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ABSTRACT 

 The objective of this study was to determine white-tailed deer (Odocoileus 

virginianus) browsing preferences for tree and shrub species in riparian zones of 

Northeastern Ohio. A total of five sites were selected along the Grand River and 

Pymatuning Creek in Trumbull County, and along the Cuyahoga River in Geauga 

County. In autumn of 2012, three to five 12 x 20 m quadrats were established in a 

stratified random fashion at each site, and the canopy species composition was surveyed 

for each quadrat. For individual tree species that had foliage accessible to white-tailed, 

deer the following data were recorded quantitatively and/or categorically: total available 

browse, type of available browse, and severity of browsing. The shrub and sapling layer 

was also surveyed within two randomly placed 4x4 m nested plots per 12x20 m overstory 

quadrat. The Jacob’s Electivity Index was used to assess browsing preferences for tree 

and shrub species. As determined by the Jacob’s Electivity Index various tree and shrub 

species: 1) were consistently avoided at all quadrats when present (bitternut and shagbark 

hickories, swamp and black ashes, black cherry, American basswood, and American 

elm), 2) were consistently selected in all quadrats where present (American hornbeam 

and black willow), or 3) varied widely in their selection by deer (silver and sugar 

maples). Quadrats containing sugar and, especially, silver maple with epicormic sprouts 

had greatest total browsing impact. Results suggest that white-tailed deer herbivory may 

actually reflect a Marginal Value Theorem model dictated by patches abundant in such 

sprouts. Further research is needed to determine potential effects of white-tailed deer in 

hindering the regeneration of such flood and/or beaver damaged vegetation in 

Northeastern Ohio riparian zones.     
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Introduction 

Riparian Zones 

Riparian zones are more than a link between aquatic and terrestrial ecosystems. 

Rather they are ecotones comprised of a complex patchwork of landforms and a diverse 

assemblage of communities. Riparian zones are influenced by a wide array of both 

abiotic (i.e., geomorphic and hydrologic) and biotic processes (e.g., nutrient cycling by 

plants and animals) that, coupled with frequent disturbance events, yield a heterogenous 

environment that can support a high level of plant and animal diversity (Gregory et al. 

1991, Naiman et al. 1993). Riparian zones include the active stream channel up to the 

high water mark as well as surrounding landforms that are influenced by the stream, 

including floodplains and upper and lower terraces (Naiman et al. 1993, Naiman et al. 

1997).  

The type of riparian zone depends on the stream order, a hierarchal ranking 

system for streams and rivers. In lower order headwater streams the riparian zone is often 

quite small and indistinguishable from the surrounding forest. In mid-order streams (3rd 

to 5th) the riparian zone forms a distinct strip of diverse vegetation that influences the 

stream’s aquatic ecosystem and is directly influenced by the stream through flooding 

activity, sediment deposition, and erosion (Gregory et al. 1991, Malanson 1993, Naiman 

et al. 1993). In large order streams (6th and larger) the riparian zone forms a vertical 

gradient of vegetation in multiple stages of succession (Malanson 1993, Naiman et al. 

1993). Vegetation from the upper terraces, which is only affected during large-scale 

floods, does not directly interact with the river’s aquatic ecosystem, although it does 

contribute allocthtonous carbon and nutrients, carbon and nutrients from outside of the 
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stream or river, through leaf litter and woody debris (Gregory et al. 1991, Naiman and 

Decamps 1997). 

Effects of Riparian Zone Vegetation on Stream Morphology and Hydrology 

 Riparian zone vegetation has considerable influence on both the morphology and 

hydrology of streams. Tree root networks stabilize stream banks and floodplains, 

reducing the mass wasting that cause channel widening (Gregory et al. 1991, Naiman and 

Decamps 1997). Root networks can further alter stream morphology by trapping 

sediments (Gregory et al. 1991, Muller et al. 2000). The roots can also affect stream 

hydrology by increasing the soil porosity via gaps within the root network allowing for 

greater ground water flow as opposed to graminoids (i.e. grasses and sedges), which form 

thick rhizome mats (Muller et al. 2000). Coarse woody debris from trees modifies in 

channel morphology by forming ramparts, which protect accumulating sediments, 

sometimes leading to the formation of islands (Keller and Swanson 1979). Coarse woody 

debris within streams can also alter flow patterns, thereby increasing residence time for 

dissolved and particulate matter (Gregory et al. 1991, Naiman and Decamps 1997).  

Effects of Riparian Zone Vegetation on Stream Communities 

 Riparian zone vegetation affects aquatic communities by altering abiotic and 

biotic stream components. The amount of shade resulting from tree canopies depends on 

tree species composition. The degree of shade that a stream receives affects both the 

amount of available light for primary producers and the energy input in the form of heat 

by solar radiation (Gregory et al. 1991, Naiman et al. 1993). Riparian vegetation also 

affects water quality by buffering the stream from potentially deleterious inputs of 
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nutrients, pesticides, and sediments from the surrounding watershed (Gregory et al. 1991, 

Naiman and Decamps 1997). It modifies the amount of nutrients and the timing of when 

nutrients enter the system directly through plant uptake, denitrification, and retention 

(Gregory et al. 1991, Hefting et al. 2005, Muller et al. 2000). Vegetation also inputs 

nutrients and allochthtonous carbon into the aquatic ecosystem through pulses of 

dissolved leachate, leaf litter, and woody debris (Gregory et al. 1991). The amount of 

time it takes to process plant matter depends on the leaf structure and chemical 

composition. Herbaceous plant material may only take a few weeks to breakdown, but 

leaves containing high concentrations of tannins (e.g. evergreen needles and oak leaves) 

take up to a year or longer to decompose (Gregory et al. 1991, Muller et al. 2000).       

Effects of Herbivory on Riparian Zone Vegetation  

 Preferential browsing by large ungulates in the absence of predators can have a 

marked impact on the plant community composition and successional processes in 

riparian zones. In Olympic National Park, WA, Roosevelt elk (Cervus elaphus) have led 

to a decline in black cottonwood (Populus trichocarpa) and bigleaf maple (Acer 

macrophyllum) recruitment since the local extirpation of gray wolves (Canis lupus) in the 

1920s (Beschta and Ripple 2008). Preferential browsing of palatable species has 

uncoupled the successional progression of black cottonwood to bigleaf maple and led to a 

shift to the unpalatable red alder (Alnus rubra) and Sitka spruce (Picea sitchensis). The 

reaches of the Hoh, Queets, and Quinault rivers within the park have wider active 

channels and increased braiding, (e.g., 37% inside the park as opposed to 2% outside of 

the park) due to mass wasting caused by over browsing by Roosevelt elk (Beschta and 

Ripple 2008). 
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  In Zion National Park, UT, there is a (47 fold increase), of Freemont cottonwood 

(Populus fremontii ) in North Creek, where cougars (Puma concolor), a primary predator 

of mule deer (Odocoileus hemionus), are common, compared to the Virgin River in Zion 

Canyon where they are scarce. Freemont cottonwood recruitment has been consistent in 

North Creek, whereas Zion Canyon has lacked recruitment since the increase of human 

activity that caused the local extirpation of cougars in the 1930s. The Virgin River also 

has a larger percentage of eroding banks as well as a greater channel width compared to 

North Creek, which is the north fork of this river (Ripple and Beschta 2006). Also 

preferential browsing by moose (Alces alces) along the Tanana River in Alaska 

accelerates the successional shift from a willow (Salix spp.) dominated community to one 

dominated by mountain alder (Alnus tenuifolia) (Keilland and Bryant 1998). Given the 

substantial effects that large ungulates can have on riparian zones it is surprising that 

relatively little research has been done on white-tailed deer (Odocoileus virginianus) 

herbivory in eastern riparian communities.  

White- tailed Deer Overabundance  

 White-tailed deer populations in North America have increased to unprecedented 

numbers over the past century (Fuller and Gill 2001, McCabe and McCabe 1997, 

McShea et al. 1997), due in part to increased forage availability from agricultural and 

silvicultural activities coupled with fragmentation of native forests (Fuller and Gill 2001, 

Porter and Underwood 1999, Waller and Alverson 1997). Deer mortality has also 

significantly decreased over the last several decades due to diminishing populations of 

key predators such as gray wolves and cougars (Rooney and Waller 2003), in conjunction 

with increased regulations in sport hunting and shifts in public opinion towards hunting 
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(Brown et al. 2000). White-tailed deer fulfill all four of Caughley’s (1981) criteria for an 

overabundant species. A species is overabundant if it: 1) threatens human life or 

livelihood, 2) reaches population levels that increase rates of starvation and spread of 

disease, 3) reduces abundance of economically or aesthetically important plant and 

animal species, or 4) negatively affects ecosystem function.  

Effects of Preferential Browsing by White-tailed Deer at the Ecosystem Level 

 Preferential browsing by white-tailed deer can directly alter plant community 

composition and structure (Augustine and McNaughton 1998, Nuttle et al. 2013, Rooney 

2001). There are a number of studies that demonstrate that overabundant deer populations 

shift canopy composition through preferential browsing of palatable seedlings and 

saplings (Augustine and McNaughton 1998, Nuttle et al. 2013, Potvin et al. 2003, 

Rooney et al. 2000, Waller and Alverson 1997). Intense browsing on juvenile woody 

species can lead to a reduction in tree species diversity (Gill and Beardall 2001), 

simplification of the vertical structure of the forest (Gill and Beardall 2001, Rooney and 

Waller 2003), and alter the rate of succession (Seagle and Liang 2001).     

 Persistent preferential browsing at high densities can also shift a forest ecosystem 

into an alternate steady state through biotic homogenization (Rooney 2009). High levels 

of preferential browsing on herbaceous and woody species by deer can lead to an overall 

decrease in palatable graze-intolerant species and an increase in unpalatable and graze- 

tolerant species (Augustine and McNaughton 1998, Nuttle et al. 2013, Rooney and 

Waller 2003). Unpalatable and graze-tolerant species benefit from reduced competition, 

which can lead to the creation of grazing lawns, which are productive graminoid and fern 
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dominated areas that are perpetuated by grazing (Rooney 2009). Grazing lawns, an 

alternate steady state, differ from successional states because they are not readily 

reversed without significant human intervention even after deer densities are reduced 

(Scheffer et. al 2001).  

Stand Attractiveness to Deer and Susceptibility to Damage 

 There are multiple landscape and stand-scale dependent factors that affect stand 

attractiveness and susceptibility to damage. At the landscape scale, white-tailed deer have 

a more pronounced impact on fragmented forest patches due to their small relative area in 

comparison to deer range size, their accessible forest interiors, and their large perimeters 

(Augustine and DeCalesta 2003, Kay 1993, Reimoser 2003). White-tailed deer browse 

fragmented forest patches surrounded by agriculture substantially more than those 

adjacent to other habitat types (Augustine and DeCalesta 2003, Reimoser 2003). They 

also have a greater impact on mid and late successional forests as opposed to forests in 

the early stage of succession, which could have implications for riparian zones 

(Augustine and DeCalesta 2003). At the stand scale, white-tailed deer prefer stands with 

hiding cover (Kay 1993), stands that were previously browsed (Bergqvist et al. 2003), 

and stands that have low productivity (Danell et al. 1991).  

Effects of Browsing on Individual Trees 

 Browsing can alter tree morphology, reduce competitive ability, and/or directly 

kill individual trees (Bergqvist et al. 2003, Danell et al. 1994, Gill and Beardall 2001). 

Seedlings and saplings are the most susceptible to damage because they are within the 

browsing range of deer (Kay 1993). Browsing on seedlings reduce stem density. 
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Browsing on lead shoots of trees and saplings reduce height, while browsing on side 

shoots reduces foliage density (Gill and Beardall 2001). Changes in tree morphology due 

to herbivory can result in a feeding loop (Bergqvist et al. 2003) where in the herbivore 

will continue to revisit pre-browsed trees due to an increase in shoot size, availability, 

and palatability (Bergqvist et al. 2003, Danell et al. 1994).    

Plant Tolerance to Herbivory 

 Browse-tolerant plant species are able to increase their relative growth rate to 

compensate for tissues lost to herbivory. In contrast, browse-intolerant species’ relative 

growth rates will either decline or stay the same, as they are typically unable to replace 

lost tissue (Augustine and McNaughton 1998). Browse-intolerant species are often slow 

growing and shade-tolerant understory herbaceous plants, shrubs, and tree seedlings 

(Augustine and DeCalesta 2003, Augustine and McNaughton 1998). 

  A plant’s capacity for compensatory growth depends on physical and 

morphological characteristics, environmental conditions, and timing of browsing 

(Augustine and McNaughton 1998, Hobbs 1996). The physical and morphological 

characteristics that have evolved over time to enable a plant to a resist or tolerate drought 

also confer tolerance to browsing. These traits include basal meristems, small stature, 

high shoot density, and deciduous shoots and leaves. Below ground nutrient reserves as 

well as rapid transpiration, photosynthesis, and growth that enable plants to capitalize on 

periodic influxes of water can also aid in replacing lost tissue from herbivory 

(Coughenour 1985). 
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  A plant’s ability to replace tissues lost during herbivory is heavily influenced by 

environmental conditions. Compensatory growth depends on the availability of light, 

water, and soil nutrients (Canham 1994, Hobbs 1996), as well as weather and climate 

(Hobbs 1996). The timing of browsing also plays a role in the plant’s capacity to express 

its compensatory growth potential (Augustine and McNaughton 1998, Canham 1994). 

Seedlings are/can be capable of withstanding severe browsing during the winter months, 

although, they have an overall decrease in height and higher mortality rate from similar 

amounts of browsing during the summer months (Canham 1994).  

Resistance to Herbivory, Stem Chemical Defenses and Palatability 

 Herbivore-resistant plant species have characteristics that deter herbivory (i.e. 

chemical defenses and low digestible content) or reduce plant tissue loss (i.e. leaf 

toughness and morphological defenses) (Bryant and Raffa 1995, Cote et. al 2004). 

Ungulates select which species to browse based on several factors, including plant 

chemical defenses, which effect palatability (Bryant et al. 1992). The amount of stem 

chemical defense varies both at the species level, which is influenced by adaptation to 

resource limitations and past regional levels of herbivory, and at the individual level, 

which is influenced by the plant’s growth stage, time of year, and level of past herbivory 

(Bryant and Raffa 1995). Plant species that have adapted to resource-limited 

environments have a reduced ability to replace plant tissues destroyed by herbivores. 

Therefore, they often have evolved strong chemical defenses to deter herbivory. Plant 

species in resource-rich environments have evolved responses to frequent disturbances, 

and are able to utilize the pulse of resources that follow such disturbances to regrow 

above ground tissues. Those species are already adapted to tolerate herbivory and do not 
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require chemical deterrents (Bryant et al. 1983). Several species that have evolved in 

regions of high levels of herbivory often have higher corresponding levels of chemical 

defense in comparison to species that have evolved in regions with less severe browsing 

(Bryant et al. 1994).  

 The amount of stem chemical defenses also varies during the stages of an 

individual plant’s life, due to physiological competition for resources between chemical 

defenses and other plant functions such as growth (Bryant and Raffa 1995). Seedlings 

generally have a lower amount of chemical defenses than saplings due to a higher 

demand for carbon for growth. However, as the plant enters the adult stage of its life 

cycle it becomes limited more by nutrients than by carbon, so the production of 

secondary metabolites is less costly (Bryant et al. 1991). Juvenile woody plants are more 

prone to damage by herbivory than mature plants, and therefore have higher levels of 

chemical defenses in their stems than similar stems of adult woody plants of the same 

species (Bryant et al. 1983). The level of chemical defense in an individual corresponds 

to the time of year, with chemical defenses decreasing during periods of rapid growth and 

flowering (Bryant et al. 1991). Lastly trends show the levels of an individual’s stem 

chemical defenses depends on the levels of past herbivory. Severe browsing on a juvenile 

can lead to carbon stress as the individual attempts to regrow tissue lost to herbivory, 

which results in a decline in chemical defenses. That reduction in chemical defenses leads 

to a positive feedback loop of increasing severity of herbivory coupled with further 

reductions in chemical defenses, which can ultimately result in the individual plant’s 

death (Bryant et al. 1983).                
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White-tailed Deer Foraging and Marginal Value Theorem 

 Marginal Value Theorem (MVT) is an optimal foraging model that is used to 

predict the foraging behavior of animals in patchy environments. The MVT states that the 

rate of resource intake is maximized when the herbivore leaves the patch once the rate of 

intake of browse is less than the average rate of intake for the overall habitat (Charnov 

1976). The rate of intake decreases within a patch over time due to diminishing bite size 

and difficulty finding and harvesting suitable plant matter. In a habitat with uneven patch 

quality, the herbivore will spend more time at patches of higher quality than at patches of 

average or lower quality. Additionally the herbivore will spend more time within a patch 

when the distance between patches increases in order to decrease the time between bites 

(Nonacs 2015, Shipley and Spalinger 1995).  

 White-tailed deer and other larger herbivores must take thousands of bites of plant 

matter to sustain themselves. Nutrient concentration is often inversely related to plant 

size, due to fibrous structural tissues, which leads to a tradeoff between nutrient 

concentration and high rate of intake. Larger bites result in a high rate of intake; however 

large bites often include fibrous structural tissue which reduces digestibility (Shipley and 

Spalinger 1995).        

Objective 

 The purpose of this study was to assess the role that white-tail deer herbivory has 

on hydric and mesic woody plant community composition, by examining its effects on 

tree and shrub species in Northeastern Ohio riparian zones. The objective of this study 
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was to determine white-tail deer grazing preferences of tree and shrub species in 

Northeastern riparian zones with the use of a Jacob’s Electivity Index.  
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Methods 

Site Description 

 Five sites were selected in riparian zones of 3rd to 5th order streams in state- 

managed public hunting and fishing areas located in the northern Ohio counties of 

Trumbull and Geauga. Site #1 was located along the banks of the Grand River in the 

Grand River Wildlife Area, which encompasses 7,453 acres in Trumbull County. Site #1 

(41.396561,-80.9421) was located on a lower terrace with an estimated 100-120 year old 

stand comprised primarily of Acer saccharum Marshall (sugar maple), Ulmus americana 

L. (American elm), Carya ovate (Mill.) K. Koch (shagbark hickory), and Carya 

cordiformis (Wang.) K. Koch (bitternut hickory).  

 Site #2 and Site #3 were located along the Pymatuning Creek in the Shenango 

Wildlife Area, which encompasses 4,845 acres in Trumbull County. Site #2 (41.387805,-

80.556586) was located on a lower terrace with an estimated 60-70 year old stand 

dominated by Acer saccharinum L. (silver maple). Site #3 (41.367034,-80.552466) was 

located on a floodplain with an estimated 60 year old stand also dominated by A. 

saccharinum.  

 Site #4 and Site #5 were located along the Cuyahoga River in the La Due Public 

Hunting Area, which encompasses 8,791 acres in Geauga County. Site #4 (41.426419,-

81.155995) was located on an active floodplain dominated by A. saccharinum. Site #5 

(41.37247,-81.158688) was an active floodplain with an estimated 100 year old stand 

comprised of A. saccharinum, Quercus palustris Müenchh. (pin oak), and Fraxinus 

pennsylvanica Marshall (swamp ash).  
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Table 1: Site and Corresponding Quadrats and Landforms. 

Site Number of Quadrats Landform 

Site #1 Grand River 3 Lower Terrace 

Site #2 Northern Shenango 3 Lower Terrace 

Site #3 Southern Shenango 5 Floodplain 

Site #4 Northern La Due 3 Floodplain 

Site #5 Southern La Due 3 Floodplain 
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Figure 1: Regional site locations in Northeastern Ohio. Site #1 Grand River, Grand River 

Wildlife Area in Trumbull County. Site #2 & #3 Pymatuning Creek, Shenango Wildlife 

Area in Trumbull County. Site #4 & #5 Cuyahoga River, La Due Public Hunting Area in 

Geauga County.    
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Figure 2: Details of Site #1 Grand River, Grand River Wildlife Area Trumbull County. 
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Figure 3: Details of Sites #2 and #3 Pymatuning Creek, Shenango Wildlife Area  

Trumbull County. 
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Figure 4: Details of Sites #4 and #5 Cuyahoga River, La Due Public Hunting Area 

Geauga County. 
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Canopy Composition Survey 

 In autumn/winter 2012 three 12 x 20m forest overstory survey quadrats were 

established in Sites # 1, 2, 4, and 5. Five quadrats were established in Site #3 to 

adequately survey this site given its larger area. The quadrats were distributed in a 

stratified random fashion in the riparian zones, which included active floodplains, 

floodplains, lower terraces, and alongside intermittent stream channels depending on the 

sites’ landforms. Additional surveying was scheduled for spring/ summer 2013 in order 

to compare browsing preferences at the temporal scale. However sampling was hindered 

due to flooding and persistent inundation at Sites #3, 4, and 5. The canopy species 

composition was surveyed for each quadrat. For individual trees that had available 

browse, foliage within the browsing range, for white-tailed deer the following were 

recorded: species, total available browse (measured in browse units see Fig. 5), type of 

available browse (low branches or epicormic sprouts), severity of browsing (none, very 

light, light, moderate, heavy, and severe, as defined in Table 2), and if the tree had 

sustained beaver damage.  

Shrub and Sapling Survey 

 The shrub and sapling (not included in canopy) layer was surveyed within two 

randomly placed 4x4 nested plots per 12x20 quadrat. In each 4x4 plot the following were 

recorded: species, height, severity of browsing, and if the shrub or sapling had sustained 

beaver damage. 
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Figure 5: Browse Unit. The browse unit is the unit of measurement for available browse. 

The browse unit is a rectangle of approximately 10 x 10 x 30.5 cm of browseable 

material, i.e. epicormic sprouts and branch tips.  
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Table 2: Browsing Note and Corresponding Numerical Category and Percentages. 

Browsing Note Numerical 

Category 

Percentage of Available Branch Tips/ Epicormic 

Sprouts Browsed 

None 0 0% 

Very Light 1 0-10% 

Light 2 10-30% 

Moderate 3 30-60% 

Heavy 4 60-90% 

Severe 5 90-100% 

 “None” has no browsing on all foliage within the browse unit. “Very light” has light 

browsing on very little foliage within the browse unit. “Light” has light browsing on little 

foliage within the browse unit. “Moderate” has browsing on approximately half of the 

foliage within the browse unit.  “Heavy” has heavy browsing on most foliage within the 

browse unit. “Severe” has heavy browsing on approximately all foliage within the browse 

unit.   
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Data Analysis   

Floristic Composition  

  Non-metric Multidimensional Scaling (NMDS) Ordination was used to analyze 

the floristic composition of each quadrat. A separate NMDS Ordination Plot was 

computed for the total flora, the canopy layer flora, and the shrub layer flora. The shrub 

layer flora included all shrub and seedlings as well as flood and/or beaver damaged 

epicormic sprout producing trees. Spearman Rank Correlation was used to determine the 

relationship between the abundance of tree and shrub species and the floristic 

composition for the canopy layer and shrub layer flora. A separate Spearman Rank 

Correlation was not calculated for the total flora given the similarity to the canopy layer 

flora.  
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Browsing Preference for Tree and Shrub Species: Median Browse 

The median deer browsing impact on each tree and shrub species was determined within 

quadrats with the following formula:   

Mij = ∑(Cij x Bij) / n 
 
Mij   Median browse of species i in quadrat j 

 
C

ij
 Total available vegetation for species i in quadrat j, measured in browsing 

units 
 

B
ij
  Severity of browsing of species i in quadrat j, designated by browsing note   

 
n  Number of individual members of species i in quadrat j 

 
In cases of Median Browsing that did not result in whole integers, both the greater and 

lesser Browsing Notes were used, i.e. A Median Browsing of 2.5 would have a 

corresponding Browsing Note of Light/Moderate. 

 

Table 3: Median Browse and Corresponding Browsing Note.  

Median Browse Numerical Category  Browsing Note 

0 None 

1 Very Light 

2 Light 

3 Moderate 

4 Heavy 

5 Severe 
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Browsing Preference for Tree and Shrub Species: Jacob’s Electivity Index  

 The Jacob’s Electivity Index, as described in Boulanger et al. (2009), was used to 

measure white-tailed deer browsing preferences for tree and shrub species. Electivity 

indexes are used when the amount of available food items are not equal for each forage or 

prey species. The index determines whether a food item is selected, avoided, or neutral 

by using the proportion of the food item consumed to total amount of all items consumed, 

and the proportion of the amount of the food item available to the total amount of all 

available food.  

Step 1: Determine the total available vegetation for species i in quadrat j.  

A
ij
 = C

ij
 /∑C

ij 
 

A
ij
 Proportion of species i in the total available vegetation of quadrat j 

C
ij
 Total available vegetation for species i in quadrat j, measured in browsing units 

 

Step 2: Determine the contribution of species i to the total browsing in quadrat j. 

RC
ij   

= (C
ij
 x B

ij
)/ ∑(C

ij
 x B

ij
) 

 
RC

ij
 Contribution of species i to the total browsing in quadrat j 

C
ij
  Total available vegetation for species i in quadrat j 

B
ij
 Severity of browsing of species i in quadrat j, designated by browsing note   
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Step 3: Calculate electivity of species i in quadrat j with Jacob’s Electivity Index.  

S
ij
 = (RC

ij 
- A

ij
 )/ [RC

ij 
+ A

ij
 – 2(RC

ij 
x A

ij
 )] 

 
S

ij
 Electivity of species i in quadrat j 

 

Step 4: Calculate the standard error of electivity.   

SE = s/√(n) 
 
SE Standard Error 

s  Sample standard deviation 

n Sample size 

 

Step 5: Determine if species i in quadrat j is selected, avoided, or neutral. Electivity 
ranges from -1 to +1.  

Selected S
ij 

> 0 lower limit of standard error interval is above 0 

Avoided S
ij
 < 0 upper limit of standard error interval is below 0 

Neutral  standard error interval intercepts 0 

 

The total browse for each quadrat was calculated with the following formula:  

   
TBj = [∑(Ci1j x Bi1j)] + [∑(Ci2j x Bi2j)] +[∑(Ci3j x Bi3j)] +…[ ∑(Cinj x Binj)] 
 
TBj Total browse in quadrat j 

 
C

ij
 Total available vegetation for species i in quadrat j, measured in browsing 

units 
 

B
ij
  Severity of browsing of species i in quadrat j, designated by browsing note   
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The total browse for each species of each quadrat was calculated with the following 
formula:  

TBij = ∑(Cij x Bij) 
 
TBij Total browse for species i in quadrat j 

 
C

ij
 Total available vegetation for species i in quadrat j, measured in browsing 

units 
 

B
ij
  Severity of browsing of species i in quadrat j, designated by browsing note   

 
 

The available browse for each species of each quadrat was calculated with the following 
formula: 

ABij = ∑ Cij 
 
ABij Available browse for species i in quadrat j 

 
C

ij
 Total available vegetation for species i in quadrat j, measured in browsing 

units 
 

 

 

.  
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Results   

Canopy Layer Floristic Composition 

 Canopy layer floristic composition varied among sites and quadrats (see Table 4). 

Grand River quadrats #1 and #2 both contained a high density of Acer saccharum (sugar 

maple) with 790 and 1040 trees per ha respectively. Quadrat #3 did not contain A. 

saccharum, but the quadrat had a higher range of diversity with Carpinus caroliniana 

(American hornbeam), Ulmus americana (American elm), Prunus serotina (black 

cherry), and Crategus spp. (Hawthorn spp.).     

 All three La Due North quadrats contained Acer saccharinum (silver maple) with 

460, 330, and 170 trees per ha respectively. The quadrats differed with quadrat #2 and #3 

containing U. americana. Quadrat #1 was the only quadrat at the site with Fraxinus 

pennsyvania (swamp ash). Quadrat #2 was the only quadrat at the site with Salix nigra 

(black willow). And Quadrat #3 was the only quadrat at the site with Crategus spp. 

 All three La Due South quadrats solely contained A. saccharinum with 330, 210, 

and 80 trees per ha respectively.  

 All three Shenango North quadrats solely contained A. saccharinum with 80, 40, 

and 80 trees per ha respectively.  

 All five of the Shenango South quadrats contained A. saccharinum with 80, 40, 

40, 170, and 80 trees per ha respectively. Quadrat #1 and #2 both contained Carya ovata 

(shagbark hickory). Quadrat #1 was the only quadrat with Tilia americana (American 

basswood). Quadrat #2 was the only quadrat at the site with Carya cordiformis (bitternut 



27 
 

 
 

hickory). Lastly quadrat #3 was the only quadrat at the site with Fraxinus nigra (black 

ash).      
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Canopy Layer Floristic Composition: NMDS Ordination Plot 

  The three Grand River quadrats were clustered in (Figure 6), indicating similar 

canopy compositions. (NMDS Ordination Plots are unitless. However the distances 

between data points are proportional and represent the similarities/dissimilarities between 

the data points. The closer the data points are to each other, the greater the similarities. 

The farther the data points, the greater the dissimilarities.) The canopy composition was 

influenced by the abundance of Acer saccharum (sugar maple) and Carya cordiformis 

(bitternut hickory). (These species’ abundances were strongly correlated with the NMDS 

axes. Strength of Spearman Rank correlation is represented by the length of the vector 

arrow.)  

  Two La Due North quadrats had somewhat similar canopy composition, being 

both located in the lower left quadrant of the ordination plot. The first quadrat of the pair 

was nearer to the origin suggesting a lesser influence of the abundance of Fraxinus 

pennsylvania (swamp ash) and Acer saccharinum (sliver maple) on the quadrat’s canopy 

composition than the second quadrat. (Quadrats closer to the origin have a less distinct 

canopy composition. The further the quadrat is from the origin the more distinct the 

composition due to the abundance of specific species. Those species are determined by 

Spearman Rank Correlation.) The third quadrat differed from the other two, located in the 

upper left quadrant, and its canopy composition was influenced by the abundance of 

Ulmus americana (American elm).  

 Two La Due South quadrats were clustered closely together in the lower left 

quadrant near the origin suggesting similar canopy composition which was influenced 
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somewhat by the abundance of A. saccharinum and  F. pennsylvania. The third quadrat’s, 

in the upper left quadrant near the origin, canopy composition was somewhat influenced 

by the abundance of U. americana and F. pennsylvania.  

 The three Shenango North quadrats and the five Shenango South quadrats were 

tightly clustered together near the origin, with two exceptions, suggesting markedly 

similar canopy composition that was not strongly influenced by a particular canopy 

species’ abundance. Their canopy composition was minimally influenced by the 

abundance of Carya ovata (shagbark hickory), whereas the two separate quadrats’ 

canopy compositions were more influenced by the abundance of C. ovata.  

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

 
 

 

 

 

 

Figure 6: NMDS Ordination Plot: Canopy Floristic Composition with Spearman Rank 

Correlation. NMDS Ordination Plot axes represent the distribution of canopy trees in 

quadrats by stem count. Vector arrows represent Spearman Rank correlation coefficients 

of indicated tree species with dimension axes. The vector lengths were doubled for ease 

of reading. The diameter of plot circles corresponds to the total amount of browsing 

within the quadrat. Quadrats that had zero browsing units consumed are represented by 

an asterisk. Tree species are represented by their four letter designation: ACSA-silver A. 

saccharinum, ACSA-sugar A. saccharum, CACO C. cordiformis, CAOV C. ovata, FRPE 

F. pennsylvania, and ULAM U. americana.  
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Shrub and Sapling Layer Floristic Composition  

 The Grand River site had the most diverse shrub and sapling layer of the sites 

(seen in Table 5). However the quadrats have the most similar composition. All three 

quadrats contained Cornus alternifolia (alternate-leafed dogwood), Fraxinus americana 

(white ash), Lindera benzoin (spicebush), and P. serotina. Quadrat #1 was the only 

quadrat at the site with C.ovata. Quadrat #2 was the only quadrat at the site with A. 

saccharum and Quercus bicolor (swamp white oak).  

 All three quadrats at the La Due North site did not share a shrub/sapling species in 

common. Quadrats #1 and #2 both contained Cephalanthus occidentali (buttonbush) and 

A. saccharinum. Quadrat #1 was the only quadrat at the site with U. americana and F. 

pennsylvania. Quadrat #3 was the only quadrat at the site with Crategus spp. 

 All three quadrats at the La Due South site contained F. pennsylvania and 

Quercus palustris (pin oak). Quadrat #1 was the only quadrat at the site with A. 

saccharinum and Vitis spp (Grape spp.). Quadrat #3 was the only quadrat at the site with 

L.benzoin, Rosa multiflora (multiflora rose), and U. americana.  

 All three quadrats at the Shenango North site contained C. ovata and L. benzoin. 

Quadrats #1 and #2 both contained Viburnum acerfolium (maple-leafed viburnum). 

Quadrat #3 was the only quadrat at the site with Crategus spp. and R. multiflora.  

 All three quadrats at the Shenango South site did not share a species in common. 

Quadrats #2 through #5 all contained Q. palustris. Quadrats #1 and #3 both contained A. 

saccharinum. Quadrats #3 and #5 both contained C. ovata. Lastly quadrats #4 and #5 

both contained C. occidentali and U. americana.  
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Shrub and Sapling Layer Floristic Composition: NMDS Ordination Plot  

 Two Grand River quadrats (in Figure 7 and 8) were loosely clustered together in 

the lower right quadrant and had somewhat similar shrub and sapling layer composition 

that was strongly influenced by the abundance of Carpinus caroliniana (American 

hornbeam), Cornus alternifolia (alternate-leafed dogwood), F. americana, A. saccharum, 

A. saccharum (sapling), and less so by the abundance of Quercus palustris (pin oak) and 

Crategus spp (Hawthorn spp.). The third quadrat was close to the origin, which suggests 

that, its shrub and sapling layer composition was not influenced by a particular species’ 

abundance.  

 Two La Due North quadrats were closely clustered on the origin, which suggests 

that they had similar shrub and sapling layer composition and that it was not influenced 

by any particular species’ abundance. The third quadrat was near the origin in the left 

side of the ordination plot; however its shrub layer composition was somewhat influenced 

by the abundance of Cephalanthus occidentali (buttonbush).   

 The three La Due South quadrats were not clustered, which suggests that they had 

differing shrub and sapling layer composition. The quadrat in the left side of the 

ordination plot was closest to the origin and its shrub and sapling layer composition was 

marginally influenced by the abundance of C. occidentali, F. pennsylvania, Quercus 

bicolor (swamp white oak), A. saccharinum, and A. saccharinum (sapling). The second 

quadrat, in the lower left quadrant, was further away from the origin and its shrub and 

sapling layer composition was influenced by the abundance of F. pennsylvania, A. 

saccharinum, and A. saccharinum (sapling). The third quadrat in the lower left quadrant 
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was the furthest away from the origin and its shrub and sapling layer composition was 

also influenced by the abundance of F. pennsylvania, A. saccharinum, and A. 

saccharinum (sapling). 

 The three Shenango North quadrats were loosely clustered which suggests that 

their shrub and sapling layer composition was somewhat similar and it was influenced by 

the abundance of Viburnum acerfolium (maple-leafed viburnum), Quercus rubra 

(Northern red oak), C. ovata, and Lindera benzoin (spicebush).  

 The three Shenango South quadrats were clustered near the origin, which suggests 

similar canopy floristic composition that was not strongly influenced by any particular 

species’ abundance. The fourth quadrat in the upper left quadrant was near the origin, but 

its shrub and sapling layer composition was marginally influenced by the abundance of 

C. occidentali. The last quadrat in the lower left quadrant was the furthest away from the 

origin and its shrub and sapling layer composition was influenced by the abundance of F. 

pennsylvania and A. saccharinum.  
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Figure 7: NMDS Ordination Plot: Shrub and Sapling Layer Floristic Composition with 

Spearman Rank Correlation. Tree and shrub species are represented by their four letter 

designation when available: BUTTON C. occidentali, CACA C. caroliniana, CORNUS 

C. alternifolia, CRAT Crategus spp., SPICE L. benzoin.  
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Figure 8: NMDS Ordination Plot: Shrub and Sapling Layer Floristic Composition with 

Spearman Rank Correlation. Tree and shrub species are represented by their four letter 

designation when available: ACSA-silver A. saccharinum, ACSA-silver SP A. 

saccharinum sapling, ACSA-sugar A. saccharum, ACSA-sugar SP A. saccharum sapling, 

CAOV C. ovata, FRAM F. americana, FRPE F. pennsylvania, QUBI Q. bicolor, QUPA 

Q. palustris, and QURU Q. rubra.  
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Median Browsing for Canopy Layer Flora  

  In Table 6, the following species received no browsing in all quadrats present: T. 

americana, F. nigra, C. cordiformis, C. ovata, and F. pennsylvania. P. serotina received 

very light browsing in (Grand River #3).  C. caroliniana received heavy browsing in 

(Grand River #3). S. nigra received severe browsing in (La Due North #2).  U. americana 

received very light (Grand River #3) to no browsing (La Due North #2 and La Due North 

#3). Crategus spp. received light (Grand River #1 and Shenango South #2) and heavy 

browsing (La Due North #3).  A. saccharum received moderate (Grand River #1) to no 

browsing (Grand River #2). A. saccharinum median browsing also varied widely within 

and among sites. A. saccharinum received no browsing in (Shenango North #1, Shenango 

South #1 , and Shenango South #2), very light in (Shenango North #3), light in (La Due 

North #1, La Due South #1 and, Shenango South #4), light/moderate in (La Due South #3 

and Shenango South #3), moderate (La Due South #2), heavy in (La Due North #2 and 

Shenango South #5), heavy/severe in (La Due North #3), and severe in (Shenango North 

#2).  

Electivity for Canopy Layer Flora 

 In Table 7, the following species were avoided in all quadrats present (U. 

americana, T. americana, F. nigra, P. serotina, C. cordiformis, C. ovata, A. saccharum, 

and F. pennsylvania). The species that were selected in all quadrats present are (S. nigra 

and C. caroliniana).  Crategus spp. were avoided in (Grand River #1), however they 

were selected in (La Due North #3 and Shenango South #2). Electivity varied widely for 

A. saccharinum within and among sites. A. saccharinum was selected for in (La Due 
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North #1), neutral in (La Due North #2, La Due North #3, La Due South #1, La Due 

South #2, La Due South #3, Shenango North #2, Shenango North #3, Shenango South #3, 

Shenango South #4, and Shenango South #5), and avoided in (Shenango North #1, 

Shenango South #1, and Shenango South #2).  
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Median Browsing for Shrub and Sapling Layer Flora 

 In Table 8, the species that received no browsing in all quadrats present are (C. 

alternifolia, U. americana, P. serotina, C. cordiformis, C. occidentali, Crategus spp., C. 

caroliniana, R. multiflora, Q. rubra, Q. palustris, C. ovata, L. benzoin, A. saccharum, F. 

pennsylvania, Q. bicolor,  Vitis spp., and F. americana). V. acerfolium received no 

browsing in (Shenango North #1) and light in (Shenango North #2). A. saccharinum 

received no browsing in (La Due South #1, Shenango South #2, and Shenango South #4), 

very light in (La Due North #1), and moderate in (La Due North #2).  

Electivity for Shrub and Sapling Layer Flora  

 In Table 9, the species that were avoided in all quadrats present are (C. 

alternifolia, U. americana, P. serotina, C. cordiformis, C. occidentali, C. caroliniana, R. 

multiflora, Q. rubra, Q. palustris, C. ovata, L. benzoin, A. saccharum, F. pennsylvania, 

Q. bicolor, Vitis spp., and F. americana). Crategus spp. were avoided in (Grand River #1, 

Grand River #3, and Shenango North #3), and neutral in (La Due North #3). V. 

acerfolium was avoided in (Shenango North #1) and selected in (Shenango North #2). A. 

saccharinum was avoided in (La Due South #1, Shenango South #2, and Shenango South 

#4), neutral in (La Due North #1), and selected in (La Due North #2).  
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Total Browse for Canopy Layer Flora 

 In Figure 9, the amount of browsing on canopy species’ epicormic sprouts varied 

within and among sites. (Grand River #1) received the most browsing with 113 total 

browsing units consumed. (La Due North #2) was second with 92 total browsing units 

consumed. The quadrats that received between 20 and 50 total browsing units consumed 

are (Grand River #2, Grand River #3, La Due North #1, La Due North #3, and La Due 

South #1). The quadrats that received 20 or less total browsing units consumed are (La 

Due South #2, La Due South #3, Shenango North #1, Shenango North #2, Shenango 

North #3, Shenango South #1, Shenango South #2, Shenango South #3, Shenango South 

#4, and Shenango South #5). (Shenango North #1 and Shenango South #1) had no 

browsing consumed.  

Total Browse for Shrub and Sapling Layer Flora 

 In Figure 10, the amount of browsing on shrub and saplings varied within and 

among sites. (Shenango North #1) received the most browsing with 24 total browsing 

units consumed. (Shenango North #2) was second with 7 total browsing units consumed. 

(La Due North #1, La Due North #2, and La Due North #3) received two or less total 

browsing units consumed. (Grand River #1, Grand River #2, Grand River #3, La Due 

South #1, La Due South #2, La Due South #3, Shenango North #3, Shenango South #1, 

Shenango South #2, Shenango South #3, Shenango South #4, and Shenango South #5) 

had no browsing units consumed. 
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 Figure 9: Total Canopy Epicormic Tree Sprout Browsing Per Quadrat 

 

Figure 10: Total Shrub and Sapling Layer Browsing Per Quadrat 
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Discussion  

 Research on white-tailed deer herbivory since the late 1950s has primarily 

focused on economically important hardwood and evergreen species in mesic upland 

forests. Those studies consisted of man-made exclosures, natural exclusion, comparisons 

of plant community composition among sites with different deer densities, and 

comparisons of current species distribution versus historical abundance (Russell et al. 

2001). Such studies were not possible in riparian zones given their heterogeneous nature, 

intermittent flooding, time constraints, and lack of historical plant community 

composition data. The challenge of the present study was to discover a method that 

would work to assess white-tailed deer browsing preferences in riparian zones. An 

Electivity Index was used to determine browsing preferences because the amount of 

available browse would not be equal for each species. The Jacob’s Electivity Index, a 

modified Ivlev’s Electivity Index, was chosen due to its low sensitivity to sampling errors 

and its ability to handle variations in abundances of species (Lechowitz 1982). Browsing 

notes and the corresponding percentages were borrowed from Boulanger et al. (2009), 

and ranked categories of available browse were determined in the field. The stratified 

random 12x20 m quadrats, for canopy layer survey, with 4x4 m nested plots, for shrub 

and sapling layer survey, were chosen due to their broad acceptance for surveying plant 

community composition in forests.  

 The Jacob’s Electivity Index was sound in theory, but not in practice during this 

study. The woody plant community compositions at nearly all sites were not conducive to 

study with an electivity index. Four out of five sites faced intermittent to frequent 

flooding events, which may in the long term have led to naturally low woody species 
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diversity, (i.e. Silver maple dominated floodplains with other species in low abundance if 

present). Additionally, not all had available browse within the range of white-tailed deer 

as they had crown branches only with little to no foliage at ground level. That 

combination of factors led to skewed species electivity. Several species’ electivity could 

not be assessed due to low abundance; e.g. S. nigra. Alternatively, species with high 

abundance and corresponding high levels of available browse sometimes had neutral 

electivity due to lack of available browse from other species; e.g. A. saccharinum, which 

was often both the most abundant and heavily browsed. Electivity indices are based on 

the ratio of consumed browse to available browse. If a species comprises fifty percent of 

the available browse and also receives fifty percent of the browsing then that species’ 

electivity is neutral it has received the amount of expected browsing. Whereas if a species 

comprises fifty percent of the available browse and receives eighty percent of the 

consumed browse, then it has received more than the expected amount of browsing, and 

therefore its electivity is positive for the surveyed area. Also, there must be more than 

one species with available browse within a quadrat to get accurate electivity.     

 Despite the issues that occurred with the Jacob’s Electivity Index at some of the 

sites, there were species in the canopy as well as shrub and sapling layer that were found 

to be consistently avoided.  The following species were avoided in all quadrats present: 

C. cordiformis, C. ovata, C. occidentali, C. alternifolia, F. americana, F. nigra, F. 

pennsylvania, L. benzoin, P. serotina, Q. biocolor, Q. palustris, Q. rubra, R. multiflora, 

T. americana, U. americana, and, Vitis spp. In contrast, C. carolinina and S. nigra were 

consistently selected at all quadrats present at the canopy level. However, due to low 
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abundance of each species, i.e. fewer than five individuals of a species, these results 

might not be deemed conclusive and require further study.  

 Although the electivity for A. saccharum and A. saccharinum varied among 

quadrats, the trends indicate that white-tailed deer prefer epicormic sprouts of both 

species over the available browse of other species. Epicormic buds are dormant 

meristematic tissues that sprout as a result of stress (Meier 2012). Sprouting is common 

in both species from stumps with a diameter of 30 cm or less (Gabriel 1990, Godman et 

al. 1990). A. saccharum epicormic sprouts at the Grand River site seem to form as a 

result of stress from beaver damage, whereas A. saccharinum epicormic sprouts seem to 

form primarily as a result of stress from flood damage, (although also with some beaver 

damage at the Shenango sites).   

 Worth noting is that while the two different Acer species represent two different 

ecotypes (A. saccharinum predominantly hydric floodplain; A. saccharum mesic upland 

forests) and produce epicormic sprouts due to two different stressors, the epicormic 

sprouts of both species seem to be a preferred browse for white-tailed deer. One 

possibility to explain the attractiveness of epicormic sprouts is chemical defense, and thus 

palatability. According to Bryant and Raffa (1995) chemical defenses vary at the species 

and individual level, including their growth stage. Seedlings have a lower level of 

chemical defense than saplings due to a higher demand in seedlings for carbon for growth 

that reduces its availability for defense compounds (Bryant et al. 1991). However, 

seedlings and saplings have higher levels of chemical defenses than adults of the same 

species due to threat of damage by herbivory (Bryant et al. 1983). It is possible that A. 

saccharum and A. saccharinum epicormic sprouts are not as heavily chemically defended 
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as seedlings and saplings from the same species within the browse range of white-tailed 

deer, because the sprouts are from adult trees. Epicormic sprouts may have a relatively 

low fitness value, except in cases of tree regeneration after the loss of the main stem. 

Therefore it is unlikely that resources would be spent on their chemical defense, and thus 

they may be generally more palatable to white-tailed deer. However, during this study the 

browsing severity on epicormic sprouts did appear to vary between species. S. nigra 

sprouts were severely browsed, Acer spp. and Crategus spp. sprouts were variably 

browsed among quadrats, and U. americana sprouts were not browsed at all. This 

suggests that further research is required comparing the chemical defense, nutritional 

value, and palatability of epicormic sprouts among different species, and between growth 

stages within species.      

 The important question to answer might not necessarily be white-tailed deer 

browsing preferences on a plant-by-plant basis, but how deer select patches within which 

to browse. The Marginal Value Theorem (MVT) states that an overall rate of energy 

intake is maximized if a herbivore leaves a patch once the rate of intake of browse is less 

than the average rate of intake across an entire habitat (Charnov 1976). Studies have 

shown that browsing behavior of a number of large ungulate species conforms to the 

MVT: e.g. elk (Cerveus epalphus) in Jaing and Hudson (1993), moose (Danell et al. 

1991) and, moose and white-tailed deer in (Shipley and Spalinger 1995). Bailey et al. 

(1996) state that the application of the MVT depends heavily on the scale of the patch. 

Danell et al. (1991) stated that it was important to determine the scale of the patches, i.e. 

tree vs. stand, concluding that moose determine the quality of stands at the tree level. 

However, they suggest that individual plant selection occurs at multiple scales at the 
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same time. Shipley and Spalinger (1995) confirmed that moose and white-tailed deer 

evaluate the quality of a patch and modify browsing behavior at small spatial scales (i.e. 

tree level).     

 Trends in the present study suggest that white-tailed deer may select patches in 

riparian zones based in part off the amount of A. saccharum and A. saccharinum 

epicormic sprouts available as browse. For example, Figure 6 suggests that quadrats with 

canopy compositions that are strongly influenced by the abundance of A. saccharum or A. 

saccharinum, both of which provided abundant sprouts, had an overall higher total 

browsing units consumed. Therefore, white-tailed deer may be selecting and browsing 

longer in patches that have an abundance of Acer spp. epicormic sprouts.   

 The results of the present study also suggest that A. saccharum and A. 

saccharinum epicormic sprouts may be preferred browse of white-tailed deer and are thus 

used in patch selection. Further research is needed to assess at what scale white-tailed 

deer choose patches, and the factors that affect patch selection. Additional research is 

also needed to study the impact on the regeneration of beaver damaged as well as flood 

damaged members of A. saccharum and A. saccharinum in Northeastern riparian zone 

communities due to the integral part that epicormic sprouts play in the regeneration of 

those species.   
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