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ABSTRACT 

GIS has been an effective tool in identifying and recognizing urban patterns. Various 

techniques like Support Vector Machines, artificial neural networks have been used with 

GIS to classify the patterns for urban analysis. Liblinear has emerged as another effective 

tool which produces results in much lesser time without compromising the accuracy. In 

this thesis the datasets used were extracted using GIS. The datasets were from the Ohio 

state counties namely the Delaware, Holmes, Mahoning and Medina counties. Each had 

over a million records and contained seven independent variables related to urban 

development and a class label which denotes the urban areas versus the rural areas. Using 

Liblinear, Libsvm, Rapid Miner and Weka some experiments were carried out over 

smaller datasets and the results have been shown. It can be seen that Liblinear is as 

effective as Libsvm while the latter takes much longer time for producing the results. The 

results can help indentify geographical patterns related to urban land use. 
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1 Introduction 
 

Accurate and current urban maps can be the most valuable tools for study related to 

census, economics, culture and public safety.  Additional information can also be 

extracted from urban maps by effectively combining Support Vector Machines (SVM) 

and Geographic Information Systems (GIS). This information is of extreme importance 

for analysis of patterns of urban land use [25].  

It has been demonstrated [14] that SVM algorithms combined with feature selection 

procedures provide an efficient classification and prediction method for large real 

datasets from the US census. Early applications of SVM approaches to geographic data 

included modeling of land cover classifications [12], which did not include GIS.  The 

application of SVM to nonlinearly separable problems seems to be robust to missing data 

instances, errors and redundancy [5].  Thus, this thesis demonstrates the effectiveness of 

SVM and GIS for urban land use analysis. 

The classification algorithms are designed to optimize the overall accuracy performance 

but for the imbalanced data good accuracy does not necessarily mean that classification 

of the minority classes is correct. Thus, additional performance measures like AUC, g-

measure, recall have been included to study imbalance problems.  

To solve the imbalance problem several techniques have been proposed and analyzed in 

the literature [10]. In the Real-world imbalanced datasets come from diverse application 

areas like medical diagnostic, fraud detection, intrusion detection, gene profiling, and 

object detection from satellite images. In this study the effect of three sampling 
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techniques when applied on four large GIS datasets with an imbalance ration between 5 

and 12, has been investigated. The datasets contain over a million instances each and the 

sampling methods considered are random sampling, under-sampling and Wilson’s editing 

in combination with SVM.  

SVM and NN were used before in various studies to predict urbanization and land cover 

with almost similar results, but different prediction patterns [15, 25]. Weka and Rapid 

Miner have been used to analyze the datasets and then the results are plotted and 

analyzed for accuracies and performance measures. It also seems better to break the 

datasets in small sizes to save time and memory so the results for files of size 5000 have 

been shown.  

2 Literature Review 
 

2.1 Support Vector Machines (SVMs) 

SVMs developed by Vapnik [28], have gained wide acceptance because of the high 

generalization ability for a wide range of classification applications.  Recently SVMs 

have shown promising performance in many applications and classifications, but they 

have been limited by speed particularly when the training data set is large. The hyper 

plane (decision boundary) constructed by SVM is dependent on only a portion of the 

training samples called support vectors that lie close to the decision boundary (hyper 

plane). They require the use of an iterative process such as quadratic programming to 

identify the support vectors from the labeled training set of examples. When the number 

of samples in the training set is huge, sometimes it is impossible to use all of them for 
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training. Any training samples that are of no relevance to support vectors can be removed 

without degrading the classification results [12].  

The success of SVM is very limited when it is applied to the problem of learning from 

imbalanced datasets in which negative instances heavily outnumber the positive instances 

(e.g. in gene profiling and detecting credit card fraud). Akbani, Kwek, and Japkowicz [1] 

studied the factors behind this failure and explained why the common strategy of under-

sampling the training data may not be the best choice for SVM.  They specifically chose 

SVM to attack the problem of imbalance data because SVM is based on strong theoretical 

foundations [28] and their empirical results showed that it performs well with moderately 

imbalanced data even without any modifications.  

Since SVM only takes into account those instances that are close to the boundary, i.e. the 

support vectors, for building its model it is an interesting candidate for dealing with 

imbalanced datasets. This means that SVM is unaffected by non-noisy negative instances 

far away from the boundary even if they are huge in number. 

SVM is considered as a useful technique for data classification. Although people consider 

that it is easier to use than NN, however, users who are not familiar with SVM often get 

unsatisfactory results at first.  

A classification task usually involves with training and testing data which consist of some 

data instances. Each instance in the training set contains one “target value” (class labels) 

and several “attributes” (features). The goal of SVM is to produce a model which predicts 

target value of data instances in the testing set which are given only the attributes. 
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For Data Preprocessing SVM requires that each data instance is represented as a vector of 

real numbers. Thus, if there are categorical attributes, we have to convert them into 

numeric data. Also scaling them before applying SVM is very important. The main 

advantage is to avoid attributes in greater numeric ranges dominate those in smaller 

numeric ranges. Moreover, numerical difficulties can be avoided during the calculation. 

Because kernel values usually depend on the inner products of feature vectors, e.g. the 

linear kernel and the polynomial kernel, large attribute values might cause numerical 

problems. 

For the Model Selection the RBF kernel has been selected [9] out of linear, polynomial, 

radial base function (RBF) and the sigmoid kernel. The RBF kernel non-linearly maps 

samples into a higher dimensional space, so unlike the linear kernel, it can handle the 

case when the relation between class labels and attributes is nonlinear. Furthermore, the 

linear kernel is a special case of RBF as [11] shows that the linear kernel with a penalty 

parameter 
~

C has the same performance as the RBF kernel with some parameters ( )γ,C . In 

addition, the sigmoid kernel behaves like RBF for certain parameters [16]. The second 

reason is the number of hyperparameters which influences the complexity of model 

selection. The polynomial kernel has more hyperparameters than the RBF kernel. 

Moreover, it must be noted that the sigmoid kernel is not valid (i.e. not the inner product 

of two vectors) under some parameters [28]. 

However, there are some situations where the RBF kernel is not suitable. In particular, 

when the number of features is very large, one may just use the linear kernel. 

There are two parameters while using the RBF kernels: C andγ . It is not known 

beforehand which C and γ  are the best for one problem; consequently some kind of 
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model selection (parameter search) must be done. The goal is to identify good ( )γ,C  so 

that the classifier can accurately predict unknown data (i.e., testing data). An improved 

version of this procedure is cross-validation.  

In v-fold cross-validation, the training set is divided into v subsets of equal size. Then 

one subset is sequentially tested using the classifier trained on the remaining v-1 subsets. 

Thus, each instance of the whole training set is predicted once so the cross-validation 

accuracy is the percentage of data which are correctly classified. The cross-validation 

procedure can prevent the overfitting problem.  

SVM and NN were used before in various studies to predict urbanization and land cover 

with almost similar results, but different prediction patterns [15, 25].  Although SVM 

itself does not provide a mechanism to deal with imbalanced data, it can be easily 

modified. SVM builds the decision boundary on a limited number of instances that are 

close to the boundary, being unaffected by instances far away from the boundary. This 

observation can be used as an active learning selection strategy that provides a balanced 

training set for the early training stages of the SVM algorithm. 

2.2 Liblinear 

If the number of features is large, one may not need to map data to a higher dimensional 

space. That is, the nonlinear mapping does not improve the performance. Using the linear 

kernel is good enough, and one only searches for the parameter C.  

When Number of instances is much less than the number of features the cross-validation 

accuracy of using the linear kernel is comparable to that of using the RBF kernel. Thus, 

when the number of features is very large, one may not need to map the data. In addition 

to Libsvm, the Liblinear software is also effective for data in this case. 
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When both number of instances and features are large (as in case of document 

classification), Libsvm is not particularly good for this type of problems. Another 

software called Liblinear [17], which is very suitable for such data.  

Liblinear is an open source library for large-scale linear classification [8]. It supposts 

logistic regression and linear support vector machines. Liblinear is very efficient for 

training large-scale problems. Furthermore, Liblinear is competitive with or even faster 

than state of the art linear classifiers. Liblinear supports two popular binary linear 

classifiers: LR and linear SVM.  

The Liblinear package includes a library and command-line tools for the learning task. 

Liblinear and Libsvm share similar usage as well as application program interfaces 

(APIs), so users/developers can easily use both packages. However, their models after 

training are quite different. 

The Liblinear package has a lot of documentation. The installation process, command-

line usage, and the library calls are contained in the README file. Moreover, programs 

train.c and predict.c are good examples of using Liblinear APIs. The main design 

principle is to keep the whole package as simple as possible while making the source 

codes easy to read and maintain.  

The files in Liblinear can be separated into source files, pre-built binaries, 

documentation, and language bindings. Liblinear can run on almost every platform as 

there is no dependency on external libraries and the source codes are written in C/C++. 

Moreover, the library calls are implemented in the file linear.cpp. The train() function 

trains a classifier on the given data and the predict() function predicts a given instance. 

Furthermore, to handle the multi-class problems via the one-vs-the-rest strategy, train() 
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conducts several binary classifications, each of which is by calling the train_one() 

function. train_one() then invokes the solver of the users’ choice. 

Liblinear takes much less time as compared to Libsvm and moreover, Libsvm consumes 

more memory. Clearly Liblinear is much faster than Libsvm to obtain a model with 

comparable accuracy. Liblinear is also efficient for large-scale document classification. 

When Number of instances is much greater than the number of features then as the 

number of features is small, one often maps data to higher dimensional spaces (i.e., using 

nonlinear kernels). However, the linear kernel may be used with the option –s 2 in 

Liblinear. When the number of features is small, it is often faster than the default –s 1. 

Using –s 2 leads to shorter training time. 

Liblinear supports L2-regularized logistic regression (LR), L2-loss and L1-loss linear 

SVMs [3]. Given a set of instance-label pairs ( )ii yx , , i=1,…,l, n

i Rx ∈ , { }1,1 +−∈iy , 

both methods (LR and linear SVM) solve the following unconstrained optimization 

problem with different loss functions ( )ii yx ,;ωξ : 

( )∑ =
+

l

i ii

T yxC
1

,;
2

1
min ωξωω
ω

,       (1) 

 where C > 0 is a penalty parameter. For SVM, the two common loss functions are 

max ( )0,1 i

T

i xy ω−  and max ( )20,1 i

T

i xy ω− .       (2) 

The former is referred to as L1-SVM, while the latter is L2-SVM. 

In some applications, an SVM problem appears with a bias term b.  This can often be 

dealt with by appending each instance with an additional dimension: 

[ ]1,TiT

i xx ←     [ ]bT

i

T ,ωω ← .        (3) 
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Problem (1) is often referred to as the primal form of SVM. One may instead solve its 

dual problem: 

( ) αααα
α

TT eQf −=
2

1
min  subject to ,,0 iUi ∀≤≤ α     (4) 

Where DQQ += , D is a diagonal matrix, and j

T

ijiij xxyyQ = . 

For L1-SVM, U=C and .,0 iDii ∀=  For L2-SVM, ∞=U  and ( ) .,21 iCDii ∀=  

The primal L1-SVM is not differentiable whereas the primal L2-SVM is differentiable 

but not twice differentiable. While the dual form (4) involves bound constraints, its 

objective function is twice differentiable for both L1- and L2-SVM. 

2.3 Neural Networks 

Previous research [15, 25] has shown that classification methods such as SVM and NN 

can be successfully used to predict patterns of urbanization in large datasets.  SVM and 

NN can then be used as predictive tools to determine if grid cells can be accurately 

predicted as urban or non-urban cells.  The effectiveness of the predictive capability of 

the SVM and NN can be measured through standard accuracy. 

Artificial NN are powerful tools that use machine learning approach to numerically solve 

relationships between inputs and outputs. They are designed to emulate the functionality 

of neurons and typically consist of many simple processing units, which are wired 

together in a complex communication network. Each unit or node is a simplified model 

of a real neuron which sends off a new signal, if it receives a sufficiently strong input 

signal from the other nodes to which it is connected. Depending on the activity, the 

strength of these connections may be varied.   
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One of the first neural nets was the perceptron, [23] which consists of a single node. It 

receives weighted inputs and thresholds the results according to a defined rule. Thus it is 

capable of classifying linearly separable data and performing linear functions. The Multi-

layer perceptron (MLP) [24] is used widely and consists of three layers: input, hidden, 

and output and therefore it can be used to identify relationships that are non-linear in 

nature.  

In the case of classification problem, neural net algorithms calculate weights for input 

values, input layer nodes, hidden layer nodes and output layer nodes by introducing the 

input in a feed forward manner. This propagates through the hidden layer and to the 

output layer. Then the signals propagate from node to node and are modified by weights 

associated with each connection. The receiving node sums the weighted inputs from all of 

the nodes connected to it from the previous layer. Furthermore, the output of this node is 

then computed as the function of its input called the “activation function.” The data 

moves forward from node to node with multiple weighted summations occurring before 

reaching the output layer.  

Weights in a neural network are determined by using a training algorithm, the most 

popular of which is the back propagation (BP) algorithm. This algorithm randomly 

selects the initial weights, and then compares the calculated output for a given 

observation with the expected output for that observation. Then the difference between 

the expected and calculated output values across all observations is summarized using the 

mean squared error. After all observations are presented to the network, the weights are 

modified according to a generalized delta rule [24], so that the total error is distributed 

among the various nodes in the network. This process of feeding forward signals and 
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back-propagating the errors is repeated iteratively, with each iteration being called a 

cycle.  

Presenting data to the neural net with input and output data over many cycles is called 

training. Users can then stop the training session and have the neural net software save all 

of the weights and biases to a network file. A network file is then applied to another 

dataset containing only input data and no output data. This process, called testing, allows 

the neural net to estimate output values. 

NN differ from algorithm or statistical based models as they do not require formal 

mathematical specification. Moreover, NN are not highly sensitive to noise in data 

whereas statistical or mathematical algorithms treat noise in data similar to data of high 

quality. Lastly, NN generate information that can be applied to data that it “has not seen 

before.” Thus, there is the potential to develop models that can be “generalized” or 

transferable.  

Neural nets have been used with GIS and remote sensing to model urban changes [20, 

22].  

2.4 Imbalanced Datasets 

Imbalanced training sample means that one class is represented by a large number of 

examples while the other is represented by only a few. Methods for reducing class 

imbalance in the training sample include over-sampling (replicates examples in) the 

minority class, and under-sampling (eliminates examples in) the majority class [2]. 
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When classes are imbalanced, many learning algorithms can suffer from the perspective 

of reduced performance [10]. In binary classification, it is typically the minority 

(positive) class that the practitioner is interested in. Imbalance in the class distribution 

often causes machine learning algorithms to perform poorly on the minority class.  Thus 

sampling techniques can be used to improve the performance of classifiers when one 

class is relatively rare. An efficient learning method has been proposed by Ertekin, 

Huang, Bottou and Giles [7] which selects informative instances from a randomly picked 

small pool of examples rather than making a full search in the entire training set. This 

strategy renders active learning to be applicable to very large datasets without sacrificing 

prediction performance. 

Land use information provides valuable input to local, state and regional land use 

planning. Land transformation models can be developed to help understand what factors 

are important to land use change [22].   

2.5 Softwares (Weka, Rapidminer and Liblinear) 

 

2.5.1 Weka 

Weka (Waikato Environment for Knowledge Analysis), is a software which was 

developed at the University of Waikato. It is a machine learning software written in Java 

that is intended to aid in the application of machine learning techniques to a variety of 

real-world problems.   

The Weka workbench consists of a collection of visualization tools and algorithms for 

data analysis and predictive modelling, together with graphical user interfaces for easy 

access to this functionality. Weka supports several standard data mining tasks, more 
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specifically, data preprocessing, clustering, classification, regression, visualization, and 

feature selection.  

Moreover, Weka provides access to SQL databases using Java Database Connectivity and 

it can process the result returned by a database query. Although it’s main user interface is 

the Explorer, but it can also be accessed from the command line. It also has the 

Experimenter, which allows the systematic comparison of the predictive performance of 

Weka's machine learning algorithms on a collection of datasets. 

Weka’s Explorer interface is composed of several panels that give access to the main 

components of the weak workbench. The Preprocess panel has facilities for importing 

data from a database, and for preprocessing this data using a filtering algorithm. These 

filters can be used to transform the data (e.g., turning numeric attributes into discrete 

ones) and make it possible to delete instances and attributes according to specific criteria.  

The Classify panel enables the user to apply classification and regression algorithms 

(classifiers in Weka) to the resulting dataset, to estimate the accuracy of the resulting 

predictive model, and to visualize erroneous predictions, ROC curves, etc. The Cluster 

panel gives access to the clustering techniques in Weka, e.g., the simple k-means 

algorithm. The Associate panel provides access to association rule learners that identify 

all important interrelationships between attributes in the data. The Select attributes panel 

provides algorithms for identifying the most predictive attributes in a dataset. The 

Visualize panel shows a scatter plot matrix, where individual scatter plots can be selected 

and enlarged, and analyzed further using various selection operators. 
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In some cases considerable manipulation of a database is necessary before any 

information can be processed by Weka. Thus, in order to maintain format independence, 

data is converted to an intermediate representation called ARFF (Attribute Relation File 

Format). ARFF files contain blocks describing relations and their attributes, together with 

all the instances of the relation. They are stored as plain text for ease of manipulation. 

Relations are simply a single word or string naming the concept to be learned. Each 

attribute has a name, a data type (which must be one of enumerated, real or integer) and a 

value range (enumerations for nominal data, intervals for numeric data).  

2.5.2 RapidMiner 

RapidMiner is a software used for machine learning and data mining experiments. It was 

formerly known as YALE (Yet Another Learning Environment). The experiments in 

RapidMiner can be made up of a large number of arbitrarily nestable operators which can 

be described in XML files created with RapidMiner's graphical user interface. 

RapidMiner can be accessed both from the command line and its graphical user interface.  

It is written in the Java programming language and therefore can work on all popular 

operating systems. The buildup contains more than 400 operators for all main machine 

learning procedures, data preprocessing and visualization. Moreover, it also integrates all 

learning schemes and attributes evaluators of the Weka learning environment. Lastly, the 

applications of RapidMiner range from simple data mining tasks to hardcore research. 
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2.5.3 Liblinear 

The train option in Liblinear can be used as follows 

train [options] training_set_file [model_file] 

The options –s1 and –s2 can be used to train the data, which are defined as 

-s1= L2-loss support vector machines (dual) and -s2 = L2-loss support vector machines 

(primal). –s2 takes much lesser time to train the data as compared to –s1. In addition to 

this the option –c defines the cost parameter and -v n defines the n-fold cross validation 

mode. Whereas the predict option can be used in the following way 

predict [options] test_file model_file output_file 

Thus output files can be produced which can be compared to original data files so 

classify the predicted values as desired. 

3 Methodology 
 

The data for Delaware, Mahoning and Medina counties was taken in .txt format and then 

the train option was ran on it using Liblinear with options –s1 and –s2 in addition to –c4 

and –v5 options. Two different datasets of Mahoning counties were used for this. The 

initial text files were broken into sizes of 25000 and 50000 and separate experiments 

were carried out on each of them to get the cross validation accuracies.  

After this the train option was ran again to get .model files. The predict option was then 

used to predict the classification accuracies and the .output files were produced. These 
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output files were read using SPSS and then merged with the original test files, after which 

the frequencies were found using the following SPSS script 

IF (v1=-1 & var00001=-1) final=0. 

IF (v1=-1 & var00001=1) final=1. 

IF (v1=1 & var00001=-1) final=2. 

IF (v1=1 & var00001=1) final=3. 

Here 0 represents the True Negative, 1 represents the False Positive, 2 represents the 

False Negative and 3 represents the True Positive. 

Here final was the column in which results were obtained using the first columns of the 

output and original files (namely v1 and var00001). The frequencies were thus obtained 

from the final columns which have been shown in the results. 

The same method was employed for running Libsvm on the files wherein only –v5 option 

was used to train. The results for cross-validation accuracies, classification and 

frequencies were obtained. 

The data for the four counties from the state of Ohio: Delaware, Holmes, Mahoning and 

Medina contained more than a million instances. Table 1 shows for each county dataset 

how many instances belong to the positive class, how many instances belong to the 

negative class and the ratio. 
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Table 1. Number of Training Instances and Ratios 

Counties # Positive # Negative Ratio 

Delaware 209,765 1,106,749 5.27 

Holmes 90,164 1,129,403 12.52 

Mahoning 353,411 868,423 2.45 

Medina 228,819 987,405 4.31 

All the datasets were imbalanced from a 2.4 ratio for Mahoning county to a 12.5 ratio for 

Holmes county.  

Three methods (LIBSVM, MYJSVM and Decision Trees) were chosen to analyze the 

data for Delaware, Holmes, Mahoning and Medina counties. Initially the data for these 

counties was available in Weka file format which was then changed to SPSS file format.  

MLP was run on the weka files and accuracies, kappa statistics and confusion matrices 

were obtained. MLP has been a popular technique due to its capabilities to perform 

arbitrary mappings and not just classifications. The data was then read in Rapid Miner 

and then two files (.dat and .aml) were produced for each data set.  
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Thereafter Sampling was run on the .aml files for each county and file sizes of 5000, 

10000, 20000, 50000 and 10000 were produced. As it was later realized that file of bigger 

size took too much time and memory, so files of size 5100-5500 were produced.    

But after using this data it was realized that it was not normalized so normalization was 

done. A grid parameter search was performed for the SVM classifier and the values for 

the two parameters C and gamma were obtained. 

Table 2. Accuracies, parameters using .aml files for Delaware County 

Data files Accuracy C Gamma 

Del5000.aml 90.38% 32 0.12 

Del10000.aml 90.58% 8 0.5 

 

The above table shows the values of parameters C and Gamma which were obtained from 

the .aml files produced using Rapid Miner. The results have been shown for only one 

county as the data was normalized later. 
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Table 3. Parameters C and gamma for the Libsvm 

Counties C Gamma 

Delaware 8192 0.12 

Holmes 2048 0.5 

Mahoning 2 32 

Medina 128 0.12 

The above table shows the parameters C a gamma obtained using grid search. 

These datasets had over a million instances and the sampling technique used for 

investigating the data discarded random instances from the majority class until the two 

classes were equally represented. 

As in the case of imbalanced datasets, classification accuracy is not the best metric to 

valuate a classifier so performance metrics like sensitivity and specificity were used. 

Recall or sensitivity gives the accuracy on the positive instances. 

Sensitivity= True Positive / (True Positive + False Negative) 

Specificity is the accuracy on the negative instances. 

Specificity= True Negative / (True Negative + False Positive) 

Additionally Accuracy can be defined as 
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Accuracy= (True Positive + True Negative) / (True Positive + True Negative + False 

Positive + False Negative) 

Both sensitivity and specificity are used to calculate g-means as 

g-means= √(sensitivity*specificity) 

The classifiers SVM and MLP were trained on the 50,000 instances datasets and the 

models obtained were tested using the entire datasets. The results have been shown in 

table 14. 

4 Results 

 

An experimental analysis performed on the large imbalanced GIS extracted datasets has 

been presented in this section. The goal was to find out whether Liblinear works 

efficiently for these datasets and also to compare the performance of Liblinear with that 

of Libsvm. Moreover the experiments were carried with both options –s1 and –s2 in case 

of Liblinear and the time was noted to see the different outputs.  

Additional interest was to see what outputs patterns can be produced for the land cover 

classification. For this values of 0 to 3 were assigned based on correct/ incorrect 

predicted values for corresponding initial values of urban land use.  

Furthermore it was also tested if Liblinear produces the results in much lesser time than 

Libsvm without compromising the accuracy. Using the train and predict options both in 
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Liblinear and Libsvm the comparison was made on cross-validation accuracies and the 

percentage of correctly classified instances. 

Some experiments were also carried out using Weka and Rapid miner, the results of 

which have also been presented. Things like accuracy, kappa statistics, values of 

parameters C and gamma have been calculated using these software. Finally a few results 

for NN have also been presented and compared with the results for SVM. Performance 

measures like accuracy, recall and g-means have also been calculated. 
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Table 4. Cross Validation Accuracies for Liblinear and Libsvm 

Datasets Libsvm Accuracy Time (sec) S2 Accuracy Time (sec) 

Del_25 88.96% 356.21 88.14% 2.62 

Del_50 88.92% 1574.94 87.95% 4.47 

DelTest   85.74% 116.59 

Mah5_25 89.74% 429.24 88.54% 2.27 

Mah5_50 89.71% 1195.42 88.97% 4.46 

Mah5Test   86.75% 117.28 

Mah8_25 85.15% 438.92 83.45% 2.26 

Mah8_50 85.9% 1753.18 83.45% 4.25 

Mah8Test   82.19% 101.80 

Med_25 86.38% 343.44 84.94% 2.70 

Med_50 86.29% 1656.61 84.62% 5.12 

MedTest   83.11% 124.45 

The above table shows the results for cross validation accuracies when the train option 

was run on the datasets using Libsvm and Liblinear respectively.  Although Libsvm has 

slightly better cross validation accuracies than Liblinear but the time utilized by Liblinear 

is much less as compared to Libsvm.   
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Table 5. Accuracies using predict for output files for Liblinear 

Datasets S1 S2 

Del25 88.18% (22047/25000) 88.19% (22049/25000) 

Mah525 88.52% (22131/25000) 88.62% (22155/25000) 

Mah825 83.53% (20883/25000) 83.52% (20881/25000) 

Med25 84.81% (21204/25000) 84.98% (21247/25000) 

Del50 87.97% (43989/50000) 87.99% (43997/50000) 

Mah550 88.99% (44496/50000) 88.97% (44488/50000) 

Mah850 83.47% (41735/50000) 83.47% (41738/50000) 

Med50 84.46% (42234/50000) 84.61% (42307/50000) 

DelTest 88.18% (1161031/1316514) 88.14% (1160470/1316514) 

Mah5Test 88.55% (1081997/1221839) 88.94% (1086822/1221839) 

Mah8Test 83.30% (1017819/1221839) 83.48% (1020108/1221839) 

MedTest 84.63% (1029322/1216224) 84.55% (1028353/1216224) 
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Table 6. Accuracies using predict for output files for LIBSVM 

 Accuracy (Classification) 

Del25 89.04% (22262/25000) 

Mah525 89.86% (22467/25000) 

Mah825 85.32% (21330/25000) 

Med25 86.50% (21627/25000) 

Del50 88.98% (44490/50000) 

Mah550 89.75% (44879/50000) 

Mah850 86.07% (43038/50000) 

Med50 86.36% (43183/50000) 

The above two tables show the number of correctly classified instances predicted out of 

the total instances available during each experiment of Liblinear and Libsvm. It can be 

seen that Libsvm had slightly better predicted accuracies than Liblinear for the available 

datasets. 
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RESULTS FOR LIBLINEAR FILES 

Table 7. Percentages for files of size 25000 

Values Del Mah5 Mah8 Med 

 S1 S2 S1 S2 S1 S2 S1 S2 

TN (0) 81.7 81.7 81.4 81.3 63.3 63.3 79.9 79.8 

FP (1) 2.3 2.3 2.7 2.9 7.7 7.7 1.3 1.4 

FN (2) 9.5 9.5 8.7 8.5 8.7 8.7 13.9 13.6 

TP (3) 6.4 6.4 7.1 7.3 20.2 20.2 5.0 5.2 

 

Table 8. Percentages for files of size 50000 

Values Del Mah5 Mah8 Med 

 S1 S2 S1 S2 S1 S2 S1 S2 

TN (0) 81.7 81.8 81.0 81.1 63.3 63.3 80.0 79.9 

FP (1) 2.3 2.3 3.2 3.0 7.8 7.8 1.2 1.3 

FN (2) 9.7 9.7 7.8 8.0 8.7 8.7 14.3 14.1 

TP (3) 6.3 6.2 8.0 7.8 20.2 20.2 4.5 4.7 
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Table 9. Percentages for files of original size 

Values Del Mah5 Mah8 Med 

 S1 S2 S1 S2 S1 S2 S1 S2 

TN (0) 82.1 81.8 81.7 81.2 63.0 63.3 79.9 79.9 

FP (1) 2.0 2.3 2.4 3.0 8.1 7.8 1.3 1.3 

FN (2) 9.8 9.6 9.0 8.1 8.6 8.7 14.1 14.2 

TP (3) 6.1 6.4 6.8 7.7 20.3 20.2 4.7 4.6 

RESULTS FOR LIBSVM FILES 

Table 10. Percentages for files of size 25000 

Values Del Mah5 Mah8 Med 

TN (0) 81.8 80.1 66.0 78.9 

FP (1) 2.3 4.1 5.0 2.3 

FN (2) 8.7 6.0 9.7 11.2 

TP (3) 7.3 9.8 19.3 7.7 
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Table 11. Percentages for files of size 50000 

Values Del Mah5 Mah8 Med 

TN (0) 81.7 80.0 66.3 78.7 

FP (1) 2.3 4.2 4.8 2.5 

FN (2) 8.7 6.1 9.2 11.1 

TP (3) 7.3 9.7 19.8 7.7 

 
The above sets of tables show the results when the predicted values from Liblinear and 

Libsvm output were compared to the actual values supplied by the land use. A value of 0 

was assigned to those areas where there was neither a predicted nor actual urban land use; 

a value of 1 was assigned to those areas where the model predicted an urban land use but 

there was actually a non-urban land use; a value of 2 was assigned to those areas where a 

non-urban land use was predicted, but the land was actually urban; and a value of 3 was 

assigned to those places where it was both predicted and actual urban land use. 
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Table 12. Accuracy and Kappa Statistic using Weka  

Counties Accuracy Kappa Statistic Number of Instances 

Delaware 90.02 0.57 50636 

Holmes 93.82 0.32 50816 

Mahoning 85.80 0.64 50910 

Medina 87.76 0.53 50676 

 

For the above table the training and testing was done on the same files for each county 

using Weka. The accuracies are best for Delaware County while they are no so good for 

Mahoning County. 

Table 13. Classification Performances for NN and SVM 

 Mahoning Delaware Medina Holmes 

 NN SVM NN SVM NN SVM NN SVM 

TN 65.2 67.5  81.99 78.3 78.81 92.2 92.5 

FP 5.85 3.58  2.08 2.93 2.37 0.40 0.06 

FN 8.43 8.55  6.80 9.53 9.95 5.78 7.08 

TP 20.5 20.38  9.14 9.29 8.87 1.60 0.31 

From the above table the accuracies and g-means can be calculated. 
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Table 14. Classification Performances for NN and SVM 

  Delaware Holmes Mahoning Medina 

SVM 91.11 92.86 87.87 87.67 Accuracy 

MLP 80.36 93.8 85.72 87.53 

SVM 57.35 4.19 70.44 47.13 Recall 

MLP 18.86 21.68 70.85 49.36 

SVM 74.78 20.47 81.79 67.64 G-means 

MLP 40.02 46.46 80.63 68.97 

 

The above table shows the results for each performance metric. It can be seen from the 

results obtained above that even if the SVM has higher accuracy MLP has a higher recall. 

Thus it’s a better classification of the positive instances for three of the datasets. 

 
Figure 1. Recall for Medina County Dataset  
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Figure 2. Recall for Mahoning County Dataset  

 

The above figures show that both under-sampling and Wilson’s editing sampling have a 

great influence on the classification performance of the SVM learner. As accuracy is not 

relevant in the case of imbalanced datasets we looked at recall and g-means. The 

Wilson’s editing worked only slightly better than the equal under-sampling, but required 

extensive preprocessing. 

5 Conclusion 
 

This study has shown the effectiveness of using SVMs to predict land use which can be 

applied in geographic contexts with GIS. An experimental analysis on large imbalanced 

GIS extracted datasets has been presented here. SVMs have proved to be an effective tool 

for the prediction of urban areas as they deal well with large, highly non-linear datasets. 

Coupling, SVM prediction and classification capabilities with GIS provides a resource 

for determining where, spatially, over and under predictions of urbanization are occurring 

and allows for new modifications to be made to the model.  
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It can bee seen from the results that although Libsvm gives slightly better results than 

Liblinear but Liblinear takes much less time than Libsvm without compromising the 

performance.  The accuracy of Liblinear is comparable to that of Libsvm and the 

difference is not too much in terms of accuracy. Thus, one may like to use Liblinear to 

save time without compromising the performance. 
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