=1.

a, a
We also have A+ B=—+—" and the Arithmetic Mean — Geometric Mean Inequality

as a,
a,a
A+B>242=2=2,
a,a;
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so that
A+ B=2 .

a, a
We also have A+B+C=1+—+— , and the Arithmetic Mean — Geometric Mean

as a,
Inequality tells us
A+B+C=1+282%8 1403,
a,da,
so that
A+B+C=3.
This combines to mean
a, , dz , 2
—Zpi+—pi+
a3p2 a2P3 D,
= Ap>+B p;+Cpi
= Ap>—A4p;
+ Ap3+B pi—Api—Bp]
+ Apf+Bpf+Cpf

= A(p—p3)+(4+B)(pi—pi)+(4+B+C) p;
Since p,=p;=p;, weknow pi— pi=0 and pi—p;=0,so
> 1(py—p3)+2(ps—pi)+3 pi
= prpit2pi-2pit3p)
= pitptpi,
So we have
a, -,

as; 5 20 2 )
—p,t—pytpizpitpyatps.
as a,
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To show

2
as a, a,
+_
a, aa; a,

PPt T a.

> 3(pypytpi st Py Ds)

We begin by realizing that this case requires P, P;=p; P,= P, D3, and we let

2 2
a, a; a, a, a, a
A=2+ , B=—+——+— and C= +—=+—,

a,a, a, a,a; a, a,a, a, a,

2
as

2
a,

a,d;

. 2
Then, we have A=2+ ,and since a,=a,=a; , we know a;>a,a;, so that

A=3.

2 2

a a a a ) ) .
We have A+ B=24+—+—24+——24+1 , and the Arithmetic Mean — Geometric Mean
a,a; a a,da; a,

Inequality coupled with a,=a,=a;, meaning a,=a; , tells us

3 2
A+B=2+4{ 2By 4850 146,
a,a,a, a;

A+ B=6 .

so that

2 2 2

a a a a a a, a ) )

We also have A+B+C=2+——+242 414 5 +—2+—1,andthe Arithmetic
a,a; a, aaz; a, aa, d; da

Mean — Geometric Mean Inequality tells us

A+B+C=2+7

so that
A+ B+C=9.

This combines to mean
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az a2
1 2
aa, da; da,

a; a;
a, aa; a,

2+ pLp3t PPyt P D3

283

Ap,ps+Bp,p,+C p,p;

= Ap,ps;—Ap,p,
+ Ap,py+Bp,p,—Ap ps—Bp,p;
+ Ap,ps+Bp p;+Cp p;

= A(p, ps—p, py)+(A+B)(p, p,— p, p3)+(A+B+C) p, p,
Since p,Ps=p,P,=Z P, P, weknow p,ps—pP,P,=0 and p,p,— P, p:=0,s0
= 3(p2p3—p1p2)+6(p1p2—p1p3)+9p1p3

3p,ps—3p,p,t6p, P,—6p p;+9p, p;

= 3p,p,+3p pst3p,ps,

so that
: a a2 a a a a
1 3 2 1 3 2 1
2+ Papit|—+ t— |t |\—F+—t—|ppP;
a,a, a, aa, a, a,a, a, a
= 3(p1p2+p1p3+p2p3)9
as desired.
So Case 2 holds, as we have shown
PA-PA,+PA,-PA,+PA, P A,
2 Ay o 43 5
= pPit—p,t—Dp;
as a,
: a az a Clz a a
1 3 2 1 3 2 1
+ 2+ Papst| —+ TPttt — PP
a,d, a, aa; a, ad, a; a
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> pi+prApit3(pipat pipst 0o ps)

(P2t p3)(py+ p3)+(pyt p3) (Pt p)+(py+ p3) (P +py)

which gives

P A,-P A,+PA,-PA,+ PA, P A,

= (py+p3)(pi+ p3)+(pot p3) (P +p)+(p+p3) (P +py)
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Case 3. Ps=P,=P, .

Again, we use the maximum option to pair the larger values of @, and p; together and
the smaller values of @; and p; together in (5.5.4):

a,psta;p a,p,tayp a,p,ta,p
> 213 372 P)A22 1173 3 l,and PA3Z 1172 2 1.
a, a, as;

so that

P A,-P A,+PA,-PA,+PA, P A,

a,pstasp,\|a, psta;p,
B a, a,
N a,psyta;p,\la,p,ta,p,
a as;
n a,pstasp,\la, p,ta,p,
a, a,

2 2
a,a,psta,azppsta,asp,pstaspp;
a a,

2 2
a,a,p,psta,p,psta,aspr,taasp, p;

+
a;a
2 2
n a,p,psta,a, pypsta,as p, prtasa;p
a,da,
2
= P p gt ppt——pp
3a113a223a1a212
2
a a, 2, A
+ — PPyt PPty t—piDs
a, a,a; a,
2
a; a, a 2
+ PPyt — D t— PPt Py
a,a; a, a,
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And by rearranging terms, we get

= Pi+ P+ ps

2
a, a, 4
i P

a, da; da,a;

a, a, a

14, a4 2

a;, a, a

1 a4z 4y

PPyt PPyt PP,

We need to show this is at least pi+ p>+ p3+3(p, pat py s+ P2 ps) -

In this case, this merely amounts to showing

2
a;

a Cl2 a 612
3 2 1 3
— 4 +—

a, aas; da

a, a
+24+ 2
aa, a; a,

as a
—+t—+ PPyt
a, 4a; a,da,

PLpst P D>

> 3(p1p2+p1p3+p2p3).

We begin by realizing that this case requires P, P;= P, P;= P P, , and we let

2 2 2

as a a, as a, a, as a, a,
A=2424 70 0 =24 22 4 0 and C=—2 4+ 2421
a, da; da,d, a, a;a; da aa, a; a,

2
as a, a,

Then, we have A=—+—+
a, a; a,a;

, and by the Arithmetic Mean — Geometric Mean

. . 2
Inequality and since @,;=a,=a;, we know a;>a,a;, so that

2
a, a a a,a
A==+24+—L >0,/ 23 41=241=3,
a, 4z a,d; a,a;
Thus
A>3
a, a 4  a a  a
We have A+B=—+2+—4+24 2 +—l,and the Arithmetic Mean — Geometric

a, da; d,ay da; a;d; da,

Mean Inequality coupled with @,>a,>a; , meaning a,a,>a; , tells us
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33 2
6/ A1d)ds; 6 A1a;
A+ B=6 - 4=6 3 >6,
a,a,a, as

A+ B=6 .

so that

2 2 2
a, a a a a a a a, a
We also have A+B+C=—"+4—"2+— 424 2 41 +—2+—1,andthe
a, 4y a,a; a; adaz; d; aa, d; a

Arithmetic Mean — Geometric Mean Inequality tells us

4 4 4
a,a,a
A+ B+C=94——2==9,
a, a,d,
so that
A+ B+C=>9,
This combines to mean
a, a a a @ a
3 2 1 3 2 1 3 2 a4
—+—+ pPopyt|—+ +t—|p st +— PP
a, da; a,d, a, aa; d, aa, a; a,

Ap,ps+Bp, p;+Cp,p,

= Ap,p;—Ap, p;
+ Ap,ps+Bp p;—Ap, p,—Bp p,
+ Ap,p,+Bp p,+C p,p,

= A(p, ps—p,py)+(A+B)(p, py—p,p,)+(A+B+C)p, p,

Since p,Ps=p,P;=p,P,,weknow p,ps—p, ;=0 and p, p;—p,p,=0,s0

\%

3(p2p3—p1p3)+6(p1p3—p1p2)+9p1p2
= 3p,ps—3p,p;t6p, ps—6p p,+9p, p,
= 3pip,t3ppst3p,ps,

so that

116



2

2 2
a, a, a a, a, a a; a, a
—+t—+ PPyt —t +t—\ppst|\—t—+—|piD;
a, dad; a,da, a, a;as; a aa, a; a,
> 3(piptpipstraps),
as desired.

So Case 3 holds, as we have shown

P A,-P A,+PA,-PA,+PA, P A,

2, 2, 2
= Pitptps
2 2 2
a, a, a as a, a a; a, a
+ —+—+ papst|—+ Rl V20 2 t—=+— PP,
a, d; a,da; a, 145 4y aa, a; a,
>

Pit pot pi+3(pypat pips+paps)

(P2+p3)<p1+p3)+(p2+p3)<p1 +p2)+(p1+p3)(l71+p2) R
which gives
PA-PA,+PA,-PA,+PA, P A,

>

(py+p3)(pi+ p3)+(pot p3) (P +p)+(p i+ p3) (P +py)
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Case 4. p12p32p2.

Again, we use the maximum option to pair the larger values of a
the smaller values of @; and p; together in (5.5.4):

a +a a +a
PA12—2p3a P2 PAzz—lpla 2P and PA,>
1 2

so that

P A,-P A,+PA,-PA,+PA, P A,

a,pstasp,\|a, pt+a;p;
B a, a,
. a,pytasp,\la, pta,p,
a a,
. a,p,rasps\la, pta,p,
a, a;

2 2
a,a,p,psta,aspsta,asp,p,+azp,p;
aa,

2 2
a,a,p,psta,p,pstaasp, prta,asp;

a,as

2 2
a\pita,a,p,p,ta,a;p,psta,asp,ps

a,das

2

= O i S R
1 3 al 3 a2 1 2 ala2 2 3

2

a, a, a, -
+ —pDst— Dttt
a; a,a; a,

2
a;

2, a4 a,
Pit—Di Pyt D Pt PPy
a a,

283 3
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And by rearranging terms, we get

a a a
- sy
a,a; a, a,
a a a; as
+ 1+=4—|p, pst| 2 +1+—= | p pyt| ——+—+1|p, ps .
a; a, a, as; a,a, a,a
We need to show this is at least pi+ p>+ p3+3( p, pat pr ps+pa ps) -
Again, to do this, we will show that
al a a
1 2,43 2 Ay o2 2. 2. 2
P\t Dyt P2 pi TPyt s
a,a; a, a,
and
2 2
a, a, as a, as a,
l+—+—|p, pst|—+1+—|p P+ + +1]|p,p;
a, a, a, a, a,a, da,d,

> 3(p1p2+p1py¥p2pﬂ.

2

) a a a
First, to show —— p/+— pi+—=py= p,+ py+p; :
a,a, a, a,
Let
2
a a a
A=—" s B:—3,and C:_z,
a,a, a a,

Then, we have A= l

. 2
, and since a,=a,=a;,we know a;>a,a, , so that
a,a

23

A=1.

2
We have 4+ B= i

a . . . .
+— | and the Arithmetic Mean — Geometric Mean Inequality
a,a; a,

coupled with a@,=a,=a;, meaning a,=a, , tells us
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so that
A+ B=>2.

2
a, as

We also have A+ B+C=
a,ay a; a

2
a,a,a

A+ B+C>3{—+2==3,
a,a,a;

Inequality tells us

so that
A+B+C=3.
This combines to mean
ar a a
— pi+— pit— )
a,d, a, a,
= Api+B pi+C p;
= Api—Ap;
+ Ap3+B pi—Ap>—Bp;
+  Ap3+Bp+Cp;

_ A(p}=pi)+(A+B)(pi— p3)+(A+B+C) p3
Since P1=p;=p,, weknow pi—pi=0 and pi— p;=>0,so
> 1(pi—p3)+2(pi—p3)+3 p;
- Pi— D2 pi—2pat+3p;

2. 2 2
= pit+tptps,
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so we have
2

a; 2,43 o2 Ay 2 2 2
pPit—pst—p=2ptp,tps.
a,da; a, a,
To show
2 2
a, a a; a, as a,
I+=+—1p, ps+|—+1+—|p py+ t——+1|p,p;

a; 2 a, 3 aa, a,a,

= 3(p1p[+p1pf+p2pﬁi
We begin by realizing that this case requires p, p3= P, P>= P, P;, and we let

2 2
a a a a a a
2 1 3 1
A=1+2+1 B=—+14+— and C=——4—2
as a, a, a, a,a, a,d,

+1

2

a, a
2 1 .
Then, we have A4=1+—+— , and since a,=a,=a,, we know
as a

A=3.

a, a, a, a
We have A+ B=2+ a—2 + a—l +a—3 + a_l , and the Arithmetic Mean — Geometric Mean
3 2 2 3

Inequality coupled with @,>a,>a;, meaning a;>a,as, , tells us

2 2
A+B22+4{ 0828y 4 D >0 146,
a2a3 a2a3

A+ B=6 .

so that

2 2
a, a, a, a a a

We also have A+ B+C=3+—4+—"4+_24—L4 2 4 2

a, a, a, 4 a;a, a;d;

— Geometric Mean Inequality tells us

, and the Arithmetic Mean

2 3 3
a;a,as
2 3 3
a,d,da,

A+B+C23+6§/ =3+6=9,

so that
A+ B+C=9.
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This combines to mean

az (12
3 2
+
a,a, a,a

+1

a, a a; a,
l+—=+—|p, py+|—+1+—|p, p,+ 1292
3 a, as;

Ap,ps+Bp p,+Cp,p;

Ap,p;—Ap, p,

+ Ap,p,+Bp, p,—Ap,ps—B p,p;

+ Ap,ps+Bp,p;+C p,p;

= A(p,ps—p,p,)+(4+B)(p, p,— p, p3)+(4+B+C) p, p,

Since P, P3Z P, Pr= P, P, weknow P, p;— P P,=0 and p,p,— P, P20, s0

= 3(p1p3—p1p2)+6(p1p2—p2p3)+9p2p3
= 3pips—3p,p,+6p p,—6p,ps+9p,p;
= 3pipyt3p,pst+3p,p;s,
so that
a, a a a as as
1+=2+— PPt =+1+— PPyt =+ —2 41 P,y D5
a a, a, a, 14, a4
= 3(p1p2+p1p3+p2p3)9
as desired.
So Case 4 holds, as we have shown
PA,-P A,+PA,-PA,+PA, P A,
a’ a a
> —pi+—pit—p,
a,d, a, a,
a, a a a a: a
+ 1+=2+=% | p, pyt| =+ 14— | p, py+| ——+——+1|p, p,
a; 4a, a, as; aa, a;a,
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> pitp+pi+3(pipat pipstPaps)
= (p2+p3)(p1+p3)+(p2+p3)(p1+p2)+(p1+p3)(p1+p2) N
which gives

P A,-P A,+PA,-PA,+PA, P A,

= (p2+p3)(p1+p3)+<p2+p3)(p1 +p2)+(p1+p3)(p1+p2) .
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Case 5. pQZplng, .

Again, we use the maximum option to pair the larger values of a@; and p, together and
the smaller values of @; and p; together in (5.5.4):

+ +
PAzzalpl a3p3,and PA32alp2 azpl.

a, a, as
so that

P A,-P A,+PA,-PA,+PA, P A,

a,p,*tasps\| a,p,+a;p;
B a a,
. a,p,tasps\la, p,ta,p,
a as
. a,p,tasps\la, p,ta,p,
a, a;

2 2
a,a,pypyta,asp,psta asp, pst+asp;
aa,

2, 2
a\a,prta,pip,ta,asp, psta,a;p, ps
a,a

2 2
a,pyp,ta,a, pyta,asp, pstaasp; p;
a,a;

2
a 2

= P a2 py A2 py pat——p
1£72 al 213 a2 1173 a1a2 3

2
a, - a, a,
+ —p,t PPyt Py Pt — P Ps
a; a,d, a,
2
+ At i p ot oy p
a,a, 1P a, 1 a, 2 P37 P P

124



And by rearranging terms, we get

2

a a a
_ 2 2,94 2 32
- _p2+_p1+ P
a, a, aa,
Clz a2 a a a a
+ l+——+——|p, p+H| = +1+—|p, ps+| =+—=+1|p, p; .
a,a; a,d; a, 2 2 4

We need to show this is at least pi+ p>+ p3+3( p, pat pr s+ P2 ps) -

Again, to do this, we will show that

2

a, o, a; , as 2 2 2 2
—p,t—pit P3= Dy TPyt s
a, a, a,a,
and
a a; a a as da
2 1 3 1 3 2
1+ +—— Py |+ — |yt —F—+]1|pps
a,a; a,a, a, a, ) a4
= 3(p1p2+p1p3+p2p3)-
a a as
First, to show —2 pi+— pl+——— pl= pl+ pi+ pl -
as; as; 14,
Let
a az
A=—, B=— and C=—-.
a3 a3 alaZ

a
2 .
Then, we have A=— | and since @,=a,=a,, we know
as

A=1.

a, a
2 1 .
We have 4+ B=—+— and since a,=a,=a; we know
as da;

A+B=2.
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2

a, a, a

We also have A+ B+C=—4—+—2
as d; aa,

2
a, a,a

A+ B+C >3y —2==3,
a,a,a;

, and the Arithmetic Mean — Geometric Mean

Inequality tells us

so that
A+B+C=3.
This combines to mean
a a a:
=2 pyt—pj+—>—p;
a3 a3 alaZ
= Ap3+B pi+Cp;
= Ap,—Ap
+ Api+B pi—Api—Bp;
+ Ap3+B pi+Cp;

= A(py—p)+(A+B)(pi—p3)+(A+B+C) p3

Since p,= p,= p;, we know pi—pfzo and pf—pizo , SO

2 2

> p—p))+2(pi—p3)+3 ps
= p-pi+2pi—2pi+3p;
= pitpatps,

So we have

a, , 4a; - as
—p,t—pt
a, a, a,da,

Pz pitpitps .
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To show

2 e

2 1
+—
a,d; da,d,

a,
1+ —

as; as a,
PPyt +1+—|p,py+|—+—+1|p, p,
a, a, a;

2

> 3(pypytpi st Py Ds)

We begin by realizing that this case requires p; p,=p, P3= P, P3 , and we let

2 2

a a a a a a
A=1+—2+— B=—+1+— and C=—+—+1.
a,a, a,d, a, a; a a
Cl2 Clz
Then, we have A=1+ 2 1 , and since a,=a,=a; , we know by using the

a,a; a,d;

Arithmetic Mean — Geometric Mean Inequality and the fact that a, a,=a:,

a a,

2
a,a,d, a,

>1+2=3,

so that

2 2
a; a, a; a ) ) .
+ +—+—, and the Arithmetic Mean — Geometric Mean
a,a; a,a; a, a,

We have A+ B=2+

Inequality coupled with a,=a,=a; tells us

3 2 ___
aa,a a

A+ B=2+4y—— j=2+‘\‘/—‘zz+4:6,
a,a,d; s

A+ B=6 .

so that

2 2
a a a, a, a; a ) .
24— +—3+—1+—3+—2+1,andthe Arithmetic
a,a; aa; a; a, d, a

Mean — Geometric Mean Inequality tells us

We also have A+ B+C=3+
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3 3 2
a,a-a
A+B+Cz3+6§/ ——=34+6=9,
a,a,a;
so that
A+B+C=9.
This combines to mean
a a a a a, a
2 1 3 1 3 2
It——t——1p,pyt|—+1+—p,ps+| —+—+1|p p;
a,a; a,a, a, a, a, a,

Ap,p,+Bp,p;+C p,p;
= Ap,p,—Ap,p;
+ Ap,ps+Bp,ps;—Ap, py;—Bp,p;
+ Ap pstBp p,+Cpop,
= A(p, p,— P, ps)+(4+ B)(p, ps—p, p3)+(4+B+C) p, p,
Since P, P, =P, Ps=p, Ps,weknow P, pP,—P,P;=0 and p,p;—p,p;=0,s0

> 3(pypy— P Py)H6(pyps—p p3)+9p Py

3p,p,—3p,p3+t6p,p;—6p ps+9p p;

3p,p,t3ppst3p,ps,

so that
as a a a a, a
2 1 3 1 3 2
1+ +——|p | —F1+—|pypsH|—+—+1]|p p;
a,a, a,a, a, a, a, a,
= 3(p1p2+p1p3+p2p3),
as desired.
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So Case 5 holds, as we have shown
PA,-PA,+PA,-PA,+PA, P A4,

2

a, o, 4y - as
= —pt—prt P
a, a, a,a,
a ar a a a, a
+ I +—=—4—"—|p, p,+| =+ 1+ | p, p,+|—+—>+1|p, p,
a,a; a,d, a, 2 2 4y

> pi+pr+pit3(pipat pipstpaps)
= (p2+p3)(p1+p3)+(p2+p3>(p1 +p2)+(p1+p3)(p1+p2) R
which gives

P A,-P A,+PA,-PA,+ PA, P A,

= (py+p3)(pi+ p3)+(pot p3)(p+p)+(p+p3) (P +py)
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Case 6. p32p12p2.

Again, we use the maximum option to pair the larger values of a
the smaller values of @; and p; together in (5.5.4):

a +a a +a
PA12—2p3a P2 PA22—1p3a 1 and PA>
1 2

so that

P A,-P A,+PA,-PA,+PA, P A,

a,pstasp,\|a, psta;p,
B a, a,
. a,pytasp,\la, pta,p,
a a,
. a,pstasp \la, pta,p,
a, a;

2 2
a,a,pstaasp,psta,asp,pstazp,p;
aa,

2 2
a,a,p,psta,p,pstaasp, prta,asp;

a,a

2 2
a\pypsta,a, p,psta,azpit+a,asp, p;

a,a;

2

= P2 p 2 py pyt——p, p
3 al 1 3 a2 23 ala2 1172

2

a, a, a, -
+ —pDst— Dttt
a; a,a; a,

2
a;

Pt D p L Py p
a2a3 1 3 a3 2173 az 1 1 2
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And by rearranging terms, we get

2 Ay 5, 4y 5
= pit—pit—p;
a, 1

2 2
as a, 1 a; a, a, as
+ —+—+ pipyt| —+ Rl V2Y 2 +2(pp, .
a, da, 283 2 @143 a4j 14
We need to show this is at least pi+ p>+ p3+3( p, pat py ps+pa ps) -
Again, to do this, we will show that
2 Ay o Gy 5 o 2. 2
pi3t—pit—p,=2p+ptp;
a, a,
and
a, a a’ a a a 2
3 2 1 3 2 1 3
—+—+ Pyttt py pyt|——+2|p, p,
a, ds; a,d, ) 414s; 4 19,
= 3(p1p2+p1p3+p2p3).
) 2,41 2,8y 2 2 2 2
First, to show p3+a—p1+—p22P1+Pz+P31
2 1
Let
a a,
A=1, B=— ,and C=—
2 a,

Then, we clearly have 4=1.

a
1 .
We also have 4+ B=1+— , and since a,=a,=a,, we know
a

2

A+B=2.

a a
We also have A+ B+C=1+ a—l + a_2 , and the Arithmetic Mean — Geometric Mean
2 1

Inequality tells us
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a,a,

A+B+C=1+2 =14+2=3
a,a,
so that
A+B+C=>=3.
This combines to mean
a a
pi+—pi+—p;
a, 1
= Api+B pi+Cp;
= Api—Ap,
+ Api+Bpi—Aps—Bp;
+ Ap§+B p§+Cp§

= A(pi—p1)+(A+B)(pi—p3)+(A+B+C) p;

Since p;=p,;=p,,weknow pi—p;=0 and pi— p;=0, so

> 1(pi—p)+2(pi—pd)+3 p)
= pi—Pi+2pi—2p3+3p;
= pi+ptps,
So we have
PP 2 e gy piap?
a, a,
To show

a3, 8, 4 oG, @ &

) 4143 4y

PPyt p,pst

a, as; a,d, 1

= 3(p1p2+p1p3+p2p3):
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We begin by realizing that this case requires P P3= P, P3;= P P, , and we let

2 2 2
a; a, a a, a, a;
A==4+24 "L p=2 +— and C=—2+2.
a, a; da,d; a, a;a; da aa,
2
a,

as a
Then, we have A=—+—+
a, 4 a,d;

Arithmetic Mean — Geometric Mean Inequality

2
31d14,4; 3 dg
A>3 223 —=>3,
a,a,da, as

, and since a,=a,=a; coupled with the use of the

so that

2

2
a, a,

a, a a a ) ) .
We have A+ B=—+—"+ +24 +-L , and the Arithmetic Mean — Geometric
a, 4as; aa; a, ad; da;

Mean Inequality coupled with @,>a,>a; , meaning a,a,>a; , tells us

33 2
6 d1d,0a;3 6 A14a;
A+ B=6 ) 426 3 >6,
a,a,a, as

A+ B=6.

so that

2 2 2

a a a a a a a
We also have 4+ B+C=2+—+ 24— 24— 414

a, da; a,d; a, a;a; a; 4a,a,
Mean — Geometric Mean Inequality tells us

3 3 4
A+B+C22+47{ 88D 9 179,
a,a,a;

A+B+C=9.

, and the Arithmetic

so that

133



This combines to mean

2 2 2

- Ap,ps;tBp,p;+Cp,p,

- Ap,ps—Ap,p;
n Ap,ps+Bp,p;—Ap, p,—Bp,p,
+ Ap,p,+Bp p,+Cp p,

= A(plp3—p2p3)+(A+B)(p2p3—p]p2)+(A+B+C)p1p2

Since P, P3Z Py Ps= P, Py, weknow Py p;—P,p3=0 and p,p;—p P20, s0

= 3(p1p3—p2p3)+6(p2p3—p1p2)+9p1pz
= 3pips—3p,ps+6p,ps—6p, py+t9pp,
= 3pipyt3p,pst+3p,p;s,
so that
a, a ar a a  a a
=424 PPt =+ 4+ P, Pst 42 PP,
a, da; a,d, 2 4143 a4 14>
= 3(p1p2+p1p3+p2p3)9
as desired.
So Case 6 holds, as we have shown
PA,-PA,+PA,-PA,+PA, P A4,
a a
> —pi+—=p+p;
2 a
a, a a a a  a a
+ =24 PPt e 1292 %s +2 PP,
a, da, 2d3 a, a,a; da; 19>
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Pi+ P+ pat3(pipat pips+paps)

(py+p3)(pi+ py)+(pot py)(py+po)+(py+ py) (2 + py) R

which gives

P A,-P A,+PA,-PA,+PA, P A,

>

(p2+p3)(p1+p3)+<p2+p3)(p1+p2)+(p1+p3)(p1+pz)

Since all six cases hold, and these cases exhaust the possibilities for the ordering of the
values p,, P,,and pj;, it follows that the inequality

P A,-P A,+PA,-PA,+PA, P 4,

>

(py+p3)(pi+ p3)+(pat p3) (P + )+ (o + py) (P + py)

holds overall.
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6 Problem Solving with the Erdos-Mordell Inequality

This section pertains to problems that have arisen in journals and competitions involving
the use of the Erdés-Mordell Inequality.

One interesting application of the Erdds-Mordell Inequality was presented as a problem
in the 1991 International Mathematical Olympiad (IMO). The notation has been adapted
to fit with this paper, and the problem is given in Example 6.1. A solution was given in

[ IEQ ] that has been adapted to this paper.

Example 6.1. [ TIMO and IEQ |

Let 4,4, A, be atriangle and P an interior point of A\ 4, 4, 4;. Show that at least one
of the angles £ PA,A,, £ PA,A,, £ PA,A, is less than or equal to 30°.

Solution to Example 6.1. [IEQ ]

We adopt our familiar notation, with p; denoting the distance from P to the side of
A\ A, 4,4, opposite vertex 4; and @, denoting the length of the side opposite vertex
A, foreach 1<i<3.

Suppose this is not true. Then m £ P A, 4,>30° m £ P A, A;>30°  and
mZ PAA>30°

Az
Figure 6.1
Now we have

‘ Py P

L PA )= P4,=
sin (m 145) PA, so that " sin(mZ PA4,)°
. 2 P

£ PAA)=—"" PA,=
sin (m 245) PA, so that > sin(mZ PA,4;) and
‘ P> P

£ PAA)=—2 PA,= '
sin (m 34,) PA, so that > sin(mZ PAsA,)
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We notice that if m £ P A, A,>150° | this would contradict that the sum of the measures
of the interior angles of &\ 4, 4, 4 has to equal 180°, as we would have

mZ A, A Ayrm L A Ay Ads+m £ A, A A,
> mZ PA Ay+mZ PA,Aq+m 2 PAA,
> 150°+30°+30°
> 180

Thus, we conclude m £ P A, 4,<150°  and similarly m £ P A, 4,<150° and
m/ PAA<150°

Also, since sinx is a continuous function strictly increasing on (0°, 90°) and strictly
decreasing on (90°, 180°) with sin30°=sin 150°, we conclude that

1 1
. / . o ' <—
sin(m £ P A, A,)>sin30° g0 that sin(mZ PA 4, sin30°
in(mZ P A,A,)>sin30° h 1 < 1 d
sin (m , A3)>sIn so that sin(m Z PAzAs) sin30° > &n
1 1

N oo -
sin(m £ P A;4,)>sin30° 5o that sin(mZ PA,A,) sin30°"

So we have

PA,+PA,+PA,

Ps n P n P>
sin(mZ PA,A,) sin(mZ PAy,A;) sin(mZ PA;A,)

Ds P P>
+ +
sin 30°  sin30° sin30°

P D P>
AR
/2 1/2 1/2

= 2(p1+p2+p3).
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This means
PA,+ PA,+PA,<2(p,+p,+p;),
which contradicts the Erdos-Mordell Inequality.

Therefore, our original assumption was incorrect, and we conclude that at least one of the
angles £ PA A, Z PA,A,, £ P AyA, has measure less than or equal to 30°.
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The next example was published in the “Problems and Solutions” section as 11491 of
The American Mathematical Monthly, March 2010 [ ANG ]. Notation has been adapted
to fit this paper.

Example 6.2. [ ANG |

11491: Proposed by Nicolae Anghel, University of North Texas, Denton, TX.

Let P be an interior point of a triangle having vertices 4,, 4, ,and 4; opposite sides
of length a,, a,, and a;, respectively, and circumradius R. Show that

PA, PA, PA
Ly 2% 17

2 2 2
a; a, as

-1
R
Comment.
We will offer two proofs to Example 6.2, both of which are original work and were
submitted to The American Mathematical Monthly.

Comment.

Let p; denote the distance from P to the side of &N 4,4, 4, opposite vertex A4, for
each 1<i<3,andlet 0, be the measure of the interior angle of A 4, 4,4, with vertex
A, foreach 1<i<3.

We require a lemma first.
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Lemma 6.2.1.

Under the conditions of Example 6.2, we have:

P P, Ps
+ + =2R.
sin (0,) sin (05)  sin (0,)sin (0;) sin(0,)sin (0,)

Ay

Figure 6.2

Proof of Lemma 6.2.1.

a,a,sin (6
Notice that the area of A A4, 4,4; is a,4,5in(0,)

This area can also be found by taking the combined areas of A A, P A, ANA, P A, and
NAPA,.

Using this concept, we have:

a1p1+ a2p2+a3 Ps _ a, d; Sin(91)
2 2 2 2

Multiplying through by ) gives

a,a,sin (0,
a a a
1 P n 2 P> n 3 P3

=1
a,a;sin(0,) a,a;sin(0,) a,a;sin(0,)
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or, when simplifying, we get

a
4 _&+ Pz n P3 1
a,sin(0,) a; assin(0,) a,sin(0,)

Noticing that the Law of Sines | 02 = SO o T
oticing that the Law of Sines a,  a mplies azsin(el)_sin(ez)’we

get

P )2 D3
. +— + -
sin (0,)a; sin(0,)a; sin(6,)a,

=1.

By Lemma 2.4, we know a,=2Rsin(0,) and a,=2 Rsin(0;), which gives

Dy n P> n P3

=1,
sin (0,)-2 Rsin(0;) sin (0,)-2 Rsin (0;) sin(0,)-2 Rsin (0,)

Multiplying through by 2 R gives

Py P> Ps
+ + =2 R
sin (0,) sin (0;)  sin (0,)sin (0;)  sin(0,)sin (0,) ’

which establishes Lemma 6.2.1.
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First Solution to Example 6.2.

First, we have

PA, PA, PA,
+—>+

2 2 2
a, a, as
1 1 1
- — PA\+— PA,+—; PA,
a; a, a;
. . ‘ 1 1 1
Seeing this, we apply Theorem 4.1 (Dar-Gueron) with A, _} , %= and Az—a_
1 a

7 .
3

v
(S}

1 1 1 1 1 1
TR SRt Sy +\/—2'—2 Py
a2 a} al 613 al a2

)2 12 Ps
a,a; da;a; a,a,

By Lemma 2.4, a1=2Rsin(91) . a2=2Rsin(92) and a3=2Rsin(93) , which gives

P P> Ps
2 2 . . + 2 . . + 2 . .
4 R”sin (0,)sin (0,) 4 R”sin(0,)sin(0,) 4 R sin(0,)sin(0,)

2
4 R?

sin (0,)sin (0), * sin (0,) sin (0), - sin (0,)sin (0),

P P, Ps )

By Lemma 6.2.1

2
- 2R
4R2( )

1
R
PA, P4, PA

1
Thus, we have proven Example 6.2, namely — +— 1t ZE :
1 a2
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Second Solution to Example 6.2.

Let K be the area of /A 4, 4,4 . Then, as we started the proof of Lemma 6.2.1, we have
Aq

_aypy a,p, d;p;

K
2 2 2’

so that
2K=a,p +a,p,ta;p;.

A common formula for area of a triangle says:
4RK=a,a,a,.

Now, we have

Figure 6.3
PA, PA, PA
S22 = %PA1+%PA2+%PA3.
a; a, a aj a, a;
From Corollary 3.5, we have
+ + +
PA12a2p3 a3p2, PA22a1p3 asp, and PA32a2pl a1p2.
a a as
We apply these inequalities here, to obtain
1 1 1
— PA\+— PA,+—; PA,
a; a as
- 1 (@psta;py)| 1 [apsta;p +L a, p,ta, p
- af al ag a2 a§ a3
_ a, psta; p a,pstasp, " a,prta, p
a a a;
Rearranging terms gives
a a, a;  a, a, 4
= St |t Sttt 3
a, a 1 3 a a,
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Applying the Arithmetic Mean — Geometric Mean Inequality on each of the three terms
gives

v
S
8, | 8
wa | NQ
=
+
[\)
.—Qw | wQ
L»QL.: | .—-Q
<
(38
_'.
N
_Qw | N&
Q | Q
o W —
>

a,p a, p a, p
1 1 2 172 3 173
+ +
a,a,a, a,a,a, a,a,da,

a, p,ta,p,ta,p,
a, a,d,

Recalling that 2K= a, py +az p2+ as p;, this giVeS

a;a, d,

4K
a;a,da,

And knowing 4 R K =a, a, a; as a well regarded formula, we have

B 4K
- 4RK
_ 1
- R
PA. P4, PA, |
Thus, we have established — +—+—; 2E,as desired.
al aZ a3
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7 Extension to Quadrilaterals
We now examine the possibility of an Erdés-Mordell type inequality for quadrilaterals.
Theorem 7.1.

Let 4,4, 4,4, be a convex quadrilateral, and let P be an interior point of the
quadrilateral.

Let
p;; denote the (positive) distance from Pto 4,4, , and let

Py . denote the “signed distance” — as defined in Theorem 3.6 — from P to
4, A; when considering A\ 4,44, .

Then we have
4
PA1+PA2+PA3+PA42§ Pt Pyt PutDi.

Comment.
Clayton W. Dodge discusses this result and its proof in [ DOD ].
Figure 7.1 shows one possible scenario. In the proof, we regard P relative to each of the

triangles AN A, 4,4y, NA, 4,4, NA;A, A, and A A, A4, 4, and apply the result of
Theorem 3.6 — the Signed Erdés-Mordell Inequality.

Az

Figure 7.1
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Proof of Theorem 7.1. Based on [ DOD |
Applying the result of Theorem 3.6, to each specified triangle, we get the results below:
With AA4,4,4;: PA1+PA2+PA3Z2(1712;123+p23,~123+p13;123) ;

With AAdyA; A, PA+PAA+PAZ2(pyy syt Pagsat Posnss)
With A A A, A,:  PA+PA;+PA>2(psy s+ Prssisat Prsisa) 3 and

With A‘41‘42144 : PA1+PA2+PA422(p14;124+p12;124+p24,-124) .

Az

Figure 7.2

Though Figure 7.2 is merely one example of a possible location of P, the following
relationships hold since P must be interior to 4,4, 4,4, :

D13.13= — P13.134 since P can be interior to at most one of A A4, A, Ay and A A, 454,
Das-124=— Paszs Since P can be interior to at most one of A A, A, A, and A A,A4,4,;
P2 =P 124= P since P is must be on the same side of 4,4, asboth 4, and 4, ;
D3 1:3=Ds.234= Doy since P is must be on the same side of 4, 4; asboth 4, and 4, ;
Dis.13a= P1a23a= D3 since P is must be on the same side of 4; A4, asboth 4, and 4, ;

Pia124=P1a:134= P14 since P is must be on the same side of 4,4, asboth 4, and 4;.
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Thus, the four inequalities to start the proof become:
PA+PA,+PA=2 p,+2 prs—2 P 505 ;
PA,+PA;+PA,Z2p,+2pu+2 poyns;
PA,+PA;+PA,22 py,+2p,,+2p 5.3 ; and

PA\+PA,+ PA22p\+2p =2 Doy 0.

Summing these inequalities gives
3(PA,+PA,+PA,+PA,)
= 3PA,+3PA,+3PA,+3PA,
> 4 p,+4p,s+4p,+4p,,
= 4(piutpyutputpy),
so that we achieve

3(PA1+PA2+PA3+PA4)Z4(p12+p23+p34+p]4) s

or equivalently our desired result:

4
PA1+PA2+PA3+PA4Z§(p12+p23+p34+p14),

Comment.

One might wonder if this is as strong of an inequality as could be achieved for the
quadrilateral. This question provides the motivation for Example 7.2 and Example 7.3.
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Example 7.2.

Consider the situation where 4,4, 4,4, is a square of side length 2, as in Figure 7.3.

Then we have P ,=Px=Pu=Piu=1, so that Ay A,
L]
)
PA,=PA,=PA,=PA,=2 "
P p
34 12
. N * ]
This gives PA,+ PA,+ PAy+PA4,=42 and P
Pt Pyt Pyt pu=4,so that P23
A [ A
2
Figure 7.3

PA1+PA2+PA3+PA4:\/§(P12+P23+P34+P14) .
Example 7.3.

Consider the situation with 4,4, 4, A, being a rectangle pictured in Figure 7.4.
Then we have P, =4, p,;=10, p;,=2 and p,=2.

2 4
Agtrn A,
Also 2
_ Tt U
PA,=\2"+4*=24/5, P
PA,=\V4+10°=2+29, 10
PA,=\2*+10°=226 , and
PA,=\2+2=22.
So Figure 7.4

PA 4 PAy+PAy+ PA,=25+2329+226 +2V2~28.27
and
Put Pyt Pt p=18.
Since 28.27>25.46~18+/2 , this shows that, when regarding this example.
PA,+ PA,+ PAs+PA>N2 (p ot prst+pat pus) .
Comment.
Example 7.2 and Example 7.3 combine to provide the motivation for Theorem 7.4.
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Theorem 7.4.

Let 4,4, 4,4, be a convex quadrilateral, let P be an interior point of the quadrilateral,
and let p; denote the (positive) distance from Pto 4, 4;. Then

PA,+ PAy+ PAs+ PA2N2( pt pit put pua) .

Equality requires 4,4, A; A, is a square and P is its center.

A2

Figure 7.5
Comment.
This result has not been stated in many places. In fact, to our knowledge, the only place
such a result is explicitly stated is by Shay Gueron and Itai Shafrir in [ GUE |. While
Gueron and Shafrir offer a more generalized result and associated proof, we confine

ourselves to this situation.

We offer a proof that is not given explicitly in the literature (to our knowledge), but that
is based off the ideas of Mordell in [ MOR ] involving finding a quadratic form.

Thus, our proof essentially extends Mordell's proof of Barrow's Inequality to the
quadrilateral.

Comment.

Before proving this theorem, we must establish a few lemmas.
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Lemma 7.4.1.

Given A A, 4,A4;. Let a, denote the length of the side of A 4,4, A4, across from
vertex 4,,let & be the interior angle of A A4, 4, A5 with vertex 4,, and let /; be the
length of the altitude of A\ 4, 4, A5 from A;. Then

o
h,<\a,a,cos (71)

Equality requires @,=a, .
Comment.

This is essentially Corollary 4.2.4, based on Mordell. For explanation, see that earlier
result.
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Lemma 7.4.2.

Let 4,4, 4,4, be a convex quadrilateral, let P be an interior point of the quadrilateral,
and let p; denote the (positive) distance from Pto 4,4, . Also, let

0,=mZL A PA,, 0,,=mZL A,PA,, 0,=m L A;PA,, and 0,,=m L A PA,.

Then
P, <\(PA,)(P4,)cos 071 , with equality requiring PA,=PA, ;
P <V (PA,)(PA;)cos % , with equality requiring PA,=PA; ;
P3<V(PA,)(PA,)cos % , with equality requiring PA;=PA, ; and
P.<\(PA,)(PA4,)cos Y , with equality requiring PA4,=PA, .

Proof of Lemma 7.4.2. Based on | GUE |

We apply the result of Lemma 7.4.1 to each of & 4, P4, ANA,PA,, ANA,P A, and
AN A PA,, asshown in Figure 7.6. The result follows immediately.

A A

a e ]

A?
Figure 7.6
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Proof of Theorem 7.4. Method Based on | MOR ]

We base this proof off the methods Mordell employed in proving Barrow's Inequality (see
Second Proof of Theorem 4.2), but Mordell never specifically used his methods to
establish this result in the literature, to our knowledge. We additionally use the notation
from Lemma 7.4.2. A 1

a e B

Figure 7.7 A,

0,10, :n_923+934
5 .

Begin by noting that since 0,,+0,;+0,,+0,,=27 we have

We have —cos(x)=cos(m—x). Also, from Lemma 7.4.2, we can say (since P;>0)

— 0
-2 D= — 2PA4, P4, cos( i) with equality requiring PA,=PA,; (7.4.4)

—\2p,, =2 P4, P4, cos

0
—V2 p,,=—\2PA, PA 4cos( 34) with equality requiring PA;=PA, ; and

—) with equality requiring PA4,=PA; ;

—2p,,=—2PA, P4, cos( with equality requiring PA,=PA, .

Putting this together, we have

T
@-(Gu)_

\/§ S 7 2 ( ))
\/ﬁb 23 \/PA4 034 ’
S A

VP4, (923) VP4, . (934)2
\/§ SII’IT— \/E SIHT

+
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PA 0 PA 0
PA + 2 12 + 4 14
it cos’ > —2 cos’ >
2VP4, P4, [0,) 24P4, PA, [0
————COS| — OS| —
V2 2] V2 2
2/ PA,PA, 0, 0,
+ —— coS|—|cos|—
2 2 2
PAZ .2 912 PA4 . 2 14
+ — |+ —
2 ST
2(P4,P4, |0, 0,,
+ —— SIn sin| —
2 2 2
PA2 2 923 PA4 2 934
+ — |+— —
5 ) COS )
s 2VP4, P4, (0,\ 2VPA,P4, [0,
V2 2/ 2 2
2\ PA,PA, 0., 0.,
+ ——cos|—|cos|—
2 2 2
+ P4, sin’ % +%sin2 %
2 2 2 2
2\ P4, P4, . (6, . [0,
—— S| — |S;mm| —
2 2 2
P4, cos’ @ +sin’ % P4, cos’ =2 | +sin? %
2 2 2 2

0 0
+ —/2 P4, PAzcos(f)—\/szlPA4cos(7”)
0,,
) VPA, PA s1n( > )sm

PA,
2

914
2

o[ 05
2
923 N DA DA 934
+ —2 P4, PAcos| =+ —\/2 P4, PA,cos -
0,, 0, 0., 934
+ \/PA PA,cos B cos B —+ PA, PA,sin > sin >

+ VPA4,PA, 01, 014
COS 2 COS 5

0,
2

934 .
— |+s1n
2

0
—2 |+sin’
2

2
COS

2
COS

PA,
+ PA,+ -
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P4, PA, PA, PA,
PA+—+—4 PA,+——+
2 2 2 2
0 0
+ —\/ZPAIPAZCOS(%)—\QPAIPA4co (f)
0, —— 0,
+ —V2PA, PA cos( 2 ) \/2PA PA,cos (74)
0., 0 0 0
+ \/PA PA, cos( 2 )cos(%)—sin(f)sin(%)]
0, 0 0 0
+ \/PA PA, cos( > )cos( ;4)—sin(%)sin(%)]

PA +PA+PA + PA,

+

+

+

0,, 0
—\2 P4, PA cos( > )—\/2PA PA,cos J)

0,, —_— 054
—V2 PA, PA,cos 2 \/2PA PA,cos BN

+\ P4, P4,cos| 22—

— [e,+
w>/121f>A4<:os(u

PA +PA,+PA + PA,

0 0
—\/ZPAIPAZCOS(%)—\QPAIPA“COS i)

+
2

9 N DA DA 934

+ —/2 P4, PA,cos 2 —\/2 P4, PA,cos -
- 0,,+0 S 0,,+0

+ \/PA2PA400s(12—14 +\/PA2PA4cos n—lzTM
PA,+PA,+ PA,+ PA,

0 0
+ —\/2PA1PA2cos(§)—\/2PAIPA4cos f)

0, S
+ —2P4,PA cos( > ) V2 PA,PA,cos %

0,+0 0,+0

+ \/PAZPA4COS(M)—\/PA2PA4COS %
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PA +PA,+PA + PA,

0 0
+ —\/ZPAIPAZCOS(%)—\QPAIPA4COS(%)
0
+ —\/2PA2PA3COS( (%)
PA +PA,+PA + PA,
0 0
+ —\/ZPAIPAzcos(%)—\/2PA2PA3cos(f)
0 [0
+ —\/2PA3PA4COS(%)—\/2PA1PA4COS(%) .

0 o
%)—\/2PA3PA4COS

< PA+PA+PAA+PA,~2p,—\2p—\2 p,—V2p,, (7.4.C)
= PA 4 PAy+PAs+ PA,~V2(p ot Pyt Past pia) -
So we have
0<PA,+ PAy+PA;+PAy~2(p o+ pos+pratpra) .
This means
PA,+PAy+PA;+PAN2(p ot pryt paut pua)

our desired inequality.

To establish the condition for equality:
For equality to hold in (7.4.C), we need equality in (7.4.4), which requires
PA =PA,=PA,=PA,

For equality to then hold in (7.4.B) given the above criteria,

\ PA \ PA 0 2]
1'(%)— 1sin(@)zo which means sin(f)zsin(i)

—SIn
V2 2 V2 2

so that %ZT or ——=T———
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Additionally, for equality to hold in (7.4.B) given the above requirements, we need

_PA,(04) VP4, (0.}
\/PAI—TCOS(T)—TCOS(T)—O

0,, 0,
If T_TT_? , then recalling cos(x)=—cos(mm—x), we have

VP4, (9) VP4, (9)
I—TCOS 7 —TCOS

614

0
so we cannot get equality in this situation. If, however, % =5 we have

VP4~

VP4, (912) VPA, (914)
TCOS 7 —TCOS -

2
il Tl

(%)

VP4, (97) VP4, (914

——— oS ———cos| — |=0 requires
2 2 2 ) 1

VP4,

so that /P4, —

\/171 1—%005(7))20 .
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. _
This means COS(%)=% , so that 912=%. It immediately follows that 914=%.

Similarly, the other requirements for equality from (7.4.B), namely

—— P4 0 \ PA 0
o RO e N I ST DN )
N s cos| — 7 cos| 0
and
NPA, . [0x) VPA, . [0y
——sin|——|——=sin|—]=0
V2 2) 2 2
give rise to the conditions
™ ™
923:5 and 934:5.

So, overall, for equality we require (see Figure 7.8)

T
PA,=PA,=PA,=PA, and 9]2:9232934291427 .

A.’:‘
Figure 7.8

Therefore P must be on both 4, 4, and 4, 45, so that P is the point where the diagonals
of A, A,A;A, intersect.

Additionally, the diagonals intersect at P to form right angles with
PA1 :PAz:PA3 :PA4 , SO A, A2A3A4 is a square.

Finally, since 4,4, 454, is a square and P is the point where its diagonals intersect, P
must be the center of 4,4,A4,4, .
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8 Conclusion

Throughout this exploration, we have seen how one conjectured inequality by Paul Erdos
gave rise to numerous publications and results. This paper provided an overview of some
of the extensions and applications of the Erdos-Mordell Inequality, and it shows just how
far one conjecture can lead.
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