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ABSTRACT

In the early 1900s, Frobenius conjectured if a group G admits a fixed-point-free
automorphism ¢, then G must be solvable. During the next half-century, mathe-
maticians would struggle to find a completely group theoretic proof of Frobenius’
Conjecture. Between 1960 and 1980, progress was made on the Conjecture only by
assuming conditions on the order of ¢.

In 1959, Thompson proved, for his dissertation, the case assuming the automor-
phism had prime order and resulted in a stronger condition than solvable [Tho59];
Hernstein and Gorenstein proved the conjecture with an automorphism of order 4
[DG61]; and in 1972, Ralston proved a group admitting a fixed-point-free automor-
phism with order pq is solvable, where p and ¢ are primes. [Ral72] It was not until the
1980s, with the power of the Classification of Finite Simple Groups, was Frobenius’
Conjecture finally proven; however, the proof involved character theory.

In this paper, we consider John Thompson’s case of the Frobenius Conjecture:

Theorem ([Thob9]). Let G be a group admitting a fixed-point-free automorphism of

prime order. Then G is nilpotent.

Our goal is to lay a complete framework of the necessary concepts and theorems

leading up to, and including, the proof of Thompson’s theorem.

v



Acknowledgments

First and foremost, I would like to thank Dr. Neil Flowers; for his countless hours of
instruction and patience, without which this paper would not be possible; for sparking
my initial interest in group theory; and for inspiring me to become a professor.

My gratitude goes to Dr. Tom Wakefield and Dr. Eric Wingler, for serving on
my graduate committee and their assistance in the improvement of this work.

A special thank you to the Mathematics Department at Youngstown State Uni-
versity; for opening my mind to the wonder and joy of mathematics; for cultivating
my mathematical skills; and providing an environment suitable for the enrichment of
mathematics.

Finally, I am indebted to the late Dr. J. Douglas Faires, who was a phenomenal
instructor, mentor, and friend. I would not be the mathematician I am today without

his guidance and support.



Contents

1

6

Preliminaries

1.1 Elementary Group Theory . . . . .. .. .. ... .. ... .. ....
1.2 Group Actions and Sylow’s Theorems . . . . . . . .. ... ... ...
1.3 Characteristic Subgroups . . . . . .. .. ..o
1.4 Nilpotent Groups . . . . . . . . . .. ...
1.5 Solvable Groups . . . . . . . . ..

1.6 Semidirect Products . . . . . . . ...

Representation Theory
2.1 Maschke’s Theorem . . . . . . . . . .
2.2 Clifford’s Theorem . . . . . . . . . . .

The Transfer Homomorphism

Normal p-Complement Theorems
4.1 Burnside’s Normal p-Complement Theorem . . . . . . . . .. ... ..
4.2 The Focal Subgroup . . . . .. ... ...

4.3 Frobenius’ Normal p-Complement Theorem . . . . . . . . . ... ...

The Journey to Replacement Theorems

5.1 The Thompson Subgroup . . . . . . . . .. ... .. ... ... ....
5.2 Properties of Commutators. . . . . . . ... ... L.
5.3 Thompson Replacement Theorem . . . . . . . . ... ... .. ....

5.4 Glauberman Replacement Theorem . . . . . . .. .. ... ... ...

p-Separability and p-Solvability
6.1 p-Constrained and p-Stability . . . . ... ... ... ... ... ...

6.2 Some Groups of Matrices . . . . . . . . . . ... ... ... ... ..

vi

11
18
22

24
27
30

43

48
49
29
65

69
69
70
75
7



7 Fixed-Point-Free Automorphisms

7.1 Some Examples . . . . . . . . ...

8 The Proof of Thompson’s Theorem

vil



1 Preliminaries

In this paper, we follow Gorenstein’s notation indicating group actions and function
images by suppressed left exponential notation: using 29 to denote ¢(g)(z) and G
to denote ¢(G). [Gor07]

Let G be a finite group, H be a subgroup of G, and a,b € G. We will use 1
to represent the identity element of a group. If a is conjugated by b, we shall write
a’ = b~tab. If z,y € H are conjugate in G, we shall say = and y are fused in G and
write x ~¢g y. The set of all primes dividing the order of G will be given by 7 (G). If
b € G has order p" for some n € NU {0}, where p is a prime, we call b a p-element
and any element with order complementary to p is called a p’-element. If 7 is a set of
primes and 7(G) C 7, then G is called a m-group. On the other hand, if 7(G) ¢ ,
then G is a 7’-group, where 7’ represents all primes not in 7. We will denote NU {0}
by Nj.

All groups are finite. We assume the reader is familiar with the content of a first
year course in abstract algebra, but we will include some relevant results. In the
following section, we provide elementary definitions and theorems used repeatedly

throughout the paper.

1.1 Elementary Group Theory

Theorem 1.1 (The First Isomorphism Theorem for Groups). Let Gi and Gy be

groups, and suppose ¢ : Gy — Go is a homomorphism. Then

G o o
Kergb_Gl'

Theorem 1.2 (The Second Isomorphism Theorem for Groups). Let G be a group,
H <G, and N QG. Then

HN , H

N  HNN’




Theorem 1.3 (The Third Isomorphism Theorem for Groups). Let G be a group,
N <G, and N < H <G. Then
G/N G

H/IN H
Theorem 1.4 (Preimage and Image Theorem). Let G be a group, N I G, H < G,
and ¢ : G — G /N be defined by

9°=gH

for all g € G. Then
(i) H® = HN/N.
(i)) (HN/N)*"" = HN.
(i9) If L < G/N, then L = K/N, where N < K < G.

Lemma 1.1. Let G be a group, L < H < G, and K < G. Then (HNK)L = HNK L.

Lemma 1.2. Let G be a group, N I G, A< G, and B < G. Then

ANmBN_ANﬂB_AﬂBN
N N N N

Theorem (Lagrange). Let G be a group and H < G. Then |H| divides |G| and

g |Gl
G )=

gives the number of left (or right) cosets of H in G.

Theorem 1.5 (Cauchy). Let G be a group and p € n(G). If G is abelian, then there

exists a nontrivial x € G such that P = 1.

Definition 1.1. Let G be a group and a,b € G. The commutator of a and b s
[a,0] = a'a® = (b).

The commutator subgroup of G is

G' =[G,G] = {[a,b] : a,b € G).



Definition 1.2. Let G be a group and H < G. The commutator of H and G is
G,H] = ([g,h] :g € G and h € H).

Lemma 1.3. Let G be a group, H < G, K < G, and N I G. Then
H [HN KN]

Lemma 1.4. Let G be a group, H < G, and N < G. Then HN/N < Z(G/N) if
and only if |G, H] < N.

Lemma 1.5. Let A and B be groups. Then Z(A x B) = Z(A) x Z(B).

Lemma 1.6. Let A and C' be groups such that B I A and D < C. Then
BxD<AxC,

and

AxC A C
B><D B D

Theorem (Fundamental Theorem of Finite Abelian Groups). Let G be a finite abelian

group. Then, for some n € N,
G%Zpgl X Lrz X -+ X Ly,
where p; is a prime and r; € Ny for 1 <i <n.

Lemma 1.7. Let G be a group and {H;}"_, be a collection of subgroups of G. If
(i) G = H?:l Hi.
(i9) HiN ]l Hj=1 foralll <i<mn.

(i) H; QG forall1 <i<n.

Then G = Q.| H;.



1.2 Group Actions and Sylow’s Theorems

Definition 1.3. Let G be a group and S be a non-empty set. We say G acts on S

if there exists a homomorphism ¢ : G — Sym(S), where
Sym(S) ={¢p:S — S : ¢ is a bijection}
is the group of all permutations of S under composition.

Definition 1.4. Let G be a group, S be a set, a € S, and suppose that G acts on S.

The stabilizer in G of a is
Go={9€G:a’ =a},
and G, < G.

Definition 1.5. Let G be a group, S be a set, and a € S. The orbit of G on S
containing a s

aG = {a’ : g € G},
and aG C S.

Theorem 1.6 (Orbit-Stabilizer Relation). Let G be a group, S be a set, and a € S.
If G acts on S, then
G
|aG| = | | = [G:Ga].

Proof.

Let T = {G.g : g € G} and define ¢ : aG — T by (a?)? = G,g for all a? € aG. To
show that ¢ is well-defined, let a9, a9 € aGG such that a9* = a9. Then a%9%:" = q and
S0 195 " € G,. It follows that Gog1 = Gaga, so (a?)? = (a%)? and ¢ is well-defined.
If (a9)? = (a%)%, then Gug1 = G,g2, which implies g;g, € G,. Thus a%9: = a, or
equivalently, a9' = a%2. Hence ¢ is injective. To show ¢ is surjective, let G,z € T.
Since x € G, we have a® € aG and (a®)? = G,x. Therefore, ¢ is a bijection and

|aG| = |(aG)?| = |T| =[G : G- =



Definition 1.6. A group G acts transitively on a set S if there exists a unique orbit
such that S = aG for all a € S. That is, for all c,d € S, there exists g € G such that

g =d.

Theorem 1.7. Let G be a group, S be a set such that G acts on S, and suppose

H < G. If H acts transitively on S, then
G=G,H
foralla € S.
Proof.
Let a € S. By hypothesis, S = aH and G,H C G. Let g € G. Since H acts

transitively on S, there exists h € H such that a? = a”, hence ad"™" = q. It follows

that gh~! € G, and g € G, H. Therefore, G = G,H for all a € S. O
Theorem 1.8 (Class Equation). Let G be a group. Then

Gl = ) [G:Co(a)] +|Z(G),

ag Z(G)

and the above s called the class equation of G.

Definition 1.7. Let G be a group, p be a prime, and n € Ny be maximal such that
p" divides |G|. Then

(i) The p™-part of G is |G|, = p".

(71) A subgroup H of G is called a Sylow p-subgroup of G if |H| = |G]|,.

(i) The set of all Sylow p-subgroups of G is given by Syl,(G) (or SY).

Theorem 1.9 (Sylow). Let G be a group, p be a prime, and H be a p-subgroup of G.
Then
(i) Syly(G) £ 0.
(i) There exists P € Syl,(G) such that H < P.
(11) G acts transitively on Syl,(G) by conjugation.
() Let ny(G) = |Syl,(G)|. Then n,(G) divides |G| and n,(G) =1 (mod p).

5



Theorem 1.10 (Fixed Point Theorem for Groups). Let G be a p-group and S be a

set such that p1 |S|. If G acts on S, then there exists a € S such that G, = G.

Theorem 1.11 (Frattini Argument). Let G be a group, H < G, and P € Syl,(H).
Then G = Ng(P)H.

Proof.

Let g € G. Since P < H, we have P9 < HY = H and in addition,
|P9| = |P| = |H|,. Hence P? € Syl,(H). By Sylow, there exists h € H such that
P = P9 Consequently, gh € Ng(P), so g € Ng(P)H. Thus G < Ng(P)H and it
follows that G = Ng(P)H. O

Lemma 1.8. Let G be a group, P € Syl,(G), and N < G. Then
(i) PN/N € Syl,(G/N).
(i5) PNN € Syl,(N).

Proof.
For (i), by Lagrange

PN| _|PN| _ |PIN] [P
N |~ IN| T JPAN[N] _ [PAN|

and so PN/N is a p-group because P € Syl,(G). Furthermore,

G/N| _ |6l |6l Pl _ |G/P
[PN/N] ~ [PN] ~ [P| [PN] ~ [PN/P

and so [G/N : PN/N] is a p'-number. Thus |[PN/N| = |G/N|, and by Sylow,

PN/N € Syl,(G/N).

Clearly, PN N is a p-group. Now

N |PN]
|[PNN| |P| "’
which implies [N : PN N] is a p’-number. Therefore, PN N € Syl,(N). O



Theorem 1.12 (General Frattini). Let G be a group, P € Syl,(G), and N < G.
Then G = Ng(P N N)N.

Proof.
By Lemma 1.8, we have PN N € Syl,(N). The result then follows from the

Frattini Argument. O]
Lemma 1.9. Let G be a nontrivial p-group. Then Z(G) # 1.

Proof.

Suppose Z(G) = 1. Now the class equation of G becomes

Gl = > [G: Cqla)] + 1.

a¢Z(G)
If p divides |G : C(a)] for each a ¢ Z(G), then p divides ), > ()[G : Ci(a)]. Since G

is a p-group, we have p divides |G| =3_ . () [G : Cg(a)] = 1. This is a contradiction,
so there exists a* ¢ Z(G) such that p 1 [G : Cg(a*)]. But [G : Cg(a*)] must be a
p-number. Consequently, [G : Cg(a*)] = p® = 1. Thus G = Cg(a*) and a* € Z(G),

which is a contradiction. Therefore, Z(G) # 1. O

Definition 1.8. Let G be a group and ¢ : G — G. If ¢ is a bijective homomorphism,
then ¢ is called an automorphism of G. The set of automorphisms of G is Aut(G)

and Aut(G) is a group under the operation of composition.

Definition 1.9. Let G and H be groups. Then G acts on H if there exists a homo-

morphism ¢ : G — Aut(H). Also, the commutator of h and g is given by
[h,g] = h~'h?.
The commutator of G and H s given by
[H,G] = {|lh,g] : h€ H and g € G),

and [H,G] < H.



Definition 1.10. Let G and H be groups such that G acts on H. The centralizer
of G on H 1s
Cuy(G)={he€ H:h%=h forallge G},

and Cy(G) < H.
Lemma 1.10. Let G and H be p-groups. If G acts on H, then Cy(G) # 1.

Proof.

Since G acts on H, we have G acts on S = H \ {1} C H. Now G is a p-group and
p1|S]. By the Fixed Point Theorem for Groups (1.10), there exists a nontrivial a € S
such that G, = G. Therefore, a € Cy(G) and Cy(G) # 1. O

1.3 Characteristic Subgroups

Definition 1.11. Let G be a group and H < G. Then H s a characteristic sub-

group of G if H® < H for all ¢ € Aut(G), and we write H char G.

Lemma 1.11. Let G be a group. Then
(i) Z(G) char G.
(i) G’ char G.

Proof.
Let ¢ € Aut(G). For (i), let ¢ € G and z € Z(G). Since ¢ is surjective, there

exists g; € G such that gf = g. Now we have

92 = g% = (912)? = (2q1)? = 2%¢{ = 2%y,

so 2% € Z(G). Therefore, Z(G) char G. For (i7), let [, [a;, b;] € G'. We then have

n (z) n
(H[az-,bi]) R

i=1 i=1

where af, b € G. Therefore, G’ char G. m

177



Lemma 1.12. Let G be a group.
(1) If H char G, then H® = H for all ¢ € Aut(G).

)
(i) If H char G, then H < G.
(#i) If K char H Q G, then K < G.
)

() If P € Syl,(G) and P < G, then P char G.

Proof.

For (i), let ¢ € Aut(G). By hypothesis, H? < H, but since ¢ is a bijection,
|H?| = |H|. Tt follows that H? = H. For (i), let ¢ € G and ¢, € Aut(G) denote
the conjugation automorphism. Since H char G, we have H? = H, but H% = HY.
Therefore, H < G. For (iii), let ¢ € G. Since H < G, we have H? = H, so
¢, € Aut(H). Now K% = K since K char H, hence K < G. For (iv), ¢ is a bijection
and so |P?| = |P|. Thus P? € Syl,(G). By Sylow, there exists ¢ € G such that

P9 = P? but P < G. Therefore, P = P? and P char G. O

Definition 1.12. A group G is characteristically simple if {1} and G are its only

characteristic subgroups.

Theorem 1.13. Let G be a characteristically simple group. Then G = Q:_, G;,

where the G;’s are simple isomorphic groups.

Proof.

Let G; be a non-trivial normal subgroup of G such that |G;] is minimal, and
H = [[;_,Gi, where G; < G,G; = Gy, and Giﬂnj#Gj =1forl <i < s
with s chosen maximal. We claim H char G. Toward a proof, suppose H is not a
characteristic subgroup of G. Now there exists ¢ € Aut(G) and an 1 < ¢ < s such
that G £ H. It follows from H < G and G¢ < G that H N G? < G. Moreover,
HNG? < G?. Thus |HNG?| < |G? = |Gi| = |G4]. By the minimality of |G4], we
have HNGY = 1,50 H < GY [[;-, Gj. However, this contradicts the maximality

of s. Therefore, H char G.



Since H < G is nontrivial and G is characteristically simple, we have
G = H = []._,G;. By Lemma 1.7, G = @;_, G; and the G,’s are isomorphic by
construction. Suppose there exist 1 <7 < j < s such that x € G; and y € G;. Then
[x,y] S GiﬂGj < GiﬂHGj = 1,
J#i
and zy = yx. Thus G; < Cg(G,) for all i # j. Let 1 < i < s and suppose N < G;.
It follows from the above that N < G and |N| < |G;| = |G1|. By the minimality of
|G1|, either N =1 or N = G}, hence G, is simple. Therefore, G = @);_, G;, where

the G;’s are simple isomorphic groups. O

Definition 1.13. Let p be a prime. A group G is an elementary abelian p-group
if
G=Zly X Ly X+ XL

D

Definition 1.14. Let G be a group and H < G. If H # 1 and whenever there exists
K < G such that K < H, either K =1 or K = H, then H is a minimal normal

subgroup of G.

Theorem 1.14. Let G be a group and H be a minimal normal subgroup of G. Then
either there exist simple non-abelian isomorphic subgroups {H;}! | such that

H = Q). H;, or there exists a prime p such that H is an elementary abelian p-group.

Proof.

Suppose K char H. By Lemma 1.12(iii), K < G, so K = 1 or K = H by
the minimality of H. Thus H is characteristically simple and by Theorem 1.13,
H = Q.| H;, where the H;’s are simple isomorphic groups. If the H,’s are non-
abelian, then we are done. Without loss of generality, assume the H;’s are abelian.
Now the only subgroups of H; are {1} and H;. By Cauchy’s Theorem, there exists a

prime p such that H; is a p-group and H; = Z,. Therefore, H = 7Z,, X - - - X Z,,. O

10



1.4 Nilpotent Groups

Definition 1.15. Let G be a group. Define

Zo(G) =1, Z(G) = Z(G), ZQ(G):z< ¢ >

where Z;(G) represents the preimage of Z(G/Z;—1(G)). The upper central series

and inductively,

of G is

where Z;(G) < G for all i € Ny.
Definition 1.16. A group G is nilpotent if there exists n € Ny such that Z,,(G) = G.
Lemma 1.13. Let G be an abelian group. Then G is nilpotent.

Proof.
Since G is abelian, G = Z(G) = Z,(G). Therefore, G is nilpotent. O

Lemma 1.14. Let G be a nilpotent group, H < G, and N I G. Then
(i) H is nilpotent.

(i1) G/N is nilpotent.

Proof.

For (i), we claim Z;(G) N H < Z;(H) for all i € Ny and proceed by induction
on i. Assume Z;(G) N H < Z;(H) and show Z; 1(G) N H < Z;1(H). Toward this
result, let G = G/Z;(G) and Z;.1(G) N H denote the image of Z;,1(G) N H in G.

Now Z;11(G)NH < Zi11(G), so Zi11(G) N H < Z(G). It follows that

(HZi(G), (2i1(G) N H) Z(G)] = [H, Zi11(G) N H]Z,(G),

11



we have [H, Z;11(G) N H] < Z;(G). Hence

and
[H, Z+1(G)NH|Z;(H) H (Z1(G)NH)Z;(H)

b= Z,(H) Z:(H)’ Z:(H)

This implies (Z;41(G) " H)Z;(H)/Z;(H) < Z(H/Z;(H)) = Z;+1(H)/Z;(H), so
Zi1(G)N H < Z;1(H). Thus the claim holds by induction.
Since G is nilpotent, there exists n € N such that Z,(G) = G. By the claim,
Zn(H)> HNZ,(G) = HNG = H and so Z,(H) = H. Therefore, H is nilpotent.
For (ii), let G = G/N and Z;(G) denote the image of Z;(G) in G. Again using

induction, we show Z;(G) < Z;(G) for all i € Ny. Assume Z;(G) < Z;(G). Since

G, Zi1(G)] < Zi(G), we have |G, Z;,1(G)] = |G, Z;11(G)] < Z;(G) < Z;(G). Thus

which implies

Z:i1(G)Zi(G) _ Z( 6_ ) _ ZZ-H(G).
Zi(G)

Therefore, Z;11(G) < Z;+1(G) and the claim holds by induction.
Since G is nilpotent, there exists n € N such that Z,(G) = G. By the claim,

Z.(G) < Z,(G), but then G < Z,(G). Therefore, Z,(G) = G and G is nilpotent. [
Lemma 1.15. Let G be a nilpotent group. Then Z(G) # 1.

Proof.
Suppose Z(G) = 1. By hypothesis, there exists n € Ny such that Z,(G) = G. We
claim Z;(G) =1 for all i € Ny and proceed by induction. Assume Z;(G) = 1. Now

Zi+1(G) G ~ _
ZG) (ZZ-(G)) =2 =1

and the claim holds by induction. But this implies Z,,(G) = 1, which is a contradic-

1%

Zi1(Q)

tion. Therefore, Z(G) # 1. O

12



Lemma 1.16. Let G be a nilpotent group and H < G. Then H < Ng(H).

Proof.

Since G is nilpotent, there exists n € Ny such that Z,,(G) = G. Now H < G implies
there exists a maximal 1 <4 < n such that Z;(G) < H but Z;11(G) & H. By Lemma
14, |G, Z;1(G)] < Zi(G) < H, so [H, Zi11(G)] < H. Thus Z;11(G) < Ng(H), but
Z;i1(G) £ H. Therefore, H < Ng(H). O

Theorem 1.15. If G is a p-group, then G is nilpotent.

Proof.

Toward a contradiction, suppose G is not nilpotent. By hypothesis, Z(G) # 1.
Now we claim Z;(G) < Z;+1(G) for all i € Ny. Proceeding by induction, assume
Zi(@) < Zi41(G). Since G is not nilpotent, Z;,1(G) < G. Let G = G/Z;,1(G). Then
G is a p-group and 1 # Z(G) = Z;.5(G). Tt follows that Zi,1(G) < Zi42(G) and the
claim holds by induction.

From the claim, we have the series 1 = Zy(G) < Z1(G) < Z3(G) < ---, which

contradicts the finite order of GG. Therefore, GG is nilpotent. m

Lemma 1.17. Let G be a group and P be a p-subgroup of G. If P € Syl,(Ng(P)),
then P € Syl,(G).

Proof.

To the contrary, suppose P € Syl,(Na(P)), but P ¢ Syl,(G). By Sylow, there
exists @ € Syl,(G) such that P < Q. Since @) is a p-group, we have @ is nilpotent by
Theorem 1.15. Moreover, P < Ng(P) by Lemma 1.16. Now P < Ng(P) < Ng(P),
so P € Syl,(Ng(P)). But No(P) < @ is a p-subgroup, hence P = Ng(P), which is a

contradiction. Therefore, P € Syl,(G). O

13



Lemma 1.18. Let G be a nilpotent group and H be a nontrivial normal subgroup of

G. Then HN Z(G) # 1.

Proof.

Since G is nilpotent, there exists n € Ny such that Z,,(G) = G. Define the series
Hy = H,H, = [Hy, G|, Hy = [Hy,G], ..., and inductively, H, = [H, 1, G]. We claim
H; < Z,_;(G) for all i € Ny. Using induction on i, assume H; < Z, ;(G) and show
Hivw < Zyi1(G). Now Hiyy = [H;,G] < [Z,-i(G),G] < Z,—i-1(G), and so the
claim holds by induction.

It follows from the claim that H, < Z,_,(G) = Zy(G) = 1. Let m € Ny be
minimal with respect to H,, = 1. Then 1 = H,, = [H,,_1,G] and H,, 1 < Z(G).
Since H < G, we know H,, 1 < H and by the minimality of m, H,, 1 # 1. Therefore,

1% Hy < HNZ(G). m

Lemma 1.19. Let G be a group and H < G such that H < Z;(G) for all i € N.
Then Z;(G)/H = Z;(G/H) for all i € Ny.

Proof.

Let G = G/H and use induction on i to show Z;(G) < Z;(G). Assume

Zi(G) < Z;(G). By Lemma 1.4, we have [G, Z;11(G)] < Z;(G) and consequently,

G, Zi1(G)] =[G, Zi11(G)] € Zi(G) < Z;(G). By the same reasoning,

claim holds by induction.

Again proceeding by induction, we show Z;(G) < Z;(G) for all i € Ny. Assume

Zi(Q) < Zi(@G), it follows, [G, Z;11(G)] < Zi(G) < Zi(G). By Lemma 1.4 and the
Third Isomorphism Theorem,

Zi11(G)Z:(G) G\ G\ _ Zin(G) o Zina(G)
Zi(G) <Z< >_ (ZZ<G)) B Zi(G) B Zi(G) .

Zi(G)

Thus Z;11(G) < Zi11(G)Z:(G) < Z;11(G) and the claim holds by induction. There-

fore, Z;,(G) = Z;(G) for all i € Ny. O
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Lemma 1.20. Let G be a group, H I G, K < G, and suppose H and K are nilpotent.

Then HK s nilpotent.

Proof.

Use induction on |G|. By hypothesis, HK is a group and HK 14 G. If HK < G,
then H < HK and K < HK. Moreover, H and K are still nilpotent. By induction,
HK is nilpotent. Without loss of generality, assume G = HK. Since K is nilpotent,
we have Z(K) # 1 by Lemma 1.15. Let N = [H, Z(K)].

If N =1, then Z(K) < Cq(HK) = Ce(G) = Z(G) < G. Thus Z(G) # 1 and
G : Z(GQ)] < |G| Let G = G/Z(G). Now H < G and K < G. By the Second
Isomorphism Theorem and Lemma 1.14, we have H = H/H N Z(G) is nilpotent and

K = K/K N Z(G) is nilpotent. Thus by induction, H K = HK = G is nilpotent.

Then there exists n € N such that Z,(G) = G. By Lemma 1.19, Z,(G) = Z,(G), so
HK =G = Z7,(G) = Z,(HK). Therefore, HK is nilpotent.

Suppose N # 1. Since Z(K) char K < G, we have Z(K) < G by Lemma 1.12(3i7).
Also, Z(K) < G = Ng(H) because H < G. Hence 1 # N = [H,Z(K)] < H. By

Lemma 1.18,
1#A4NNZH)KZK)NZ(H) < Ce(HK) =Cq(G) = Z(G),

thus Z(G) # 1. Following the same argument as in the previous case, we have HK is

nilpotent. [
Lemma 1.21. Let G and G5 be nilpotent groups. Then Gy x Gy is nilpotent.

Proof.
Since GG; and Gy are nilpotent, there exist k,l € Ny such that Z,(G;1) = G; and
Z1(Gy) = Go. Let n = max{k,l}. Then Z,(G,) = Gy and Z,(G3) = Gs.

Claim: Zz(Gl X Gg) = Zz(Gl) X Zl(Gg) for all 7 € No.

Use induction on i. If i = 0, then Zy(G1 xGy) = (1,1) = {1} x{1} = Zs(G1) x Zo(G2).

15



Assume Z;(Gy x G9) = Z;(G1) x Z;(G3). Now by Lemma 1.5 and Lemma 1.6,

Zi+1(G1XG2):Z< G1XG2 >:Z( G1XG2 )
Zz(Gl X Gg) Zz(Gl X Gg) ZZ<G1) X Z,L(GQ)

“ (Zfél) g Zfé2)) -7 <%) “z (Zfé2))
_ Zin(Gh) | Zini(Go) o, Zis1(G) X Zia(Go)

12

X =
Thus Z;11(G1 x G3) = Z;11(G1) X Z;i41(G) and the claim holds by induction.

From the claim, Z,, (G x Gs) = Z,(G1) x Z,(G2) = G1 X G. Therefore, G; x G

is nilpotent. O

Definition 1.17. Let G be a group and H < G. If H < G and whenever there exists
K < G such that H < K, either K = H or K = G, then H is a maximal subgroup
of G.

Theorem 1.16. Let G be a nilpotent group and H be a mazimal subgroup of G. Then
H<QG.

Proof.
By hypothesis, H < G. It follows from Lemma 1.16 that H < Ng(H) < G. Thus
G = N¢(H) by the maximality of H. Therefore, H < G. O

Theorem 1.17. Let G be a nilpotent group. Then G = Q) p.gc P with p € 7(G).

Proof.

Let P € Syl,(G). If P 4 G, then Ng(P) < G, which implies there exists a
maximal subgroup M of G such that Ng(P) < M. By Theorem 1.16, M < G and
since P < M, we have P € Syl,(M). Now G = Ng(P)M = M by the Frattini
Argument, but this contradicts M as a maximal subgroup of G. Thus P < G and
HPeSg’ P < G, where p € 7(G). Moreover, for all ) € Syl,(G) with ¢ # p, we have
PN =1, which implies

1T PI= T IPI=1ct

Pesg PeSg
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Hence G = []pcge P. In addition,

rpnJ]e=1
QeS¢
for all ¢ € 7(G) with p # ¢. By Lemma 1.7, G = ®P€S§ P, where p € 7(G). ]

Definition 1.18. Let G be a group. Define K1(G) = G, K3(G) = [K1(G), G| = &,
K3(G) = [K2(G), G, ..., and inductively, K,(G) = [K,-1(G),G|. The lower cen-

tral series of G is
G =K|(G) > K3(G) 2 K3(G) = -+ - .

Theorem 1.18. Let G be a group. Then G is nilpotent if and only if there exists
n € N such that K,(G) = 1.

Proof.

Suppose G is nilpotent. Then there exists n € Ny such that Z,(G) = G.
Claim: K;(G) < Z,—i11(G) for all 1 <i<n+1.

Use induction on . If i = 1, then K1(G) = G < G = Z,(G) = Z,,—141(G). Assume
Ki(G) £ Z,—i+1(G) and show K,;1(G) < Z,_;(G). By Lemma 1.4,

Kin(G) = [Ki(G), Gl < [Zn-i11(G), G] < Zni(G),

and the claim holds by induction. Therefore, K, 11(G) < Z,—(n41)41(G) = Zp(G) =1
and K, 1(G) = 1.

Conversely, suppose there exists n € N such that K, (G) = 1.
Claim: K, —;(G) < Z;(G) for all 0 <i <n — 1.

Use induction on 7. If i = 0, then K,,_(G) = K,(G) = {1} < {1} = Zy(G). Assume
K,—i(G) < Z;(G). Since Z;(G) < G, we have

[K-i-1(G) Zi(G), G] = [Ky-i-1(G), G1Zi(G) < Kn—i(G)Zi(G) < Zi(G).

17



By Lemma 1.4,

Ko i 1(G)Z:(@) G\ Zin(G)
Z(G) <Z<zi<a>)‘ Z,(G)

and so K,,_; 1(G) < K,,_i_1(G)Z;(G) < Z;+1(G). Thus the claim holds by induction.
Now Z,-1(G) 2 Kn—(n-1)(G) = K1(G) = G, but Z,_1(G) < G. Therefore,
Zn-1(G) = G and G is nilpotent. O

1.5 Solvable Groups
Definition 1.19. A group G is solvable if there exists a subnormal series
G=G G PB>---bG,=1

such that G;/Gi11 is abelian for 0 < i < n—1. The quotient groups G;/G,y1 are called

factors of G.
Definition 1.20. Let G be a group. Define G =G, G = (GOY = ¢,
G® = (GWY, ..., and inductively, G™ = (G"=VY. The derived series of G is

G =ag0 Eg(l) EG’(Q) D>
Lemma 1.22. Let G be a group. Then G® < G for all i € N,,.

Proof.
We proceed by induction on i. If i = 0, then G = G < G. Assume G < G.
Now G+ = (GWY char G <4 G and G < G by Lemma 1.12(444). Therefore

the result holds by induction. O]

Theorem 1.19. Let G be a group and H < G. Then
(i) G' <4@G.

(1) G/G" is abelian.

(ii) If G/H 1is abelian, then G' < H.

18



Proof.
For (i), the result follows because G’ char G. For (ii), let G = G/G’ and @,b € G.

Now

@b = ab = baa~'b"'ab = ba[a, b] = ba = ba,

and it follows that G is abelian. For (iii), suppose G = G/H is abelian and let

a,b € G. Then [a,b] € G and

Thus [a,b] € H and so G' < H. O
Lemma 1.23. Let G be a solvable group. Then G < G; for all i € Ny.

Proof.
Use induction on i. If i = 0, then G = G < G = Gy. Assume G® < G;. Now
G = (GWY < (G;)', but G;/Gyy, is abelian. By Theorem 1.19, we have

G < (Gy) < Gyiyy. Therefore the result holds by induction. O

Theorem 1.20. Let G be a group. Then G is solvable if and only if there exists

n € N such that G™ = 1.

Proof.

Suppose there exists n € N such that G™ = 1 and consider the derived series
G =agO EG(I) > ... EG(”) = 1.

By Theorem 1.19, G® /G = GO /(GWY is abelian for 0 < i < n — 1. Thus G is

solvable. Conversely, suppose G is solvable. Then there exists a subnormal series
G=G G &--->G,=1,

such that G;/Gi4 is abelian for 0 < i <n — 1. By Lemma 1.23, G™ < G, =1. O
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Lemma 1.24. Let G be a group, H < G, and N < G. Then (HN/N) = H'N/N.

Proof.
Let G = G/N and [hiny, hong) € H = (HN/NY'. Since N < G, N* = N for all
h € H and

[hmh h2n2] = h1n171h2n271h1n1 hong = (hml)‘l (h2n2)_1 hing haong

= ny 'hy'ny 'hy 'hinihang = hy'ngng 'hy ' hyhangns
= hithythihong = [hy, ho]ns.

Thus [hin, hony] € H' = H'N/N and so " <. Conversely, let [hy, ho]n € H'.
Then

[h1, ho]n = hflhglhlhzn = hf1h51h1h2ﬁ = hf1h§1h1h2 = h_lilh_271h_1h_2 = [h_lv h_Z]a
and so [hy, ho]n € H . Therefore, (HN/N) = H'N/N. O

Lemma 1.25. Let G be a solvable group, H < G, and N < G. Then H and G/N

are solvable.

Proof.

By hypothesis, there exists n € N such that G = 1. We claim H® < G for
all ©+ € Ny and proceed by induction on 7. Assume H 0 < GW. Now by the induction
hypothesis, H+Y) = (H®) < (GW) = G, Thus H? < GY for all i € N.
Therefore, H™ < G™ =1 and H is solvable by Theorem 1.20.

Next, we claim (G/N)® = GON/N for all i € Ny. Using induction on i, if i = 0
then (G/N)® = GON/N. Assume (G/N)®» = GYN/N. By Lemma 1.24, we have

G (z’+1)_ G (i) ’_ GON\'  (GOYN  GUtIN
N S \\N N N -~ N N

Thus (G/N)® = GON/N for all i € Ny. It follows that

(G/N)™ = GWN/N = {1}N/N = N/N = 1.
Therefore, G/N is solvable. O
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Lemma 1.26. Let G be a group and H < G. If H and G/H are solvable, then G is

solvable.

Proof.

By hypothesis, there exist m,n € N such that H™ = 1 and (G/H)™ = 1. By
the claim in Lemma 1.25, GWH/H = (G/H)™ = 1, so G < H. Consequently,
Gm) = (GM)m) < ™) = 1. Therefore, G is solvable. O

Theorem 1.21. Let G be a group. If G is nilpotent, then G is solvable.

Proof.

Since G is nilpotent, there exists n € N such that

1= 2(G) 2 2,(G) 2--- 2 Z,(G) = G

is a normal series. Moreover, for 1 <17 < n,

is abelian. Therefore, G is solvable. O

Theorem 1.22. Let G be a solvable group and H be a minimal normal subgroup of

G. Then H 1is an elementary abelian p-group for some prime p.

Proof.

By Theorem 1.14, H is an elementary abelian p-group for some prime p or
H = @), H;, where the H,’s are simple non-abelian isomorphic groups. If
H = Q.| H;, then each H; is solvable by Lemma 1.25. Now Hi(l) = H] < H;, but
H; is simple and non-abelian, which implies Hi(l) = H;. By an inductive argument,
Hi(k) = (Hi(k_l))’ = (H;) 9 H; and HZ-(k) = H; because H; is simple. Thus H; is not

solvable and this is a contradiction. Therefore, H is an elementary abelian p-group

for some prime p. O]
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1.6 Semidirect Products

Theorem 1.23. Let H and K be groups, and suppose that K acts on H via
¢: K — Aut(H). Set

G=A{(k,h): ke K and h € H},
and define the product operation - by

)
(K, he) « (Ko, ho) = (kika, RS2 hy).

Then

(i) (G,-) is a group. (iv) G = H*K*.
(1)) H* ={(1,h) :he€ H} = H. (v) H* < G.
(1) K*={(k,1): ke K} =2 K. (vi) H* N K* = 1.
Proof.

For (i), G is closed since k§ € Aut(H). Let (k;, h;) € G for 1 <i < 3. Then
¢ ¢ o]
((ky, ha)(ka, ha)) (ks, hs) = (kika, hi hy)(ks, hs) = (kikoks, BSF2¥9)° nbs )
(o]
= (ky, hy) (koks, W5 hg) = (kv, hy) (Ko, ho) (s, hs))

so G is associative. Set (1,1) = (1, 1y), where the coordinates are the respective
identities of K and H. It follows that (1,1) € G and (1, 1) is the identity of G since
12 =1 € Aut(H). Furthermore, uniqueness is inherited from K and H. Let (k,h) € G

and consider the element (&', (h=1)*7)9) € G. Now
(k) (K (R ®%) = (kk RO (RTHED%) = (kR (hh™H %) = (1),
and
(k=5 () (e h) = (6, (B E9h) = (6, (b7 h) = (1,1).
Thus (k,h)™' = (k=1 (h~1)* %), where uniqueness is inherited. Therefore, G is a

group.
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For (ii)-(vi): the canonical mapping gives H* = H and K* = K. By the definition
of G, we have G = H*K*. Let (k,1) € K* and (1,h) € H*. Now

(L, h)™Y = (k, 1) (L, h) (k1) = (k71 1) (1, h) (k, 1) = (k™" k) (k, 1) = (1,h*") € B,
and so K* < Ng(H*). Moreover, H* < Ng(H*), so G = H*K* < Ng(H*). Conse-
quently, G = Ng(H*) and H* < G. Suppose (h, k) € H* N K*. By the definition of

H* and K*, we have h =1 and k= 1. Thus H*N K* =1 and
|G| = [H*||K*| = [H||K]. O

Definition 1.21. Let H and K be groups, and suppose that K acts on H via ¢. The
group described in Theorem 1.23 is called the semidirect product of H by K with

respect to ¢ and is denoted H x4 K.

23



2 Representation Theory

In this section, we briefly outline basic concepts from Linear Algebra necessary to
understand groups acting over vector spaces. A thorough review of Linear Algebra

can be found in [Cur74].

Definition 2.1. Let F' be a field. A vector space V over F' is a nonempty set of
vectors together with two operations: vector addition, which assigns for each u,v € V,
the new vector v+ u € V, and scalar multiplication, which assigns for each X\ € F
and v € V, the new vector \v € V. These operations satisfy the following axioms for

allv,u € V and for all o, 8 € F':

(i) (V,+) is an abelian group. (i) (af)u = a(Pu).
(7) a(u+v) =ou+ av. (v) lu = u.

(#i1) (a+ B)v = av + Po.

Definition 2.2. Let V and W be vector spaces over a field F. A linear transfor-
mation of V into W is a function T : V. — W defined by vT € W for all v € V,
such that

(1) (v1 +v2)T =T + 0T for all vi,ve € V.

(7)) (av)T = a(vT) for all « € F and for allv € V.

Theorem 2.1. Let V' and W be vector spaces over a field F', and let L(V,W) de-
note the set of all linear transformations from V into W. If addition and scalar
multiplication are defined as follows, for all v € V:

(7)) v(S+T)=0vS+vT forall S,T € L(V,W).

(i) v(al) = a(vT) for all T € L(V,W) and for all a € F.

Then L(V,W) is a vector space over F'.
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Definition 2.3. Let G be a group and V' be a vector space over a field F. Then
(i) Aut(V,F) ={T € L(V,V) : T is nonsingular} is a group under composition.
(1) Aut(V,F) = GL,(F)={A € M,(F) : det(A) # 0}, where M, (F) is the set of
n X n matrices over .
(i7) G acts on'V over F if there exists a homomorphism ¢ : G — Aut(V, F') called
a representation of G on the vector space V' over F.

(iv) G acts faithfully on V' over F wvia ¢ if Ker ¢ = 1.

Definition 2.4. Let G be a group acting on a vector space V over a field F. Then

V' is called a FG-module, or a G-module when F is clear from the context.

We will use the same notation for the action of a group GG on a vector space V

over a field F' as we use for the action of G on a set:
(au + pw)? = a(u?) + B(w?)
for all o, 8 € F, for all u,w € V, and for all g € G.

Definition 2.5. Let V' be a vector space over a field F and S C 'V such that S # (.

Then S is a subspace of V if
(i) a+be S forallabes.
(i4) Aa € S for all a € S and for all X € F.

For the sake of efficiency, we will invoke the following Lemma in proving a subset
of a vector space is a subspace. The proof follows trivially from the definition of a

subspace. [Cur74]

Lemma 2.1. Let V' be a vector space over a field F' and S C 'V be nonempty. Then

S is a subspace of V' if and only if au+ pw € S for all o, B € F and for all u,w € S.

Definition 2.6. Let V be a FG-module and W be a subspace of V. If w9 € W for
all w e W and for all g € G, then W is a FG-submodule of V. In addition, we

may call W a G®-invariant, or a G-invariant subspace of V.
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Theorem 2.2. Let G be a group acting on a vector space V over a field F. The

centralizer of G on'V s
Cv(G)={veV:vI=uv foradlg e G},
and Cy(G) is a subspace of V.

Proof.
Let g € G. Since V is a vector space, 0 € V and 09 = 0. Thus 0 € Cy(G) and
Cv(G) # 0. Let u,w € Cy(G) and «a, § € F. Now

(au+ pw)? = a(u?) + f(w?) = au + pw,

so au + pw € Cy(G). Therefore, Cy(G) is a subspace of V. O

Theorem 2.3. Let G be a group acting on a vector space V' over a field F and suppose

H QG. Then Cy(H) is a G-invariant subspace of V.

Proof.
By Theorem 2.2, Cy(H) is a subspace of V, so Cy(H) # (). Let v € Cy(H),
g€ G, and h € H. Since H < G, we have k¢ ' € H. It follows that o = v, or,

equivalently, v9" = v9. Thus v? € Cy(H) and Cy (H) is G-invariant. O

Definition 2.7. Let R be a ring. The least positive integer n satisfying na = 0 for
all a € R is called the characteristic of R and we write char R =n. If no such n

exists, we say char R = 0.

Theorem 2.4 (Fixed Point Theorem for Vector Spaces). Let G be a p-group and

suppose that G acts on a vector space V over a field F with char F' = p. Then
Cv (@) # 0.

Proof.
Use induction on |G| and let M be a maximal subgroup of G. By Theorem 1.16,
M <G, s0[G:M]=p. Let y € G\ M. Now y*?M = (yM)? = (yM)I¥M = 1M and
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so y? € M. Furthermore, |M| < |G|, M is a p-group, and M acts on V over F. By
the induction hypothesis, Cy (M) # 0.

Since y? € M, we have yP acts trivially on Cy(M). Thus y satisfies 27 — 1 on
Cy (M), but 2?7 — 1 = (x — 1)? since char ' = p. It follows that 1 is an eigenvalue
of y on Cy (M), so there exists a nonzero w € Cy (M) satisfying w?¥ = lw = w. Now
M < (M,y) < G and G = (M, y) by the maximality of M. Thus
w e Cy((M,y)) = Cy(G) and Cy(G) # 0. O

2.1 Maschke’s Theorem

Definition 2.8. Let G be a group and p be a prime. Define the unique mazimal

normal p-subgroup of G by

Op(G): HPa

P<G
where P is a p-subgroup. Similarly, the unique maximal normal p'-subgroup of G is

Op(G) = H P,

PG

where P is a p'-subgroup.

Definition 2.9. Let G' be a group acting on a vector space V' over a field F' via ¢. If
{0} and V are the only G®-invariant subspaces (FG-submodules) of V', then G acts

wrreducibly on V- over F via ¢. We call V' an irreducible FG-module.

Theorem 2.5. Let G be a group acting faithfully and irreducibly on a vector space V/
over a field F', and suppose char F = p. Then O,(G) = 1.

Proof.

Since O,(G) is a p-group acting on V', we have Cy(O,(G)) # 0 by the Fixed Point
Theorem (2.4). By Theorem 2.3, Cy(O,(G)) is a G-invariant subspace of V'; however,
G acts irreducibly on V. Hence V = Cy(0,(G)) and O,(G) acts trivially on V. It
follows from the faithful action of G on V' that O,(G) = 1. O
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Definition 2.10. Let V' be a vector space over a field F and {U;}!, be subspaces of
V. Then V 1is the direct sum of the U;’s if

(1)) V=U+Us+---+U,.

(47) Uiﬂzj#Uj:Oforalll <i<n.

We denote V' as a direct sum of the U;’s by V = @;_, U;.

Definition 2.11. A group G acts completely reducibly on a vector space V over a
field F if there exist G-invariant subspaces {U;}Iy of V' such that V = @;_, U; and

G acts 1rreducibly on U; for 1 <i <n.

Lemma 2.2. Let D be an integral domain. Then there exists a subdomain D' such
that
(i) If char D =0, then Z= D" C D.

(#1) If char D = p for some prime p, then Z, = D" C D.

Proof.

Let D' ={m-1:m € Z}, where 1 is unity in D, and ¢ : Z — D’ be defined by
m® = m - 1. Clearly, ¢ is a surjective ring homomorphism, thus Z¢ = D'.

For (i), if char D = 0, then m? # 0 for all m € Z*. Thus Ker ¢ = 0 and ¢ is
injective. By the First Isomorphism Theorem, Z = Z/Ker ¢ =2 7% = D' C D.

For (ii), if char D = p, then |1| = p and Ker ¢ = pZ. By the First Isomorphism
Theorem, Z/pZ 2 7¢ = D' C D, but Z/pZ = Z,,. Therefore, Z, = D', ]
Lemma 2.3. Let F' be a field. Then there exists a subfield F'" such that

(i) If char F =0, then Q = F' C F.
(#) If char F =p for some prime p, then Z, = F' C F.
Proof.
For (i), since F' is an integral domain and char F' = 0, we have Z =< D’ C F by

Lemma 2.2. Thus D’ is an integral domain in the field F, so F' contains a field of

quotients F' = Q. For (i7), the result follows from Lemma 2.2. ]
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Theorem 2.6 (Maschke). Let G be a group acting on a vector space V' over a field F'
and suppose char F =0 or char F is relatively prime to |G|. Then G acts completely

reducibly on V.

Proof.

Use induction on dimp (V). Let n = |G| and char F' = p. If p =0, then Q C F by
Lemma 2.3 and so % € F. If p#0, then Z, C F' and it follows from the ged(p,n) =1
that L+ € F is well defined. Thus n (2v) = L(nv) = v forallv € V.

Let 0 # Vi € V be a minimal G-invariant subspace. If V' = Vi, then G acts
completely reducibly on V' and we are done. Assume V; C V and let B = {u;}_; C V}
be a basis for V;. We may extend B to a basis for V' (Theorem 7.4 in [Cur74]), given
by {u;}i*,, and let W = Spanp({u;}}", ;). Clearly, V.=V, @ W. Let 0 : V. — W
be the projection of V onto W defined by (v; + w)? = w. Now 6 is linear, for if

vy + Wy, vy + we € V7 then
(v1 4 w1 4 Vo + w)? = (1 +v2) + (w1 4+ ws))? = wy +wy = (v1 +w1)? + (vg + wy)’.

Moreover, we claim 6 is idempotent—that is, 2 = 0. Let v; +w € V =V, @ W. Then
(01 +w)?” =w? = w = (v; +w)? and 62 = 6.

Let ¢ = £ 3 o afz~". Now ¢ is linear since 6 is linear and V' is a G-module. Let
Vo = V¥, Then V; is a subspace of V since 9 is a linear transformation [Cur74]. Let
y € G,v €V, and for each € G, set z, = y~'x. As z runs over G, so does z,, thus

1 —1 1 -1 1 “1
P — E P E :Uyzxﬁzx —— E :Uyﬂcﬁfc — VY.
n n n

zeG zeG zeG

But (v¥)¥ € V; since V is a G-module, hence V5 = V¥ is G-invariant.

Let v; € V; and z € G. Now v{ € V; since V; is G-invariant, so vfe = 0. Thus

o = %va%l = %Zozl = %Zo:o,

zeG zeG zeG
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and V}” = 0. Let v € V. Since (V,+) is abelian, we have

1 1 x0x—1 1 20x—1 1 x A
v—vwzﬁ(m})—EZve ZEZ(U—UQ ):EZ(U _ve) :
zeG zeG zeG

Furthermore, v® — v*? € V} since 0 is the projection of V onto W; (v® — v®)® e
since V; is G-invariant; and £ >~ - (v* — v™)*"" € V; since V} is a vector space over
F with £+ € F. Hence v —v¥ € V}. Because V¥ =0, we have (v —v¥)¥ = 0, but this
is equivalent to v¥ = v¥*. Thus ¢ = ¢? and ¢ is idempotent.

We claim V = Vi @ V,. Let v € V. Now v = (v — %) + 0¥ € Vi + V5 and so
V = Vi + V. Suppose v € V4 N V. Then w¥ = 0 since sz’:O, but u € Vo = VY. It
follows that there exists vy € V such that u = v{. This implies 0 = u¥ = v ‘= v = u,
so Vi1 NVy = 0. Therefore, V =V, & V5.

IfV =V, then Vi =ViNnV =V, NV, =0, which is a contradiction since V;
is a minimal G-invariant subspace. Hence Vo C V' and dimp(Va2) < dimp(V). By
induction, G' acts completely reducibly on Vs, so V5 = @le V5;, where each Vy; is an

irreducible G-submodule. Now V =V, oV, =V @le Vi, where V; is an irreducible

G-submodule. Therefore, G acts completely reducibly on V. O

Definition 2.12. Let G be a group acting on the vector spaces V- and W over the
field F. ThenV and W are isomorphic as G-modules if there exists an isomorphism

¢ :V — W such that vI% = v?9 for allv € V and for all g € G.

2.2 Clifford’s Theorem

Lemma 2.4. Let V' be a vector space over a field F' and S be a subspace of V. The

subspace of V generated by S is
(S) = {Zézlmisi cs, €S m; e F,1<i<I for somel € N}.

Proof.
Clearly, (S) C V and (S) # 0. Let 3!, misi,Z;‘le rit; € (S) and «, f € F. Set
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m;:amiforlSz’Slandr}zﬁrjforlgjgk.Now

! k ! k ! k
aZmisi + Berti = Zamisi + Zﬁrjti = ngsi + ngti € (5).
i=1 j=1 i=1 j=1 i=1 j=1

Therefore, (S) is a subspace of V. O

Lemma 2.5. Let G be a group acting on a vector space V over a field F, H < G,
U CV be an H-submodule, and W C V' be an irreducible H-submodule. Then U/W

1s an H-submodule.

Proof.

Let u+W € U/W and h € H. It follows from U and W being H-submodules, W
being irreducible, and W # 0 that (u+W)" = u" + W" = v + W € U/W. Therefore,
U/W is an H-submodule. O

Lemma 2.6. Let G be a group acting on a vector space V over a field ', H <1 G,
and suppose W C V' is an H-submodule. Then W 1is an irreducible H-submodule if

and only if W9 is an irreducible H-submodule for all g € G.

Proof.

Suppose W is an irreducible H-submodule, and let ¢ € G and h € H. Now
gh = h9 g, where h9"' € H and for all w € W, we have w9 = wh’ 9 = wi for
some wy € W. Thus WY is an H-invariant subspace of V. Suppose there exists an
H-invariant subspace T of W9. Now T9 ' is an H-invariant subspace of W by the
same argument as above, but W is irreducible. Thus T9 ' =0or 79" = W,soT =0
or T'= W?9. Therefore, W9 is an irreducible H-submodule.

Suppose W9 is an irreducible H-submodule for all g € G. By hypothesis, W is
H-invariant. If T is an H-invariant subspace of W, then 7Y is an H-invariant subspace
of W9 for all g € G. Hence T9 = 0 or 79 = W9, but then T'= 0 or T' = W. Therefore,
W is an irreducible H-submodule. O
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Theorem 2.7 (Clifford). Let G be a group acting irreducibly on a vector space V
over a field F' and suppose H < G. Then
(1) V = @@, Vi such that each V; is H-invariant, V; = @;’:1 Xi; such that each
Xij is an irreducible H-module, and X;; = Xy (as H-modules) if and only if
i =1
(11) Let U be an H-invariant subspace of V.. Then U = @, U;, where
U=UNnV,.
(i) t; is independent of i.

() G acts transitively on {V;}7_,.

Proof.

For (i), let W = @;_, W;, where W; C V is an irreducible H-module for all
1 <i < s and s is chosen maximal. If W is not G-invariant, there exists an
1 <i<sandg € G such that W ¢ W, thus W/ N W C W/. By Lemma 2.6,
W is an irreducible H-submodule, but W7 N W is H-invariant, so W/ N W = 0.
Hence W/ + W = W/ @ W = W/ ;_, W,, which contradicts the maximality of
s. Therefore, W is G-invariant and since V is an irreducible G-module, we have
V=W= @le W;. Now relabel the W;’s as X;;’s such that X;; = X, if and only
if i =4, and set V; = @;:1 X for 1 <i<n. Then V =@, Vi, where each V; is
H-invariant and the direct product of irreducible H-modules.

For (i1), let U be an H-invariant subspace of V. If U = V, then we are done by (7).
Without loss of generality, assume U C V. If W; € U, it follows that U N W; C W},
but U NW; is H-invariant and W; is an irreducible H-submodule. Thus UNW; =0
and U +W; = U @ W;. Find all such W;’s and set

VieUeW, aW,&---aW,. (1)

By the construction of V*, we have W; C V* for all 1 < j <'s, but V = j_, W.

Consequently, V = V*.
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Let V' = @,_, W,, and V" be the direct sum of the remaining W;’s. Now
V=V"@V"”and by (1), V =U @ V’'. By the Second Isomorphism Theorem,

u U U4V v Vv V) _V’/EV,,
{oy unv v Vv Vv VvV {0}

Hence U = V" and U is the direct sum of irreducible H-modules. Without loss of

1%

U

generality, assume U is an irreducible H-module. Then it is enough to show there

exists an 1 <4 < n such that U C V,.
SupposeUSZV;forall1§i§n.NOWU§Zijorall1§j§s. Let

W), =@, W;, where U ¢ W/, and m is chosen maximal. It follows that U C W}, ;.

Moreover, U N W/ C U and U N W/ is H-invariant. By our assumption, U is an

irreducible H-module, so U N W), = 0. Let W/ _, = W/ . ,/W! . By the Second

[somorphism Theorem,

!
UtWo o U U

wr o uUnw, {0}

U=

Since U is H-invariant, it follows that U is H-invariant. However,

- Wha  WhE A Wa 0 Wt W

= Y

W, 1 — - - - — m+15
mE w! w! W N Wi {0}

and W, 41 is an irreducible H-module. Consequently, W), ., is an irreducible
H-module and U C W}, ., is H-invariant. Thus U 2 U =W/ | =2 W,,11.
Suppose W,,,.1 C V; for some 1 < i < n and let V= V/V;. Now V= @;:1 VIA/;,

where

—  W;+V

W, ~ Wi W

— ~ T,
% w;nVv;, {0} 77
and T/IA/:J is not isomorphic to W, = U >~ U. Since U Q V;, we have U N'V; C U and
U NV, is H-invariant. Thus U NV, = 0 since U is an irreducible H-module and

U u _U+V, =~
= ~ =U.
{0y Uvnvi

If U - I/IA//] for some 1 < 5 < r, then U=0or U = W; since U is H-invariant and

I

U

VIA//]- = W is an irreducible H-module. If U= 0, then U C V;, which is a contradiction.
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IfU = VTA//J-, then VIA//J =U~U , which is also a contradiction. Thus U ¢ VIA/'/] for all
such j. Since U € V;, we have U # 0. Repeat the above argument with V and U
replaced by V and U to result in U I//V\;, where W\J/ 2 U. However, UxU ﬁ/\j:,
which is a contradiction. Hence there exists 1 < ¢ < n such that U C V.

For (iv), let x € G, 1 < i < n, and 1 < j < t;. By hypothesis, X;; is an
irreducible H-module and by Lemma 2.6, X{; is an irreducible H-module. From (i),
there exists 1 < i’ < n such that Xi; € Vir. However, Vi = @2’41 Xij, so there exists
1 < j" <ty such that X5 = Xyy. For 1 < k <t;, we have X;; & Xy, and X% = X3,
but from (i), there exists 1 < j” < ¢ such that X7 = X;;». Hence V¥ C V;; and
dimp(V®) < dimp(Vy). Consider (V7 : g € G) C V for 1 < k < n. By Lemma
2.4, (V7 : g € G) is a subspace of V and clearly, (V) : g € G) is G-invariant. Since
(V7 g€ G)+#0and G acts irreducibly on V', we have V = (V) : g € G).

By a similar argument in the preceding paragraph, for all 1 <[ < n, there exists
g € G such that V; C V¢ and dimp(V)) < dimp(V)?) = dimp(V}). By reversing the
roles of k and [ above, we have dimp (V) = dimp(V)). Hence dimp(V;) = dimp (V) <
dimp(Vy) = dimp(V;), so dimp(V;®) = dimp(Vy). But V* C V; implies V" = Vi,
thus G acts on V; for all 1 < ¢ < n. Moreover, V; C V" and V,, C V;”* for some
g1, 92 € G. It follows that Vlgl_l‘q;1 - ng"’_l C V,, but 91—192—1 is a linear transformation.
Hence dimp(‘/}gflggl) = dimp(V}), which implies Vlg;lg;1 = ng;1’ or equivalently,
Vlgl_1 = V. Therefore, G acts transitively on {V;} ;.

For (7ii), it follows from X, = Xy, dimp(Vi) = dimp(Vir), Vi¥ = Vi,

VE = ®§=1 X7, and Vy = EB?}’ZI Xy that t; = ty, thus ¢; is independent of i. O

Definition 2.13. The V;’s described in Clifford’s Theorem are called Wedderburn

components of V with respect to H and are denoted by Weddy (H) = {V;}I,.

Theorem 2.8. Let G be a group acting irreducibly on a vector space V' over a field
F and suppose z € Z(G) has an eigenvalue X\ € F. Then v* = Xv for all v € V.

Moreover, if G acts faithfully on V' over F, either z =1 or X\ # 1.
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Proof.

Let W = {v € V : v* = \v}. Clearly, W C V is a subspace of V since A has an
associated eigenvector. Let g € G and w € W. Now w?* = w* = (Aw)? = Aw?, so
w9 € W. Thus W is a G-submodule of V. Since G acts irreducibly on V', we have
V=W

Suppose G acts faithfully on V over F. If 2 # 1 and A = 1, then v* = \v = v for
all v € V. Thus z acts trivially on V; however, G acts faithfully on V. Then z = 1

and we have a contradiction. Therefore, z =1 or A # 1. O

Definition 2.14. Let n € N. The zeros of 2" — 1 = 0 are called the n'* roots of
unity and they are

{1,6,,02,..., 0" 1},

where 6,, = cos (27”) + i sin (27”) . We call 6! a primitive n'" root of unity if
(61 = {1,6,,02,...,6" 1}

Definition 2.15. Let G' be a group acting on a vector space V over a field F and

F C E be a field extension. The tensor product of V and E over F' s given by

VerkE = {Zai(viééei):ai,ei € E andv; € V}

=1

under the following identifications for all v,vy,vy € V, and for all a, e ey, e € E -
(i) v®@(e1+e2) =v®e; +vR ey,
(i) (V1 +vy) ®e=v;®e+vyRe.

(i) a(v®e)=av®e=1vQ ae.

Moreover, V @p E is a vector space over EJ and G acts on V @p E over E by

(v®e)! =1 Re,

forallv eV, for all g € G, and for all e € F.
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Lemma 2.7. Z,, X Zyp, X+ X L, = Lipyny..m, if and only if ged(ny, ..., ng) = 1.

£l

Proof.
Let Z =7y, X L, X -+ X Ly, and suppose Z = Z, n,..n,- Now Z is cyclic, hence
(1,1,...,1) is a generator of Z and |(1,1,...,1)] = [} ni. Since Zy,n,...n, is a finite

cyclic group, we have

i = 1,1,...’1 :l 5 ooy llg) = ’
En ( = lemln,na, oma) = e - 0)

Thus ged(ng, na, ..., ns) = 1. Conversely, suppose ged(ny, no, ..., ng) = 1 and consider
(1,1,...,1)). Now

(1,1, D)) =11, )| = [licy = =12l

~ ged(ng,no, ..., ny) i1

thus Z is cyclic. Therefore, Z is isomorphic to Z,ny..n, - [

Lemma 2.8. Let I be a finite field. Then F* = F \ {0} is a cyclic group under

multiplication.

Proof.
Since F' is a field, F* an abelian group. By the Fundamental Theorem of Finite

Abelian Groups, F* = Z n X Zpgz X e X Zp;k, where the p;’s are prime and r; € N

Py
for 1 < ¢ < k. By Lemma 2.7, it is enough to show p; # p; for all i # j. But this
would imply ged(py, pa, - .., pr) = 1 and it would be enough to show
lem(pi, i, i) = T, o)

Let I = lem(pi',py’,...,py") and A = H,’f:l p;'. Since p;

7

A for all 1 < i <k,
we have [ < A. Now there exists t; € Z such that [ = p;'t; for each 1 < i < k. Set
A =A{(1,...,ai,...,1) s a; € Z,:} for each 1 <7 < k. Now ®f:12pm = Hle A;.

Moreover,

(Looyan P = (1, d ) = (1, 1,...,1)

for each 1 < i < k. Thus F* = ®f:1 Lyi = Hle A;, where a; € A; and afii =1 for

all 1 <7 <k.
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Let fifs--- fr € F*, where f; € A; for each 1 <4 < k, and consider the polynomial

2! — 1 € Flx]. Since | = p}t; for 1 <i <k, we have
(3 Tl
(frf)l=1=floflo1= flltl... Pl _1=1...1-1=1-1=0,

50 fifa- - fris a zero of 2! — 1. Thus |F*| < [, but |F*| = |®"_, Z,i| = A. Therefore,
[ =lem(pit,py,....pf) = A= H,’f:l p;* and so F* is isomorphic to the cyclic group

7

Zp?p? p ke 0

Theorem 2.9. Let G be a group acting faithfully and irreducibly on a vector space V
over a field F. Then Z(G) is cyclic.

Proof.

Case 1: Suppose F' contains a primitive |G| root of unity.

Let g € G. Now g satisfies !¢ — 1, so the characteristic polynomial of g divides
2%l — 1. Since F contains a primitive |G|*" root of unity, it follows that F' contains all
the eigenvalues of all g € G. Let z € Z(G) and A\, € F' be a corresponding eigenvalue
of z. Define 0 : Z(G) — F* by 2 = ), for all z € Z(G). By Theorem 2.8, v* = \v
for all v € V, so 6 is well-defined. Let 21,29 € Z(G) and \.,., be an eigenvalue of

z129. Now for all v € V,

z1z Z1\% z z
Azyz0 =017 = (U 1) t = <)‘Z1v) t = )‘21<U 2) = Az Az,
hence (2122)? = 2929 and 6 is a homomorphism. To show injectivity, suppose z{ = z§.

Then v* = v* for all v € V, so v1%2" =y for all v € V. Thus 212"

acts trivially
on V; however, G acts faithfully on V' and it follows that z; = 25. By the First
Isomorphism Theorem, Z(G) = Z(G)? < F*. Since Z(G)? is finite, Lemma 2.8 on F

implies Z(G)? is cyclic. Therefore, Z(G) is cyclic.
Case 2: Suppose F' does not contain a primitive |G| root of unity.

Let w be a primitive |G| root of unity, L = F(w), and V;, = V ®p L. By

Definition 2.15, V7, is a vector space over L and G acts on V7, over L by (v®1)? = vI®.
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Furthermore, L contains a primitive |G|" root of unity. Let 0 # W C V7, be a minimal
G-invariant subspace, K be the kernel of the action of G on W, and G = G/K. Now

G acts irreducibly and faithfully on W over L by the induced map. Since L contains

a primitive |G|"* root of unity, we have y/®l = 1, where y is a primitive root. But

G| = |G|-|K| and it follows that y/¢! = 1. Thus L contains a primitive |G|™ of unity.
| Y y

By Case 1, Z(G) is cyclic, so Z(G) is cyclic. Now the Second Isomorphism Theorem

implies

K~ ZG)NK
so it is enough to show Z(G) N K =1 to prove Z(G) is cyclic.

Let z € Z(G)NK. Now z has 1 as an eigenvalue on W and it follows from Theorem
2.8 that z has 1 as an eigenvalue on V. However, the characteristic polynomial of z
on V7, is the same as the characteristic polynomial of z on V' since (v ® 1) = v9 ® [,
hence z has 1 as an eigenvalue on V. By Theorem 2.8, v* = 1lv = v for all v € V, so
z acts trivially on V. Thus z = 1 since G acts faithfully on V' and so Z(G)N K = 1.

But then Z(G) = Z(G), where Z(G) is cyclic. Therefore, Z(G) is cyclic. O

Lemma 2.9. Let G be a group acting irreducibly on a vector space V' over a field F

and K be the kernel of G on V. If G is abelian, then G/K is cyclic.

Proof.
Let G = G/K. Now G acts irreducibly and faithfully on V. By Theorem 2.9,

Z(@G) is cyclic. Since G is abelian, we have G is abelian, so G = Z(G) is cyclic. [

Theorem 2.10. Let G be an abelian group and suppose G acts irreducibly on a vector

space V' over a field F. If F contains an |G|™ root of unity, then dimp(V) = 1.

Proof.
Let K be the kernel of G on V and G = G/K. By Lemma 2.9, G is cyclic,

so G = (T) for some T € G. Let ¢ € G. Now g € G = (T) and so there exists
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n € Ny, (0 <n < |G| — 1) such that g = 7" = 2. It follows that g = 2"k € (2)K for
some k € K, which implies G = (x) K.

Let v; € V be a nonzero eigenvector of z and W = Spang(v;). Clearly, 0 £ W C V
and W is a subspace of V. Let g € G, a € F', and \; be the corresponding eigenvalue
of v1. Now (av)? = (av))*™* = a(vi")* = aXfv; € W and so W is G-invariant.

However, GG acts irreducibly on V| which implies V' = W = Span(v;). Therefore,
{v1} is a basis for V and dimp(V) = 1. O

Theorem 2.11 (Frobenius, 1901). Let G be a group and suppose H is a nontrivial
subgroup of G such that HN H9 =1 for allg € G\ H. Then G = K x H, where

K = (G\UH") U {1},

geG

K <G, and Ck(h) =1 for allh € H \ {1}.

Definition 2.16. Groups satisfying Frobenius” Theorem are called Frobenius groups

with Frobenius complement H and Frobenius kernel K.

The only known proof of Frobenius’ Theorem involves Character theory and is
beyond the scope of this paper. An immediate consequence of Frobenius’ Theorem is

the following:

Theorem 2.12. Let G be a Frobenius group with complement H and kernel K. Then
(i) G = HK with HN K = 1.
(i) |H|||K| - 1.
(#i1) Every element of H* induces by conjugation an automorphism of K which fizes
only the identity of K.
() Ca(k) < K forall k€ K\ {1}.

Proof.

See Theorem 7.6, pg. 38 in [Gor07]. O
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Theorem 2.13. Let G = HA be a Frobenius group with kernel H and complement A,
H be an elementary abelian q-group, and A be cyclic. Suppose that G acts irreducibly
and faithfully on a vector space V over a field F containing a primitive ¢ root of

unity. Then |Weddy(H)| = |A|.

Proof.

Let Weddy(H) = {V;}",. By Clifford’s Theorem (2.7), G acts transitively on
{Vi}™,. Since the V;’s are H-invariant and G = HA, we have A acts transitively on
{Vi},. Let Vi C{V;}™,. By Theorem 1.6, m = |[Weddy(H)| = [A: Ay, ] < |A].

Suppose m < |A|. Let Gy = HAy,, Ny be the kernel of G; on Vi, and a; € A,
where Vi" =V, for every 1 < i < m. Now Nj" is the kernel of G{* on V|* for every
1 <4 < m. Since Ay, N Ny < Ny, we have (Ay, NNy )% < N, but A is abelian, so
(Ay, N Ny)% = Ay, NNy Hence Ay, NNy < Ny for all 1 < ¢ < m, which implies
Ay, NNy < N2, Ny = 1 since G acts faithfully on V. Thus Ay, N Ny = 1. Since
Ny < Gy, we have 1 = (Ay, N N)? = A, N Ny for all g € Gy, but then

N, C (Gl\ U A€/1> U{1} C (G\UAgl) U{1} = H.

geGy geG

Let G, = G1/N; = H A_vl Now G, acts faithfully on V;. By Clifford’s Theorem,
Vi = @21:1 X1, where the X ;’s are irreducible H-modules. By Lemma 2.9, H is cyclic
because H is abelian. Let T € H such that H = (¥). Since F contains a primitive ¢'*
root of unity, we have dimp(X;;) = 1 by Theorem 2.10 used on H. Hence T acts like a
scalar on X;; for each 1 < j <, so T acts like a scalar on V; = @;1:1 Xy;. Since Ay,

fixes Vi, we have [T, Ay,] acts trivially on V;. For if [z, @] € [7, Ay,] and v; € V4, then

P8 — @ FETEE N1 = \1yT @ = \~1\yT = ;. However, G acts faithfully

on Vi, so [T, Ay,] = 1. Since H = (T), we have [H, Ay,] = 1 and [H, Ay,] < Ny
It follows from H < G and A is abelian that [H, Ay, |% = [H, Ay,| < Ny for every
1 <i¢<m. Thus [H,Ay] < i N = 1 and [H, Ay,] = 1. Because G = HA is

a Frobenius group, we have Cy(a) = 1 for all @ € A\ {1} by Theorem 2.11, but
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[H,Ay,] = 1. Thus Ay, = 1 and so m = |Weddy(H)| = [A: Ay, ] = |A], which is a
contradiction. Therefore, |Weddy (H)| = |A. O

Theorem 2.14. Let G = PQ be a group, Q) be a minimal normal elementary abelian
q-group, Ce(Q) = Q, and suppose P = 7, for some prime p. If G acts faithfully on
a vector space V' over a field F' with char F ¢ {p,q}, then Cy(P) # 0.

Proof.

Case 1: Suppose F' contains a primitive ¢'* root of unity.

Let P = (z) and use induction on dimg (V). Since char F' ¢ {p, ¢}, we know either
char F' is relatively prime with |G| or char F' = 0. By Maschke’s Theorem (2.6), G
acts completely reducibly on V. Since G acts faithfully on V', it follows that () acts
faithfully on V. Thus there exists a nontrivial irreducible G-submodule U of V' such
that @) acts nontrivially on U. Let K be the kernel of G on U. Now K < G and so
QN K < G. Moreover, QN K < @ since (Q acts nontrivially on U. Thus QN K =1
by the minimality of Q).

Suppose k € K is a g-element. By Sylow, there exists g € G such that (k) < Q9,
but @9 = Q. Hence (k) < QN K =1 and K is a p-group. Again by Sylow, there
exists ¢ € G such that K < P9. But K < G implies K = K9 ' < P, hence K = 1
or K =P. If K =P, then P <G and [P,Q] < PNQ =1 by coprime orders. But
then P < Cg(Q) = @, which implies P = 1. This is a contradiction since P = Z,.
Therefore, K = 1 and G acts faithfully on U.

If U #V, then dimp(U) < dimp(V), so by the induction hypothesis,

0 # Cy(P) < Cy(P). Without loss of generality, assume U = V. Then G acts
faithfully and irreducibly on V' = U. Now it follows from PN @ =1 and Q < G that
1=(PNQ)=PINQ for all g € G. Hence

QC (G\UP9> U{1}.

geG
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If Cg(x) # 1, then Cyp(z) < PQ = G since P = (x) and @ is abelian, but Cp(z) < Q.
By the minimality of @), we have Cg(z) = Q. Now [@,z] = 1 and by extension,
[@Q,P] =1. Thus P < Cs(Q) = @ and P = 1, which is a contradiction. Therefore,
Co(z) = 1.

Clearly, P < Ng(P). If there exists n € Ng(P), where n is a g-element, then
[P,n] < PN[P,Q| < PNQ = 1. Hence n € Cg(P), which implies n € Cg(x) =1 and
Ng(P) is a p-group. Thus Ng(P) < P and we have Ng(P) = P. Let g € G\ P. If
PN P9 #1, then PNPY=P,;so P < P9 Hence P= P9 and g € Ng(P) = P, which
is a contradiction. Thus PN PY =1 and P is a trivial intersection (TT) subgroup. By
Frobenius’ Theorem (2.11), (G \Uyee P9> uU{l} <aG.

Let x € (G\UgEG Pg) U {1} be a p-element. If x ¢ {1}, then z € G \ U, P
Now (z) is a p-group, so by Sylow, there exists ¢ € G such that (z) < P9. Then
(z) < U,eq P75 which is a contradiction. Thus z =1 and (G \U,ee P9> U{l}isa
g-group. Since Q) € Syl,(G), we have <G \ Uyea P9> U {1} < @ and by Frobenius’
Theorem, (G \Uyee P9> U{1} < G. It follows from the minimality of @) that

Q= (G\ UP9> U {1}.

gelG

Thus G is a Frobenius group with kernel () and complement P.

By Theorem 2.13, [Weddy (Q)| = |P| = p. Let Weddy(Q) = {Vi}}_,. Since the
Vi’s are Q-invariant and G = PQ, we have P = (x) acts transitively on {V;}}_,. Let
Vf“"i_l =V, for1 <i < pand v, € V) be nonzero. Since V = @fﬂ‘/}, we have
{v¥""}_ is linearly independent. Thus v = 327 0¥ " # 0 and v* = 320 ¥ = v,

so v € Cy(P). Therefore, Cy (P) # 0.

Case 2: Suppose F does not contain a primitive ¢** root of unity.

Let w be a primitive ¢** root of unity, L = F(w), and V, =V ®p L. Now G acts
faithfully on V7, and char L ¢ {p,q}. By Case 1 on Vy, over L, we have Cy, (P) # 0.
Therefore, Cy (P) # 0. O
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3 The Transfer Homomorphism

Definition 3.1. Let G be a group, H < G, [G : H] = n, {t;}I~, C G such that
G =, Ht;, and suppose Ht; = Ht; if and only if t; =t;. The set {t;}}" is called
a transversal of H in G. In addition, the set of all transversals of H in G is given
by

T =A{T ={t;}}.y CG: T is a transversal of H in G}.

Lemma 3.1. Let G be a group, H < G, |G : H| =n, and T be the set of transversals
of H in G. Then G acts on T by T9 = {t;g}"_, for all g € G and H acts on T by
T" = {ht;} | for allh € H.

Proof.

It is enough to show {t;g}! , and {ht;}! | are indeed transversals of H in G. Let
g€ Gand {t;}], € 7. If Ht,g = Ht;g, then Ht; = Ht;, but {t;}7_, is a transversal
of Hin G. Thus t; =t; and T9 = {t,g}", € .7. Therefore, G acts on 7 by right
multiplication.

Let h € H and {t;}}", € 7. If Hht;, = Hht;, then Ht; = Ht;, but t; = t; since
{t;}, is a transversal of H in G. Therefore, T" = {ht;}., € F and H acts on J

by left multiplication. O

Definition 3.2. Let G be a group, J < H < G, H/J be abelian, 7 be the set of
transversals of H in G, and suppose T,U € 7. Define the element T'/U € H/J by

T/U =[] Jtau;!
i=1
where T = {t;}7, U = {w;}y, and tyu;* € H for all 1 <i < n.

In Definition 3.2, T'/U does not represent a quotient group, but implies an operator

on T and U that is denoted T'/U.
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Theorem 3.1. Let G be a group, J < H < G, H/J be abelian, |G : H| =n, and T

be the set of transversals of H in G. Then
(i) T)T =J forall T € T .
(id) T/U = (U/T)"" for all T,U € 7.
(i) T/U =T/V VJU for all T,U,V € T.
Proof.

For (i), let T'€ 7. The result follows from the definition of T'/T.
For (ii), let T,U € 7. Since H/J is abelian, we have

T/U = ﬁ Tty = H J(uity (H Jugt; >_ = (U/T)™"

For (iii), let T, U,V € 7. Since H/J is abelian,
T/U =[] Jtau* = H Jtw v H Jtw v
i=1

= H Jtw; ! H Jou;t =TV V/U.
i=1 i=1
Therefore, T/U =T/V V/U. O
Theorem 3.2. Let G be a group, J < H < G, H/J be abelian, |G : H] =

T be the set of transversals of H in G, and suppose T € 7. Define the transfer

homomorphism, 7: G — H/J by
gr =TT,
for all g € G. Then for all g € G, for all h € H, and for all U € 7 :
(1) T9/U9 =T/U and T"/JU" =T/U.
(i) T is independent of T.

(#i) T is a homomorphism.

Proof.

Let U = {u;}?_, € 7 such that t;u;' € H for all 1 <4 < n. For (i), let g € G
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and h € H. Now

Tg/Ug—HJtlg u;g) " HJtlgg u; ﬁJtiuglzT/U,

=1

and since H/J is abelian,

Th /UM = H Jht(hu;)~ H Jhtu; th™t = ﬁ JhJtu; Tt = ﬁ Jtu;t =T)U.

i=1
Therefore, T9/U9 = T /U and T"/U" =T/ U.

For (i), it follows from Theorem 3.1, part (i), and the abelian property of H/J
that

)T =T9/UUY)U U/T =T/U U?/U U/T=U9/UT/UU|T
=0/ UT/T=U%UJ
=U%/U.
Therefore, 7 is independent of 7.

For (iii), let z,y € G. By Theorem 3.1 and part (7), we have
(xy)" =TT =TTV TY)T =T%)T TY)T = x7y".

Therefore, 7 is a homomorphism. O

Theorem 3.3. Let G be a group, J I H < G, H/J be abelian, |G : H| =n, T be
the set of transversals of H in G, T = {t;}'.y € T, T be the transfer of G into H/J,
and suppose ged(|G : H],[H : J]) =1. Then HN Z(G) NG < J.

Proof.

Let h € HNZ(G)NG'. By the First Isomorphism Theorem, G/Ker = G™ < H/J,
so G/Ker 1 is abelian. By Theorem 1.19, G’ < Ker 7 and so h € Ker 7. Since
h e Z(G), we have J = h™ =T")T =], Jt;ht;' =]\, Jh = Jh", hence h" € J.
Next (Jh)" = Jh™ = J, so by Lagrange, |Jh| divides n = [G : H] and |Jh| divides
[H : J]. However, ged(|G : H]|,[H : J]) = 1, which implies Jh = J and h € J.
Therefore, HN Z(G) NG < J. O
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Lemma 3.2. Let G be a group, J < H < G, H/J be abelian, and 7 be the set of
transversals of H in G. Define an equivalence relation ~ on 7 by T ~ U if and only

if T/U = J for allT,U € .

Proof.

Let T,U € . Now T'/T = J by Theorem 3.1(7) and so ~ is reflexive. If T' ~ U,
then T/U = .J. By Theorem 3.1(ii), U/T = (T/U) " = (J)™' = J, s0o U ~ T and
~ is symmetric. Finally, if V' € .7 such that 7'~ U and U ~ V, then by Theorem
3.1(ii), T/V =T/U U/V =J J=J. Hence T'~ V and ~ is transitive. Therefore,

~ is an equivalence relation on 7. m

Lemma 3.3. Let G be a group, J I H < G, H/J be abelian, and T be the set of
transversals of H in G. Define Q = {[T]| : T € T} to be the set of equivalence classes
on 7 under the relation described in Lemma 3.2. Then

(i) G acts on Q by [T)9 = [T9] for all g € G.

(it) H acts on Q by [T)" = [T"] for all h € H.

Proof.

Since G and H already act on .7 in the prescribed manner by Lemma 3.1, it is
enough to show the action is well-defined. Let g € G and suppose [T], [U] € €2 such
that [T']9 = [U]9. This implies 79 ~ UY if and only if 79/U¢ = J, which is to say if
and only if /U = J. But this is equivalent to 7"~ U if and only if [T] = [U]. Thus
the action of G' on (2 is well-defined.

Similarly, let h € H and suppose [T]" = [U]". By Theorem 3.2, T" ~ U" is
equivalent to 7" /U" = J if and only if T'/U = J, which is to say if and only if 7' ~ U,

or, equivalently, [7'] = [U]. Therefore, the action of H on € is well-defined. O
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Theorem 3.4. Let G be a group, J < H < G, H/J be abelian, |G : H) =n, T be
the set of transversals of H in G, and suppose ged([G : H|,[H : J]) = 1. Then

(i) H acts transitively on Q.
(i) Hypp=J forallT € 7.

Proof.

For (i), let [T],[U] € Q. Suppose there exists h € H such that [T|" = [U]. It
would follow that [T"] = [U] if and only if T" ~ U, or, equivalently, 7" /U = J. Thus
it is enough to show 7" /U = J. In addition,

U =T"/T T/U = [ [ Jhtit; *tou; = [ [ Thtou;* = [ ThJtiu* = Jh" (T/U).
=1

i=1 i=1

Let m = [H : J]. Since ged(n, m) = 1, there exist r, s € Z such that rn+sm = —1.

Let h € H such that Jh = (T/U)". Then
Jh(T/U) = (T/U)™ (T/U) = (T/U)""" = (T/U)"" = J,
and H acts transitively on €.
For (ii), let [T] € Q and j € J. Now

T7)T = ﬁthitil = ﬁJj = ﬁj: J,
=1 =1

i=1

which implies 77 ~ T, but this is equivalent to [T7] = [T]. Hence [T}/ = [T] and
J < Hjp). Conversely, let h € Hyry. Now [T)" = [T'] implies T"/T = J, but

J=T"T = f[ Jhtit7' = ﬁ Jh = Jh"
i=1

i=1

and so h™ € J. Let H= H/.J. Then 1 = h* = ", so |h| divides n = [G : H]. Also,
|h| divides [H : J], but ged([G : H],[H : J]) = 1. Thus h = 1 and h € J. This implies
H[T]SJ, SO H[T]:J. ]
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4 Normal p-Complement Theorems

Definition 4.1. Let G be a group and J < H < G. Then
(i) G splits over H if there exists K < G such that G = HK and HN K = 1.
(i) G splits mormally over H if there exists K I G such that G = HK and
HNK=1.
(ii7) G splits over H/J if there exists K < G such that G = HK and HN K = J.
(iv) G splits normally over H/J if there exists K < G such that G = HK and
HNK=J

In (i) and (i), we call K a complement and a normal complement of H in

G, respectively.

Definition 4.2. Let G be a group and P € Syl,(G). If there exists K < G such that

G = PK and PN K =1, then we call K a normal p-complement.

Lemma 4.1. Let G be a group and P € Syl,(G). Then G has a normal p-complement
if and only if G = PO, (G).

Proof.
Suppose GG has a normal p-complement. Now there exists K < G such that

G = PK and PN K = 1. In addition,

KKK PK (Gl
1 |PN K| | P| |P|’

and so K is a p/-group. Thus K < Oy (G) and G = PK = PO, (G). Conversely,
suppose G = PO, (G). Then O, (G) < G and PN Oy (G) = 1 by coprime orders.

Therefore, G has a normal p-complement. O

Lemma 4.2. Let G be a group, P € Syl,(G), and P < H < G. If G has a normal

p-complement, then H has a normal p-complement.
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Proof.
By hypothesis, G = PO,/(G) and O, (G) N H < H is a p/-subgroup. Thus
Op/(G) NH < Op/(H). Now

H=HNG=HNPO,(G)=PHNO,(G)) < POy(H) < H.
Therefore, H = PO, (H) and H has a normal p-complement. ]

Lemma 4.3. Let G be a group and N < G. If G has a normal p-complement, then

G/N has a normal p-complement.

Proof.
Let G = G/N and P € Syl,(G). By hypothesis, G = PO, (G). Furthermore,

P € Syl,(G) and G = P O,(G). Since O, (G) is a normal p’-group, we have
0,(G) < Oy(G). Thus G = PO,(G) and G has a normal p-complement. O

Lemma 4.4. Let G be a group and N Q G be a p'-subgroup. If G/N has a normal

p-complement, then G has a normal p-complement.

Proof.

Let P € Syl,(G) and G = G/N. Now P € Syl,(G) and G = PO,(G). Since
O, (G) QG is a p'-subgroup, we have m < @G is a p/-subgroup. Thus
0,(G) < 0,(G). Let U = 0,(G). We then have U < G and

Ul 7
Ul == - INI = [UIN],
[V

so U is a p’-group. Hence U < O, (G), which implies O, (G) = U < O, (G). Tt follows

that O (G) = Oy (G) and G = P O, (G). Consequently, G = PO, (G)N = PO, (G)

and G has a normal p-complement. O

4.1 Burnside’s Normal p-Complement Theorem

Since the transfer homomorphism is independent of the transversal chosen, we may

choose T' € 7 in a special manner. Under the hypothesis of Theorem 3.2, we have
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(g) acts on S = {Hz : © € G} by right multiplication. Then S = |J;_, O;, where
O; = {Hx;, Hrig, Hr;g?, ..., Hrig™ '}, n; € N, and ;9™ x; ' € H foreach 1 < i < s.
IfT:{xl-gT:1§z'gs,Ogrgni—l},thenng{xigT:1§i§3,1§r§n@-}
and g” = T9)T = [[;_, Jwig" (z;g" 1)t = [[_, Joigx; ', where x;g™x;' € H for
1<i<sand ), n,=n=[G:H]|.

Theorem 4.1. Let G be a group, J I H < G, H/J be abelian, [G : H| = n, T
be the set of transversals of H in G, T be the transfer of G into H/J, and suppose
ged([G = HI,[H : J]) = 1. Then the following are equivalent:

(i) G splits normally over H/J.

(i9) Whenever hy, he € H are fused in G, it follows that Jhy = Jha.

(#i) For all h € H,h™ = Jh".

(i) If T € T, then H acting on T from the left is equivalent to H acting on T from

the right.

Proof.

Suppose G splits normally over H/J. Now there exists K < G such that G = HK
and HNK = J. Let h € H and g € G such that hY € H. Since G = HK, let g = hik.
Then h9 = WMk = (hM)F = Bk where hy = h™. Now [hy ', k] = ho(h5)~! € H, but
simultaneously, [h; ', k] = (k)2 'k € K. Thus [hy', k] € HN K = J, which implies
Jhy = JhE. Therefore,

Jhd = Jh"E = Jhk = Jhy = J" = (Jh)"™ = Jh,

since H/J is abelian.
Suppose whenever hi, hy € H are fused in GG, we have Jhy = Jhy. Let h € H and
s € N be the number of orbits of (h) on {hz : z € G}. Thus
= [[Jawihmait = T J(hm)=" = T] Jh = Jn=em = Jhr,
= — i=1

since ((hni)x?) "= hmifor 1< < s,
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Suppose for all h € H, we have h™ = Jh™. Let h € H and T € 7. For the sake of
clarity, we will briefly use the traditional notation of actions. From our assumption,
WT/Th = hT/T T/Th=hT/T (Th/T)"" =[] Jhtit;* (b))

i=1
= [[7n(In")~" = Jn ()~ = .
i=1

Therefore, h'T' ~ Th.

Let T' € 7. By Theorem 3.4, H acts transitively on  from the left. Since
hT' ~ Th for all h € H, we have H acts transitively on €2 from the right. It follows
from Theorem 1.7 that G = G771 H. Moreover, H N G|7] = H7) = J by Theorem 3.4,
thus G splits over H/J. Now g € G| if and only if [T]9 = [T], which is to say if
and only if [T]9 = [T]. This is equivalent to 79 ~ T, which is to say if and only if
J=T9/T = g7, or, equivalently, g € Ker 7. Hence Gj7) = Ker 7 < G. Therefore,

G splits normally over H/J. O

Theorem 4.2 (Burnside). Let G be a group, P € Syl,(G), and suppose x,y € Cq(P)

such that x and y are fused in G. Then x and y are fused in Ng(P).

Proof.

By hypothesis, there exists g € G such that 29 = y. Since =,y € Cg(P), we have
P < Ce(z) N Cq(y) and P9 < Cu(x)? = Cg(2?) = Cu(y). Thus P < Cg(y) and
P9 < Cq(y). 1t follows that P, P9 € Syl,(Cs(y)). By Sylow, there exists ¢ € Ce(y)
such that P9 = P. But then gc € Ng(P) and x9¢ = y© = y. Therefore, x and y are
fused in Ng(P). O

Definition 4.3. Let G be a group and w be a set of primes. Define the following:
(4) The n'"-part of G is |Glx = [[ e, |Glp-
(i4) H is a Hall m-subgroup of G if 1(H) C 7w and 7 (G/H) C =’

(ii) Hall,(G) ={H < G: H is a Hall w-subgroup}.
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Lemma 4.5. Let G be a group, H € Hall,(G), and N < G. Then
(i) HN/N € Hall, (G/N).
(i) HON € Hally(N).

Proof.
For (i), since HN N < H € Hall(G), we have
HN| |EN| _ HIN| _|H]
N V]

~ |HNNJ|IN|  |HNN|

Hence HN/N is a m-group. Since H € Hall,(G), we have by Lagrange,

G/N| _ IGYINL _ |6l |Gl |H] _ |Gl/|H]
[HNJN| ~ [HNY/IN] ~ [HN] ~ |H] [HN] ~ [HN|/[H]

so [G/N : HN/N] is a 7’-number. Therefore, HN/N € Hall, (G/N).

For (ii), H N N is a m-group because H € Hall,(G). Moreover,

| _|HN]
|HNN| |H| "’

and it follows that [N : H N N] is a 7’-number. Therefore, H NN € Hall,(N).

Lemma 4.6. Let G be a group and H € Hall(G). If H < G, then H char G.

Proof.

Let x € G be a m-element. Since |Hz| divides |z|, we have Hx is a m-element.

Then Hx = 1 since G/H is a 7'-group, so x € H. Thus H must contain all 7-elements

of G. Now let h € H and ¢ € Aut(G). Since h is a m-element, it follows that h? is a

m-element. By the above, h? € H and H? < H. Therefore, H char G.

Theorem 4.3 (Hall). Let G be a solvable group and 7 be a set of primes. Then

(i) Hall(G) # 0.

(i) If K is a w-subgroup of G and M € Hall,(G), there exists g € G such that

K < MY,

Proof.

Let G be a counterexample such that |G| is minimal, N be a nontrivial minimal
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normal subgroup of G, and G = G/N. It follows from Theorem 1.22 that N is an

elementary abelian p-group for some prime p.
Case 1: p €.

Since G is solvable, we have G is solvable. By the minimality of |G|, there exists

H € Hall,(G). Now
_ 4]

[H| = = - IN| = [H]IN],
[V

so H is a m-group. In addition, [G : H] = [G : H] and so [G : H] is a 7’-number since
H € Hall(G). Therefore, H € Hall,(G).

Let K < G be a m-subgroup and M € Hall,(G). Clearly, K < G is a m-subgroup
and by Lemma 4.5, M € Hall,(G). By the minimality of |G|, there exists g € G such
that K < MY = M9, so K < M9N. Since M9 < M9N < G and |M9| = | M|, we have
MY € Hall,(G). By Lemma 4.5, M9 NN € Hall,(N) and

IMIN|  |N|
|Ms| — |M9NN|

However, N is a p-group, thus [N : M9 N N|] = 1 and MYN = M9. This implies

K < M9, which is a contradiction.
Case 2: p ¢ m and G has no minimal normal 7m-subgroups.

Let H € Hall(G). If H < G, then H is solvable by Lemma 1.25, so by the

minimality of |G|, there exists H; € Hall.(H). Furthermore, H; is a w-group and

161 _ 16l 141 6l 1A

[ H] ] | ]
Thus H, € Hall(G).
Suppose K < G is a m-subgroup and let M € Hall,(G). Now K is a m-group and
M € Hall,(G) by Lemma 4.5. By the minimality of |G|, there exists § € G such that
K < M = M9 and K < MIN. Now |M§| = |M| = |H| and so |[MIN| = |H| < |G].
Since K < MIN and M9 € Hall,(MYN), we have from the minimality of |G| that

there exists g € MIN such that K < M99'. However, this is a contradiction.
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If G = H, then G = H and G is a m-group. Let 1 # R be a minimal normal
subgroup of G. By Theorem 1.22, R is an elementary abelian g-group for some ¢ € 7.
Then R < G and R is a pg-group. Let Q € Syl,(R). By Lemma 1.8, Q € Syl,(R),
but R is a g-group. Thus Q = R and R = QN. By the Frattini Argument,

G = Ng(Q)R = Ng(Q)QN = Ng(Q)N. Since G has no normal m-subgroups,
Ne(Q) < G. Now Ng(Q) is solvable, so there exists N; € Hall,(Ng(Q)) by the
minimality of |G|. Also, Ny is a w-group and

Gl _ 1Gl INe(@I _ INa(@N| IN(Q| _ IN|  [Ne(Q)
N[ T INe@I N T Ne@I N[ INAN@I T IV

Thus N, € Hall(G) and Hall(G) # 0.

Let K < G be a m-subgroup and M € Hall,(G). Now M € Hall.(G),
|M| = |H| = |G|, and G = MN. Suppose |K| = |M|. Since R < G, we have
KNR,MNR e Syl,(R) by Lemma 1.8. By Sylow, there exists » € R such that
KNR=(MNR)=M"NR = M"NR. Also, K < No(KNR) = Ne(M"NR) = Ny
and M" < Ng(M"™N R) = No. Now K < Ny is a m-subgroup, M" € Hall,(N2) since
|M"| = |M]|, and Ny < G since G has no normal m-subgroups. By the minimality of
|G|, there exists n € Ny such that K < M™, which is a contradiction.

If |[K| < |M|, then KNN < M NN =1 by coprime orders. This implies
|KN| < |[MN| = |G|. Furthermore, K < KN is a m-subgroup and KN is solvable.
In addition, M N KN < M is a w-subgroup and

[KN|  |[KNM| |KG| |G
[MOKN| - [M] (M |M

hence M N KN € Hall,(KN). By the minimality of |G|, there exists go € KN
such that K < (M N KN)% < M9, which is a contradiction. Therefore, no such

counterexample G exists. O]

Theorem 4.4. Let G be a group and A € Hall.(G) such that A is abelian. Then
G splits normally over A if and only if whenever ai,as € A such that a; and ay are

fused in G, it follows that a1 = ao.
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Proof.

Now {1} 9 A < G and A/{1} = A is abelian. Since A € Hall,(G), we have
ged([G = A],[A - {1}]) = 1. By Theorem 4.1, G splits normally over A if and only if
G splits normally over A/{1}, which is to say, whenever a;,ay € A such that a; and

ay are fused in G, it follows that {1}a; = {1}as, or, equivalently, a; = as. ]

Theorem 4.5 (Burnside’s Normal p-Complement Theorem). Let G be a group and
P e Syl,(G) such that P < Z(Ng(P)). Then G has a normal p-complement.

Proof.

Since P < Z(Ng(P)), we know P is abelian and P € Hall,(G), where m = {p}.
By Theorem 4.4, it is enough to show whenever a;,ay € P such that a; ~g asq, it
follows that a; = as. Let x,y € P such that x ~¢ y. Now z,y € Cg(P), so by
Burnside’s Theorem (4.2), there exists n € Ng(P) such that z = y". But

y € P < Z(Ng(P)), sox =y" =y. Therefore, G has a normal p-complement. O

Theorem 4.6. Let G be a group, A € Hall(G) such that A is abelian and A 9 G.

Then G splits over A and G acts transitively on the complements of A in G.

Proof.

Now {1} 9 A < G and A/{1} = A is abelian. Since A € Hall,(G), we have
ged([G = A],[A: {1}]) = 1. Also, G acts on Q2 from the left since A < G. By Theorem
3.4, A acts transitively on Q = {[T] : T € I}, so G = G4 by Theorem 1.7. In
addition, AN Gy = Ajrp = 1 by Theorem 3.4. Thus G splits over A.

Suppose there exists K < G such that G = AK and AN K = 1. We want to show

K is conjugate to G7]. By the Second Isomorphism Theorem, we have

_ s UKL JAK] G

= = = 2
1 IANK| | Al |A| 2)

If there exist kq, ko € K such that Ak; = Ak, then klkgl c ANK =1 and k; = ks.

Thus K € 7 and [K]| € Q. Since A acts transitively on 2, there exists a € A such
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that [T1* = [K]. It follows from K < G that K < G?Iz]l = Glgpa1 = Gyr}, and

by (2),

i |G |[AGim| |G
[K| = |K* [ < |G| = = = = KL
TANG AL 4]
Thus |[K* | = |G, so Koo' = Gr)- Therefore, K and Gp) are conjugate. O

Theorem 4.7 (Schur-Zassenhaus Part 1). Let G be a group and H € Hall(G). If

H 4G, then G splits over H.

Proof.
Use induction on |G| and let P € Syl,(H). By the Frattini Argument,
G = Ng(P)H. Let N = Ng(P) and suppose N < G. It then follows H NN < N,

H N N is a m-group, and
N _INHI 6]
[HON|  [H]  |H]

Thus HNN € Hall,(N). By the induction hypothesis, N splits over H N N, so there
exists K < N such that N = K(HNN) and K N (H N N) = 1. Moreover,
G=NH=KHNN)H=KH and KNH < KNHNN = 1. Therefore, G splits
over H.

If N = Ng(P) =G, then P < G. Now Z(P) char P < G, so Z(P) < G by Lemma
1.12. Since P is a p-group, we have Z(P) # 1 by Lemma 1.9. Let G = G/Z(P).
Now H € Hall,(G) by Lemma 4.5, and H < G. Since |G| < |G|, we have G splits
over H by induction. Then there exists K <Gsuchthat G=KH and KN H = 1.
Consequently, G = KHZ(P) = KZ(P)H = KH and K N H < Z(P). Now by the

Second Isomorphism Theorem,

w_ F__FEE_@
[HNK|]  [H]  [H]
so K is a m'-group; however, Z(P) is a m-group. Hence Z(P) € Hall,(K) and
Z(P) < P < H. Moreover, Z(P) < K and Z(P) is abelian. By Theorem 4.6, K
splits over Z(P), which implies there exists Ky < K such that K = KyZ(P) and
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KoNZ(P)=1.Thus G = HK = HK,Z(P) = HK, and
HNKy < KNHNKy < Z(P)N Ko = 1.

Therefore, GG splits over H. m

Theorem 4.8 (Schur-Zassenhaus Part 2). Let G be a group, H € Hall.(G), H < G,
and suppose either H is solvable or G/H s solvable. Then G splits over H and G

acts transitively on the complements of H in G.

Proof.
Use induction on |G|. By Schur-Zassenhaus Part 1, G splits over H. Suppose
Ki <G and Ky <G, where G = HK; and HNK; =1for 1 <i<2.

Case 1: Suppose H is solvable.

Since H' char H < G, it follows from Lemma 1.12 that H' < G. If H' = 1, then
H is abelian and the result follows from Theorem 4.6. Without loss of generality,
assume H' # 1l andlet G = G/H'.Now G = HK;, HNK; =1for 1 <i <2, H <G,
and by Lemma 4.5, H € Hall(G).

By the induction hypothesis, there exists § € G such that K, = Eg = _f, SO
K{H' = KyH'. Since H is solvable, we have H' < H and so KoH' < KyH = G.

Furthermore, Ko N H < Ko N H =1 and
KiNH =K{NHY=(KyNH) <(K;NH)=1.

Now H' <4 KoH' and H' is a m-group. Moreover, since H € Hall,(G) and
| Ko H'| e K| [KoH| |G

w ng M T EAg T E A

we have H' € Hall,(KyH'). By induction, there exists g; € KoH’ such that

K{9" = K,. Therefore, G acts transitively on the complements of H.
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Case 2: Suppose G/H is solvable.

Let R/H be a minimal normal subgroup of G/H. Since G/H is solvable, we have

R/H is an elementary abelian p-group by Theorem 1.22. Now

_ 1Al

Rl = = - |H],
|H|

so R is a pr-group. Since H € Hall(G), we have G/H is a n’-group, which implies

p ¢ 7. In addition, for 1 <14 < 2,

K| |HK| |Gl

K| = =
HNK| |H |H|

and so K, and K are 7'-groups. By Lemma 1.8, K1 N R, KxN R € Syl,(R) and from
Sylow, there exists r € R such that Ko "R = (K; N R)" = K] N R. Since R <G, it
follows that K7 N R < KT and Ko N R < Ks. Thus KT < Ne(K] N R) = Ng(KsN R)
and Ky < Ng(Ke N R).

Let N = Ng(K; N R) and N = N/K, N R. By Lemma 1.2,

N=NNG=NNHK,=N(KoNRNHKy=NNHEK,=(NnNH)K>,

and similarly, N=NNG=NNHK] =NNHK] = (NN H)K]. Also,

(NNHNK;y=NNHNK,=NNHNK, <HNK,=1,

and similarly, NN H N K] = 1. Since H < G, we have H NN < N and by Lemma
1.2, HNN = HN N < N. By the Third Isomorphism Theorem,
o o N
N N N ~ HNN
HNN HNN (HNN)(K;NnR) (HNN)(KyNR)’
HNN

however, N/JHNN = NH/H < G/H and G/H is a solvable 7’-group. Thus N/HNN
is a solvable '-group and H NN € Hall.(N). By induction, there exists @ € N such
that Kz = K| = K1" and Ky = K5(K; N R) = KI™(K>N R). Now n € Ng(K; N R)
and Ko N R = K] N R < K7, which implies Ko N R = (K> N R)" < K". Therefore,

K{" = K, and G acts transitively on the complements of H in G. O
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Theorem 4.9. Let G be a w-group and A < Aut(G) be a 7'-subgroup such that either
G or A is solvable. Then for each p € w(G), there exists P € Syl,(G) such that P is

A-invariant.

Proof.

Let G* = G %9 A and P € Syl,(G). Now G < G*, so by the Frattini Argument,
G* = Ng+«(P)G. Let N = Ng+(P). By Theorem 1.23, G*/G = AG/G = A/ANG = A,
so G*/G is a w’-group. Hence G € Hall,(G*). Now GNN < N and
N/NNG = NG/G < G*/G = A, which implies GNN € Hall,(N). Since G or
A is solvable;, N NG or N/N N G is solvable, respectively. By Schur-Zassenhaus
Part 1, N splits over N N G. Hence there exists B < N such that N = B(N N G)
and BN (N NG) = 1. Again, since G or A is solvable, G or G*/G is solvable,
respectively. By Schur-Zassenhaus Part 2, G* splits over G and G* acts transitively
on the complements of GG in G*. By Theorem 1.23, G* = AG, ANG =1, and Ais a
complement of G. Furthermore, G* = NG = B(N N G)G = BG and
BNG=BNNNG = 1. Thus B is a complement of G. Since G* = AG, there exists
g € G such that A = B9 < N9 = Ng«(P)? = N« (P?). Therefore, P9 € Syl,(G) and

P9 is A-invariant. ]

4.2 The Focal Subgroup
Definition 4.4. Let G be a group and H < G. The Focal Subgroup of H in G is
Focg(H) = (|h,g] : h € H,g € G, [h,g] € H).
Equivalently, we may write
Focg(H) = (hi'hy : hy,hy € H hy ~g hy) = (hihy' : hi,ho € H, hy ~¢ hy).

Moreover, H < Focg(H) < H.
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If there is no fusion in G of H, then Focg(H) = H', so [Focg(H) : H'] measures

the amount of fusion of H in G.

Theorem 4.10. Let G be a group and H < G such that ged([G : H],[H : H']) = 1.

Then Focg(H) = G' N H and G splits normally over

H H
G'NH  Focg(H)

Proof.
Let J = Focg(H). Then H' < J < H and so H/J is abelian by Theorem 1.19.
Now [H : J]-[J: H'| =[H : H'],so [H : J] divides [H : H'], which implies
ged(|G = H,[H : J]) = 1. Let hy, hy € H such that hy ~g hy. Now
hihy' € Focg(H) = J and so Jhy = Jhy. By Theorem 4.1, G splits normally over

H/J. Hence there exists K < G such that G = HK and H N K = J. Also,

G HK_, H H
K K HnNnK J’

and G/K is abelian, which implies G’ < K by Theorem 1.19. Then
J<GNH<KKNH = J and we have Focg(H) = J = G' N H. Therefore, G splits
normally over H/Focq(H) = H/G' N H. O

Theorem 4.11 (The Focal Subgroup Theorem). Let G be a group and P € Syl,(G).
Then Focg(P) =G' N P.

Proof.
Since P € Syl,(G), we have ged(|G : P],[P : P']) = 1. By Theorem 4.10,
Focg(P)=G'NP. O

Definition 4.5. Let G be a group and p € 7(G). Define the subgroup generated by

all Sylow p'-subgroups of G by

OP(G) = (Q € Syly(G) : q # p).
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Lemma 4.7. Let G be a group and P € Syl,(G). Then
() O"(G) < G.

(1) G = OP(G)P.

(i) G/OP(G) is a p-group.

(i) If G is abelian, then OP(G) is a p'-group.
)

(v) If N <G and G = G/N, then OP(G) = Or(G).

Proof.

For (i), let @ € Syl,(G) such that ¢ # p and g € G. Now |QY| = |Q| = |G|, and
so Q9 € Syl,(G). Therefore, Q? < OP(G) and OF(G) < G.

For (ii), let ¢ € 7(G) and suppose |G|, = ¢" for some n € N. If ¢ = p, then

= |P| divides |OP(G)P|. If ¢ # p, let Q € Syl,(G). Then ¢" = |G|, = |Q|, but
Q < OP(G)P. Thus ¢" = |Q| divides |OP(G)P|, but then |G| divides |OP(G)P).
Therefore, G = OP(G)P.

For (i), let G = G/OP(G) and Q € Syl,(G), where ¢ # p. Then Q € Syl,(G),
but Q@ < OP(G), hence Q = 1. Therefore, ¢ ¢ 7(G) and G is a p-group.

For (iv), since G is abelian, we have H < G for all H < G. Thus
Or(G) = HQesg Q, where g # p and |OP(G)| = HQ€S$|Q|, where g # p. Therefore,
OP(G) is a p'-group.

For (v), let Q € Syl,(G) such that ¢ # p. Then Q € Syl,(G) and Q < OP(G).
Thus O?(G) < OP(G). Conversely, let @ € Syl,(G). Now Q < G, but Q is not
necessarily a g-group. Let Qo € Syl,(Q). Then Qo € Syl,(Q) and Qy = Q, or,
equivalently, @ = QuN. By Sylow, we have Qy < O?(G). Thus Q = Qy < OP(G) and
OP(G) < OP(Q). Therefore, OP(G) = OP(Q). O

Definition 4.6. Let G be a group and p € ©n(G). Then G/G'OP(G) is an abelian

p-group. We call this quotient the p-residual of G.
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Theorem 4.12. Let G be a group and P € Syl,(G). Then

G P
Gor(G)  PNG”

Proof.

Let G = G/G’ and R = G'OP(G). By Lemma 4.7(i1), G = PO?(G) = PG'O?(G)

and so G = PR.Now PNR=PNG'OP(G)=PNOr(G) = PNOPG) and G is

abelian. It follows from Lemma 4.7(iv) that OP(G) is a p/-group, so PN OP(G) = 1.
Therefore, by the Second and Third Isomorphism Theorems,

G G g PR_, P P

G'or(G) R R R PnR {1}

— PG P
~P = = , O
G’ PNnG

Theorem 4.13. Let G be a group and P € Syl,(G) such that P is abelian. Then

G . Ng(P)
Or(G) — OP(Na(P))

Proof.
Let H = Ng(P). By Lemma 4.7(ii), G = OP(G) P, so by the Second Isomorphism

Theorem,
G oGP P
or(G)  Or(G)  PNoOrG)

Since P is abelian, P/P N OP(G) is abelian and by the above, G/OP(G) is abelian.
Hence G' < OF(G) and G/OP(G) is the p-residual of G. By a similar argument, since
P e Syl,(H), we have H = OP(H)P and H/OP(H) is the p-residual of H.

Clearly, Focy(P) < Focg(P). Let x1,x9 € P such that z; ~¢g 5. Since P is
abelian, we know x1,x9 € Cg(P). It follows from Burnside’s Theorem that
Ty ~p Ty, hence 2125, € Focy(P). Now we have Focg(P) < Focy (P), so
Focg(P) = Focy(P). By Theorem 4.12 and the Focal Subgroup Theorem (4.11),

G ., p P P P _ H  NgP -
Or(G)  PNG  Focg(P) Focy(P) PNH' — Or(H) O°(Na(P))
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Theorem 4.14. Let G be a group, P € Syl,(G), P be abelian, and suppose P < G.
If Q is a p-complement of G and G = OP(G), then Ng(Q) = Q.

Proof.
Let R = Ng(Q) and Py = P N R. Suppose there exists ) < G such that G = PQ

and PN Q = 1. Now @ is a p/-group since

o 19 _1pal_e
Pl TP [P

Moreover, @ < R, Py < R, and [Py,Q] < PoNQ = 1 by coprime orders. Thus

G = PQ < Cg(Py) and G = Cg(F). Therefore, Py < Z(G).

Let G = G/G’'. Now G is abelian and OP(G) is a p/-group by Lemma 4.7. However,
G = O?(@) implies G = O?(G) = O?(G) is a p'-group. Thus p ¢ 7(G), so
|G|, = |G’|,- By Sylow, P < G’ since P < G. Furthermore, we have {1} 9 P < G,
P/{1} = P is abelian, and ged(|G : P], [P : {1}]) = 1. By Theorem 3.3,
Py < Z(G)NG'N P = 1. Therefore,

Ne(Q =R=RNG=RNPQ=(RNP)Q=PQ=0Q. 0

Theorem 4.15. Let G be a group, J < H < G, H/J be nilpotent, and suppose
ged([G : HI,[H : J]) = 1. Then the following are equivalent:
(i) G splits normally over H/J.

(i9) Whenever hy, he € H are fused in G, it follows Jhy and Jhy are fused in H/J.

Proof.
Suppose G splits normally over H/J. Then the result follows from Theorem 4.1.
To show the remaining implication, use induction on [H : J]. Let H = H/J and
Z(H)=J,. Now J; < H and J < J, < H < G. Furthermore, H/.J; = H/.J; implies
H/J, is nilpotent, and since [H : J;] divides [H : J], it follows that the
ged([G : H|,[H : Ji]) = 1. If there exist hy, hy € H such that hy ~¢ he, then by
assumption, hy ~ hs. This implies there exists h € H such that hy = h_f = h_’f But

then hillh;l eJ § Jl, SO thill ~H/J thg.
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If [H:J)=[H:J], then |J| = |Ji| and [J : J;] = 1. Hence Z(H) = J, = 1, but
H is nilpotent. This implies H = Z(H) = 1, so H is abelian and the result follows
from Theorem 4.1. Without loss of generality, assume [H : J;| < [H : J]|. By the
induction hypothesis, G splits normally over H/.Jj, so there exists K; < G such that
G=HK, and HN K; = J;. Now
G HK,,_ H H

K~ K HOK, g
and J < J; < K. Moreover, J; = Z(H) is abelian, |J;| divides |H|,

Gl G [K  Hs] K] [E[EG

— _ — — : 3
A IR s E A E s
and ged (|G : H],[H : J]) = 1. Consequently, ged([J; : J], [K; : Ji]) = 1.

Suppose x1, Ty € J; such that x; ~g, 5. By hypothesis, 1 ~7 Z3. Since
71,T3 € Ji, we have 77 = T3 and 77 ~7 T. Now [Jy : J] < [H : J]; otherwise, H is
abelian and the result follows from Theorem 4.1. By induction on J < J; < Ky, K;
splits normally over Ji, so there exists K < K such that K1 = KJ; and KN J; = J.
Then HK = HHK =HKy,=Gand J < HNK=HNKiNK=JNK, =J.
Therefore, G splits over H.

Let h € H. Now J < K 9 K; < G implies J = J" < K" < KI' = K, and so
J < KN K" By the Second Isomorphism Theorem, K"K/K = K"/K" N K and
[K'"K : K] = [K": K"n K]. Now [K"K : K] divides [K; : K], but

(Kol KA A
(K| K] (K0 ]

where [J; : J] divides [H : J]. Thus [K"K : K] divides [H : J]. Because J < K N K",

[K'"K : K| = [K" : K N K" divides [K" : J] and by (3),

KM UKL KL KA K6
0 T IKAA T AL Al A

Thus [K"K : K] is a common divisor of [G' : H] and [H : J], so [K"K : K] =1 and

K" < K. Tt follows that K" = K and K < HK = G. Therefore, G splits normally
over H. [
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4.3 Frobenius’ Normal p-Complement Theorem

Theorem 4.16. Let G be a group, P € Syl,(G), and suppose Ng(Q)/Ca(Q) is a
p-group for all Q@ < P. If P* € Syl,(G) and x € PN P*, then there ezists y € Cg(x)
such that P* = PY.

Proof.

Let Q@ = PN P* z € @, and proceed by induction on [P : Q. If [P : Q] = 1,
then P = @Q = PN P* so P < P* and P = P*. Thus we may chose 1 € Cg(z),
where P! = P = P*. Assume Q < P and Q < P*. Since P is a p-group, we have P is
nilpotent and @ < Np(Q) < Ng(Q) by Lemma 1.16. Now Np(Q) is a p-group, so by
Sylow, there exists @1 € Syl,(Ng(Q)) such that Np(Q) < Q1. Again by Sylow, there
exists P; € Syl,(G) such that )y < P,. Thusz € Q < Np(Q) <K PNQ1 < PNP
and [P : PN Py| < [P : Q]. By induction, there exists y; € Cg(x) such that P¥* = P;.
By the same argument as above, @) < Npu: (Q) < Ng(Q) and Npvw (Q) is a p-group.

By Sylow, there exists w € Ng(Q) such that Npyw (Q) < QY.

Let Ne(Q) = Ng(Q)/Ca(Q). Now Q1 € Syl,(Ng(Q)) and |Q:] = |Na(Q)]| since
Ng(Q) is a p-group. Thus Q; = Ng(Q) and Ng(Q) = Q1C(Q). Since w € Ng(Q),
we have w = gyc for some ¢; € Q1 and ¢ € Cg(Q), so Q¥ = QT = Qf. Without loss

of generality, assume w € Cg(Q) < Cg(z) and let u = (y;w)~!. From the above,
Q< Np-(Q) < PP NQY < P*NPY =P NP =P NP"* .

Since u € Cg(z), we have x = 2" € Q" < Np«(Q)" < (P*)*. Hence z € PN (P*)"
and z = 2% € P*NP* . Also, since Q < P*N P* ', we have

[P [P |P|

[PeoPet QL QI
and [Ng(Q)*' : Ca(Q)* '] = [Ne(Q) : Cs(Q)] is a p-number. By the induction

hypothesis, there exists 3, € Cg(x) such that (P*)¥2 = P*". Therefore,

P = (P*)vt = (P*)201) ™" and gy (hw) ! € Cq(x). O
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Theorem 4.17. Let G be a group, J A H <V < G, H/J be nilpotent, and
ged([G : H|,[H : J]) = 1. Further suppose, whenever hy,hy € H are fused in G, it
follows that hy and ho are fused in V. Then the following are equivalent:

(i) G splits normally over H/J.

(i1) V' splits normally over H/J.

Proof.
Suppose G splits normally over H/.J. Now there exists K < G such that G = HK

and HN K = J. Since K <G, we have K NV 4 V. Furthermore,
V=VNG=VNHK=H(VNK),

and HN(VNK)=HNK = J. Therefore, V splits normally over H/.J.

Suppose V splits normally over H/.J and hy, hy € H are fused in G. By hypothesis,
hy ~y hy. Now [V : H| divides [G : H] and ged([V : H|,[H : J]) = 1. Hence
Jhy ~pyy Jhy by Theorem 4.15. By Theorem 4.15 on J < H < G, we have G splits

normally over H/J. O

Theorem 4.18 (Frobenius’ Normal p-Complement Theorem). Let G be a group and
P e Syl,(G). Then G has a normal p-complement if and only if one of the following
conditions are satisfied:

() Na(Q)/C5(Q) is a p-group for all @ < P
(i) Ng(Q) has a normal p-complement for all Q) < P.

Proof.
For (i), suppose G has a normal p-complement. Now there exists K < G such
that G = PK and PN K = 1. Let Q < P. Since

(K| _|PK] |Gl

K| = _ e
PAK] " TPl 1P

we have K is a p/-group. Moreover, K N Ng(Q) < Ng(Q) and @ < Ng(Q). Thus
[KNN¢(Q), Q] < QNKNNg(Q) = 1 by coprime orders. Hence KNNg(Q) < Ca(Q).
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By the Second Isomorphism Theorem,

Ne(Q) o Ne(Q)K < g — % o P

KN NG(Q) K SK_ K Pnk
so Ng(Q)/K N Ng(Q) is a p-group. By Lemma 4.7,

OP(Na(Q)) Nea(Q) _
KNNg(Q) © <KQNG(Q)> -h

thus OP(Ng(Q)) < K N Ng(Q) < Ce(Q). Again by Lemma 4.7, Ng(Q)/Cq(Q) is a

p-group.

Conversely, suppose Ng(Q)/Cq(Q) is a p-group for all Q < P and let V = Ng(P).
Now P 9V and P € Syl,(V). By Schur-Zassenhaus Part 1, V' splits over P, so there
exists W < V such that V = PW and PNW = 1. Since W is a p'-group, we have
W=(Q:Q¢€ Syl,(W),q e n(W)) and so W < O(V). Now

OP(V)Cq(P) _ Ng(P)
Ce(P)  ~ Ca(P)

is a p-subgroup, but OP(V)Ce(P)/Cq(P) is a homomorphic image of a p’-group. Thus
OP(V)Cq(P)/Cq(P) =1 and OP(V) < Cg(P). This implies W < Cg(P) < Ng(P)
and W < WP = V. Hence V splits normally over P = P/{1}. Now {1} S P <V <G,
P/{1} is nilpotent, and ged(|G : P}, [P : {1}]) = L.

Let z € P and ¢ € G such that 29 € P. Now z € PN P9 and by Theorem
4.16, there exists y € Cg(z) such that PY = P9 or, equivalently, P¥ = P. Hence
yg € Ng(P) = V. Also, 2% = 29 implies x ~y z9. By Theorem 4.17 used on
{1} < P <V < G, we have G splits normally over P/{1} = P, so G has a normal
p-complement.

For (ii), suppose G has a normal p-complement. Now there exists K < G such
that G = PK and PN K = 1. Let Q < P,N = Ng(Q), and Py € Syl,(N). Now
K NN < N and by the Second Isomorphism Theorem,

N EKN<G_PKE P
NNK K K K PNnK’

Hence N/N N K is a p-group. Let N = N/N N K. Now Py € Syl,(N), but N is a
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p-group, so Py = N. Thus N = Py(NNK) and it follows from Sylow that there exists
g € G with Py < PY9. Then

PBONNK<SPANNK<SPNK=PNK=(PNK) =1,

and N = Ng(Q) has a normal p-complement.

Conversely, suppose Ng(Q) has a normal p-complement for all Q < P. Let
Q) < PN = N¢(Q), and Py € Syl,(N). Now there exists K < N such that N = Py K
and Py, N K = 1. Moreover, K is a p/-group, K < N, and Q < N. Consequently,

Q,K]<QNK =1and K < Cg(Q). By the Second Isomorphism Theorem,

N PRK _ P
_——= = :P07
K K PBNK

so N/K is a p-group. In addition,

No(@) o No(Q)/K
ColQ)  CelQ)/K

is a p-group. Therefore by (i), G has a normal p-complement. O
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5 The Journey to Replacement Theorems

5.1 The Thompson Subgroup
Definition 5.1. Let P be a p-group and define the set

A(P)={A < P: A is abelian and |A| is maximal}.
The Thompson subgroup of P is given by J(P) = (A: A € A(P)).
Lemma 5.1. If P is a p-group, then A(P) # 1.

Proof.
Toward a contradiction, suppose A(P) = 1 and let |P| = p" for some n € Ny. Now
there exists H < P such that |H| = p. Hence H = Z, and H is abelian. It follows

that H € A(P) = 1, which is contradiction. Therefore, A(P) # 1. O
Theorem 5.1. Let P be a p-group and A € A(P). Then A = Cp(A).

Proof.

Since A € A(P), we have A is abelian and A < Cp(A). Let x € Cp(A). Now
x € Np(A), so (x)A < P. But then A < (x)A < P, where (x)A is abelian. By the
maximality of |A|, A = (z)A and x € A. Therefore, A = Cp(A). O

Theorem 5.2. Let G be a group and P € Syl,(G). Then
(i) J(P) char P.
(i) If A< H < P and A € A(P), then J(H) < J(P). If J(P) < H < P, then
J(P)=J(H).
(79) If Q € Syl,(G) such that J(P) < Q, then J(P) = J(Q).
(w) If J(P) < H< G and H is a p-group, then J(P) char H.

Proof.
For (i), let ¢ € Aut(P) and A € A(P). Now A? is abelian, |A?| = |A|, and A? < P.
Consequently, A? € A(P), so J(P)? < J(P). Therefore, J(P) char P.
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For (i1), since A < H < P and A € A(P), we know the orders of elements from
A(H) are the same as the orders of elements from A(P). Hence A(H) C A(P) and
so J(H) < J(P). If J(P) < H < P, then by above, we have J(H) < J(P). It follows
from J(P) < H that A(P) C A(H). Thus J(P) < J(H), so J(P) = J(H).

For (ii1), let Q € Syl,(G), where J(P) < Q. By Sylow, there exists g € G such
that Q = PY. Now ) = P9 = P and

J(Q)=(A%: Ac A(P)) = (A: Ae A(P))? = J(P)*.
Thus |J(Q)| = [J(P)¢] = |J(P)|. Since P = @Q, elements of A(P) and A(Q) have
the same order, but J(P) < Q. Hence A(P) C A(Q) and J(P) < J(Q). Therefore,
J(P) = J(Q).

For (iv), suppose J(P) < H < G and H is a p-group. By Sylow, there exists
Q € Syl,(G) such that H < Q. Now J(P) < @ and so by (iii), J(P) = J(Q). Hence
J(Q) < H < Q and by (i), J(H) = J(Q) = J(P). The result from (). O

5.2 Properties of Commutators

Lemma 5.2. Let G be a group, x,y,z € G, [y, z] =1, and suppose [z, G] is abelian.

Then [z, , 2] = [, 2, 9]

Proof.
Let g € G. Now [z, ¢g] € [z,G] and

g, 2] = g2 gr = (x g 'wg) T = [z, 9] € [7,G].
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Since [z, G] is abelian,
(2, y,2) = [[z,9], 2] = [e 7y wy, 2] = (a7 y ) T Ty T ey)2

= y’lely:vz’lx’lyflxyz = x’lxyflmfly:cz’lx’lyflxyz
—1

-1 -1

=a o ylla ey ey = a7 o 2] [yl ey

= x’lazzflx’lzxy’lx’lyzfly’lxzy = z’lx’lzxy’lx’lyyflzflxzy

Ylrzy = [, 2]y, 2y = ([ 2], Y]

= z’lx’lzxyflx’
= [z, z,y].
Therefore, [x,y, z] = [z, 2, y].
Lemma 5.3. Let G be a group and a,b,c € G. Then
(i) [ab,c] = [a, ][a, c,b][b, c].
(i1) [a,b,a] = [a®, a].
Proof.
For (i), let a,b,c € G. Then
[a,c][a,c,b]b, ] = a ¢ acla, ] o a, cJbb e e
= a *c tacle, alba, c]bb e he
=a 'ctaccta teab ra e ackh e e
=bta ¢ tabe = (ab) ¢ ab)c
= [ab, c].
Therefore, [a, c|[a, ¢, b][b, | = [ab, c].
For (ii), let a,b € G. Then
[a,b,a] = [a,b] *a"'[a,bla = [b,ala[a,bla = b a baa " a b aba
= b o ba" 0 aba = (a®) a7 (a%)a
= [d’, a).
Therefore, [a,b,a] = [a’, al.
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Lemma 5.4. Let G be a group and x € G. Then [z",g| € [z, G] for all g € G, n € N.

Proof.

We proceed by induction on n. Let g € G. If n = 2, we have by Lemma 5.3,
(2%, ] = [z, 9] = [2, 9][z, 9, 2][x, 9] = [x, g][a, 2] [z, g] = [z, g][x, 2] [z, g] € [z, G].

Assume [2",¢g] € [z, G| for all g € G. By Lemma 5.3 and the induction hypothesis,

2", g] = [a"a, g = 2", gl[a", g, 2] [z, g] = [2", g][2", g] "7 2", gla[v, g]
= [2", g)lg, 2"~ [2", glalw, g] = [2", glg” 2 ga"aT e g " g, g]
= [2", glg""a gz g " galw, g] = [2", g)(g™ 2" g) e (g 2" g)a(x, g
= [2", g)[(z")?, z][x, g] = [2", gl[x, (a")7] [z, g].
Therefore, [z", g] € [z, G] and the result holds by induction. O

Theorem 5.3 (Properties of Commutators). Let G be a group, H < G, K < G,

x,y,z2 € G, and n € N. Then

() [zy, 2] = [2,2)[y, 2]. (vit) ("37) = (3) +n.

(i) [z, y2] = [w, 2][x, y]*. (viii) [z, y, 2] = [2Y,2].
(i) [z, y]™" = [y, z]. (i) If [2,y] € Ca(x) N Cgly), then
() [z,y] =27 av. (a) [z,y]" = [z,y"] = [2",y],
(v) [G,H] 4G, (0) (ay)" = 2"y, ).

(vi) [H,K] < (H, K).

Proof.

Properties (i)-(iv) are proven by direct computation.

For (v), let g,¢91 € G and h € H. Now

[91,h)? = g7 g7 'R gihg = (919) "R ' g1ghh™ g hy
= (919, ][I, 9] = [g19, hl[g, k] " € [G, H].

Therefore, |G, H] < G.
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For (vi), let h,hy € H and k, ky € K. By (i), [hh1, k] = [h, k" [hn, K], 50
[h, k)™ = [hhy, k][hy, k)7t € [H, K]. Similarly, [k, kki] = [h, ki][h, k]* and
[h, k]¥ = [h, k1) 7[R, kk1] € [H, K]. Therefore, [H, K] < (H, K).

For (vii),
n+1\  (+1)! (+1)!  (n+1)n) n’+n
2 ) 2n+1-2) 2n-1) 2 2
_nQ—n—|—2n_n(n—1)+ ~nl e (M) 4
- > 2 T moo T T2 T

For (viii), by direct computation we have

[z, y, 2] = [x,y] e o, yle = [y, 2la z, yle
=yl ey e = () e e

= (a¥) 2z a2 = [2Y, 2]

Therefore, [x,y, x| = [2Y, z].
For (iz), let [x,y] € Cg(x) N Cg(y) and use induction on n. If n = 1, then
[z,y]' = [z, y']. Suppose [z,y]" = [x,y"]. Now by the induction hypothesis,

[z, 9" = [, y][z,y]" = [z, y][z,y"]. Since [z,y] € Ca(x) N Cg(y), we have

[, ][z, y"] = [z, y]a" Yy "y = o7y ez, yly" = oy ey gy

-1, —n—1_, ntl -1, —(n+1),. n+l

=y "y =2y ry" =[x,y

Therefore, [x,y]" = [z,y"] = [z", y] for all n € Ny by induction.

For (b), use induction on n. If n = 2, then

2

2y, ®) = 2?y?ly, 2] = wayylr, y) = zayly, aly

$2y

= zzyy 'atyry = zyzy = (2y)*.
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n
2

Assume (zy)" = x”y”[y,x]( ). By (a) and (vii),

()™ = (ay) "y = 2" [y, 2] Doy = 2"y [y3) alwy = 27yry=()am1y G aay

= amyyty "y~ (e By ey = iy () gy By gy
gy 1y )y = () )ty
= 2"y [y 2l y ey = 2"y [y, ) (3 ) ey ey
= 2"y aayly, o)) = 2Pyt y ayly, ) (3
= 2"y, y" Yy "yl 2)(2 ) = amyPy e,y yly, 2] (5
= oy wa Yy yly, 7)) = 2haytyly, 2)(5)
_ xn+1yn+1[y7$] ("31)‘

Therefore, (zy)" = 2™y"[y, x] (2) for all n e Ny by induction. ]

Lemma 5.5. Let G be a group, a,b,c € G such that ¢ € Cg(b) and b € Cg(a). Then

[ab, c] = [a, c].
Proof.
By Theorem 5.3 and the hypothesis, [ab, ¢] = [a, c|’[b, ¢] = [a, ]’ = [a, d]. O

Lemma 5.6 (Three Subgroups Lemma). Let G be a group, H < G, L < G, K < G,
and suppose [H, K, L] =1 and [K,L,H) = 1. Then [L,H, K] = 1.

Proof.
Let h € H,k € K, and | € L. Consider the element [h, k=1, [|*[k, 171, h)'[l, h =1, k)"
It follows from direct computation that

[, k=8 0 [, 8 )L R ) = kb B Dk R, 8 BRI AT KR = 1

By hypothesis, [h,k7%,1] = 1 and [k, h] = 1, which implies [h, k=1, ]]* = 1 and
[k,171,h)" = 1. From the above, 1 = [I,h~1 k]", or, equivalently, [[,h~% k] = 1.
Therefore, [L, H, K| = 1. O
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5.3 Thompson Replacement Theorem

Definition 5.2. Let G be a group, A < G, and B < G. If [B, A, A] = 1, then A acts

quadratically on B.

Theorem 5.4. Let P be a p-group, A € A(P), and B < P. Then B < Np(A) if and

only if A acts quadratically on B.

Proof.

Suppose B < Np(A). The result follows since A is abelian. Conversely, suppose
[B,A,A] = 1. Now [B,A] < Cp(A) = A by Theorem 5.1. This implies for all
[b,a] € [B, A], there exists a; € A such that a; = [b,a] = (a7*)a. It follows that

(a1’ = aya~! € A. Therefore, B < Np(A). O

Theorem 5.5. Let P be a p-group, A € A(P), x € P, and suppose M = [z, A] is
abelian. Then MCA(M) € A(P).

Proof.

Let C' = C4(M). It follows from M and C being abelian, and [M,C] = 1 that
MC' is abelian. Thus it is enough to show |[MC| > |A].

By Theorem 5.1, A = Cp(A), so

CNMKCOy(A)=MnNCp(A)=MNALSCy(M)NM=CnNM.

Hence C'N M = Cy(A). Furthermore,
(M[C] _ [M]|Ca(M)]

MC| = = :
M= Tl = TTow A
and so it is enough to show [M : Cy(A)] > [A : Cx(M)]. For if true,
ML M AL Al
[CnM[|Cu(A)] — |Ca(M)]  [C]

|M]|C
—— > |A].
|CnM| — Al

Let u,v € A such that Cy(M)u # Cs(M)v, it follows that [z, u|, [z, v] € M. If
Cu(A)z,u] = Cy(A)[x,v], then y = [z,u]  [x,v] € Cpr(A). Now y = (%) ¥
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and since y € Cy(A), y = y* = (@) '2")* " = 272" = [z,vu"!]. Hence

[z, vu™!] € Cy(A), so [z,vut a] =1 for all @ € A. Since A is abelian and vu™! € A,
we have [vu=t a] = 1 for all @ € A. By Lemma 5.2, [z,a,vu"!] = 1 for all a € A.
Thus vu~t € Cy(M) and so C'y(M)u = C(M)v, which is a contradiction. Therefore,
(M : Cp(A)] > [A: Cy(M)] and MC (M) € A(P). O

Theorem 5.6 (Thompson Replacement Theorem). Let P be a p-group, A € A(P),
B < P, B be abelian, and suppose A < Np(B), but B & Np(A). Then there exists
A* € A(P) such that

(i) ANB < A*NB.

(7)) A* < Np(A).

Proof.

Since A < Np(B), we have B I AB < P. Let N = Ng(A). Since B is abelian
and A < Np(B), we have N < AB. Moreover, N < B because B £ Np(A). Let
AB = AB/N. Now B < AB and B is nontrivial. Since AB is a p-group, we have
BN Z(AB) # 1 by Theorem 1.15 and Lemma 1.18. Hence there exists a nontrivial
7 € BN Z(AB) such that [7,A] = 1 and [x, A] < N. Let M = [z, A]. Now M < B
and M is abelian. By Theorem 5.5, A* = M C4(M) € A(P). Furthermore,

Ca(M) < Np(A) and M < N = Np(A) < Np(A). It follows that

A" = MC4(M) < Np(A).

Since 7 € BN Z(AB) is nontrivial, we have z ¢ N and M = [z, A] £ A. Now
r € Band z € Cp(AN B). Also, A < Cp(AN B) since A is abelian. Hence

M = [ZE,A] < CP(AQB) < Np(AmB),

and M (AN B) < P. However, M £ A, so AN B < M(AN B) < A* N B. Therefore,
ANB < A*NB. O
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5.4 Glauberman Replacement Theorem

Definition 5.3. Let G be a group, H < G, and K < G. Define [H,K;0] = H,
[H,K;1] = [[H,K;0,K]| = [H,K]|,[H,K;2| = [[H,K;1],K| = [H,K,K],..., and
inductively, [H, K;n] = [[H, K;n — 1], K].

Definition 5.4. Let G be a nilpotent group and n+ 1 be minimal such that the lower
central series of G terminates at 1—that is, K,+1(G) = 1. We say the nilpotency

class of G is n and write cl(G) = n.

Theorem 5.7. Let P = BA be a p-group, B < P, A be abelian, B' < Z(P),
P = P/B', and suppose n is minimal with respect to [B, A;n| being abelian. Then
(i) K;(P)=[B,A;i—1] for all i > 2.
(i) [B,A;i+ 1] <[B,A;i] for alli > 0.
(ii) If [B,A;n+ 1] =1, thenn <2 and cl(P) < 4.

Proof.
For (i), since B’ char B <9 P, we know B’ < P. By the Second and Third Isomor-

phism Theorems,
P A A

~ — ~

B B  AnB’

Ss{Bav]

and so P/B is abelian. It follows that K;(P/B) = 1 for all i > 2, which implies
K;(P) < B for all i > 2. Moreover, B is abelian. Let 7 € K;(P),a € A, and b € B.

By Theorem 5.3 and since B is abelian, we have [ba, 7| = [b,7|%[a, 7] = [@,7]. Hence

[K,(P), P] = |K,(P), 4] for all i > 2.

We proceed by induction on i. Suppose ¢ = 2 and let @ €

A
Now [ab, 7] = [a,z]’[b, 7] = [a, Z][b, 7] since [a,Z] € P = K»(P) < B. Thus

Ky(P) = [P, P] = [A, P|[B, P]. Furthermore, A is abelian, B < P, and B’ = 1. By

Theorem 5.3, we have

[Avﬁ] = [Z7§ ] = [sz][Avg]A - [Za E]a
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and

[_7 _] - [_7§ z} - [E’ _] [Ev _]Z - [_7 Z] - [Z’ _]
Hence Ky(P) =P =[P, P] = [B,A] = [B, A;1]. Assume K;(P) = [B, A;i — 1]. Now
K1 (P) = [Ki(P), P] = [Ki(P),A] = [[B, 4;i — 1], A] = [B, 4;].

Therefore, (i) holds by induction.

For (i), it is enough to show A < Np([B, A;i]) for all i € Ny and we proceed
by induction on i. If i = 0, then A < Np(B) = Np([B, A;0]) since B < P. Assume
A < Np([B,A;i]) and let a € A. Now

(B, Asi +1]" = [[B, A;i], A]* = [[B, A;]*, A] = [[B, A;i], A] = [B, A;i + 1],

so A < Np([B,A;i+1]). Thus A < Np([B, A;i]) for all i > 0. Therefore,
(B, A;i+ 1] = [[B, A;i], A] < [B, A;i] for all i > 0.
For (iii), if [B, A;n + 1] = 1, then [B, A;n + 1] = 1. By (i), we have

Knio(P) = [B,Z;n + 1] = 1, which implies K, o(P) = K,.»(P) = 1. Hence
Koio(P) < Z(P) and Kpy3(P) = [Knyo(P), P] < [2(P), P] = 1. Let
= |2(n+4)]. Since n > 1, we have m > 2, and by the definition of m, 2m > n+3.

Now [K,(P), K,,(P)] < Kon(P) < Kpi3(P) = 1, thus K,,(P) is abelian and
K, (P) = K,(P) is abelian. By (i), K,,(P) = [B,A;m — 1] is abelian and by
the minimality of n, n <m—1<1(n+4)—1=1n+1 Nown < in+1 implies

n < 2. Thus K,;3(P) =1 and n < 2. Therefore, n 4+ 3 < 5 and cl(P) < 4. O

Theorem 5.8 (Glauberman Replacement Theorem). Let P be a p-group, p be odd,
B < P such that B® < Z(J(P)), cl(B) < 2, and suppose A € A(P) such that
B £ Np(A). Then there exists A* € A(P) such that

(i) ANB < A*N B.

(i) A* < Np(A).
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Proof.

Use induction on |P|. Since B < P, we have AB < P. If AB < P, then
since A < AB, we have A(AB) C A(P). By Theorem 5.2(i7), J(AB) < J(P).
Now [Z(J(P)),A] =1, so Z(J(P)) < Cp(A) = A by Theorem 5.1. It follows that
[J(AB), Z(J(P))] =1 and since Z(J(P)) < A < J(AB), we have
Z(J(P)) < Z2(J(AB)). Thus B’ < Z(J(AB)). Moreover, A € A(AB) and A < AB.
Since B < P, we have B < AB. By the induction hypothesis, there exists A* € A(AB)
such that AN B < A*N B and A* < Nap(A) < Np(A). Thus A* € A(P) and we are
done.

Without loss of generality, assume P = AB and let n be chosen minimal with

respect to [B, A;n| being abelian.
Case 1: [B,A;n+ 1] # 1.

Let r € N be minimal such that [B, A;r] = 1. Since n > 1, we have r > n+2 > 3
by Theorem 5.7. By the minimality of r, 1 # [B, A;r — 1] = [[B, A;r — 2|, A], so
A &L Cp([B, A;r — 2]). Hence there exists x € [B, A;r — 3] such that A £ Cp([z, A]).
Let M = [z, A]. Now M < [B, A;r—2] < [B, A;n] and so M is abelian since r—2 > n.
By Theorem 5.5, A* = MC4(M) € A(P). Now

[B,ANB, Al < [B,A] < [Z(J(P)),A] =1,

and [ANB, A, B] < [A, A, B] = [1, B] = 1 since A is abelian. By the Three Subgroups
Lemma (5.6), [A, B, ANB| = 1, and it follows that ANB < Cp([4, B]) < Cp([B, A;1])
for all 7 > 1. Hence AN B < Cp(M). Since A is abelian and A £ Cp(M), we have
M s A, which implies M < B because P = AB. Thus A*NB > M(ANB) > ANB.
By Lemma 5.5,

[A*, A, Al = [MCa(M), A Al = [M, A, Al < [[B,A;r — 2], A, Al = [B, A;r] =1,

so [A*, A] < Cp(A) = A. Therefore, A* < Np(A).
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Case 2: [B,A;n+1] = 1.

Since cl(B) < 2, we know K3(B) =1, Ky(B) =1, or K1(B) = 1. If K3(B) = 1, then
[B,B,B] = [B',B] =1 and so B’ < Z(B). In any case, B’ < Z(J(AB)) = Z(J(P)).
It follows from Theorem 5.7 that n < 2 and cl(P) < 4. If n = 1, then
(B, A;2] = [B, A, A] = 1, hence [B, A] < Cp(A) = A. This implies B < Np(A), which
is a contradiction. Thus n = 2 and [B, 4;3] = 1.

Let u,v € A,z € B, and w = [z,v] € [B,A] < B. By the Three Subgroups
Lemma, [x,u,w]“_l[ufl,wfl,x]w[wfl,xfl,ufl]‘” = 1. Since B < P, all three com-
mutators are contained in B’ and [w™!,z7'u7!] = 1 since B’ < Z(P). Hence

1 -1

[z, u,w|[u=',w™ 2] = 1. Since [u~!

,w™l] and z € B, we have by (iz) and (i)

of Theorem 5.3,

Let P = P/B’. Now [B, A;3] = 1 implies [B, A, A] < Cp(A) = A, and by Theorem
5.7 Ki(P) = B, A:i — 1] < B for all i > 2. Thus [B, 4,4 < AN B and P = 4 B.
Since A and B are abelian, we have [B, A, A] < Z(A B) = Z(P). By Theorem 5.3(ix)

and Lemma 5.2 with [u,7] = 1,

From (4) and (5), we have

[E_l7ﬂ_l] = HE’ ﬂ]a [575]] = HE’ ﬂ],@] = [w_l7ﬂ_laf] = [[f,u,ﬁ],f], (6)
but interchanging u and v in (6) results in [[z, 7], [Z,w]] = [[7, 0,4, 7] = [[7,w, V], ] .
Hence
[z, 1], [z,7]] = [[z,7], [z, 7)) = [[z.7], [z,7]] = [[z.7], [z,7] .
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It then follows from Theorem 5.3(i7), Lemma 5.5, and B’ < Z(P) that

[[:U,u], [x,v]} = [[x,u], [w,v]] -

[z, )21, [z, 0] 25] = [[z, u]2s, [, v]2g)
([, u], [, ] = ([, 4], [&, 0] "
Thus [[z,u], [z,v]]> = 1. Because p is an odd prime, we have [[z,u], [z,v] = 1, so

[z, A] is abelian for all € B. However, B & Np(A) and [B, A] £ A, so there exists
& € B such that [z, A] £ A.

Let M = [z, A]. Now M is abelian and by Theorem 5.5, A* = MC (M) € A(P).
As in Case 1, we have AN B < Cp([B, A]) < Cp(M). Since M & A, ANB < Cx(M),
and B < P, we have A*N B > M(AN B) > AN B. By Theorem 5.3,

[A* A, A] = [MCA(M), A, A] = [M, A, A] < [B,A, A, A] = [B, A,3] = 1.

Therefore, [A*, A] < Cp(A) = A and so A* < Np(A). O
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6 p-Separability and p-Solvability

Definition 6.1. Let G be a group. A composition series of G is a subnormal

series of the form

G=Gi G >GE>--- G, =1,

where G; /Gy is simple for 1 < i < n — 1. The quotient groups G;/G,;y1 are called

composition factors of G.

Definition 6.2. Let G be a group and 7 be a set of primes.
(i) G is a w-separable group if every composition factor of G is a w-group or a
7' -group.
(i) G is a w-solvable group if every composition factor of G is a w'-group or a
p-group for some p € 7.

Similarly, we define p-separable and p-solvable groups when m = {p}.

The Jordan-Hélder Theorem (Theorem 2.8, pg. 6, [Gor07]) proves two composition

series of a group are of the same length and the factors are unique up to isomorphism.

Theorem (Schreier). Let A > B > C be a subnormal series, and suppose A/B and
B/C are abelian. Then the series can be refined to a composition series

Al D> B> C, where the factors are simple and abelian.

Proof.
Theorem 2.7, pg. 6 in [Gor07]]. O

Theorem 6.1. Let G be a group. Then

(i) G is w-separable if and only if G is 7'-separable.

(i) G is p-separable if and only if G is p-solvable for all p € w(G).
(79) If G is w-solvable, then G is w-separable.
)

(iv) G is solvable if and only if G is p-solvable for all p € ©(G).
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Proof.

For (i), suppose G is m-separable. Now every composition factor of G is a
m-group or a 7'-group. Equivalently, every composition factor of G is a (7’)’-group or
a 7'-group, respectively. Thus G is 7'-separable.

For (ii), let p € 7(G) and suppose G is p-separable. Now every composition factor
of G is a p-group or a p/-group. Thus G is p-solvable. The converse is trivial.

For (7ii), suppose G is m-solvable. Now every composition factor of G is a
7’-group or a p-group for some p € 7. Since a p-group is a w-group for p € 7, we have
G is m-separable.

For (iv), suppose G is solvable and let p € 7(G). Now there exists a subnormal
series G = Hy > Hy &> --- > H,, = 1, where H;/H,, is abelian for 1 <i <m—1. By
Schreier’s Theorem, we can refine to a composition series G = G; &> --- > G, = 1,
where G;/G;;1 is simple and abelian for 1 < i < n — 1. Then G;/G,4; is cyclic of
prime order for 1 < i < n — 1, which implies for every 1 < ¢ < n — 1, there exists a
prime p; such that G;/G;1 is a p;-group. Moreover, for every 1 < i < n — 1, either
p; = p or p; # p. Thus all composition factors are p-groups or p’-groups. Therefore,
G is p-solvable.

Conversely, let G =G > Gy > --- > G, = 1 be a composition series of G, where
each factor is simple and for all 1 <i <n—1, G;/G,41 is a p-group or a p’-group for
all p € 7(G). Since [G; : Gy41] divides |G| for all 1 <i <n — 1, there exists p; € 7(G)
such that G;/G;11 is a p;-group. Let G, = G;/Gis1 for each 1 <i < n — 1. Since G,
is a p;-group, we know Gj is solvable. It follows that there exists a subnormal series
Gi =Gy >G> - > Gy = 1,(k; € N) such that G_w/m = Gij /Gy 1s
abelian for all 1 <7 <mn —1and for all 1 < j < k; — 1. Hence we have a subnormal

series

G=Gnub Gl - DGy=0Gn>Gpuk- - >G> -

> Gn—l = G(nfl)l > G(n71)2 > B> Gn = ]-7
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and
Gij o Giy/Gin
Gig+y  Gig+1)/Gjn

is abelian for all 1 <i <n—1and for all 1 < j < k; — 1. Therefore, GG is solvable. [

Definition 6.3. Let G be a group and m be a set of primes. Define the unique mazimal

normal m-subgroup of G by

o0.G) =[] P~

PG

where P is a w-group. We can similarly define O (G).
Lemma 6.1. Let G be a group and 7 be a set of primes. Then O.(G) char G.

Proof.
Let ¢ € Aut(G) and Q < G be a m-subgroup. Now Q¢ < GG and Q¥ is a 7-group.
Thus Q% < O,(G) and O,(G) char G. O

Definition 6.4. Let G be a group and w be a set of primes. Define

O (OWG«;)) - OéfiéG))’ Or <OL<G>) - %—<(GG>) o

and so on. The m-series of G is the normal series

1 ﬁ OTK‘(G) ﬁ OTK‘J’I’/(G) S] OTI’JT/JT(G) S] T
Lemma 6.2. Let G be a group. Then O,(G/O,(G)) = 1.

Proof.
Suppose H/O,(G) < G/O,(G) is a m-subgroup. Now H < G and

H
so H is a m-group. Thus H < O,(G) and H/O,(G) = 1. Therefore,
Ox(G/0(G)) = 1. O
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Theorem 6.2. Let G be a group and 7 be a set of primes.
(i) If G is w-separable and N is a minimal normal subgroup of G, then N is a
T-group or a w-group.
(i) If G is w-separable, H < G, and N < G, then H and G/N are m-separable.
(79) If G is w-solvable, H < G, and N < G, then H and G/N are w-solvable.

(iv) G is w-separable if and only if the m-series terminates at G.

Proof.
For (i), since N is a minimal normal subgroup, we know N is characteristically
simple. By Theorem 1.13, N = @, N;, where the NN;’s are simple isomorphic groups.

Refine the series N7 > 1 to a composition series of GG,
G=Gi> Gyl B Gp=N D L.

Since G is m-separable, Ny = Ny /{1} is either a m-group or a 7’-group. Thus
N =Q;_, N; is either a m-group or a n’-group.
For (ii), let N = Ny > Ny > --- > N, = 1 be a composition series of N and

refine to a composition series of GG,
G=GI >G> -BG=N=NB>N>---B>N,=1

Let G = G/N. Now
G=G >G> -G =1

is a composition series of G. If G is m-separable, then G;/G;1 = G;/G,y1 is a m-group
or a m'-group for each 1 < i < k — 1. Thus G is m-separable.

If H = G, then we are done. Assume H < G and proceed by induction on |G|.
Let N be a minimal normal subgroup of G and G = G//N. If G is w-separable, then
G is m-separable by the above. Now H < G and so by induction, H is m-separable.
Let H=H,> Hy>---> H, = 1 be a composition series of H. Since

H = HN/N = H/HNN, we have H = H; > Hy > --- > HN N and it remains
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to show H N N is m-separable. By (i), N is a m-group or a n’-group, so H N N is a

m-group or a 7w'-group, respectively. This implies any composition factor of H N N is

a m-group or a 7'-group. Thus H N N is m-separable. Therefore, H is m-separable.
For (iii), let N = Ny > Ny &> --- > N,,, = 1 be a composition series of N and

refine to a composition series of G,
G=Gi1EGE---BG=N=NDBN> ---BN,=1

Let G = G/N. Now
G=Gi2Gb G =1

is a composition series of G. If G is 7-solvable, then G;/G1 = G;/Giy1 is a w'-group
or a p-group for some p € 7 for each 1 <i < k — 1. Thus G is m-solvable.

If H = G, then we are done. Assume H < G and proceed with induction on |G|.
Let N be a minimal normal subgroup of G and G = G/N. If G is m-solvable, then
G is m-solvable. Now H < G and so by induction, H is m-solvable. As before, since
H = HN/N = H/HN N, it remains to show H N N is 7-solvable. Again by (i), N is
a m-group or a 7'-group. If N is a w-group, then N is m-solvable since N < G. Thus
N is a p-group for some p € m and H N N is a p-group. Thus all composition factors
of HN N are p-groups. If N is a 7’-group, then H NN is a 7’-group and so are all the
composition factors of H N N. Hence H N N is w-solvable. Therefore, H is m-solvable.

For (iv), suppose the m-series terminates at GG. Refine the normal series

1 S] OW(G) S] OT(,TI'/(G) S‘ OTI’JT’,T&'(G) <--- Sl G7 (7)

to a composition series of G,
G=G>Gy>--->GE,=1. (8)

Since all the factors in (7) are 7m-groups or 7'-groups, the same is true for all factors
in (8). Thus G is m-separable. Conversely, suppose G is m-separable, but the

m-series does not terminate at G. Consider a case where O, (G) = O, (G). Now
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O (G/O:(G)) = Or v (G)/Ox(G) = 1 and O, (G/O,(G)) = 1. Thus there exists
L < G such that O, (G/L) = O (G/L) = 1. Let G = G/L and N be a minimal
normal subgroup of G. By (i4), G is m-separable since G is w-separable and by (i), N
is a m-group or a 7’-group. Since N < G, we have N < O,(G) U O (G) = 1. This

implies N = 1, a contradiction. Therefore, the m-series must terminate at G. O]

Theorem 6.3. Let G be a m-separable group. If O (G) =1, then

Proof.

Let H = O,(G),C = Cg(H), and suppose C' £ H. Since H < G, we have C' < G,
and since O,(C) char C J G, we have O,(C) 9 G. Now O,(C) < H = O0,(G)
and O,(C) < Z(H) because [O,(C), H] = 1. Since Z(H) char H < G, we have
Z(H) 9 G. Now [H,Z(H)| = 1 implies Z(H) < C. Thus Z(H) < C, but Z(H) is a
m-group. Therefore, Z(H) < O,(C) and O,(C) = Z(H).

Since G is m-separable, C' is m-separable by Theorem 6.2. It follows from C' £ H
and O,(C) < H that O,(C) < C. Thus O,(C) < O (C). Let L = O »(C). Now
L/O(C) =0 (C/O,(C)) is a n’-group, hence O,(C) € Hall(L) and O,(C) < L.
By Schur-Zassenhaus Part 1, L splits over O,(C'), so there exists K < L such that
L=KO.(C)and KNO,(C)=1. Now

KKK KO0) _ Ll
I T IKNO(0)] 10,0 10,01

and so K is a 7’-group. In addition,

1Ll _ [KOL(C) _ |0,(0)
K[~ K[ KNO(O)

so K € Hall(L). Moreover, [K,O0,(C)] < [C,0,(C)] =[C,Z(H)] =1 and

K < KO,(C) = L. By Lemma 4.6, K char L. Since L < G, we have K < G and it
follows that K < O (G) = 1. Then L = O,(C'), which is a contradiction. Therefore,
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Theorem 6.4. Let G be a p-solvable group and P € Syl,(G). Then
CG(P A Op’,p(G)) < Op’,p(G>-
Proof.
Let G = G/Oy(G) and K = Oy(G). By Lemma 6.2, K = 1. Since G is

p-solvable, we have G is p-separable by Theorem 6.1(i4). It follows from Theorem 6.3
that Cz(0,(G)) < O,(G). Since O,y ,(G) < G, we have PNO,, ,(G) € Syl,(Op ,(G)).

Let L = Oy ,(G). Now L = O, ,(G) = O,(G) is a p-group, so PN L = L = O0,(G).
Thus

Ca(PNL) < Cg(PNL) = Ca(0,(G)) < 0,(G) = L,
which implies
Ca(PNL)O(G) < LOy(G) = Oy p(G)Op(G) = Op ,(G).

Therefore, Co(PN L) = Co(PNOy,(G)) < Oy ,(G). O

6.1 p-Constrained and p-Stability

Definition 6.5. Let G be a group and p be a prime. Then G is p-constrained if
OG(P) < Op’,p(G)»
for all P € Syl,(O, ,(G)).
Theorem 6.5. Let G be a p-constrained group.
(1) If Oy (G) < G, then Oy (G) < Op ,(G).
(i) Let G = G /Oy (G). Then Cx(0,(Q)) < O,(G).
(#9) If P € Syl,(Op »(G)) and Q < G is a p'-subgroup such that P acts on @), then
Q@ < Op’(G)'

Proof.
For (i), suppose Oy (G) < G. If Oy ,(G) = Oy (G), then Oy ,(G) is a p'-group
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and {1} € Syl,(Oy ,(G)). Since G is p-constrained, Ce({1}) < Oy ,(G) = Oy (G).
However, C¢({1}) = G, so G < O, ,(G). This implies G = O,(G), which is a
contradiction. Therefore, O, (G) < Oy ,(G).

For (ii), let P € Syl, (O, ,(G)). Now P € Syl,(O, ,(G)), but O, ,(G) is a
p-group. Thus P = O, ,(G) and PO, (G) = Oy ,(G). Since O, ,(G) < G, we have
by the Frattini Argument, G = Ng(P)Op ,(G) = Ng(P)PO,(G) = Ng(P)Oy(G).
Hence G = Ng(P). Then there exists C' < Ng(P) such that

C = Cq(P) = Cg(0y,(G)) = Cg(0y(G)).

Now [P,C] = 1 implies [P,C] < O,(G), and we have [P,C] < P since C' < Ng(P).
Thus [P,C] < PN Oy(G) =1 and C < Cg(P) < Oy ,»(G) since G is p-constrained.
Therefore, C = Cx(0,(G)) < Oy ,(G) = O,(G).

For (iii), let G = G/O,(G), P € Syl,(Oy,(G)), and Q < G be a p'-subgroup
such that P < Ng(Q). By the same argument as in (ii), P = O, ,(G) = 0,(G) < G.

Now P < Ng(Q) < Nz(Q) and [P,Q] < PN Q = 1. Tt follows from (ii) that

Q< C@(F) = C@(Op<a)) < Op(a>'
Consequently, @ = 1 since O,(G) is a p-group. Therefore, Q < Oy (G). ]

Definition 6.6. Let G be a group and p be a prime. Then G is called p-stable if
(i) p is odd.
(ii) Op(G) # 1.
(75) Whenever P < G is a p-subgroup, PO, (G) < G, A < Ng(P), and A is a
p-group acting quadratically on P, it follows that

ACq(P) N (P)
CeP) S (%(P))‘

Lemma 6.3. Let G be a group, N < G,L I G, L < N, and L be a p-group. If

O,(G/N) =1, then O,(G/L) < N/L.
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Proof.
Let G = G/L and U = O,(G). Now U < G, U < G, and
_ vl
L]
so U is a p-group. Since U < G, we have UN/N < G/N and [UN : N] = [U : UNN].

Ul L] =[U]-]LI,

Thus UN/N is a p-group and UN/N < O,(G/N) = 1, which implies U < UN < N.
Therefore, U = O,(G) < N. O

Theorem 6.6. Let G be a group, p be a prime such that G is p-stable and

p-constrained, P € Syl,(G), A < P, and suppose A is abelian. Then A < Oy ,(G).

Proof.
Let Q@ = PN Oy ,(G). By Lemma 1.8, @ € Syl,(Oy ,(G)). Let G = G/Oy(G).

Now Q € Syl,(O, ,(G)), but O ,(G) = O,(G), so O, ,(G) is a p-group. Thus
Q= 0, ,(G) =0,(G) and O, ,(G) = QO,(G) < G. Now @ < P since
Oy ,»(G) <G, and so A < Ng(Q). Moreover, [Q, A, A] < [A, A] = 1, which means A

acts quadratically on ). It follows from the p-stability of G that

AC(Q) No(Q)
Ce@ S (%(@))'

Furthermore, G is p-constrained, C(Q) < O, ,(G) = QOy(G), and

(9)

Ca(Q) < Oy ,(G) = Q. By the Frattini Argument,

G = Na(Q)QOy (G) = Na(Q)Oy (G).

Therefore, G = Ng(Q).

Let Na(Q) = No(Q)/Ca(Q) and U = O,(Ne(Q)). Now U < Na(Q), so
U < Ng(Q). Let Uy € Syl,(U). By Lemma 1.8, /Uvo € Sylp(f]), but U is a p-group.
Hence (75 —Uand U = UoCq(Q). Then U = Uy Cq(Q) and by the Second Isomor-

phism Theorem,

U :FOCG(Q> Uy
Ce(@)  Ce(@Q)  UpnCe(Q)
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which implies U/Cq(Q) is a p-group. Furthermore, U < Ng(Q) = G and
G

U < Ne(Q)

Ca@ ~ Col@  Ca@
Thus U/Cq(Q) < O,(Na(Q)/Ca(Q)). By (9), we have AC;(Q) < U and so

ACq(Q) < U. Also, Q < Ng(Q) and O,(Ng(Q)/Q) = 0,(G/O,(G)) = 1 by Lemma

6.2. And from Lemma 6.3,

m< u <O(NG(Q>>:O< G >< Q
Ce(@) G " “\C h

Therefore, A < AC3(Q) < Q and A < A0,(G) < QO (G) = Oy ,(G). O

Theorem 6.7. Let G be a p-stable group, B < G be a p-subgroup, and P € Syl,(G).
Then BN Z(J(P)) < G.

Proof.

Let G be a counterexample such that |B| is minimal and Let B; = ((Z N B)“) be
the normal closure of Z N B, where Z = Z(J(P)). Since B < G, we have By < B, By
is a p-group, and By < G. If By < B, then By N Z < G by the minimality of |B|. By
the definition of By, we have ZN B = Z N By, so ZN B < G. This is a contradiction
since B is a counterexample. Therefore, B = By. Now B’ char B < G and B’ < G
by Lemma 1.12. Also, B’ is a p-group and by Theorem 1.18, B’ = K5(B) < B since
B is nilpotent. By the minimality of |B|, ZN B < G.

We claim B’ < Z. Now Z char J(P) char P, Z char P, and by Lemma 1.12,
Z < P. Since B is a normal p-group, we have B < P from Sylow. It follows that
[ZNB,B|<ZN|[B,B]=ZNDB" Let g € G. By the above,

(ZNB)!,B|=[ZNB,B! < (ZNB)Y <ZNB,

so B' = [B,B] = [B,By] = [B,{(Z N B)“)] < Zn B'. Therefore, B' = Z N B" and
B’ < Z. Moreover, [ZNB,B'| < [Z,Z] =1 and

[B,B') = [B1,B| = [((Zn B)?),B<[2,Z] = 1.
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Thus cl(B) < 2.

Let L 9 G such that L < Ng(ZNB) and |L| is maximal. Now PNL € Syl,(L) and
by the Frattini Argument, G = Ng(PNL)L. If J(P) < PNL, then by Theorem 5.2(3),
J(P) char PNL. This implies No(PNL) < Ng(J(P)) and G = Ng(J(P))L. Similarly,
since Z = Z(J(P)) char J(P), we have Ng(J(P)) < Ng(Z) and G = Ng(Z)L. Hence
ZN B < Ng(Z)L = G, which is a contradiction. Therefore, J(P) < PN L.

By the Glauberman Replacement Theorem (5.8), there exists A € A(P) such that
[B, A, A] < [A, A] = 1. Furthermore, G is p-stable, BO,(G) < G, and B is a p-group.

Consequently,

Since B < G, we have C(B) < G.Now L < LCs(B) < G, but LC(B) < Ng(ZNB).
By the maximality of |L|, L = LC¢(B) and it follows that Ce(B) < L.

We claim AL/L < O,(G/L). Let G = G/Cq(B) and U = O,(G). Now U < G
and U < G. Let Uy € Syl,(U). Then Uy € Sylp(f]), but U is a p-group. Thus Uy = U
and U = UyCq(B) < G. By (10), A< U <G, s0o AL/L < UL/L < G/L. Moreover,

UL _UlCq(B)L UL . Uy
L L L UynL’

and UL/L is a p-group. Therefore, AL/L < UL/L < O,(G/L).

Let G = G/L and K = O,(G). Now L < K 4 G and PN K € Syl,(K). Then
PN K € Syl,(K), but since K is a p-group, PNK = K. Thus K = (PN K)L. It
follows from Z < P and B < G that K = (PNK)L < Ng(ZNB). By the maximality
of |L|, we have K = L and K = O,(G) = 1.

Since A < O,(G) =1, we have A < Land A < PNL,so A€ A(PNL). By
Theorem 5.2(ii), A< J(PNL)and J(PN L)< J(P). Thus by Theorem 5.1,

ZNB=2Z(J(P)NB<Cp(A) =A< J(PNL) < J(P),

and ZNB < Z(J(PNL)). Let X = Z(J(PNL)). Since X char PN L, we have
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Ng(P N L) < Ng(X). But G = Ng(PN L)L and so G = Ng(X)L. Hence
B =B, = {(ZNB)%) = (21 B*}) = (2 n BN} < (xVe) < X.

Since J(P) & P N L, there exists A; € A(P) such that A; £ P N L. This implies
Ay & L, thus [B, Ay, Ay] # 1.

Let Ay € A(P) such that A; £ L and |A; N B is maximal. By the above,
(B, A1, Ay] # 1, so B & Ng(A;). By the Thompson Replacement Theorem (5.6),
there exists A* € A(P) such that Ay N B < A*N B and A* < Ng(A;). Now A* < L
by the maximality of |A; N B|, which implies A* < PN L, so A* < J(PNL). Thus
B < X < Cp(A*) = A* < Ng(A) and [B, Ay, A;] = 1, which is a contradiction.

Therefore, no such counterexample G exists. O

Lemma 6.4. Let G be a group, P < G be a p-subgroup, H < G be a p'-subgroup, and
G =G/H. Then

(4) Ng(P) = Ng(P).

Proof.

For (i), let T € Ng(P). Now P = P = P som € Ng(P) and it follows that
Na(P) < Ng(P). Conversely, let i € Ng(P). Now P = P" = P and P"H = PH.
Since HNP = 1, we have P", P € Syl,(PH). By Sylow, there exists h € H such that

P = P. Hence nh € Ng(P), so m € Ng(P). Therefore, Ng(P) = Ng(P).
For (ii), we immediately have Cq(P) < Cx(P). Let C' = C5(P). Now [P,C] =1

and so [P,C] < H < C. From (i), C < Ng(P) = Ng(P). Thus C < Ng(P)H
and by Lemma 1.1, C = C N Ng(P)H = (C N Ng(P))H = N¢(P)H. This implies
[P,No(P)] < PN[P,C] < PN H =1 and Ne(P) < Cy(P). It follows that

C' = Ne(P)H < Co(P)H. Therefore, C = C(P) < Cq(P) and C5(P) = Cg(P). O

It is common to say “the normalizer passes” and “the centralizer passes” when

the conditions of Lemma 6.4 are satisfied.
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Lemma 6.5. Let G be a group and G = G/Oy(G). If G is p-stable and p-constrained,

then G is p-stable and p-constrained.

Proof.
By hypothesis, O, (G) = 1. Thus O, ,(G) = O, ,(G)/Oy(G) = O,(G/O,(G)),
S Oy,

so O ,(G) is a p-group. As a result, it is enough to show Cx(Oy ,(G)) < Oy ,(G).

Now O, ,(G) = 0,(G) < G is a p-subgroup and it follows that
L »(G)/ 0, (G) < GJO,(G) is a p-subgroup. This implies

Op’,p(G) <O ( G >_ Op’7p<G)

Oy (G) v (G) Oy (G)

P
and so O, ,(G) < Oy ,(G). By Theorem 6.5 with = = {p},

C@(Op’vp(a)) < C@(Op’,p(G)) = C@(Op(é)) < Op(a) = Op’vp(G) < Op’vp(a)-

Therefore, Cz(O, ,(G)) < Op ,(G) and G is p-constrained.

Let P < G be a p-subgroup such that PO, (G) < G and A < (P) be a

Ne
p-subgroup acting quadratically on P. Since Op (G) = 1, we have P < G. Let
Ay € Syl,(A) and Py € Syl,(P). Since A and P are p-subgroups, we have A = A,
and P = Py. Moreover, PyO,/(G) 9 G and Ay < Ng(Py) = Ng(Pp), which implies
Ay < A0y (G) < Ng(Py)Oy (G). Also, Ay € Syl,(Na(Po)Oy (G)) since Oy (G) is a
p'-group. By Sylow, there exists z € Ng(Py)O, (G) such that AZ < Ng(Pp). Since A

acts quadratically on P, it follows that A, acts quadratically on Py. Furthermore,

T € Ng(Py) = Ng(PRy) and [R, A A_Of] = 1, which implies
[P0y (G), AFOy (G), AFOy (G)] < Oy (G).

Thus [Py, Af, AF] < Oy (G) N By = 1. Since G is p-stable,

AjCa(P) Ng(Fo) A5Ca(Po) Ne(FRy)
W<Op( ) and :<0p< >
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Thus

T (D B\ (CaP)m) ! -
A6lP) o, (Na22) g, (XeD))
Ca(P) "\ Ce(P) "\ Ce(P)
follows from
0, (NG ]_3)> < Na(P)
Ca(P)) — Cg(P)
Therefore, G is p-stable. O]

Theorem 6.8 (Glauberman’s Z.J Theorem). Let G be a p-stable and p-constrained
group, and P € Syl,(G). If O,(G) # 1, then G = Ng(Z(J(P)))Oy (G).

Proof.
We proceed by induction on |G|. Let G = G/O,(G) and suppose O, (G) # 1.

Since O,(G) a normal p-group, we have O,(G) is a normal p-group and

0,(G) < O,(G). If O,(G) =1, then O,(G) < Oy (G) # 1. This implies O,(G) = 1,

which is a contradiction. Thus O,(G) # 1. Moreover, P € Syl,(G). By the induction
hypothesis, G = Ng(Z(J(P)))O,(G), but O, (G) =1 and so G = Nz(Z(J(P))). By
Lemma 6.4, G = No(Z(J(P))) and it follows that G' = Ng(Z(J(P)))Oy(G).
Without loss of generality, assume O, (G) = 1. Now Z(J(P)) char J(P) char P,
Z(J(P)) < P, and Z(J(P)) is abelian. By Theorem 6.6, Z(J(P)) < Oy ,(G). Since
Oy »(G) <G and Oy (G) = 1, we have Oy ,(G) is a p-group and O, ,(G) < O,(G).
By Theorem 6.7, O,(G) N Z(J(P)) < G, but Z(J(P)) < O ,(G) < O,(G). Hence
0,(G)N Z(J(P)) = Z(J(P)). Therefore, Z(J(P)) < G and G = Ng(Z(J(P))). O

6.2 Some Groups of Matrices

Definition 6.7. Let p be a prime, r € N, and g = p".

(i) The general linear group is given by

GLn(q) = {A € M,(GF(q)) : det(A) # 0}.
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(i9) The special linear group is given by
SL,(q) ={A € GL,(q) : det(A) = 1}.
(i4i) The projective special linear group is given by

La(q) = PSLn(q) = %-

Theorem 6.9. Let p be a prime, r € N, and q = p". Then
(i

GL,(q) is a group under matriz multiplication.
(i) SL

)

) SLn(q) < GLy(q).

(#i) |GLa(q)| = (¢° — 1)(¢* — q).

(i) |SLa(q)] = (¢ = 1)(¢* —q)/(q = 1).

Proof.

For (i), let A = [a;;], B = [bi;] € GL,(q) and set [¢;;] = C = AB. From [Cur74],
Cij = Y op_y @ikby;, s0 ¢;; € GF(q) and C € M, (GF(q)). Moreover,
det(C) = det(AB) = det(A) det(B) # 0. Hence C' € GL,(q). Furthermore, GL,(q)

is associative; has an identity matrix I, = [e;;], where

1, fori=y

eij =

0, for i # j,
such that Al, = I,A = A for all A € GL,(q); and every A € GL,(q) is invertible

since det(A) # 0. Therefore, GL,(q) is a group under matrix multiplication.
For (ii), let A, B € SL,(q). Now AB™ € GL,(q) by (i) and

det(AB™') = det(A) det(B ') = det(A) det(B) ™ = 1.

Thus AB~! € SL,(q) and SL,(q) < GL,(q) by the Subgroup Test.

For (iii), from [Cur74], an equivalent condition for a matrix having nonzero de-
terminant is for a matrix to have linearly independent rows. Consider a matrix in
GLy(q). There are ¢* possible combinations of elements from GF(q) to form the first

row; however, the first row must be nonzero. Thus there are ¢? — 1 possibilities for
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row one. The second row cannot be a multiple of the first and there are ¢ possible
multiples of row one. In total, there are ¢> — ¢ possible choices for row two. Therefore,
|GLa(q)] = (¢° — 1)(¢* — q).

For (iv), define det : GL,(q) — GF(q)* by A = det(A) for all A € GL,(q).
Clearly, det is a homomorphism. Let a € GF(q)* and consider A = (¢9) € GLa(q).
Then A% = g and so det is surjective. Now A € SLy(q) if and only if A4t = 1,

or, equivalently, A € Kerdet. Hence SLs(q) = Kerdet. By the First Isomorphism

Theorem,

GLy(q)  GLa(q) det

- =~ GLy(q)% = GF(q)"

SLy(q)  Kerdet GLa(g) GF(a),
and

GLs(q) ‘ |GLy(q)]

‘SLQ@ SLy(q)] — 1FF01=1
Therefore, |SLa(q)| = (¢° — 1)(¢* — q)/(¢ — 1). O

Theorem 6.10. The Sylow 2-subgroups of SLy(3) are non-abelian.

Proof.
By Theorem 6.9, |SLy(3)] = (32 —1)(3*—3)/(3—1

Consider P = {(19),(39),(¢3),(33). (1), (31),(32).(33)} . Clearly,
P € Syla(SLa(3)); however, (13) (21) = (92) and (31) (11) = (31) . Therefore, P

= 23-3 and so |SLy(3)[s = 2°.

is non-abelian and all other Sylow 2-subgroups of SLy(3) are conjugate to P. O]

Definition 6.8. Let G and K be groups. Then K is involved in G if there exists
N <9 H < G such that K = H/N.

Definition 6.9. Let G be a group and p be a prime. Then G is strongly p-solvable
if G is p-solvable and either,
(1) p=>5, or

(i) p =3 and SLy(3) is not involved in G.
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Theorem 6.11. Let G be a group with abelian Sylow 2-subgroups. Then SLo(3) is

not tmwvolved in G.

Proof.

Toward a contradiction, suppose there exists N < H < G such that
H/N = SLy(3). Let P, € Syla(H). By Sylow, there exists P € Syly(G) such that
P, < P. Since P is abelian, it follows that P, is abelian. Moreover,
P/N/N € Sylo(H/N) and PN/N is abelian. Since H/N = SLy(3), we have Sylow
2-subgroups of SLy(3) are abelian. However, this contradicts Theorem 6.10. There-
fore, SLy(3) is not involved in G. O

Theorem 6.12. Let G be a group. If G is strongly p-solvable, then G is p-constrained.

Proof.

By hypothesis, G is p-solvable. Let Py € Syl,(Op ,(G)) and H = O, ,(G). Now
there exists P € Syl,(G) such that P, < P. Moreover, PN H < H and PN H is a
p-group. By Sylow, there exists h € H such that PN H < P! so P, < PN H < PP,

but |P| = |P}. Thus P, = PN H = PN O ,(G) and by Theorem 6.4,
CG(Pl) = CG<P n Op’,p(G)) < Op’,p(G)-
Therefore, GG is p-constrained. m

Lemma 6.6. Let G be a group, P € Syl,(G), N < G be a p'-subgroup, and G = G//N.
Then

Proof.
For (i), let A € A(P). Now A < P, A is abelian, and

—  |AN] |A|
A = = = A
4 | V| |ANN| &
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by the coprime orders of N and A. Thus A € A(P), which implies J(P) < J(P).

For (i), let z € Z(J(P)). Now z € J(P), so Z € J(P). Clearly, Z € Z(J(P)), but

by (i), Z(J(P)) < 2(J(P)). Thus z € Z(J(P)) < Z(J(P)) < Z(J(P)).
For (zi1), J(P) is a p-group, so Z(J(P)) is a p-group. By Lemma 6.4 and (i), we
have Na(Z(J(P))) < Ng(Z2(J(P))) < Na(2(J(P))). O

Theorem 6.13. Let G be a group. If G is strongly p-solvable, then G is p-stable.

Proof.
See Theorem 5.3, pg. 235 in [Gor07]. O

Theorem 6.14 (Glauberman-Thompson Normal p-Complement). Let G be a group
and P € Syl,(G), where p is odd. If No(Z(J(P))) has a normal p-complement, then

G has a normal p-complement.

Proof.

Let G be a counterexample such that |G| is minimal. If there exists H < G such
that P < H, then P € Syl,(H). Furthermore, Z(J(P)) char J(P) char P, so
Z(J(P)) char P and Z(J(P)) < P. Thus P < Ny(Z(J(P))) < Ng(Z(J(P))). By
Lemma 4.2, Ny(Z(J(P))) has a normal p-complement and it follows from the mini-
mality of |G|, H has a normal p-complement. Since G is a counterexample, we have by
Frobenius’ Theorem (2.11) there exists H < G such that H is a p-group, N = Ng(H)
has no normal p-complements, and |N|, is maximal.

We may assume PNN € Syl,(N); otherwise from Sylow, there exists P, € Syl,(N)
such that PN N < F,. Also by Sylow, there exists g € G such that Py < PY, but
again, there exists n € N such that PPN N < Ff'. Now ) < PPN N < Fj, but
|Po| = | Py, thus PfN N = Py € Syl,(N). But then Ng(Z(J(P9))) = Na(Z(J(P)))?
has a normal p-complement since Ng(Z(J(P))) has a normal p-complement. Without

loss of generality, we may take P = PY.
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Suppose P & N = Ng(H). Let R=PNN,L= Ny(Z(J(R))), and
M = Ng(Z(J(R))). Now R < P and L < M. By Lemma 1.16 on P, R < Np(R)
and Z(J(R)) char R, thus R < Np(R) < Np(Z(J(R))) < PN M. It follows that
M|, > |PNM|> |R| =|N|,, M = Ne(Z(J(R))), and Z(J(R)) is a p-group. By the
maximality of |N|,, M must have a normal p-complement. Now
Z(J(R)) char J(R) char R, so R < Ny(Z(J(R))) = L < M. By Lemma 4.2, L has
a normal p-complement, but L = Ny(Z(J(R))) and R = PN N € Syl,(N). Also,
N < G since P & N. By the minimality of |G|, N has a normal p-complement, but
this is a contradiction. Thus P < N. If N < G, then N has a normal p-complement,
which is again a contradiction. Therefore, P < N = Ng(H) = G and H <4 G.

We claim O, (G) = 1. Suppose not and let G = G/O,(G). Now P € Syl,(G),
p is odd, and Ng(Z(J(P))) = Ng(Z(J(P))) has a normal p-complement by Lemma
4.3. By the minimality of |G|, G has a normal p-complement. Hence G = PO,(G),
but Oy (G) = 1, so G = P. It follows that G = PO,(G) and G has a normal
p-complement. This is a contradiction, so O, (G) = 1.

Since H is a p-group and H < G, we have by Sylow, H < P. If P = H, then
P <4 G. Also, Z(J(P)) char P < G implies Z(J(P)) 9 G and G = Ng(Z(J(P))).
Now G has a normal p-complement and this is a contradiction, so H < P. Since
H <G and O,(G) 9 G, we have N = Ng(H) = G = Ng(0O,(G)). Thus Ng(O,(G))
has no normal p-complement, O,(G) is a p-group, and |N¢(O,(G))|, = |N|,. Without
loss of generality, assume H = O,(G).

Let G = G/H. Since H < P, we have P € Sylp(é) is nontrivial. Let
Ny = N&(Z(J(P))) and Hy = Z(J(P)). Since P # 1, we have Z(P) # 1, which

implies there exist maximally abelian subgroups of P. Hence J (13) # 1, which implies

Hy #1and H < Hy. Also, Ny = Ng(H,) = Ng(HH,) = Ng(Hy), so Ny = Ne(Hy).
Since H, is a p-group and H < Hi, we have H; 4 G; otherwise, H; < H. Thus

Ny = Ng(H;) < G. Now P< ﬁl and P < N; < GG. By our work in the introduction,
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N has a normal p-complement, so ﬁl has a normal p-complement by Lemma 4.3. By

the minimality of |G/, G has a normal p-complement. It follows that

e~

G = PO,(G) = PO, ,(G) and G = PO, ,(G)H = PO, ,(G). Now

G B PO,y (G) P
Opm’(G) Opm’(G) PN Opm’(G)

I

is a p-group, which implies

G -0 ( G ) _ Op,p’,p(G)‘
Op,p’(G> g Op,p’(G) Op,p’(G)

Thus G = O, ,(G). By Theorem 6.2(iv), G is p-separable and by Theorem 6.1(i),

G is p-solvable.

Now we want to show G is strongly p-solvable. If p > 5, then G is strongly
p-solvable since G is p-solvable. If p = 3, then we must show SLy(3) is not involved in
G. By the coprime action of P on O, (G), we have for all ¢ € (O, (G)), there exists
Qe Squ((’)p/(é)) such that P < Né(@) Since Z(Q) char Q, we have P < Né(Z(@))
Let G = ﬁZ(@) and @vl = Z(@) Now G = PQq, where Q1 is a ¢g-group. In addition,
1=[2(Q),2(Q)] = [@:,@Vl] and so [Q1,Q1] < HN @y = 1. Thus Q; is abelian. If
(G1 < G, then G; has a normal p-complement, where (), is the normal p-complement.
It follows that [Q1, H] < HN Q1 =1 and Q1 < Ce(H) = Ca(0,(G)) < Op(G) by
Theorem 6.3 because G is p-separable and O, (G) = 1. Hence )1 = 1 and
Q1 = Z(Q) = 1. This is a contradiction since @ € Squ((’)p/(é)). Thus
G = Gy = PQ,, where P is a 3-group, and @), is a g-group for g # 3. Now the Sylow
2-subgroups of G are abelian since )y is abelian. By Theorem 6.11, SL(3) is not
involved in GG. Therefore, G is strongly p-solvable.

Since G is strongly p-solvable, GG is p-constrained by Theorem 6.12, and by Theo-
rem 6.13, G is p-stable. Now H < O,(G) is nontrivial, so by Glauberman’s
Z J-Theorem (6.8), G = Ng(Z(J(P)))Oy(G), but Oy (G) = 1. Thus G = Ng(Z(J(P))),
but then G has a normal p-complement. This is a contradiction since G is a coun-

terexample. Therefore, no such counterexample exists. O
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7 Fixed-Point-Free Automorphisms

Definition 7.1. Let G be a group and ¢ € Aut(G). The centralizer in G of ¢ is

Calo) ={g€G:¢° =g},
and Cq(¢) < G. We say the automorphism ¢ acts fized-point-freely on G if
Calg) = 1.

Definition 7.2. Let G be a group and ¢ € Aut(G). Then [g, 9] = g 1g® for all g € G.

Theorem 7.1. Let G be a group, ¢ € Aut(G), Cq(¢) = 1, and suppose |p| = n for

somen € N. Then

(1) G={lg.¢]: g€ G}t ={g°97": g€ G}.
(47) gg%g?" - ¢®" " =1 for all g € G.

Proof.

For (i), suppose x,y € G such that [z, ¢] = [y, ¢]. Now 27 12¢ = y~1y?, so
yr~t = (yz~1)?. Hence yz~! € Cg(¢) = 1 and y = z. Thus |{[g,¢] : g € G}| = |G],
but {[g,¢] : g € G} < G. Therefore, G = {[g, #] : g € G}. Similarly, if 22! = y®y~!
for some x,y € G, then (y~'2)? = y~'z and y~'x € Cg(¢) = 1. Thus x = y and
{997 : g € G}| = |G|. Therefore, G = {g®g' : g € G}.

For (ii), let g € G. By (i), there exists x € G such that g = [z, ¢] = 27 '2?. Now

gg¢g¢2 N ‘gqb"*l S (x_1x¢)¢ ($_1$¢>¢2 o (:x_lx‘ﬁ)‘bn*l
= 21g% (o) 7 o <x¢2>_1 25 <$¢3>‘1

-1 RN
29 <x¢4> ...(w¢> 1) 29

J— n J—
= 2" =27 lr = 1.

Therefore, gg?g®” ---¢*" ' = 1. -
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Theorem 7.2. Let G be a group and ¢ € Aut(G) such that Ce(¢) = 1. Then
(i) For each p € w(G), there exists a unique P € Syl,(G) that is p-invariant.

(i) If H < G is a ¢-invariant p-subgroup, then H < P.

Proof.

For (i), let P € Syl,(G). Now |P?| = |P|, so P? € Syl,(G). By Sylow, there exists
g € G such that P? = P9 and by Theorem 7.1, there exists € G such that
g =[z,¢] = x7'x?. Since |P* | = |P|, we have P* ' € Syl,(G). Also,

(2?)"! =g~ la~! and
(P10 = (P?)# e = (pHENT = (poy et = pr

Thus (P* )? = P* ' P*" € Syl,(G), and P* ' is ¢-invariant.

To show uniqueness, suppose P, Q) € Syl,(G) are ¢-invariant. By Sylow, there
exists g € G such that P9 = Q. Now P9 = Q = Q? = (P9)? = P9’ so P = pss’
and g?g~! € Ng(P). Since P is ¢-invariant, we have Ng(P) is ¢-invariant. Moreover,
Crnop)(0) < Ca(¢) = 1, so ¢ acts fixed-point-freely on Ng(P). By Theorem 7.1,
there exists n € Ng(P) such that g?¢~ = n®n~!. Then

nlg=(n?)" g = (n)’g" = (n7g)",
and n~'g € Cg(¢) = 1. Thus g =n € Ng(P) and Q = P9 = P.

For (ii), let P € Syl,(G) be the unique ¢-invariant Sylow p-subgroup of G' guar-
anteed by (i) and P; < G be a maximal ¢-invariant p-subgroup such that H < P;.
Since P; is ¢-invariant, Ng(P;) is ¢-invariant. Moreover, Cy,p)(¢) < Ca(¢) = 1.
By (i), there exists a unique P, € Syl,(Ng(P;)) such that P, is ¢-invariant. Now
P, < Ng(Py) is a p-subgroup, so P; < P,. Then H < P, < P, and by the maximality
of P, we have P, = P,. Thus P, € Syl,(Ng(Fy)). By Lemma 1.17, P, € Syl,(G)
and P; is ¢-invariant. It follows from the uniqueness of P that P, = P. Therefore,

H<P. ]
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Theorem 7.3. Let G be a group, ¢ € Aut(G), Ca(¢p) =1, N < G be ¢p-invariant,
and G = G/N. Define the induced homomorphism on G by

for allg € G. Then Cx(¢) = 1.

Proof.

Let a,b € G. If @ = b, then b~'a € N and @ = bn for some n € N. Since N is
¢-invariant, a¢ = a® = W — 0% = 09 n? = % = 5’ Thus @® = b and ¢ is
well-defined. It remains to show ¢ € Aut(G).

Let @, b € G. Now (ab)? = (ab)? = a%hé = a® b® = E¢E¢, and ¢ is a homomorphism.
Let @ € G. Then a € G and so there exists b € G such that b® = a. It follows that
a=10%=0"and ¢ is surjective on G. To show ¢ is injective, suppose @® = 5”. Now
a® = b and (b?)"'a? = (b~'a)? € N. Since N is ¢-invariant and ¢ is surjective on
G, we have N = N. Thus there exists n € N such that (b~1a)? = n? and since ¢ is
injective on G, we have b='a = n € N. This implies @ = b. Therefore, ¢ € Aut(G).

Finally, if @ € C5(¢), then @® = @ and a~'a® € N. Now On(¢) < Ca(¢) = 1,
so by Theorem 7.1, there exists n € N such that a ta® = [n,¢] = n~'n?. Hence

na~! = (na™')? and na! is a fixed-point of ¢. However, Cg(¢) = 1 forces n = a and

a = 1. Therefore, Cx(¢) = 1. O

7.1 Some Examples

We provide some examples exemplifying the relationship between Thompson’s Theo-

rem and Frobenius’ Conjecture.

Theorem 7.4. Let G be a group, ¢ € Aut(G), Ca(¢) =1, and suppose |¢| = 2. Then

G is abelian.

Proof.

By Theorem 7.1, z2® = 1 for all x € G, so 2 = 27! for all z € G. Let 2,y € G.
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Now zy = (ytz~1) ™" = (y‘ﬁ:ﬁb)*l = ((yx)ﬁb)*l = ((yz)™1) "' = yx. Therefore, G is

abelian. O]

By Lemma 1.13, G is nilpotent and from Theorem 1.21, G is solvable. Thus

Frobenius’ Conjecture holds true.

Theorem 7.5. Let G be a group, ¢ € Aut(G), Ca(¢) =1, and suppose |¢| = 3. Then

G 1is nilpotent.

Proof.

Suppose G is not nilpotent. Since Cg(¢) = 1, there exists a P € Syl,(G) such
that P 4 G and P is ¢-invariant by Theorem 7.2. Let Q € Syl,(G) such that Q # P.
Now @ £ P and there exists © € @\ P. By Theorem 7.1, 22%2? =1 and 2% 2%z = 1,
which implies zz? = <x¢2> . 0.

Let H = (x?,x). Now H is abelian since zx® = 2%z. Since |z| is a p-number, we
know |z?| is a p-number and H is a p-group. Clearly, 2¢ € H. Moreover,

(29)? = 2%° = (2%z)"' € H, so H is ¢-invariant. By Theorem 7.2, H < P, which

places x € P, a contradiction. Therefore, G is nilpotent. O]
By Theorem 1.21, G is solvable. Therefore, Frobenius’ Conjecture holds true.
Definition 7.3. Let G be a group and A < Aut(G). The centralizer in G of A is
Ca(A)={geG:g° =g foral ¢c A},

and Ce(A) < G.
Definition 7.4. Let G be a group and p be a prime. Define
W(G)={geG:g"=1),

where Q4 (G) char G.
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8 The Proof of Thompson’s Theorem

Theorem 8.1 (Thompson). Let G be a group, ¢ € Aut(G), Cg(¢) = 1 and suppose

|¢| = r for some prime r. Then G is nilpotent.

Proof.
Let G be a counterexample such that |G| is minimal. Suppose there exists

1 # N < G such that N is ¢-invariant and N < G. Now ¢ € Aut(N) since N is

¢-invariant. Let |¢| = k on N and |¢| =1 on G/N, where k < rand [ <r. If k <7,

then (¢*) < (¢) and k = [(¢*)|||(¢)| = r, which implies k = 1 or k = r. Respectively,

we have (¢%) = (¢) or (¢*) = 1. If (¢F) = 1, then ¢* = 1,r

k, and r < k. This is a
contradiction, so (¢*) = (¢). But then 1 # N < C5((¢*)) = Ca((¢)) = Ca(g) = 1
and we have another contradiction, thus k = r. Suppose [ < r. By a similar argument,
we have (¢!) = (¢). Now [G/N,¢'| = 1, so [G/N,(¢")] = 1. Hence [G, ¢'] < N and
(G, (¢")] < N. By Theorem 7.1, G = [G, ¢], but [G,¢] < [G, (¢)] = [G, (¢')] < N.
This is a contradiction and so | = r. Now N < G,Cn(¢) < Ce(¢) =1, |¢| =7 on N,
and ¢ € Aut(N). Thus N is nilpotent by the minimality of |G|. Also, Cg/n(¢) = 1
by Theorem 7.3, |¢p| = r on G/N, and ¢ € Aut(G/N). It follows from the minimality
of |G| that G/N is nilpotent. Therefore, N and G /N are solvable by Theorem 1.21,
and G is solvable by Lemma 1.26.

Suppose GG contains no nontrivial proper normal ¢-invariant subgroups. If G is a
2-group, then G is nilpotent, which is a contradiction. Thus 7(G) contains primes
other than 2. By Theorem 7.2, there exists P € Syl,(G) such that P is ¢-invariant
and p is odd. Now Z(J(P)) is nontrivial and Z(J(P)) char P, so Z(J(P)) is
¢-invariant. Since 1 # Z(J(P)) < G, it follows that N = Ng(Z(J(P))) < G, where
N is ¢-invariant. Also, Cn(¢) < Cg(¢) = 1. By the minimality of |G|, NV is nilpotent.
Thus N has a normal p-complement and so by Glauberman-Thompson (6.14), G

has a normal p-complement. Hence G = PO, (G). Since O, (G) char G, we have
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Oy (G) < G and Oy (G) is ¢-invariant. By our assumption, Oy (G) =1 or
O, (G) = G. Respectively, G = P or P = 1. In either case, we have a contradiction,
so G contains a minimal ¢-invariant subgroup. Therefore, GG is solvable.

Let 1 # N < G such that N is minimal with respect to being ¢-invariant. Then
N is characteristically simple and by Theorem 1.13, N = @, N;, where the N;’s
are simple isomorphic groups. If there exists 1 < i < n such that N; is non-abelian,
then 1 # N/ < N;, so N} = Ni(l) = N, since N; is simple. But then Ni(k) = N; for
all k € N and N; is not solvable by Theorem 1.20. However, G is solvable and we
have a contradiction to Lemma 1.25. Thus N; is abelian for all 1 <7 < n. Since N;
is simple, we have N; & Z, for some prime p. Therefore, N = Z, x --- X Z, is an
elementary abelian p-group.

Let G = G/N. Using a previous argument, G is nilpotent by the minimality of
|G|. If G is a p-group, then |G| = |G| - |N| and G is a p-group. Hence G is nilpotent
by Theorem 1.15. This is a contradiction. By Theorem 7.2, there exists Q € Syl,(G)
such that @Q is ¢-invariant. Since @ is a g-group, Z(Q) # 1 and Q(Z(Q)) # 1.
Also, since G is nilpotent, Q;(Z(Q)) char Z(Q) char @ < G and Q,(Z(Q)) < G
by Lemma 1.12. Moreover, ;(Z(Q)) is ¢-invariant since Q;(Z(Q)) char Q. Let
1 # My < (Z(Q)) be minimal with respect to being ¢-invariant. Because G is
nilpotent, My < 1(Z2(Q)) < 2(Q) < Z(G), so My 4 G. Since My is ¢-invariant,
M, = ﬁo(b = M_Si7 and Mg’ < MgN = My. Thus M, is ¢-invariant and My < G. Now
Cho (¢) < Ca(¢) = 1 and it follows from Theorem 7.2 that there exists M € Syl, (M),
where M is ¢-invariant. Now M € Syl, (M), but My is a g-group, so M = M.
Therefore, M N = M,.

We claim G = M N. Suppose G # M N. Now M N is ¢-invariant,

Cun(¢) < Cq(¢) =1, and |¢p| = r. Thus M N is nilpotent by the minimality of |G|.
Furthermore, M € Syl,(MN), M < MN, M char MN = M, < G, and M < G by

Lemma 1.12. Let G = G/M. By a similar argument as above, G is nilpotent. Then
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G x G is nilpotent by Lemma 1.21. Let 6 : G — G x G be defined by ¢’ = (7, g) for
all g € G. Clearly, 0 is a homomorphism with Ker § = M N N = 1 by coprime orders.
By the First Isomorphism Theorem, G = G/Ker § = G < G x G, so G is nilpotent
by Lemma 1.14, which is a contradiction. Thus G = M N.

If » = p, then (¢) is a p-group and acts on the p-group N. By Lemma 1.10,
1 # Cn((¢)) < Cq(¢) = 1, which is a contradiction. Thus r # p. Similarly, if r = ¢,
let (¢) act on M and we result in a similar contradiction, so r # ¢. Now we claim M
is an elementary abelian g-group. Since M’ char M, we have M’ is ¢-invariant. Thus
M’ < M = My and M’ is ¢-invariant. By the minimality of My, either M’ = 1 or
M' = M. If M' = M, then M'N = MN,but MNN =1 and M’ = M. Hence M
cannot be nilpotent; however, M is a g-group. This is a contradiction, so M’ = 1. It

follows that M’ < M NN =1 and M is abelian. Thus (M) is abelian and it is

enough to show Q;(M) = M. Now (M) char M and Q;(M) char M = M,, where

Q1 (M) is ¢-invariant. By the minimality of My, either Q;(M) = 1 or Q;(M) = M.

If (M) =1, then Q;(M) < M NN = 1, which is a contradiction since M is a
g-group. Thus Q; (M) = M and Q;(M)N = MN, but Qy(M)NN < MNN =1, so
Qy(M) = M. Therefore, M is an elementary abelian g-group.

Next we claim Cy(N) = 1. Since M and N are ¢-invariant, we have Cjy(N) is
¢-invariant. Now m < M = M, and m is ¢-invariant. By the minimality
of My, either Cp;(N) = 1 or Cyy(N) = M. If Cp;(N) = M, then Cy(N)N = MN.
But MNN =1,s0 M =Cy(N). Thus M < MN = G and N < G, where M and
N are nilpotent. By Lemma 1.20, G is nilpotent, which is a contradiction. Hence
Cy(N)=1and Cy(N) < M NN = 1. Therefore, Cy;(N) = 1.

Since M is ¢-invariant, (¢) acts in M in the natural manner. Thus G* = M X;4(¢)
is a group by Theorem 1.23. Let G* act on N over Z, via 6 : G* — Aut(N) defined by
nm” = (n#* )" for all n € N and for all (m, ¢*) € G*. By Theorem 1.23, |G*| = r¢"

for some n € N. Since p, ¢, and r are distinct primes, ged(rg™, char Z,) = 1.

108



We claim M is a minimal normal subgroup of G*. Suppose L < M such that
L < G*. Since M is elementary abelian g-group, we have L is an elementary abelian
g-group, so L char M. Now L char M = M, and L is ¢-invariant. By the minimality
of My, either L =1 or L = M. If L = 1, then L < N, where N is a p-group. Thus
L = 1 since L is a ¢-group with ¢ # p. If L = M, then LN = MN and since
LNN < MNN =1, we have L = M. Therefore, M is a minimal normal elementary
abelian g-subgroup of G*.

Clearly, M < Cg«(M). Let (m, ¢*) € Cg«(M) for 1 < k < r and suppose k < 7.
Now for all z € M, (m,¢*)(x,1) = (x,1)(m, ¢*) and (ma®",¢*) = (xm,$*). This
implies mz?" = zm, but M is abelian, so *° = z for all x € M. Thus ¢* = 1 and
r < k, which is a contradiction. Hence k = r, ¢* = 1, and (m, ¢*) = (m, 1), which
implies Cg+ (M) = M. Moreover, since (¢) is cyclic and |¢| = r, we have (¢) = Z,.

Suppose (m, ¢*) € Ker 0, where 1 < k < r. Now (m,¢*)? =1 and for all n € N,
()" = n and n® 'm = mn. If k < r, then (¢*) = (¢) and Cy(¢) < Cu(e) = 1.
Moreover,

Cu(9) < Cu(9") < Cu((9*)) = Cu((9) < Cua(9)-

Thus Cy(¢%) = Cu(¢) = 1, so ¢* acts fixed-point-freely on M. By Theorem 7.1,
M = {[m, ¢*] : m € M} and so there exists m; € M such that

oF—1 F 1

k
¢ !. Now for all n € N we have, n¢km1 m; = m; m;n

m = [my, o] = m$ m{'.
and ()% = ™. Thus n™ € Cg(¢¥) = 1, so n = 1, but then N = 1. This
is a contradiction and so k = r. It follows that ¢* = 1 and nm = mn. Hence
m € Cy(N) = 1 and m = 1. Therefore, (m,¢*) = (1,1), Ker 6 = (1,1), and G*
acts faithfully on N over Z,.

By Theorem 2.14, 1 # Cn({¢)) < Ca((¢)) = Cx(¢) = 1, which is a contradiction.

Therefore, no such counterexample GG exists. m
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