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Abstract

We attempt to provide a reasonably complete work concerning the
estimation of the number of integers expressible as the sum of two squares.

We begin with some basic concepts from number theory, and progress
rapidly through the theory necessary for Landau’s theorem before

presenting two proofs of his theorem.
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Chapter 1

Introduction

The goal of this paper is to collect in one location the results concerning
the estimation of the number of integers less than a given number that are
expressible as the sum of two squares. This has been a favorite pursuit of
numerous mathematicians throughout the ages, as we will soon see, and it
also makes use of some of the most powerful results available in number
theory.

This paper is intended to be a complete reference, i.e. one can read this
thesis and not need to refer to any other works, but further examination of
the source material may be interesting to some, and so numerous references
are given throughout the text. When more than one source possesses the
same material (as has often been the case), the author has attempted to pick
the “best” material to recommend, with comments about completeness, ease
of reading, and other factors that led to the selection.

For readers very comfortable with their number theory, Chapter 2 may be
omitted. Although it contains many advanced results that are not covered in
the first few courses of number theory. Chapter 2 is intended to be used for
quick and easy reference, and as such, proofs are omitted, until the section
on the Prime Number Theorem. The analytic proof of the Prime Number
Theorem has many parallels and analogs to the main proof of the paper
and so is presented in its entirety. The interested reader may find every
non-trivial excluded proof in Appendix A. Chapter 3 contains information
on the geometrical representation of the problem, but unfortunately leads
us down a few dead-ends and does not set us on a path towards a solution.
For readers interested in brevity, Chapter 4 and Chapter 5 contain the meat
and potatoes of this thesis and of this problem. Chapter 4 is concerned
entirely with providing us with the necessary information about the types
of numbers expressible as the sum of two squares so that in Chapter 5 we can
progress to proving the result utilizing two separate approaches–one relying
on the Generalized Wiener-Ikehara Theorem, and the other relying on the
same methods of complex analysis that have proven both the Prime Number
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Theorem and Dirichlet’s theorem.

It has been said by G. H. Hardy in [HarRam] that “Almost every arithmeti-
cian of note since Fermat has contributed to the solution of the problem,
and it has its puzzles for us still.”

In fact, the pedigree of this problem has its roots in Euclid’s proof of
the infinitude of prime numbers and has progressed through the centuries
capturing the imagination of mathematicians such as Fermat, Euler, Gauss,
Landau, Hardy and Ramanujan (amongst others).

1.1 Notation and Conventions

Throughout this paper, p and q are reserved for primes. Following Riemann’s
notation, s = σ+it is a complex variable with σ and t real. Also, log x refers
to the natural logarithm of x, not the common logarithm. Finally, we use
the notation (a, b) to indicate the greatest common divisor of a and b.
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Chapter 2

Preliminaries

In this chapter, we attempt to cover the material necessary that readers may
not have had a chance to see yet (or at least may not have seen for quite
a while). We begin with a simple combinatorial result, and the beginnings
of number theory before progressing through some of the ground-breaking
results involved in proving the Prime Number Theorem utilizing the ζ and
L functions.

Most of the results and theorems in this chapter are presented without
proof, the exception being those proofs whose inclusion is as important as
the result of the theorem itself. For further reading, and information that
the author did not feel was integral to the main aim of this thesis, any
number of books on number theory may be consulted, including [LanHan],
[HarWr], [Apos], [BatDia], [Burt], [Sier], [LeV1] and [LeV2] and [Kara].

For completeness, Edmund Landau’s Handbuch [LanHan] is second to
none, although, for readers that prefer a text written in English, G. H. Hardy
and E. M. Wright’s Analytic Number Theory [HarWr] is invaluable. For the
purposes of this chapter, we have tried to use Tom Apostol’s Introduction
to Analytic Number Theory exclusively as it is both readily available, and
an easy read. Once we begin leading up to the proof of the Prime Number
Theorem, we switch to [LeV2], a text that has been integral in the main
proof of the paper.

Finally, the omitted proofs may be found in Appendix A.

2.1 Cross-Classification Principle

We begin the preliminaries with a general combinatorial theorem. The prin-
ciple of cross-classification will be used later in the heuristic argument of
chapter 5, and it can be found in [LeV1]

Theorem 1. Let S be a set of N distinct elements, and let S1, . . . , Sr be
arbitrary subsets of S containing N1, . . . , Nr elements, respectively. For 1 ≤
i < j < · · · < l ≤ r, let Sij···l be the intersection of Si, Sj , . . . , Sl; and let
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Nij···l be the number of elements of Sij···l. Then the number of elements of
S not in any of S1, . . . , Sr is

K = N −
∑

1≤i≤r

Ni +
∑

1≤i<j≤r

Nij −
∑

1≤i<j<k≤r

Nijk + · · ·

+ (−1)rN12···r.

Proof. Let a certain element s of S belong to exactly m of the sets S1, . . . , Sr.
If m = 0, s is counted only once, in N itself. If 0 < m ≤ r, then s is counted
once, or

(
m
0

)
times, in N ,

(
m
1

)
times in the terms Ni,

(
m
2

)
times in the terms

Nij, etc. Thus, the total contribution to K arising from the element s is
(

m

0

)
−

(
m

1

)
+

(
m

2

)
− · · ·+ (−1)m

(
m

m

)
= (1− 1)m = 0.

2.2 Quadratic Residues

Quadratic residues commonly occur in number theory, and we will be using
them to prove Dirichlet’s Christmas Theorem. This theory can be found
in nearly any book on number theory, but we have chosen [Burt] and [Sier]
specifically as sources in this section.

Definition 1. Let p be an odd prime and (a, p) = 1. If the quadratic con-
gruence x2 ≡ a (mod p) has a solution, then a is said to be a quadratic
residue of p. Otherwise, a is called a quadratic nonresidue of p.

Theorem 2 (Euler’s Criterion). Let p be an odd prime and (a, p) = 1.
Then a is a quadratic residue of p if and only if a(p−1)/2 ≡ 1 (mod p).

Definition 2. Let p be an odd prime and let (a, p) = 1. The Legendre
symbol

(
a
p

)
is defined by

(
a

p

)
=

{
1 if a is a quadratic residue of p,

−1 if a is a quadratic nonresidue of p.

Although this symbol bears no small resemblance to merely enclosing a
fraction in parentheses (and all operations that parentheses entail), it should
be clear by context what we intend.

Theorem 3. If p is a prime of the form 4k+1 (where k is a natural number),
then

p

∣∣∣∣∣
[(

p− 1
2

)
!
]2

+ 1
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Although this next theorem is not related to quadratic residues, it will
be used along with the previous theorem to prove Dirichlet’s Christmas
Theorem. Both theorems can be found in [Sier].

Theorem 4 (Thue Theorem). If m is a natural number and a an integer
relatively prime to m, then there exist natural numbers x and y both less
than

√
m and such that the number ax ± y is divisible by m for a suitable

choice of the sign ±.

In other works, such as [BatDia], this theorem is known as Aubry-Thue,
and phrased a bit differently. L. Aubry and A. Thue proved this theorem
independently of each other, hence the slight confusion over the name. It is
clear that both theorems as we shall use them are equivalent however.

Theorem 5 (Aubry-Thue). Suppose p is a prime and a is an integer not
divisible by p. Then there exist integers x, y such that

x ≡ ay (mod p), 0 < max (|x|, |y|) < p1/2.

2.3 Dirichlet’s Theorem for Primes of the Form
4k − 1 and 4k + 1

It is the case, as first proved by Dirichlet, that any arithmetic progression
with first term h and common difference k where (h, k) = 1 will contain
infinitely many primes. That is, if (h, k) = 1, then

kn + h, n = 0, 1, 2, . . .

will contain infinitely many primes. This result is known as Dirichlet’s
theorem, but it is not necessary for the purpose of this paper to prove
Dirichlet’s theorem in full.

In fact, in this paper, we are only concerned with primes congruent
to 1 and 3 modulo 4, and care not for general sequences. Thus, we can
modify Euclid’s proof that there are infinitely many primes to prove that
the sequences {4k − 1 : k ∈ N} and {4k + 1 : k ∈ N} contain an infinitude
of primes.

As the proofs are both simple and short, we include them in this chapter.
Both can be found in [Apos].

Theorem 6. There are infinitely many primes of the form 4k − 1.

Proof. Assume not. Let p be the largest prime of the form 4k − 1, and
consider

N = 22 · 3 · 5 · · · p− 1.
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Now, the product 3 · 5 · · · p contains all of the odd primes ≤ p as factors,
and N is of the form 4k − 1, so N cannot be prime since N > p. However,
there is no prime less than or equal to p that divides N , so all prime factors
of N must exceed p. But all of the prime factors of N cannot be of the form
4k + 1 since the product of two such numbers is of the same form, which
is absurd. Therefore, some prime factor of N must be of the form 4k − 1,
contradicting our assumption that there is a maximum such prime.

Theorem 7. There are infinitely many primes of the form 4k + 1.

Proof. Let N be any integer greater than 1. We will show that there is a
prime p > N such that p ≡ 1 (mod 4). Let

m = (N !)2 + 1.

Note here that m is odd and m > 1. Let p be the smallest prime factor of
m. None of the numbers 2, 3, . . . , N divides m, so p > N . Furthermore, we
have

(N !)2 ≡ −1 (mod p).

By raising both sides to the (p− 1)/2 power, we obtain

(N !)p−1 ≡ (−1)(p−1)/2 (mod p),

but then (N !)p−1 ≡ 1 (mod p) by the Euler-Fermat theorem, thus

(−1)(p−1)/2 ≡ 1 (mod p).

Now we have that the difference (−1)(p−1)/2 − 1 is either 0 or −2, and it
clearly cannot be −2, since it is divisible by p, so it must be 0. That is,

(−1)(p−1)/2 = 1.

But then (p− 1)/2 is even, and so p ≡ 1 (mod 4). That is, for each integer
N > 1, there exists a prime p > N such that p ≡ 1 (mod 4), and hence
there are infinitely many primes of the form 4k + 1.

Thankfully, for brevity’s sake anyways, we did not need to prove Dirich-
let’s theorem, although with the machinery outlined in the next few chap-
ters, this proves to be quite within our grasp. For the interested reader, a
proof of Dirichlet’s theorem using this machinery is presented at the end of
Appendix A.

To summarize and bring our discussion back to the result we are truly
concerned with, let π(x; k, l) be the number of primes p ≡ l (mod k) which
do not exceed x. Then we have

lim
x→∞

π(x; 4, 1)
π(x; 4, 3)

= 1.

In other words, there are asymptotically equally many primes in either
sequence.
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2.4 Functions

Here we attempt to summarize the needed mechanics of arithmetical func-
tions, beginning with just what is an arithmetical function.

Definition 3. A complex valued function defined on the domain of the in-
tegers is an arithmetical function; denoted f(s) ∈ A

We also have numerous properties that make our functions “nice”.

Definition 4. An arithmetical function f is called multiplicative if f is not
identically zero and if

f(mn) = f(m)f(n) whenever (m, n) = 1.

Being multiplicative is all well and good, but some functions are even
better: they are completely multiplicative.

Definition 5. A multiplicative function f is called completely multiplicative
if

f(mn) = f(m)f(n) for all m, n.

For instance, the Euler totient function and the Möbius function are
multiplicative.

Definition 6. If n ≥ 1, then the Euler totient ϕ(n) is defined to be the
number of positive integers not exceeding n which are relatively prime to n;
thus

ϕ(n) =
n∑

k=1
(k,n)=1

1.

The Möbius function, denoted µ(n) (and sometimes called Möbius mu)
occurs commonly throughout number theory. It is defined as follows:

Definition 7. Ifn > 1, write n = pa1
1 · · · pak

k , then
µ(1) = 1

(1)(2) µ(n) = (−1)k if a1 = a2 = · · · = ak = 1

(3) µ(n) = 0 otherwise.

Neither the Euler totient or Möbius mu functions are completely multi-
plicative, but the identity function I(n) is.
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Definition 8. The arithmetical function I defined by

I(n) :=
⌊

1
n

⌋
=

{
1 if n = 1,

0 if n > 1,

is called the identity function.

For ϕ(n), we also have a product formula. This is common in num-
ber theory and this is merely the first of many equivalent formulas for the
functions we will examine.

Theorem 8. For n ≥ 1 we have

ϕ(n) = n
∏

p|n

(
1− 1

p

)
.

Now we describe the operation of Dirichlet convolution, an operation
defined on arithmetical functions and sometimes called the Dirichlet product
of arithmetical functions

Definition 9. If f and g are two arithmetical functions, we define their
Dirichlet convolution (or Dirichlet product) as the arithmetical function h
defined by the equation

h(n) =
∑

d|n
f(d)g

(n

d

)
,

denoted h = f ∗ g or h(n) = (f ∗ g)(n).

We can use Dirichlet convolution to do many things, one of the least
being that:

Theorem 9. For all f we have I ∗ f = f ∗ I = f .

Finally in this section, we will frequently have need to compare functions.
One of the handiest notations we will use is O- and o- notation, read “big
oh” and “little oh” respectively.

Definition 10. Let f, g be in A, g(x) > 0 for all x ≥ a then f = O(g) if
and only if f/g is bounded for all x ≥ a for some a. This is also denoted
f ¿ g or g À f , and can also be expressed by saying there exists a constant
M > 0 such that

|f(x)| ≤ Mg(x) for all x ≥ a.

If we write
f(x) = h(x) + O(g(x))
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, then we mean that f(x) − h(x) = O(g(x)). And note that f(t) = O(g(t))
for t ≥ a implies that

∫ x

a
f(t)dt = O

(∫ x

a
g(t)dt

)
for x ≥ a.

We write, f = o(g) as x → ∞ if and only if limx→∞ f(x)/g(x) = 0.
Again, an equation of the form f(x) = h(x) + o(g(x)) as x → ∞ implies
that f(x)− h(x) = o(g(x)) as x →∞.

Also note that f(x) = O(1) implies that f(x) = o(x) as x →∞.

2.5 Dirichlet Series

Dirichlet series are among the most important tools in the mathematical
toolbox of a number theorist. They are applicable in a broad range of areas,
and both the Riemann zeta function and Dirichlet L-functions are examples
of Dirichlet series.

Definition 11. Let f(n) be an arithmetical function, then

∞∑

n=1

f(n)
ns

is called a Dirichlet series, denoted D.s., with coefficients f(n).

Note: |ns| = nσ since
∣∣eiθ

∣∣ = 1 for real θ.
When f(n) is an arithmetical function as described above, we will com-

monly refer to its associated Dirichlet series as F (s) or if F (n) is already
taken, F̂ (s).

We have a number of results about Dirichlet series that will be applicable
to Riemann zeta function and Dirichlet L-functions.

Lemma 1. If σ > a, we have |ns| = nσ ≥ na, therefore
∣∣∣∣
f(n)
ns

∣∣∣∣ ≤
|f(n)|

na
.

Proof. Clear.
Therefore, if a Dirichlet series converges absolutely for s = a + ib, then

by the comparison test it also converges absolutely for all s with σ ≥ a.
This leads us to the next theorem.

Theorem 10. Suppose the series
∑ |f(n)n−s| does not converge for all s or

diverge for all s. Then there exists a real number, σa, called the abscissa of
absolute convergence, such that the series

∑ |f(n)n−s| converges absolutely
if σ > σa, but does not converge absolutely if σ < σa.
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Note 1: If a D.s. converges everywhere, σa := −∞, and if the series
converges nowhere, σa := +∞.

Note 2: Analogous definitions and theorems pertaining to the abscissa of
convergence and half-planes of convergence (instead of absolute convergence)
exist. We shall assume the results of these theorems without mentioning
them specifically. When we refer to absolute convergence we shall use the
notation σa, and when referring to conditional convergence, we will use σc.
Finally, it may interest the reader to know that for non-infinite σa and σc,
it is known that 0 ≤ σa − σc ≤ 1.

2.5.1 The Function of a Dirichlet series

For this section, assume that
∑

f(n)n−s converges absolutely for σ > σa

and let F (s) denote the summation

F (s) =
∞∑

n=1

f(n)
ns

for σ > σa (2.1)

We have the following theorem

Theorem 11 (Uniqueness theorem). Given two Dirichlet series

F (s) =
∞∑

n=1

f(n)
ns

and G(s) =
∞∑

n=1

g(n)
ns

,

both absolutely convergent for σ > σa. If F (s) = G(s) for each s in an
infinite sequence {sk} such that Re(sk) = σk → +∞ as k → ∞, then
f(n) = g(n) for every n.

Multiplication of Dirichlet series, maybe predictably, utilizes Dirichlet
convolution.

Theorem 12. Given two functions F (s) and G(s) represented by Dirichlet
series,

F (s) =
∞∑

n=1

f(n)
ns

for σ > a,

and

G(s) =
∞∑

n=1

g(n)
ns

for σ > b.

Then in the half-plane where both series converge absolutely we have

F (s)G(s) =
∞∑

n=1

h(n)
ns

, (2.2)
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where h = f ∗ g, the Dirichlet convolution of f and g:

h(n) =
∑

d|n
f(d)g

(n

d

)
.

Conversely, if F (s)G(s) =
∑

α(n)n−s for all s in a sequence {sk} with
σk → +∞ as k →∞, then α = f ∗ g.

2.5.2 Euler products

Sometimes called the analytic version of the fundamental theorem of arith-
metic, this next theorem is from Euler in 1737.

Theorem 13 (Analytic Fundamental Theorem of Arithmetic). Let
f be a multiplicative arithmetical function such that the series

∑
f(n) is

absolutely convergent. Then the sum of the series can be expressed as an
absolutely convergent infinite product,

∞∑

n=1

f(n) =
∏
p

{1 + f(p) + f(p2) + · · · } (2.3)

extended over all primes. If f is completely multiplicative, the product sim-
plifies and we have

∞∑

n=1

f(n) =
∏
p

1
1− f(p)

. (2.4)

Either version is referred to as the Euler product of the series.

The next theorem is simply an application of the previous one to abso-
lutely convergent Dirichlet series.

Theorem 14. Assume
∑

f(n)n−s converges absolutely for σ > σa. If f is
multiplicative, then we have

∞∑

n=1

f(n)
ns

=
∏
p

{
1 +

f(p)
ps

+
f(p2)
p2s

+ · · ·
}

if σ > σa

and if f is completely multiplicative, then we have

∞∑

n=1

f(n)
ns

=
∏
p

1
1− f(p)p−s

if σ > σa.
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2.5.3 Analytic Properties of Dirichlet Series

We deduce the analytic properties of Dirichlet series from the following
general theorem of complex function theory.

Lemma 2. Let {fn} be a sequence of functions analytic on an open subset
S of the complex plane, and assume that {fn} converges uniformly on every
compact subset of S to a limit function f . Then f is analytic on S and the
sequence of derivatives {f ′n} converges uniformly on every compact subset of
S to the derivative f ′.

We wish to apply this lemma to Dirichlet series, but first we must show
that we have uniform convergence on compact subsets of the half-plane of
convergence. We require the following:

Lemma 3. A Dirichlet series
∑

f(n)n−s converges uniformly on every com-
pact subset lying interior to the half-plane of convergence σ > σc.

Now we have that every Dirichlet series is analytic in its half-plane of
convergence, and we have its derivative.

Theorem 15. The summatory function of a Dirichlet series, F (s) =
∑

f(n)n−s,
is analytic in its half-plane of convergence σ > σc, and its derivative F ′(s)
is represented in this half-plane of convergence by the Dirichlet series

F ′(s) = −
∞∑

n=1

f(n) log n

ns
,

which is obtained by differentiating term by term.

Note: We have that F ′(s) has the same abscissa of convergence and the
same abscissa of absolute convergence as the series for F (s).

Our discussion on Dirichlet series is almost complete, but before we leave
this subject, we will have need to talk about the singularity of a Dirichlet
series so we can talk about the analytic continuation of the Riemann zeta
function and of L-functions.

In fact, we find that the singularity of a Dirichlet series will occur at its
abscissa of convergence on the real line thanks to this next theorem due to
Landau.

Theorem 16. Let F (s) be represented in the half-plane σ > c by the Dirich-
let series

F (s) =
∞∑

n=1

f(n)
ns

,

where c is finite, and assume that f(n) ≥ 0 for all n ≥ n0. If F (s) is analytic
in some disk about the point s = c, then the Dirichlet series converges in the
half-plane σ > c − ε for some ε > 0. Therefore, if the Dirichlet series has
a finite abscissa of convergence σc, then F (s) has a singularity on the real
axis at the point s = σc.
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The next two sections cover some more background before we can apply
what we have learned about Dirichlet series to the Riemann zeta function
and the Dirichlet L-functions.

2.6 Dirichlet Characters

Dirichlet characters will be absolutely necessary before continuing on to the
Dirichlet L-functions, as they are part of the definition of any L-function.

But, before we get to Dirichlet characters, let us speak of general charac-
ters of a group, a definition from which Dirichlet characters will be defined,
and with which we can prove some more general results that will serve us
well when we are dealing with them.

Definition 12. Let G be an arbitrary group. A complex-valued function f
defined on G is called a character of G, if f has the multiplicative property,
i.e.

f(ab) = f(a)f(b)

for all a, b in G, and if f(c) 6= 0 for some c in G.

Now we will see that every character has a very special relationship with
the roots of unity.

Theorem 17. If f is a character of a finite group G with identity element
e, then f(e) = 1, and each function value f(a) is a root of unity. In fact, if
an = e, then [f(a)]n = 1.

We always have the existence of at least one character, this is trivial, so
we present this result as a definition.

Definition 13. Every group G has at least one character, i.e. the function
which is identically 1 on G. This is the principal character of G. That is

f(g) ≡ 1, for all g ∈ G

is the principal character of G.

This is very nice, but if G is “nice” as well, then we have the next result.

Theorem 18. A finite abelian group G of order n has exactly n distinct
characters.

In fact, for Dirichlet characters, the group that we wish to work with
will be very “nice”.

Recall that a reduced residue system modulo k is a set of ϕ(k) integers,
{a1, a2, . . . , aϕ(k)} incongruent modulo k, each of which is relatively prime
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to k. For each integer a, the corresponding residue class â is the set of all
integers congruent to a modulo k:

â = {x : x ≡ a (mod k)}.

We define multiplication of residue classes by the relation

â · b̂ = âb. (2.5)

That is, the product of two residue classes â and b̂ is the residue class of the
product ab.

In fact, residue classes modulo a fixed positive integer k form a group
under this definition of multiplication.

Theorem 19. With multiplication defined by (2.5), the set of reduced residue
classes modulo k is a finite abelian group of order ϕ(k). The identity is the
residue class 1̂. The inverse of â is the residue class b̂ where ab ≡ 1 (mod k).

Finally, we are ready to define Dirichlet characters.

Definition 14. Let G be the group of reduced residue classes modulo k.
Corresponding to each character f of G, we define an arithmetical function
χ = χf as follows:

χ(n) = f(n̂) if (n, k) = 1,
χ(n) = 0 if (n, k) > 1.

The function χ is the Dirichlet character modulo k. The principal char-
acter χ1 has the properties

χ1(n) =

{
1 if (n, k) = 1,
0 if (n, k) > 1.

In this paper, the only reduced residue system we will work with in-depth
is the reduced residue system modulo 4. The Dirichlet characters for this
system are summarized in the next table:

n 1 2 3 4
χ1(n) 1 0 1 0
χ2(n) 1 0 −1 0

χ for k = 4

2.7 Properties of the Gamma function

Before continuing, we will require some of the properties of the gamma
function Γ(s). Although we will use only a handful of these, we provide this
list for easy reference.
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Properties of Γ(s)

(1) For σ > 0, we have the integral representation

Γ(s) =
∫ ∞

0
xs−1e−xdx. (2.6)

(2) The function defined for σ > 0 can be continued beyond σ = 0 and so
Γ(s) exists as a function that is analytic everywhere except for simple
poles at the points

s = 0,−1,−2,−3, . . .

with residue (−1)n/(n!) at s = −n.

(3) We also have the following representation for gamma

Γ(s) = lim
n→∞

nsn!
s(s + 1) · · · (s + n)

for s 6= 0,−1,−2, . . . ,

(4) The product formula for gamma

1
Γ(s)

= seγs
∞∏

n=1

(
1 +

s

n

)
e−s/n for all s,

where γ is Euler’s constant. Since the product converges for all s, Γ(s)
is never zero.

(5) The gamma function satisfies two functional equations,

Γ(s + 1) = sΓ(s) (2.7)

and
Γ(s)Γ(1− s) =

π

sinπs
, (2.8)

for all s.

(6) Perhaps the most well-known property is the last we mention

Γ(n + 1) = n!, for n a nonnegative integer.
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2.8 Generalized Wiener-Ikehara Theorem

The generalized Wiener-Ikehara theorem will be the workhorse that we use
for the first proof of the main theorem of this paper. It is a Tauberian kind
of theorem. This is the method that [BatDia] uses to prove their estimate
of B(x), and much of the material in this section can be found there. In
order to talk about the generalized version of the Wiener-Ikehara theorem,
we first speak about the original, but in order to do that, we must define
Fejér kernels.

Definition 15. For each positive real number λ, a Fejér kernel on R, de-
noted Kλ, is defined by

Kλ(x) :=
1
2

∫ 2λ

−2λ

(
1− |t|

2λ

)
eixtdt.

We normalize this function and use it as an approximate identity, while
1 − |t|/(2λ) will help us improve the convergence of a specific integral. We
are now in the realm of Fourier analysis, and require two lemmas from that
field. The first will describe some properties of the Fejér kernel.

Lemma 4. Let x be a real number, λ > 0, and δ > 0. Then

Kλ(x) = λ

(
sinλx

λx

)2

, (2.9)

0 ≤ Kλ(x) ≤ min(λ,
1

λx2
), (2.10)

∫ ∞

−∞
Kλ(u)du exists and is independent of λ, (2.11)

∫

|u|>δ
Kλ(u)du ≤ 2

λδ
. (2.12)

Proof. Kλ(0) = λ by inspection. For x 6= 0, we have that

Kλ(x) =
∫ 2λ

0

(
1− t

2λ

)
cos(xt)dt.

We integrate by parts to get

Kλ(x) =
1

2λx

∫ 2λ

0
sin(xt)dt =

1− cos 2λx

2λx2
=

(sinλx)2

λx2
,

which proves (2.9).
Now for (2.10): we have the inequalities

0 ≤ u−2 sin2 u ≤ min(1, u−2),
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from which (2.10) follows.
The integral of (2.11) converges by (2.10). By letting λx = v, we see

that ∫ ∞

−∞
Kλ(x)dx =

∫ ∞

−∞

sin2 v

v2
dv

for any λ. In fact this integral is equal to π, but we are not concerned with
this value here.

At last, we have (2.12) from the estimate Kλ(x) ≤ λ−1x−1.
The second result we require from Fourier analysis is a special case of

the Riemann-Lebesgue lemma, which tells us that Fourier transforms vanish
at infinity.

Lemma 5. Let f be a continuous complex valued function on R which is
zero except on a bounded set, and let y be a real number. Then

lim
y→±∞

∫ ∞

−∞
f(t)eitydt = 0

Proof. Let I(y) =
∫

f(t)eitydt. Now by changing the variable, we have

I(y) =
∫ ∞

−∞
f

(
t +

π

y

)
ei(t+(π/y))ydt = −

∫ ∞

−∞
f

(
t +

π

y

)
eitydt.

Therefore,

2I(y) =
∫ ∞

−∞

{
f(t)− f

(
t +

π

y

)}
eitydt.

Now since f is uniformly continuous, the expression in braces tends to
zero uniformly as y → ±∞. Furthermore, the last integrand vanishes outside
a fixed bounded set, say if |y| ≥ 1. Hence, I(y) → 0 as |y| → ∞.

As we work towards an estimate of B(x), we will be using functions of a
particular class; one of the properties of functions in this class is that they
are locally of bounded variation; that is,

Definition 16. We say that f is locally of bounded variation on (a,∞) if
and only if the variation of f on each compact subinterval [b, c] ⊂ (a,∞) is
finite.

Definition 17. Let V denote the class of complex valued functions on R
that possess the following properties:

They are zero in (−∞, 1),

continuous from the right,
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and locally of bounded variation.

Now we can prove the Wiener-Ikehara theorem. In fact, the theorem
holds true for Mellin transforms, a more general type of Dirichlet series, but
we shall not require this fact.

Theorem 20. Let F be a real valued monotone nondecreasing function in
V. Let σc(F̂ ) = α > 0 and suppose that there exist a real number L and a
function φ, continuous on the closed half plane σ ≥ α, such that

F̂ (s) =
∫

x−sdF (x) = L(s− α)−1 + φ(s),

where F̂ is the associated Dirichlet series of F , holds on the corresponding
open half plane. Then

F (x) = L
xα

α
+ o(xα).

Proof. Note that F (x) = O(xα+ε) for any ε > 0, since the Dirichlet series
converges for σ > α. Now let u = α log x and define f by f(u) := F (eu/α) =
F (x). Then for σ > 1, we have

∫ ∞

0
e−sudf(u) = F̂ (αs) =

L

α(s− 1)
+ φ(αs).

Now, the above estimate of F implies that f(u) = O(eu+εu) for any ε > 0.
Therefore, for σ > 1,

∫ ∞

0
f(u)e−sudu = s−1

∫ ∞

0
e−sudf(u)

=
L

αs(s− 1)
+

φ(αs)
s

=
L

α(s− 1)
+ φ1(s),

(2.13)

where φ1(s) = s−1φ(αs)−L/(αs), so that φ1 is continuous on σ ≥ 1. If we
express L/(α(s− 1)) as a Laplace integral, we obtain

φ1(s) =
∫ ∞

0
e−su

{
f(u)− Leu

α

}
du, σ > 1.(2.14)

There remains two things to do. First, we establish an integral relation
valid for each positive number λ, and second we give a tauberian argument
based on this relation. To begin:

lim
y→∞

∫ ∞

0
e−xf(x)K∗

λ(y − x)dx =
L

α
, (2.15)

where
K∗

λ(t) = Kλ(t)
/ ∫ ∞

−∞
K1(u)du.
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We know that K∗
λ has total integral 1, independent of λ. When λ is large,

K∗
λ is sharply peaked near the origin.
Let ε and λ be positive, s = 1+ε+it, and multiply (2.14) by (1/2) {1− |t|/(2λ)} eity,

and integrate. We get that

1
2

∫ 2λ

−2λ
(1− |t|

2λ
eityφ1(1 + ε + it)dt

=
1
2

∫ 2λ

−2λ

(
1− |t|

2λ

)
eity

{∫ ∞

0

(
f(u)− Leu

α

)
e−u(1+ε+it)du

}
dt

=
∫ ∞

0
e−u−εu

(
f(u)− Leu

α

) {
1
2

∫ 2λ

−2λ

(
1− |t|

2λ

)
eit(y−u)dt

}
du.

We have that the interchange of integration is justified since
∫∞
0 e−u−εu|f(u)−

Leu/α|du converges. Now, in terms of Kλ, we have

1
2

∫ 2λ

−2λ
(1− |t|

2λ
eityφ1(1 + ε + it)dt

=
∫ ∞

0
e−u−εuf(u)Kλ(y − u)du− L

α

∫ ∞

0
e−εuKλ(y − u)du.

(2.16)

Now we let ε → 0+ in equation (2.16). Since φ1 is continuous and the
range of integration is bounded, the limit may be taken inside the left integral.
Also, we have that Kλ is continuous, nonnegative, and has a finite integral,
so

lim
ε→0+

∫ ∞

0
eεuKλ(y − u)du =

∫ ∞

0
Kλ(y − u)du.

Therefore, for any real y,

lim
ε→0+

∫ ∞

0
e−u−εuf(u)Kλ(y − u)du

=
L

α

∫ ∞

0
Kλ(y − u)du +

1
2

∫ 2λ

−2λ

(
1− |t|

2λ

)
eityφ1(1 + it)dt.

(2.17)

For any y, the limit in the last equation exists as a real number. We wish to
take the limit inside the integral, but since we are not using Lebesgue theory,
we give some details.

Let R(y) denote the right hand side of (2.17), and let η > 0 be given.
Then f ≥ 0 since f ∈ V and is nondecreasing. Furthermore, Kλ ≥ 0, and
therefore, for 0 < ε ≤ ε0,

0 ≤ R(y)−
∫ ∞

0
e−u−εuf(u)Kλ(y − u)du < η.
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In view of e−u−ε0uf(u) being bounded, we have that
∫ ∞

U
e−u−ε0uf(u)Kλ(y − u)du < η

holds for sufficiently large U , and therefore,

0 ≤ R(y)−
∫ U

0
e−u−ε0uf(u)Kλ(y − u)du < 2η.

Since both f and Kλ are nonnegative, we have that this last inequality holds
for ε0 = 0 (for sufficiently large U); therefore,

∫ ∞

0
e−uf(u)Kλ(y − u)du =

L

α

∫ ∞

0
Kλ(y − u)du

+
1
2

∫ 2λ

−2λ

(
1− |t|

2λ

)
eityφ1(1 + it)dt.

Next, let y →∞ and apply Lemma 5 to obtain

lim
y→∞

1
2

∫ 2λ

−2λ

(
1− |t|

2λ

)
eiytφ1(1 + it)dt = 0.

And it now follows that

lim
y→∞

{∫ ∞

0
e−uf(u)Kλ(y − u)du− L

α

∫ ∞

0
Kλ(y − u)du

}
= 0.

By monotonicity, we have

lim
y→

L

α

∫ y

−∞
Kλ(x)dx =

L

α

∫ ∞

−∞
K1(x)dx,

and (2.15) is obtained by dividing through by
∫

K1(x)dx.
Now for the second stage of the argument. We begin by showing that

f(y) = O(ey). Let λ and δ be positive numbers and let J(y, λ) denote the
integral of (2.15). Since the integrand of J(y, λ) is nonnegative, and that f
and the exponential function are monotone, we have that for any y > δ,

J(y, λ) ≥
∫ y+δ

y−δ
e−xf(x)K∗

λ(y − x)dx ≥ f(y − δ)e−y−δ

∫ δ

−δ
K∗

λ(u)du.

We combine this with (2.15) to get

f(y − δ)e−(y−δ) ≤ e2δ L

α

/(∫ δ

−δ
K∗

λ(u)du

)
+ o(1), (2.18)

which tells us that f(y)/ey is bounded.
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Now pick δ =
{

(λ/2)
∫∞
−∞K1(u)du

}−1/2
. By (2.12),

∫

|u|>δ
K∗

λ(u)du ≤ 2
λδ

∫
K1(u)du

= δ,

and therefore, ∫ δ

−δ
K∗

λ(u)du ≥ 1− δ. (2.19)

Now let ε > 0 be given. Choose λ large (and therefore δ small) to ensure
that e2δ/(1− δ) < 1 + ε. Now from (2.18) and (2.19), we have, as y →∞,

f(y)
ey

≤ L(1 + ε)
α

+ o(1).

Furthermore, this relation holds for arbitrary ε > 0, and thus,

lim sup
y→∞

f(y)
ey

≤ L

α
.

Now our goal is to obtain an inequality in the opposite direction. Since
f(y)/ey is bounded, there exists a δ > 0 such that f(y)/ey ≤ b for all y ≥ 0.
We have, for any positive λ and y,

J(y, λ) ≤ b

∫

|u|>δ
K∗

λ(u)du + f(y + δ)e−(y+δ)

∫ δ

−δ
K∗

λ(u)du

≤ bδ + f(y + δ)e−(y+δ)ewδ.

Now, by the last inequality of (2.15),

f(y)e−y ≥ Le−2δ

α
− bδe−2δ + o(1)

as y →∞ for each fixed pair λ, δ that satisfies

λδ2 = 2
/∫ ∞

−∞
K1(u)du.

Therefore, for each δ > 0, we have

lim inf
y→∞

f(y)
ey

≥ Le−2δ

α
− bδe−2δ,

and hence
lim inf
y→∞

f(y)
ey

≥ L

α
.

Finally, the two inequalities imply the Wiener-Ikehara theorem, limy→∞ f(y)/ey =
L/α or

F (x) =
Lxα

α
+ o(xα).

23



Before we can generalize this result, we need another lemma in order to
estimate integrals of the form

∫∞
0 uγ−1Kλ(y − u)du.

Lemma 6. Let γ denote a fixed number in the interval, (1, 2). Then there
exist the functions g = gλ defined on [2,∞), satisfying that g(λ) → 0 as
λ → ∞, and θ = θγ(y, λ) with |θ| ≤ 1, and such that for all y ≥ 2 and
λ ≥ 2, we have

∫ ∞

0
uγ−1Kλ(y − u)du = yγ−1 {1 + θg(λ)}

∫ ∞

−∞
K1(u)du. (2.20)

And for γ fixed in the interval (0, 1) and any fixed λ ≥ 2,
∫ ∞

0
uγ−1Kλ(y − u)du = o(1) as y →∞.

Proof. We noted before without proof that
∫

K1 :=
∫ ∞

−∞
K1(u)du = π.

While we do not need this exact value, we do need a positive lower bound.
Note that | sinu| ≥ 2|u|/π for |u| ≤ π/2, which tells us that

∫
K1 > 4/π > 1.

As in the proof of the Wiener-Ikehara theorem (Theorem 20), we define

δ :=
{

λ

2

∫
K1

}−1/2

(2.21)

and observe that 0 < δ < 1 for λ ≥ 2, and that δ → 0 as λ →∞.
For 1 < γ < 2, we give a lower estimate of the integral by using the fact

that y − δ > 0 and applying (2.19). We get

∫ ∞

0
uγ−1Kλ(y − u)du ≥ (y − δ)γ−1

∫ y+δ

y−δ
Kλ(y − u)du

≥ yγ−1

(
1− δ

y

)γ−1

(1− δ)
∫

K1

≥ yγ−1

(
1− δ

2

)
(1− δ)

∫
K1.

As for an upper estimate, we bound the integral over four intervals. By
Lemma 4 and equation 2.21 (and the fact that y ≥ 2), we obtain

∫ y−δ

0
uγ−1Kλ(y − u)du ≤ (y − δ)γ−1

∫ y−δ

0
Kλ(y − u)du

≤ yγ−1

∫ y

δ
Kλ(v)dv ≤ yγ−1 δ

λδ2
=

1
2
yγ−1δ

∫
K1,
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∫ y+δ

y−δ
uγ−1Kλ(y − u)du =

∫ δ

0
Kλ(v)

{
(y − v)γ−1 + (y + v)γ−1

}
dv

≤ 2yγ−1

∫ δ

0
Kλ(v)dv < yγ−1

∫
K1,

∫ 2y

y+δ
uγ−1Kλ(y − u)du ≤ (2y)γ−1

∫ 2y

y+δ
Kλ(y − u)du ≤ yγ−1δ

∫
K1,

∫ ∞

2y
uγ−1Kλ(y − u)du ≤

∫ ∞

2y
uγ−1λ−1(u− y)−2du

≤ 4
λ

∫ ∞

2y
uγ−3du ≤ 4yγ−2

λ(2− γ)
≤ 2yγ−1

λ(2− γ)

∫
K1,

where the second integral was estimated using the symmetry of Kλ about the
origin and the concavity of the function uγ−1.

Now taking them altogether, we see that
∫ ∞

0
uγ−1Kλ(y − u)du ≤ yγ−1

{
1 +

3δ

2
+

2
λ(2− γ)

} ∫
K1.

By combining the lower and upper estimates and recalling the definition of δ
(equation 2.21), we obtain (2.20). For a fixed γ ∈ (1, 2), the error estimate
satisfies gγ(λ) = Oγ(1/

√
λ).

Now we turn to the case when 0 < γ < 1 and separate [0,∞) into three
segments to estimate each part separately. We have the following:

∫ y/2

0
uγ−1Kλ(y − u)du ≤ 4

λy2

∫ y/2

0
uγ−1du <

4
γλ

yγ−2,

∫ 2y

y/2
uγ−1Kλ(y − u)du ≤ 2yγ−1

∫ 2y

y/2
Kλ(y − u)du < 2yγ−1

∫
K1,

∫ ∞

2y
uγ−1Kλ(y − u)du ≤ 4yγ−2λ−1(2− γ)−1,

where the last integral was estimated similarly in the other case. Therefore,
we have for each fixed γ ∈ (0, 1)

∫ ∞

0
uγ−1Kλ(y − u)du = O(yγ−1) = o(1) as y →∞.

We can now prove the generalized Wiener-Ikehara theorem.

Theorem 21. Let F be a real valued nondecreasing function in V with
σc(F̂ ) = α > 0. Let φ and ϑ be functions which are analytic on the closed
half plane σ ≥ α and assume that φ(α) 6= 0. For γ a real number distinct
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from 0, −1, −2, . . ., let (s− α)−γ be positive valued on the real ray, s > α.
Further suppose that

F̂ (s) =
∫

x−sdF (x) = (s− α)−γφ(s) + ϑ(s)

holds on the open half plane σ > α. Then

F (x) ∼ φ(α)
xα(log x)γ−1

αΓ(γ)
,

where Γ denotes the Euler gamma function.

Proof. The Wiener-Ikehara theorem (Theorem 20) covers the case of γ = 1.
We consider the case 1 < γ < 2. This case follows Theorem 20 closely.
First, note that φ(α) > 0 in this case, since F̂ (σ) > 0 on the ray σ > α and

φ(α) = lim
σ→α+

(σ − α)γF̂ (σ) 6= 0.

Now set u = α log x and define f(u) = F (eu/α) = F (x). Then, for σ > 1,
we have

∫ ∞

0
e−sudf(u) = F̂ (αs) = (s− 1)−γα−γφ(αs) + ϑ(αs).

We integrate by parts and obtain

∫ ∞

0
e−suf(u)du =

F̂ (αs)
s

for σ > 1.

Now, by expanding φ(αs)/s in a Taylor series about s = 1, we find that

α−γ

(s− 1)γ

φ(αs)
s

+
ϑ(αs)

s
=

a

(s− 1)γ
+

b

(s− 1)γ−1
+ φ1(s), (2.22)

where a := α−γφ(α) > 0, b is some constant and φ1 is a continuous function
on the closed half plane σ ≥ 1. Now

(s− 1)−β =
∫ ∞

0
e−su euuβ−1du

Γ(β)

for σ > 1 and β > 0. This identity can be established for s real and s > 1 by
changing the variable in the integral representation of the gamma function.
The result follows for any complex s with σ > 1 by analytic continuation.
Therefore, for σ > 1,

φ1(s) =
∫ ∞

0
e−su

{
f(u)− a

Γ(γ)
euuγ−1 − b

Γ(γ − 1)
euuγ−2

}
du.
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We will show that f(u) ∼ aeuuγ−1/Γ(γ), which is equivalent to the the-
orem. As in the proof of Theorem 20, we take s = 1 + ε + it with ε > 0,
form the integral

1
2

∫ 2λ

−2λ
(1 − |t|

2λ
eityφ1(1 + ε + it)dt =

1
2

∫ 2λ

−2λ

(
1− |t|

2λ

)
eity ×

∫
∞

{
f(u)− a

Γ(γ)
euuγ−1− beu

Γ(γ−1)
uγ−2

}
·e−u(1+ε+it)dudt

=
∫ ∞

0
e−u−εu

{
f(u)− a

Γ(γ)
euuγ−1 − beu

Γ(γ − 1)
uγ−2

}
Kλ(y − u)du,

and let ε → 0+. We use an argument similar as before to obtain

1
2

∫ 2λ

−2λ
(1− |t|

2λ
eityφ1(1 + it)dt

=
∫ ∞

0
e−uf(u)Kλ(y − u)du− a

Γ(γ)

∫ ∞

0
uγ−1Kλ(y − u)du

− b

Γ(γ − 1)

∫ ∞

0
uγ−2Kλ(y − u)du.

Now, Lemma 6 tells us that the last integral is o(1) as y →∞. The Riemann-
Lebesgue lemma implies that the last integral containing φ1 also tends to zero
as y →∞. Therefore, for each λ ≥ 2, as y →∞ we have by (2.20) that

∫ ∞

0
e−uf(u)Kλ(y − u)du =

ayγ−1

Γ(γ)
{1 + θg(λ)}

∫
K1 + o(1), (2.23)

where |θ| ≤ 1 and g(λ) = o(1) as λ →∞.
Again, we follow in the same manner as in the proof of the Wiener-

Ikehara theorem. We estimate the left hand side of (2.23) by using the
range y − δ ≤ u ≤ y + δ, where δ = δ(x) is chosen as it was in (2.21).
Letting y − δ = w, we obtain the estimate

e−wf(w) ≤ ae2δ(w + δ)γ−1

Γ(γ)(1− δ)
{1 + θg(λ)}+ o(1) (2.24)

for fixed λ ≥ 2. Therefore, (2.24) gives the bound f(w)/ew ≤ Bwγ−1 for
some B > 0 and for all w >≥ 2. Now we give upper estimates of the
integrals

∫ y−δ
2 and

∫∞
y+δ in the left hand side of (2.23) by using this bound

and some inequalities from the proof of Lemma 2.16. Because the lemma
uses only y ≥ 2, we observe that

∫ 2

0
e−uf(u)Kλ(y − u)du < f(2)

∫ y

y−2
Kλ(v)dv = o(1).
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We replace y + δ with w to obtain

f(w)
ew

≥ (w − δ)γ−1e−2δ

{
a

Γ(γ)
− ag(λ)

Γ(γ)
− 3Bδ

2
− 2B

λ(2− γ)

}
+ o(1).

Now, λ can be chosen sufficiently large, and δ → 0+ as λ → ∞. If we
combine (2.24) with this last inequality, and take λ large, we are able to
conclude that

f(w)
ew

= (1 + o(1))
a

Γ(γ)
wγ−1 + o(1), (2.25)

which is equivalent to the assertion of the theorem for the case 1 < γ < 2.
Now we turn our attention to the case γ < 1 and γ 6= 0,−1,−2, . . .. Let

N be the positive integer for which 1 < γ+N < 2. Define F1(x) :=
∫ x
1 LNdF .

We form the Dirichlet series

F̂1(s) =
∫

x−s logN xdF (x) = (−1)N F̂ (N)(s)

= (−1)N
N∑

j=0

(
N

j

) {
(s− α)−γ

}(N−j)
φ(j)(s) + (−1)Nϑ(N)(s)

= (s− α)−γ−N Γ(γ + N)
Γ(γ)

φ(s) + · · ·+ (−1)N (s− α)−γφ(N)(s)

(−1)Nϑ(N)(s)

= (s− α)−γ−NΦ(s) + (−1)Nϑ(N)(s),

where Φ and ϑ(N) are analytic functions on σ ≥ α, and

Φ(α) =
Γ(γ + N)φ(α)

Γ(γ)
.

As with 1 < γ < 2, we have F̂1(σ) > 0 on σ > α, and therefore,

Φ(α) = lim
σ→α+

(σ − α)γ+N F̂1(σ) > 0.

And because Γ(γ + N) > 0, we have that φ(α)/Γ(γ) > 0 here.
Since 1 < γ + N < 2, we apply to F1(x) the form of the theorem that we

have already proved to obtain

F1(x) ∼ φ(α)
αΓ(γ)

xα(log x)γ+N−1.

Now for x ≥ e,

F (x) = F (e) +
∫ x

e
L−NdF1

= F1(x) log−N x + N

∫ x

e
t−1F1(t)(t)−N−1dt + O(1)

= {1 + o(1)} φ(α)
αΓ(γ)

xα(log x)γ−1 + O
{
xα(log x)γ−2

}
,
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which proves the theorem for γ < 1, and γ 6= 0,−1,−2, . . ..
Finally, we can turn to the case γ ≥ 2. We sketch the argument for

2 ≤ γ < 4, from which the general case follows.
Let f+ := max(f, 0), then we have

λ−1K2
λ(x) = λ

(
sinλx

λx

)4

=
1
4λ

∫ (
1− |t|

2λ

)+

eixtdt ·
∫ (

1− |u|
2λ

)+

eixudu

=
∫ 4λ

−4λ
h(v)eixvdv,

where h is the continuous function supported on [−4λ, 4λ] and defined by

h(v) =
1
4λ

∫ (
1− |t|

2λ

)+ (
1− |v − t|

2λ

)+

dt.

We do not need an explicit representation of h, and proceed using Lemma
4 concerning the properties of Kλ. The function K2

λ/λ satisfies analogous
relations, and in particular

∫ ∞

−∞

K2
λ(u)
λ

du =
∫ ∞

−∞
K2

1 (u)du

for all real λ. Now the analogue of Lemma 6 holds for 2 ≤ γ < 4 if we use
K2

λ/λ instead of Kλ.
Now to prove the theorem for 2 ≤ γ < 4, we change (2.22) to exhibit all

powers of s−1 occurring with a negative exponent. In (2.23), we replace Kλ

with K2
λ/λ and the right hand side of (2.23) is changed by the inclusion of

terms containing the factor yγ−2 and yγ−3. Now, these terms are of smaller
order than the term containing the factor yγ−1, and so the conclusion of the
proof is as before.

For the general case γ ≥ 2, we choose a positive integer N for which
2N > γ, and use the function λ1−NKN

λ instead of Kλ. We have

λ1−NKN
λ =

∫
eixvhN (v)dv,

where

hN (v) =λ1−N2−N

∫
· · ·

∫ (
1− |t1|

2λ

)+

×

· · · ×
(

1− |tN−1|
2λ

)+ (
1− |v − t1 − · · · − tN−1

2λ

)+

dt1 · · · dtN−1.
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2.9 Riemann Zeta Function and Dirichlet L-Functions

Both the Riemann zeta function and the Dirichlet L-functions are examples
of Dirichlet series, and this information will be invaluable to for the first
method of estimation. The next two subsections summarize the results
when we apply what we know about Dirichlet series to the Riemann zeta
function and Dirichlet L-functions.

2.9.1 Properties of ζ(s)

We will begin with one of many definitions for the Riemann zeta function,
denoted ζ(s).

Definition 18. For σ > 1,

ζ(s) :=
∞∑

n=1

1
ns

.

We have the following properties of the zeta function due to the theorems
on Dirichlet series applied to the zeta function.

Properties of ζ(s)

(1) ζ(s) converges for all s > 1 and diverges at s = 1, so the abscissa of
convergence is σa = 1.

(2) Both
∑

n−s and
∑

µ(n)n−s converge absolutely for σ > 1. Utilizing
our theorem concerning multiplication of Dirichlet series above, and
taking f(n) = 1 and g(n) = µ(n), we get h(n) = [1/n], thus for σ > 1

ζ(s)
∞∑

n=1

µ(n)
ns

= 1.

Particularly, this shows that ζ(s) 6= 0 for σ > 1 and also that
∞∑

n=1

µ(n)
ns

=
1

ζ(s)
.

(3) Applying the Euler product to ζ(s), i.e. when f(n) = 1, we obtain the
product formula for ζ(s). For σ > 1

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

1
1− p−s

.

When f(n) = µ(n), σ > 1, we get the relation

1
ζ(s)

=
∞∑

n=1

µ(n)
ns

=
∏
p

(1− p−s).
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(4) By differentiating the zeta function term by term, we get the following

ζ ′(s) = −
∞∑

n=1

log n

ns
(2.26)

As mentioned in our properties, we have an inverse of ζ(s), but this
deserves special note:

Theorem 22 (Inverse of the Riemann zeta function). For σ > 1

1
ζ(s)

=
∞∑

n=1

µ(n)
ns

,

where µ is the Möbius function.

2.9.2 Properties of L(s, χ)

Definition 19. The Dirichlet L-function is defined as follows, for σ > 1,

L(s, χ) :=
∞∑

n=1

χ(n)
ns

,

where χ is a Dirichlet character.

Properties of L(s, χ)

(1) Since χ(n) is bounded, i.e. |χ(n)| ≤ 1, we have that L(s, χ) converges
absolutely for σ > 1, and σa ≤ 1.

In general, if |f(n)| ≤ M for some M and for all n ≥ 1, then
∑

f(n)n−s

converges absolutely for σ > 1.

(2) We utilize the theorem concerning multiplication of Dirichlet series, and
assume F (s) =

∑
f(n)n−s converges absolutely for σ > σa. If f is

completely multiplicative, then we have f−1(n) = µ(n)f(n). Since∣∣f−1(n)
∣∣ ≤ |f(n)|, the series

∑
µ(n)f(n)n−s also converges absolutely

for σ > σa and we get

∞∑

n=1

µ(n)f(n)
ns

=
1

F (s)
if σ > σa.

In particular, for every Dirichlet character χ, we have

∞∑

n=1

µ(n)χ(n)
ns

=
1

L(s, χ)
if σ > 1.
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(3) Applying the Euler product formula to χ(n), we get an equivalent prod-
uct formula of L(s, χ),

L(s, χ) =
∞∑

n=1

χ(n)
ns

=
∏
p

1
1− χ(p)p−s

if σ > 1.

We also have the particular case when χ = χ1, the principal character
modulo k. In this example, χ1(p) = 0 if p|k and χ1(p) = 1 if p - k, so
the Euler product for L(s, χ1) becomes

L(s, χ1) =
∏

p-k

1
1− p−s

=
∏
p

1
1− p−s

·
∏

p|k
(1− p−s) = ζ(s)

∏

p|k
(1− p−s).

Therefore, L(s, χ1) is equal to ζ(s) multiplied by a finite number of
factors.

2.9.3 Hurwitz Zeta Function

In fact, not only are ζ and L Dirichlet series, but they are also examples of
what are called Hurwitz zeta functions. These functions are the workhorses
we will use to prove the Prime Number Theorem.

Definition 20. The Hurwitz zeta function, denoted ζ(s, w), defined for σ >
1 by

ζ(s, w) =
∞∑

n=0

1
(n + w)s

,

where w is a fixed real number, 0 < w ≤ 1.

When w = 1, this becomes the Riemann zeta function, i.e. ζ(s) = ζ(s, 1).
As mentioned before, we can also express L(s, χ) in terms of Hurwitz zeta
functions.

Theorem 23. For σ > 1, and where χ is a Dirichlet character modulo k,

L(s, χ) =
1
ks

k∑

w=1

χ(w)ζ
(
s,

w

k

)
.

It is important to note that Hurwitz zeta functions are not necessarily
Dirichlet series, so that many of the things we have proven for Dirichlet
series are not immediately applicable to this type of functions. However, it
will be seen that we have enough of the same properties.

The remainder of this chapter will be devoted to exploring Hurwitz zeta
functions while building up the machinery necessary to prove the prime
number theorem, which happens to be the same tools necessary to prove
our primary result. This material can be found particularly in [LeV2].

As expected, ζ(s, w) converges uniformly in its half-plane of convergence.
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Theorem 24. For any σ0 > 1, the series
∞∑

n=0

1
(n + w)−s

converges uniformly for σ ≥ σ0; thus ζ(s, w) is analytic for σ > 1.

In order to give an analytic continuation of ζ(s, w), we have need of the
following lemma.

Lemma 7. If a and b are integers with 0 ≤ a < b, and if f has a continuous
derivative over a ≤ x ≤ b, then

b∑

n=a+1

f(n) =
∫ b

a
f(u)du +

∫ b

a
(u− buc)f ′(u)du.

Now we can illustrate the analytic continuation of a Hurwitz zeta func-
tion over the half-plane σ > 0.

Theorem 25. If m is a non-negative integer, and σ > 1, then

ζ(s, w)− 1
(s− 1)(m + w)s−1

=
m∑

n=0

1
(n + w)s

− s

∫ ∞

m

u− buc
(u + w)s−1

du. (2.27)

It follows that ζ(s, w)−1/(s−1) is analytic for σ > 0, and that equation
2.27 holds for σ > 0.

In fact, the function is analytic over the entire plane except for the pole
at s = 1, but we have no need of this fact.

For the remainder of this chapter, and when relevant in chapter 5, c
will play the part usually reserved for ε, denoting a positive constant which
depends only on the arguments listed. It need not have the same value when
it occurs in different results, unless indicated so by a particular subscript.
When possible, the author has included figures to help describe the various
c’s.

We have the next result, giving us useful bounds on ζ(s, w).

Theorem 26. For 1
2 ≤ σ ≤ 2 and t > c(w), where c is a function of w,

|ζ(s, w)| < t3/4.

For t ≥ 8 and 1− (log t)−1 ≤ σ ≤ 2, we have

|ζ(s, w)| < c(w) log t.

The next few theorems and lemmas attempt to narrow down the bounds
and integrals for functions possessing properties like the Hurwitz zeta func-
tions. We will use all of these bounds to rid ourselves of some very ugly
integrals.
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Theorem 27. For |x| ≤ 1, if

f(x) =
∞∑

n=1

anxn

is analytic, and Re f(x) ≤ 1
2 , then |an| ≤ 1 for n ≥ 1.

Lemma 8. Let R > 0, and suppose that

f(x) =
∞∑

n=0

an(x− x0)n

is analytic and Re f(x) ≤ M for |x− x0| ≤ R. For n ≥ 1, we have

|an| ≤ 2
Rn

(M − Re a0).

Theorem 28. If f satisfies the hypotheses of Lemma 8, and 0 < r < R,
then for |x− x0| ≤ r, we have

|f(x)| ≤ |a0|+ 2r

R− r
(|M |+ |a0|)

and ∣∣f ′(x)
∣∣ ≤ 2R

(R− r)2
(|M |+ |a0|).

We will use this next theorem to eventually show that ζ does not vanish
near σ = 1 and sufficiently far from t = 0.

Theorem 29. Let r > 0 and M ∈ R, and suppose that f(s0) 6= 0 and that,
for |s− s0| ≤ r, f(s) is analytic and

∣∣∣∣
f(s)
f(s0)

∣∣∣∣ < eM .

Further suppose that f(s) 6= 0 in the semicircular region |s−s0| ≤ r, Re s >
Re s0. Then

−Re
f ′

f
(s0) ≤ 4M

r
,

and if there is a zero, say ρ, of f on the open line segment between s0− r/2
and s0, then

−Re
f ′

f
(s0) ≤ 4M

r
− 1

s0 − ρ.

A note on notation before we continue: If f is analytic on the vertical
line σ0 + ti, and if

lim
a→∞
b→∞

∫ σ0+bi

σ0−ai
f(s)ds = lim

a→∞
b→∞

∫ b

−a
f(σ0 + ti)dt
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exists, then we abbreviate this limit to
∫

(σ0)
f(s)ds,

as is the convention in [LeV2].

Theorem 30.
1

2πi

∫

(2)

ys

s2
ds =

{
0 for 0 < y < 1,

1 for y ≥ 1.

2.9.4 The Prime Number Theorem

The results of this section are easily modified to prove both Dirichlet’s the-
orem on primes in arithmetical progressions and the primary result of this
paper, i.e. the estimation of the number of integers expressible as a sum of
two squares. Accordingly, the proofs of these results are included.

To begin with, we will need to learn something about the location of the
zeroes of the Riemann zeta function. From the product formula for ζ(s)

ζ(s) =
∏
p

(1− p−s)−1,

we see that ζ(s) 6= 0 for σ > 1.
The following proof that ζ(1+ ti) 6= 0 is due to de la Vallée Poussin, but

before we reach it, we should consider the following.
For σ > 1 we have

log ζ(s) =
∑
m,p

1
mpms

=
∑

p

1
ps

+ f(s),

where f is clearly analytic for σ > 1
2 . Since ζ has a pole at s = 1, with

residue 1, it follows that as σ → 1+,

∑
p

1
pσ

∼ log
1

σ − 1
. (2.28)

We continue heuristically. If 1 + t0i is a zero of ζ, and we let s = σ + t0i,
then, as σ → 1+,

log |ζ(s)| ∼ log(σ − 1)

and

Re(log ζ(s))− Re (f(s)) = log |ζ(s)| − Re (f(s))

=
∑

p

cos(t0 log p)
pσ

∼ log(σ − 1).
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We compare this with (2.28), and note that for most p, cos(t0 log p) is close
to −1, but then cos(2t0 log p) will usually be near 1, and we have

∑
p

cos(2t0 log p)
pσ

∼ log
1

σ − 1
.

But then, this implies that ζ has a pole at 1 + 2t0i, which is absurd.
For a rigorous argument, we note that for all real θ,

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0.

Thus, for σ > 1,

log
∣∣ζ3(σ)ζ4(σ + t0i)ζ(σ + 2t0i)

∣∣
= 3 log |ζ(σ)|+ 4 log |ζ(σ + t0i)|+ log |ζ(σ + 2t0i)|

= 3
∑
n,p

1
npnσ

+ 4
∑
n,p

cos(t0n log p)
npnσ

+
∑
n,p

cos(2t0n log p)
npnσ

=
∑
n,p

3 + 4 cos(t0n log p) + cos(2t0n log p)
npnσ

≥ 0.

Therefore,

((σ − 1)ζ(σ))3
∣∣∣∣
ζ(σ + t0i)

σ − 1

∣∣∣∣
4

|ζ(σ + 2t0i)| ≥ 1
σ − 1

,

and if 1 + t0i were a zero of ζ, the left hand side would remaind bounded as
σ → 1+, while the right hand side would increase without bound.

We are now in a position to show that ζ(s) does not vanish at any point
close to the line σ = 1 and sufficiently far from t = 0 (the real axis). We
utilize the argument above and Theorem 29

Theorem 31. For σ > 1

Re
(
−3

ζ ′

ζ
(σ)− 4

ζ ′

ζ
(σ + ti)− ζ ′

ζ
(σ + 2ti)

)
≥ 0.

Proof. We differentiate both sides of

log ζ(s) =
∑
m,p

1
mpms

.

We get that
ζ ′

ζ
(s) = −

∑
m,p

log p

pms
= −

∞∑

n=1

Λ(n)
ns

, (2.29)
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where Λ(n) is the Mangoldt function, that is,

Λ(n) =

{
log p if n = pm for some prime p and some m ≥ 1,

0 else.

We have the following table to illustrate this function:

n : 1 2 3 4 5 6 7 8 9 10
Λ(n) 0 log 2 log 3 log 2 log 5 0 log 7 log 2 log 3 0

Λ(n) for 1 ≤ n ≤ 10

Recall that the series for log ζ(s) converges uniformly in any region to
the right of σ = 1, thus we are allowed to differentiate termwise. We have
the following:

Re

(
− 3

ζ ′

ζ
(σ)− 4

ζ ′

ζ
(σ + ti)− ζ ′

ζ
(σ + 2ti)

)

= Re
∞∑

n=1

(3 + 4n−ti + n−2ti)Λ(n)
nσ

=
∞∑

n=1

(3 + 4 cos(t log n) + cos(2t log n))Λ(n)
nσ

≥ 0,

which was to be shown.
From Theorem 26, we have the following:

Theorem 32. (I) For σ ≥ 1
2 and t > c, we have |ζ(s)| < 1, and

(II) For t ≥ 8 and σ ≥ 1− (log t)−1, we have |ζ(s)| < c log t.

Proof. For σ ≤ 2, both (I) and (II) follow directly from Theorem 26. For
σ > 2 and t ≥ 8,

|ζ(s)| <
∞∑

n=1

1
n2

< 2 <

{
t,

log t.

Theorem 33. There exist constants c1 > 8 and c2 > 0 such that ζ(s) 6= 0
for

t > c1 and σ > 1− c2

log t
.

Proof. Following the premise of Theorem 32, choose c3 > 8 such that

|ζ(s)| < t, for σ ≥ 1
2
, t > c3.

In view of the fact that
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Figure 2.1: [LeV2], page 243

3
4

+
c4

log x
< 1− c2

log x
, for x > e4(c2+c4),

it is enough to show that any zero β + γi of ζ with γ sufficiently large
(specifically, γ > 8) and that satisfies

β >
3
4

+
c4

log γ
,

also satisfies
β < 1− c2

log γ
.

Let
σ0 = σ(γ) = 1 +

c4

log γ
,

and suppose that β+γi is a zero of ζ for which γ > e1+c2+c4 and β > σ0−1/4.
We apply Theorem 29 twice, once with s0 = σ0 + γi, and another time with
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s0 = σ0 + 2γi. In both cases, since σ0 > 1, we have the circle |s− s0| ≤ 1/2
is contained in the quadrant σ ≥ 1/2, t ≥ c3 for γ ≥ c3 +1/2. Since γ > ec4,
we get σ0 < 2, and by the inverse of zeta identity, we have

∣∣∣∣
1

ζ(s0)

∣∣∣∣ ≤
∞∑

n=1

1
nσ0

< 1 +
∫ ∞

1

du

uσ0
= 1 +

1
σ−1

0

<
2

σ−1
0

=
2
c4

log γ.

Therefore, for each ε1 > 0, there exists a c5 such that for γ > c5 > c3 +1/2;
now the inequality

∣∣∣∣
ζ(s)
ζ(s0)

∣∣∣∣ ≤
2
c4

(
2γ +

1
2

)
log γ < γ1+ε1

holds at every point s of the disk |s− s0| ≤ 1/2, since we have that at every
point, c3 < t ≤ 2γ + 1/2. If γ ≥ c5, we can apply Theorem 29 with r = 1/2,
f(s) = ζ(s), and M = (1 + ε1) log γ. We use the first inequality of that
theorem with s0 = σ0 + 2γi to obtain

−Re
ζ ′

ζ
(σ0 + 2γi) < 8(1 + ε1) log γ. (2.30)

With the second inequality of Theorem 29, we let s0 = σ0 + γi to get

−Re
ζ ′

ζ
(σ0 + γi) < 8(1 + ε1) log γ − 1

σ0 − β
, (2.31)

since
σ − r

2
= σ0 − 1

4
< β ≤ 1 < σ0.

Finally, because σ0 → 1+ as t →∞, we get from (2.28) that for ε2 > 0,

−ζ ′

ζ
(σ0) <

1 + ε2

σ0 − 1
=

1 + ε2

c4
log γ (2.32)

for γ > c6. Using (2.30), (2.31), and (2.32) in Theorem 31 yields

3(1 + ε2)
c4

log γ + 4 · 8(1 + ε1) log γ − 4
σ0 − β

+ 8(1 + ε1) log γ ≥ 0,

which is quickly simplified to

σ0 − β >
c7

log γ
,

where
c7 =

4c4

3(1 + ε2) + 40(1 + ε1)c4
,

and this gives us

β < 1− c7 − c4

log γ
.

Clearly, c7 > c4 if ε1 < 1/3, and c4 small, and we can take c2 = c7− c4 and
c1 = max(c5, c6).
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Theorem 34. If 0 < c8 < c2, then

| log ζ(s)| < log2 t for t > c9 and σ ≥ 1− c8

log t
.

Proof. We utilize Theorem 28, concerning bounds on a more general func-
tion, with s0 = 2 + t0i, for some t0 > 8 to be determined. For t sufficiently
large, the region

|s− s0| ≤ 1 +
1
2(c2 + c8)

log t0
(2.33)

is contained entirely in the region described in the previous theorem, in which
ζ has no zeros. Thus, log ζ(s) is analytic in this disk, and by Theorem 32
(II),

Re log ζ(s) = log |ζ(s)| < log(c log t)
< log (c log(t0 + 2)) < c10 log log t0.

Thus, by Theorem 28, we have for s in the region described in (2.33),

| log ζ(s)| ≤ |ζ(s0)|+ 2 · 2 (c10 log log t0 + |ζ(s0)|)
c8−c2

2 · 1
log t0

≤ c + c log t0 log log t0 < log2 t0,

if t0 is sufficiently large. This inequality holds on the radius extending toward
the left from s0, for every large t0, and thus throughout the region t ≥ c9,
1− c8(log t)−1 ≤ σ ≤ 2. Finally, both |ζ(s)| and |1/ζ(s)| are bounded in the
half-plane σ > 2, and | log ζ(s)| is therefore smaller than log2 t for t large
and σ > 2.

Theorem 35. There exists a constant α > 0 such that as x →∞,

∑

p≤x

log
x

p
=

∫ 1

c

xs

s2
ds + O

(
xe−α

√
log x

)

for some c such that 0 < c < 1.
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Proof. We use Theorem 30, which gives us

1
2πi

∫

(2)

xs

s2
log ζ(s)ds =

1
2πi

∫

(2)

1
s2

∞∑

n=1

Λ(n)
log n

(x

n

)s
ds

=
1

2πi

∞∑

n=1

Λ(n)
log n

∫

(2)

(x/n)s

s2
ds

=
∑

n≤x

Λ(n)
log n

log
x

n

=
∑
m,p

pm≤x

1
m

log
x

pm

=
∑

p≤x

log
x

p
+

∑
m,p
m≥2
pm≤x

1
m

log
x

pm
.

Clearly, the number of terms in the last sum is

π(x1/2) + π(x1/3) + · · · < x1/2 + x1/3 + · · ·+ x1/u < ux1/2,

where u is the smallest integer such that x1/u < 2. A word of caution here:
the number of terms in the last sum is not the Riemann prime counting
function, frequently denoted Π(x) or J(x), although both the subject and
Riemann’s influence on the subject may lead one to believe (or hope) that
this is the case. In any case, we have

π(x1/2) + π(x1/3) + · · · = O
(
x1/2 log x

)
,

so we obtain

2πi
∑

p≤x

log
x

p
=

∫

(2)

xs

s2
log ζ(s)ds + O

(
xe−

√
log x

)
,

since
∑

m≥2
pm≤x

1
m

log
x

pm
≤

∑

m≥2
pm≤x

log x = O
(√

x log2 x
)

= O
(
xe−

√
log x

)
.

Now we cut the complex plane along the real axis, continuing the cut from
s = 1 to the left, and consider the function log ζ(s) in the cut plane. Now,
if z̄ denotes the complex conjugate of z, then ζ(z̄) = ζ(s) and log z̄ = log z,
so clearly log ζ(s̄) = log ζ(s).

Then, by Theorem 33, ζ(s) 6= 0 for |t| > c9 > c1 and σ ≥ 1−c8(log |t|)−1.
Furthermore, since ζ(s) does not vanish on σ = 1, and since its zeros have
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Figure 2.2: [LeV2], page 243

no finite limit point in any half-plane σ ≥ σ0 > 0 (due to ζ(s) being analytic
there), there exists a constant c11 > 0 such that ζ(s) 6= 0 in the rectangle

1− c11 ≤ σ ≤ 1, |t| ≤ c9.

Finally, ζ(s) 6= 0 for 1 ≤ σ ≤ 2, and the only singularity in the half-
plane σ > 0 occurs at s = 1. Therefore, for an arbitrary u > c9, log ζ(s) is a
single-valued analytic function in the region Q outlined by Figure 2.2 bounded
by Γ1, Γ2, . . . ,Γ6, Γ7, Γ̄6, Γ̄5, . . . , Γ̄1. Now let Γ denote the total boundary of
Q, i.e. Γ = Γ1 + · · ·+ Γ̄1, then by Cauchy’s theorem we have the following:

∫

Γ

xs

s2
log ζ(s)ds = 0.
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It follows, by taking the integrals in the positive direction, that
∫

(2)

xs

s2
log ζ(s)ds

=
(∫ 2−ui

2−∞i
+

∫

Γ̄1

+
∫

Γ1

+
∫ 2+∞i

2+ui

)
xs

s2
log ζ(s)ds

=
(∫ 2−ui

2−∞i
−

∫

Γ2+···Γ6+Γ7+Γ̄6+···+Γ̄2

+
∫ 2+∞i

2+ui

)
xs

s2
log ζ(s)ds.

Now it remains for us to show that all of these integrals, with the excep-
tion of Γ6 and Γ̄6 are small for u large.

So we utilize Theorem 34. For u > u0(ε), we have
∣∣∣∣
∫ 2+∞i

2+ui

xs

s2
log ζ(s)ds

∣∣∣∣ ≤
∫ 2+∞i

2+ui

x2

|s|2 | log ζ(s)||ds|

≤ x2

∫ ∞

u

log2 t

t2
dt

≤ x2

∫ ∞

u

dt

t2−ε

<
cx2

u1−ε

so that

lim
u→∞

∫ 2+∞i

2+ui

xs

s2
log ζ(s)ds = 0.

Furthermore, this same estimate applies if we replace the “+” in the limits
of integration with a “−” and interchange top and bottom, i.e. interchange
2 + ui with 2−∞i and 2 +∞i with 2− ui.

For Γ2, we have that the length of this arc is less than 2, and the integrand
is still smaller than x2 log2 u/u2 for u large, so we have

lim
u→∞

∫

Γ2

xs

s2
log ζ(s)ds = 0,

and the same applies to Γ̄2:

lim
u→∞

∫

Γ̄2

xs

s2
log ζ(s)ds = 0.

As for Γ3 and its related arc, we have s = 1− c8(log t)−1 + ti, so that
∣∣∣∣
∫

Γ3

xs

s2
log ζ(s)ds

∣∣∣∣ ≤
∫ u

c9

x1−c8(log t)−1

t2
log2 t

∣∣∣∣
c8

t log2 t
+ i

∣∣∣∣ dt.

Now suppose that x and then u are chosen large such that

c9 < e
√

2c8 log x < u.
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Then
∫

Γ3

xs

s2
log ζ(s)ds

= O

(∫ e
√

2c8 log x

c9

x · x−c8(2c8 log x)−1/2 log2 t

t2
dt + x

∫ u

e
√

2c8 log x

log2 t

t1/2 · t3/2
dt

)

= O

(
xe
−

√
1
2
c8 log x

∫ ∞

c9

log2 t

t2
dt +

x

e

√
1
2
c8 log x

·
∫ u

e
√

2c8 log x

log2 tdt

t3/2

)

= O
(
xe−α

√
log x

)
,

where α =
√

c8/2.
By symmetry, we have the same result for Γ̄3,

∫

Γ̄3

xs

s2
log ζ(s)ds = O

(
xe−α

√
log x

)
.

Now Γ4, Γ5, Γ̄4, and Γ̄5 are all of fixed lengths, and on these paths we
have

xs

s2
log ζ(s) = O

(
x1−c11

)
= o

(
xe−α

√
log x

)
.

Since these paths are of fixed lengths, we have that the same estimate holds
for the integrals as well.

Γ7 is described by the relations s = 1 + δeiθ, |θ| ≤ π, where δ > 0. Since
(s− 1)ζ(s) → 1 as s → 1, we have

Re log ζ(s) = log |ζ(s)| ∼ − log |s− 1| = − log δ,

Im log ζ(s) = arg ζ(s) = O(1)

as δ → 0+. Therefore,
∫

Γ7

xs

s2
log ζ(s)ds = O

(
2πδ

x1+δ

(1− δ)2
log δ

)
= o(1).

Combining all stated results in this proof, we take the limit as u → ∞
and δ → 0+ and obtain

2πi
∑

p≤x

log
x

p
=

∫ 1

1−c11

xs

s2
log ζ(s)ds+

∫ 1−c11

1

xs

s2
log ζ(s)ds+ o

(
xe−α

√
log x

)
,

where we have the first integral to be along the top edge of the cut and the
second integral to be along the bottom edge, i.e. Γ6 and Γ̄6 respectively. We
know that (1− s)ζ(s) is analytic in the half-plane σ > 0, and that it has no
zeros in the region σ > 1− c11, |t| < c9. Therefore

log ((s− 1)ζ(s)) = log(s− 1) + log ζ(s)
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is single-valued in this region. Furthermore, since log(s−1) has values which
differ by 2πi on the upper and lower edges of the cut, the same must be true
of log ζ(s), so long as the difference is taken in the reverse order. Now, let
s+ indicate the upper edge of the cut, and s− indicate the lower edge, then
we have

∫ 1

1−c11

xs+

(s+)2
log ζ(s+)ds+ +

∫ 1−c11

1

xs−

(s−)2
log ζ(s−)ds−

=
∫ 1

1−c11

xs+

(s+)2
log ζ(s+)ds+ −

∫ 1

1−c11

xs+

(s+)2
(
log ζ(s+)− 2πi

)
ds+

= 2πi

∫ 1

1−c11

xs

s2
ds,

and ∑

p≤x

log
x

p
=

∫ 1

1−c11

xs

s2
ds + O

(
xe−α

√
log x

)
, (2.34)

,
which was to be shown.
At this point, we have covered the necessary preliminary material, but

we would be remiss if we came this far to stop short of the Prime Number
Theorem. In fact, we prove a stronger result:

Theorem 36. As x →∞

π(x) =
∫ x

2

du

log u
+ O

(
xe−

1
2
α
√

log x
)

.

Proof. We replace 1− c11 with C in equation (2.34), and let

δ = δ(x) = e−
1
2
α
√

log x.

Now, since log(1 + δ) ∼ δ as x →∞, we get

∑

p≤x(1+δ)

log
x(1 + δ)

p−
∑

p≤x

log
x

p

=
∑

p≤x

log(1 + δ) +
∑

x<p≤x(1+δ)

log
x(1 + δ)

p

= log(1 + δ)π(x) + O (log(1 + δ) · δx)

=
∫ 1

C

xs

s2
((1 + δ)s − 1) ds + O

(
xe−α

√
log x

)
,

thus, by solving for π(x) in the last two parts, we obtain

π(x) =
1

log(1 + δ)

∫ 1

C

(1 + δ)s − 1
s2

xsds + O(δx) + O

(
xe−α

√
log x

δ

)
.

45



Note
(1 + δ)s − 1 = sδ +

s(s− 1)
2!

(1 + ϑδ)s−2δ2,

where 0 < ϑ < 1. So now for 0 < s < 1,

|(1 + δ)s − 1− sδ| ≤ s|s− 1|
2

δ2 < δ2.

Now we simply make a change of variables, let xs = u, and we get the
following:

∫ 1

C

(1 + δ)2 − 1
s2

xsds = δ

∫ 1

C

xs

s
ds + O

(
δ2

∫ 1

C

xs

s2
ds

)

= δ

∫ x

xC

du

log u
+ O

(
δ2

∫ 1

C
xsds

)

= δ

∫ x

2

du

log u
+ O

(
δ2x

)
.

Finally, we have enough to make the last computations,

π(x) =
δ

log(1 + δ)

∫ x

2

du

log u
+ O(δx) + O

(
xe−α

√
log x

δ

)

= (1 + O(δ))
∫ x

2

du

log u
+ O(δx) + O

(
xe−

1
2
α
√

log x
)

=
∫ x

2

du

log u
+ O(δx)

=
∫ x

2

du

log u
+ O

(
xe−

1
2
α
√

log x
)

,

which was to be shown.
Now we have the Prime Number Theorem as a weak consequence of

Theorem 36, since
∫ x

2

du

log u
=

u

log u

]x

2

+
∫ x

2

du

log2 u
∼ x

log x

and

xe−c
√

log x = o

(
x

log x

)

for every c > 0. Actually, if we apply repeated integration by parts, we get
that

π(x) =
x

log x
+

2!x
log2 x

+ · · ·+ m!x
logm x

+ o

(
x

logm x

)

is true for every positive integer m.
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Chapter 3

Geometrical Representation

This chapter focuses on illustrating the problem geometrically. Once we do
so, the problem of figuring out the number of integers expressible as the sum
of two squares can be understood by those possessing only a rudimentary
knowledge of geometry.

We shall see that our problem easily relates to Pythagorean triangles
and the number of lattice points within circles.

3.1 The Circle Problem of Gauss

The circle problem of Gauss is concerned with finding the number of lattice
points within the circle

u2 + v2 = n.

Typically, most people do this by defining r(n) as the number of lattice
points on the circle, seeing that

∑

n≤x

r(n) = r(1) + r(2) + ... + r(bxc),

and realizing that this problem is concerned with the average order of
the function r(n).

It has been shown in many texts that
∑

n≤x

r(n) = πx + O(x
1
2 ).

That is, that the number of lattice points inside the circle is approxi-
mately its area with an error term on the order of its circumference.

This is almost intuitive and will not be proven here (for the interested
reader, see [HarWr], pages 270-271), but what does this interesting relation
have to do with our problem?
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Consider d, the distance from any lattice point, (u, v) to the origin. Then
d = u2 + v2 is a number representable as the sum of two squares! Now the
question as to how many d’s are there less than a given number x becomes
known as exactly the number of circles less than the square root of x that
contain lattice points!

Figure 3.1: Number of integers expressible as sum of two squares less than
or equal to 36

Each circle represents a new d and the problem begins to resemble some-
thing relating to Pythagorean’s theorem.

We have gone from one classical problem (the circle problem of Gauss)
to another (numbers representable as the sum of two squares), but the tran-
sition is not without its drawbacks.
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3.2 Difficulties with Geometrical Representation

One of the biggest problems with our transition is that we have lost the
main tool mathematicians have used to attack the circle problem of Gauss,
i.e. lattice points.

Although it is clear that to continue to work with lattice points would
be cumbersome (take for instance, x = 1, then there are two circles (corre-
sponding to 0 and 1, both of which have obvious decompositions into the
sum of two squares), but there are five lattice points; at x = 4 the number
of lattice points jumps to 13, and at x = 36 we have over 80 lattice points!),
the very distribution of the circles is the problem we were trying to tackle
in the first place.

The next section illustrates some of the work done continuing on with
lattice points, recognizing that the number of lattice points on a particular
circle is exactly the number of representations of that number as the sum of
two squares. For x > 0, each circle will contribute at least 4 lattice points.

Finally, although it is true that the formula given for the average order
of r(n) is very clear-cut and has the wonderful relation to area and circum-
ference of the circle, this is only the tip of the iceberg, so to speak, and the
real meat of the circle problem of Gauss is concerned with finding θ, the
smallest value of ξ such that

∑

n≤x

r(x) = πx + O(xξ+ε).

It has been shown that 1
4 ≤ θ ≤ 1

3 , numbers that have no nice relation
to the circumference of our circles.

As a last note about this problem, many mathematicians attempt to
delve into higher-dimensional figures, obtaining some rather nice results,
but this has no bearing on our current subject.

3.3 Other Work Relating to the Lattice Points in
a Circle

As mentioned in the previous section, each circle (after the trivial one)
contributes at least 4 lattice points; e.g. If x = 2, then 2 = 12 + 12 =
(−1)2 +12 = (−1)2 +(−1)2 = 12 +(−1)2. The question becomes then, once
we know a number is representable as the sum of two squares, is there a way
to unlock the number of representations?

Most work in this area uses the notation r(n) to be the arithmetical
counting function for the number of representations of n. I will also make
use of the notation r∗(n) to indicate the number of unique representations
up to order and sign. E.g.
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r(0) = 1, r∗(0) = 1
r(2) = 4, r∗(2) = 1

r(25) = 12, r∗(25) = 2.

With this notation, we can describe the number of lattice points as the
summatory function associated with r, i.e.

N(x) = r(0) + r(1) + · · ·+ r(bxc) =
∑

0≤n≤x

r(x),

and as before, we know that this function is on the order of the area of
the circle with an error term the size of the circumference, i.e.

∑

n≤x

= πx + O(
√

x).

Now we turn to [Sier] to try to get a handle on the number of represen-
tations of a number n such that n = x2 + y2. If n is such a number, then
n ≥ x2 and n ≥ y2, and so |x| ≤ √

n and |y| ≤ √
n. So similar to when we

learned to check primality in grade school, we need to go no further than√
n. For x, we substitute integers whose values are not greater than

√
n,

and solve for y. That is,

y2 = n− x2.

Hence, if we obtain a square, we obtain two representations (since order
is important when computing the decomposition in this manner). We give
the following example:

Let n = 20. We form the sequence, 20, 19, 16, 11, 4. We know the second
and fourth term of this sequence are squares, so x = ±2, y = ±4, or x = ±4
and y = ±2. Thus, 20 has eight decompositions. They are

20 = 22 + 42 = 22 + (−4)2 = (−2)2 + 42 = (−2)2 + (−4)2

= 42 + 22 = 42 + (−2)2 = (−4)2 + 22 = (−4)2 + (−2)2.

Yet, n = 20 has only one unique decomposition up to order and sign.
We will explore lattice points more in Appendix B, after we have explored

the type of numbers that are representable as the sum of two squares. Fig-
uring out just what numbers generate these circles is the subject of the next
chapter.
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Chapter 4

Numerical Candidates

This chapter is concerned with discerning what numbers are representable
as the sum of two squares. In the vein of Chapter 3, this is equivalent to
discovering the squares of the radii of circles that contain lattice points. In
the beginning, we are concerned only with what primes are representable,
but we will see that these primes are wholly responsible for figuring out
which composite numbers have representations as the sum of two squares.

We split the primes into three distinct subgroups that contain all primes,
2, primes of the form 4k + 1, and primes of the form 4k + 3 or 4k − 1.
For primes of the first two types we have a positive answer concerning the
existence of a representation as the sum of two squares, but primes of the
form 4k + 3 tend to be the ugly stepbrother of the others (at least when it
comes to being representable as the sum of two squares).

2

Theorem 37. 2 is representable as the sum of two squares.

Proof. 2 = 12 + 12.

4.1 Primes of the form 4k + 1

Fermat was the first to claim a proof that every prime p = 4k + 1 is repre-
sentable as the sum of two squares, and this theorem is sometimes called,
Fermat’s Christmas theorem, because of this.

Theorem 38 (Fermat’s Christmas Theorem). Every prime p = 4k+1,
k an integer, is representable as the sum of two squares.

Proof. This proof can be found in [Sier]. Let p be a prime number of the
form 4k + 1 and a =

(
p−1
2

)
!. We have p|a2 + 1, with (a, p) = 1 due to

Theorem 3. Now according to Thue’s theorem with m = p in our case, we
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have that there exist two natural numbers x, y, with each ≤ √
p, such that

for a suitable choice of sign, ax± y is divisible by p. Hence, it follows that
a2x2 − y2 = (ax− y)(ax + y) is divisible by p

a2x2 + x2 = (a2 + 1)x2 is divisible by p since p|a2 + 1. Therefore, the
number x2 + y2 = a2x2 + x2 − (a2x2 − y2) is divisible by p. We have that
x, y are natural numbers ≤ √

p, so x, y <
√

p. Consequently, x2 + y2 is a
natural number, 1 < x2 + y2 < 2p, and is not divisible by p. So p = x2 + y2,
proving that p is the sum of two squares of natural numbers.

This theorem is the first key in unlocking the puzzle of numbers repre-
sentable as the sum of two squares, and it also opens up many other avenues
of interest. For a few of these, please refer to Appendix 2.

4.2 Primes of the form 4k + 3

Theorem 39. No prime p of the form 4k + 3, k an integer, is expressible
as the sum of two squares.

Proof. This proof is relatively simple to demonstrate completely. Let n be
an integer. Then there are four possibilities.

(Case 1) If n ≡ 0 (mod 4), then n2 ≡ 0 (mod 4).

(Case 2) If n ≡ 1 (mod 4), then n2 ≡ 1 (mod 4).

(Case 3) If n ≡ 2 (mod 4), then n2 ≡ 0 (mod 4).

(Case 4) If n ≡ 3 (mod 4), then n2 ≡ 1 (mod 4).

In any case, the square of an integer is congruent to 0 or 1 modulo 4.
Thus, the sum of two squares of integers can only be congruent to 0, 1, or 2
modulo 4. Therefore, no prime p (or any integer for that matter) congruent
to 3 modulo 4, can be the sum of two squares.

4.3 The Numerical Winners

Theorem 40. A positive integer n has a representation as the sum of two
squares if and only if each prime factor congruent to 3 (mod 4) occurs with
even multiplicity.

Proof. Let q ≡ 3 (mod 4) be prime, and let qα||n, where n = x2 + y2. We
will show that α is even.

Let d = (x, y) and set x = dx0, y = dy0. Then (x0, y0) = 1, and n =
d2(x2

0 + y2
0). Let α be odd, then x2 + y2 ≡ 0 (mod q). It follows that

q - y0, since otherwise q|x0, which is absurd since (x0, y0) = 1. Therefore,
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there must exist z0 such that y0z0 ≡ 1 (mod q); for instance, we could take
z0 = yp−2

0 by Fermat’s Little theorem. Thus,

(x0z0)2 + 1 ≡ (x2
0 + y2

0)z
2
0 ≡ 0 (mod q),

which is absurd, since −1 is not a quadratic residue for q ≡ 3 (mod 4). So
if qα||n, then α is even.

Next, we show that if each prime q ≡ 3 (mod 4) in the factorization of
n occurs to an even power, then n is expressible as the sum of two squares.

We have the identity

(
x2 + y2

) (
u2 + v2

)
= (xu− yv)2 + (xv + yu)2

which shows that the product of two integers expressible as the sum of
two squares is itself expressible as a sum of two squares.

Clearly, 2 is the sum of two squares, and any square of an integer is as
well, i.e. m2 = m2 + 02, finally we have already shown that for all primes
p ≡ 1 (mod 4), p is the sum of two squares.

Thus, all natural numbers n that can be expressed as the sum of two
squares are of the form

n = 2αPQ2

where 0 ≤ α, P is the product of primes congruent to 1 (mod 4) and Q
is the product of primes congruent to 3 (mod 4).
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Chapter 5

The Number of Integers
Expressible as the Sum of
Two Squares

Let B(x) be the counting function for the number of integers expressible as
the sum of two squares. That is, for u, v ∈ Z

B(x) := #{n ≤ x : n = u2 + v2}.
In other words, if we have bn as the characteristic function for numbers

representable as the sum of two squares, i.e.

bn =

{
1 if n = x2 + y2 for some integers x, y,

0 else,

then

B(x) =
∑

n≤x

bn.

5.1 A Heuristic Argument

The following heuristic argument, given in [LeV2], will lead us to believe
(correctly) that

B(x) ∼ βx√
log x

,

for some positive real, β. Although not a formal proof, it contains some
interesting mathematics in and of itself.
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To begin with, take x very large. Then one out of every p integers is
divisible by p, so that the number of integers not divisible by p is about
x− x/p or x

(
1− 1

p

)
.

Therefore, the number of integers not divisible by any p ≤ √
x is about

x
∏

p≤√x

(
1− 1

p

)
.

Now, by the Prime Number Theorem, the number of integers not divis-
ible by any p ≤ √

x is

x
∏

p≤√x

(
1− 1

p

)
≈ x

log x
.

This gives us the number of integers not divisible by any p in a sequence.
But to count up B(x), we do not want to eliminate every composite

number, as explained in Theorem 4.2, we wish only to eliminate integers
divisible by an odd power of any prime q ≡ 3 (mod 4).

This can be accomplished using the cross-classification principle: basi-
cally, we eliminate all integers divisible by q, then bring back those divisi-
ble by q2 that we previously eliminated, and proceeding on in like fashion
(eliminating odd powers and bringing back even powers). This yields the
following:

x

(
1− 1

q

) (
1 +

1
q2

)(
1− 1

q3

)
· · ·

as the number left after accounting for the prime q. Note that the
product is finite since we do not proceed beyond

√
x.

Now we eliminate all primes q ≡ 3 (mod 4) for an estimation of B(x):

B(x) ≈ x
∏

q≤√x

(
1− 1

q

) ∏

q2≤√x

(
1 +

1
q2

) ∏

q3≤√x

(
1− 1

q3

)
· · ·

But each product after the first converges as x →∞, so we get,

B(x) ≈ x
∏

q≤√x

(
1− 1

q

)
.

It remains to get a handle on the product

x
∏

q≤√x

(
1− 1

q

)
.

For all primes p, it is true that
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log
∏

p≤√x

(
1− 1

p

)
=

∑

p≤√x

log
(

1− 1
p

)
≈ − log (log x).

And since, by Dirichlet’s theorem, about half of all primes are 3 (mod 4),
we have that

log
∏

q≤√x

(
1− 1

q

)
≈ −1

2
log (log x) = log

(
1√

log x

)
,

Which clearly gives us,

B(x) ≈ x
∏

q≤√x

(
1− 1

q

)
≈ x√

log x
.

This provides us very strong evidence to believe that, for some β ∈ R

B(x) ∼ βx√
log x

.

5.2 Estimate of B(x)

In the following subsections we examine two separate approaches to esti-
mating the number of integers expressible as the sum of two squares. One
approach makes use of the generalized Wiener-Ikehara theorem, while the
other relies on contour integrals and the proof of the Prime Number Theo-
rem. In this section we go through the first proof, but we only set up the
second proof with comments on the asymptotic expansion of B(x), leaving
the proof in its entirety for the final section of the chapter.

5.2.1 Method 1 - Via the Generalized Wiener-Ikehara The-
orem

This section makes use of the Generalized Wiener-Ikehara Theorem as de-
scribed in the preliminaries and this is the method that [BatDia] makes use
of to estimate B(x).

Recall that this theorem says:

Generalized Wiener-Ikehara Theorem Let F be a real valued nonde-
creasing function in V with σc

(
F̂

)
= α > 0. Let

phi and ϑ be functions which are analytic on the closed half-plane
{s : σ ≥ α} and assume that φ(α) 6= 0. For γ a real number dis-
tinct from 0,−1,−2, ..., let (s−α)−γ be positive valued on the real ray
{s : s > α}. Suppose that
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F̂ (s) =
∫

x−sdF (x) = (s− α)−γφ(s) + ϑ(s)

holds on the open half-plane {s : σ > α}. Then

F (x) ∼ φ(α)xα(log x)γ−1

αΓ(γ)
.

Where Γ denotes the Euler gamma function.

Now, let k be a given integer, k ≥ 2, and let h = ϕ(k) (where ϕ refers
to the Euler totient function). Let a1, a2, ..., ah be a reduced residue system
modulo k. Let b1, b2, ..., bh be real numbers in [0, 1], not all 0, and let f be
a multiplicative function with the following properties:

(1) f(p) := bj if p ≡ aj (mod k), and

(2) 0 ≤ f ≤ 1.

Let B := b1 + b2 + ·+ bh. In the next lemma, given in [BatDia], we get
an estimate for the summatory function of f , our first step towards finding
an estimate for B(x). Many of the intermediary results have already been
shown in the preliminaries, but where possible, the author has aimed to
provide separate proofs of certain results when they have differed from the
proofs found in Appendix A. Also, comments relating these results back to
those found in Chapter 2 are provided whenever necessary.

Lemma 9. Let f be as above. There exists a positive number c = c(f) such
that

∑

n≤x

f(n) ∼ cx(log x)(B/h)−1.

Proof. Our goal is to apply the Generalized Wiener-Ikehara theorem to the
Dirichlet series F̂ (s) :=

∑
f(n)n−s, but before we can do that, we must

show that

F̂ (s) = (s− 1)B/hF ∗(s),

where F ∗(s) is analytic on {s : σ ≥ 1} and F ∗(1) 6= 0. Since f ≥ 0, it
follows that F ∗(1) > 0.

Since f is a multiplicative function by our premises,

F̂ (s) =
h∏

l=1

∏

p≡al(k)

(
1 +

bl

ps
+

f
(
p2

)

p2s
+ · · ·

)
K (5.1)
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with

K := K(s) :=
∏

p|k

{
1 +

f(p)
ps

+
f

(
p2

)

p2s
+ · · ·

}
.

Each factor of K converges for Re s > 0 and is positive at s = 1. Since
k has only a finite number of prime divisors, K converges and defines an
analytic function for Re s > 0.

We express a general product:

G(s)H(s) :=
∏

p≡a(k)

{
1 + bp−s + f

(
p2

)
p−2s + · · ·} ,

where

H(s) := Ha,b(s) :=
∏

p≡a(k)

{
(
1− p−s

)b

(
1 +

b

ps
+

f
(
p2

)

p2s
+ · · ·

)}

and

G(s) := Ga,b(s) :=
∏

p≡a(k)

(
1− p−s

)−b
.

Given p ≡ a (mod k) with (a, k) = 1, consider a single factor of H:

(
1− p−s

)b (
1 + bp−s + f

(
p2

)
p−2s + · · · ) .

The binomial expansion of (1− p−s)b has coefficients all of size at most
1, as are the coefficients of b, f

(
p2

)
, ..., in the second factor. Formally

multiplying, we see that each factor of H is of the form

1 + 0p−s + 3θ2p
−2s + 4θ3p

−3s + · · · ,

where each |θv| ≤ 1. Thus, H(s) =
∏

p≡a

{
1 + O

(
p−2σ

)}
converges

uniformly for say, Re s > 2/3, and is therefore analytic on this half-plane.
Also, H(1) > 0, since each factor is positive.

Now let’s take a closer look at G. We have

log G(s) = b
∑

p≡a(k)

log
(
1− p−s

)−1 = b
∑

p≡a(k)

∞∑

α=1

p−αs

α
.

As a comparison, consider G∗, where
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log G∗(s) :=
b

h

∑
χ

χ(a) log L(s, χ)

=
b

h

∑
χ

∞∑

n=1

κ(n)n−sχ(n)χ(a)

= b
∑

n≡a(k)

κ(n)n−s

= b
∑

pα≡a(k)

p−as

α
.

This last sum extends over all primes p and positive integers α satisfying
pα ≡ a (mod k). Let

bφa(s) := log G(s)− log G∗(s),

then this is a Dirichlet series with bounded coefficients extending over
higher prime powers and thus is analytic for Re s > 1/2. It follows that

G(s) = exp {bφa(s)}
∏
χ

L(s, χ)bχ(a)/h.

Now, for χ 6= χ1, L(s, χ) is analytic and nonzero on the closed half-
plane σ ≥ 1, and thus all factors of Gai,bi except L(s, χ1)bi/h have the same
property.

For χ1, we simply multiply over all the reduced residue classes and obtain

h∏

i=1

L(s, χ1)bi/h = L(s, χ1)B/h

= (s− 1)B/h



(s− 1)ζ(s)

∏

p|k

(
1− p−s

)




B/h

.

Now, figuring out c from the preceding calculation is quite involved, but
knowing the existence of c, we can determine it by an abelian estimate.

Finally, we have that

c =
1

Γ(B/h)

∏

p|k

{
1 +

f(p)
p

+
f

(
p2

)

p2
+ · · ·

}
×

lim
s→1+

(s− 1)B/h
h∏

i=1

∏

p≡ai (mod k)

{
1 +

bi

ps
+

f
(
p2

)

p2s
+ · · ·

}
.
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Now let

Ja,b(s) = Ha,b(s) exp {bφa(s)}
∏

χ 6=χ1

L(s, χ)bχ(a)/h.

Then we have F̂ (s) = F ∗(s)(s− 1)−B, with

F ∗(s) = K(s)



(s− 1)ζ(s)

∏

p|k

(
1− p−s

)




B/h
h∏

i=1

Jai,bi(s),

an analytic function with no zeroes in {s : σ ≥ 1}. Also, 0 < B/h ≤ 1.
Therefore, the generalized Wiener-Ikehara theorem applies, and we finally
obtain

∑

n≤x

f(n) ∼ cx (log x)(B−h)/h

with c := cf := F ∗(1)/Γ(B/h).
Now we are ready to prove our theorem.

Theorem 41. There is a constant β such that

B(x) ∼ βx√
log x

.

Proof. Let b ∈ A be the indicator function of
{
n ∈ Z : n = u2 + v2

}
. By

our lemmas, we see that b is multiplicative and

b (pα) =





1, if p = 2 or p ≡ 1 (mod 4),
1, if p ≡ 3 (mod 4) and α is even,
0, if p ≡ 3 (mod 4) and α is odd.

We will typically denote this by bn for integral n. Let B̂ denote the
associated Dirichlet series, i.e. if

B̂(s) =
∞∑

n=1

bn

ns

then we have

B̂(s) =
(
1− 2−s

)−1
∏
p

(
1− p−s

)−1
∏
q

(
1− q−2s

)−1 (σ > 1),

where p runs through primes congruent to 1 (mod 4) and q runs through
primes congruent to 3 (mod 4). Now b satisfies the previous lemma.
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In the notation of that lemma, we have k, our modulus, equal to 4,
h = ϕ(4) = 2, and B, f = b and the sum of b(p), for p in the reduced residue
system modulo 4, equal to 1.

It follows that
√

s− 1B̂(s) is analytic on the closed half-plane {s : σ ≥ 1}
and that B has an asymptotic formula of the stated form.

It will be easier to evaluate β by expressing B̂ in terms of some other
functions which we have some tools for. Observe that

B̂(s)2 =

{
(
1− 2−s

)−1
∏
p

(
1− p−s

)−1
∏
q

(
1− q−s

)−1

}
×

(
1− 2−s

)−1

{∏
p

(
1− p−s

)−1
∏
q

(
1 + q−s

)−1

} ∏
q

(
1− q−2s

)−1

= ζ(s)
(
1− 2−s

)−1
L(s, χ2)

∏
q

(
1− q−2s

)−1
,

(5.2)

where χ2 is the nonprincipal character modulo 4. Furthermore, the last
product converges for σ > 1/2.

Since the factors of (5.2) other than ζ are analytic on the open half-plane
{s : σ > 1/2}, we conclude from the Generalized Wiener-Ikehara Theorem
that

B(x) ∼ x(log x)−1/2 1
Γ(1/2)



2L(1, χ2)

∏

q≡(4)

(
1− q−2

)−1





1/2

∼
∏

q≡3(4)

(
1− q−2

)−1/2
x/

√
2 log x,

and in fact, this proves the theorem since we can let

β =
1

Γ(1/2)



2L(1, χ2)

∏

q≡3(4)

(
1− q−2

)−1





1/2

.

It is a simple matter to estimate β however, so we might as well.
We use the reflection formula for the gamma function to evaluate Γ(1/2):

(Γ(1/2))2 =
π

sinπ/2

⇒ Γ(1/2) =
√

π (5.3)
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The series for L(1, χ2) tells us that it is equal to arctan 1 = π/4. By
multiplying by 2 and taking the square root, we get that

1
Γ(1/2)

·
√

2 · L(1, χ2) =
1√
2
.

Now the product can be estimated as needed for more accuracy. Al-
though it converges slowly (reaching only three decimal places of accuracy
upon evaluating it over the first 25 primes congruent to 3 modulo 4), there
exist methods to evaluate this product quicker.

Our estimation will serve fine for our purposes however; we get the result

β =
1√
2





∏

q≡3(4)

(
1− q−2

)−1





1/2

= 0.764 . . . .

5.2.2 Asymptotic Expansion of B(x)

The original proof of our theorem was first done by Landau which can be
found in [LanCol] or [LanZah]. The following is a sketch of Landau’s proof
given by G. H. Hardy in [HarRam]. In the next section we prove the the-
orem completely using methods developed in the Prime Number Theorem,
but this argument serves us well by giving us another viewpoint and by
reinforcing ideas developed up to this point.

As was shown earlier in the paper, it is necessary and sufficient that for
n to be expressible as a sum of two squares

n = 2αPQ2,

where P is a product of primes p ≡ 1 (mod 4) and Q a product of primes
q ≡ 3 (mod 4).

As before, we get the associated Dirichlet series B̂ such that

B̂(s) =
1

1− 2−s

∏

p≡1 (mod 4)

1
1− p−s

∏

q≡3 (mod 4)

1
1− q−2s

.

Also we have the nice representation of its square

B̂2(s) = ψ(s)ζ(s)ÃL(s). (5.4)

where ψ(s) is the ugly part, that is,

ψ(s) :=
1

1− 2−s

∏

q≡3(4)

1
1− q−2s

. (5.5)

It is clear that ψ(s) is analytic and has no zeroes for σ > 1/2. L(s)
is an integral function that has value π/4 for s = 1 and ζ(s) is analytic
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everywhere except at its pole at s = 1. It is also a well known fact that
neither ζ(s) nor L(s) vanishes in a region D to the left of σ = 1 of the type

σ > 1− A

{log(|t|+ 2)}Λ
.

And finally, for large t in D, ζ(s) and L(s) are

O
(
(log |t|)Λ)

.

It follows that

B̂(s) = (s− 1)−1/2g(s)

,
where g(s) is analytic in D and

g(1) =
{π

4
ψ(1)

}1/2
=





π

2

∏

q≡3(4)

(
1

1− r−2

)



1/2

= β
√

π,

Now, recalling that B(x) is the number of integers representable as the
sum of two squares up to x, we have

B∗(x) =
∑

n≤x

∗bn =
1

2πi

∫ c+i∞

c−i∞
f(s)

xs

s
ds

for c > 1, where the ∗ in B∗(x) tells us that when x is an integer, we take
only half of the last term of the sum. This formula comes from Perron’s
formula.

Now the integrand has an algebraic singularity, so we will approximate
B∗(x) by a loop integral around s = 1. We will do so via a path of integration
of the type C in Figure 5.1. Our approximating function will be

1
2πi

∫

L
f(s)

xs

s
ds =

1
2πi

∫

L

xs

(s− 1)1/2s
g(s)ds =

β
√

π

2πi

∫

L

xs

(s− 1)1/2
h(s)ds,

(5.6)
where

h(s) = 1 + a1(s− 1) + a2(s− 1)2 + · · · (5.7)

near s = 1, and L is the path from 1−η around 1 as shown in the figure.
If we work with h(s) as though it were 1, we get

β√
π

∫ 1

1−η

xs

(1− s)1/2
ds =

βx√
π

∫ η

0

exp(−u log x)√
u

du,

which is nearly
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Figure 5.1: [HarRam], page 62

βx√
log x

and when this is properly developed, leads us to the asymptotic expan-
sion

B(x) =
βx√
log x

{
1 +

α1

log x
+

α2

(log x)2
+ · · ·

}
. (5.8)

This is effectively Landau’s result.

5.2.3 Method 2 - Via Contour Integration

Up to now, we have only outlined a sketch of the argument, that when
developed leads us to the asymptotic expansion given above. As we shall
see, the reason for doing this is to avoid some tedious calculations as well as
delving too deeply into the complex analysis.

But we shall advance further utilizing the methods laid out in [LeV2] to
prove the Prime Number Theorem applied to B(x).

First, we require two lemmas, which, because B(x) is composed of factors
of ζ and L, we obtain immediately.

Lemma 10. 1. B̂2(s) is analytic and different from zero in the region Q
of Figure 5.2, for suitable c11 and c9, and it has a simple pole at s = 1
with residue

π

2

∏

q≡3(4)

(
1− q−2

)−1 = r2.
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Figure 5.2: [LeV2], page 243

Hence, B̂ is also analytic in Q and B̂2(s) · (s − 1) is analytic in the
uncut region of Q′ created from Q by omitting Γ6, Γ7, and Γ6, and
joining Γ5 and Γ5.

2. For |t| ≥ 8 and s in Q, the inequality
∣∣∣B̂(s)

∣∣∣ < c14 log |t| holds.

From this, we obtain a similar result as we had before.

Lemma 11. For appropriate c < 1,

∑

n≤x

bn log
x

n
=

1
πi

∫ 1

c

xs

s2
B̂(s)ds + O

(
xe−α

√
log x

)
.

Proof. This proof begins the same as the proof of the similar result in chap-
ter 2. That is, by changing the path of integration in the relation

65



∑

n≤x

bn log
x

n
=

1
2πi

∫

(2)

xs

s2
B̂(s)ds

and estimating the new integrals along paths which are bounded away
from s = 1; the only change is that we use the estimate from the last lemma,
i.e. |B̂(s)| ≤ c14 log |t| instead of | log(ζ(s))| < log2 |t|. Excluding this te-
diousness, we obtain the relation

x∑

n=1

bn log
x

n
=

1
2πi

(
−

∫

Γ6

−
∫

Γ7

−
∫

Γ6

)
xs

s2
B̂(s)ds + O

(
xe−α

√
log x

)
.

Near s = 1, B̂(s) has the expansion

B̂(s) =
r√

s− 1
+ · · · ,

with

r =
√

π

2

∏
q

(1− r−2)−1

as before. Here
√

s− 1 > 0 for s > 1. Putting s = 1 + δeiθ, we obtain
∫

Γ7

xs

s2
B̂(s) = O

(
x1+δ

(1− δ)2
· 1√

δ
· 2πδ

)
= o(1)

as δ → 0.
Since B̂(s)(s−1) is single-valued in Q′, the quantity 2 arg B̂(s)+arg(s−1)

is unchanged by traveling a path in Q from Γ6 to Γ6. Since arg(s − 1)
increases by 2π, arg B̂(s) decreases by π. Thus B̂(s) has opposite signs on
the two edges of the cut. Therefore

∫

Γ6

xs

s2
B̂(s)ds +

∫

Γ6

xs

s2
B̂(s)ds = 2

∫

Γ6

xs

s2
B̂(s)ds,

and therefore

x∑

n=1

bn log
x

n
=

1
πi

∫ 1

1−c11

xs

s2
B̂(s)ds + O

(
xe−α

√
log x

)
,

which was to be shown.

Theorem 42. As x →∞,

B(x) =
βx√
log x

+ O

(
x

(log x)3/4

)
,

where
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Figure 5.3: [LeV2], page 243

β =
1√
2

∏

q≡3(4)

(
1− 1

q2

)−1/2

.

Proof. Referring to Figure 5.3, on Γ6 we have

B̂(s)
s2

=
ri√

1− s(1− (1− s))2
+ O(

√
1− s)

=
ri√
1− s

+ O(
√

1− s)
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as s → 1−. Then according to the previous lemma
x∑

n=1

bn log
x

n

=
1
πi

∫ 1

1−c11

xsri√
1− s

ds + O

(∫ 1

1−c11

xs
√

1− sds

)
+ O

(
x

log2 x

)

=
r

π

∫ c11

0
x1−uu−1/2du + O

(∫ c11

0
x1−uu1/2du

)
+ O

(
x

log2 x

)

=
rx

π

∫ c11

0
e−u log xu−1/2du + O

(
x

∫ c11

0
e−u log xu1/2du

)
+ O

(
x

log2 x

)

=
rx

π

∫ c11 log x

0
e−v

(
v

log x

)−1/2 dv

log x
+ O

(
x

∫ c11 log x

0
e−v

(
v

log x

)1/2 dv

log x

)

+ O

(
x

log2 x

)

=
rx

π
√

log x

∫ c11 log x

0
e−vv−1/2dv + O

(
x

log3/2 x

∫ ∞

0
e−vv1/2dv

)
+ O

(
x

log2 x

)

=
rx

π
√

log x

{
Γ

(
1
2

)
−

∫ ∞

c11 log x
e−vv−1/2dv

}
+ O

(
x

log3/2 x

)

=
rx

π
√

log x

{√
π + O

(
x

log3/2 x

)}
.

Therefore,
x∑

n=1

bn log
x

n
=

βx√
log x

+ O

(
x

log3/2 x

)
,

where
β =

r√
π

=
1√
2

∏
q

(1− q2)−1/2,

as before. Note that this is not B(x), but it is very closely related to B(x),
and we will be able to estimate our function more accurately than before by
using it.

Let δ = δ(x) be positive. Then we have

x+δx∑

n=1

bn log
x + δx

n
−

x∑

n=1

bn log
x

n

= log(1 + δ)
x∑

n=1

bn +
x+δx∑
n=x

bn log
x + δx

n

= log(1 + δ)B(x) + O (log(1 + δ) · δx) ,

(5.9)

but we also have that this is equal to the following
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βx(1 + δ)√
log(x + δx)

− βx√
log x

=
βx√
log x


 1 + δ√

log(x+δx)
log x

− 1




=
βx√
log x


 1 + δ√

1 + log(1+δ)
log x

− 1




=
βx√
log x

(
1 + δ

1 + O(δ/ log x)
− 1

)

=
βx√
log x

(
δ + O(δ/ log x)
1 + O(δ/ log x)

)

=
βx√
log x

(δ + O(δ/ log x)) .

(5.10)

Now since log(1 + δ) = δ + O(δ2) as δ → 0, we can solve for B(x) by
setting the last relations of equations 5.9 and 5.10 equal, and we obtain,

B(x) =
βx√
log x

{
δ

log(1 + δ)
+ O

(
1

log x

)}
+ O(δx) + O

(
x

δ log3/2 x

)

=
βx√
log x

(1 + O(δ)) + O

(
x

log3/2 x

)
+ O(δx) + O

(
x

δ log3/2 x

)
.

Let δ(x) = 1/ log3/4 x, we obtain the following:

B(x) =
βx√
log x

+ O

(
x

log5/4 x

)
+ O

(
x

log3/2 x

)

+ O

(
x

log3/4 x

)
+ O

(
x

log3/4 x

)

=
βx√
log x

+ O

(
x

log3/4 x

)
,

which was to be proved.
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Chapter 6

Conclusion

Using the same methods, an analytic proof of Dirichlet’s theorem can be
obtained (Appendix A), and clearly other functions that can be obtained in
terms of ζ(s) or L(s, χ) and fit our criteria can be explored as well.

As we have seen, the mathematics going into proving the estimate of
B(x) are significant and able to be utilized in other situations as well. The
machinery of ζ and of L are used throughout number theory and are on the
forefront of research being done today, not just in the proof of the Prime
Number Theorem. To anyone attempting to delve the mysteries of ζ or
L, this material provides ample proving grounds, and prompts even more
questions.
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Appendix A

Proofs

This appendix contains all proofs omitted from chapter 2. Like that chapter,
this material can be found in any number of texts, including, [LanHan],
[HarWr], [Apos], [BatDia], [Burt], [Sier] and [Kara].

When possible, we have relied on [Apos] exclusively.

A.1 Cross-Classification Principle

Theorem. Let S be a set of N distinct elements, and let S1, . . . , Sr be
arbitrary subsets of S containing N1, . . . , Nr elements, respectively. For 1 ≤
i < j < · · · < l ≤ r, let Sij···l be the intersection of Si, Sj , . . . , Sl; and let
Nij···l be the number of elements of Sij···l. Then the number of elements of
S not in any of S1, . . . , Sr is

K = N −
∑

1≤i≤r

Ni +
∑

1≤i<j≤r

Nij −
∑

1≤i<j<k≤r

Nijk + · · ·

+ (−1)rN12···r.

Proof. Let a certain element s of S belong to exactly m of the sets S1, . . . , Sr.
If m = 0, s is counted only once, in N itself. If 0 < m ≤ r, then s is counted
once, or

(
m
0

)
times, in N ,

(
m
1

)
times in the terms Ni,

(
m
2

)
times in the terms

Nij, etc. Thus, the total contribution to K arising from the element s is
(

m

0

)
−

(
m

1

)
+

(
m

2

)
− · · ·+ (−1)m

(
m

m

)
= (1− 1)m = 0.

A.2 Quadratic Residues

Theorem (Euler’s Criterion). Let p be an odd prime and (a, p) = 1.
Then a is a quadratic residue of p if and only if a(p−1)/2 ≡ 1 (mod p).
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Proof. Suppose that a is a quadratic residue of p, thus x2 ≡ a (mod p) has
a solution, say x0. Because (a, p) = 1, we have that (x0, p) = 1. We may
therefore apply Fermat’s little theorem to obtain

a(p−1)/2 ≡ (
x2

0

)(p−1)/2 ≡ xp−1
0 ≡ 1 (mod p).

Now for the other direction. Assume the congruence a(p−1)/2 ≡ 1 (mod p)
holds, and let r be a primitive root of p. Then a ≡ rk (mod p) for some
integer k with 1 ≤ k ≤ p− 1. It follows that

rk(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p).

Now, the order of r (i.e. p − 1), must divide the exponent k(p − 1)/2.
Thus, k is an even integer, say k = 2m. Therefore,

(rm)2 = r2m = rk ≡ a (mod p).

Thus, rm is a solution of the congruence x2 ≡ a (mod p). Thus proving
that a is a quadratic residue of the prime p.

Theorem. If p is a prime of the form 4k+1 (where k is a natural number),
then

p

∣∣∣∣∣
[(

p− 1
2

)
!
]2

+ 1

Proof. We have p−1
2 = 2k since p = 4k + 1, which implies that

1 · 2 · 3 · · · p− 1
2

= (−1)(−2) · · · − p− 1
2

≡ (p− 1)(p− 2) · · · p + 1
2

( (mod p)).

Therefore we obtain

[(
p− 1

2

)
!
]2

≡ 1 · 2 · · · p− 1
2

· p + 1
2

· · · (p− 1) ≡ (p− 1)! ≡ −1 (mod p),

which yields our theorem after adding 1 to both sides.

Theorem (Thue Theorem). If m is a natural number and a an integer
relatively prime to m, then there exist natural numbers x and y both less
than

√
m and such that the number ax ± yis divisible by m for a suitable

choice of the sign ±.
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Proof. If m = 1, then the theorem holds since we may set x = y = 1. Now
suppose that m is a natural number greater than 1. Let q = b√mc. Then
q + 1 >

√
m and (q + 1)2 > m.

Consider the expressions ax − y for x, y taking the values 0, 1, 2, . . . , q.
There are (q + 1)2 of these expressions, and only m different remainders
obtained by division of m. Thus, for two different pairs x1, y1 and x2, y2,
and without loss of generality x1 > x2, we obtain the same remainders by
divison of ax− y by m.

Consequently, we have

m
∣∣ax1 − y1 − (ax2 − y2) = a(x1 − x2)− (y1 − y2)

Now, we cannot have x1 = x2, since if so, then y1−y2 would be divisible
by m but 0 ≤ y1 ≤ q ≤ √

m < m and 0 ≤ y2 < m.
Furthermore, the equality y1 = y2 is impossible, since then a(x1 − x2)

would be divisible by m and (a, m) = 1 implies that m |x1 − x2 , but we have
that 0 ≤ x1 < m and 0 ≤ x2 < m. Thus we have both x1 6= x2 and y1 6= y2.
Now since, x1 ≥ x2, x = x1 − x2 is a natural number. The number y1 − y2

can be negative, but it is different from zero, so y = |y1 − y2| is a natural
number. Thus

x = x− x1 − x2 ≤ x1 ≤ q ≤ √
m, y ≤ q ≤ √

m

.
Finally, we have that for the appropriate sign, + or −, the number

a (x1 − x2)− (y1 − y2) = ax± y is divisible by m.

A.3 Functions

Before we can prove the next theorem, involving the product formula of
ϕ(n), we need a lemma relating ϕ(n) to µ(n).

Lemma 12. If n ≥ 1 we have

ϕ(n) =
∑

d|n
µ(d)

n

d
.

Now we are prepared to prove our theorem.

Theorem. For n ≥ 1 we have

ϕ(n) = n
∏

p|n

(
1− 1

p

)
.
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Proof. For n = 1, the product,
∏

p|n (1− 1/p) is empty since there are
no primes that divide 1. Therefore the product is assigned the value 1 by
definition.

Now suppose n > 1 and let p1, . . . , pr be the distinct prime divisors of n.
Now the product can be written as

∏

p|n

(
1− 1

p

)
=

r∏

i=1

(
1− 1

pi

)

= 1−
∑ 1

pi
+

∑ 1
pipj

−
∑ 1

pipjpk
+ · · ·+ (−1)r

p1p2 · · · pr

Now, on the right hand side, a term like
∑

1/(pipjpk) is understood to
consider all possible products pipjpk of distinct prime factors of n taken three
at a time. Now each term on the right is of the form ±1/d where d is a
divisor of n which is either 1 or a product of distinct primes. The numerator
±1 is µ(d). Now we have that µ(d) = 0 if d is divisible by the square of any
pi and so the sum is exactly

∑

d|n

µ(d)
d

= ϕ(n),

proving the theorem.

Proof. (via Cross-Classification Principle).
We have a second proof of the product formula, utilizing the principle of
cross-classification from the first section.

In the notation of that theorem, take S to be the set of integers 1, . . . , n,
and for 1 ≤ k ≤ r, take Sk to be the set of elements of S which are divisible
by pk, where n = pα1

1 · · · pαr
r . Then if d|n, the number of integers s ≤ n such

that d|s is n/d; therefore

ϕ(n) = n−
∑

1≤i≤r

n

pi
+

∑

1≤i<j≤r

n

pipj
− · · · = n

∏

p|n

(
1− 1

p

)
.

A.4 Dirichlet Series

Theorem. Suppose the series
∑ |f(n)n−s| does not converge for all s or

diverge for all s. Then there exists a real number, σc, called the abscissa of
absolute convergence, such that the series

∑ |f(n)n−s| converges absolutely
if σ > σc, but does not converge absolutely if σ < σc.
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Proof. Let D be the set of all real σ such that
∑ |f(n)n−s| diverges. D is

not empty because the series does not converge for all s, and D is bounded
above because the series does not diverge for all s. Therefore, D has a least
upper bound, say σc. If σ < σc, then σ ∈ D, otherwise σ would be an upper
bound for D smaller than the least upper bound, which is absurd. If σ > σc,
then σ 6∈ D since σc is an upper bound for D. Hence the theorem is proved.

Again, we are in need of another lemma before proving the next theorem.

Lemma 13. If N ≥ 1 and σ ≥ b > σc, we have
∣∣∣∣∣
∞∑

n=N

f(n)n−s

∣∣∣∣∣ ≤ N−(σ−b)
∞∑

n=N

|f(n)|n−b.

Theorem (Uniqueness theorem). Given two Dirichlet series

F (s) =
∞∑

n=1

f(n)
ns

and G(s) =
∞∑

n=1

g(n)
ns

,

both absolutely convergent for σ > σc. If F (s) = G(s) for each s in
an infinite sequence {sk} such that Re(sk) = σk → +∞ as k → ∞, then
f(n) = g(n) for every n.

Proof. Let h(n) = f(n)−g(n) and let H(s) = F (s)−G(s). Then H(sk) = 0
for each k. To prove h(n) = 0 for all n we assume that h(n) 6= 0 for some
n and obtain an absurdity.

Let n0 be the smallest integer for which h(n) 6= 0. Then we have the
following

H(s) =
∞∑

n=n0

h(n)
ns

=
h(n0)

ns
0

+
∞∑

n=n0+1

h(n)
ns

.

Therefore,

h(n0) = ns
0H(s)− ns

0

∞∑

n=n0+1

h(n)
ns

.

Now assign s = sk, we get H(sk) = 0. It follows that

h(n0) = −nsk
0

∞∑

n=n0+1

h(n)n−sk .

Now choose k such that σk > b where b > σc. Our lemma implies that

|h(n0)| ≤ nσk
0 (n0 + 1)−(σk−b)

∞∑

n=n0+1

|h(n)|n−c =
(

n0

n0 + 1

)σk

A
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with A independent of k. Allowing k → ∞, we find that (n0/(n0 +
1))σk → 0, but this implies that h(n0) = 0, which is absurd. Therefore, n0

does not exist and our theorem is proved.

Theorem. Given two functions F (s) and G(s) represented by Dirichlet se-
ries,

F (s) =
∞∑

n=1

f(n)
ns

for σ > a,

and

G(s) =
∞∑

n=1

g(n)
ns

for σ > b.

Then in the half-plane where both series converge absolutely we have

F (s)G(s) =
∞∑

n=1

h(n)
ns

, (A.1)

where h = f ∗ g, the Dirichlet convolution of f and g:

h(n) =
∑

d|n
f(d)g

(n

d

)
.

Conversely, if F (s)G(s) =
∑

α(n)n−s for all s in a sequence {sk} with
σk → +∞ as k →∞, then α = f ∗ g.

Proof. For any s for which both series converge absolutely we have

F (s)G(s) =
∞∑

n=1

f(n)n−s
∞∑

m=1

g(m)m−s =
∞∑

n=1

∞∑

m=1

f(n)g(m)(mn)−s.

Due to absolute convergence, we can multiply these series together and
rearrange terms as we see fit without altering the value of the sum. We
collect together those terms for which mn is constant, say mn = k. The
possible values of k are 1, 2, . . . , therefore,

F (s)G(s) =
∞∑

k=1

( ∑

mn=k

f(n)g(m)

)
k−s =

∞∑

k=1

h(k)k−s

where h(k) =
∑

mn=k f(n)g(m) = (f ∗ g) (k), proving the first claim,
while the second follows from uniqueness.

Theorem. For all f we have I ∗ f = f ∗ I = f .
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Proof. We have the following

(f ∗ I)(n) =
∑

d|n
f(d)I

(n

d

)
=

∑

d|n
f(d)

[
d

n

]
= f(n)

since [d/n] = 0 if d < n.

Theorem (Analytic Fundamental Theorem of Arithmetic). Let f
be a multiplicative arithmetical function such that the series

∑
f(n) is ab-

solutely convergent. Then the sum of the series can be expressed as an
absolutely convergent infinite product,

∞∑

n=1

f(n) =
∏
p

{
1 + f(p) + f(p2) + · · ·} (A.2)

extended over all primes. If f is completely multiplicative, the product
simplifies and we have

∞∑

n=1

f(n) =
∏
p

1
1− f(p)

. (A.3)

Either version is referred to as the Euler product of the series.

Proof. Consider the finite product

P (x) =
∏

p≤x

{
1 + f(p) + f(p2) + · · ·}

extended over all primes p ≤ x. Since this is the product of a finite num-
ber of absolutely convergent series, we can multiply the series and rearrange
the terms in any fashion without altering the sum. A typical term is of the
form

f (pa1
1 ) f (pa2

2 ) · · · f (par
r ) = f (pa1

1 pa2
2 · · · par

r )

since f is multiplicative. By the fundamental theorem of arithmetic we
can write

P (x) =
∑

n∈A

f(n)

where A consists of those n having all their prime factors ≤ x. Therefore,

∞∑

n=1

f(n)− P (x) =
∑

n∈B

f(n),

where B is the set of n having at least one prime factor > x. Now we
have
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∣∣∣∣∣
∞∑

n=1

f(n)− P (x)

∣∣∣∣∣ ≤
∑

n∈B

|f(n)| ≤
∑
n>x

|f(n)| .

As x →∞, the last sum on the right goes to 0 since
∑ |f(n)| is conver-

gent. Hence, P (x) → ∑
f(n) as x →∞.

An infinite product of the form
∏

(1+an) converges absolutely whenever
the corresponding series

∑
an converges absolutely. In this case, we have

∑

p≤x

∣∣f(p) + f(p2) + · · · ∣∣ ≤
∑

p≤x

(|f(p)|+ ∣∣f(p2)
∣∣ + · · · ) ≤

∞∑

n=2

|f(n)| .

Since all of the partial sums are bounded, the series of positive terms

∑
p

∣∣f(p) + f(p2) + · · · ∣∣

converges, and this implies absolute convergence of the first product in
the theorem.

Finally, when f is completely multiplicative, we have f(pn) = [f(p)]n

and each series on the right in the theorem is a convergent geometric series
with sum (1− f(p))−1

Lemma. Let {fn} be a sequence of functions analytic on an open subset S
of the complex plane, and assume that {fn} converges uniformly on every
compact subset of S to a limit function f . Then f is analytic on S and the
sequence of derivatives {f ′n} converges uniformly on every compact subset of
S to the derivative f ′.

Proof. fn analytic on S allows us to use Cauchy’s integral formula

fn(a) =
1

2πi

∫

∂D

fn(z)
z − a

dz

where D is any compact disk in S, ∂D is its positively oriented boundary,
and a is any interior point of D. Uniform convergence allows us to pass to
the limit under the integral sign and obtain

f(a) =
1

2πi

∫

∂D

f(z)
z − a

dz

which implies that f is analytic inside D. For the derivatives, we have

f ′n(a) =
1

2πi

∫

∂D

fn(z)
(z − a)2

dz and f ′(a) =
1

2πi

∫

∂D

f(z)
(z − a)2

dz

from which it follows that f ′n(a) → f ′(a) uniformly on every compact
subset of S as n →∞.
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Before we prove the next lemma, we in fact have need of a separate one
and also of Abel’s identity, frequently called Abel summation.

Theorem (Abel’s identity). For any arithmetical function a(n), let

A(x) =
∑

n≤x

a(n)

,
where A(x) = 0 if x < 1. Assume f has a continuous derivative on the

interval [y, x], where 0 < y < x. Then we have

∑

y<n≤x

a(n)f(n) = A(x)f(x)−A(y)f(y)−
∫ x

y
A(t)f ′(t)dt

.

Proof. Let k = [x] and m = [y], so now A(x) = A(k) and A(y) = A(m).
Then

∑

y<n≤x

a(n)f(n) =
k∑

n=m+1

a(n)f(n) =
k∑

n=m+1

{A(n)−A(n− 1)}f(n)

=
k∑

n=m+1

A(n)f(n)−
k−1∑
n=m

A(n)f(n + 1)

=
k−1∑

n=m+1

A(n){f(n)− f(n + 1)}+ A(k)f(k)−A(m)f(m + 1)

= −
k−1∑

n=m+1

A(n)
∫ n+1

n
f ′(t)dt + A(k)f(k)−A(m)f(m + 1)

= −
k−1∑

n=m+1

∫ n+1

n
A(t)f ′(t)dt + A(k)f(k)−A(m)f(m + 1)

= −
∫ k

m+1
A(t)f ′(t)dt + A(x)f(x)−

∫ x

k
A(t)f ′(t)dt

−A(y)f(y)−
∫ m+1

y
A(t)f ′(t)dt

= A(x)f(x)−A(y)f(y)−
∫ x

y
A(t)f ′(t)dt.

Lemma. Let s0 = σ0 + it0 and assume that the D.s.
∑

f(n)n−s0 has
bounded partial sums, say

∣∣∣∣∣∣
∑

n≤x

f(n)n−s0

∣∣∣∣∣∣
≤ M
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for all x ≥ 1. Then for each s with σ > σ0, we get
∣∣∣∣∣∣

∑

a<n≤b

f(n)n−s

∣∣∣∣∣∣
≤ 2Maσ0−σ

(
1 +

|s− s0|
σ − σ0

)
.

Proof. Let a(n) = f(n)n−s0 and let A(x) =
∑

n≤x a(n). Then f(n)n−s =
a(n)ns0−s, then through Abel summation (with f(x) = xs0−s), we obtain

∑

a<n≤b

f(n)n−s = A(b)bs0−s −A(a)as0−s + (s− s0)
∫ b

a
A(t)ts0−s−1dt.

We have |A(x)| ≤ M , so

∣∣∣∣∣∣
∑

a<n≤b

f(n)n−s

∣∣∣∣∣∣
≤ Mbσ0−σ + Maσ0−σ + |s− s0|M

∫ b

a
tσ0−σ−1dt

≤ 2Maσ0−σ + |s− s0|M
∣∣∣∣
bσ0−σ − aσ0−σ

σ0 − σ

∣∣∣∣

≤ 2Maσ0−σ

(
1 +

|s− s0

σ − σ0

)
.

Lemma. A Dirichlet series
∑

f(n)n−s converges uniformly on every com-
pact subset lying interior to the half-plane of convergence σ > σc.

Proof. It is enough to show that
∑

f(n)n−s converges uniformly on every
compact rectangle R = [α, β]× [c, d] with α > σc. In order to do this we use
the estimate obtained in the previous lemma.

∣∣∣∣∣∣
∑

a<n≤b

f(n)n−s

∣∣∣∣∣∣
≤ 2Maσ0−σ

(
1 +

|s− s0

σ − σ0

)
(A.4)

where s0 = σ0 + it0 is any point in the half-plane σ > σc and s is any
point with σ > σ0. We choose s0 = σ0 where σc < σ0 < α. i.e. Our
rectangle R will occur above and to the right of σ0 > σc as in the figure due
to [Apos] (pg. 235).

Now if s ∈ R, then we have σ−σ0 ≥ α−σ0 and |s0−s| < C, where C is
a constant depending on s0 and R, but not on s. Then our lemma implies

∣∣∣∣∣∣
∑

a<n≤b

f(n)n−s

∣∣∣∣∣∣
≤ 2Maσ0−α

(
1 +

C

α− σ0

)
= Baσ0−α

where B is independent of s. Now since aσ0−α → 0 as a → +∞, the
Cauchy criterion for uniform convergence is satisfied.
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Figure A.1:

Theorem. The summatory function of a Dirichlet series, F (s) =
∑

f(n)n−s,
is analytic in its half-plane of convergence σ > σc, and its derivative F ′(s)
is represented in this half-plane of convergence by the Dirichlet series

F ′(s) = −
∞∑

n=1

f(n) log n

ns
,

which is obtained by differentiating term by term.

Proof. Simply apply that last few lemmas to the sequence of partial sums.

Theorem. Let F (s) be represented in the half-plane σ > c by the Dirichlet
series

F (s) =
∞∑

n=1

f(n)
ns

,
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where c is finite, and assume that f(n) ≥ 0 for all n ≥ n0. If F (s)
is analytic in some disk about the point s = c, then the Dirichlet series
converges in the half-plane σ > c − ε for some ε > 0. Therefore, if the
Dirichlet series has a finite abscissa of convergence σc, then F (s) has a
singularity on the real axis at the point s = σc.

Proof. Let a = 1 + c. Since F is analytic at a, it can be represented by an
absolutely convergent power series expansion about a,

F (s) =
∞∑

k=0

F (k)(a)
k!

(s− a)k, (A.5)

and the radius of convergence for the power series is greater than 1 since
F is analytic at c (see A.2). By the last theorem, we know that the derivatives
F (k)(a) can be determined by repeated differentiation. This gives us

F (k)(a) = (−1)k
∞∑

n=1

∑
f(n)(log n)kn−a.

Thus we can rewrite the power series as

F (s) =
∞∑

k=0

∞∑

n=1

(a− s)k

k!
f(n)(log n)kn−a.

Now since the radius of convergence exceeds 1, this formula is valid for
some real s = c − ε where ε > 0 as in Figure A.2. Then a − s = 1 + ε for
this s and the double series has nonnegative terms for n ≥ n0. Therefore,
we may interchange the order of summation in order to obtain

F (c− ε) =
∞∑

n=1

f(n)
na

∞∑

k=0

{(1 + ε) log n}k

k!
=

∞∑

n=1

f(n)
na

e(1+ε) log n =
∞∑

n=1

f(n)
nc−ε

.

That is, the Dirichlet series
∑

f(n)n−s converges for s = c− ε, hence it
also converges in the half-plane σ > c− ε.

A.5 Dirichlet Characters

Theorem. If f is a character of a finite group G with identity element e,
then f(e) = 1, and each function value f(a) is a root of unity. In fact, if
an = e, then [f(a)]n = 1.

Proof. Choose c in G such that f(c) 6= 0. Since ce = c, we have

f(c)f(e) = f(c)

so f(e) = 1. If an = e, then [f(a)]n = f(an) = f(e) = 1.
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Figure A.2:

Theorem. A finite abelian group G of order n has exactly n distinct char-
acters.

Proof. We prove the theorem by induction on the order of G, but first we
must construct proper subgroups of G. We will use the symbol < G′; a > to
indicate a proper subgroup G′′ of G constructed from the proper subgroup G′

with the element a not in G′ as follows:

G′′ :=< G′; a >:= {xak : x ∈ G′ and 0 ≤ k < h}
where h is the indicator of a in G′.
We apply this construction from the bottom up, so to speak, beginning

with G1 = {e} and progressing until we reach G. That is, if G1 6= G, let a1

be an element of G other than e and define G2 =< G1; a1 >. If G2 6= G,
let a2 be an element of G not in G2 and define G3 =< G2; a2 >. Continue
to obtain a finite set of elements a1, a2, . . . , at and a corresponding set of
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subgroups G1, G2, . . . , Gt+1 such that

Gr+1 =< Gr; ar >

with

G1 ⊂ G2 ⊂ · · · ⊂ Gt+1 = G.

We are guaranteed t < ∞ since G is finite. Now we are set up to begin
our proof by induction.

It is obvious that there is only one character for G1, i.e. the function
which is identically 1. Assume the inductive hypothesis of the subgroup Gr

has order m and that there are exactly m distinct characters for Gr. Let us
consider Gr+1 =< Gr; ar >, and let h be the indicator of ar in Gr, that is,
let h be the smallest positive integer such that ah

r ∈ Gr.
We will show that there are exactly h different ways to extend each char-

acter of Gr to obtain a character of Gr+1 and that each character of Gr+1

is the extension of some character of Gr, proving that there are exactly mh
characters of Gr+1, which happens to be its order as well.

A typical element of Gr+1 has the form

xak
r , where x ∈ Gr and 0 ≤ k < h.

Suppose that it is possible to extend a character f of G to Gr+1. Call
this extension f̃(x) and let us examine f̃(xak

r ). The multiplicative property
requires

f̃(xak
r ) = f̃(x)f̃(ar)k,

but x ∈ Gr, so f̃(x) = f(x) and thus

f̃(xak
r ) = f(x)f̃(ar)k.

Which tells us that f̃(xak
r ) is known as soon as f̃(ar) is.

Now we are concerned with the possible values of f̃(ar). Let c = ah
r .

Since c ∈ Gr, we have f̃(c) = f(c), and since f̃ is multiplicative, we also
have f̃(c) = f̃(ar)h. Thus

f̃(ar)h = f(c),

so f̃(ar) is an hth root of f(c). Therefore, there are at most h choices
for f̃(ar).

Now we can define f̃ . If f is a given character of G, then choose one of
the hth roots of f(c), where c = ak

r , and define f̃(ar) to be this root. Then
define f̃ on the rest of Gr+1 by

f̃(xak
r ) := f(x)f̃(ar)k. (A.6)
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The h choices for f̃(ar) are all different, so this gives us h different ways
to define f̃(xak

r ). Now we verify that f̃ has the multiplicative property. From
(A.6) we obtain

f̃(xak
r · yaj

r) = f̃(xy · ak+j
r ) = f(xy)f̃(ar)k+j

= f(x)f(y)f̃(ar)kf̃(ar)j

= f̃(xak
r )f̃(yaj

r),

so f̃ is a character on Gr+1. Furthermore, no two of the extensions f̃
and g̃ can be identical on Gr+1 because the functions f and g which they
extend would then be identical on Gr. Therefore, each of the m characters
of Gr can be extended in h different ways to produce a character on Gr+1.
Finally, if ψ is any character of Gr+1, then restricting it to Gr results in
a character of Gr, so the extension process gives us all of the characters of
Gr+1, which was to be shown.

Theorem. With multiplication defined by (2.5), the set of reduced residue
classes modulo k is a finite abelian group of order ϕ(k). The identity is
the residue class 1̂. The inverse of â is the residue class b̂ where ab ≡ 1
(mod k).

Proof. The closure property is automatically satisfied by the definition of
multiplication of residue classes. The class 1̂ is obviously the identity element
also. If (a, k) = 1, then there is a unique b such that ab ≡ 1 (mod k). Hence,
the inverse of â is b̂. Finally, it is clear that the group is abelian and of order
ϕ(k).

A.6 Properties of ζ(s)

Lemma. If f is a completely multiplicative function, and the series

∞∑

n=1

f(n)
ns

converges absolutely for s > s0, then

( ∞∑

n=1

f(n)
ns

)−1

=
∞∑

n=1

f(n)µ(n)
ns

for s > s0.

Proof. We have the following,
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∞∑

m=1

f(m)
ms

∞∑

n=1

f(n)µ(n)
ns

=
∞∑

m,n=1

f(mn)µ(n)
(mn)s

=
∞∑

j=1

∑
d|j µ(d)

js
f(j) = 1.

which proves the lemma.

Theorem. For σ > 1

1
ζ(s)

=
∞∑

n=1

µ(n)
ns

,

where µ is the Möbius function.

Proof. This theorem follows immediately by the previous lemma for all s
real and greater than 1. Furthermore, by the analytic continuation of ζ, we
also have that this theorem holds for all σ > 1.

A.7 Riemann Zeta Function and Dirichlet L-Functions

A.7.1 Hurwitz Zeta Function

Theorem. For σ > 1

L(s, χ) =
1
ks

k∑

w=1

χ(a)ζ
(
s,

w

k

)
. (A.7)

Proof. Since χ is periodic with period k,

L(s, χ) =
∞∑

n=1

χ(n)
ns

=
k∑

w=1

χ(w)
∞∑

m=0

1
(km + w)s

=
1
ks

k∑

w=1

χ(w)ζ
(
s,

w

k

)
.

Theorem. For any σ0 > 1, the series

∞∑

n=0

(n + w)−s

converges uniformly for σ ≥ σ0; thus ζ(s, w) is analytic for σ > 1.
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Proof. We have

∣∣(n + w)−s
∣∣ =

∣∣∣e−(σ+it) log(n+w)
∣∣∣ = e−σ log(n+w) = (n + w)−σ,

hence, for σ ≥ σ0,

∞∑

n=0

(n + w)−s ¿
∞∑

n=0

(n + w)−σ0 .

Therefore, we have a series of analytic functions which is dominated
throughout the region σ ≥ σ0 by a convergent series of positive constants,
which is therefore uniformly convergent. Thus, by Weierstrass’ M-test, the
theorem follows.

Lemma. If a and b are integers with 0 ≤ a < b, and if f has a continuous
derivative over a ≤ x ≤ b, then

b∑

n=a+1

f(n) =
∫ b

a
f(u)du +

∫ b

a
(u− buc)f ′(u)du.

Proof.
∫ n

n−1
uf ′(u)du = nf(n)− (n− 1)f(n− 1)−

∫ n

n−1
f(u)du

= f(n) + (n− 1)
∫ n

n−1
f ′(u)du−

∫ n

n−1
f(u)du

= f(n) +
∫ n

n−1
bucf ′(u)du−

∫ n

n−1
f(u)du,

and the result follows by summing from a + 1 to b on n.

Theorem. If m is a non-negative integer, and σ > 1, then

ζ(s, w)− 1
(s− 1)(m + w)s−1

=
m∑

n=0

1
(n + w)s

− s

∫ ∞

m

u− buc
(u + w)s−1

du. (A.8)

It follows that ζ(s, w) − 1/(s − 1) is analytic for σ > 0, and that (A.8)
holds for σ > 0.

Proof. If σ > 1 and

f(u) =
1

(u + w)s
,

then the equation of the previous theorem continues to hold for b → ∞,
and, if we replace a by m, we obtain
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∞∑

n=m+1

1
(n + w)s

=
1

(s− 1)(m + w)s−1
− s

∫ ∞

m

u− buc
(u + w)s+1

du,

from which (A.8) follows. Now, since
∣∣∣∣

u− buc
(u + w)s+1

∣∣∣∣ <
1

(u + w)σ+1
<

1
uσ+1

,

the integral on the right hand side of (A.8) converges absolutely for σ > 0
and uniformly for σ ≥ σ0 > 0. Now, for arbitrary n ≥ 0, we have that the
quantity

∫ n+1

n

u− buc
(u + w)s+1

du =
∫ n+1

n

u− n

(u + w)s+1
du

is an analytic function of s for σ > 0, and the same is true for

∞∑
n=m

∫ n+1

n

u− buc
(u + w)s+1

du =
∫ ∞

m

u− buc
(u + w)s+1

du,

with m ≥ 0. At last, taking m = 0 in (25), we have that

ζ(s, w)− 1
s− 1

=
1
ws

+
w1−s − 1

s− 1
− s

∫ ∞

0

u− buc
(u + w)s+1

du

where the right hand side is analytic for σ > 0.

Theorem. For 1
2 ≤ σ ≤ 2 and t > c(w), where c is a function of w,

|ζ(s, w)| < t3/4.

For t ≥ 8 and 1− (log t)−1 ≤ σ ≤ 2, we have

|ζ(s, w)| < c(w) log t.

Proof. For 1/2 ≤ σ ≤ 2, and t ≥ 3, we have |s| < 2+ t < 2t and |s−1| >≥
t > 1. Therefore, if we let m = btc+ 1 in the previous theorem, we get

|ζ(s, w)| < 1

(btc+ 1 + w)σ−1| +
btc+1∑

n=1

1
nσ

+ 2t

∫ ∞

t

du

uσ+1

≤ 1
(btc+ 1 + w)σ+1 + c(w) +

btc∑

n=1

1
nσ

+
2t

σtσ
,

or rather,
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|ζ(s, w)| < 1
(btc+ 1 + w)σ+1 + c(w) +

btc∑

n=1

1
nσ

+ 4t1−σ. (A.9)

Hence, for the same range of σ and t, we have

|ζ(s, w)| < 1

(btc+ 1 + w)−1/2
+ c(w) +

btc∑

n=1

1√
n

+ 4
√

t

< 2
√

t + c(w) +
∫ t

0

du√
u

+ 4
√

t ≤ 8
√

t + c(w),

and that this is smaller than t3/4 for t > c(w).
Now let t ≥ 8 > e2. Then 1−(log t)−1 ≥ 1/2; therefore, if 1−(log t)−1 ≤

σ ≤ 2, (A.9) gives us

|ζ(s, w)| < (2t)1/ log t + c(w) +
btc∑

n=1

n1/ log t

n
+ 4t1/ log t

< 21/2e + c(w) + e

btc∑

n=1

1
n

+ 4e

< c(w) log t.

Proving the theorem.

Theorem. For |x| ≤ 1, if

f(x) =
∞∑

n=1

anxn

is analytic, and Re f(x) ≤ 1
2 , then |an| ≤ 1 for n ≥ 1.

Proof. We have |f(x)| ≤ |1− f(x)| for |x| ≤ 1, therefore, the function

f(x)
1− f(x)

=
a1x + · · ·

1− a1x− · · · = a1x + b2x
2 + · · ·

is analytic and has modulus at most 1 for |x| ≤ 1. But if we define a
function, f1,

f1(x) :=
f(x)

x (1− f(x))
,

then this is also analytic for |x| ≤ 1, and its value at x = 0 is a1. By the
maximum-modulus principle, its absolute value is at least as large at some
point on |x| = 1. Because for |x| = 1,
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|f1(x)| =
∣∣∣∣

f(x)
1− f(x)

∣∣∣∣ ,

it follows that

|a1| ≤ 1. (A.10)

So it remains to show that each of the functions

Fn(x) = anx + a2nx2 + · · ·
fulfills the same hypotheses as f(x). This depends on the fact that if

η = e2πi/n, then

n−1∑

l=0

ηlk =





n if n
∣∣k,(

ηkn − 1
)

/
(
ηk − 1

)
= 0 if n- k.

We have that

n−1∑

l=0

f(ηlx) =
n−1∑

l=0

∑
k = 1∞akη

klxk

=
∞∑

k=1

akx
k

n−1∑

l=0

ηkl

= n
∑

n|k
akx

k

= nFn(xn),

therefore, Fn(x) is analytic for |x| ≤ 1, and for such x, we have

ReFn(xn) =
1
n

n−1∑

l=0

Re f(nlx) ≤ 1
n

n−1∑

l=0

1
2

=
1
2
.

Lemma. Let R > 0, and suppose that

f(x) =
∞∑

n=0

an(x− x0)n

is analytic and Re f(x) ≤ M for |x− x0| ≤ R. For n ≥ 1, we have

|an| ≤ 2
Rn

(M − Re a0).
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Proof. If Re a0 = M , then an = 0 for n ≥ 1, by the maximum-modulus
principle.

If Re a0 < M , set

g(x) =
f(x0 + Rx)− a0

2(M − Re a0)
.

Then we have g analytic for |x| ≤ 1, g(0) = 0, and that

Re g(x) =
Re f(x0 + Rx)− Re a0

2(M − Re a0)
≤ M − Re a0

2(M − Re a0)
=

1
2
.

Therefore, g satisfies the hypotheses of Theorem 27 and we have
∣∣∣∣

anRn

2(M − Re a0)

∣∣∣∣ ≤ 1,

from which the theorem follows.

Theorem. If f satisfies the hypotheses of Lemma 8, and 0 < r < R, then
for |x− x0| ≤ r, we have

|f(x)| ≤ |a0|+ 2r

R− r
(|M |+ |a0|)

and

∣∣f ′(x)
∣∣ ≤ 2R

(R− r)2
(|M |+ |a0|).

Proof. The theorem follows quickly: we have

|f(x)| ≤ |a0|+
∞∑

n=1

|an|rn

≤ |a0|+ 2 (|M |+ |a0|)
∞∑

n=1

( r

R

)n

= |a0|+ 2r

R− r
(|M |+ |a0|) ,

and

∣∣f ′(x)
∣∣ ≤

∑
n

= 1∞|an|nrn−1

≤ 2 (|M |+ |a0|)
R

∞∑

n=1

n
( r

R

)n−1

=
2R

(R− r)2
(|M |+ |a0|) .
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Theorem. Let r > 0 and M ∈ R, and suppose that f(s0) 6= 0 and that, for
|s− s0| ≤ r, f(s) is analytic and

∣∣∣∣
f(s)
f(s0)

∣∣∣∣ < eM .

Further suppose that f(s) 6= 0 in the semicircular region |s − s0| ≤ r,
Re s > Re s0. Then

−Re
f ′

f
(s0) ≤ 4M

r
,

and if there is a zero, say ρ, of f on the open line segment between
s0 − r/2 and s0, then

−Re
f ′

f
(s0) ≤ 4M

r
− 1

s0 − ρ.

Theorem.
1

2πi

∫

(2)

ys

s2
=

{
0 for 0 < y < 1,

1 for y ≥ 1.

A.7.2 Analytic Proof of Dirichlet’s Theorem

As mentioned in the preliminaries, with the machinery of the prime number
theorem and its proof, we are easily able to prove Dirichlet’s theorem. This
work comes from [LeV2] in particular, but like many things concerning the
Prime Number Theorem, can be found in a variety of places.

Let k and l be relatively prime integers, and π(x; k, l) be the number
of primes p ≡ l (mod k) which do not exceed x. For a given k, there are
ϕ(k) = h choices of l which are distinct modulo k, so that if the primes are
more or less evenly dispersed amongst the various arithmetic progressions,
it is expected that

π(x; k, l) ∼ 1
h

x

log x
.

In fact this is the case, and this result is known as Dirichlet’s theorem.
To obtain an estimate for π(x; k, l), we go through similar arguments for
our proof of the Prime Number Theorem, which was concerned with π(x) =
π(x; 1, 0).

We have already that for σ > 1,

L(s, χ) =
1
ks

k∑

a=1

χ(a)ζ
(
s,

a

k

)
.
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But in fact, the domain for this can be extended. If we let

E(χ) =

{
1, if χ = χ0

0, if χ 6= χ0,

then

k∑

a=1

χ(a) = E(χ) · h.

Therefore, for σ > 1, we have

L(s, χ)− E(χ) · h
k

· 1
s− 1

=
E(χ) · h
s− 1

(
1
ks
− 1

k

)
+

1
ks

k∑

a=1

χ(a)
{

ζ
(
s,

a

k

)
− 1

s− 1

}
.

Now, by Theorem 25, which concerns the analyticity of functions like
the Hurwitz zeta function, we have that each term on the right is analytic
for σ > 0, and also

1
s− 1

(
1
ks
− 1

k

)
=

k1−s − 1
k(s− 1)

is an integral function. Now by analytic continuation, we have the next
theorem.

Theorem 43.

L(s, χ) =
1
ks

k∑

a=1

χ(a)ζ
(
s,

a

k

)
.

holds for σ > 0 except at s = 1. Furthermore,

lim
s→1

(s− 1)L(s, χ) =
h · E(χ)

k
. (A.11)

Therefore, L(s, χ) is analytic for σ > 0, except that L(s, χ0) has a simple
pole at s = 1.

Now we utilize Theorem 26. As is to be expected, we are concerned with
σ > 2 and t ≥ 8. We have

|L(s, χ)| <
∞∑

n=1

1
n2

< 2 <

{
t,

log t,

while for σ > 0 and t > 0, we have
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|L(s, χ)| ≤
k∑

a=1

∣∣∣ζ
(
s,

a

k

)∣∣∣ .

Now Theorem 26 gives us the following:

Theorem 44. (I) For σ > 1/2 and t > c12(k), we have |L(s, χ)| < t.
(II) For t ≥ 8 and σ > 1− (log t)−1, we have |L(s, χ)| < c13(k) log t.

Now we can generalize the proof that ζ(s) does not vanish on σ = 1 in
a simple way.

Theorem 45. L(s, χ) does not vanish on the line σ = 1.

Proof. For σ > 1,

L(s, χ) =
∏
p

(
1− χ(p)p−s

)−1
,

so we can choose

log L(s, χ) =
∑
m,p

χ(pm)
mpms

.

Therefore,

log
∣∣L3(σ, χ0)L4(σ + ti, χ)L(σ + 2ti, χ2)

∣∣
= 3 log |L(σ, χ0)|+ 4 log |L(σ + ti, χ)|+ log |L(σ + 2ti, χ2)|
= 3 log L(σ, χ0) + 4 Re log L(σ + ti, χ) + Re log L(σ + 2ti, χ2)|

=
∑
m,p

(
3χ0(pm)
mpmσ

+ Re
4χ(pm)

mpm(σ+ti)
+ Re

χ2(pm)
mpm(σ+2ti)

)

=
∑
m,p
p-k

3 + 4 cos(η(pm)− t log pm) + cos 2(η(pm)− t log pm)
mpmσ

≥ 0,

where χ(pm) = eiη(pm). Hence,

((σ − 1)L(σ, χ0))
3

∣∣∣∣
L(σ + ti, χ)

σ − 1

∣∣∣∣
4 ∣∣L(σ + 2ti, χ2)

∣∣ ≥ 1
σ − 1

,

but then if the theorem were false, then Theorem 43 would be also, which
is absurd.

Now we clearly have that Theorem 31 has the following analog:
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Theorem 46. For σ > 1,

−3
L′

L
(σ, χ0)− 4 Re

L′

L
(σ + ti, χ)− Re

L′

L
(σ + 2ti, χ2) ≥ 0.

Similarly, Theorem 33 has the analog:

Theorem 47. There is a c1(k) ≥ 8 such that L(s, χ) 6= 0 for t > c1(k) and
σ ≥ 1− c2/ log t.

The only differences between the proofs of these theorems and their
analogs is that we use f(s) = L(s, χ2) and s0 = σ + 2ti, and also f(s) =
L(s, χ) with s0 = σ + ti, and the constants now depend on k.

In the same manner, we replace ζ(s) with L(s, χ) in Theorem 34 to get
the next theorem.

Theorem 48. For t ≥ c9(k) > 8 and σ ≥ 1 − c8(log t)−1, | log L(s, χ)| <
log2 t.

Here the analogs are not quite so clear, so for Theorem 35, we break the
argument into two parts.

Theorem 49. For (k, l) = 1, we have

∑

p≤x
p≡l (mod k)

log
x

p
=

1
2πih

∑
χ

1
χ(l)

∫

(2)

xs

s2
log L(s, χ)ds + O(

√
x log2 x).

Proof. We utilize the series expansion for L(s, χ) to obtain,

1
2πi

∫

(2)

xs

s2
log L(s, χ)ds =

1
2πi

∫

(2)

xs

s2

∑
m,p

χ(pm)
mpms

ds

=
1

2πi

∑
m,p

χ(pm)
m

∫

(2)

(x/pm)s

s2
ds

=
∑
m,p

pm≤x

χ(pm) log(x/pm)
m

=
∑

p≤x
p-k

χ(p) log
x

p
+

∑

pm≤x
m≥2

χ(pm) log(x/pm)
m

=
∑

p≤x
p-k

χ(p) log
x

p
+ O(

√
x log2 x).

Now we multiply by 1/χ(l) and sum over all characters modulo k:
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∑
χ

1
χ(l)

∑

p≤x
p-k

χ(p) log
x

p
= h

∑

p≤x
p≡l (mod k)

log
x

p

=
1

2πi

∑
χ

1
χ(l)

∫

(2)

xs

s2
log L(s, χ)ds + O(

√
x log2 x),

which is the theorem. Note that the implied constant in the O may depend
on k.

To estimate these integrals, we need to consider two cases. First, the
case when χ = χ0. Fortunately, every property we used to estimate

∫

(2)

xs

s2
log ζ(s)ds

carries over for
∫

(2)

xs

s2
log L(s, χ0)ds.

Quickly, we have that for suitable c with 0 < c < 1,
∫

(2)

xs

s2
log L(s, χ0)ds = 2πi

∫ 1

c

xs

s2
ds + O

(
xe−α

√
log x

)
.

However, if χ 6= χ0, then L(s, χ) has no pole at s = 1, but the other
properties still apply thankfully. Therefore, if we do not cut the plane, but
instead consider the line segments Γ5 and Γ̄5 as a single segment, say Γ8 and
omit Γ6, Γ7, and Γ̄6, then

xs

s2
log L(s, χ)

is analytic in the region bounded by Γ1, Γ2, Γ3,Γ4, Γ8, Γ̄4, Γ̄3, Γ̄2, Γ̄1. Thus,

∫

(2)

xs

s2
log L(s, χ)ds =

(∫ 2+ui

2−∞i
−

∫

Γ̄2+Γ̄3+Γ̄4+Γ8+Γ4+Γ3+Γ2

+
∫ 2+∞i

2+ui

)
xs

s2
log L(s, χ)ds.

Furthermore, the integral along each of these new arcs either tends to
zero or is

O
(
xe−α

√
log x

)
.

Now

∑

p≤x
p≡l (mod k)

log
x

p
=

1
h

∫ 1

c

xsds

s2
+ O

(
xe−α

√
log x

)
,
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follows, and leads us to the analog of the Prime Number Theorem in the
same way its predecessor led to the Prime Number Theorem itself.

Theorem 50. If k is a fixed integer and (k, l) = 1, then, as x →∞,

π(x; k, l) =
1

ϕ(k)

∫ x

2

du

log u
+ O

(
xe−α

√
log x

)
.

And in particular, this leads us to

π(x; k, l) ∼ 1
φ(k)

x

log x
,

and that if (k, l1) = (k, l2) = 1, then

lim
x→∞

π(x; k, l1)
π(x; k, l2)

= 1,

so that asymptotically there are as many primes in the arithmetic pro-
gression kt + l1 as there are in kt + l2.

And as we have seen several times throughout this paper,

lim
x→∞

π(x; 4, 1)
π(x; 4, 3)

= 1.
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Appendix B

Concerning Integers n such
that n = x2 + y2

This appendix is primarily concerned with manipulating the integers that
are expressible as a sum of two squares. While interesting, none of this
information has a direct influence on the primary result of this paper, hence
its inclusion here.

Most of our work here comes from [Sier]. First, we have a corollary to
Theorem 40, which told us the type of integers capable of being expressed
as the sum of two squares.

Corollary 1. If a natural number is not representable as the sum of two
squares of integers, then neither is it the sum of two squares of rational
numbers.

Proof. Let n be a natural number such that it is not a sum of two squares of
integers. By Theorem 40, there must be a prime p ≡ 3 (mod 4) that divides
n to an odd power.

We prove by contradiction. Assume n =
(

l1
m1

)2
+

(
l2
m2

)2
where m1,m2

are natural numbers and l1, l2 are integers. Then we clear the denominators
and get

(m1m2)2n = (l1m2)2 + (l2m1)2.

But p must appear with an odd exponent in the factorization of the left-
hand side, but this is absurd for the right-hand side. Hence the corollary is
proved.

B.1 Decompositions

At least four decompositions of a prime into the sum of two squares are
known, due to Legendre (1808), Gauss (1825), Serret (1848) and Jacobsthal
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(1906). We examine only the construction of Gauss, which is the most
elementary to formulate.

Theorem 51. If p = 4k + 1 is a prime number, then let x, y be integers,
such that

x ≡ (2k)!
(k!)2

(mod p) and y ≡ (2k)!x (mod p),

with |x| < p/2 and |y| < p/2. Then p = x2 + y2.

A proof of this theorem has been given by Cauchy and another proof has
been given by Jacobsthal, but neither is simple and we shall not attempt a
proof here. We do however give an example of the difficulty in calculating
x and y.

Let p = 37. Then k = 9 and so

x ≡ 18!
2 · (9!)2

=
6402373705728000

263363788800
= 24310 ≡ 1 (mod 37),

while

y ≡ 6402373705728000 · 1 ≡ 6 (mod 37).

Theorem 52. If a and b are natural numbers, then the representation of
a prime p of the form p = ax2 + by2, where x, y are natural numbers, if it
exists, is unique, apart from the possibility of interchanging x and y in the
case of a = b = 1.

Proof. Suppose for a prime p,

p = ax2
1 + by2

1 = ax2
2 + by2

2,

where x1, x2, y1, y2 are natural numbers. Clearly, (x1, y1) = (x2, y2) = 1.
We have

p2 = (ax1x2 + by1y2)2 + ab(x1y2 − x2y1)2

= (ax1x2 − by1y2)2 + ab(x1y2 + x2y1)2,

but

(ax1x2 + by1y2)(x1y2 + x2y1) = (ax2
1 + by2

1)x2y2 + (ax2
2 + by2

2)x1y1

= p(x1y1 + x2y2).

Therefore at least one of the factors on the left hand side of the equality
must be divisible by p.
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If p
∣∣ax1x2 + by1y2, then the first of the equations for p2 gives us x1y2 −

x2y1 = 0, and therefore x1/y1 = x2/y2, which since they both have greatest
common divisor of 1, this proves that x1 = x2 and y1 = y2.

Now if p
∣∣x1y2 + x2y1, then the second of the equations for p2 gives us

p2 ≥ abp2, which implies a = b = 1, but then x1x2 − y1y2 = 0, and now
x1/y1 = y2/x2. Therefore x1 = y2 and x2 = y1, where the decompositions
differ only in the order of summands. Hence the theorem is proved.

Corollary 2. Decomposition of any prime into the sum of two squares is
unique up to order and sign.

Proof. In the previous theorem take a = 1 and b = 1, then we are done.

Corollary 3. If a natural number n admits two or more different represen-
tations in the form ax2 + by2, where x, y are natural numbers, then n must
be composite.

Proof. By our theorem, every prime number admits a unique representa-
tion, hence if a number does not admit a unique representation, then it is
composite.

Unfortunately, the converse of this corollary is not true. For instance,
14 has a unique representation with a = 2, b = 3; namely, 14 = 2 ·12 +3 ·22.

Thankfully, we do have a theorem concerning numbers of the form 4k+1,
but we shall save this for the primality test at the end of the chapter.

B.2 Unsolved Questions

According to [Sier], the following items are unknown to be true or false:

I. There exist infinitely many primes p such that p = x2 + (x + 1)2, where
x is a natural number.

e.g. 5 = 12 + 22, 13 = 22 + 32, 41 = 42 + 52, 61 = 52 + 62, etc.

II. (I.) is equivalent to the conjecture that there exist infinitely many primes
p for which 2p = a2 + 1, where a is a natural number.

III. There exist infinitely many primes p such that p = a2 + b2, where a
and b are prime.

e.g. 13 = 22 + 32, 29 = 22 + 52, etc.

IV. There exist infinitely many primes that are the sum of three squares of
consecutive natural numbers.

e.g. 29 = 22 + 32 + 42, 149 = 62 + 72 + 82, etc.
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V. There exist infinitely many primes that are the sum of three squares of
primes.

e.g. 83 = 32 + 52 + 72, 179 = 32 + 72 + 112, etc.

Furthermore, if this conjecture holds, then one of the squares must
always be 32.

VI. For every natural number n, there exist infinitely many natural numbers
x such that x2 + n2 are primes.

i.e. for every n ∈ N, the set
{
n2 + x2 : x ∈ N}

contains infinitely many
primes.

B.3 A Primality Test

As promised, we have a theorem concerning numbers of the form 4k+1, but
first we need a lemma:

Lemma 14. If each of two given natural numbers of the form 4k + 1 with
k > 0 is the sum of two squares of integers, then their product does not
admit a unique representation as the sum of two squares of integers greater
than or equal to zero and the squares are relatively prime.

Proof. Let m = a2 + b2, n = c2 +d2, where a, b, c, and d are integers. Then
we have

mn = (ac + bd)2 + (ad− bc)2 = (ac− bd)2 + (ad + bc)2.

So we have two decompositions. Let us suppose they differ only by the
order of factors. Then either ac+ bd = ad+ bc or ac+ bd = |ac− bd|. In our
first case, we have a(c − d) = b(c − d), but c 6= d, since otherwise n = 2c2,
which contradicts n odd. But then we have a = b, and this is also absurd
since m is an odd number.

In the case where ac+ bd = |ac− bd|, we have either ac+ bd = ac− bd or
ac+ bd = bd−ac. If the former holds, then bd = 0 and so b = 0 or d = 0. If
b = 0, then m = a2, where a > 1, and mn = (ac)2 + (ad)2, where ac and bd
have a common divisor greater than 1, and so does not satisfy our premise.
Now if the latter holds, then ac = 0 and so a = 0 or c = 0, and a similar
result follows.

Finally, if the decompositions of mn differ in more than merely the order
of the terms, then we have that mn clearly does not admit a unique repre-
sentation as the sum of two squares of integers greater than or equal to 0
whose greatest common divisor is 1.

Now we can prove the following:

Theorem 53. A natural number of the form 4k + 1 > 1 is a prime if and
only if it admits a unique representation (apart from the order of the terms)
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as the sum of two squares of integers ≥ 0 and in this representation, the
squares are relatively prime.

Proof. Suppose p = 4k + 1 is prime, then p admits a unique representation
of the form p = x2 + y2 where x and y are natural numbers. Thus the
conditions of the theorem are necessary, and for sufficiency we have our
lemma.

As an application of Theorem 53, we have a primality test. In order
to check if a number n of the form 4k + 1 is a prime, one must form the
sequence of numbers

n− 02, n− 12, . . . , n− (b√nc)2

and check to see how many squares there are. [Sier] points out that this
is the method utilized by T. Kulikowski to find that the number 239 − 7 is
a prime number. That is,

239 − 7 = 640452 + 7386842

where 64045 and 738684 are relatively prime. In fact, the problem
whether numbers of the form 2n − 7 was formulated by P. Erdös in 1956.
For n = 4, 5, . . . , 38, 2n − 7 is composite.
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