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ABSTRACT

In the early 1900s, Frobenius conjectured if a group G admits a fixed-point-free

automorphism φ, then G must be solvable. During the next half-century, mathe-

maticians would struggle to find a completely group theoretic proof of Frobenius’

Conjecture. Between 1960 and 1980, progress was made on the Conjecture only by

assuming conditions on the order of φ.

In 1959, Thompson proved, for his dissertation, the case assuming the automor-

phism had prime order and resulted in a stronger condition than solvable [Tho59];

Hernstein and Gorenstein proved the conjecture with an automorphism of order 4

[DG61]; and in 1972, Ralston proved a group admitting a fixed-point-free automor-

phism with order pq is solvable, where p and q are primes. [Ral72] It was not until the

1980s, with the power of the Classification of Finite Simple Groups, was Frobenius’

Conjecture finally proven; however, the proof involved character theory.

In this paper, we consider John Thompson’s case of the Frobenius Conjecture:

Theorem ([Tho59]). Let G be a group admitting a fixed-point-free automorphism of

prime order. Then G is nilpotent.

Our goal is to lay a complete framework of the necessary concepts and theorems

leading up to, and including, the proof of Thompson’s theorem.
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1 Preliminaries

In this paper, we follow Gorenstein’s notation indicating group actions and function

images by suppressed left exponential notation: using xg to denote φ(g)(x) and Gφ

to denote φ(G). [Gor07]

Let G be a finite group, H be a subgroup of G, and a, b ∈ G. We will use 1

to represent the identity element of a group. If a is conjugated by b, we shall write

ab = b−1ab. If x, y ∈ H are conjugate in G, we shall say x and y are fused in G and

write x ∼G y. The set of all primes dividing the order of G will be given by π(G). If

b ∈ G has order pn for some n ∈ N ∪ {0}, where p is a prime, we call b a p-element

and any element with order complementary to p is called a p′-element. If π is a set of

primes and π(G) ⊆ π, then G is called a π-group. On the other hand, if π(G) � π,

then G is a π′-group, where π′ represents all primes not in π. We will denote N∪ {0}
by N0.

All groups are finite. We assume the reader is familiar with the content of a first

year course in abstract algebra, but we will include some relevant results. In the

following section, we provide elementary definitions and theorems used repeatedly

throughout the paper.

1.1 Elementary Group Theory

Theorem 1.1 (The First Isomorphism Theorem for Groups). Let G1 and G2 be

groups, and suppose φ : G1 → G2 is a homomorphism. Then

G1

Ker φ
∼= Gφ

1 .

Theorem 1.2 (The Second Isomorphism Theorem for Groups). Let G be a group,

H � G, and N � G. Then

HN

N
∼= H

H ∩N
.
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Theorem 1.3 (The Third Isomorphism Theorem for Groups). Let G be a group,

N � G, and N � H � G. Then

G/N

H/N
∼= G

H
.

Theorem 1.4 (Preimage and Image Theorem). Let G be a group, N � G,H � G,

and φ : G → G/N be defined by

gφ = gH

for all g ∈ G. Then

(i) Hφ = HN/N.

(ii) (HN/N)φ
−1

= HN.

(iii) If L � G/N , then L = K/N , where N � K � G.

Lemma 1.1. Let G be a group, L � H � G, and K � G. Then (H∩K)L = H∩KL.

Lemma 1.2. Let G be a group, N � G, A � G, and B � G. Then

AN

N
∩ BN

N
=

AN ∩B

N
=

A ∩BN

N
.

Theorem (Lagrange). Let G be a group and H � G. Then |H| divides |G| and

[G : H] =
|G|
|H|

gives the number of left (or right) cosets of H in G.

Theorem 1.5 (Cauchy). Let G be a group and p ∈ π(G). If G is abelian, then there

exists a nontrivial x ∈ G such that xp = 1.

Definition 1.1. Let G be a group and a, b ∈ G. The commutator of a and b is

[a, b] = a−1ab = (b−1)ab.

The commutator subgroup of G is

G′ = [G,G] = 〈[a, b] : a, b ∈ G〉.
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Definition 1.2. Let G be a group and H � G. The commutator of H and G is

[G,H] = 〈[g, h] : g ∈ G and h ∈ H〉.

Lemma 1.3. Let G be a group, H � G, K � G, and N � G. Then

[H,K]H

H
=

[
HN

N
,
KN

N

]
.

Lemma 1.4. Let G be a group, H � G, and N � G. Then HN/N � Z(G/N) if

and only if [G,H] � N.

Lemma 1.5. Let A and B be groups. Then Z(A× B) = Z(A)×Z(B).

Lemma 1.6. Let A and C be groups such that B � A and D � C. Then

B ×D � A× C,

and

A× C

B ×D
∼= A

B
× C

D
.

Theorem (Fundamental Theorem of Finite Abelian Groups). Let G be a finite abelian

group. Then, for some n ∈ N,

G ∼= Zp
r1
1
× Zp

r2
2
× · · · × Zprnn ,

where pi is a prime and ri ∈ N0 for 1 ≤ i ≤ n.

Lemma 1.7. Let G be a group and {Hi}ni=1 be a collection of subgroups of G. If

(i) G =
∏n

i=1 Hi.

(ii) Hi ∩
∏

j �=i Hj = 1 for all 1 ≤ i ≤ n.

(iii) Hi � G for all 1 ≤ i ≤ n.

Then G ∼= ⊗n
i=1 Hi.
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1.2 Group Actions and Sylow’s Theorems

Definition 1.3. Let G be a group and S be a non-empty set. We say G acts on S

if there exists a homomorphism φ : G → Sym(S), where

Sym(S) = {φ : S → S : φ is a bijection}

is the group of all permutations of S under composition.

Definition 1.4. Let G be a group, S be a set, a ∈ S, and suppose that G acts on S.

The stabilizer in G of a is

Ga = {g ∈ G : ag = a},

and Ga � G.

Definition 1.5. Let G be a group, S be a set, and a ∈ S. The orbit of G on S

containing a is

aG = {ag : g ∈ G},

and aG ⊆ S.

Theorem 1.6 (Orbit-Stabilizer Relation). Let G be a group, S be a set, and a ∈ S.

If G acts on S, then

|aG| = |G|
|Ga| = [G : Ga].

Proof.

Let T = {Gag : g ∈ G} and define φ : aG → T by (ag)φ = Gag for all ag ∈ aG. To

show that φ is well-defined, let ag1 , ag2 ∈ aG such that ag1 = ag2 . Then ag1g
−1
2 = a and

so g1g
−1
2 ∈ Ga. It follows that Gag1 = Gag2, so (ag1)φ = (ag2)φ and φ is well-defined.

If (ag1)φ = (ag2)φ, then Gag1 = Gag2, which implies g1g
−1
2 ∈ Ga. Thus a

g1g
−1
2 = a, or

equivalently, ag1 = ag2 . Hence φ is injective. To show φ is surjective, let Gax ∈ T.

Since x ∈ G, we have ax ∈ aG and (ax)φ = Gax. Therefore, φ is a bijection and

|aG| = |(aG)φ| = |T | = [G : Ga].
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Definition 1.6. A group G acts transitively on a set S if there exists a unique orbit

such that S = aG for all a ∈ S. That is, for all c, d ∈ S, there exists g ∈ G such that

cg = d.

Theorem 1.7. Let G be a group, S be a set such that G acts on S, and suppose

H � G. If H acts transitively on S, then

G = GaH

for all a ∈ S.

Proof.

Let a ∈ S. By hypothesis, S = aH and GaH ⊆ G. Let g ∈ G. Since H acts

transitively on S, there exists h ∈ H such that ag = ah, hence agh
−1

= a. It follows

that gh−1 ∈ Ga and g ∈ GaH. Therefore, G = GaH for all a ∈ S.

Theorem 1.8 (Class Equation). Let G be a group. Then

|G| =
∑

a/∈Z(G)

[G : CG(a)] + |Z(G)|,

and the above is called the class equation of G.

Definition 1.7. Let G be a group, p be a prime, and n ∈ N0 be maximal such that

pn divides |G|. Then
(i) The pth-part of G is |G|p = pn.

(ii) A subgroup H of G is called a Sylow p-subgroup of G if |H| = |G|p.
(iii) The set of all Sylow p-subgroups of G is given by Sylp(G) (or SG

p ).

Theorem 1.9 (Sylow). Let G be a group, p be a prime, and H be a p-subgroup of G.

Then

(i) Sylp(G) �= ∅.
(ii) There exists P ∈ Sylp(G) such that H � P .

(iii) G acts transitively on Sylp(G) by conjugation.

(iv) Let np(G) = |Sylp(G)|. Then np(G) divides |G| and np(G) ≡ 1 (mod p).
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Theorem 1.10 (Fixed Point Theorem for Groups). Let G be a p-group and S be a

set such that p � |S|. If G acts on S, then there exists a ∈ S such that Ga = G.

Theorem 1.11 (Frattini Argument). Let G be a group, H � G, and P ∈ Sylp(H).

Then G = NG(P )H.

Proof.

Let g ∈ G. Since P � H, we have P g � Hg = H and in addition,

|P g| = |P | = |H|p. Hence P g ∈ Sylp(H). By Sylow, there exists h ∈ H such that

P = P gh. Consequently, gh ∈ NG(P ), so g ∈ NG(P )H. Thus G � NG(P )H and it

follows that G = NG(P )H.

Lemma 1.8. Let G be a group, P ∈ Sylp(G), and N � G. Then

(i) PN/N ∈ Sylp(G/N).

(ii) P ∩N ∈ Sylp(N).

Proof.

For (i), by Lagrange∣∣∣∣PN

N

∣∣∣∣ = |PN |
|N | =

|P ||N |
|P ∩N ||N | =

|P |
|P ∩N | ,

and so PN/N is a p-group because P ∈ Sylp(G). Furthermore,

|G/N |
|PN/N | =

|G|
|PN | =

|G|
|P | ·

|P |
|PN | =

|G/P |
|PN/P |

and so [G/N : PN/N ] is a p′-number. Thus |PN/N | = |G/N |p and by Sylow,

PN/N ∈ Sylp(G/N).

Clearly, P ∩N is a p-group. Now

|N |
|P ∩N | =

|PN |
|P | ,

which implies [N : P ∩N ] is a p′-number. Therefore, P ∩N ∈ Sylp(N).
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Theorem 1.12 (General Frattini). Let G be a group, P ∈ Sylp(G), and N � G.

Then G = NG(P ∩N)N.

Proof.

By Lemma 1.8, we have P ∩ N ∈ Sylp(N). The result then follows from the

Frattini Argument.

Lemma 1.9. Let G be a nontrivial p-group. Then Z(G) �= 1.

Proof.

Suppose Z(G) = 1. Now the class equation of G becomes

|G| =
∑

a/∈Z(G)

[G : CG(a)] + 1.

If p divides [G : CG(a)] for each a /∈ Z(G), then p divides
∑

a/∈Z(G)[G : CG(a)]. Since G

is a p-group, we have p divides |G|−∑
a/∈Z(G)[G : CG(a)] = 1. This is a contradiction,

so there exists a∗ /∈ Z(G) such that p � [G : CG(a
∗)]. But [G : CG(a

∗)] must be a

p-number. Consequently, [G : CG(a
∗)] = p0 = 1. Thus G = CG(a

∗) and a∗ ∈ Z(G),

which is a contradiction. Therefore, Z(G) �= 1.

Definition 1.8. Let G be a group and φ : G → G. If φ is a bijective homomorphism,

then φ is called an automorphism of G. The set of automorphisms of G is Aut(G)

and Aut(G) is a group under the operation of composition.

Definition 1.9. Let G and H be groups. Then G acts on H if there exists a homo-

morphism φ : G → Aut(H). Also, the commutator of h and g is given by

[h, g] = h−1hg.

The commutator of G and H is given by

[H,G] = 〈[h, g] : h ∈ H and g ∈ G〉,

and [H,G] � H.

7



Definition 1.10. Let G and H be groups such that G acts on H. The centralizer

of G on H is

CH(G) = {h ∈ H : hg = h for all g ∈ G},

and CH(G) � H.

Lemma 1.10. Let G and H be p-groups. If G acts on H, then CH(G) �= 1.

Proof.

Since G acts on H, we have G acts on S = H \ {1} ⊂ H. Now G is a p-group and

p � |S|. By the Fixed Point Theorem for Groups (1.10), there exists a nontrivial a ∈ S

such that Ga = G. Therefore, a ∈ CH(G) and CH(G) �= 1.

1.3 Characteristic Subgroups

Definition 1.11. Let G be a group and H � G. Then H is a characteristic sub-

group of G if Hφ � H for all φ ∈ Aut(G), and we write H char G.

Lemma 1.11. Let G be a group. Then

(i) Z(G) char G.

(ii) G′ char G.

Proof.

Let φ ∈ Aut(G). For (i), let g ∈ G and z ∈ Z(G). Since φ is surjective, there

exists g1 ∈ G such that gφ1 = g. Now we have

gzφ = gφ1 z
φ = (g1z)

φ = (zg1)
φ = zφgφ1 = zφg,

so zφ ∈ Z(G). Therefore, Z(G) char G. For (ii), let
∏n

i=1[ai, bi] ∈ G′. We then have(
n∏

i=1

[ai, bi]

)φ

=
n∏

i=1

[aφi , b
φ
i ],

where aφi , b
φ
i ∈ G. Therefore, G′ char G.
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Lemma 1.12. Let G be a group.

(i) If H char G, then Hφ = H for all φ ∈ Aut(G).

(ii) If H char G, then H � G.

(iii) If K char H � G, then K � G.

(iv) If P ∈ Sylp(G) and P � G, then P char G.

Proof.

For (i), let φ ∈ Aut(G). By hypothesis, Hφ � H, but since φ is a bijection,

|Hφ| = |H|. It follows that Hφ = H. For (ii), let g ∈ G and φg ∈ Aut(G) denote

the conjugation automorphism. Since H char G, we have Hφg = H, but Hφg = Hg.

Therefore, H � G. For (iii), let g ∈ G. Since H � G, we have Hφg = H, so

φg ∈ Aut(H). Now Kφg = K since K char H, hence K � G. For (iv), φ is a bijection

and so |P φ| = |P |. Thus P φ ∈ Sylp(G). By Sylow, there exists g ∈ G such that

P g = P φ, but P � G. Therefore, P = P φ and P char G.

Definition 1.12. A group G is characteristically simple if {1} and G are its only

characteristic subgroups.

Theorem 1.13. Let G be a characteristically simple group. Then G ∼= ⊗n
i=1 Gi,

where the Gi’s are simple isomorphic groups.

Proof.

Let G1 be a non-trivial normal subgroup of G such that |G1| is minimal, and

H =
∏s

i=1 Gi, where Gi � G,Gi
∼= G1, and Gi ∩

∏
j �=i Gj = 1 for 1 ≤ i ≤ s

with s chosen maximal. We claim H char G. Toward a proof, suppose H is not a

characteristic subgroup of G. Now there exists φ ∈ Aut(G) and an 1 ≤ i ≤ s such

that Gφ
i � H. It follows from H � G and Gφ

i � G that H ∩ Gφ
i � G. Moreover,

H ∩ Gφ
i < Gφ

i . Thus |H ∩ Gφ
i | < |Gφ

i | = |Gi| = |G1|. By the minimality of |G1|, we
have H ∩Gφ

i = 1, so H < Gφ
i

∏s
j=1 Gj. However, this contradicts the maximality

of s. Therefore, H char G.

9



Since H � G is nontrivial and G is characteristically simple, we have

G = H =
∏s

i=1 Gi. By Lemma 1.7, G ∼= ⊗s
i=1 Gi and the Gi’s are isomorphic by

construction. Suppose there exist 1 ≤ i < j ≤ s such that x ∈ Gi and y ∈ Gj. Then

[x, y] ∈ Gi ∩Gj � Gi ∩
∏
j �=i

Gj = 1,

and xy = yx. Thus Gi � CG(Gj) for all i �= j. Let 1 ≤ i ≤ s and suppose N � Gi.

It follows from the above that N � G and |N | < |Gi| = |G1|. By the minimality of

|G1|, either N = 1 or N = Gi, hence Gi is simple. Therefore, G ∼= ⊗s
i=1 Gi, where

the Gi’s are simple isomorphic groups.

Definition 1.13. Let p be a prime. A group G is an elementary abelian p-group

if

G ∼= Zp × Zp × · · · × Zp.

Definition 1.14. Let G be a group and H � G. If H �= 1 and whenever there exists

K � G such that K � H, either K = 1 or K = H, then H is a minimal normal

subgroup of G.

Theorem 1.14. Let G be a group and H be a minimal normal subgroup of G. Then

either there exist simple non-abelian isomorphic subgroups {Hi}ni=1 such that

H ∼= ⊗n
i=1 Hi, or there exists a prime p such that H is an elementary abelian p-group.

Proof.

Suppose K char H. By Lemma 1.12(iii), K � G, so K = 1 or K = H by

the minimality of H. Thus H is characteristically simple and by Theorem 1.13,

H ∼= ⊗n
i=1 Hi, where the Hi’s are simple isomorphic groups. If the Hi’s are non-

abelian, then we are done. Without loss of generality, assume the Hi’s are abelian.

Now the only subgroups of Hi are {1} and Hi. By Cauchy’s Theorem, there exists a

prime p such that Hi is a p-group and Hi
∼= Zp. Therefore, H ∼= Zp × · · · × Zp.

10



1.4 Nilpotent Groups

Definition 1.15. Let G be a group. Define

Z0(G) = 1, Z1(G) = Z(G),
Z2(G)

Z1(G)
= Z

(
G

Z1(G)

)
, . . .

and inductively,

Zn(G)

Zn−1(G)
= Z

(
G

Zn−1(G)

)
,

where Zi(G) represents the preimage of Z(G/Zi−1(G)). The upper central series

of G is

1 = Z0(G) � Z1(G) � Z2(G) � · · · ,

where Zi(G) � G for all i ∈ N0.

Definition 1.16. A group G is nilpotent if there exists n ∈ N0 such that Zn(G) = G.

Lemma 1.13. Let G be an abelian group. Then G is nilpotent.

Proof.

Since G is abelian, G = Z(G) = Z1(G). Therefore, G is nilpotent.

Lemma 1.14. Let G be a nilpotent group, H � G, and N � G. Then

(i) H is nilpotent.

(ii) G/N is nilpotent.

Proof.

For (i), we claim Zi(G) ∩ H � Zi(H) for all i ∈ N0 and proceed by induction

on i. Assume Zi(G) ∩ H � Zi(H) and show Zi+1(G) ∩ H � Zi+1(H). Toward this

result, let G = G/Zi(G) and Zi+1(G) ∩H denote the image of Zi+1(G) ∩ H in G.

Now Zi+1(G) ∩H � Zi+1(G), so Zi+1(G) ∩H � Z(G). It follows that

[H,Zi+1(G) ∩H] = 1, which implies [HZi(G), (Zi+1(G) ∩H)Zi(G)] � Zi(G). Since

[HZi(G), (Zi+1(G) ∩H)Zi(G)] = [H,Zi+1(G) ∩H]Zi(G),

11



we have [H,Zi+1(G) ∩H] � Zi(G). Hence

[H,Zi+1(G) ∩H] = [H,Zi+1(G) ∩H] ∩H � Zi(G) ∩H � Zi(H),

and

1 =
[H,Zi+1(G) ∩H]Zi(H)

Zi(H)
=

[
H

Zi(H)
,
(Zi+1(G) ∩H)Zi(H)

Zi(H)

]
.

This implies (Zi+1(G) ∩H)Zi(H)/Zi(H) � Z(H/Zi(H)) = Zi+1(H)/Zi(H), so

Zi+1(G) ∩H � Zi+1(H). Thus the claim holds by induction.

Since G is nilpotent, there exists n ∈ N such that Zn(G) = G. By the claim,

Zn(H) � H ∩ Zn(G) = H ∩G = H and so Zn(H) = H. Therefore, H is nilpotent.

For (ii), let G = G/N and Zi(G) denote the image of Zi(G) in G. Again using

induction, we show Zi(G) � Zi(G) for all i ∈ N0. Assume Zi(G) � Zi(G). Since

[G,Zi+1(G)] � Zi(G), we have [G,Zi+1(G)] = [G,Zi+1(G)] � Zi(G) � Zi(G). Thus

1 =
[G,Zi+1(G)]Zi(G)

Zi(G)
=

[
G

Zi(G)
,
Zi+1(G)Zi(G)

Zi(G)

]
,

which implies

Zi+1(G)Zi(G)

Zi(G)
� Z

(
G

Zi(G)

)
=

Zi+1(G)

Zi(G)
.

Therefore, Zi+1(G) � Zi+1(G) and the claim holds by induction.

Since G is nilpotent, there exists n ∈ N such that Zn(G) = G. By the claim,

Zn(G) � Zn(G), but then G � Zn(G). Therefore, Zn(G) = G and G is nilpotent.

Lemma 1.15. Let G be a nilpotent group. Then Z(G) �= 1.

Proof.

Suppose Z(G) = 1. By hypothesis, there exists n ∈ N0 such that Zn(G) = G. We

claim Zi(G) = 1 for all i ∈ N0 and proceed by induction. Assume Zi(G) = 1. Now

Zi+1(G) ∼= Zi+1(G)

Zi(G)
= Z

(
G

Zi(G)

)
∼= Z(G) = 1,

and the claim holds by induction. But this implies Zn(G) = 1, which is a contradic-

tion. Therefore, Z(G) �= 1.
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Lemma 1.16. Let G be a nilpotent group and H < G. Then H < NG(H).

Proof.

Since G is nilpotent, there exists n ∈ N0 such that Zn(G) = G. NowH < G implies

there exists a maximal 1 ≤ i < n such that Zi(G) � H but Zi+1(G) � H. By Lemma

1.4, [G,Zi+1(G)] � Zi(G) � H, so [H,Zi+1(G)] � H. Thus Zi+1(G) � NG(H), but

Zi+1(G) � H. Therefore, H < NG(H).

Theorem 1.15. If G is a p-group, then G is nilpotent.

Proof.

Toward a contradiction, suppose G is not nilpotent. By hypothesis, Z(G) �= 1.

Now we claim Zi(G) < Zi+1(G) for all i ∈ N0. Proceeding by induction, assume

Zi(G) < Zi+1(G). Since G is not nilpotent, Zi+1(G) < G. Let G = G/Zi+1(G). Then

G is a p-group and 1 �= Z(G) = Zi+2(G). It follows that Zi+1(G) < Zi+2(G) and the

claim holds by induction.

From the claim, we have the series 1 = Z0(G) < Z1(G) < Z2(G) < · · · , which
contradicts the finite order of G. Therefore, G is nilpotent.

Lemma 1.17. Let G be a group and P be a p-subgroup of G. If P ∈ Sylp(NG(P )),

then P ∈ Sylp(G).

Proof.

To the contrary, suppose P ∈ Sylp(NG(P )), but P /∈ Sylp(G). By Sylow, there

exists Q ∈ Sylp(G) such that P < Q. Since Q is a p-group, we have Q is nilpotent by

Theorem 1.15. Moreover, P < NQ(P ) by Lemma 1.16. Now P < NQ(P ) � NG(P ),

so P ∈ Sylp(NQ(P )). But NQ(P ) � Q is a p-subgroup, hence P = NQ(P ), which is a

contradiction. Therefore, P ∈ Sylp(G).
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Lemma 1.18. Let G be a nilpotent group and H be a nontrivial normal subgroup of

G. Then H ∩ Z(G) �= 1.

Proof.

Since G is nilpotent, there exists n ∈ N0 such that Zn(G) = G. Define the series

H0 = H,H1 = [H0, G], H2 = [H1, G], . . ., and inductively, Hn = [Hn−1, G]. We claim

Hi � Zn−i(G) for all i ∈ N0. Using induction on i, assume Hi � Zn−i(G) and show

Hi+1 � Zn−i−1(G). Now Hi+1 = [Hi, G] � [Zn−i(G), G] � Zn−i−1(G), and so the

claim holds by induction.

It follows from the claim that Hn � Zn−n(G) = Z0(G) = 1. Let m ∈ N0 be

minimal with respect to Hm = 1. Then 1 = Hm = [Hm−1, G] and Hm−1 � Z(G).

Since H � G, we know Hm−1 � H and by the minimality of m, Hm−1 �= 1. Therefore,

1 �= Hm−1 � H ∩ Z(G).

Lemma 1.19. Let G be a group and H � G such that H � Zi(G) for all i ∈ N.

Then Zi(G)/H = Zi(G/H) for all i ∈ N0.

Proof.

Let G = G/H and use induction on i to show Zi(G) � Zi(G). Assume

Zi(G) � Zi(G). By Lemma 1.4, we have [G,Zi+1(G)] � Zi(G) and consequently,

[G,Zi+1(G)] = [G,Zi+1(G)] � Zi(G) � Zi(G). By the same reasoning,

Zi+1(G)/Zi(G) � Z(G/Zi(G)) = Zi+1(G)/Zi(G), so Zi+1(G) � Zi+1(G). Thus the

claim holds by induction.

Again proceeding by induction, we show Zi(G) � Zi(G) for all i ∈ N0. Assume

Zi(G) � Zi(G), it follows, [G,Zi+1(G)] � Zi(G) � Zi(G). By Lemma 1.4 and the

Third Isomorphism Theorem,

Zi+1(G)Zi(G)

Zi(G)
� Z

(
G

Zi(G)

)
∼= Z

(
G

Zi(G)

)
=

Zi+1(G)

Zi(G)
∼= Zi+1(G)

Zi(G)
.

Thus Zi+1(G) � Zi+1(G)Zi(G) � Zi+1(G) and the claim holds by induction. There-

fore, Zi(G) = Zi(G) for all i ∈ N0.
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Lemma 1.20. Let G be a group, H � G,K � G, and suppose H and K are nilpotent.

Then HK is nilpotent.

Proof.

Use induction on |G|. By hypothesis, HK is a group and HK � G. If HK < G,

then H � HK and K � HK. Moreover, H and K are still nilpotent. By induction,

HK is nilpotent. Without loss of generality, assume G = HK. Since K is nilpotent,

we have Z(K) �= 1 by Lemma 1.15. Let N = [H,Z(K)].

If N = 1, then Z(K) � CG(HK) = CG(G) = Z(G) � G. Thus Z(G) �= 1 and

[G : Z(G)] < |G|. Let G = G/Z(G). Now H � G and K � G. By the Second

Isomorphism Theorem and Lemma 1.14, we have H ∼= H/H ∩Z(G) is nilpotent and

K ∼= K/K ∩ Z(G) is nilpotent. Thus by induction, HK = HK = G is nilpotent.

Then there exists n ∈ N such that Zn(G) = G. By Lemma 1.19, Zn(G) = Zn(G), so

HK = G = Zn(G) = Zn(HK). Therefore, HK is nilpotent.

Suppose N �= 1. Since Z(K) charK � G, we have Z(K) � G by Lemma 1.12(iii).

Also, Z(K) � G = NG(H) because H � G. Hence 1 �= N = [H,Z(K)] � H. By

Lemma 1.18,

1 �= N ∩ Z(H) � Z(K) ∩ Z(H) � CG(HK) = CG(G) = Z(G),

thus Z(G) �= 1. Following the same argument as in the previous case, we have HK is

nilpotent.

Lemma 1.21. Let G1 and G2 be nilpotent groups. Then G1 ×G2 is nilpotent.

Proof.

Since G1 and G2 are nilpotent, there exist k, l ∈ N0 such that Zk(G1) = G1 and

Zl(G2) = G2. Let n = max{k, l}. Then Zn(G1) = G1 and Zn(G2) = G2.

Claim: Zi(G1 ×G2) = Zi(G1)× Zi(G2) for all i ∈ N0.

Use induction on i. If i = 0, then Z0(G1×G2) = (1, 1) = {1}×{1} = Z0(G1)×Z0(G2).

15



Assume Zi(G1 ×G2) = Zi(G1)× Zi(G2). Now by Lemma 1.5 and Lemma 1.6,

Zi+1(G1 ×G2)

Zi(G1 ×G2)
= Z

(
G1 ×G2

Zi(G1 ×G2)

)
= Z

(
G1 ×G2

Zi(G1)× Zi(G2)

)
∼= Z

(
G1

Zi(G1)
× G2

Zi(G2)

)
= Z

(
G1

Zi(G1)

)
×Z

(
G2

Zi(G2)

)
=

Zi+1(G1)

Zi(G1)
× Zi+1(G2)

Zi(G2)
∼= Zi+1(G1)× Zi+1(G2)

Zi(G1)× Zi(G2)
.

Thus Zi+1(G1 ×G2) = Zi+1(G1)× Zi+1(G2) and the claim holds by induction.

From the claim, Zn(G1 ×G2) = Zn(G1)×Zn(G2) = G1 ×G2. Therefore, G1 ×G2

is nilpotent.

Definition 1.17. Let G be a group and H � G. If H < G and whenever there exists

K � G such that H � K, either K = H or K = G, then H is a maximal subgroup

of G.

Theorem 1.16. Let G be a nilpotent group and H be a maximal subgroup of G. Then

H � G.

Proof.

By hypothesis, H < G. It follows from Lemma 1.16 that H < NG(H) � G. Thus

G = NG(H) by the maximality of H. Therefore, H � G.

Theorem 1.17. Let G be a nilpotent group. Then G ∼= ⊗
P∈SG

p
P with p ∈ π(G).

Proof.

Let P ∈ Sylp(G). If P � G, then NG(P ) < G, which implies there exists a

maximal subgroup M of G such that NG(P ) � M. By Theorem 1.16, M � G and

since P < M , we have P ∈ Sylp(M). Now G = NG(P )M = M by the Frattini

Argument, but this contradicts M as a maximal subgroup of G. Thus P � G and∏
P∈SG

p
P � G, where p ∈ π(G). Moreover, for all Q ∈ Sylq(G) with q �= p, we have

P ∩Q = 1, which implies ∣∣ ∏
P∈SG

p

P
∣∣ = ∏

P∈SG
p

|P | = |G|.
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Hence G =
∏

P∈SG
p
P. In addition,

P ∩
∏

Q∈SG
q

Q = 1

for all q ∈ π(G) with p �= q. By Lemma 1.7, G ∼= ⊗
P∈SG

p
P , where p ∈ π(G).

Definition 1.18. Let G be a group. Define K1(G) = G,K2(G) = [K1(G), G] = G′,

K3(G) = [K2(G), G], . . . , and inductively, Kn(G) = [Kn−1(G), G]. The lower cen-

tral series of G is

G = K1(G) � K2(G) � K3(G) � · · · .

Theorem 1.18. Let G be a group. Then G is nilpotent if and only if there exists

n ∈ N such that Kn(G) = 1.

Proof.

Suppose G is nilpotent. Then there exists n ∈ N0 such that Zn(G) = G.

Claim: Ki(G) � Zn−i+1(G) for all 1 ≤ i ≤ n+ 1.

Use induction on i. If i = 1, then K1(G) = G � G = Zn(G) = Zn−1+1(G). Assume

Ki(G) � Zn−i+1(G) and show Ki+1(G) � Zn−i(G). By Lemma 1.4,

Ki+1(G) = [Ki(G), G] � [Zn−i+1(G), G] � Zn−i(G),

and the claim holds by induction. Therefore, Kn+1(G) � Zn−(n+1)+1(G) = Z0(G) = 1

and Kn+1(G) = 1.

Conversely, suppose there exists n ∈ N such that Kn(G) = 1.

Claim: Kn−i(G) � Zi(G) for all 0 ≤ i ≤ n− 1.

Use induction on i. If i = 0, then Kn−0(G) = Kn(G) = {1} � {1} = Z0(G). Assume

Kn−i(G) � Zi(G). Since Zi(G) � G, we have

[Kn−i−1(G)Zi(G), G] = [Kn−i−1(G), G]Zi(G) � Kn−i(G)Zi(G) � Zi(G).
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By Lemma 1.4,

Kn−i−1(G)Zi(G)

Zi(G)
� Z

(
G

Zi(G)

)
=

Zi+1(G)

Zi(G)
,

and so Kn−i−1(G) � Kn−i−1(G)Zi(G) � Zi+1(G). Thus the claim holds by induction.

Now Zn−1(G) � Kn−(n−1)(G) = K1(G) = G, but Zn−1(G) � G. Therefore,

Zn−1(G) = G and G is nilpotent.

1.5 Solvable Groups

Definition 1.19. A group G is solvable if there exists a subnormal series

G = G0 � G1 � · · · � Gn = 1

such that Gi/Gi+1 is abelian for 0 ≤ i ≤ n−1. The quotient groups Gi/Gi+1 are called

factors of G.

Definition 1.20. Let G be a group. Define G(0) = G,G(1) = (G(0))′ = G′,

G(2) = (G(1))′, . . . , and inductively, G(n) = (G(n−1))′. The derived series of G is

G = G(0) � G(1) � G(2) � · · · .

Lemma 1.22. Let G be a group. Then G(i) � G for all i ∈ N0.

Proof.

We proceed by induction on i. If i = 0, then G(0) = G � G. Assume G(i) � G.

Now G(i+1) = (G(i))′ char G(i) � G and G(i+1) � G by Lemma 1.12(iii). Therefore

the result holds by induction.

Theorem 1.19. Let G be a group and H � G. Then

(i) G′ � G.

(ii) G/G′ is abelian.

(iii) If G/H is abelian, then G′ � H.
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Proof.

For (i), the result follows because G′ char G. For (ii), let G = G/G′ and a, b ∈ G.

Now

ab = ab = baa−1b−1ab = ba[a, b] = ba = ba,

and it follows that G is abelian. For (iii), suppose G = G/H is abelian and let

a, b ∈ G. Then [a, b] ∈ G and

[a, b] = a−1b−1ab = a−1 b−1 a b = a−1 a b−1 b = 1.

Thus [a, b] ∈ H and so G′ � H.

Lemma 1.23. Let G be a solvable group. Then G(i) � Gi for all i ∈ N0.

Proof.

Use induction on i. If i = 0, then G(0) = G � G = G0. Assume G(i) � Gi. Now

G(i+1) = (G(i))′ � (Gi)
′, but Gi/Gi+1 is abelian. By Theorem 1.19, we have

G(i+1) � (Gi)
′ � Gi+1. Therefore the result holds by induction.

Theorem 1.20. Let G be a group. Then G is solvable if and only if there exists

n ∈ N such that G(n) = 1.

Proof.

Suppose there exists n ∈ N such that G(n) = 1 and consider the derived series

G = G(0) � G(1) � · · · � G(n) = 1.

By Theorem 1.19, G(i)/G(i+1) = G(i)/(G(i))′ is abelian for 0 ≤ i ≤ n − 1. Thus G is

solvable. Conversely, suppose G is solvable. Then there exists a subnormal series

G = G0 � G1 � · · · � Gn = 1,

such that Gi/Gi+1 is abelian for 0 ≤ i ≤ n− 1. By Lemma 1.23, G(n) � Gn = 1.
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Lemma 1.24. Let G be a group, H � G, and N � G. Then (HN/N)′ = H ′N/N.

Proof.

Let G = G/N and [h1n1, h2n2] ∈ H
′
= (HN/N)′. Since N � G, Nh = N for all

h ∈ H and

[h1n1, h2n2] = h1n1
−1
h2n2

−1
h1n1 h2n2 = (h1n1)−1 (h2n2)−1 h1n1 h2n2

= n−11 h−11 n−12 h−12 h1n1h2n2 = h−11 n3n
−1
2 h−12 h1h2n4n2

= h−11 h−12 h1h2n6 = [h1, h2]n6.

Thus [h1n1, h2n2] ∈ H ′ = H ′N/N and so H
′ � H ′. Conversely, let [h1, h2]n ∈ H ′.

Then

[h1, h2]n = h−11 h−12 h1h2n = h−11 h−12 h1h2 n = h−11 h−12 h1h2 = h1
−1
h2
−1
h1 h2 = [h1, h2],

and so [h1, h2]n ∈ H
′
. Therefore, (HN/N)′ = H ′N/N.

Lemma 1.25. Let G be a solvable group, H � G, and N � G. Then H and G/N

are solvable.

Proof.

By hypothesis, there exists n ∈ N such that G(n) = 1. We claim H(i) � G(i) for

all i ∈ N0 and proceed by induction on i. Assume H(i) � G(i). Now by the induction

hypothesis, H(i+1) = (H(i))′ � (G(i))′ = G(i+1). Thus H(i) � G(i) for all i ∈ N0.

Therefore, H(n) � G(n) = 1 and H is solvable by Theorem 1.20.

Next, we claim (G/N)(i) = G(i)N/N for all i ∈ N0. Using induction on i, if i = 0

then (G/N)(0) = G(0)N/N. Assume (G/N)(i) = G(i)N/N. By Lemma 1.24, we have(
G

N

)(i+1)

=

((
G

N

)(i)
)′

=

(
G(i)N

N

)′
=

(G(i))′N
N

=
G(i+1)N

N
.

Thus (G/N)(i) = G(i)N/N for all i ∈ N0. It follows that

(G/N)(n) = G(n)N/N = {1}N/N = N/N = 1.

Therefore, G/N is solvable.
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Lemma 1.26. Let G be a group and H � G. If H and G/H are solvable, then G is

solvable.

Proof.

By hypothesis, there exist m,n ∈ N such that H(m) = 1 and (G/H)(n) = 1. By

the claim in Lemma 1.25, G(n)H/H = (G/H)(n) = 1, so G(n) � H. Consequently,

G(n+m) = (G(n))(m) � H(m) = 1. Therefore, G is solvable.

Theorem 1.21. Let G be a group. If G is nilpotent, then G is solvable.

Proof.

Since G is nilpotent, there exists n ∈ N such that

1 = Z0(G) � Z1(G) � · · · � Zn(G) = G

is a normal series. Moreover, for 1 ≤ i ≤ n,

Zi(G)

Zi−1(G)
= Z

(
G

Zi−1(G)

)
is abelian. Therefore, G is solvable.

Theorem 1.22. Let G be a solvable group and H be a minimal normal subgroup of

G. Then H is an elementary abelian p-group for some prime p.

Proof.

By Theorem 1.14, H is an elementary abelian p-group for some prime p or

H ∼= ⊗n
i=1 Hi, where the Hi’s are simple non-abelian isomorphic groups. If

H ∼= ⊗n
i=1 Hi, then each Hi is solvable by Lemma 1.25. Now H

(1)
i = H ′

i � Hi, but

Hi is simple and non-abelian, which implies H
(1)
i = Hi. By an inductive argument,

H
(k)
i = (H

(k−1)
i )′ = (Hi)

′ � Hi and H
(k)
i = Hi because Hi is simple. Thus Hi is not

solvable and this is a contradiction. Therefore, H is an elementary abelian p-group

for some prime p.
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1.6 Semidirect Products

Theorem 1.23. Let H and K be groups, and suppose that K acts on H via

φ : K → Aut(H). Set

G = {(k, h) : k ∈ K and h ∈ H},

and define the product operation · by

(k1, h1) · (k2, h2) = (k1k2, h
kφ2
1 h2).

Then

(i) (G, ·) is a group.

(ii) H∗ = {(1, h) : h ∈ H} ∼= H.

(iii) K∗ = {(k, 1) : k ∈ K} ∼= K.

(iv) G = H∗K∗.

(v) H∗ � G.

(vi) H∗ ∩K∗ = 1.

Proof.

For (i), G is closed since kφ
2 ∈ Aut(H). Let (ki, hi) ∈ G for 1 ≤ i ≤ 3. Then

((k1, h1)(k2, h2)) (k3, h3) = (k1k2, h
kφ2
1 h2)(k3, h3) = (k1k2k3, h

(k2k3)φ

1 h
kφ3
2 h3)

= (k1, h1)(k2k3, h
kφ3
2 h3) = (k1, h1) ((k2, h2)(k3, h3)) ,

so G is associative. Set (1, 1) = (1K , 1H), where the coordinates are the respective

identities of K and H. It follows that (1, 1) ∈ G and (1, 1) is the identity of G since

1φ ≡ 1 ∈ Aut(H). Furthermore, uniqueness is inherited fromK andH. Let (k, h) ∈ G

and consider the element (k−1, (h−1)(k
−1)φ) ∈ G. Now

(k, h)(k−1, (h−1)(k
−1)φ) = (kk−1, h(k−1)φ(h−1)(k

−1)φ) = (kk−1, (hh−1)(k
−1)φ) = (1, 1),

and

(k−1, (h−1)(k
−1)φ)(k, h) = (k−1k, (h−1)(k

−1k)φh) = (k−1k, (h−1)1
φ

h) = (1, 1).

Thus (k, h)−1 = (k−1, (h−1)(k
−1)φ), where uniqueness is inherited. Therefore, G is a

group.
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For (ii)-(vi): the canonical mapping gives H∗ ∼= H and K∗ ∼= K. By the definition

of G, we have G = H∗K∗. Let (k, 1) ∈ K∗ and (1, h) ∈ H∗. Now

(1, h)(k,1) = (k, 1)−1(1, h)(k, 1) = (k−1, 1)(1, h)(k, 1) = (k−1, h)(k, 1) = (1, hkφ) ∈ H∗,

and so K∗ � NG(H
∗). Moreover, H∗ � NG(H

∗), so G = H∗K∗ � NG(H
∗). Conse-

quently, G = NG(H
∗) and H∗ � G. Suppose (h, k) ∈ H∗ ∩K∗. By the definition of

H∗ and K∗, we have h = 1 and k = 1. Thus H∗ ∩K∗ = 1 and

|G| = |H∗||K∗| = |H||K|.

Definition 1.21. Let H and K be groups, and suppose that K acts on H via φ. The

group described in Theorem 1.23 is called the semidirect product of H by K with

respect to φ and is denoted H �φ K.
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2 Representation Theory

In this section, we briefly outline basic concepts from Linear Algebra necessary to

understand groups acting over vector spaces. A thorough review of Linear Algebra

can be found in [Cur74].

Definition 2.1. Let F be a field. A vector space V over F is a nonempty set of

vectors together with two operations: vector addition, which assigns for each u, v ∈ V ,

the new vector v + u ∈ V , and scalar multiplication, which assigns for each λ ∈ F

and v ∈ V , the new vector λv ∈ V. These operations satisfy the following axioms for

all v, u ∈ V and for all α, β ∈ F :

(i) (V,+) is an abelian group.

(ii) α(u+ v) = αu+ αv.

(iii) (α + β)v = αv + βv.

(iv) (αβ)u = α(βu).

(v) 1u = u.

Definition 2.2. Let V and W be vector spaces over a field F . A linear transfor-

mation of V into W is a function T : V → W defined by vT ∈ W for all v ∈ V ,

such that

(i) (v1 + v2)T = v1T + v2T for all v1, v2 ∈ V .

(ii) (αv)T = α(vT ) for all α ∈ F and for all v ∈ V.

Theorem 2.1. Let V and W be vector spaces over a field F , and let L(V,W ) de-

note the set of all linear transformations from V into W . If addition and scalar

multiplication are defined as follows, for all v ∈ V :

(i) v(S + T ) = vS + vT for all S, T ∈ L(V,W ).

(ii) v(αT ) = α(vT ) for all T ∈ L(V,W ) and for all α ∈ F .

Then L(V,W ) is a vector space over F .
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Definition 2.3. Let G be a group and V be a vector space over a field F. Then

(i) Aut(V, F ) = {T ∈ L(V, V ) : T is nonsingular} is a group under composition.

(ii) Aut(V, F ) ∼= GLn(F ) = {A ∈ Mn(F ) : det(A) �= 0}, where Mn(F ) is the set of

n× n matrices over F .

(iii) G acts on V over F if there exists a homomorphism φ : G → Aut(V, F ) called

a representation of G on the vector space V over F .

(iv) G acts faithfully on V over F via φ if Ker φ = 1.

Definition 2.4. Let G be a group acting on a vector space V over a field F . Then

V is called a FG-module, or a G-module when F is clear from the context.

We will use the same notation for the action of a group G on a vector space V

over a field F as we use for the action of G on a set:

(αu+ βw)g = α(ug) + β(wg)

for all α, β ∈ F, for all u, w ∈ V , and for all g ∈ G.

Definition 2.5. Let V be a vector space over a field F and S ⊆ V such that S �= ∅.
Then S is a subspace of V if

(i) a+ b ∈ S for all a, b ∈ S.

(ii) λa ∈ S for all a ∈ S and for all λ ∈ F.

For the sake of efficiency, we will invoke the following Lemma in proving a subset

of a vector space is a subspace. The proof follows trivially from the definition of a

subspace. [Cur74]

Lemma 2.1. Let V be a vector space over a field F and S ⊆ V be nonempty. Then

S is a subspace of V if and only if αu+ βw ∈ S for all α, β ∈ F and for all u, w ∈ S.

Definition 2.6. Let V be a FG-module and W be a subspace of V . If wg ∈ W for

all w ∈ W and for all g ∈ G, then W is a FG-submodule of V . In addition, we

may call W a Gφ-invariant, or a G-invariant subspace of V .
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Theorem 2.2. Let G be a group acting on a vector space V over a field F . The

centralizer of G on V is

CV (G) = {v ∈ V : vg = v for all g ∈ G},

and CV (G) is a subspace of V .

Proof.

Let g ∈ G. Since V is a vector space, 0 ∈ V and 0g = 0. Thus 0 ∈ CV (G) and

CV (G) �= ∅. Let u, w ∈ CV (G) and α, β ∈ F. Now

(αu+ βw)g = α(ug) + β(wg) = αu+ βw,

so αu+ βw ∈ CV (G). Therefore, CV (G) is a subspace of V .

Theorem 2.3. Let G be a group acting on a vector space V over a field F and suppose

H � G. Then CV (H) is a G-invariant subspace of V .

Proof.

By Theorem 2.2, CV (H) is a subspace of V , so CV (H) �= ∅. Let v ∈ CV (H),

g ∈ G, and h ∈ H. Since H � G, we have hg−1 ∈ H. It follows that vh
g−1

= v, or,

equivalently, vgh = vg. Thus vg ∈ CV (H) and CV (H) is G-invariant.

Definition 2.7. Let R be a ring. The least positive integer n satisfying na = 0 for

all a ∈ R is called the characteristic of R and we write char R = n. If no such n

exists, we say char R = 0.

Theorem 2.4 (Fixed Point Theorem for Vector Spaces). Let G be a p-group and

suppose that G acts on a vector space V over a field F with char F = p. Then

CV (G) �= 0.

Proof.

Use induction on |G| and let M be a maximal subgroup of G. By Theorem 1.16,

M � G, so [G : M ] = p. Let y ∈ G \M . Now ypM = (yM)p = (yM)[G:M ] = 1M and
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so yp ∈ M . Furthermore, |M | < |G|, M is a p-group, and M acts on V over F . By

the induction hypothesis, CV (M) �= 0.

Since yp ∈ M , we have yp acts trivially on CV (M). Thus y satisfies xp − 1 on

CV (M), but xp − 1 = (x − 1)p since char F = p. It follows that 1 is an eigenvalue

of y on CV (M), so there exists a nonzero w ∈ CV (M) satisfying wy = 1w = w. Now

M < 〈M, y〉 � G and G = 〈M, y〉 by the maximality of M . Thus

w ∈ CV (〈M, y〉) = CV (G) and CV (G) �= 0.

2.1 Maschke’s Theorem

Definition 2.8. Let G be a group and p be a prime. Define the unique maximal

normal p-subgroup of G by

Op(G) =
∏
P�G

P,

where P is a p-subgroup. Similarly, the unique maximal normal p′-subgroup of G is

Op′(G) =
∏
P�G

P,

where P is a p′-subgroup.

Definition 2.9. Let G be a group acting on a vector space V over a field F via φ. If

{0} and V are the only Gφ-invariant subspaces (FG-submodules) of V , then G acts

irreducibly on V over F via φ. We call V an irreducible FG-module.

Theorem 2.5. Let G be a group acting faithfully and irreducibly on a vector space V

over a field F , and suppose char F = p. Then Op(G) = 1.

Proof.

Since Op(G) is a p-group acting on V , we have CV (Op(G)) �= 0 by the Fixed Point

Theorem (2.4). By Theorem 2.3, CV (Op(G)) is a G-invariant subspace of V ; however,

G acts irreducibly on V . Hence V = CV (Op(G)) and Op(G) acts trivially on V . It

follows from the faithful action of G on V that Op(G) = 1.
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Definition 2.10. Let V be a vector space over a field F and {Ui}ni=1 be subspaces of

V . Then V is the direct sum of the Ui’s if

(i) V = U1 + U2 + · · ·+ Un.

(ii) Ui ∩
∑

j �=i Uj = 0 for all 1 ≤ i ≤ n.

We denote V as a direct sum of the Ui’s by V =
⊕n

i=1 Ui.

Definition 2.11. A group G acts completely reducibly on a vector space V over a

field F if there exist G-invariant subspaces {Ui}ni=1 of V such that V =
⊕n

i=1 Ui and

G acts irreducibly on Ui for 1 ≤ i ≤ n.

Lemma 2.2. Let D be an integral domain. Then there exists a subdomain D′ such

that

(i) If char D = 0, then Z ∼= D′ ⊆ D.

(ii) If char D = p for some prime p, then Zp
∼= D′ ⊆ D.

Proof.

Let D′ = {m · 1 : m ∈ Z}, where 1 is unity in D, and φ : Z → D′ be defined by

mφ = m · 1. Clearly, φ is a surjective ring homomorphism, thus Zφ = D′.

For (i), if char D = 0, then mφ �= 0 for all m ∈ Z∗. Thus Ker φ = 0 and φ is

injective. By the First Isomorphism Theorem, Z ∼= Z/Ker φ ∼= Zφ = D′ ⊆ D.

For (ii), if char D = p, then |1| = p and Ker φ = pZ. By the First Isomorphism

Theorem, Z/pZ ∼= Zφ = D′ ⊆ D, but Z/pZ ∼= Zp. Therefore, Zp
∼= D′.

Lemma 2.3. Let F be a field. Then there exists a subfield F ′ such that

(i) If char F = 0, then Q ∼= F ′ ⊆ F.

(ii) If char F = p for some prime p, then Zp
∼= F ′ ⊆ F.

Proof.

For (i), since F is an integral domain and char F = 0, we have Z ∼= D′ ⊆ F by

Lemma 2.2. Thus D′ is an integral domain in the field F, so F contains a field of

quotients F ′ ∼= Q. For (ii), the result follows from Lemma 2.2.
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Theorem 2.6 (Maschke). Let G be a group acting on a vector space V over a field F

and suppose char F = 0 or char F is relatively prime to |G|. Then G acts completely

reducibly on V .

Proof.

Use induction on dimF (V ). Let n = |G| and char F = p. If p = 0, then Q ⊆ F by

Lemma 2.3 and so 1
n
∈ F. If p �= 0, then Zp ⊆ F and it follows from the gcd(p, n) = 1

that 1
n
∈ F is well defined. Thus n

(
1
n
v
)
= 1

n
(nv) = v for all v ∈ V .

Let 0 �= V1 ⊆ V be a minimal G-invariant subspace. If V = V1, then G acts

completely reducibly on V and we are done. Assume V1 ⊂ V and let B = {ui}ri=1 ⊆ V1

be a basis for V1. We may extend B to a basis for V (Theorem 7.4 in [Cur74]), given

by {ui}mi=1, and let W = SpanF ({ui}mi=r+1). Clearly, V = V1 ⊕ W. Let θ : V → W

be the projection of V onto W defined by (v1 + w)θ = w. Now θ is linear, for if

v1 + w1, v2 + w2 ∈ V1 then

(v1 + w1 + v2 + w2)
θ = ((v1 + v2) + (w1 + w2))

θ = w1 + w2 = (v1 + w1)
θ + (v2 + w2)

θ.

Moreover, we claim θ is idempotent−that is, θ2 = θ. Let v1+w ∈ V = V1⊕W . Then

(v1 + w)θ
2
= wθ = w = (v1 + w)θ and θ2 = θ.

Let ψ = 1
n

∑
x∈G xθx−1. Now ψ is linear since θ is linear and V is a G-module. Let

V2 = V ψ. Then V2 is a subspace of V since ψ is a linear transformation [Cur74]. Let

y ∈ G, v ∈ V, and for each x ∈ G, set zx = y−1x. As x runs over G, so does zx, thus

vψy =
1

n

∑
x∈G

vxθx
−1y =

1

n

∑
x∈G

vyzxθz
−1
x =

1

n

∑
x∈G

vyxθx
−1

= vyψ.

But (vy)ψ ∈ V2 since V is a G-module, hence V2 = V ψ is G-invariant.

Let v1 ∈ V1 and x ∈ G. Now vx1 ∈ V1 since V1 is G-invariant, so vxθ1 = 0. Thus

vψ1 =
1

n

∑
x∈G

vxθx
−1

1 =
1

n

∑
x∈G

0x
−1

=
1

n

∑
x∈G

0 = 0,
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and V ψ
1 = 0. Let v ∈ V. Since (V,+) is abelian, we have

v − vψ =
1

n
(nv)− 1

n

∑
x∈G

vxθx
−1

=
1

n

∑
x∈G

(v − vxθx
−1

) =
1

n

∑
x∈G

(vx − vxθ)x
−1

.

Furthermore, vx − vxθ ∈ V1 since θ is the projection of V onto W ; (vx − vxθ)x
−1 ∈ V1

since V1 is G-invariant; and 1
n

∑
x∈G(v

x − vxθ)x
−1 ∈ V1 since V1 is a vector space over

F with 1
n
∈ F . Hence v − vψ ∈ V1. Because V ψ

1 = 0, we have (v − vψ)ψ = 0, but this

is equivalent to vψ = vψ
2
. Thus ψ = ψ2 and ψ is idempotent.

We claim V = V1 ⊕ V2. Let v ∈ V. Now v = (v − vψ) + vψ ∈ V1 + V2 and so

V = V1 + V2. Suppose u ∈ V1 ∩ V2. Then uψ = 0 since V ψ
1 = 0, but u ∈ V2 = V ψ. It

follows that there exists v0 ∈ V such that u = vψ0 . This implies 0 = uψ = vψ
2

0 = vψ0 = u,

so V1 ∩ V2 = 0. Therefore, V = V1 ⊕ V2.

If V = V2, then V1 = V1 ∩ V = V1 ∩ V2 = 0, which is a contradiction since V1

is a minimal G-invariant subspace. Hence V2 ⊂ V and dimF (V2) < dimF (V ). By

induction, G acts completely reducibly on V2, so V2 =
⊕s

i=1 V2i, where each V2i is an

irreducible G-submodule. Now V = V1 ⊕ V2 = V1

⊕s
i=1 V2i, where V1 is an irreducible

G-submodule. Therefore, G acts completely reducibly on V .

Definition 2.12. Let G be a group acting on the vector spaces V and W over the

field F . Then V and W are isomorphic as G-modules if there exists an isomorphism

φ : V → W such that vgφ = vφg for all v ∈ V and for all g ∈ G.

2.2 Clifford’s Theorem

Lemma 2.4. Let V be a vector space over a field F and S be a subspace of V . The

subspace of V generated by S is

〈S〉 =
{∑l

i=1 misi : si ∈ S,mi ∈ F, 1 ≤ i ≤ l for some l ∈ N
}
.

Proof.

Clearly, 〈S〉 ⊆ V and 〈S〉 �= ∅. Let ∑l
i=1 misi,

∑k
j=1 rjti ∈ 〈S〉 and α, β ∈ F. Set
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m′
i = αmi for 1 ≤ i ≤ l and r′j = βrj for 1 ≤ j ≤ k. Now

α

l∑
i=1

misi + β

k∑
j=1

rjti =
l∑

i=1

αmisi +
k∑

j=1

βrjti =
l∑

i=1

m′
isi +

k∑
j=1

r′jti ∈ 〈S〉.

Therefore, 〈S〉 is a subspace of V .

Lemma 2.5. Let G be a group acting on a vector space V over a field F , H � G,

U ⊆ V be an H-submodule, and W ⊆ V be an irreducible H-submodule. Then U/W

is an H-submodule.

Proof.

Let u+W ∈ U/W and h ∈ H. It follows from U and W being H-submodules, W

being irreducible, and W �= 0 that (u+W )h = uh+W h = uh+W ∈ U/W. Therefore,

U/W is an H-submodule.

Lemma 2.6. Let G be a group acting on a vector space V over a field F , H � G,

and suppose W ⊆ V is an H-submodule. Then W is an irreducible H-submodule if

and only if W g is an irreducible H-submodule for all g ∈ G.

Proof.

Suppose W is an irreducible H-submodule, and let g ∈ G and h ∈ H. Now

gh = hg−1
g, where hg−1 ∈ H and for all w ∈ W, we have wgh = whg−1

g = wg
0 for

some w0 ∈ W . Thus W g is an H-invariant subspace of V . Suppose there exists an

H-invariant subspace T of W g. Now T g−1
is an H-invariant subspace of W by the

same argument as above, but W is irreducible. Thus T g−1
= 0 or T g−1

= W , so T = 0

or T = W g. Therefore, W g is an irreducible H-submodule.

Suppose W g is an irreducible H-submodule for all g ∈ G. By hypothesis, W is

H-invariant. If T is anH-invariant subspace ofW , then T g is anH-invariant subspace

of W g for all g ∈ G. Hence T g = 0 or T g = W g, but then T = 0 or T = W. Therefore,

W is an irreducible H-submodule.
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Theorem 2.7 (Clifford). Let G be a group acting irreducibly on a vector space V

over a field F and suppose H � G. Then

(i) V =
⊕n

i=1 Vi such that each Vi is H-invariant, Vi =
⊕ti

j=1 Xij such that each

Xij is an irreducible H-module, and Xij
∼= Xi′j′ (as H-modules) if and only if

i = i′.

(ii) Let U be an H-invariant subspace of V . Then U =
⊕n

i=1 Ui, where

Ui = U ∩ Vi.

(iii) ti is independent of i.

(iv) G acts transitively on {Vi}ni=1.

Proof.

For (i), let W =
⊕s

i=1 Wi, where Wi ⊂ V is an irreducible H-module for all

1 ≤ i ≤ s and s is chosen maximal. If W is not G-invariant, there exists an

1 ≤ i ≤ s and g ∈ G such that W g
i � W, thus W g

i ∩ W ⊂ W g
i . By Lemma 2.6,

W g
i is an irreducible H-submodule, but W g

i ∩ W is H-invariant, so W g
i ∩ W = 0.

Hence W g
i + W = W g

i ⊕ W = W g
i

⊕s
i=1 Wi, which contradicts the maximality of

s. Therefore, W is G-invariant and since V is an irreducible G-module, we have

V = W =
⊕s

i=1 Wi. Now relabel the Wi’s as Xij’s such that Xij
∼= Xi′j′ if and only

if i = i′, and set Vi =
⊕ti

j=1 Xij for 1 ≤ i ≤ n. Then V =
⊕n

i=1 Vi, where each Vi is

H-invariant and the direct product of irreducible H-modules.

For (ii), let U be an H-invariant subspace of V . If U = V , then we are done by (i).

Without loss of generality, assume U ⊂ V. If Wj � U , it follows that U ∩Wj ⊂ Wj,

but U ∩Wj is H-invariant and Wj is an irreducible H-submodule. Thus U ∩Wj = 0

and U +Wj = U ⊕Wj. Find all such Wj’s and set

V ∗ = U ⊕Wj1 ⊕Wj2 ⊕ · · · ⊕Wje . (1)

By the construction of V ∗, we have Wj ⊆ V ∗ for all 1 ≤ j ≤ s, but V =
⊕s

j=1 Wj.

Consequently, V = V ∗.
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Let V ′ =
⊕e

k=1 Wjk and V ′′ be the direct sum of the remaining Wj’s. Now

V = V ′ ⊕ V ′′ and by (1), V = U ⊕ V ′. By the Second Isomorphism Theorem,

U ∼= U

{0} =
U

U ∩ V ′
∼= U + V ′

V ′
=

V

V ′
=

V ′ + V ′′

V ′
∼= V ′′

V ′ ∩ V ′′
=

V ′′

{0}
∼= V ′′.

Hence U ∼= V ′′ and U is the direct sum of irreducible H-modules. Without loss of

generality, assume U is an irreducible H-module. Then it is enough to show there

exists an 1 ≤ i ≤ n such that U ⊆ Vi.

Suppose U � Vi for all 1 ≤ i ≤ n. Now U � Wj for all 1 ≤ j ≤ s. Let

W ′
m =

⊕m
i=1 Wi, where U � W ′

m and m is chosen maximal. It follows that U ⊆ W ′
m+1.

Moreover, U ∩ W ′
m ⊂ U and U ∩ W ′

m is H-invariant. By our assumption, U is an

irreducible H-module, so U ∩ W ′
m = 0. Let W ′

m+1 = W ′
m+1/W

′
m. By the Second

Isomorphism Theorem,

U =
U +W ′

m

W ′
m

∼= U

U ∩W ′
m

=
U

{0}
∼= U.

Since U is H-invariant, it follows that U is H-invariant. However,

W ′
m+1 =

W ′
m+1

W ′
m

=
W ′

m +Wm+1

W ′
m

∼= Wm+1

W ′
m ∩Wm+1

=
Wm+1

{0}
∼= Wm+1,

and Wm+1 is an irreducible H-module. Consequently, W ′
m+1 is an irreducible

H-module and U ⊆ W ′
m+1 is H-invariant. Thus U ∼= U = W ′

m+1
∼= Wm+1.

Suppose Wm+1 ⊆ Vi for some 1 ≤ i ≤ n and let Ṽ = V/Vi. Now Ṽ =
⊕r

j=1 W̃j,

where

W̃j =
Wj + Vi

Vi

∼= Wj

Wj ∩ Vi

=
Wj

{0}
∼= Wj,

and W̃j is not isomorphic to Wm+1
∼= U ∼= U. Since U � Vi, we have U ∩ Vi ⊂ U and

U ∩ Vi is H-invariant. Thus U ∩ Vi = 0 since U is an irreducible H-module and

U ∼= U

{0} =
U

U ∩ Vi

∼= U + Vi

Vi

= Ũ .

If Ũ ⊆ W̃j for some 1 ≤ j ≤ r, then Ũ = 0 or Ũ = W̃j since Ũ is H-invariant and

W̃j
∼= Wj is an irreducible H-module. If Ũ = 0, then U ⊆ Vi, which is a contradiction.
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If Ũ = W̃j, then W̃j = Ũ ∼= U , which is also a contradiction. Thus Ũ � W̃j for all

such j. Since U � Vi, we have Ũ �= 0. Repeat the above argument with V and U

replaced by Ṽ and Ũ to result in Ũ ∼= W̃j∗ , where W̃j∗ � U. However, Ũ ∼= U ∼= W̃j∗ ,

which is a contradiction. Hence there exists 1 ≤ i ≤ n such that U ⊆ Vi.

For (iv), let x ∈ G, 1 ≤ i ≤ n, and 1 ≤ j ≤ ti. By hypothesis, Xij is an

irreducible H-module and by Lemma 2.6, Xx
ij is an irreducible H-module. From (ii),

there exists 1 ≤ i′ ≤ n such that Xx
ij ⊆ Vi′ . However, Vi′ =

⊕ti′
j=1 Xi′j, so there exists

1 ≤ j′ ≤ ti′ such that Xx
ij
∼= Xi′j′ . For 1 ≤ k ≤ ti, we have Xij

∼= Xik and Xx
ij
∼= Xx

ik,

but from (i), there exists 1 ≤ j′′ ≤ ti′ such that Xx
ik

∼= Xi′j′′ . Hence V x
i ⊆ Vi′ and

dimF (V
x
i ) ≤ dimF (Vi′). Consider 〈V g

k : g ∈ G〉 ⊆ V for 1 ≤ k ≤ n. By Lemma

2.4, 〈V g
k : g ∈ G〉 is a subspace of V and clearly, 〈V g

k : g ∈ G〉 is G-invariant. Since

〈V g
k : g ∈ G〉 �= 0 and G acts irreducibly on V , we have V = 〈V g

k : g ∈ G〉.
By a similar argument in the preceding paragraph, for all 1 ≤ l ≤ n, there exists

g ∈ G such that Vl ⊆ V g
k and dimF (Vl) ≤ dimF (V

g
k ) = dimF (Vk). By reversing the

roles of k and l above, we have dimF (Vk) = dimF (Vl). Hence dimF (Vi) = dimF (V
x
i ) ≤

dimF (Vi′) = dimF (Vi), so dimF (V
x
i ) = dimF (Vi′). But V x

i ⊆ Vi′ implies V x
i = Vi′ ,

thus G acts on Vi for all 1 ≤ i ≤ n. Moreover, Vl ⊆ V g1
k and Vk ⊆ V g2

l for some

g1, g2 ∈ G. It follows that V
g−1
1 g−1

2
l ⊆ V

g−1
2

k ⊆ Vl, but g
−1
1 g−12 is a linear transformation.

Hence dimF (V
g−1
1 g−1

2
l ) = dimF (Vl), which implies V

g−1
1 g−1

2
l = V

g−1
2

k , or equivalently,

V
g−1
1

l = Vk. Therefore, G acts transitively on {Vi}ni=1.

For (iii), it follows from Xx
ij
∼= Xi′j′ , dimF (Vi) = dimF (Vi′), V

x
i = Vi′ ,

V x
i =

⊕ti
j=1 X

x
ij, and Vi′ =

⊕ti′
j′=1 Xi′j′ that ti = ti′ , thus ti is independent of i.

Definition 2.13. The Vi’s described in Clifford’s Theorem are called Wedderburn

components of V with respect to H and are denoted by WeddV (H) = {Vi}ni=1.

Theorem 2.8. Let G be a group acting irreducibly on a vector space V over a field

F and suppose z ∈ Z(G) has an eigenvalue λ ∈ F. Then vz = λv for all v ∈ V.

Moreover, if G acts faithfully on V over F , either z = 1 or λ �= 1.
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Proof.

Let W = {v ∈ V : vz = λv}. Clearly, W ⊆ V is a subspace of V since λ has an

associated eigenvector. Let g ∈ G and w ∈ W. Now wgz = wzg = (λw)g = λwg, so

wg ∈ W. Thus W is a G-submodule of V . Since G acts irreducibly on V , we have

V = W.

Suppose G acts faithfully on V over F . If z �= 1 and λ = 1, then vz = λv = v for

all v ∈ V. Thus z acts trivially on V ; however, G acts faithfully on V . Then z = 1

and we have a contradiction. Therefore, z = 1 or λ �= 1.

Definition 2.14. Let n ∈ N. The zeros of xn − 1 = 0 are called the nth roots of

unity and they are

{1, δn, δ2n, . . . , δn−1n },

where δn = cos
(
2π
n

)
+ i sin

(
2π
n

)
. We call δin a primitive nth root of unity if

〈δin〉 = {1, δn, δ2n, . . . , δn−1n }.

Definition 2.15. Let G be a group acting on a vector space V over a field F and

F ⊆ E be a field extension. The tensor product of V and E over F is given by

V ⊗F E =

{
n∑

i=1

αi(vi ⊗ ei) : αi, ei ∈ E and vi ∈ V

}
under the following identifications for all v, v1, v2 ∈ V, and for all α, e, e1, e2 ∈ E :

(i) v ⊗ (e1 + e2) = v ⊗ e1 + v ⊗ e2.

(ii) (v1 + v2)⊗ e = v1 ⊗ e+ v2 ⊗ e.

(iii) α(v ⊗ e) = αv ⊗ e = v ⊗ αe.

Moreover, V ⊗F E is a vector space over E and G acts on V ⊗F E over E by

(v ⊗ e)g = vg ⊗ e,

for all v ∈ V, for all g ∈ G, and for all e ∈ E.
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Lemma 2.7. Zn1 × Zn2 × · · · × Zns
∼= Zn1n2···ns if and only if gcd(n1, . . . , ns) = 1.

Proof.

Let Z = Zn1 ×Zn2 × · · · ×Zns and suppose Z ∼= Zn1n2···ns . Now Z is cyclic, hence

(1, 1, . . . , 1) is a generator of Z and |(1, 1, . . . , 1)| = ∏s
i=1 ni. Since Zn1n2···ns is a finite

cyclic group, we have

s∏
i=1

ni = |(1, 1, . . . , 1)| = lcm(n1, n2, . . . , ns) =

∏s
i=1 ni

gcd(n1, n2, . . . , ns)
.

Thus gcd(n1, n2, . . . , ns) = 1. Conversely, suppose gcd(n1, n2, . . . , ns) = 1 and consider

〈(1, 1, . . . , 1)〉. Now

|〈(1, 1, . . . , 1)〉| = |(1, 1, . . . , 1)| =
∏s

i=1 ni

gcd(n1, n2, . . . , ns)
=

s∏
i=1

ni = |Z|,

thus Z is cyclic. Therefore, Z is isomorphic to Zn1n2···ns .

Lemma 2.8. Let F be a finite field. Then F ∗ = F \ {0} is a cyclic group under

multiplication.

Proof.

Since F is a field, F ∗ an abelian group. By the Fundamental Theorem of Finite

Abelian Groups, F ∗ ∼= Zp
r1
1
× Zp

r2
2
× · · · × Zp

rk
k
, where the pi’s are prime and ri ∈ N

for 1 ≤ i ≤ k. By Lemma 2.7, it is enough to show pi �= pj for all i �= j. But this

would imply gcd(p1, p2, . . . , pk) = 1 and it would be enough to show

lcm(pr11 , pr22 , . . . , prkk ) =
∏k

i=1 p
ri
i .

Let l = lcm(pr11 , pr22 , . . . , prkk ) and Δ =
∏k

i=1 p
ri
i . Since prii

∣∣Δ for all 1 ≤ i ≤ k,

we have l ≤ Δ. Now there exists ti ∈ Z such that l = prii ti for each 1 ≤ i ≤ k. Set

Ai = {(1, . . . , ai, . . . , 1) : ai ∈ Zp
ri
i
} for each 1 ≤ i ≤ k. Now

⊗k
i=1 Zp

ri
i

=
∏k

i=1 Ai.

Moreover,

(1, . . . , ai, . . . , 1)
p
ri
i = (1, . . . , a

p
ri
i

i , . . . , 1) = (1, . . . , 1, . . . , 1)

for each 1 ≤ i ≤ k. Thus F ∗ ∼= ⊗k
i=1 Zp

ri
i
=

∏k
i=1 Ai, where ai ∈ Ai and a

p
ri
i

i = 1 for

all 1 ≤ i ≤ k.
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Let f1f2 · · · fk ∈ F ∗, where fi ∈ Ai for each 1 ≤ i ≤ k, and consider the polynomial

xl − 1 ∈ F [x]. Since l = prii ti for 1 ≤ i ≤ k, we have

(f1 · · · fk)l − 1 = f l
1 · · · f l

k − 1 = f
p
r1
1 t1

1 · · · f p
rk
k tk

k − 1 = 1 · · · 1− 1 = 1− 1 = 0,

so f1f2 · · · fk is a zero of xl−1. Thus |F ∗| ≤ l, but |F ∗| = |⊗k
i=1 Zp

ri
i
| = Δ. Therefore,

l = lcm(pr11 , pr22 , . . . , prkk ) = Δ =
∏k

i=1 p
ri
i and so F ∗ is isomorphic to the cyclic group

Zp
r1
1 p

r2
2 ···p

rk
k
.

Theorem 2.9. Let G be a group acting faithfully and irreducibly on a vector space V

over a field F . Then Z(G) is cyclic.

Proof.

Case 1: Suppose F contains a primitive |G|th root of unity.

Let g ∈ G. Now g satisfies x|G| − 1, so the characteristic polynomial of g divides

x|G|−1. Since F contains a primitive |G|th root of unity, it follows that F contains all

the eigenvalues of all g ∈ G. Let z ∈ Z(G) and λz ∈ F be a corresponding eigenvalue

of z. Define θ : Z(G) → F ∗ by zθ = λz for all z ∈ Z(G). By Theorem 2.8, vz = λzv

for all v ∈ V , so θ is well-defined. Let z1, z2 ∈ Z(G) and λz1z2 be an eigenvalue of

z1z2. Now for all v ∈ V ,

λz1z2v = vz1z2 = (vz1)z2 = (λz1v)
z2 = λz1(v

z2) = λz1λz2v,

hence (z1z2)
θ = zθ1z

θ
2 and θ is a homomorphism. To show injectivity, suppose zθ1 = zθ2 .

Then vz1 = vz2 for all v ∈ V , so vz1z
−1
2 = v for all v ∈ V. Thus z1z

−1
2 acts trivially

on V ; however, G acts faithfully on V and it follows that z1 = z2. By the First

Isomorphism Theorem, Z(G) ∼= Z(G)θ � F ∗. Since Z(G)θ is finite, Lemma 2.8 on F

implies Z(G)θ is cyclic. Therefore, Z(G) is cyclic.

Case 2: Suppose F does not contain a primitive |G|th root of unity.

Let ω be a primitive |G|th root of unity, L = F (ω), and VL = V ⊗F L. By

Definition 2.15, VL is a vector space over L and G acts on VL over L by (v⊗l)g = vg⊗l.
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Furthermore, L contains a primitive |G|th root of unity. Let 0 �= W ⊆ VL be a minimal

G-invariant subspace, K be the kernel of the action of G on W , and G = G/K. Now

G acts irreducibly and faithfully on W over L by the induced map. Since L contains

a primitive |G|th root of unity, we have y|G| = 1, where y is a primitive root. But

|G| = |G| · |K| and it follows that y|G| = 1. Thus L contains a primitive |G|th of unity.

By Case 1, Z(G) is cyclic, so Z(G) is cyclic. Now the Second Isomorphism Theorem

implies

Z(G) =
Z(G)K

K
∼= Z(G)

Z(G) ∩K
,

so it is enough to show Z(G) ∩K = 1 to prove Z(G) is cyclic.

Let z ∈ Z(G)∩K. Now z has 1 as an eigenvalue onW and it follows from Theorem

2.8 that z has 1 as an eigenvalue on VL. However, the characteristic polynomial of z

on VL is the same as the characteristic polynomial of z on V since (v ⊗ l)g = vg ⊗ l,

hence z has 1 as an eigenvalue on V . By Theorem 2.8, vz = 1v = v for all v ∈ V , so

z acts trivially on V . Thus z = 1 since G acts faithfully on V and so Z(G) ∩K = 1.

But then Z(G) ∼= Z(G), where Z(G) is cyclic. Therefore, Z(G) is cyclic.

Lemma 2.9. Let G be a group acting irreducibly on a vector space V over a field F

and K be the kernel of G on V . If G is abelian, then G/K is cyclic.

Proof.

Let G = G/K. Now G acts irreducibly and faithfully on V . By Theorem 2.9,

Z(G) is cyclic. Since G is abelian, we have G is abelian, so G = Z(G) is cyclic.

Theorem 2.10. Let G be an abelian group and suppose G acts irreducibly on a vector

space V over a field F . If F contains an |G|th root of unity, then dimF (V ) = 1.

Proof.

Let K be the kernel of G on V and G = G/K. By Lemma 2.9, G is cyclic,

so G = 〈x〉 for some x ∈ G. Let g ∈ G. Now g ∈ G = 〈x〉 and so there exists
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n ∈ N0, (0 ≤ n ≤ |G| − 1) such that g = xn = xn. It follows that g = xnk ∈ 〈x〉K for

some k ∈ K, which implies G = 〈x〉K.

Let v1 ∈ V be a nonzero eigenvector of x andW = SpanF (v1). Clearly, 0 �= W ⊆ V

and W is a subspace of V . Let g ∈ G, α ∈ F , and λ1 be the corresponding eigenvalue

of v1. Now (αv1)
g = (αv1)

xnk = α(vx
n

1 )k = αλn
1v1 ∈ W and so W is G-invariant.

However, G acts irreducibly on V , which implies V = W = Span(v1). Therefore,

{v1} is a basis for V and dimF (V ) = 1.

Theorem 2.11 (Frobenius, 1901). Let G be a group and suppose H is a nontrivial

subgroup of G such that H ∩Hg = 1 for all g ∈ G \H. Then G = K �H, where

K =

(
G \

⋃
g∈G

Hg

)
∪ {1},

K � G, and CK(h) = 1 for all h ∈ H \ {1}.

Definition 2.16. Groups satisfying Frobenius’ Theorem are called Frobenius groups

with Frobenius complement H and Frobenius kernel K.

The only known proof of Frobenius’ Theorem involves Character theory and is

beyond the scope of this paper. An immediate consequence of Frobenius’ Theorem is

the following:

Theorem 2.12. Let G be a Frobenius group with complement H and kernel K. Then

(i) G = HK with H ∩K = 1.

(ii) |H|∣∣|K| − 1.

(iii) Every element of H∗ induces by conjugation an automorphism of K which fixes

only the identity of K.

(iv) CG(k) � K for all k ∈ K \ {1}.

Proof.

See Theorem 7.6, pg. 38 in [Gor07].
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Theorem 2.13. Let G = HA be a Frobenius group with kernel H and complement A,

H be an elementary abelian q-group, and A be cyclic. Suppose that G acts irreducibly

and faithfully on a vector space V over a field F containing a primitive qth root of

unity. Then |WeddV (H)| = |A|.

Proof.

Let WeddV (H) = {Vi}mi=1. By Clifford’s Theorem (2.7), G acts transitively on

{Vi}mi=1. Since the Vi’s are H-invariant and G = HA, we have A acts transitively on

{Vi}mi=1. Let V1 ⊆ {Vi}mi=1. By Theorem 1.6, m = |WeddV (H)| = [A : AV1 ] ≤ |A|.
Suppose m < |A|. Let G1 = HAV1 , N1 be the kernel of G1 on V1, and ai ∈ A,

where V ai
1 = Vi for every 1 ≤ i ≤ m. Now Nai

1 is the kernel of Gai
1 on V ai

1 for every

1 ≤ i ≤ m. Since AV1 ∩ N1 � N1, we have (AV1 ∩ N1)
ai � Nai

1 , but A is abelian, so

(AV1 ∩ N1)
ai = AV1 ∩ N1. Hence AV1 ∩ N1 � Nai

1 for all 1 ≤ i ≤ m, which implies

AV1 ∩ N1 �
⋂m

i=1 N
ai
1 = 1 since G acts faithfully on V. Thus AV1 ∩ N1 = 1. Since

N1 � G1, we have 1 = (AV1 ∩N1)
g = Ag

V1
∩N1 for all g ∈ G1, but then

N1 ⊆
(
G1 \

⋃
g∈G1

Ag
V1

)
∪ {1} ⊆

(
G \

⋃
g∈G

Ag
V1

)
∪ {1} = H.

Let G1 = G1/N1 = H AV1 . Now G1 acts faithfully on V1. By Clifford’s Theorem,

V1 =
⊕t1

j=1 X1j, where theX1j’s are irreducibleH-modules. By Lemma 2.9,H is cyclic

because H is abelian. Let x ∈ H such that H = 〈x〉. Since F contains a primitive qth

root of unity, we have dimF (X1j) = 1 by Theorem 2.10 used on H. Hence x acts like a

scalar on X1j for each 1 ≤ j ≤ t1, so x acts like a scalar on V1 =
⊕t1

j=1 X1j. Since AV1

fixes V1, we have [x,AV1 ] acts trivially on V1. For if [x, a] ∈ [x,AV1 ] and v1 ∈ V1, then

v
[x,a]
1 = vx

−1a−1x a
1 = λ−1va

−1x a
1 = λ−1vx a

1 = λ−1λva1 = v1. However, G1 acts faithfully

on V1, so [x,AV1 ] = 1. Since H = 〈x〉, we have [H,AV1 ] = 1 and [H,AV1 ] � N1.

It follows from H � G and A is abelian that [H,AV1 ]
ai = [H,AV1 ] � Nai

1 for every

1 ≤ i ≤ m. Thus [H,AV1 ] �
⋂m

i=1 N
ai
1 = 1 and [H,AV1 ] = 1. Because G = HA is

a Frobenius group, we have CH(a) = 1 for all a ∈ A \ {1} by Theorem 2.11, but
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[H,AV1 ] = 1. Thus AV1 = 1 and so m = |WeddV (H)| = [A : AV1 ] = |A|, which is a

contradiction. Therefore, |WeddV (H)| = |A|.

Theorem 2.14. Let G = PQ be a group, Q be a minimal normal elementary abelian

q-group, CG(Q) = Q, and suppose P ∼= Zp for some prime p. If G acts faithfully on

a vector space V over a field F with char F /∈ {p, q}, then CV (P ) �= 0.

Proof.

Case 1: Suppose F contains a primitive qth root of unity.

Let P = 〈x〉 and use induction on dimF (V ). Since char F /∈ {p, q}, we know either

char F is relatively prime with |G| or char F = 0. By Maschke’s Theorem (2.6), G

acts completely reducibly on V . Since G acts faithfully on V , it follows that Q acts

faithfully on V . Thus there exists a nontrivial irreducible G-submodule U of V such

that Q acts nontrivially on U . Let K be the kernel of G on U . Now K � G and so

Q ∩K � G. Moreover, Q ∩K < Q since Q acts nontrivially on U . Thus Q ∩K = 1

by the minimality of Q.

Suppose k ∈ K is a q-element. By Sylow, there exists g ∈ G such that 〈k〉 � Qg,

but Qg = Q. Hence 〈k〉 � Q ∩ K = 1 and K is a p-group. Again by Sylow, there

exists g ∈ G such that K � P g. But K � G implies K = Kg−1 � P, hence K = 1

or K = P . If K = P , then P � G and [P,Q] � P ∩ Q = 1 by coprime orders. But

then P � CG(Q) = Q, which implies P = 1. This is a contradiction since P ∼= Zp.

Therefore, K = 1 and G acts faithfully on U .

If U �= V , then dimF (U) < dimF (V ), so by the induction hypothesis,

0 �= CU(P ) � CV (P ). Without loss of generality, assume U = V . Then G acts

faithfully and irreducibly on V = U. Now it follows from P ∩Q = 1 and Q � G that

1 = (P ∩Q)g = P g ∩Q for all g ∈ G. Hence

Q ⊆
(
G \

⋃
g∈G

P g

)
∪ {1}.
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If CQ(x) �= 1, then CQ(x) � PQ = G since P = 〈x〉 and Q is abelian, but CQ(x) � Q.

By the minimality of Q, we have CQ(x) = Q. Now [Q, x] = 1 and by extension,

[Q,P ] = 1. Thus P � CG(Q) = Q and P = 1, which is a contradiction. Therefore,

CQ(x) = 1.

Clearly, P � NG(P ). If there exists n ∈ NG(P ), where n is a q-element, then

[P, n] � P ∩ [P,Q] � P ∩Q = 1. Hence n ∈ CQ(P ), which implies n ∈ CQ(x) = 1 and

NG(P ) is a p-group. Thus NG(P ) � P and we have NG(P ) = P . Let g ∈ G \ P . If

P ∩P g �= 1, then P ∩P g = P , so P � P g. Hence P = P g and g ∈ NG(P ) = P , which

is a contradiction. Thus P ∩P g = 1 and P is a trivial intersection (TI) subgroup. By

Frobenius’ Theorem (2.11),
(
G \⋃

g∈G P g
)
∪ {1} � G.

Let x ∈
(
G \⋃

g∈G P g
)
∪ {1} be a p-element. If x /∈ {1}, then x ∈ G \ ⋃

g∈G P g.

Now 〈x〉 is a p-group, so by Sylow, there exists g ∈ G such that 〈x〉 � P g. Then

〈x〉 � ⋃
g∈G P g, which is a contradiction. Thus x = 1 and

(
G \⋃

g∈G P g
)
∪ {1} is a

q-group. Since Q ∈ Sylq(G), we have
(
G \⋃

g∈G P g
)
∪ {1} � Q and by Frobenius’

Theorem,
(
G \⋃

g∈G P g
)
∪ {1} � G. It follows from the minimality of Q that

Q =

(
G \

⋃
g∈G

P g

)
∪ {1}.

Thus G is a Frobenius group with kernel Q and complement P .

By Theorem 2.13, |WeddV (Q)| = |P | = p. Let WeddV (Q) = {Vi}pi=1. Since the

Vi’s are Q-invariant and G = PQ, we have P = 〈x〉 acts transitively on {Vi}pi=1. Let

V xi−1

1 = Vi for 1 ≤ i ≤ p and v1 ∈ V1 be nonzero. Since V =
⊕p

i=1 Vi, we have

{vxi−1

1 }pi=1 is linearly independent. Thus v =
∑p

i=1 v
xi−1

1 �= 0 and vx =
∑p

i=1 v
xi

1 = v,

so v ∈ CV (P ). Therefore, CV (P ) �= 0.

Case 2: Suppose F does not contain a primitive qth root of unity.

Let ω be a primitive qth root of unity, L = F (ω), and VL = V ⊗F L. Now G acts

faithfully on VL and char L /∈ {p, q}. By Case 1 on VL over L, we have CVL
(P ) �= 0.

Therefore, CV (P ) �= 0.
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3 The Transfer Homomorphism

Definition 3.1. Let G be a group, H � G, [G : H] = n, {ti}ni=1 ⊆ G such that

G =
⋃n

i=1 Hti, and suppose Hti = Htj if and only if ti = tj. The set {ti}ni=1 is called

a transversal of H in G. In addition, the set of all transversals of H in G is given

by

T = {T = {ti}ni=1 ⊆ G : T is a transversal of H in G}.

Lemma 3.1. Let G be a group, H � G, [G : H] = n, and T be the set of transversals

of H in G. Then G acts on T by T g = {tig}ni=1 for all g ∈ G and H acts on T by

T h = {hti}ni=1 for all h ∈ H.

Proof.

It is enough to show {tig}ni=1 and {hti}ni=1 are indeed transversals of H in G. Let

g ∈ G and {ti}ni=1 ∈ T . If Htig = Htjg, then Hti = Htj, but {ti}ni=1 is a transversal

of H in G. Thus ti = tj and T g = {tig}ni=1 ∈ T . Therefore, G acts on T by right

multiplication.

Let h ∈ H and {ti}ni=1 ∈ T . If Hhti = Hhtj, then Hti = Htj, but ti = tj since

{ti}ni=1 is a transversal of H in G. Therefore, T h = {hti}ni=1 ∈ T and H acts on T

by left multiplication.

Definition 3.2. Let G be a group, J � H � G, H/J be abelian, T be the set of

transversals of H in G, and suppose T, U ∈ T . Define the element T/U ∈ H/J by

T/U =
n∏

i=1

Jtiu
−1
i

where T = {ti}ni=1, U = {ui}ni=1, and tiu
−1
i ∈ H for all 1 ≤ i ≤ n.

In Definition 3.2, T/U does not represent a quotient group, but implies an operator

on T and U that is denoted T/U .
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Theorem 3.1. Let G be a group, J � H � G, H/J be abelian, [G : H] = n, and T

be the set of transversals of H in G. Then

(i) T/T = J for all T ∈ T .

(ii) T/U = (U/T )−1 for all T, U ∈ T .

(iii) T/U = T/V V/U for all T, U, V ∈ T .

Proof.

For (i), let T ∈ T . The result follows from the definition of T/T .

For (ii), let T, U ∈ T . Since H/J is abelian, we have

T/U =
n∏

i=1

Jtiu
−1
i =

n∏
i=1

J(uit
−1
i )−1 =

(
n∏

i=1

Juit
−1
i

)−1
= (U/T )−1 .

For (iii), let T, U, V ∈ T . Since H/J is abelian,

T/U =
n∏

i=1

Jtiu
−1
i =

n∏
i=1

Jtiv
−1
i viu

−1
i =

n∏
i=1

Jtiv
−1
i Jviu

−1
i

=
n∏

i=1

Jtiv
−1
i

n∏
i=1

Jviu
−1
i = T/V V/U.

Therefore, T/U = T/V V/U.

Theorem 3.2. Let G be a group, J � H � G, H/J be abelian, [G : H] = n,

T be the set of transversals of H in G, and suppose T ∈ T . Define the transfer

homomorphism, τ : G → H/J by

gτ = T g/T,

for all g ∈ G. Then for all g ∈ G, for all h ∈ H, and for all U ∈ T :

(i) T g/U g = T/U and T h/Uh = T/U .

(ii) τ is independent of T .

(iii) τ is a homomorphism.

Proof.

Let U = {ui}ni=1 ∈ T such that tiu
−1
i ∈ H for all 1 ≤ i ≤ n. For (i), let g ∈ G
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and h ∈ H. Now

T g/U g =
n∏

i=1

Jtig(uig)
−1 =

n∏
i=1

Jtigg
−1u−1i =

n∏
i=1

Jtiu
−1
i = T/U,

and since H/J is abelian,

T h/Uh =
n∏

i=1

Jhti(hui)
−1 =

n∏
i=1

Jhtiu
−1
i h−1 =

n∏
i=1

JhJtiu
−1
i Jh−1 =

n∏
i=1

Jtiu
−1
i = T/U.

Therefore, T g/U g = T/U and T h/Uh = T/U.

For (ii), it follows from Theorem 3.1, part (i), and the abelian property of H/J

that

T g/T = T g/U g U g/U U/T = T/U U g/U U/T = U g/U T/U U/T

= U g/U T/T = U g/U J

= U g/U.

Therefore, τ is independent of T .

For (iii), let x, y ∈ G. By Theorem 3.1 and part (i), we have

(xy)τ = T xy/T = T xy/T y T y/T = T x/T T y/T = xτyτ .

Therefore, τ is a homomorphism.

Theorem 3.3. Let G be a group, J � H � G, H/J be abelian, [G : H] = n, T be

the set of transversals of H in G, T = {ti}ni=1 ∈ T , τ be the transfer of G into H/J ,

and suppose gcd([G : H], [H : J ]) = 1. Then H ∩ Z(G) ∩G′ � J.

Proof.

Let h ∈ H∩Z(G)∩G′. By the First Isomorphism Theorem, G/Ker τ ∼= Gτ � H/J,

so G/Ker τ is abelian. By Theorem 1.19, G′ � Ker τ and so h ∈ Ker τ. Since

h ∈ Z(G), we have J = hτ = T h/T =
∏n

i=1 Jtiht
−1
i =

∏n
i=1 Jh = Jhn, hence hn ∈ J .

Next (Jh)n = Jhn = J , so by Lagrange, |Jh| divides n = [G : H] and |Jh| divides
[H : J ]. However, gcd([G : H], [H : J ]) = 1, which implies Jh = J and h ∈ J.

Therefore, H ∩ Z(G) ∩G′ � J.
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Lemma 3.2. Let G be a group, J � H � G, H/J be abelian, and T be the set of

transversals of H in G. Define an equivalence relation ∼ on T by T ∼ U if and only

if T/U = J for all T, U ∈ T .

Proof.

Let T, U ∈ T . Now T/T = J by Theorem 3.1(i) and so ∼ is reflexive. If T ∼ U,

then T/U = J . By Theorem 3.1(ii), U/T = (T/U)−1 = (J)−1 = J , so U ∼ T and

∼ is symmetric. Finally, if V ∈ T such that T ∼ U and U ∼ V , then by Theorem

3.1(iii), T/V = T/U U/V = J J = J . Hence T ∼ V and ∼ is transitive. Therefore,

∼ is an equivalence relation on T .

Lemma 3.3. Let G be a group, J � H � G, H/J be abelian, and T be the set of

transversals of H in G. Define Ω = {[T ] : T ∈ T } to be the set of equivalence classes

on T under the relation described in Lemma 3.2. Then

(i) G acts on Ω by [T ]g = [T g] for all g ∈ G.

(ii) H acts on Ω by [T ]h = [T h] for all h ∈ H.

Proof.

Since G and H already act on T in the prescribed manner by Lemma 3.1, it is

enough to show the action is well-defined. Let g ∈ G and suppose [T ], [U ] ∈ Ω such

that [T ]g = [U ]g. This implies T g ∼ U g if and only if T g/U g = J , which is to say if

and only if T/U = J . But this is equivalent to T ∼ U if and only if [T ] = [U ]. Thus

the action of G on Ω is well-defined.

Similarly, let h ∈ H and suppose [T ]h = [U ]h. By Theorem 3.2, T h ∼ Uh is

equivalent to T h/Uh = J if and only if T/U = J , which is to say if and only if T ∼ U ,

or, equivalently, [T ] = [U ]. Therefore, the action of H on Ω is well-defined.

46



Theorem 3.4. Let G be a group, J � H � G, H/J be abelian, [G : H] = n, T be

the set of transversals of H in G, and suppose gcd([G : H], [H : J ]) = 1. Then

(i) H acts transitively on Ω.

(ii) H[T ] = J for all T ∈ T .

Proof.

For (i), let [T ], [U ] ∈ Ω. Suppose there exists h ∈ H such that [T ]h = [U ]. It

would follow that [T h] = [U ] if and only if T h ∼ U , or, equivalently, T h/U = J. Thus

it is enough to show T h/U = J. In addition,

T h/U = T h/T T/U =
n∏

i=1

Jhtit
−1
i tiu

−1
i =

n∏
i=1

Jhtiu
−1
i =

n∏
i=1

JhJtiu
−1
i = Jhn (T/U) .

Let m = [H : J ]. Since gcd(n,m) = 1, there exist r, s ∈ Z such that rn+sm = −1.

Let h ∈ H such that Jh = (T/U)r . Then

Jhn (T/U) = (T/U)rn (T/U) = (T/U)rn+1 = (T/U)−sm = J,

and H acts transitively on Ω.

For (ii), let [T ] ∈ Ω and j ∈ J. Now

T j/T =
n∏

i=1

Jjtit
−1
i =

n∏
i=1

Jj =
n∏

i=1

J = J,

which implies T j ∼ T , but this is equivalent to [T j] = [T ]. Hence [T ]j = [T ] and

J � H[T ]. Conversely, let h ∈ H[T ]. Now [T ]h = [T ] implies T h/T = J, but

J = T h/T =
n∏

i=1

Jhtit
−1
i =

n∏
i=1

Jh = Jhn

and so hn ∈ J. Let H = H/J. Then 1 = hn = h
n
, so |h| divides n = [G : H]. Also,

|h| divides [H : J ], but gcd([G : H], [H : J ]) = 1. Thus h = 1 and h ∈ J . This implies

H[T ] � J , so H[T ] = J.
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4 Normal p-Complement Theorems

Definition 4.1. Let G be a group and J � H � G. Then

(i) G splits over H if there exists K � G such that G = HK and H ∩K = 1.

(ii) G splits normally over H if there exists K � G such that G = HK and

H ∩K = 1.

(iii) G splits over H/J if there exists K � G such that G = HK and H ∩K = J.

(iv) G splits normally over H/J if there exists K � G such that G = HK and

H ∩K = J.

In (i) and (ii), we call K a complement and a normal complement of H in

G, respectively.

Definition 4.2. Let G be a group and P ∈ Sylp(G). If there exists K � G such that

G = PK and P ∩K = 1, then we call K a normal p-complement.

Lemma 4.1. Let G be a group and P ∈ Sylp(G). Then G has a normal p-complement

if and only if G = POp′(G).

Proof.

Suppose G has a normal p-complement. Now there exists K � G such that

G = PK and P ∩K = 1. In addition,

|K| = |K|
1

=
|K|

|P ∩K| =
|PK|
|P | =

|G|
|P | ,

and so K is a p′-group. Thus K � Op′(G) and G = PK = POp′(G). Conversely,

suppose G = POp′(G). Then Op′(G) � G and P ∩ Op′(G) = 1 by coprime orders.

Therefore, G has a normal p-complement.

Lemma 4.2. Let G be a group, P ∈ Sylp(G), and P � H � G. If G has a normal

p-complement, then H has a normal p-complement.

48



Proof.

By hypothesis, G = POp′(G) and Op′(G) ∩H � H is a p′-subgroup. Thus

Op′(G) ∩H � Op′(H). Now

H = H ∩G = H ∩ POp′(G) = P (H ∩ Op′(G)) � POp′(H) � H.

Therefore, H = POp′(H) and H has a normal p-complement.

Lemma 4.3. Let G be a group and N � G. If G has a normal p-complement, then

G/N has a normal p-complement.

Proof.

Let G = G/N and P ∈ Sylp(G). By hypothesis, G = POp′(G). Furthermore,

P ∈ Sylp(G) and G = P Op′(G). Since Op′(G) is a normal p′-group, we have

Op′(G) � Op′(G). Thus G = POp′(G) and G has a normal p-complement.

Lemma 4.4. Let G be a group and N � G be a p′-subgroup. If G/N has a normal

p-complement, then G has a normal p-complement.

Proof.

Let P ∈ Sylp(G) and G = G/N. Now P ∈ Sylp(G) and G = POp′(G). Since

Op′(G) � G is a p′-subgroup, we have Op′(G) � G is a p′-subgroup. Thus

Op′(G) � Op′(G). Let U = Op′(G). We then have U � G and

|U | = |U |
|N | · |N | = |U ||N |,

so U is a p′-group. Hence U � Op′(G), which implies Op′(G) = U � Op′(G). It follows

that Op′(G) = Op′(G) and G = P Op′(G). Consequently, G = POp′(G)N = POp′(G)

and G has a normal p-complement.

4.1 Burnside’s Normal p-Complement Theorem

Since the transfer homomorphism is independent of the transversal chosen, we may

choose T ∈ T in a special manner. Under the hypothesis of Theorem 3.2, we have
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〈g〉 acts on S = {Hx : x ∈ G} by right multiplication. Then S =
⋃s

i=1 Oi, where

Oi = {Hxi, Hxig,Hxig
2, . . . , Hxig

ni−1}, ni ∈ N, and xig
nix−1i ∈ H for each 1 ≤ i ≤ s.

If T = {xig
r : 1 ≤ i ≤ s, 0 ≤ r ≤ ni − 1}, then T g = {xig

r : 1 ≤ i ≤ s, 1 ≤ r ≤ ni}
and gτ = T g/T =

∏s
i=1 Jxig

ni(xig
ni−1)−1 =

∏s
i=1 Jxigx

−1
i , where xig

nix−1i ∈ H for

1 ≤ i ≤ s and
∑s

i=1 ni = n = [G : H].

Theorem 4.1. Let G be a group, J � H � G, H/J be abelian, [G : H] = n, T

be the set of transversals of H in G, τ be the transfer of G into H/J , and suppose

gcd([G : H], [H : J ]) = 1. Then the following are equivalent:

(i) G splits normally over H/J .

(ii) Whenever h1, h2 ∈ H are fused in G, it follows that Jh1 = Jh2.

(iii) For all h ∈ H, hτ = Jhn.

(iv) If T ∈ T , then H acting on T from the left is equivalent to H acting on T from

the right.

Proof.

Suppose G splits normally over H/J. Now there exists K � G such that G = HK

and H ∩K = J. Let h ∈ H and g ∈ G such that hg ∈ H. Since G = HK, let g = h1k.

Then hg = hh1k = (hh1)k = hk
2, where h2 = hh1 . Now [h−12 , k] = h2(h

k
2)
−1 ∈ H, but

simultaneously, [h−12 , k] = (k−1)h
−1
2 k ∈ K. Thus [h−12 , k] ∈ H ∩K = J , which implies

Jh2 = Jhk
2. Therefore,

Jhg = Jhh1k = Jhk
2 = Jh2 = Jhh1 = (Jh)Jh1 = Jh,

since H/J is abelian.

Suppose whenever h1, h2 ∈ H are fused in G, we have Jh1 = Jh2. Let h ∈ H and

s ∈ N be the number of orbits of 〈h〉 on {hx : x ∈ G}. Thus

hτ =
s∏

i=1

Jxih
nix−1i =

s∏
i=1

J(hni)x
−1
i =

s∏
i=1

Jhni = Jh
∑s

i=1 ni = Jhn,

since
(
(hni)x

−1
i

)xi

= hni for 1 ≤ i ≤ s.
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Suppose for all h ∈ H, we have hτ = Jhn. Let h ∈ H and T ∈ T . For the sake of

clarity, we will briefly use the traditional notation of actions. From our assumption,

hT/Th = hT/T T/Th = hT/T (Th/T )−1 =
n∏

i=1

Jhtit
−1
i (hτ )−1

=
n∏

i=1

Jh(Jhn)−1 = Jhn(Jhn)−1 = J.

Therefore, hT ∼ Th.

Let T ∈ T . By Theorem 3.4, H acts transitively on Ω from the left. Since

hT ∼ Th for all h ∈ H, we have H acts transitively on Ω from the right. It follows

from Theorem 1.7 that G = G[T ]H. Moreover, H ∩G[T ] = H[T ] = J by Theorem 3.4,

thus G splits over H/J. Now g ∈ G[T ] if and only if [T ]g = [T ], which is to say if

and only if [T ]g = [T ]. This is equivalent to T g ∼ T , which is to say if and only if

J = T g/T = gτ , or, equivalently, g ∈ Ker τ. Hence G[T ] = Ker τ � G. Therefore,

G splits normally over H/J.

Theorem 4.2 (Burnside). Let G be a group, P ∈ Sylp(G), and suppose x, y ∈ CG(P )

such that x and y are fused in G. Then x and y are fused in NG(P ).

Proof.

By hypothesis, there exists g ∈ G such that xg = y. Since x, y ∈ CG(P ), we have

P � CG(x) ∩ CG(y) and P g � CG(x)
g = CG(x

g) = CG(y). Thus P � CG(y) and

P g � CG(y). It follows that P, P g ∈ Sylp(CG(y)). By Sylow, there exists c ∈ CG(y)

such that P gc = P. But then gc ∈ NG(P ) and xgc = yc = y. Therefore, x and y are

fused in NG(P ).

Definition 4.3. Let G be a group and π be a set of primes. Define the following:

(i) The πth-part of G is |G|π =
∏

p∈π |G|p.
(ii) H is a Hall π-subgroup of G if π(H) ⊆ π and π (G/H) ⊆ π′.

(iii) Hallπ(G) = {H � G : H is a Hall π-subgroup}.
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Lemma 4.5. Let G be a group, H ∈ Hallπ(G), and N � G. Then

(i) HN/N ∈ Hallπ (G/N) .

(ii) H ∩N ∈ Hallπ(N).

Proof.

For (i), since H ∩N � H ∈ Hallπ(G), we have∣∣∣∣HN

N

∣∣∣∣ = |HN |
|N | =

|H||N |
|H ∩N ||N | =

|H|
|H ∩N | .

Hence HN/N is a π-group. Since H ∈ Hallπ(G), we have by Lagrange,

|G/N |
|HN/N | =

|G|/|N |
|HN |/|N | =

|G|
|HN | =

|G|
|H| ·

|H|
|HN | =

|G|/|H|
|HN |/|H| ,

so [G/N : HN/N ] is a π′-number. Therefore, HN/N ∈ Hallπ (G/N) .

For (ii), H ∩N is a π-group because H ∈ Hallπ(G). Moreover,

|N |
|H ∩N | =

|HN |
|H| ,

and it follows that [N : H ∩N ] is a π′-number. Therefore, H ∩N ∈ Hallπ(N).

Lemma 4.6. Let G be a group and H ∈ Hallπ(G). If H � G, then H char G.

Proof.

Let x ∈ G be a π-element. Since |Hx| divides |x|, we have Hx is a π-element.

Then Hx = 1 since G/H is a π′-group, so x ∈ H. Thus H must contain all π-elements

of G. Now let h ∈ H and φ ∈ Aut(G). Since h is a π-element, it follows that hφ is a

π-element. By the above, hφ ∈ H and Hφ � H. Therefore, H char G.

Theorem 4.3 (Hall). Let G be a solvable group and π be a set of primes. Then

(i) Hallπ(G) �= ∅.
(ii) If K is a π-subgroup of G and M ∈ Hallπ(G), there exists g ∈ G such that

K � M g.

Proof.

Let G be a counterexample such that |G| is minimal, N be a nontrivial minimal
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normal subgroup of G, and G = G/N. It follows from Theorem 1.22 that N is an

elementary abelian p-group for some prime p.

Case 1: p ∈ π.

Since G is solvable, we have G is solvable. By the minimality of |G|, there exists

H ∈ Hallπ(G). Now

|H| = |H|
|N | · |N | = |H||N |,

so H is a π-group. In addition, [G : H] = [G : H] and so [G : H] is a π′-number since

H ∈ Hallπ(G). Therefore, H ∈ Hallπ(G).

Let K � G be a π-subgroup and M ∈ Hallπ(G). Clearly, K � G is a π-subgroup

and by Lemma 4.5, M ∈ Hallπ(G). By the minimality of |G|, there exists g ∈ G such

that K � M
g
= M g, so K � M gN. Since M g � M gN � G and |M g| = |M |, we have

M g ∈ Hallπ(G). By Lemma 4.5, M g ∩N ∈ Hallπ(N) and

|M gN |
|M g| =

|N |
|M g ∩N | .

However, N is a p-group, thus [N : M g ∩ N ] = 1 and M gN = M g. This implies

K � M g, which is a contradiction.

Case 2: p /∈ π and G has no minimal normal π-subgroups.

Let H ∈ Hallπ(G). If H < G, then H is solvable by Lemma 1.25, so by the

minimality of |G|, there exists H1 ∈ Hallπ(H). Furthermore, H1 is a π-group and

|G|
|H1| =

|G|
|H| ·

|H|
|H1| =

|G|
|H| ·

|H|
|H1| .

Thus H1 ∈ Hallπ(G).

Suppose K � G is a π-subgroup and let M ∈ Hallπ(G). Now K is a π-group and

M ∈ Hallπ(G) by Lemma 4.5. By the minimality of |G|, there exists g ∈ G such that

K � M
g
= M g and K � M gN. Now |M g| = |M | = |H| and so |M gN | = |H| < |G|.

Since K � M gN and M g ∈ Hallπ(M
gN), we have from the minimality of |G| that

there exists g1 ∈ M gN such that K � M gg1 . However, this is a contradiction.
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If G = H, then G = H and G is a π-group. Let 1 �= R be a minimal normal

subgroup of G. By Theorem 1.22, R is an elementary abelian q-group for some q ∈ π.

Then R � G and R is a pq-group. Let Q ∈ Sylq(R). By Lemma 1.8, Q ∈ Sylq(R),

but R is a q-group. Thus Q = R and R = QN. By the Frattini Argument,

G = NG(Q)R = NG(Q)QN = NG(Q)N. Since G has no normal π-subgroups,

NG(Q) < G. Now NG(Q) is solvable, so there exists N1 ∈ Hallπ(NG(Q)) by the

minimality of |G|. Also, N1 is a π-group and

|G|
|N1| =

|G|
|NG(Q)| ·

|NG(Q)|
|N1| =

|NG(Q)N |
|NG(Q)| · |NG(Q)|

|N1| =
|N |

|N ∩NG(Q)| ·
|NG(Q)|
|N1| .

Thus N1 ∈ Hallπ(G) and Hallπ(G) �= ∅.
Let K � G be a π-subgroup and M ∈ Hallπ(G). Now M ∈ Hallπ(G),

|M | = |H| = |G|, and G = MN. Suppose |K| = |M |. Since R � G, we have

K ∩ R,M ∩ R ∈ Sylq(R) by Lemma 1.8. By Sylow, there exists r ∈ R such that

K ∩R = (M ∩R)r = M r ∩Rr = M r ∩R. Also, K � NG(K ∩R) = NG(M
r ∩R) = N2

and M r � NG(M
r ∩ R) = N2. Now K � N2 is a π-subgroup, M r ∈ Hallπ(N2) since

|M r| = |M |, and N2 < G since G has no normal π-subgroups. By the minimality of

|G|, there exists n ∈ N2 such that K � M rn, which is a contradiction.

If |K| < |M |, then K ∩N � M ∩N = 1 by coprime orders. This implies

|KN | < |MN | = |G|. Furthermore, K � KN is a π-subgroup and KN is solvable.

In addition, M ∩KN ≤ M is a π-subgroup and

|KN |
|M ∩KN | =

|KNM |
|M | =

|KG|
|M | =

|G|
|M | ,

hence M ∩ KN ∈ Hallπ(KN). By the minimality of |G|, there exists g2 ∈ KN

such that K � (M ∩ KN)g2 � M g2 , which is a contradiction. Therefore, no such

counterexample G exists.

Theorem 4.4. Let G be a group and A ∈ Hallπ(G) such that A is abelian. Then

G splits normally over A if and only if whenever a1, a2 ∈ A such that a1 and a2 are

fused in G, it follows that a1 = a2.
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Proof.

Now {1} � A � G and A/{1} ∼= A is abelian. Since A ∈ Hallπ(G), we have

gcd([G : A], [A : {1}]) = 1. By Theorem 4.1, G splits normally over A if and only if

G splits normally over A/{1}, which is to say, whenever a1, a2 ∈ A such that a1 and

a2 are fused in G, it follows that {1}a1 = {1}a2, or, equivalently, a1 = a2.

Theorem 4.5 (Burnside’s Normal p-Complement Theorem). Let G be a group and

P ∈ Sylp(G) such that P � Z(NG(P )). Then G has a normal p-complement.

Proof.

Since P � Z(NG(P )), we know P is abelian and P ∈ Hallπ(G), where π = {p}.
By Theorem 4.4, it is enough to show whenever a1, a2 ∈ P such that a1 ∼G a2, it

follows that a1 = a2. Let x, y ∈ P such that x ∼G y. Now x, y ∈ CG(P ), so by

Burnside’s Theorem (4.2), there exists n ∈ NG(P ) such that x = yn. But

y ∈ P � Z(NG(P )), so x = yn = y. Therefore, G has a normal p-complement.

Theorem 4.6. Let G be a group, A ∈ Hallπ(G) such that A is abelian and A � G.

Then G splits over A and G acts transitively on the complements of A in G.

Proof.

Now {1} � A � G and A/{1} ∼= A is abelian. Since A ∈ Hallπ(G), we have

gcd([G : A], [A : {1}]) = 1. Also, G acts on Ω from the left since A � G. By Theorem

3.4, A acts transitively on Ω = {[T ] : T ∈ T }, so G = G[T ]A by Theorem 1.7. In

addition, A ∩G[T ] = A[T ] = 1 by Theorem 3.4. Thus G splits over A.

Suppose there exists K � G such that G = AK and A∩K = 1. We want to show

K is conjugate to G[T ]. By the Second Isomorphism Theorem, we have

|K| = |K|
1

=
|K|

|A ∩K| =
|AK|
|A| =

|G|
|A| . (2)

If there exist k1, k2 ∈ K such that Ak1 = Ak2, then k1k
−1
2 ∈ A ∩K = 1 and k1 = k2.

Thus K ∈ T and [K] ∈ Ω. Since A acts transitively on Ω, there exists a ∈ A such
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that [T ]a = [K]. It follows from K � G[K] that K
a−1 � Ga−1

[K] = G[K]a−1 = G[T ], and

by (2),

|K| = |Ka−1 | ≤ |G[T ]| =
|G[T ]|

|A ∩G[T ]| =
|AG[T ]|
|A| =

|G|
|A| = |K|.

Thus |Ka−1 | = |G[T ]|, so Ka−1
= G[T ]. Therefore, K and G[T ] are conjugate.

Theorem 4.7 (Schur-Zassenhaus Part 1). Let G be a group and H ∈ Hallπ(G). If

H � G, then G splits over H.

Proof.

Use induction on |G| and let P ∈ Sylp(H). By the Frattini Argument,

G = NG(P )H. Let N = NG(P ) and suppose N < G. It then follows H ∩ N � N ,

H ∩N is a π-group, and

|N |
|H ∩N | =

|NH|
|H| =

|G|
|H| .

Thus H ∩N ∈ Hallπ(N). By the induction hypothesis, N splits over H ∩N, so there

exists K � N such that N = K(H ∩N) and K ∩ (H ∩N) = 1. Moreover,

G = NH = K(H ∩ N)H = KH and K ∩H � K ∩H ∩ N = 1. Therefore, G splits

over H.

If N = NG(P ) = G, then P � G. Now Z(P ) char P � G, so Z(P ) � G by Lemma

1.12. Since P is a p-group, we have Z(P ) �= 1 by Lemma 1.9. Let G = G/Z(P ).

Now H ∈ Hallπ(G) by Lemma 4.5, and H � G. Since |G| < |G|, we have G splits

over H by induction. Then there exists K � G such that G = KH and K ∩H = 1.

Consequently, G = KHZ(P ) = KZ(P )H = KH and K ∩ H � Z(P ). Now by the

Second Isomorphism Theorem,

|K| = |K|
|H ∩K| =

|HK|
|H| =

|G|
|H| ,

so K is a π′-group; however, Z(P ) is a π-group. Hence Z(P ) ∈ Hallπ(K) and

Z(P ) � P � H. Moreover, Z(P ) � K and Z(P ) is abelian. By Theorem 4.6, K

splits over Z(P ), which implies there exists K0 � K such that K = K0Z(P ) and
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K0 ∩ Z(P ) = 1. Thus G = HK = HK0Z(P ) = HK0 and

H ∩K0 � K ∩H ∩K0 � Z(P ) ∩K0 = 1.

Therefore, G splits over H.

Theorem 4.8 (Schur-Zassenhaus Part 2). Let G be a group, H ∈ Hallπ(G), H � G,

and suppose either H is solvable or G/H is solvable. Then G splits over H and G

acts transitively on the complements of H in G.

Proof.

Use induction on |G|. By Schur-Zassenhaus Part 1, G splits over H. Suppose

K1 � G and K2 � G, where G = HKi and H ∩Ki = 1 for 1 ≤ i ≤ 2.

Case 1: Suppose H is solvable.

Since H ′ char H � G, it follows from Lemma 1.12 that H ′ � G. If H ′ = 1, then

H is abelian and the result follows from Theorem 4.6. Without loss of generality,

assume H ′ �= 1 and let G = G/H ′. Now G = HKi, H ∩Ki = 1 for 1 ≤ i ≤ 2, H � G,

and by Lemma 4.5, H ∈ Hallπ(G).

By the induction hypothesis, there exists g ∈ G such that K2 = K1
g
= Kg

1 , so

Kg
1H

′ = K2H
′. Since H is solvable, we have H ′ < H and so K2H

′ < K2H = G.

Furthermore, K2 ∩H ′ � K2 ∩H = 1 and

Kg
1 ∩H ′ = Kg

1 ∩H ′g = (K1 ∩H ′)g � (K1 ∩H)g = 1.

Now H ′ � K2H
′ and H ′ is a π-group. Moreover, since H ∈ Hallπ(G) and

|K2H
′|

|H ′| =
|K2|

|K2 ∩H ′| = |K2| = |K2|
|H ∩K2| =

|K2H|
|H| =

|G|
|H| ,

we have H ′ ∈ Hallπ(K2H
′). By induction, there exists g1 ∈ K2H

′ such that

Kgg1
1 = K2. Therefore, G acts transitively on the complements of H.
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Case 2: Suppose G/H is solvable.

Let R/H be a minimal normal subgroup of G/H. Since G/H is solvable, we have

R/H is an elementary abelian p-group by Theorem 1.22. Now

|R| = |R|
|H| · |H|,

so R is a pπ-group. Since H ∈ Hallπ(G), we have G/H is a π′-group, which implies

p /∈ π. In addition, for 1 ≤ i ≤ 2,

|Ki| = |Ki|
|H ∩Ki| =

|HKi|
|H| =

|G|
|H|

and so K1 and K2 are π
′-groups. By Lemma 1.8, K1 ∩R,K2 ∩R ∈ Sylp(R) and from

Sylow, there exists r ∈ R such that K2 ∩ R = (K1 ∩ R)r = Kr
1 ∩ R. Since R � G, it

follows that Kr
1 ∩R � Kr

1 and K2 ∩R � K2. Thus K
r
1 � NG(K

r
1 ∩R) = NG(K2 ∩R)

and K2 � NG(K2 ∩R).

Let N = NG(K2 ∩R) and N = N/K2 ∩R. By Lemma 1.2,

N = N ∩G = N ∩HK2 = N(K2 ∩R) ∩HK2 = N ∩HK2 = (N ∩H)K2,

and similarly, N = N ∩G = N ∩HKr
1 = N ∩HKr

1 = (N ∩H)Kr
1 . Also,

(N ∩H) ∩K2 = N ∩H ∩K2 = N ∩H ∩K2 � H ∩K2 = 1,

and similarly, N ∩H ∩Kr
1 = 1. Since H � G, we have H ∩ N � N and by Lemma

1.2, H ∩N = H ∩N � N . By the Third Isomorphism Theorem,

N

H ∩N
=

N

H ∩N
∼= N

(H ∩N)(K2 ∩R)
∼=

N

H ∩N
(H ∩N)(K2 ∩R)

H ∩N

,

however, N/H∩N ∼= NH/H � G/H and G/H is a solvable π′-group. Thus N/H∩N
is a solvable π′-group and H ∩N ∈ Hallπ(N). By induction, there exists n ∈ N such

that K2 = Kr
1

n
= Krn

1 and K2 = K2(K2 ∩R) = Krn
1 (K2 ∩R). Now n ∈ NG(K2 ∩R)

and K2 ∩ R = Kr
1 ∩ R � Kr

1 , which implies K2 ∩ R = (K2 ∩ R)n � Krn
1 . Therefore,

Krn
1 = K2 and G acts transitively on the complements of H in G.
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Theorem 4.9. Let G be a π-group and A � Aut(G) be a π′-subgroup such that either

G or A is solvable. Then for each p ∈ π(G), there exists P ∈ Sylp(G) such that P is

A-invariant.

Proof.

Let G∗ = G �id A and P ∈ Sylp(G). Now G � G∗, so by the Frattini Argument,

G∗ = NG∗(P )G. Let N = NG∗(P ). By Theorem 1.23, G∗/G = AG/G ∼= A/A∩G ∼= A,

so G∗/G is a π′-group. Hence G ∈ Hallπ(G
∗). Now G ∩N � N and

N/N ∩ G ∼= NG/G � G∗/G ∼= A, which implies G ∩ N ∈ Hallπ(N). Since G or

A is solvable, N ∩ G or N/N ∩ G is solvable, respectively. By Schur-Zassenhaus

Part 1, N splits over N ∩ G. Hence there exists B � N such that N = B(N ∩ G)

and B ∩ (N ∩ G) = 1. Again, since G or A is solvable, G or G∗/G is solvable,

respectively. By Schur-Zassenhaus Part 2, G∗ splits over G and G∗ acts transitively

on the complements of G in G∗. By Theorem 1.23, G∗ = AG, A ∩G = 1, and A is a

complement of G. Furthermore, G∗ = NG = B(N ∩G)G = BG and

B ∩G = B ∩N ∩G = 1. Thus B is a complement of G. Since G∗ = AG, there exists

g ∈ G such that A = Bg � N g = NG∗(P )g = NG∗(P
g). Therefore, P g ∈ Sylp(G) and

P g is A-invariant.

4.2 The Focal Subgroup

Definition 4.4. Let G be a group and H � G. The Focal Subgroup of H in G is

FocG(H) = 〈[h, g] : h ∈ H, g ∈ G, [h, g] ∈ H〉.

Equivalently, we may write

FocG(H) = 〈h−11 h2 : h1, h2 ∈ H, h1 ∼G h2〉 = 〈h1h
−1
2 : h1, h2 ∈ H, h1 ∼G h2〉.

Moreover, H ′ � FocG(H) � H.
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If there is no fusion in G of H, then FocG(H) = H ′, so [FocG(H) : H ′] measures

the amount of fusion of H in G.

Theorem 4.10. Let G be a group and H � G such that gcd([G : H], [H : H ′]) = 1.

Then FocG(H) = G′ ∩H and G splits normally over

H

G′ ∩H
=

H

FocG(H)
.

Proof.

Let J = FocG(H). Then H ′ � J � H and so H/J is abelian by Theorem 1.19.

Now [H : J ] · [J : H ′] = [H : H ′], so [H : J ] divides [H : H ′], which implies

gcd([G : H], [H : J ]) = 1. Let h1, h2 ∈ H such that h1 ∼G h2. Now

h1h
−1
2 ∈ FocG(H) = J and so Jh1 = Jh2. By Theorem 4.1, G splits normally over

H/J. Hence there exists K � G such that G = HK and H ∩K = J. Also,

G

K
=

HK

K
∼= H

H ∩K
=

H

J
,

and G/K is abelian, which implies G′ � K by Theorem 1.19. Then

J � G′ ∩H � K ∩H = J and we have FocG(H) = J = G′ ∩H. Therefore, G splits

normally over H/FocG(H) = H/G′ ∩H.

Theorem 4.11 (The Focal Subgroup Theorem). Let G be a group and P ∈ Sylp(G).

Then FocG(P ) = G′ ∩ P.

Proof.

Since P ∈ Sylp(G), we have gcd([G : P ], [P : P ′]) = 1. By Theorem 4.10,

FocG(P ) = G′ ∩ P.

Definition 4.5. Let G be a group and p ∈ π(G). Define the subgroup generated by

all Sylow p′-subgroups of G by

Op(G) = 〈Q ∈ Sylq(G) : q �= p〉.
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Lemma 4.7. Let G be a group and P ∈ Sylp(G). Then

(i) Op(G) � G.

(ii) G = Op(G)P .

(iii) G/Op(G) is a p-group.

(iv) If G is abelian, then Op(G) is a p′-group.

(v) If N � G and G = G/N, then Op(G) = Op(G).

Proof.

For (i), let Q ∈ Sylq(G) such that q �= p and g ∈ G. Now |Qg| = |Q| = |G|q and

so Qg ∈ Sylq(G). Therefore, Qg � Op(G) and Op(G) � G.

For (ii), let q ∈ π(G) and suppose |G|q = qn for some n ∈ N. If q = p, then

pn = |P | divides |Op(G)P |. If q �= p, let Q ∈ Sylq(G). Then qn = |G|q = |Q|, but
Q � Op(G)P . Thus qn = |Q| divides |Op(G)P |, but then |G| divides |Op(G)P |.
Therefore, G = Op(G)P.

For (iii), let G = G/Op(G) and Q ∈ Sylq(G), where q �= p. Then Q ∈ Sylq(G),

but Q � Op(G), hence Q = 1. Therefore, q /∈ π(G) and G is a p-group.

For (iv), since G is abelian, we have H � G for all H � G. Thus

Op(G) =
∏

Q∈SG
q
Q, where q �= p and |Op(G)| = ∏

Q∈SG
q
|Q|, where q �= p. Therefore,

Op(G) is a p′-group.

For (v), let Q ∈ Sylq(G) such that q �= p. Then Q ∈ Sylq(G) and Q � Op(G).

Thus Op(G) � Op(G). Conversely, let Q ∈ Sylq(G). Now Q � G, but Q is not

necessarily a q-group. Let Q0 ∈ Sylq(Q). Then Q0 ∈ Sylq(Q) and Q0 = Q, or,

equivalently, Q = Q0N. By Sylow, we have Q0 � Op(G). Thus Q = Q0 � Op(G) and

Op(G) � Op(G). Therefore, Op(G) = Op(G).

Definition 4.6. Let G be a group and p ∈ π(G). Then G/G′Op(G) is an abelian

p-group. We call this quotient the p-residual of G.
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Theorem 4.12. Let G be a group and P ∈ Sylp(G). Then

G

G′Op(G)
∼= P

P ∩G′
.

Proof.

Let G = G/G′ and R = G′Op(G). By Lemma 4.7(ii), G = POp(G) = PG′Op(G)

and so G = P R. Now P ∩ R = P ∩ G′Op(G) = P ∩ Op(G) = P ∩ Op(G) and G is

abelian. It follows from Lemma 4.7(iv) that Op(G) is a p′-group, so P ∩ Op(G) = 1.

Therefore, by the Second and Third Isomorphism Theorems,

G

G′Op(G)
=

G

R
∼= G

R
=

P R

R
∼= P

P ∩R
=

P

{1}
∼= P =

PG′

G′
∼= P

P ∩G′
.

Theorem 4.13. Let G be a group and P ∈ Sylp(G) such that P is abelian. Then

G

Op(G)
∼= NG(P )

Op(NG(P ))
.

Proof.

Let H = NG(P ). By Lemma 4.7(ii), G = Op(G)P , so by the Second Isomorphism

Theorem,

G

Op(G)
=

Op(G)P

Op(G)
∼= P

P ∩ Op(G)
.

Since P is abelian, P/P ∩ Op(G) is abelian and by the above, G/Op(G) is abelian.

Hence G′ � Op(G) and G/Op(G) is the p-residual of G. By a similar argument, since

P ∈ Sylp(H), we have H = Op(H)P and H/Op(H) is the p-residual of H.

Clearly, FocH(P ) � FocG(P ). Let x1, x2 ∈ P such that x1 ∼G x2. Since P is

abelian, we know x1, x2 ∈ CG(P ). It follows from Burnside’s Theorem that

x1 ∼H x2, hence x1x
−1
2 ∈ FocH(P ). Now we have FocG(P ) � FocH(P ), so

FocG(P ) = FocH(P ). By Theorem 4.12 and the Focal Subgroup Theorem (4.11),

G

Op(G)
∼= P

P ∩G′
=

P

FocG(P )
=

P

FocH(P )
=

P

P ∩H ′
∼= H

Op(H)
=

NG(P )

Op(NG(P ))
.
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Theorem 4.14. Let G be a group, P ∈ Sylp(G), P be abelian, and suppose P � G.

If Q is a p-complement of G and G = Op(G), then NG(Q) = Q.

Proof.

Let R = NG(Q) and P0 = P ∩R. Suppose there exists Q � G such that G = PQ

and P ∩Q = 1. Now Q is a p′-group since

|Q| = |Q|
|P ∩Q| =

|PQ|
|P | =

|G|
|P | .

Moreover, Q � R, P0 � R, and [P0, Q] � P0 ∩ Q = 1 by coprime orders. Thus

G = PQ � CG(P0) and G = CG(P0). Therefore, P0 � Z(G).

Let G = G/G′. Now G is abelian and Op(G) is a p′-group by Lemma 4.7. However,

G = Op(G) implies G = Op(G) = Op(G) is a p′-group. Thus p /∈ π(G), so

|G|p = |G′|p. By Sylow, P � G′ since P � G. Furthermore, we have {1} � P � G,

P/{1} ∼= P is abelian, and gcd([G : P ], [P : {1}]) = 1. By Theorem 3.3,

P0 � Z(G) ∩G′ ∩ P = 1. Therefore,

NG(Q) = R = R ∩G = R ∩ PQ = (R ∩ P )Q = P0Q = Q.

Theorem 4.15. Let G be a group, J � H � G, H/J be nilpotent, and suppose

gcd([G : H], [H : J ]) = 1. Then the following are equivalent:

(i) G splits normally over H/J.

(ii) Whenever h1, h2 ∈ H are fused in G, it follows Jh1 and Jh2 are fused in H/J.

Proof.

Suppose G splits normally over H/J . Then the result follows from Theorem 4.1.

To show the remaining implication, use induction on [H : J ]. Let H = H/J and

Z(H) = J1. Now J1 � H and J � J1 � H � G. Furthermore, H/J1 ∼= H/J1 implies

H/J1 is nilpotent, and since [H : J1] divides [H : J ], it follows that the

gcd([G : H], [H : J1]) = 1. If there exist h1, h2 ∈ H such that h1 ∼G h2, then by

assumption, h1 ∼H h2. This implies there exists h ∈ H such that h2 = h1
h
= hh

1 . But

then hh
1h
−1
2 ∈ J � J1, so J1h

h
1 ∼H/J1 J1h2.
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If [H : J ] = [H : J1], then |J | = |J1| and [J : J1] = 1. Hence Z(H) = J1 = 1, but

H is nilpotent. This implies H = Z(H) = 1, so H is abelian and the result follows

from Theorem 4.1. Without loss of generality, assume [H : J1] < [H : J ]. By the

induction hypothesis, G splits normally over H/J1, so there exists K1 � G such that

G = HK1 and H ∩K1 = J1. Now

G

K1

=
HK1

K1

∼= H

H ∩K1

=
H

J1
,

and J � J1 � K1. Moreover, J1 = Z(H) is abelian, |J1| divides |H|,
|G|
|H| =

|G|
|K1| ·

|K1|
|H| =

|H||K1|
|H ∩K1||K1| ·

|K1|
|H| =

|H|
|J1| ·

|K1|
|H| =

|K1|
|J1| , (3)

and gcd([G : H], [H : J ]) = 1. Consequently, gcd([J1 : J ], [K1 : J1]) = 1.

Suppose x1, x2 ∈ J1 such that x1 ∼K1 x2. By hypothesis, x1 ∼H x2. Since

x1, x2 ∈ J1, we have x1 = x2 and x1 ∼J1
x2. Now [J1 : J ] < [H : J ]; otherwise, H is

abelian and the result follows from Theorem 4.1. By induction on J � J1 � K1, K1

splits normally over J1, so there exists K � K1 such that K1 = KJ1 and K ∩ J1 = J.

Then HK = HJ1K = HK1 = G and J � H ∩ K = H ∩ K1 ∩ K = J1 ∩ K1 = J .

Therefore, G splits over H.

Let h ∈ H. Now J � K � K1 � G implies J = Jh � Kh � Kh
1 = K1, and so

J � K ∩ Kh. By the Second Isomorphism Theorem, KhK/K ∼= Kh/Kh ∩ K and

[KhK : K] = [Kh : Kh ∩K]. Now [KhK : K] divides [K1 : K], but

|K1|
|K| =

|KJ1|
|K| =

|J1|
|K ∩ J1| =

|J1|
|J | ,

where [J1 : J ] divides [H : J ]. Thus [KhK : K] divides [H : J ]. Because J � K ∩Kh,

[KhK : K] = [Kh : K ∩Kh] divides [Kh : J ] and by (3),

|Kh|
|J | =

|K|
|J | =

|K|
|K ∩ J1| =

|KJ1|
|J1| =

|K1|
|J1| =

|G|
|H| .

Thus [KhK : K] is a common divisor of [G : H] and [H : J ], so [KhK : K] = 1 and

Kh � K. It follows that Kh = K and K � HK = G. Therefore, G splits normally

over H.
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4.3 Frobenius’ Normal p-Complement Theorem

Theorem 4.16. Let G be a group, P ∈ Sylp(G), and suppose NG(Q)/CG(Q) is a

p-group for all Q � P. If P ∗ ∈ Sylp(G) and x ∈ P ∩ P ∗, then there exists y ∈ CG(x)

such that P ∗ = P y.

Proof.

Let Q = P ∩ P ∗, x ∈ Q, and proceed by induction on [P : Q]. If [P : Q] = 1,

then P = Q = P ∩ P ∗, so P � P ∗ and P = P ∗. Thus we may chose 1 ∈ CG(x),

where P 1 = P = P ∗. Assume Q < P and Q < P ∗. Since P is a p-group, we have P is

nilpotent and Q < NP (Q) � NG(Q) by Lemma 1.16. Now NP (Q) is a p-group, so by

Sylow, there exists Q1 ∈ Sylp(NG(Q)) such that NP (Q) � Q1. Again by Sylow, there

exists P1 ∈ Sylp(G) such that Q1 � P1. Thus x ∈ Q < NP (Q) � P ∩ Q1 � P ∩ P1

and [P : P ∩P1] < [P : Q]. By induction, there exists y1 ∈ CG(x) such that P y1 = P1.

By the same argument as above, Q < NP y1 (Q) � NG(Q) and NP y1 (Q) is a p-group.

By Sylow, there exists w ∈ NG(Q) such that NP y1 (Q) � Qw
1 .

Let NG(Q) = NG(Q)/CG(Q). Now Q1 ∈ Sylp(NG(Q)) and |Q1| = |NG(Q)| since
NG(Q) is a p-group. Thus Q1 = NG(Q) and NG(Q) = Q1CG(Q). Since w ∈ NG(Q),

we have w = q1c for some q1 ∈ Q1 and c ∈ CG(Q), so Qw
1 = Qq1c

1 = Qc
1. Without loss

of generality, assume w ∈ CG(Q) � CG(x) and let u = (y1w)
−1. From the above,

Q < NP ∗(Q) � P ∗ ∩Qw
1 � P ∗ ∩ Pw

1 = P ∗ ∩ P y1w = P ∗ ∩ P u−1

.

Since u ∈ CG(x), we have x = xu ∈ Qu < NP ∗(Q)u � (P ∗)u. Hence x ∈ P ∩ (P ∗)u

and x = xu−1 ∈ P ∗ ∩ P u−1
. Also, since Q < P ∗ ∩ P u−1

, we have

|P u−1 |
|P ∗ ∩ P u−1 | <

|P u−1 |
|Q| =

|P |
|Q| ,

and [NG(Q)u
−1

: CG(Q)u
−1
] = [NG(Q) : CG(Q)] is a p-number. By the induction

hypothesis, there exists y2 ∈ CG(x) such that (P ∗)y2 = P u−1
. Therefore,

P = (P ∗)y2u = (P ∗)y2(y1w)−1
and y2(y1w)

−1 ∈ CG(x).
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Theorem 4.17. Let G be a group, J � H � V � G, H/J be nilpotent, and

gcd([G : H], [H : J ]) = 1. Further suppose, whenever h1, h2 ∈ H are fused in G, it

follows that h1 and h2 are fused in V . Then the following are equivalent:

(i) G splits normally over H/J.

(ii) V splits normally over H/J.

Proof.

Suppose G splits normally over H/J . Now there exists K � G such that G = HK

and H ∩K = J. Since K � G, we have K ∩ V � V . Furthermore,

V = V ∩G = V ∩HK = H(V ∩K),

and H ∩ (V ∩K) = H ∩K = J. Therefore, V splits normally over H/J .

Suppose V splits normally overH/J and h1, h2 ∈ H are fused in G. By hypothesis,

h1 ∼V h2. Now [V : H] divides [G : H] and gcd([V : H], [H : J ]) = 1. Hence

Jh1 ∼H/J Jh2 by Theorem 4.15. By Theorem 4.15 on J � H � G, we have G splits

normally over H/J.

Theorem 4.18 (Frobenius’ Normal p-Complement Theorem). Let G be a group and

P ∈ Sylp(G). Then G has a normal p-complement if and only if one of the following

conditions are satisfied:

(i) NG(Q)/CG(Q) is a p-group for all Q � P.

(ii) NG(Q) has a normal p-complement for all Q � P.

Proof.

For (i), suppose G has a normal p-complement. Now there exists K � G such

that G = PK and P ∩K = 1. Let Q � P. Since

|K| = |K|
|P ∩K| =

|PK|
|P | =

|G|
|P | ,

we have K is a p′-group. Moreover, K ∩ NG(Q) � NG(Q) and Q � NG(Q). Thus

[K∩NG(Q), Q] � Q∩K∩NG(Q) = 1 by coprime orders. Hence K∩NG(Q) � CG(Q).
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By the Second Isomorphism Theorem,

NG(Q)

K ∩NG(Q)
∼= NG(Q)K

K
� G

K
=

PK

K
∼= P

P ∩K
,

so NG(Q)/K ∩NG(Q) is a p-group. By Lemma 4.7,

Op(NG(Q))

K ∩NG(Q)
= Op

(
NG(Q)

K ∩NG(Q)

)
= 1,

thus Op(NG(Q)) � K ∩ NG(Q) � CG(Q). Again by Lemma 4.7, NG(Q)/CG(Q) is a

p-group.

Conversely, suppose NG(Q)/CG(Q) is a p-group for all Q � P and let V = NG(P ).

Now P � V and P ∈ Sylp(V ). By Schur-Zassenhaus Part 1, V splits over P , so there

exists W � V such that V = PW and P ∩W = 1. Since W is a p′-group, we have

W = 〈Q : Q ∈ Sylq(W ), q ∈ π(W )〉 and so W � Op(V ). Now

Op(V )CG(P )

CG(P )
� NG(P )

CG(P )

is a p-subgroup, butOp(V )CG(P )/CG(P ) is a homomorphic image of a p′-group. Thus

Op(V )CG(P )/CG(P ) = 1 and Op(V ) � CG(P ). This implies W � CG(P ) � NG(P )

andW � WP = V.Hence V splits normally over P ∼= P/{1}.Now {1} � P � V � G,

P/{1} is nilpotent, and gcd([G : P ], [P : {1}]) = 1.

Let x ∈ P and g ∈ G such that xg ∈ P . Now x ∈ P ∩ P g−1
and by Theorem

4.16, there exists y ∈ CG(x) such that P y = P g−1
or, equivalently, P yg = P. Hence

yg ∈ NG(P ) = V. Also, xyg = xg implies x ∼V xg. By Theorem 4.17 used on

{1} � P � V � G, we have G splits normally over P/{1} ∼= P , so G has a normal

p-complement.

For (ii), suppose G has a normal p-complement. Now there exists K � G such

that G = PK and P ∩ K = 1. Let Q � P,N = NG(Q), and P0 ∈ Sylp(N). Now

K ∩N � N and by the Second Isomorphism Theorem,

N

N ∩K
∼= KN

K
� G

K
=

PK

K
∼= P

P ∩K
.

Hence N/N ∩ K is a p-group. Let N = N/N ∩ K. Now P0 ∈ Sylp(N), but N is a
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p-group, so P0 = N . Thus N = P0(N ∩K) and it follows from Sylow that there exists

g ∈ G with P0 � P g. Then

P0 ∩N ∩K � P g ∩N ∩K � P g ∩K = P g ∩Kg = (P ∩K)g = 1,

and N = NG(Q) has a normal p-complement.

Conversely, suppose NG(Q) has a normal p-complement for all Q � P. Let

Q � P,N = NG(Q), and P0 ∈ Sylp(N). Now there exists K � N such that N = P0K

and P0 ∩ K = 1. Moreover, K is a p′-group, K � N , and Q � N . Consequently,

[Q,K] � Q ∩K = 1 and K � CG(Q). By the Second Isomorphism Theorem,

N

K
=

P0K

K
∼= P0

P0 ∩K
∼= P0,

so N/K is a p-group. In addition,

NG(Q)

CG(Q)
∼= NG(Q)/K

CG(Q)/K

is a p-group. Therefore by (i), G has a normal p-complement.
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5 The Journey to Replacement Theorems

5.1 The Thompson Subgroup

Definition 5.1. Let P be a p-group and define the set

A(P ) = {A � P : A is abelian and |A| is maximal}.

The Thompson subgroup of P is given by J(P ) = 〈A : A ∈ A(P )〉.

Lemma 5.1. If P is a p-group, then A(P ) �= 1.

Proof.

Toward a contradiction, suppose A(P ) = 1 and let |P | = pn for some n ∈ N0. Now

there exists H � P such that |H| = p. Hence H ∼= Zp and H is abelian. It follows

that H ∈ A(P ) = 1, which is contradiction. Therefore, A(P ) �= 1.

Theorem 5.1. Let P be a p-group and A ∈ A(P ). Then A = CP (A).

Proof.

Since A ∈ A(P ), we have A is abelian and A � CP (A). Let x ∈ CP (A). Now

x ∈ NP (A), so 〈x〉A � P . But then A � 〈x〉A � P , where 〈x〉A is abelian. By the

maximality of |A|, A = 〈x〉A and x ∈ A. Therefore, A = CP (A).

Theorem 5.2. Let G be a group and P ∈ Sylp(G). Then

(i) J(P ) char P .

(ii) If A � H � P and A ∈ A(P ), then J(H) � J(P ). If J(P ) � H � P , then

J(P ) = J(H).

(iii) If Q ∈ Sylp(G) such that J(P ) � Q, then J(P ) = J(Q).

(iv) If J(P ) � H � G and H is a p-group, then J(P ) char H.

Proof.

For (i), let φ ∈ Aut(P ) and A ∈ A(P ). Now Aφ is abelian, |Aφ| = |A|, and Aφ � P .

Consequently, Aφ ∈ A(P ), so J(P )φ � J(P ). Therefore, J(P ) char P .
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For (ii), since A � H � P and A ∈ A(P ), we know the orders of elements from

A(H) are the same as the orders of elements from A(P ). Hence A(H) ⊆ A(P ) and

so J(H) � J(P ). If J(P ) � H � P , then by above, we have J(H) � J(P ). It follows

from J(P ) � H that A(P ) ⊆ A(H). Thus J(P ) � J(H), so J(P ) = J(H).

For (iii), let Q ∈ Sylp(G), where J(P ) � Q. By Sylow, there exists g ∈ G such

that Q = P g. Now Q = P g ∼= P and

J(Q) = 〈Ag : A ∈ A(P )〉 = 〈A : A ∈ A(P )〉g = J(P )g.

Thus |J(Q)| = |J(P )g| = |J(P )|. Since P ∼= Q, elements of A(P ) and A(Q) have

the same order, but J(P ) � Q. Hence A(P ) ⊆ A(Q) and J(P ) � J(Q). Therefore,

J(P ) = J(Q).

For (iv), suppose J(P ) � H � G and H is a p-group. By Sylow, there exists

Q ∈ Sylp(G) such that H � Q. Now J(P ) � Q and so by (iii), J(P ) = J(Q). Hence

J(Q) � H � Q and by (ii), J(H) = J(Q) = J(P ). The result from (i).

5.2 Properties of Commutators

Lemma 5.2. Let G be a group, x, y, z ∈ G, [y, z] = 1, and suppose [x,G] is abelian.

Then [x, y, z] = [x, z, y].

Proof.

Let g ∈ G. Now [x, g] ∈ [x,G] and

[g, x] = g−1x−1gx = (x−1g−1xg)−1 = [x, g]−1 ∈ [x,G].
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Since [x,G] is abelian,

[x, y, z] = [[x, y], z] = [x−1y−1xy, z] = (x−1y−1xy)−1z−1(x−1y−1xy)z

= y−1x−1yxz−1x−1y−1xyz = x−1xy−1x−1yxz−1x−1y−1xyz

= x−1[x−1, y][x−1, z]z−1y−1xyz = x−1[x−1, z][x−1, y]z−1y−1xzy

= x−1xz−1x−1zxy−1x−1yz−1y−1xzy = z−1x−1zxy−1x−1yy−1z−1xzy

= z−1x−1zxy−1x−1z−1xzy = [x, z]−1y−1[x, z]y = [[x, z], y]

= [x, z, y].

Therefore, [x, y, z] = [x, z, y].

Lemma 5.3. Let G be a group and a, b, c ∈ G. Then

(i) [ab, c] = [a, c][a, c, b][b, c].

(ii) [a, b, a] = [ab, a].

Proof.

For (i), let a, b, c ∈ G. Then

[a, c][a, c, b][b, c] = a−1c−1ac[a, c]−1b−1[a, c]bb−1c−1bc

= a−1c−1ac[c, a]b−1[a, c]bb−1c−1bc

= a−1c−1acc−1a−1cab−1a−1c−1acbb−1c−1bc

= b−1a−1c−1abc = (ab)−1c−1(ab)c

= [ab, c].

Therefore, [a, c][a, c, b][b, c] = [ab, c].

For (ii), let a, b ∈ G. Then

[a, b, a] = [a, b]−1a−1[a, b]a = [b, a]a−1[a, b]a = b−1a−1baa−1a−1b−1aba

= b−1a−1ba−1b−1aba = (ab)−1a−1(ab)a

= [ab, a].

Therefore, [a, b, a] = [ab, a].
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Lemma 5.4. Let G be a group and x ∈ G. Then [xn, g] ∈ [x,G] for all g ∈ G, n ∈ N.

Proof.

We proceed by induction on n. Let g ∈ G. If n = 2, we have by Lemma 5.3,

[x2, g] = [xx, g] = [x, g][x, g, x][x, g] = [x, g][xg, x][x, g] = [x, g][x, xg]−1[x, g] ∈ [x,G].

Assume [xn, g] ∈ [x,G] for all g ∈ G. By Lemma 5.3 and the induction hypothesis,

[xn+1, g] = [xnx, g] = [xn, g][xn, g, x][x, g] = [xn, g][xn, g]−1x−1[xn, g]x[x, g]

= [xn, g][g, xn]x−1[xn, g]x[x, g] = [xn, g]g−1x−ngxnx−1x−ng−1xngx[x, g]

= [xn, g]g−1x−ngx−1g−1xngx[x, g] = [xn, g](g−1xng)−1x−1(g−1xng)x[x, g]

= [xn, g][(xn)g, x][x, g] = [xn, g][x, (xn)g]−1[x, g].

Therefore, [xn+1, g] ∈ [x,G] and the result holds by induction.

Theorem 5.3 (Properties of Commutators). Let G be a group, H � G, K � G,

x, y, z ∈ G, and n ∈ N. Then

(i) [xy, z] = [x, z]y[y, z].

(ii) [x, yz] = [x, z][x, y]z.

(iii) [x, y]−1 = [y, x].

(iv) [x, y] = x−1xy.

(v) [G,H] � G.

(vi) [H,K] � 〈H,K〉.

(vii)
(
n+1
2

)
=

(
n
2

)
+ n.

(viii) [x, y, x] = [xy, x].

(ix) If [x, y] ∈ CG(x) ∩ CG(y), then

(a) [x, y]n = [x, yn] = [xn, y],

(b) (xy)n = xnyn[y, x](
n
2).

Proof.

Properties (i)-(iv) are proven by direct computation.

For (v), let g, g1 ∈ G and h ∈ H. Now

[g1, h]
g = g−1g−11 h−1g1hg = (g1g)

−1h−1g1ghh−1g−1hg

= [g1g, h][h, g] = [g1g, h][g, h]
−1 ∈ [G,H].

Therefore, [G,H] � G.
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For (vi), let h, h1 ∈ H and k, k1 ∈ K. By (i), [hh1, k] = [h, k]h1 [h1, k], so

[h, k]h1 = [hh1, k][h1, k]
−1 ∈ [H,K]. Similarly, [h, kk1] = [h, k1][h, k]

k1 and

[h, k]k1 = [h, k1]
−1[h, kk1] ∈ [H,K]. Therefore, [H,K] � 〈H,K〉.

For (vii),(
n+ 1

2

)
=

(n+ 1)!

2!(n+ 1− 2)!
=

(n+ 1)!

2!(n− 1)!
=

(n+ 1)(n)

2
=

n2 + n

2

=
n2 − n+ 2n

2
=

n(n− 1)

2
+ n =

n!

2!(n− 2)!
+ n =

(
n

2

)
+ n.

For (viii), by direct computation we have

[x, y, x] = [x, y]−1x−1[x, y]x = [y, x]x−1[x, y]x

= y−1x−1yxx−1x−1y−1xyx = (y−1xy)−1x−1(y−1xy)x

= (xy)−1x−1(xy)x = [xy, x].

Therefore, [x, y, x] = [xy, x].

For (ix), let [x, y] ∈ CG(x) ∩ CG(y) and use induction on n. If n = 1, then

[x, y]1 = [x, y1]. Suppose [x, y]n = [x, yn]. Now by the induction hypothesis,

[x, y]n+1 = [x, y][x, y]n = [x, y][x, yn]. Since [x, y] ∈ CG(x) ∩ CG(y), we have

[x, y][x, yn] = [x, y]x−1y−nxyn = x−1y−nx[x, y]yn = x−1y−nxx−1y−1xyyn

= x−1y−n−1xyn+1 = x−1y−(n+1)xyn+1 = [x, yn+1].

Therefore, [x, y]n = [x, yn] = [xn, y] for all n ∈ N0 by induction.

For (b), use induction on n. If n = 2, then

x2y2[y, x](
2
2) = x2y2[y, x] = xxyy[x, y] = xxy[y, x]y

= xxyy−1x−1yxy = xyxy = (xy)2.
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Assume (xy)n = xnyn[y, x](
n
2). By (a) and (vii),

(xy)n+1 = (xy)nxy = xnyn[y, x](
n
2)xy = xnyn[y(

n
2), x]xy = xnyny−(

n
2)x−1y(

n
2)xxy

= xnynyny−ny−(
n
2)x−1y(

n
2)yny−nxxy = xny2ny−(

n
2)−nx−1y(

n
2)+ny−nxxy

= xny2ny−(
n+1
2 )x−1y(

n+1
2 )y−nxxy = xny2ny−(

n+1
2 )x−1y(

n+1
2 )xx−1y−nxxy

= xny2n[y(
n+1
2 ), x]x−1y−nxxy = xny2n[y, x](

n+1
2 )x−1y−nxxy

= xny2nx−1y−nxxy[y, x](
n+1
2 ) = xny2nx−1y−nxyny−nxy[y, x](

n+1
2 )

= xny2n[x, yn]y−nxy[y, x](
n+1
2 ) = xny2ny−nx[x, yn]y[y, x](

n+1
2 )

= xnynxx−1y−nxyny[y, x](
n+1
2 ) = xnxyny[y, x](

n+1
2 )

= xn+1yn+1[y, x](
n+1
2 ).

Therefore, (xy)n = xnyn[y, x](
n
2) for all n ∈ N0 by induction.

Lemma 5.5. Let G be a group, a, b, c ∈ G such that c ∈ CG(b) and b ∈ CG(a). Then

[ab, c] = [a, c].

Proof.

By Theorem 5.3 and the hypothesis, [ab, c] = [a, c]b[b, c] = [a, c]b = [a, c].

Lemma 5.6 (Three Subgroups Lemma). Let G be a group, H � G,L � G,K � G,

and suppose [H,K,L] = 1 and [K,L,H] = 1. Then [L,H,K] = 1.

Proof.

Let h ∈ H, k ∈ K, and l ∈ L. Consider the element [h, k−1, l]k[k, l−1, h]l[l, h−1, k]h.

It follows from direct computation that

[h, k−1, l]k[k, l−1, h]l[l, h−1, k]h = k−1[h, k−1, l]kl−1[k, l−1, h]lh−1[l, h−1, k]h = 1.

By hypothesis, [h, k−1, l] = 1 and [k, l−1, h] = 1, which implies [h, k−1, l]k = 1 and

[k, l−1, h]l = 1. From the above, 1 = [l, h−1, k]h, or, equivalently, [l, h−1, k] = 1.

Therefore, [L,H,K] = 1.

74



5.3 Thompson Replacement Theorem

Definition 5.2. Let G be a group, A � G, and B � G. If [B,A,A] = 1, then A acts

quadratically on B.

Theorem 5.4. Let P be a p-group, A ∈ A(P ), and B � P. Then B � NP (A) if and

only if A acts quadratically on B.

Proof.

Suppose B � NP (A). The result follows since A is abelian. Conversely, suppose

[B,A,A] = 1. Now [B,A] � CP (A) = A by Theorem 5.1. This implies for all

[b, a] ∈ [B,A], there exists a1 ∈ A such that a1 = [b, a] = (a−1)ba. It follows that

(a−1)b = a1a
−1 ∈ A. Therefore, B � NP (A).

Theorem 5.5. Let P be a p-group, A ∈ A(P ), x ∈ P , and suppose M = [x,A] is

abelian. Then MCA(M) ∈ A(P ).

Proof.

Let C = CA(M). It follows from M and C being abelian, and [M,C] = 1 that

MC is abelian. Thus it is enough to show |MC| ≥ |A|.
By Theorem 5.1, A = CP (A), so

C ∩M � CM(A) = M ∩ CP (A) = M ∩ A � CA(M) ∩M = C ∩M.

Hence C ∩M = CM(A). Furthermore,

|MC| = |M ||C|
|M ∩ C| =

|M ||CA(M)|
|CM(A)| ,

and so it is enough to show [M : CM(A)] ≥ [A : CA(M)]. For if true,

|M |
|C ∩M | =

|M |
|CM(A)| ≥

|A|
|CA(M)| =

|A|
|C|

|M ||C|
|C ∩M | ≥ |A|.

Let u, v ∈ A such that CA(M)u �= CA(M)v, it follows that [x, u], [x, v] ∈ M. If

CM(A)[x, u] = CM(A)[x, v], then y = [x, u]−1[x, v] ∈ CM(A). Now y = (xu)−1xv
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and since y ∈ CM(A), y = yu
−1

= ((xu)−1xv)u
−1

= x−1xvu−1
= [x, vu−1]. Hence

[x, vu−1] ∈ CM(A), so [x, vu−1, a] = 1 for all a ∈ A. Since A is abelian and vu−1 ∈ A,

we have [vu−1, a] = 1 for all a ∈ A. By Lemma 5.2, [x, a, vu−1] = 1 for all a ∈ A.

Thus vu−1 ∈ CA(M) and so CA(M)u = CA(M)v, which is a contradiction. Therefore,

[M : CM(A)] ≥ [A : CA(M)] and MCA(M) ∈ A(P ).

Theorem 5.6 (Thompson Replacement Theorem). Let P be a p-group, A ∈ A(P ),

B � P , B be abelian, and suppose A � NP (B), but B � NP (A). Then there exists

A∗ ∈ A(P ) such that

(i) A ∩B < A∗ ∩ B.

(ii) A∗ � NP (A).

Proof.

Since A � NP (B), we have B � AB � P. Let N = NB(A). Since B is abelian

and A � NP (B), we have N � AB. Moreover, N < B because B � NP (A). Let

AB = AB/N. Now B � AB and B is nontrivial. Since AB is a p-group, we have

B ∩ Z(AB) �= 1 by Theorem 1.15 and Lemma 1.18. Hence there exists a nontrivial

x ∈ B ∩ Z(AB) such that [x,A] = 1 and [x,A] � N. Let M = [x,A]. Now M < B

and M is abelian. By Theorem 5.5, A∗ = MCA(M) ∈ A(P ). Furthermore,

CA(M) � NP (A) and M � N = NB(A) � NP (A). It follows that

A∗ = MCA(M) � NP (A).

Since x ∈ B ∩ Z(AB) is nontrivial, we have x /∈ N and M = [x,A] � A. Now

x ∈ B and x ∈ CP (A ∩B). Also, A � CP (A ∩B) since A is abelian. Hence

M = [x,A] � CP (A ∩B) � NP (A ∩B),

and M(A ∩ B) � P. However, M � A, so A ∩ B < M(A ∩ B) � A∗ ∩ B. Therefore,

A ∩B < A∗ ∩ B.
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5.4 Glauberman Replacement Theorem

Definition 5.3. Let G be a group, H � G, and K � G. Define [H,K; 0] = H,

[H,K; 1] = [[H,K; 0], K] = [H,K], [H,K; 2] = [[H,K; 1], K] = [H,K,K], . . . , and

inductively, [H,K;n] = [[H,K;n− 1], K].

Definition 5.4. Let G be a nilpotent group and n+1 be minimal such that the lower

central series of G terminates at 1−that is, Kn+1(G) = 1. We say the nilpotency

class of G is n and write cl(G) = n.

Theorem 5.7. Let P = BA be a p-group, B � P , A be abelian, B′ � Z(P ),

P = P/B′, and suppose n is minimal with respect to [B,A;n] being abelian. Then

(i) Ki(P ) = [B,A; i− 1] for all i ≥ 2.

(ii) [B,A; i+ 1] � [B,A; i] for all i ≥ 0.

(iii) If [B,A;n+ 1] = 1, then n ≤ 2 and cl(P ) ≤ 4.

Proof.

For (i), since B′ char B � P , we know B′ � P. By the Second and Third Isomor-

phism Theorems,

P

B
∼= P

B
=

BA

B
∼= A

A ∩B
,

and so P/B is abelian. It follows that Ki(P/B) = 1 for all i ≥ 2, which implies

Ki(P ) � B for all i ≥ 2. Moreover, B is abelian. Let x ∈ Ki(P ), a ∈ A, and b ∈ B.

By Theorem 5.3 and since B is abelian, we have [ba, x] = [b, x]a[a, x] = [a, x]. Hence

[Ki(P ), P ] = [Ki(P ), A] for all i ≥ 2.

We proceed by induction on i. Suppose i = 2 and let a ∈ A, b ∈ B, and x ∈ P .

Now [ab, x] = [a, x]b[b, x] = [a, x][b, x] since [a, x] ∈ P
′
= K2(P ) � B. Thus

K2(P ) = [P , P ] = [A,P ][B,P ]. Furthermore, A is abelian, B � P , and B′ = 1. By

Theorem 5.3, we have

[A,P ] = [A,B A] = [A,A][A,B]A = [A,B],
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and

[B,P ] = [B,B A] = [B,A][B,B]A = [B,A] = [A,B].

Hence K2(P ) = P
′
= [P , P ] = [B,A] = [B,A; 1]. Assume Ki(P ) = [B,A; i− 1]. Now

Ki+1(P ) = [Ki(P ), P ] = [Ki(P ), A] = [[B,A; i− 1], A] = [B,A; i].

Therefore, (i) holds by induction.

For (ii), it is enough to show A � NP ([B,A; i]) for all i ∈ N0 and we proceed

by induction on i. If i = 0, then A � NP (B) = NP ([B,A; 0]) since B � P. Assume

A � NP ([B,A; i]) and let a ∈ A. Now

[B,A; i+ 1]a = [[B,A; i], A]a = [[B,A; i]a, A] = [[B,A; i], A] = [B,A; i+ 1],

so A � NP ([B,A; i+ 1]). Thus A � NP ([B,A; i]) for all i ≥ 0. Therefore,

[B,A; i+ 1] = [[B,A; i], A] � [B,A; i] for all i ≥ 0.

For (iii), if [B,A;n+ 1] = 1, then [B,A;n+ 1] = 1. By (i), we have

Kn+2(P ) = [B,A;n + 1] = 1, which implies Kn+2(P ) = Kn+2(P ) = 1. Hence

Kn+2(P ) � B′ � Z(P ) and Kn+3(P ) = [Kn+2(P ), P ] � [Z(P ), P ] = 1. Let

m = �1
2
(n+4)�. Since n ≥ 1, we have m ≥ 2, and by the definition of m, 2m ≥ n+3.

Now [Km(P ), Km(P )] � K2m(P ) � Kn+3(P ) = 1, thus Km(P ) is abelian and

Km(P ) = Km(P ) is abelian. By (i), Km(P ) = [B,A;m − 1] is abelian and by

the minimality of n, n ≤ m − 1 ≤ 1
2
(n + 4) − 1 = 1

2
n + 1. Now n ≤ 1

2
n + 1 implies

n ≤ 2. Thus Kn+3(P ) = 1 and n ≤ 2. Therefore, n+ 3 ≤ 5 and cl(P ) ≤ 4.

Theorem 5.8 (Glauberman Replacement Theorem). Let P be a p-group, p be odd,

B � P such that B′ � Z(J(P )), cl(B) ≤ 2, and suppose A ∈ A(P ) such that

B � NP (A). Then there exists A∗ ∈ A(P ) such that

(i) A ∩ B < A∗ ∩ B.

(ii) A∗ � NP (A).
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Proof.

Use induction on |P |. Since B � P , we have AB � P. If AB < P , then

since A � AB, we have A(AB) ⊆ A(P ). By Theorem 5.2(ii), J(AB) � J(P ).

Now [Z(J(P )), A] = 1, so Z(J(P )) � CP (A) = A by Theorem 5.1. It follows that

[J(AB),Z(J(P ))] = 1 and since Z(J(P )) � A � J(AB), we have

Z(J(P )) � Z(J(AB)). Thus B′ � Z(J(AB)). Moreover, A ∈ A(AB) and A � AB.

Since B � P , we have B � AB. By the induction hypothesis, there exists A∗ ∈ A(AB)

such that A ∩B < A∗ ∩B and A∗ � NAB(A) � NP (A). Thus A
∗ ∈ A(P ) and we are

done.

Without loss of generality, assume P = AB and let n be chosen minimal with

respect to [B,A;n] being abelian.

Case 1: [B,A;n+ 1] �= 1.

Let r ∈ N be minimal such that [B,A; r] = 1. Since n ≥ 1, we have r ≥ n + 2 ≥ 3

by Theorem 5.7. By the minimality of r, 1 �= [B,A; r − 1] = [[B,A; r − 2], A], so

A � CP ([B,A; r − 2]). Hence there exists x ∈ [B,A; r − 3] such that A � CP ([x,A]).

Let M = [x,A]. Now M � [B,A; r−2] � [B,A;n] and so M is abelian since r−2 ≥ n.

By Theorem 5.5, A∗ = MCA(M) ∈ A(P ). Now

[B,A ∩ B,A] � [B′, A] � [Z(J(P )), A] = 1,

and [A∩B,A,B] � [A,A,B] = [1, B] = 1 since A is abelian. By the Three Subgroups

Lemma (5.6), [A,B,A∩B] = 1, and it follows that A∩B � CP ([A,B]) � CP ([B,A; i])

for all i ≥ 1. Hence A ∩ B � CP (M). Since A is abelian and A � CP (M), we have

M � A, which implies M � B because P = AB. Thus A∗∩B � M(A∩B) > A∩B.

By Lemma 5.5,

[A∗, A,A] = [MCA(M), A,A] = [M,A,A] � [[B,A; r − 2], A,A] = [B,A; r] = 1,

so [A∗, A] � CP (A) = A. Therefore, A∗ � NP (A).
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Case 2: [B,A;n+ 1] = 1.

Since cl(B) ≤ 2, we know K3(B) = 1, K2(B) = 1, or K1(B) = 1. If K3(B) = 1, then

[B,B,B] = [B′, B] = 1 and so B′ � Z(B). In any case, B′ � Z(J(AB)) = Z(J(P )).

It follows from Theorem 5.7 that n ≤ 2 and cl(P ) ≤ 4. If n = 1, then

[B,A; 2] = [B,A,A] = 1, hence [B,A] � CP (A) = A. This implies B � NP (A), which

is a contradiction. Thus n = 2 and [B,A; 3] = 1.

Let u, v ∈ A, x ∈ B, and w = [x, v] ∈ [B,A] � B. By the Three Subgroups

Lemma, [x, u, w]u
−1
[u−1, w−1, x]w[w−1, x−1, u−1]x = 1. Since B � P , all three com-

mutators are contained in B′ and [w−1, x−1, u−1] = 1 since B′ � Z(P ). Hence

[x, u, w][u−1, w−1, x] = 1. Since [u−1, w−1] and x ∈ B, we have by (ix) and (iii)

of Theorem 5.3,

[x, u, w] = [u−1, w−1, x]−1 =
[
[u−1, w−1]−1, x

]
= [w−1, u−1, x]. (4)

Let P = P/B′. Now [B,A; 3] = 1 implies [B,A,A] � CP (A) = A, and by Theorem

5.7, Ki(P ) = [B,A; i − 1] � B for all i ≥ 2. Thus [B,A,A] � A ∩ B and P = A B.

Since A and B are abelian, we have [B,A,A] � Z(A B) = Z(P ). By Theorem 5.3(ix)

and Lemma 5.2 with [u, v] = 1,[
[x, v]−1, u−1

]
=

[
[x, v], u−1

]−1
=

(
[[x, v], u]−1

)−1
= [x, v, u] = [x, u, v]. (5)

From (4) and (5), we have

[w−1, u−1] = [[x, u], [x, v]] = [[x, u], w] = [w−1, u−1, x] = [[x, u, v], x] , (6)

but interchanging u and v in (6) results in [[x, v], [x, u]] = [[x, v, u], x] = [[x, u, v], x] .

Hence

[[x, u], [x, v]] = [[x, v], [x, u]] = [[x, u], [x, v]] = [[x, u], [x, v]]−1 .
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It then follows from Theorem 5.3(ii), Lemma 5.5, and B′ � Z(P ) that[
[x, u], [x, v]

]
=

[
[x, u], [x, v]

]−1
[[x, u]z1, [x, v]z2] = [[x, u]z3, [x, v]z4]

−1

[[x, u], [x, v]] = [[x, u], [x, v]]−1 .

Thus [[x, u], [x, v]]2 = 1. Because p is an odd prime, we have [[x, u], [x, v]] = 1, so

[x,A] is abelian for all x ∈ B. However, B � NP (A) and [B,A] � A, so there exists

x ∈ B such that [x,A] � A.

Let M = [x,A]. Now M is abelian and by Theorem 5.5, A∗ = MCA(M) ∈ A(P ).

As in Case 1, we have A∩B � CP ([B,A]) � CP (M). Since M � A,A∩B � CA(M),

and B � P , we have A∗ ∩ B � M(A ∩B) > A ∩B. By Theorem 5.3,

[A∗, A,A] = [MCA(M), A,A] = [M,A,A] � [B,A,A,A] = [B,A, 3] = 1.

Therefore, [A∗, A] � CP (A) = A and so A∗ � NP (A).
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6 p-Separability and p-Solvability

Definition 6.1. Let G be a group. A composition series of G is a subnormal

series of the form

G = G1 � G2 � G3 � · · · � Gn = 1,

where Gi/Gi+1 is simple for 1 ≤ i ≤ n − 1. The quotient groups Gi/Gi+1 are called

composition factors of G.

Definition 6.2. Let G be a group and π be a set of primes.

(i) G is a π-separable group if every composition factor of G is a π-group or a

π′-group.

(ii) G is a π-solvable group if every composition factor of G is a π′-group or a

p-group for some p ∈ π.

Similarly, we define p-separable and p-solvable groups when π = {p}.

The Jordan-Hölder Theorem (Theorem 2.8, pg. 6, [Gor07]) proves two composition

series of a group are of the same length and the factors are unique up to isomorphism.

Theorem (Schreier). Let A � B � C be a subnormal series, and suppose A/B and

B/C are abelian. Then the series can be refined to a composition series

A � D � B � C, where the factors are simple and abelian.

Proof.

Theorem 2.7, pg. 6 in [Gor07]].

Theorem 6.1. Let G be a group. Then

(i) G is π-separable if and only if G is π′-separable.

(ii) G is p-separable if and only if G is p-solvable for all p ∈ π(G).

(iii) If G is π-solvable, then G is π-separable.

(iv) G is solvable if and only if G is p-solvable for all p ∈ π(G).
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Proof.

For (i), suppose G is π-separable. Now every composition factor of G is a

π-group or a π′-group. Equivalently, every composition factor of G is a (π′)′-group or

a π′-group, respectively. Thus G is π′-separable.

For (ii), let p ∈ π(G) and suppose G is p-separable. Now every composition factor

of G is a p-group or a p′-group. Thus G is p-solvable. The converse is trivial.

For (iii), suppose G is π-solvable. Now every composition factor of G is a

π′-group or a p-group for some p ∈ π. Since a p-group is a π-group for p ∈ π, we have

G is π-separable.

For (iv), suppose G is solvable and let p ∈ π(G). Now there exists a subnormal

series G = H1 � H2 � · · · � Hm = 1, where Hi/Hi+1 is abelian for 1 ≤ i ≤ m−1. By

Schreier’s Theorem, we can refine to a composition series G = G1 � · · · � Gn = 1,

where Gi/Gi+1 is simple and abelian for 1 ≤ i ≤ n − 1. Then Gi/Gi+1 is cyclic of

prime order for 1 ≤ i ≤ n − 1, which implies for every 1 ≤ i ≤ n − 1, there exists a

prime pi such that Gi/Gi+1 is a pi-group. Moreover, for every 1 ≤ i ≤ n − 1, either

pi = p or pi �= p. Thus all composition factors are p-groups or p′-groups. Therefore,

G is p-solvable.

Conversely, let G = G1 � G2 � · · · � Gn = 1 be a composition series of G, where

each factor is simple and for all 1 ≤ i ≤ n− 1, Gi/Gi+1 is a p-group or a p′-group for

all p ∈ π(G). Since [Gi : Gi+1] divides |G| for all 1 ≤ i ≤ n− 1, there exists pi ∈ π(G)

such that Gi/Gi+1 is a pi-group. Let Gi = Gi/Gi+1 for each 1 ≤ i ≤ n− 1. Since Gi

is a pi-group, we know Gi is solvable. It follows that there exists a subnormal series

Gi = Gi1 � Gi2 � · · · � Giki = 1, (ki ∈ N) such that Gij/Gi(j+1)
∼= Gij/Gi(j+1) is

abelian for all 1 ≤ i ≤ n − 1 and for all 1 ≤ j ≤ ki − 1. Hence we have a subnormal

series

G = G11 � G12 � · · · � G2 = G21 � G22 � · · · � G3 � · · ·

� Gn−1 = G(n−1)1 � G(n−1)2 � · · · � Gn = 1,

83



and

Gij

Gi(j+1)

∼= Gij/Gj+1

Gi(j+1)/Gj+1

is abelian for all 1 ≤ i ≤ n−1 and for all 1 ≤ j ≤ ki−1. Therefore, G is solvable.

Definition 6.3. Let G be a group and π be a set of primes. Define the unique maximal

normal π-subgroup of G by

Oπ(G) =
∏
P�G

P,

where P is a π-group. We can similarly define Oπ′(G).

Lemma 6.1. Let G be a group and π be a set of primes. Then Oπ(G) char G.

Proof.

Let φ ∈ Aut(G) and Q � G be a π-subgroup. Now Qφ � G and Qφ is a π-group.

Thus Qφ � Oπ(G) and Oπ(G) char G.

Definition 6.4. Let G be a group and π be a set of primes. Define

Oπ′

(
G

Oπ(G)

)
=

Oπ,π′(G)

Oπ(G)
, Oπ

(
G

Oπ,π′(G)

)
=

Oπ,π′,π(G)

Oπ,π′(G)
, . . . ,

and so on. The π-series of G is the normal series

1 � Oπ(G) � Oπ,π′(G) � Oπ,π′,π(G) � · · · .

Lemma 6.2. Let G be a group. Then Oπ(G/Oπ(G)) = 1.

Proof.

Suppose H/Oπ(G) � G/Oπ(G) is a π-subgroup. Now H � G and

|H| = |H|
|Oπ(G)| · |Oπ(G)|,

so H is a π-group. Thus H � Oπ(G) and H/Oπ(G) = 1. Therefore,

Oπ(G/Oπ(G)) = 1.
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Theorem 6.2. Let G be a group and π be a set of primes.

(i) If G is π-separable and N is a minimal normal subgroup of G, then N is a

π-group or a π′-group.

(ii) If G is π-separable, H � G, and N � G, then H and G/N are π-separable.

(iii) If G is π-solvable, H � G, and N � G, then H and G/N are π-solvable.

(iv) G is π-separable if and only if the π-series terminates at G.

Proof.

For (i), since N is a minimal normal subgroup, we know N is characteristically

simple. By Theorem 1.13, N ∼= ⊗n
i=1 Ni, where theNi’s are simple isomorphic groups.

Refine the series N1 � 1 to a composition series of G,

G = G1 � G2 � · · · � Gm = N1 � 1.

Since G is π-separable, N1
∼= N1/{1} is either a π-group or a π′-group. Thus

N =
⊗n

i=1 Ni is either a π-group or a π′-group.

For (ii), let N = N1 � N2 � · · · � Nm = 1 be a composition series of N and

refine to a composition series of G,

G = G1 � G2 � · · · � Gk = N = N1 � N2 � · · · � Nm = 1.

Let G = G/N. Now

G = G1 � G2 � · · · � Gk = 1

is a composition series of G. If G is π-separable, then Gi/Gi+1
∼= Gi/Gi+1 is a π-group

or a π′-group for each 1 ≤ i ≤ k − 1. Thus G is π-separable.

If H = G, then we are done. Assume H < G and proceed by induction on |G|.
Let N be a minimal normal subgroup of G and G = G/N. If G is π-separable, then

G is π-separable by the above. Now H < G and so by induction, H is π-separable.

Let H = H1 � H2 � · · · � Hk = 1 be a composition series of H. Since

H ∼= HN/N ∼= H/H ∩ N , we have H = H1 � H2 � · · · � H ∩ N and it remains
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to show H ∩ N is π-separable. By (i), N is a π-group or a π′-group, so H ∩ N is a

π-group or a π′-group, respectively. This implies any composition factor of H ∩N is

a π-group or a π′-group. Thus H ∩N is π-separable. Therefore, H is π-separable.

For (iii), let N = N1 � N2 � · · · � Nm = 1 be a composition series of N and

refine to a composition series of G,

G = G1 � G2 � · · · � Gk = N = N1 � N2 � · · · � Nm = 1.

Let G = G/N. Now

G = G1 � G2 � · · · � Gk = 1

is a composition series of G. If G is π-solvable, then Gi/Gi+1
∼= Gi/Gi+1 is a π′-group

or a p-group for some p ∈ π for each 1 ≤ i ≤ k − 1. Thus G is π-solvable.

If H = G, then we are done. Assume H < G and proceed with induction on |G|.
Let N be a minimal normal subgroup of G and G = G/N. If G is π-solvable, then

G is π-solvable. Now H < G and so by induction, H is π-solvable. As before, since

H ∼= HN/N ∼= H/H ∩N , it remains to show H ∩N is π-solvable. Again by (i), N is

a π-group or a π′-group. If N is a π-group, then N is π-solvable since N � G. Thus

N is a p-group for some p ∈ π and H ∩N is a p-group. Thus all composition factors

of H ∩N are p-groups. If N is a π′-group, then H ∩N is a π′-group and so are all the

composition factors of H ∩N. Hence H ∩N is π-solvable. Therefore, H is π-solvable.

For (iv), suppose the π-series terminates at G. Refine the normal series

1 � Oπ(G) � Oπ,π′(G) � Oπ,π′,π(G) � · · · � G, (7)

to a composition series of G,

G = G1 � G2 � · · · � Gn = 1. (8)

Since all the factors in (7) are π-groups or π′-groups, the same is true for all factors

in (8). Thus G is π-separable. Conversely, suppose G is π-separable, but the

π-series does not terminate at G. Consider a case where Oπ(G) = Oπ,π′(G). Now
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Oπ′ (G/Oπ(G)) = Oπ,π′(G)/Oπ(G) = 1 and Oπ (G/Oπ(G)) = 1. Thus there exists

L � G such that Oπ (G/L) = Oπ′ (G/L) = 1. Let G = G/L and N be a minimal

normal subgroup of G. By (ii), G is π-separable since G is π-separable and by (i), N

is a π-group or a π′-group. Since N � G, we have N � Oπ(G) ∪ Oπ′(G) = 1. This

implies N = 1, a contradiction. Therefore, the π-series must terminate at G.

Theorem 6.3. Let G be a π-separable group. If Oπ′(G) = 1, then

CG(Oπ(G)) � Oπ(G).

Proof.

Let H = Oπ(G), C = CG(H), and suppose C � H. Since H � G, we have C � G,

and since Oπ(C) char C � G, we have Oπ(C) � G. Now Oπ(C) � H = Oπ(G)

and Oπ(C) � Z(H) because [Oπ(C), H] = 1. Since Z(H) char H � G, we have

Z(H) � G. Now [H,Z(H)] = 1 implies Z(H) � C. Thus Z(H) � C, but Z(H) is a

π-group. Therefore, Z(H) � Oπ(C) and Oπ(C) = Z(H).

Since G is π-separable, C is π-separable by Theorem 6.2. It follows from C � H

and Oπ(C) � H that Oπ(C) < C. Thus Oπ(C) < Oπ,π′(C). Let L = Oπ,π′(C). Now

L/Oπ(C) = Oπ′ (C/Oπ(C)) is a π′-group, hence Oπ(C) ∈ Hallπ(L) and Oπ(C) � L.

By Schur-Zassenhaus Part 1, L splits over Oπ(C), so there exists K � L such that

L = KOπ(C) and K ∩ Oπ(C) = 1. Now

|K| = |K|
1

=
|K|

|K ∩ Oπ(C)| =
|KOπ(C)|
|Oπ(C)| =

|L|
|Oπ(C)| ,

and so K is a π′-group. In addition,

|L|
|K| =

|KOπ(C)|
|K| =

|Oπ(C)|
|K ∩ Oπ(C)| ,

so K ∈ Hallπ′(L). Moreover, [K,Oπ(C)] � [C,Oπ(C)] = [C,Z(H)] = 1 and

K � KOπ(C) = L. By Lemma 4.6, K char L. Since L � G, we have K � G and it

follows that K � Oπ′(G) = 1. Then L = Oπ(C), which is a contradiction. Therefore,

CG(Oπ(G)) � Oπ(G).
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Theorem 6.4. Let G be a p-solvable group and P ∈ Sylp(G). Then

CG(P ∩ Op′,p(G)) � Op′,p(G).

Proof.

Let G = G/Op′(G) and K = Op′(G). By Lemma 6.2, K = 1. Since G is

p-solvable, we have G is p-separable by Theorem 6.1(ii). It follows from Theorem 6.3

that CG(Op(G)) � Op(G). Since Op′,p(G) � G, we have P∩Op′,p(G) ∈ Sylp(Op′,p(G)).

Let L = Op′,p(G). Now L = Op′,p(G) = Op(G) is a p-group, so P ∩ L = L = Op(G).

Thus

CG(P ∩ L) � CG(P ∩ L) = CG(Op(G)) � Op(G) = L,

which implies

CG(P ∩ L)Op′(G) � LOp′(G) = Op′,p(G)Op′(G) = Op′,p(G).

Therefore, CG(P ∩ L) = CG(P ∩ Op′,p(G)) � Op′,p(G).

6.1 p-Constrained and p-Stability

Definition 6.5. Let G be a group and p be a prime. Then G is p-constrained if

CG(P ) � Op′,p(G),

for all P ∈ Sylp(Op′,p(G)).

Theorem 6.5. Let G be a p-constrained group.

(i) If Op′(G) < G, then Op′(G) < Op′,p(G).

(ii) Let G = G/Op′(G). Then CG(Op(G)) � Op(G).

(iii) If P ∈ Sylp(Op′,p(G)) and Q � G is a p′-subgroup such that P acts on Q, then

Q � Op′(G).

Proof.

For (i), suppose Op′(G) < G. If Op′,p(G) = Op′(G), then Op′,p(G) is a p′-group
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and {1} ∈ Sylp(Op′,p(G)). Since G is p-constrained, CG({1}) � Op′,p(G) = Op′(G).

However, CG({1}) = G, so G � Op′,p(G). This implies G = Op′(G), which is a

contradiction. Therefore, Op′(G) < Op′,p(G).

For (ii), let P ∈ Sylp(Op′,p(G)). Now P ∈ Sylp(Op′,p(G)), but Op′,p(G) is a

p-group. Thus P = Op′,p(G) and POp′(G) = Op′,p(G). Since Op′,p(G) � G, we have

by the Frattini Argument, G = NG(P )Op′,p(G) = NG(P )POp′(G) = NG(P )Op′(G).

Hence G = NG(P ). Then there exists C � NG(P ) such that

C = CG(P ) = CG(Op′,p(G)) = CG(Op(G)).

Now [P ,C] = 1 implies [P,C] � Op′(G), and we have [P,C] � P since C � NG(P ).

Thus [P,C] � P ∩ Op′(G) = 1 and C � CG(P ) � Op′,p(G) since G is p-constrained.

Therefore, C = CG(Op(G)) � Op′,p(G) = Op(G).

For (iii), let G = G/Op′(G), P ∈ Sylp(Op′,p(G)), and Q � G be a p′-subgroup

such that P � NG(Q). By the same argument as in (ii), P = Op′,p(G) = Op(G) � G.

Now P � NG(Q) � NG(Q) and [P ,Q] � P ∩Q = 1. It follows from (ii) that

Q � CG(P ) = CG(Op(G)) � Op(G).

Consequently, Q = 1 since Op(G) is a p-group. Therefore, Q � Op′(G).

Definition 6.6. Let G be a group and p be a prime. Then G is called p-stable if

(i) p is odd.

(ii) Op(G) �= 1.

(iii) Whenever P � G is a p-subgroup, POp′(G) � G, A � NG(P ), and A is a

p-group acting quadratically on P , it follows that

ACG(P )

CG(P )
� Op

(
NG(P )

CG(P )

)
.

Lemma 6.3. Let G be a group, N � G,L � G, L � N , and L be a p-group. If

Op(G/N) = 1, then Op(G/L) � N/L.
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Proof.

Let G = G/L and U = Op(G). Now U � G, U � G, and

|U | = |U |
|L| · |L| = |U | · |L|,

so U is a p-group. Since U � G, we have UN/N � G/N and [UN : N ] = [U : U ∩N ].

Thus UN/N is a p-group and UN/N � Op(G/N) = 1, which implies U � UN � N .

Therefore, U = Op(G) � N.

Theorem 6.6. Let G be a group, p be a prime such that G is p-stable and

p-constrained, P ∈ Sylp(G), A � P , and suppose A is abelian. Then A � Op′,p(G).

Proof.

Let Q = P ∩ Op′,p(G). By Lemma 1.8, Q ∈ Sylp(Op′,p(G)). Let G = G/Op′(G).

Now Q ∈ Sylp(Op′,p(G)), but Op′,p(G) = Op(G), so Op′,p(G) is a p-group. Thus

Q = Op′,p(G) = Op(G) and Op′,p(G) = QOp′(G) � G. Now Q � P since

Op′,p(G) � G, and so A � NG(Q). Moreover, [Q,A,A] � [A,A] = 1, which means A

acts quadratically on Q. It follows from the p-stability of G that

ACG(Q)

CG(Q)
� Op

(
NG(Q)

CG(Q)

)
. (9)

Furthermore, G is p-constrained, CG(Q) � Op′,p(G) = QOp′(G), and

CG(Q) � Op′,p(G) = Q. By the Frattini Argument,

G = NG(Q)QOp′(G) = NG(Q)Op′(G).

Therefore, G = NG(Q).

Let ÑG(Q) = NG(Q)/CG(Q) and Ũ = Op(ÑG(Q)). Now Ũ � ÑG(Q), so

U � NG(Q). Let U0 ∈ Sylp(U). By Lemma 1.8, Ũ0 ∈ Sylp(Ũ), but Ũ is a p-group.

Hence Ũ0 = Ũ and U = U0CG(Q). Then U = U0 CG(Q) and by the Second Isomor-

phism Theorem,

U

CG(Q)
=

U0 CG(Q)

CG(Q)
∼= U0

U0 ∩ CG(Q)
,
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which implies U/CG(Q) is a p-group. Furthermore, U � NG(Q) = G and

U

CG(Q)
� NG(Q)

CG(Q)
=

G

CG(Q)
.

Thus U/CG(Q) � Op(NG(Q)/CG(Q)). By (9), we have ACG(Q) � U and so

ACG(Q) � U. Also, Q � NG(Q) and Op(NG(Q)/Q) = Op(G/Op(G)) = 1 by Lemma

6.2. And from Lemma 6.3,

ACG(Q)

CG(Q)
� U

CG(Q)
� Op

(
NG(Q)

CG(Q)

)
= Op

(
G

CG(Q)

)
� Q

CG(Q)
.

Therefore, A � ACG(Q) � Q and A � AOp′(G) � QOp′(G) = Op′,p(G).

Theorem 6.7. Let G be a p-stable group, B � G be a p-subgroup, and P ∈ Sylp(G).

Then B ∩ Z(J(P )) � G.

Proof.

Let G be a counterexample such that |B| is minimal and Let B1 = 〈(Z ∩B)G〉 be
the normal closure of Z ∩B, where Z = Z(J(P )). Since B � G, we have B1 � B, B1

is a p-group, and B1 � G. If B1 < B, then B1 ∩ Z � G by the minimality of |B|. By
the definition of B1, we have Z ∩B = Z ∩B1, so Z ∩B � G. This is a contradiction

since B is a counterexample. Therefore, B = B1. Now B′ char B � G and B′ � G

by Lemma 1.12. Also, B′ is a p-group and by Theorem 1.18, B′ = K2(B) < B since

B is nilpotent. By the minimality of |B|, Z ∩B′ � G.

We claim B′ � Z. Now Z char J(P ) char P , Z char P , and by Lemma 1.12,

Z � P . Since B is a normal p-group, we have B � P from Sylow. It follows that

[Z ∩B,B] � Z ∩ [B,B] = Z ∩B′. Let g ∈ G. By the above,

[(Z ∩B)g, B] = [Z ∩B,B]g � (Z ∩B′)g � Z ∩B′,

so B′ = [B,B] = [B,B1] = [B, 〈(Z ∩ B)G〉] � Z ∩ B′. Therefore, B′ = Z ∩ B′ and

B′ � Z. Moreover, [Z ∩ B,B′] � [Z,Z] = 1 and

[B,B′] = [B1, B
′] = [〈(Z ∩B)G〉, B′] � [Z,Z] = 1.
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Thus cl(B) � 2.

Let L � G such that L � NG(Z∩B) and |L| is maximal. Now P∩L ∈ Sylp(L) and

by the Frattini Argument, G = NG(P ∩L)L. If J(P ) � P ∩L, then by Theorem 5.2(i),

J(P ) char P∩L. This impliesNG(P∩L) � NG(J(P )) and G = NG(J(P ))L. Similarly,

since Z = Z(J(P )) char J(P ), we have NG(J(P )) � NG(Z) and G = NG(Z)L. Hence

Z ∩B � NG(Z)L = G, which is a contradiction. Therefore, J(P ) � P ∩ L.

By the Glauberman Replacement Theorem (5.8), there exists A ∈ A(P ) such that

[B,A,A] � [A,A] = 1. Furthermore, G is p-stable, BOp′(G) � G, and B is a p-group.

Consequently,

ACG(B)

CG(B)
� Op

(
NG(B)

CG(B)

)
� Op

(
G

CG(B)

)
. (10)

SinceB � G, we have CG(B) � G.Now L � LCG(B) � G, but LCG(B) � NG(Z∩B).

By the maximality of |L|, L = LCG(B) and it follows that CG(B) � L.

We claim AL/L � Op(G/L). Let G̃ = G/CG(B) and Ũ = Op(G̃). Now Ũ � G̃

and U � G. Let U0 ∈ Sylp(U). Then Ũ0 ∈ Sylp(Ũ), but Ũ is a p-group. Thus Ũ0 = Ũ

and U = U0CG(B) � G. By (10), A � U � G, so AL/L � UL/L � G/L. Moreover,

UL

L
=

U0CG(B)L

L
=

U0L

L
∼= U0

U0 ∩ L
,

and UL/L is a p-group. Therefore, AL/L � UL/L � Op(G/L).

Let G = G/L and K = Op(G). Now L � K � G and P ∩ K ∈ Sylp(K). Then

P ∩K ∈ Sylp(K), but since K is a p-group, P ∩K = K. Thus K = (P ∩ K)L. It

follows from Z � P and B � G that K = (P ∩K)L � NG(Z∩B). By the maximality

of |L|, we have K = L and K = Op(G) = 1.

Since A � Op(G) = 1, we have A � L and A � P ∩ L, so A ∈ A(P ∩ L). By

Theorem 5.2(ii), A � J(P ∩ L) and J(P ∩ L) � J(P ). Thus by Theorem 5.1,

Z ∩B = Z(J(P )) ∩B � CP (A) = A � J(P ∩ L) � J(P ),

and Z ∩ B � Z(J(P ∩ L)). Let X = Z(J(P ∩ L)). Since X char P ∩ L, we have
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NG(P ∩ L) � NG(X). But G = NG(P ∩ L)L and so G = NG(X)L. Hence

B = B1 = 〈(Z ∩ B)G〉 = 〈(Z ∩B)NG(X)L〉 = 〈(Z ∩B)NG(X)〉 � 〈XNG(X)〉 � X.

Since J(P ) � P ∩ L, there exists A1 ∈ A(P ) such that A1 � P ∩ L. This implies

A1 � L, thus [B,A1, A1] �= 1.

Let A1 ∈ A(P ) such that A1 � L and |A1 ∩ B| is maximal. By the above,

[B,A1, A1] �= 1, so B � NG(A1). By the Thompson Replacement Theorem (5.6),

there exists A∗ ∈ A(P ) such that A1 ∩ B < A∗ ∩ B and A∗ � NG(A1). Now A∗ � L

by the maximality of |A1 ∩ B|, which implies A∗ � P ∩ L, so A∗ � J(P ∩ L). Thus

B � X � CP (A
∗) = A∗ � NG(A1) and [B,A1, A1] = 1, which is a contradiction.

Therefore, no such counterexample G exists.

Lemma 6.4. Let G be a group, P � G be a p-subgroup, H � G be a p′-subgroup, and

G = G/H. Then

(i) NG(P ) = NG(P ).

(ii) CG(P ) = CG(P ).

Proof.

For (i), let n ∈ NG(P ). Now P = P n = P
n
, so n ∈ NG(P ) and it follows that

NG(P ) � NG(P ). Conversely, let n ∈ NG(P ). Now P = P
n
= P n and P nH = PH.

Since H ∩P = 1, we have P n, P ∈ Sylp(PH). By Sylow, there exists h ∈ H such that

P nh = P . Hence nh ∈ NG(P ), so n ∈ NG(P ). Therefore, NG(P ) = NG(P ).

For (ii), we immediately have CG(P ) � CG(P ). Let C = CG(P ). Now [P ,C] = 1

and so [P,C] � H � C. From (i), C � NG(P ) = NG(P ). Thus C � NG(P )H

and by Lemma 1.1, C = C ∩ NG(P )H = (C ∩ NG(P ))H = NC(P )H. This implies

[P,NC(P )] � P ∩ [P,C] � P ∩H = 1 and NC(P ) � CG(P ). It follows that

C = NC(P )H � CG(P )H. Therefore, C = CG(P ) � CG(P ) and CG(P ) = CG(P ).

It is common to say “the normalizer passes” and “the centralizer passes” when

the conditions of Lemma 6.4 are satisfied.
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Lemma 6.5. Let G be a group and G = G/Op′(G). If G is p-stable and p-constrained,

then G is p-stable and p-constrained.

Proof.

By hypothesis, Op′(G) = 1. Thus Op′,p(G) ∼= Op′,p(G)/Op′(G) = Op(G/Op′(G)),

so Op′,p(G) is a p-group. As a result, it is enough to show CG(Op′,p(G)) � Op′,p(G).

Now Op′,p(G) = Op(G) � G is a p-subgroup and it follows that

Op′,p(G)/Op′(G) � G/Op′(G) is a p-subgroup. This implies

Op′,p(G)

Op′(G)
� Op

(
G

Op′(G)

)
=

Op′,p(G)

Op′(G)
,

and so Op′,p(G) � Op′,p(G). By Theorem 6.5 with π = {p},

CG(Op′,p(G)) � CG(Op′,p(G)) = CG(Op(G)) � Op(G) = Op′,p(G) � Op′,p(G).

Therefore, CG(Op′,p(G)) � Op′,p(G) and G is p-constrained.

Let P � G be a p-subgroup such that POp′(G) � G and A � NG(P ) be a

p-subgroup acting quadratically on P . Since Op′(G) = 1, we have P � G. Let

A0 ∈ Sylp(A) and P0 ∈ Sylp(P ). Since A and P are p-subgroups, we have A = A0

and P = P0. Moreover, P0Op′(G) � G and A0 � NG(P0) = NG(P0), which implies

A0 � A0Op′(G) � NG(P0)Op′(G). Also, A0 ∈ Sylp(NG(P0)Op′(G)) since Op′(G) is a

p′-group. By Sylow, there exists x ∈ NG(P0)Op′(G) such that Ax
0 � NG(P0). Since A

acts quadratically on P , it follows that A0 acts quadratically on P0. Furthermore,

x ∈ NG(P0) = NG(P0) and [P0, A0
x
, A0

x
] = 1, which implies

[P0Op′(G), Ax
0Op′(G), Ax

0Op′(G)] � Op′(G).

Thus [P0, A
x
0 , A

x
0 ] � Op′(G) ∩ P0 = 1. Since G is p-stable,

Ax
0CG(P0)

CG(P0)
� Op

(
NG(P0)

CG(P0)

)
and

Ax
0CG(P0)

CG(P0)
� Op

(
NG(P0)

CG(P0)

)
.

By Lemma 6.4 with P0 = P and A0 = A, we have

A
x
CG(P )

CG(P )
� Op

(
NG(P )

CG(P )

)
implies

(
ACG(P )

CG(P )

)CG(P )x

� Op

(
NG(P )

CG(P )

)
.
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Thus

ACG(P )

CG(P )
� Op

(
NG(P )

CG(P )

)(CG(P )x)−1

= Op

(
NG(P )

CG(P )

)
follows from

Op

(
NG(P )

CG(P )

)
� NG(P )

CG(P )
.

Therefore, G is p-stable.

Theorem 6.8 (Glauberman’s ZJ Theorem). Let G be a p-stable and p-constrained

group, and P ∈ Sylp(G). If Op(G) �= 1, then G = NG(Z(J(P )))Op′(G).

Proof.

We proceed by induction on |G|. Let G = G/Op′(G) and suppose Op′(G) �= 1.

Since Op(G) a normal p-group, we have Op(G) is a normal p-group and

Op(G) � Op(G). If Op(G) = 1, then Op(G) � Op′(G) �= 1. This implies Op(G) = 1,

which is a contradiction. Thus Op(G) �= 1. Moreover, P ∈ Sylp(G). By the induction

hypothesis, G = NG(Z(J(P )))Op′(G), but Op′(G) = 1 and so G = NG(Z(J(P ))). By

Lemma 6.4, G = NG(Z(J(P ))) and it follows that G = NG(Z(J(P )))Op′(G).

Without loss of generality, assume Op′(G) = 1. Now Z(J(P )) char J(P ) char P ,

Z(J(P )) � P , and Z(J(P )) is abelian. By Theorem 6.6, Z(J(P )) � Op′,p(G). Since

Op′,p(G) � G and Op′(G) = 1, we have Op′,p(G) is a p-group and Op′,p(G) � Op(G).

By Theorem 6.7, Op(G) ∩ Z(J(P )) � G, but Z(J(P )) � Op′,p(G) � Op(G). Hence

Op(G) ∩ Z(J(P )) = Z(J(P )). Therefore, Z(J(P )) � G and G = NG(Z(J(P ))).

6.2 Some Groups of Matrices

Definition 6.7. Let p be a prime, r ∈ N, and q = pr.

(i) The general linear group is given by

GLn(q) = {A ∈ Mn(GF (q)) : det(A) �= 0}.
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(ii) The special linear group is given by

SLn(q) = {A ∈ GLn(q) : det(A) = 1}.

(iii) The projective special linear group is given by

Ln(q) = PSLn(q) =
SLn(q)

Z(SLn(q))
.

Theorem 6.9. Let p be a prime, r ∈ N, and q = pr. Then

(i) GLn(q) is a group under matrix multiplication.

(ii) SLn(q) � GLn(q).

(iii) |GL2(q)| = (q2 − 1)(q2 − q).

(iv) |SL2(q)| = (q2 − 1)(q2 − q)/(q − 1).

Proof.

For (i), let A = [aij], B = [bij] ∈ GLn(q) and set [cij] = C = AB. From [Cur74],

cij =
∑n

k=1 aikbkj, so cij ∈ GF (q) and C ∈ Mn(GF (q)). Moreover,

det(C) = det(AB) = det(A) det(B) �= 0. Hence C ∈ GLn(q). Furthermore, GLn(q)

is associative; has an identity matrix In = [eij], where

eij =

⎧⎪⎨⎪⎩ 1, for i = j

0, for i �= j,

such that AIn = InA = A for all A ∈ GLn(q); and every A ∈ GLn(q) is invertible

since det(A) �= 0. Therefore, GLn(q) is a group under matrix multiplication.

For (ii), let A,B ∈ SLn(q). Now AB−1 ∈ GLn(q) by (i) and

det(AB−1) = det(A) det(B−1) = det(A) det(B)−1 = 1.

Thus AB−1 ∈ SLn(q) and SLn(q) � GLn(q) by the Subgroup Test.

For (iii), from [Cur74], an equivalent condition for a matrix having nonzero de-

terminant is for a matrix to have linearly independent rows. Consider a matrix in

GL2(q). There are q
2 possible combinations of elements from GF (q) to form the first

row; however, the first row must be nonzero. Thus there are q2 − 1 possibilities for
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row one. The second row cannot be a multiple of the first and there are q possible

multiples of row one. In total, there are q2−q possible choices for row two. Therefore,

|GL2(q)| = (q2 − 1)(q2 − q).

For (iv), define det : GLn(q) → GF (q)∗ by Adet = det(A) for all A ∈ GLn(q).

Clearly, det is a homomorphism. Let a ∈ GF (q)∗ and consider A = ( a 0
0 1 ) ∈ GL2(q).

Then Adet = a and so det is surjective. Now A ∈ SL2(q) if and only if Adet = 1,

or, equivalently, A ∈ Ker det . Hence SL2(q) = Ker det . By the First Isomorphism

Theorem,

GL2(q)

SL2(q)
=

GL2(q)

Ker det
∼= GL2(q)

det = GF (q)∗,

and ∣∣∣∣GL2(q)

SL2(q)

∣∣∣∣ = |GL2(q)|
|SL2(q)| = |GF (q)∗| = q − 1.

Therefore, |SL2(q)| = (q2 − 1)(q2 − q)/(q − 1).

Theorem 6.10. The Sylow 2-subgroups of SL2(3) are non-abelian.

Proof.

By Theorem 6.9, |SL2(3)| = (32−1)(32−3)/(3−1) = 23 ·3 and so |SL2(3)|2 = 23.

Consider P = {( 1 0
0 1 ) , (

2 0
0 2 ) , (

0 2
1 0 ) , (

0 1
2 0 ) , (

1 1
1 2 ) , (

2 1
1 1 ) , (

2 2
2 1 ) , (

1 2
2 2 )} . Clearly,

P ∈ Syl2(SL2(3)); however, ( 1 1
1 2 ) (

2 1
1 1 ) = ( 0 2

1 0 ) and ( 2 1
1 1 ) (

1 1
1 2 ) = ( 0 1

2 0 ) . Therefore, P

is non-abelian and all other Sylow 2-subgroups of SL2(3) are conjugate to P .

Definition 6.8. Let G and K be groups. Then K is involved in G if there exists

N � H � G such that K ∼= H/N.

Definition 6.9. Let G be a group and p be a prime. Then G is strongly p-solvable

if G is p-solvable and either,

(i) p ≥ 5, or

(ii) p = 3 and SL2(3) is not involved in G.
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Theorem 6.11. Let G be a group with abelian Sylow 2-subgroups. Then SL2(3) is

not involved in G.

Proof.

Toward a contradiction, suppose there exists N � H � G such that

H/N ∼= SL2(3). Let P1 ∈ Syl2(H). By Sylow, there exists P ∈ Syl2(G) such that

P1 � P . Since P is abelian, it follows that P1 is abelian. Moreover,

P1N/N ∈ Syl2(H/N) and P1N/N is abelian. Since H/N ∼= SL2(3), we have Sylow

2-subgroups of SL2(3) are abelian. However, this contradicts Theorem 6.10. There-

fore, SL2(3) is not involved in G.

Theorem 6.12. Let G be a group. If G is strongly p-solvable, then G is p-constrained.

Proof.

By hypothesis, G is p-solvable. Let P1 ∈ Sylp(Op′,p(G)) and H = Op′,p(G). Now

there exists P ∈ Sylp(G) such that P1 � P. Moreover, P ∩ H � H and P ∩ H is a

p-group. By Sylow, there exists h ∈ H such that P ∩H � P h
1 , so P1 � P ∩H � P h

1 ,

but |P1| = |P h
1 |. Thus P1 = P ∩H = P ∩ Op′,p(G) and by Theorem 6.4,

CG(P1) = CG(P ∩ Op′,p(G)) � Op′,p(G).

Therefore, G is p-constrained.

Lemma 6.6. Let G be a group, P ∈ Sylp(G), N � G be a p′-subgroup, and G = G/N.

Then

(i) J(P ) � J(P ).

(ii) Z(J(P )) � Z(J(P )).

(iii) NG(Z(J(P ))) � NG(Z(J(P ))).

Proof.

For (i), let A ∈ A(P ). Now A � P ,A is abelian, and

|A| = |AN |
|N | =

|A|
|A ∩N | = |A|,
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by the coprime orders of N and A. Thus A ∈ A(P ), which implies J(P ) � J(P ).

For (ii), let z ∈ Z(J(P )). Now z ∈ J(P ), so z ∈ J(P ). Clearly, z ∈ Z(J(P )), but

by (i), Z(J(P )) � Z(J(P )). Thus z ∈ Z(J(P )) � Z(J(P )) � Z(J(P )).

For (iii), J(P ) is a p-group, so Z(J(P )) is a p-group. By Lemma 6.4 and (ii), we

have NG(Z(J(P ))) � NG(Z(J(P ))) � NG(Z(J(P ))).

Theorem 6.13. Let G be a group. If G is strongly p-solvable, then G is p-stable.

Proof.

See Theorem 5.3, pg. 235 in [Gor07].

Theorem 6.14 (Glauberman-Thompson Normal p-Complement). Let G be a group

and P ∈ Sylp(G), where p is odd. If NG(Z(J(P ))) has a normal p-complement, then

G has a normal p-complement.

Proof.

Let G be a counterexample such that |G| is minimal. If there exists H < G such

that P � H, then P ∈ Sylp(H). Furthermore, Z(J(P )) char J(P ) char P , so

Z(J(P )) char P and Z(J(P )) � P. Thus P � NH(Z(J(P ))) � NG(Z(J(P ))). By

Lemma 4.2, NH(Z(J(P ))) has a normal p-complement and it follows from the mini-

mality of |G|, H has a normal p-complement. Since G is a counterexample, we have by

Frobenius’ Theorem (2.11) there exists H � G such that H is a p-group, N = NG(H)

has no normal p-complements, and |N |p is maximal.

We may assume P∩N ∈ Sylp(N); otherwise from Sylow, there exists P0 ∈ Sylp(N)

such that P ∩ N � P0. Also by Sylow, there exists g ∈ G such that P0 � P g, but

again, there exists n ∈ N such that P g ∩ N � P n
0 . Now P0 � P g ∩ N � P n

0 , but

|P0| = |P n
0 |, thus P g ∩N = P0 ∈ Sylp(N). But then NG(Z(J(P g))) = NG(Z(J(P )))g

has a normal p-complement since NG(Z(J(P ))) has a normal p-complement. Without

loss of generality, we may take P = P g.
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Suppose P � N = NG(H). Let R = P ∩N,L = NN(Z(J(R))), and

M = NG(Z(J(R))). Now R < P and L � M. By Lemma 1.16 on P , R < NP (R)

and Z(J(R)) char R, thus R < NP (R) � NP (Z(J(R))) � P ∩ M. It follows that

|M |p ≥ |P ∩M | > |R| = |N |p,M = NG(Z(J(R))), and Z(J(R)) is a p-group. By the

maximality of |N |p, M must have a normal p-complement. Now

Z(J(R)) char J(R) char R, so R � NN(Z(J(R))) = L � M. By Lemma 4.2, L has

a normal p-complement, but L = NN(Z(J(R))) and R = P ∩ N ∈ Sylp(N). Also,

N < G since P � N . By the minimality of |G|, N has a normal p-complement, but

this is a contradiction. Thus P � N . If N < G, then N has a normal p-complement,

which is again a contradiction. Therefore, P � N = NG(H) = G and H � G.

We claim Op′(G) = 1. Suppose not and let G = G/Op′(G). Now P ∈ Sylp(G),

p is odd, and NG(Z(J(P ))) = NG(Z(J(P ))) has a normal p-complement by Lemma

4.3. By the minimality of |G|, G has a normal p-complement. Hence G = POp′(G),

but Op′(G) = 1, so G = P . It follows that G = POp′(G) and G has a normal

p-complement. This is a contradiction, so Op′(G) = 1.

Since H is a p-group and H � G, we have by Sylow, H � P. If P = H, then

P � G. Also, Z(J(P )) char P � G implies Z(J(P )) � G and G = NG(Z(J(P ))).

Now G has a normal p-complement and this is a contradiction, so H < P. Since

H � G and Op(G) � G, we have N = NG(H) = G = NG(Op(G)). Thus NG(Op(G))

has no normal p-complement, Op(G) is a p-group, and |NG(Op(G))|p = |N |p. Without

loss of generality, assume H = Op(G).

Let G̃ = G/H. Since H < P , we have P̃ ∈ Sylp(G̃) is nontrivial. Let

Ñ1 = NG̃(Z(J(P̃ ))) and H̃1 = Z(J(P̃ )). Since P̃ �= 1, we have Z(P̃ ) �= 1, which

implies there exist maximally abelian subgroups of P̃ . Hence J(P̃ ) �= 1, which implies

H̃1 �= 1 and H < H1. Also, Ñ1 = NG̃(H̃1) = ˜NG(HH1) = ÑG(H1), so N1 = NG(H1).

Since H1 is a p-group and H < H1, we have H1 � G; otherwise, H1 � H. Thus

N1 = NG(H1) < G. Now P̃ � Ñ1 and P � N1 < G. By our work in the introduction,
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N1 has a normal p-complement, so Ñ1 has a normal p-complement by Lemma 4.3. By

the minimality of |G|, G̃ has a normal p-complement. It follows that

G̃ = P̃Op′(G̃) = ˜POp,p′(G) and G = POp,p′(G)H = POp,p′(G). Now

G

Op,p′(G)
=

POp,p′(G)

Op,p′(G)
∼= P

P ∩ Op,p′(G)

is a p-group, which implies

G

Op,p′(G)
= Op

(
G

Op,p′(G)

)
=

Op,p′,p(G)

Op,p′(G)
.

Thus G = Op,p′,p(G). By Theorem 6.2(iv), G is p-separable and by Theorem 6.1(ii),

G is p-solvable.

Now we want to show G is strongly p-solvable. If p ≥ 5, then G is strongly

p-solvable since G is p-solvable. If p = 3, then we must show SL2(3) is not involved in

G. By the coprime action of P̃ on Op′(G̃), we have for all q ∈ π(Op′(G̃)), there exists

Q̃ ∈ Sylq(Op′(G̃)) such that P̃ � NG̃(Q̃). Since Z(Q̃) char Q̃, we have P̃ � NG̃(Z(Q̃)).

Let G̃1 = P̃Z(Q̃) and Q̃1 = Z(Q̃). NowG1 = PQ1, whereQ1 is a q-group. In addition,

1 = [Z(Q̃),Z(Q̃)] = [Q̃1, Q̃1] and so [Q1, Q1] � H ∩ Q1 = 1. Thus Q1 is abelian. If

G1 < G, then G1 has a normal p-complement, where Q1 is the normal p-complement.

It follows that [Q1, H] � H ∩ Q1 = 1 and Q1 � CG(H) = CG(Op(G)) � Op(G) by

Theorem 6.3 because G is p-separable and Op′(G) = 1. Hence Q1 = 1 and

Q̃1 = Z(Q̃) = 1. This is a contradiction since Q̃ ∈ Sylq(Op′(G̃)). Thus

G = G1 = PQ1, where P is a 3-group, and Q1 is a q-group for q �= 3. Now the Sylow

2-subgroups of G are abelian since Q1 is abelian. By Theorem 6.11, SL2(3) is not

involved in G. Therefore, G is strongly p-solvable.

Since G is strongly p-solvable, G is p-constrained by Theorem 6.12, and by Theo-

rem 6.13, G is p-stable. Now H � Op(G) is nontrivial, so by Glauberman’s

ZJ-Theorem (6.8), G = NG(Z(J(P )))Op′(G), butOp′(G) = 1. ThusG = NG(Z(J(P ))),

but then G has a normal p-complement. This is a contradiction since G is a coun-

terexample. Therefore, no such counterexample exists.
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7 Fixed-Point-Free Automorphisms

Definition 7.1. Let G be a group and φ ∈ Aut(G). The centralizer in G of φ is

CG(φ) = {g ∈ G : gφ = g},

and CG(φ) � G. We say the automorphism φ acts fixed-point-freely on G if

CG(φ) = 1.

Definition 7.2. Let G be a group and φ ∈ Aut(G). Then [g, φ] = g−1gφ for all g ∈ G.

Theorem 7.1. Let G be a group, φ ∈ Aut(G), CG(φ) = 1, and suppose |φ| = n for

some n ∈ N. Then

(i) G = {[g, φ] : g ∈ G} = {gφg−1 : g ∈ G}.
(ii) ggφgφ

2 · · · gφn−1
= 1 for all g ∈ G.

Proof.

For (i), suppose x, y ∈ G such that [x, φ] = [y, φ]. Now x−1xφ = y−1yφ, so

yx−1 = (yx−1)φ. Hence yx−1 ∈ CG(φ) = 1 and y = x. Thus |{[g, φ] : g ∈ G}| = |G|,
but {[g, φ] : g ∈ G} � G. Therefore, G = {[g, φ] : g ∈ G}. Similarly, if xφx−1 = yφy−1

for some x, y ∈ G, then (y−1x)φ = y−1x and y−1x ∈ CG(φ) = 1. Thus x = y and

|{gφg−1 : g ∈ G}| = |G|. Therefore, G = {gφg−1 : g ∈ G}.
For (ii), let g ∈ G. By (i), there exists x ∈ G such that g = [x, φ] = x−1xφ. Now

ggφgφ
2 · · · gφn−1

= x−1xφ
(
x−1xφ

)φ (
x−1xφ

)φ2 · · · (x−1xφ
)φn−1

= x−1xφ
(
xφ

)−1
xφ2

(
xφ2

)−1
xφ3

(
xφ3

)−1
· · ·

xφ4
(
xφ4

)−1
· · ·

(
xφn−1

)−1
xφn

= x−1xφn

= x−1x = 1.

Therefore, ggφgφ
2 · · · gφn−1

= 1.
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Theorem 7.2. Let G be a group and φ ∈ Aut(G) such that CG(φ) = 1. Then

(i) For each p ∈ π(G), there exists a unique P ∈ Sylp(G) that is φ-invariant.

(ii) If H � G is a φ-invariant p-subgroup, then H � P.

Proof.

For (i), let P ∈ Sylp(G). Now |P φ| = |P |, so P φ ∈ Sylp(G). By Sylow, there exists

g ∈ G such that P φ = P g and by Theorem 7.1, there exists x ∈ G such that

g = [x, φ] = x−1xφ. Since |P x−1 | = |P |, we have P x−1 ∈ Sylp(G). Also,

(xφ)−1 = g−1x−1 and

(P x−1

)φ = (P φ)(x
−1)φ = (P φ)(x

φ)−1

= (P g)g
−1x−1

= P x−1

.

Thus (P x−1
)φ = P x−1

, P x−1 ∈ Sylp(G), and P x−1
is φ-invariant.

To show uniqueness, suppose P,Q ∈ Sylp(G) are φ-invariant. By Sylow, there

exists g ∈ G such that P g = Q. Now P g = Q = Qφ = (P g)φ = P gφ , so P = P gφg−1

and gφg−1 ∈ NG(P ). Since P is φ-invariant, we have NG(P ) is φ-invariant. Moreover,

CNG(P )(φ) � CG(φ) = 1, so φ acts fixed-point-freely on NG(P ). By Theorem 7.1,

there exists n ∈ NG(P ) such that gφg−1 = nφn−1. Then

n−1g =
(
nφ

)−1
gφ = (n−1)φgφ = (n−1g)φ,

and n−1g ∈ CG(φ) = 1. Thus g = n ∈ NG(P ) and Q = P g = P .

For (ii), let P ∈ Sylp(G) be the unique φ-invariant Sylow p-subgroup of G guar-

anteed by (i) and P1 � G be a maximal φ-invariant p-subgroup such that H � P1.

Since P1 is φ-invariant, NG(P1) is φ-invariant. Moreover, CNG(P1)(φ) � CG(φ) = 1.

By (i), there exists a unique P2 ∈ Sylp(NG(P1)) such that P2 is φ-invariant. Now

P1 � NG(P1) is a p-subgroup, so P1 � P2. Then H � P1 � P2 and by the maximality

of P1, we have P1 = P2. Thus P1 ∈ Sylp(NG(P1)). By Lemma 1.17, P1 ∈ Sylp(G)

and P1 is φ-invariant. It follows from the uniqueness of P that P1 = P. Therefore,

H � P.
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Theorem 7.3. Let G be a group, φ ∈ Aut(G), CG(φ) = 1, N � G be φ-invariant,

and G = G/N . Define the induced homomorphism on G by

gφ = gφ,

for all g ∈ G. Then CG(φ) = 1.

Proof.

Let a, b ∈ G. If a = b, then b−1a ∈ N and a = bn for some n ∈ N. Since N is

φ-invariant, aφ = aφ = (bn)φ = bφnφ = bφ nφ = bφ = b
φ
. Thus aφ = b

φ
and φ is

well-defined. It remains to show φ ∈ Aut(G).

Let a, b ∈ G. Now (ab)φ = (ab)φ = aφbφ = aφ bφ = aφb
φ
, and φ is a homomorphism.

Let a ∈ G. Then a ∈ G and so there exists b ∈ G such that bφ = a. It follows that

a = bφ = b
φ
and φ is surjective on G. To show φ is injective, suppose aφ = b

φ
. Now

aφ = bφ and (bφ)−1aφ = (b−1a)φ ∈ N. Since N is φ-invariant and φ is surjective on

G, we have Nφ = N. Thus there exists n ∈ N such that (b−1a)φ = nφ and since φ is

injective on G, we have b−1a = n ∈ N. This implies a = b. Therefore, φ ∈ Aut(G).

Finally, if a ∈ CG(φ), then aφ = a and a−1aφ ∈ N. Now CN(φ) � CG(φ) = 1,

so by Theorem 7.1, there exists n ∈ N such that a−1aφ = [n, φ] = n−1nφ. Hence

na−1 = (na−1)φ and na−1 is a fixed-point of φ. However, CG(φ) = 1 forces n = a and

a = 1. Therefore, CG(φ) = 1.

7.1 Some Examples

We provide some examples exemplifying the relationship between Thompson’s Theo-

rem and Frobenius’ Conjecture.

Theorem 7.4. Let G be a group, φ ∈ Aut(G), CG(φ) = 1, and suppose |φ| = 2. Then

G is abelian.

Proof.

By Theorem 7.1, xxφ = 1 for all x ∈ G, so xφ = x−1 for all x ∈ G. Let x, y ∈ G.
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Now xy = (y−1x−1)−1 =
(
yφxφ

)−1
=

(
(yx)φ

)−1
= ((yx)−1)−1 = yx. Therefore, G is

abelian.

By Lemma 1.13, G is nilpotent and from Theorem 1.21, G is solvable. Thus

Frobenius’ Conjecture holds true.

Theorem 7.5. Let G be a group, φ ∈ Aut(G), CG(φ) = 1, and suppose |φ| = 3. Then

G is nilpotent.

Proof.

Suppose G is not nilpotent. Since CG(φ) = 1, there exists a P ∈ Sylp(G) such

that P � G and P is φ-invariant by Theorem 7.2. Let Q ∈ Sylp(G) such that Q �= P.

Now Q � P and there exists x ∈ Q\P. By Theorem 7.1, xxφxφ2
= 1 and xφ2

xφx = 1,

which implies xxφ =
(
xφ2

)−1
= xφx.

Let H = 〈xφ, x〉. Now H is abelian since xxφ = xφx. Since |x| is a p-number, we

know |xφ| is a p-number and H is a p-group. Clearly, xφ ∈ H. Moreover,

(xφ)φ = xφ2
= (xφx)−1 ∈ H, so H is φ-invariant. By Theorem 7.2, H � P , which

places x ∈ P , a contradiction. Therefore, G is nilpotent.

By Theorem 1.21, G is solvable. Therefore, Frobenius’ Conjecture holds true.

Definition 7.3. Let G be a group and A � Aut(G). The centralizer in G of A is

CG(A) = {g ∈ G : gφ = g for all φ ∈ A},

and CG(A) � G.

Definition 7.4. Let G be a group and p be a prime. Define

Ω1(G) = 〈g ∈ G : gp = 1〉,

where Ω1(G) char G.
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8 The Proof of Thompson’s Theorem

Theorem 8.1 (Thompson). Let G be a group, φ ∈ Aut(G), CG(φ) = 1 and suppose

|φ| = r for some prime r. Then G is nilpotent.

Proof.

Let G be a counterexample such that |G| is minimal. Suppose there exists

1 �= N � G such that N is φ-invariant and N < G. Now φ ∈ Aut(N) since N is

φ-invariant. Let |φ| = k on N and |φ| = l on G/N , where k ≤ r and l ≤ r. If k < r,

then 〈φk〉 � 〈φ〉 and k = |〈φk〉|∣∣|〈φ〉| = r, which implies k = 1 or k = r. Respectively,

we have 〈φk〉 = 〈φ〉 or 〈φk〉 = 1. If 〈φk〉 = 1, then φk = 1, r
∣∣k, and r ≤ k. This is a

contradiction, so 〈φk〉 = 〈φ〉. But then 1 �= N � CG(〈φk〉) = CG(〈φ〉) = CG(φ) = 1

and we have another contradiction, thus k = r. Suppose l < r. By a similar argument,

we have 〈φl〉 = 〈φ〉. Now [G/N, φl] = 1, so [G/N, 〈φl〉] = 1. Hence [G, φl] � N and

[G, 〈φl〉] � N. By Theorem 7.1, G = [G, φ], but [G, φ] � [G, 〈φ〉] = [G, 〈φl〉] � N.

This is a contradiction and so l = r. Now N < G,CN(φ) � CG(φ) = 1, |φ| = r on N ,

and φ ∈ Aut(N). Thus N is nilpotent by the minimality of |G|. Also, CG/N(φ) = 1

by Theorem 7.3, |φ| = r on G/N , and φ ∈ Aut(G/N). It follows from the minimality

of |G| that G/N is nilpotent. Therefore, N and G/N are solvable by Theorem 1.21,

and G is solvable by Lemma 1.26.

Suppose G contains no nontrivial proper normal φ-invariant subgroups. If G is a

2-group, then G is nilpotent, which is a contradiction. Thus π(G) contains primes

other than 2. By Theorem 7.2, there exists P ∈ Sylp(G) such that P is φ-invariant

and p is odd. Now Z(J(P )) is nontrivial and Z(J(P )) char P , so Z(J(P )) is

φ-invariant. Since 1 �= Z(J(P )) < G, it follows that N = NG(Z(J(P ))) < G, where

N is φ-invariant. Also, CN(φ) � CG(φ) = 1. By the minimality of |G|, N is nilpotent.

Thus N has a normal p-complement and so by Glauberman-Thompson (6.14), G

has a normal p-complement. Hence G = POp′(G). Since Op′(G) char G, we have
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Op′(G) � G and Op′(G) is φ-invariant. By our assumption, Op′(G) = 1 or

Op′(G) = G. Respectively, G = P or P = 1. In either case, we have a contradiction,

so G contains a minimal φ-invariant subgroup. Therefore, G is solvable.

Let 1 �= N � G such that N is minimal with respect to being φ-invariant. Then

N is characteristically simple and by Theorem 1.13, N ∼= ⊗n
i=1 Ni, where the Ni’s

are simple isomorphic groups. If there exists 1 ≤ i ≤ n such that Ni is non-abelian,

then 1 �= N ′
i � Ni, so N ′

i = N
(1)
i = Ni since Ni is simple. But then N

(k)
i = Ni for

all k ∈ N and Ni is not solvable by Theorem 1.20. However, G is solvable and we

have a contradiction to Lemma 1.25. Thus Ni is abelian for all 1 ≤ i ≤ n. Since Ni

is simple, we have Ni
∼= Zp for some prime p. Therefore, N ∼= Zp × · · · × Zp is an

elementary abelian p-group.

Let G = G/N. Using a previous argument, G is nilpotent by the minimality of

|G|. If G is a p-group, then |G| = |G| · |N | and G is a p-group. Hence G is nilpotent

by Theorem 1.15. This is a contradiction. By Theorem 7.2, there exists Q ∈ Sylq(G)

such that Q is φ-invariant. Since Q is a q-group, Z(Q) �= 1 and Ω1(Z(Q)) �= 1.

Also, since G is nilpotent, Ω1(Z(Q)) char Z(Q) char Q � G and Ω1(Z(Q)) � G

by Lemma 1.12. Moreover, Ω1(Z(Q)) is φ-invariant since Ω1(Z(Q)) char Q. Let

1 �= M0 � Ω1(Z(Q)) be minimal with respect to being φ-invariant. Because G is

nilpotent, M0 � Ω1(Z(Q)) � Z(Q) � Z(G), so M0 � G. Since M0 is φ-invariant,

M0 = M0
φ
= Mφ

0 and Mφ
0 � Mφ

0 N = M0. Thus M0 is φ-invariant and M0 � G. Now

CM0(φ) � CG(φ) = 1 and it follows from Theorem 7.2 that there existsM ∈ Sylq(M0),

where M is φ-invariant. Now M ∈ Sylq(M0), but M0 is a q-group, so M = M0.

Therefore, MN = M0.

We claim G = MN. Suppose G �= MN. Now MN is φ-invariant,

CMN(φ) � CG(φ) = 1, and |φ| = r. Thus MN is nilpotent by the minimality of |G|.
Furthermore, M ∈ Sylq(MN), M � MN , M char MN = M0 � G, and M � G by

Lemma 1.12. Let G̃ = G/M. By a similar argument as above, G̃ is nilpotent. Then
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G̃×G is nilpotent by Lemma 1.21. Let θ : G → G̃×G be defined by gθ = (g̃, g) for

all g ∈ G. Clearly, θ is a homomorphism with Ker θ = M ∩N = 1 by coprime orders.

By the First Isomorphism Theorem, G ∼= G/Ker θ ∼= Gθ � G̃×G, so G is nilpotent

by Lemma 1.14, which is a contradiction. Thus G = MN.

If r = p, then 〈φ〉 is a p-group and acts on the p-group N . By Lemma 1.10,

1 �= CN(〈φ〉) � CG(φ) = 1, which is a contradiction. Thus r �= p. Similarly, if r = q,

let 〈φ〉 act on M and we result in a similar contradiction, so r �= q. Now we claim M

is an elementary abelian q-group. Since M ′ char M , we have M ′ is φ-invariant. Thus

M ′ � M = M0 and M ′ is φ-invariant. By the minimality of M0, either M ′ = 1 or

M ′ = M. If M ′ = M , then M ′N = MN , but M ∩ N = 1 and M ′ = M. Hence M

cannot be nilpotent; however, M is a q-group. This is a contradiction, so M ′ = 1. It

follows that M ′ � M ∩ N = 1 and M is abelian. Thus Ω1(M) is abelian and it is

enough to show Ω1(M) = M. Now Ω1(M) char M and Ω1(M) char M = M0, where

Ω1(M) is φ-invariant. By the minimality of M0, either Ω1(M) = 1 or Ω1(M) = M.

If Ω1(M) = 1, then Ω1(M) � M ∩ N = 1, which is a contradiction since M is a

q-group. Thus Ω1(M) = M and Ω1(M)N = MN , but Ω1(M) ∩N � M ∩N = 1, so

Ω1(M) = M. Therefore, M is an elementary abelian q-group.

Next we claim CM(N) = 1. Since M and N are φ-invariant, we have CM(N) is

φ-invariant. Now CM(N) � M = M0 and CM(N) is φ-invariant. By the minimality

of M0, either CM(N) = 1 or CM(N) = M. If CM(N) = M , then CM(N)N = MN.

But M ∩ N = 1, so M = CM(N). Thus M � MN = G and N � G, where M and

N are nilpotent. By Lemma 1.20, G is nilpotent, which is a contradiction. Hence

CM(N) = 1 and CM(N) � M ∩N = 1. Therefore, CM(N) = 1.

Since M is φ-invariant, 〈φ〉 acts in M in the natural manner. Thus G∗ = M�id 〈φ〉
is a group by Theorem 1.23. Let G∗ act on N over Zp via θ : G∗ → Aut(N) defined by

n(m,φk)θ = (nφk
)m for all n ∈ N and for all (m,φk) ∈ G∗. By Theorem 1.23, |G∗| = rqn

for some n ∈ N. Since p, q, and r are distinct primes, gcd(rqn, char Zp) = 1.
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We claim M is a minimal normal subgroup of G∗. Suppose L � M such that

L � G∗. Since M is elementary abelian q-group, we have L is an elementary abelian

q-group, so L char M . Now L char M = M0 and L is φ-invariant. By the minimality

of M0, either L = 1 or L = M. If L = 1, then L � N , where N is a p-group. Thus

L = 1 since L is a q-group with q �= p. If L = M , then LN = MN and since

L∩N � M ∩N = 1, we have L = M. Therefore, M is a minimal normal elementary

abelian q-subgroup of G∗.

Clearly, M � CG∗(M). Let (m,φk) ∈ CG∗(M) for 1 ≤ k ≤ r and suppose k < r.

Now for all x ∈ M , (m,φk)(x, 1) = (x, 1)(m,φk) and (mxφk
, φk) = (xm, φk). This

implies mxφk
= xm, but M is abelian, so xφk

= x for all x ∈ M. Thus φk = 1 and

r ≤ k, which is a contradiction. Hence k = r, φk = 1, and (m,φk) = (m, 1), which

implies CG∗(M) = M. Moreover, since 〈φ〉 is cyclic and |φ| = r, we have 〈φ〉 ∼= Zr.

Suppose (m,φk) ∈ Ker θ, where 1 ≤ k ≤ r. Now (m,φk)θ = 1 and for all n ∈ N ,

(nφk
)m = n and nφk

m = mn. If k < r, then 〈φk〉 = 〈φ〉 and CM(φ) � CG(φ) = 1.

Moreover,

CM(φ) � CM(φk) � CM(〈φk〉) = CM(〈φ〉) � CM(φ).

Thus CM(φk) = CM(φ) = 1, so φk acts fixed-point-freely on M . By Theorem 7.1,

M = {[m,φk] : m ∈ M} and so there exists m1 ∈ M such that

m = [m1, φ
k] = mφk

1 m−1
1 . Now for all n ∈ N we have, nφk

mφk

1 m−1
1 = mφk

1 m−1
1 n

and (nm1)φ
k
= nm1 . Thus nm1 ∈ CG(φ

k) = 1, so n = 1, but then N = 1. This

is a contradiction and so k = r. It follows that φk = 1 and nm = mn. Hence

m ∈ CM(N) = 1 and m = 1. Therefore, (m,φk) = (1, 1), Ker θ = (1, 1), and G∗

acts faithfully on N over Zp.

By Theorem 2.14, 1 �= CN(〈φ〉) � CG(〈φ〉) = CG(φ) = 1, which is a contradiction.

Therefore, no such counterexample G exists.
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