
 
 

 

Experimental Study of Disruption of Columnar Grain Growth 
during Rapid Solidification 

 

 

By 

 

Bharat Yelamanchi 

 

 

 

Submitted in Partial Fulfillment of the Requirements 

 

for the Degree of 

 

Masters of Science 

 

in the 

 

Industrial and Systems Engineering 

 

Program 

 

 

 

YOUNGSTOWN STATE UNIVERSITY 

 

August 2015 

  



 
 

Experimental Study of Disruption of Columnar Grain Growth during Rapid Solidification 

By 

Bharat Yelamanchi 

 

I hereby release this thesis to the public.  I understand that this thesis will be made 
available from the OhioLINK ETD Center and the Maag Library Circulation Desk for 
public access.  I also authorize the University or other individuals to make copies of this 
thesis as needed for scholarly research. 

 

Signature: 

     

  Bharat Yelamanchi, Student  Date 

 

 

Approvals: 

      

  Dr. Guha P. Manogharan, Thesis Advisor Date 

 

 

      

  Dr. Brett P. Conner, Committee Member Date 

 

 

      

  Dr. Darrell R. Wallace, Committee Member Date 

 

 

      

  Dr. Salvatore A. Sanders, Associate Dean of Graduate Studies Date 



i 
 
 

ABSTRACT 
Over the years, many studies have been conducted to study and analyze the grain 

structures of metal alloys in order for them to have superior structural and mechanical 

properties. In particular, columnar grains are observed predominantly during rapid 

solidification of molten metal. This leads to lower mechanical properties and requires 

expensive secondary heat-treatment processes. This study is aimed at disrupting the 

formation of columnar grain growth during rapid solidification using ultrasonic 

vibration and analyzes the effects on grain structure and mechanical properties. A 

MIG welder mounted on a low cost metal 3D printer was used to deposit ER70S-6 

mild steel layers on a plate. A contact type ultrasonic transducer with control system 

to vary the frequency and power of the vibration was used.  The effects of ultrasonic 

vibration were determined from the statistical analysis of microstructure using ImageJ 

and micro-indentation techniques on the deposited layer and heat affected zone. It 

was found that both frequency and interaction between frequency and power had 

significant impact on the refinement of average grain size up to 10.64% and increased 

the number of grains by approximately 41.78%. Analysis of micro-indentation tests 

showed that there was an increase of approximately 14.3% in micro-hardness and 

35.77% in Young’s modulus due to the applied frequency during rapid solidification. 

Along with the results from this study, further efforts in modeling and 

experimentation of multi directional vibrations would lead to a better understanding 

of disrupting columnar grains in applications that use mechanical vibrations, such as 

welding, metal additive manufacturing, brazing, and the likes.  
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Chapter 1: Introduction 

This chapter gives an introduction to manufacturing and its evolution from the traditional 

practices to additive manufacturing (AM), significance of grain structures, rapid 

solidification ultrasonic vibrations, transducers and welding. In chapter 2, literature 

review and current findings on disruption of columnar grains are presented. Chapter 3 

presents the methodology and experimental techniques used in this study. The obtained 

results, analysis and discussions are presented in chapter 4. Finally, chapter 5 summarizes 

the findings from this research and identifies future directions.  

“Manufacturing”, the word derived from the Latin words Manus (hand) and Factus 

(make) has its origins dating back to the Neolithic period with processes like carving, 

hand forming and firing of clay, grinding and polishing the stone and spinning, weaving 

and dyeing of cloth have been employed [1-1]. Manufacturing has undergone various 

revolutions from the Bronze Age to the Iron Age to Interchangeable parts, automated 

integration and is in the cusp of Additive Manufacturing (AM revolution. Some of the 

recent advancements can be attributed to the development of microelectronics, 

computerization, flexible manufacturing, microfabrication and nanotechnology, lean 

production and six sigma, globalization and environmental consciousness into traditional 

manufacturing [1-1]. 

There are several basic categories of manufacturing, i.e. solidification, forming, joining, 

subtraction and addition. This research focuses on rapid solidification observed in 

additive manufacturing (AM). AM, as the name suggests is a layer by layer deposition of 

the required material based on a 3D Computer Aided Drafting (CAD) model as opposed 
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to Subtractive Manufacturing (SM) which involves traditional manufacturing techniques 

like machining, drilling, grinding etc. to produce the desired part by removing material 

from a stock or bar. American Society for Testing and Manufacturing (ASTM) has 

classified AM into seven different categories namely, vat photopolymerization, material 

jetting, binder jetting, material extrusion, powder bed fusion, sheet lamination and direct 

energy deposition [1-2]. 

1.1. Additive Manufacturing 

Material extrusion which is often called fused deposition modelling (FDM) is one of the 

commonly used AM process because of its relative ease to use and also, due to growing 

capabilities through open source development. Open source equipment is operated using 

free software and architecture developed by individuals/community of developers 

interested in one specific platform. It can be a 3D printer or a machine with a capability 

of producing self-replicating parts e.g. RepRap. Among several RepRaps, the most 

commonly employed structures are the delta and inverted delta which features 

expandable work envelope [1-4]. Some of the commercial AM machines can be obtained 

for $20,000 but often it can exceed over $1 million [1-4]. Due to the recent expiration of 

some of the patents related to FDM, a growing movement among developers and users 

has led to the creation of inexpensive AM machines [1-3].  

Self-replicating rapid prototyping machine (RepRap) was among the early open source 

3D printers [1-5]. The RepRap is a mechatronic device made of printed mechanical 

components for the frame, stepper motors to drive the extruder head and bed and a hot-

end for melting polymer filaments [1-4]. These components are controlled by an open 

source microcontroller like Arduino® as shown in Figure 1.1. 
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Figure 1.1: Arduino Mega 2560 Microcontroller [1-6] 

Flexibility in open source RepRap has led to a rapid expansion in the development of 

low-cost polymer based AM. Until recently, there was a lack of similar efforts in metal 

AM and researchers were severely restricted to using expensive industrial grade printers. 

This motivated Dr. Joshua Pearce and his team to design an open source low cost metal 

3D printer [7] which incorporates a low-cost commercial Metal Inert Gas (MIG) welder 

and is a derivative of the Rostock, a deltabot RepRap as shown in Figure 1.2. 

 

Figure 1.2: MIG welding using a metal 3D printer [1-8] 
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1.2. Microstructures 

Over the years, many studies have been conducted to analyze and if possible refine the 

grain structures of the metals and alloys in order to have superior structural and 

mechanical properties. Some of the processing techniques and their impact on the 

structural and mechanical properties are shown in Figure 1.3. 

Microstructural characterization includes: 

1) Grains or crystals 

2) Grain boundaries 

3) Orientation of grains 

4) Shape of grains 

5) Phase compositions 

6) Defects (i.e. voids, inclusions, etc.) 

 

Figure 1.3: Processing techniques and their impact on the structure and properties [1-9] 
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Metal grains are comprised of individual, micro-nano sized randomly oriented crystals. 

When the molten metal starts to cool and solidify from the surface to the core of the 

molten pool, the grains tend to form in random directions at various locations known as 

nuclei. Depending on the cooling rate, the resulting grain sizes, grain counts and phase 

distributions will vary. Rapid cooling produces smaller grains while slower cooling rate 

results in larger sized grains. Nucleation (initial stage of formation of crystals) 

significantly influences the number and size of the grains i.e. if the nucleation rate is 

high; the number of grains developed is high with smaller grain size as shown in Figure 

1.4 [1-10]. 

 

Figure 1.4: Grain structures [1-11] 

The atomic mismatch where two grains with different crystallographic orientations 

results in an interfacial defect called the grain boundary is shown in Figure 1.5 [1-12]. 



6 

 

Figure 1.5: Grain boundaries [1-13] 

The grain boundaries have an important influence on the mechanical properties of metals 

like strength, ductility as it interferes with the dislocation movement and also influences 

strain hardening. The effect of grain boundaries varies with temperature, deformation rate 

and impurities present along the grain boundaries [1-3]. Columnar grains are long, thin, 

coarse grains created when molten metal solidifies rather slowly in the presence of a 

steep temperature gradient. Relatively few nuclei are available when columnar grains are 

produced as shown in Figure 1.6. 

The smaller the grain size, the greater the number of the grain boundaries.  Presence of 

more grain boundaries leads to a higher resistance to slip (during plastic loading 

conditions). In addition equiaxed grains leads to a more uniform mechanical properties 

within the part (isotropy).  

The Hall-Petch effect correlates the trend of increasing strength and toughness with 

decreasing grain size [1-12]. Creep rates (Coble creep) increase with increasing grain 

boundary (per unit volume), hence decreasing grain size. Therefore grain size has the 

opposite effect at high temperatures where finer grain size weakens the material. Hence, 
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finer grain size is preferred in low temperature applications and single crystals (also 

known as whiskers) are ideal for high temperature applications.  

 

Figure 1.6: Columnar grains in stainless steel [1-14] 

As shown in Figure 1.7, the crystallographic misalignment between adjacent grains is 

noted based on the angle of misalignment at the grain boundaries. When the orientation 

mismatch is in the order of a few degrees then it is called small angle grain boundary.  
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Figure 1.7: Schematic diagram of low and high angle grain boundary [1-12] 

Twist boundary as shown in Figure 1.8, is formed when a small angle grain boundary 

with a tilt has an angle of misorientation θ parallel to its boundary. An array of screw 

dislocations gives the perfect illustration of twist boundary. The bond angles are longer at 

grain boundaries, as there is an accumulation of grain boundary energy. The magnitude 

of grain boundary energy is a function of the degree of misorientation.  

 

Figure 1 8: Twist boundary [1-25] 
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1.3. Rapid Solidification 

Rapid solidification is a processing technique by which unusual properties and 

microstructures can be obtained, which by conventional processing techniques is not 

possible [1-15]. 

Some of the manufacturing processes in which rapid solidification is observed are: 

 Vacuum induction melting 

 Squeeze casting 

 Splat quenching 

 Melt spinning 

 Planer flow casting 

 Laser or electron beam solidification 

Paul Duwez and others created a new frontier for the processing of materials in rapid 

solidification over a quarter of a century ago [1-16]. Though they were not the first to 

investigate rapid solidification rate techniques (sometimes called as rapid quenching), it 

was the efforts of Duwez that started the revolution in rapid solidification technology. His 

initial experiments involved melting a small amount of metal at the bottom of a tube and 

ejecting the molten metal onto a copper plate using sudden gas pressurization which 

results in a "splat" of frozen metal with a solidification rate on the order of 106 K/s [1-

16]. Traditionally, the cooling rate of 104 K/s or greater is considered as rapid 

solidification [1-16]. However, there are other studies that have identified single-pass 

welding of smaller melt pool at a cooling rate of 10 K/s as rapid solidification [1-26]  

Though rapid solidification has several advantages for a variety of applications, it has 

some limitations as shown in Figure 1.9. 
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further broken into 3 sub sections; 1) low frequency/airborne/high frequency, 2) 

conventional/industrial, 3) high frequency/ acoustic microscopy. 

 

Figure 1.10: Ultrasonic range [1-18] 

Transmission of ultrasounic waves requires an elastic medium which can be gas or liquid 

or solid. Glycerin and water are the two most commonly used medium. The basic 

parameters of a Continuous Wave (CW) are wavelength (l) and the period (T) of a 

complete cycle as shown in Figure 1.11. 



 







f = 1/T
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(Rayleigh) waves have an elliptical particle motion and travel across the surface of a 

material. Their velocity is approximately 90% of the shear wave velocity of the material 

with the depth of penetration approximately equal to one wavelength. Plate (Lamb) 

waves have complex vibration as they are elastic waves whose particle motion lies in the 

plane containing the wave propagation and perpendicular to the plate and occurring in 

materials where thickness is less than the wavelength of the ultrasound [1-18]. 

Sensitivity is the ability of an ultrasonic system to detect reflectors (or defects) at a given 

depth in a test material. Axial resolution is the ability of an ultrasonic system to produce 

simultaneous and distinct indications from reflectors located at nearly the same position 

with respect to the sound beam. Near surface resolution is the ability of the ultrasonic 

system to detect reflectors located close to the surface of the test piece [1-18]. 

The ultrasound can be categorized as power ultrasonics if the frequency ranges from 10 

kHz to 500 kHz. Power ultrasonics can be applied to permanently change the physical, 

chemical or biological properties of the object [1-19]. 

Some of the applications of power ultrasonics are: 

 Welding, metal forming and machining; e.g. ultrasonic spot welding, Plunge 

ultrasonic welding, wire and tube drawing, surface grinding etc. 

 Engineering and medical applications; e.g. ultrasonic motors, ultrasound synthesis 

of metallic nanoparticles, Ultrasonic cleaning and washing, Ultrasonic surgical 

devices etc. 

 Food technology and pharmaceuticals, e.g. ultrasonic mixing, homogenization 

and emulsification, Ultrasonic atomization for encapsulation for drug delivery etc. 
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 Environmental, mining, biofuel production e.g. ultrasonic water treatment etc. 

1.5. Ultrasonic Transducer 

A transducer is a device that converts one form of energy to another. An ultrasonic 

transducer converts electrical energy to mechanical energy, in the form of sound and vice 

versa. The main components are active element, backing, and wear plate as shown in 

Figure 1.12. 

 

Figure 1.12: Transducer [1-18] 

1.5.1 Active Element: 

The active element made of piezo or ferroelectric material converts electrical energy such 

as a pulse from a flaw detector into ultrasonic energy. The most commonly used 

materials are polarized ceramics which can be cut into various geometries to produce 

different wave modes. New materials such as piezo polymers and composites are also 
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being employed for applications where they provide benefits with efficient ultrasonic 

energy generation to transducer and system performance. [1-18] 

1.5.2 Backing: 

The backing is usually a highly attenuative, high density material that is used to control 

the vibration of the transducer by absorbing the energy radiating from the back face of 

the active element. When the acoustic impedance of the backing matches the acoustic 

impedance of the active element, the resulting transducer will be heavily damped with 

good range resolution but lower signal amplitude. If there is a mismatch in acoustic 

impedance between the element and the backing, more sound energy will be reflected 

into the test material. In this case, the transducer will have lower resolution due to longer 

waveform duration, but higher signal amplitude and lower sensitivity [1-18]. 

1.5.3 Wear plate: 

The basic purpose of the transducer wear plate is to protect the transducer element from 

the operating environment. In the case of contact transducers, the wear plate is made of a 

durable and corrosion resistant material in order to withstand the wear caused by use on 

ferrous metals due to lower impedance. 

There are three different types of ultrasonic transducers 1) immersion, 2) angle beam, and 

3) delay line transducers as shown in Figure 1.13. The wear plate for the transducers also 

serves as an acoustic transformer between the high acoustic impedance of active element 

and water, wedge or delay line. This is accomplished by selecting a matching layer that is 

1/4th wavelength thick (λ/4) and of the desired acoustic impedance (the active element is 

nominally 1/2th wavelength). The choice of the wear surface thickness is based on the 
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principle of superposition, which defines that the net response given at a place and time 

by two or more stimuli which is the sum of responses of each stimulus individually,  

which allows waves generated by active element to be in phase with wave reverberating 

in the matching layer. When the signals are in-phase, their amplitudes are additive, thus a 

resulting in a higher greater amplitude wave.  

 

Figure 1.13: a) Immersion, b) Angle beam and c) Delay line transducers [1-22, 1-23, 1-24] 

In such cases, when the signals are in-phase their amplitudes are additive resulting in a 

higher amplitude. If a transducer is not properly designed or tightly controlled or 

constructed with improper materials are it would result in generation of waves that are 

not in-phase, causing disruptions in the wave front [1-18]. 

1.6. Welding 

Welding is a joining process in which two materials are bonded together at atomic level 

to achieve a joint which are permanent. Welding process is achieved by heat, pressure 

and different combinations of both. Although it started around 1000 B.C, Egyptians and 

other eastern Mediterranean areas developed the technique of forge welding, it was not 

until 1801 that carbon arc welding was discovered by Sir Humphrey Davy and later 

refined by Nikolai Benardos in 1885. Charles Coffin developed arc welding process 

using metal electrode in 1892. 
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The major advantages of welding are: 

1. Creation of permanent joints 

2. Ability to use filler material  

3. Often economical to join components 

4. Portability 

The limitations of welding are: 

1. Relatively higher labor cost 

2. Relatively higher energy usage 

3. Creation of permanent joints limiting ability to unjoin 

4. Columnar grain structures 

There are two major categories of welding namely fusion welding and solid state 

welding. Fusion welding process utilizes heat to melt the base metals. The different types 

of fusion welding processes are: 

1) Arc welding (AW) 

2) Resistance welding (RW) 

3) Oxyfuel gas welding (OFW) 

4) Electron beam welding 

5) Laser beam welding 

Solid state welding uses either pressure alone or a combination of both heat and pressure 

to achieve the required joining. The different types of solid state welding processes are: 

1) Diffusion welding (DFW) 

2) Friction Welding (FRW) 

3) Ultrasonic welding (USW) 
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1.6.1 Gas metal arc welding: 

The main components of Gas Metal Arc Welding (GMAW) or Metal Inert Gas welding 

(MIG) or Metal Active Gas welding (MAG) as shown in Figure 1.14 are: 

 Welding gun 

 Solid wire electrode 

The process parameters of GMAW include: 

 Shielding gas e.g. Argon 

 Electrode size e.g. 0.023”  

 Voltage and current e.g. 110-240V 

 Feed rate e.g. 45 ipm 

 Travel speed e.g. 5.52 ipm 

 

Figure 1.14: MIG welding [1-20] 

The principle of MIG welding is arc burning between the solid wire electrode that is 

constantly fed from a spool with pre-determined feed rate and the work piece with a 
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constant voltage, direct current. A protective gas shield (Ar and CO2) is fed through the 

welding gun to avoid both the electrode material and work piece reacting with 

atmosphere [21]. 

1.7. Summary 

In summary, this chapter defined the basic concepts of additive manufacturing and its 

evolution from being patent bound to open source, creating a flexibility for researchers to 

create low cost equipment as per the requirements. The concepts of rapid solidification 

and its applications in various industries have been explained. Also microstructures and 

impact of rapid solidification on the microstructures has been introduced. Finally the 

various components of a power ultrasonic transducer and its applications have been 

introduced. 
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Chapter 2: Literature review 

In this chapter, a review of literature focused on ultrasonic application for porosity 

reduction and grain structure refinement, modeling efforts of ultrasonic propagation, 

rapid solidification and applications of ultrasonics in Additive Manufacturing (AM) is 

presented. As mentioned in chapter 1, ultrasonic transducers can be basically classified 

into contact type and non-contact type. Non-contact type transducers are mainly applied 

for navigation (e.g. SONAR) and the contact type transducer have broader applications in 

engineering, medical, material science and also, in the food processing industry. Since 

this experiment is related to manufacturing and processing of materials, ultrasonic 

transducers which are applied for microstructure refinement and porosity control are 

emphasized. 

2.1. Ultrasonic application for porosity reduction and Grain structure refinement 

John. A. Slotwinski and his team worked on porosity measurements and analysis for 

metal Additive Manufacturing (AM) process control [2-1]. It was identified that material 

porosity in parts is undesirable for aerospace parts, since it could lead to premature 

failure and sometimes be desirable in biomedical implants, as surface-breaking pores 

allows for better integration with biological tissue. Variability in the porosity during AM 

process can also be attributed to the variability in feedstock, process parameters and 

conditions. They worked on developing an ultrasonic sensor for monitoring changes in 

the porosity in metal parts during fabrication on a metal powder bed fusion system. The 

measurements of the porosity of these samples using Archimedes and X-Ray Computed 

Tomography (XRCT), and a correlation of ultrasonic measurements with the degree of 
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porosity were presented using a 5MHz commercial contact type piezoelectric ultrasonic 

transducer.  

They concluded that the porosity level in these parts was controlled by varying the build 

parameters in the Direct Metal Laser Sintering System (DMLS) process for each of the 

disks. Comparisons of the measured composite disk porosity, which was determined 

using Archimedes and mass of the cylinders, were in agreement. However, the large error 

bars on the disks’ composite porosities determined from the individual cylinder 

measurements is an indication of the local differences in disk porosity that were inherent 

in the cylinders cut out of those disks. The XRCT also showed the presence of cracks, 

which sometimes cross the laser scan lines from the DMLS process. These cracks were 

routinely present for the samples that had a large amount of porosity. These samples also 

had pores that connected across many measured layers.  

Sandia National Laboratories has developed Laser Engineered Net Shaping (LENS®), a 

new technology to fabricate 3D metallic components directly from CAD solid models. 

Metal parts are fabricated directly from the Computer Aided Design (CAD) solid models 

using a metal powder injected into a molten pool created by a high-powered laser beam 

on an NC motion controlled substrate to fabricate the desired cross-sectional geometry. 

Consecutive layers are deposited until the final part geometry is produced. Parts have 

been fabricated in stainless steel alloys, nickel-based alloys, tool steel alloys, titanium 

alloys, and other specialty materials; as well as composite and functionally graded 

material deposition using LENS. Sometimes, ultrasonic vibration to base plate is applied 

in order to improve the quality of the part produced because of the tighter packing of the 
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powder during deposition. This process improved the mechanical properties of the 

resultant products and reduced the time required for part processing. 

Ehsan Foroozmehr and his team worked on improving the quality in the Laser Powder 

Deposition (LPD) by using in-process vibration by integrating a vibration system into a 

laser-cladding system. A 1-kW Nd:YAG laser system along with a powder delivery as 

shown in Figure 2.1 in a 5-axis CNC vertical machining center with protective argon gas 

flow was used in the vibrator setup was placed on the x-y table which holds the substrate. 

An electromagnetic shaker is tightly connected to the aluminum plate as shown in Figure 

2.2. A signal generator is connected to a 400W amplifier [2-3]. 

 

 

Figure 2.1: Experimental setup [2-3] 
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Figure 2.2: Shaker [2-3] 

The experiment resulted in the mitigation of defects at the intersection of beads and 

reduction in spherical gas pockets which result in porosity. 

 

Figure 2.3: SD vs Frequency [2-3] 

The results in Figure 2.3 showed that the lateral vibration was more effective than 

parallel vibration and a dendritic zone under vibratory conditions consists of smaller 

grains and increased the hardness when compared to no vibration [2-3]. 

Longbiao He and others studied [2-4] ultrasonic generation by modulated welding arc 

and analyzed its effects on grain structure refinement as shown in Figure 2.4. Their work 

showed that the acoustic response of pulsed arc indicated that the arc could be considered 

as an ultrasonic transducer, with the experimental setup as shown in Figure 2.5. 
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Figure 2.4: Experimental setup [2-4] 

 

Figure 2.5: Grain structure [2-4] 

They observed that with exciting welding arc, the welding structure could be refined and 

improve performance of joints by reducing porosity and inclusion to welding joint. Their 

method stated that the ultrasonic emission can take place wherever the arc is present and 

can be used in arc welding, plasma welding, thermal spraying process, etc., to improve 

the performance of material processing [2-4]. 

Jafar Saniie and Nihat M. Bilgutay [2-5] quantified the grain size evaluation using 

ultrasonic backscattered grain signals, which applies a similar concepts of SONAR which 

transmits and receives ultrasonic signals to determine the position and distance by 

investigating a heuristic model to relate the statistical characteristics of the measured 

signal to the mean ultrasonic wavelet and attenuation coefficient in different regions of 
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the sample. Heat treated stainless steel (SS) samples of various grain sizes were used. 

Temporal averaging, correlation and probability distribution functions of the data set 

techniques were used to examine the losses in the backscattered signal losses. Frequency 

dependent attenuation, homomorphic processing was performed to estimate the mean 

ultrasonic wavelet as it propagates through the sample. 

They considered three different SS samples 1) without heat treatment, 2) heat treated SS 

at 1350 0C and 3) heat treated SS at 1387 0C. The average grain diameters of the three 

samples were calculated by approximating it to be twice the average grain boundary 

spacing. The micrographs they obtained are as shown in Figure 2.6, which shows the 

average grain size and boundary spacing. 
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Figure 2.6: Micrographic results. a) SS b) SS-1350 c) SS-1387 [2-5] 

A high sensitive Gamma type transducer with a nominal frequency of 6-MHz and a 3-dB 

bandwidth of approximately 1.5 MHz was used. The transducer is excited by generating 

pulses of width on the order of a few nanoseconds. To eliminate ambiguity of the 

receiving signals received for the Region of Interest (ROI), the pulse reception rate was 

200 pulses and a range gate was used to filter only the required signals. Their results 

indicated that various signal processing techniques could be utilized in ultrasonic grain 

size evaluation. All techniques are concerned with removing the randomness in the 
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backscattered signal and extracting parameters related to the frequency-dependent 

attenuation coefficient and, consequently, to the grain size [2-5]. 

G.I. Eskin and D.G. Eskin worked on ultrasonic treatment of the natural and synthesized 

aluminum based composite materials. In their study, they found that as the contamination 

of the samples increases, the cavitation threshold decreases leading to less acoustic 

energy required for cavitation onset. This phenomenon was observed at a constant 

hydrogen content in aluminum of 0.2 cm3 /100 g and 1) 0.03, 2) 0.008, 3) 0.005 and 4) 

0.004% Al2O3 was plotted and is as shown in Figure 2.7 [2-6]. 

 

 

Figure 2.7: Effect of melt purity on cavitation threshold [2-6] 

They observed powerful refinement of primary silicon particles when ultrasonic 

treatment applied upon solidification of hypereutectic Al-Si alloys, for 114-mm DC cast 

ingots at the ultrasonic tool amplitude 15µm and is as showed in Figure 2.8 [2-6]. 
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Figure 2.8: Effect of ultrasonic treatment on primary silicon particles [2-6] 

The ultrasonic treatment also had significant impact on the mechanical properties like 

25% lower linear coefficient of thermal expansion, 15% higher Young’s modulus and 

improved wear and corrosion resistance along with excellent weldability and they are as 

shown in Figure 2.9 [2-6]. 

 

Figure 2.9: Mechanical properties of extrusions from ultrasonically treated hypereutectic Al-Si 
alloys and a 6063 alloy [2-6] 
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2.2. Modelling efforts of Ultrasonic propagation 

A. Gandin and M. Rappaz worked on developing a 3D cellular automaton (CA) 

algorithm for predicting the dendritic grain growth. The CA growth algorithms were 

validated by comparing the predicted grain shapes with those deduced from analytical 

models. The effectiveness of 3D CA approach is demonstrated by studying the extension 

of a single dendritic grain in a squared platform under various conditions [2-7]. 

Both 2D decentered square and 3D decentered octahedron CA growth algorithms were 

presented and have been validated against the predictions of 9 analytical models. When 

applied to the study of the extension of a single dendritic grain in a rectangular platform, 

the 3D CA model demonstrated its ability to account for different cooling conditions, 

crystallographic orientations and growth kinetics parameters. Although they require the 

definition of a virtual growth center, these algorithms are effective in required 

computational time. The 3D CA calculation of the octahedral grain was performed (650 

time step, domain containing 1 million cells-100 x 100 x 100) in 180 s on a Hewlett-

Packard 735 workstation when defining the neighborhood of the cells with the first 

nearest neighbors (six neighbors). In fact, it should be noted that a correct prediction of 

the growth competition between two columnar grains requires the use of a second order 

neighborhood of the cells in the 2D CA model (eight neighbors in a square lattice). In the 

3D CA model, an extension to a higher neighborhood is also expected to be required for 

modelling the competition between columnar grains. Such an extension will increase the 

CPU time [2-7]. 
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V. Abramov and team contributed significant work to the field of ultrasonic application 

for reduction in mean grain size, variation in phase distribution and better material 

homogeneity and separation control [2-8]. In one of their experiments on solidification of 

aluminum alloys under ultrasonic irradiation using water-cooled resonator; it was 

revealed that ultrasonic treatment can be applied to almost all aluminum alloys since the 

elongation values of ultrasonic-treated specimens was much higher than those of non-

treated. The schematic diagram of the ultrasonic apparatus is shown in Figure 2.10. 

 

Figure 2.10: Schematic diagram of ultrasonic unit [2-8] 

It was also determined that pure metals have poorer ultrasonic treatability, as pure 

aluminum could not be effectively treated. Their experimental setup involves a water 

cooled Mode Transformation System (MTS), magnetostrictive transducer and ultrasonic 

generator, of which the transducer and ultrasonic generator are immersed into the molten 

metal pool in a crucible of 80 mm diameter and 160 mm height. It was observed that 

there is a 35% improvement in tensile strength in ultrasonically treated material, the 

hardness increased by 14% and an increased elongation of 52% [2-8]. 
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2.3. Rapid Solidification 

Enrique J. Lavernia and T. S. Srivatsan worked on a review article focused on the rapid 

solidification processing of materials and categorized the rapid solidification process as 

shown in Figure 2.11[2-9]. 

 

Figure 2.11: Rapid solidification techniques [2-9] 

 

S.A. David and his team investigated the effect of rapid solidification on microstructures 

in stainless steel weld and its implications on the Schaeffler Diagram as shown in Figure 
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2.12 and found that both weld pool cooling rate and post solidification solid-state cooling 

rates have a significant effect on the microstructures [2-10]. 

 

Figure 2.12: Scheaffler diagram of Steel samples [2-10] 

The microstructures ranged from duplex austenite (7") + ferrite (6) to fully austenitic or 

fully ferrite. It was found that the microstructures were influenced by both cooling rates 

and composition. Different compositions of stainless steel were laser welded at different 

speeds and laser power levels. Electron diffraction technique was used to characterize 

phase distribution. It was observed that the weld pool cooling rate and post-solidification 

solid state cooling rates have a considerable impact on the resulting microstructures. It 

was also noted that welding would fall under the rapid solidification category and varying 

welding speeds result in different cooling rates. The microstructures of 316A laser welds 

at a) 12.7 cm/min, b) 50.8 cm/min, c) 190.5 cm/min and 316B laser welds at d) 12.7 

cm/min, e) 50.8 cm/min and f) 190.5 cm/min are as shown in Figure 2.13 [2-10]. 
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Figure 2. 13: Microstructures of 316A and 316B laser welds [2-10] 

2.4. Application of Ultrasonics in AM 

Ultrasonic Additive Manufacturing (UAM) invented and patented by Dr. Dawn white 

combines ultrasonic welding (USW) and CNC machining to join metal foils layer by 

layer. The energy generated from the transducer through a sonotrode to the work piece in 

the form of ultrasonic oscillation. The interlaminar metal flow with associated localized 

heating result in the solid state bonding is generated by the oscillations and compressive 

normal force of the sonotrode. The traditional UAM process utilizes a 1kW seam welder 

as a standard USW system and was developed to a higher power 9kW in 2008 by 

Solidica Inc. partnered with Edison Welding Institute (EWI). It is used to process high 
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strength aluminum alloys e.g. 2024, 7075; 316 SS and copper. As with most AM 

techniques, UAM can produce complex internal channels and voids which can be applied 

for complex thermal management applications like the microchannel cooling. Because of 

the solid state joining of the components, dissimilar material bonding can be achieved 

unlike other AM processes. Object embedment is also accommodated by UAM, in which 

active, passive, optical fibers and other required components are embedded into Al matrix 

because of low temperature and high plastic flow that can occur in the material during 

ultrasonic excitation [2-11]. 

One of the major applications of AM is in the medical field and also in several post 

processing techniques. Ben Vandenbroucke and Jean-Pierre kruth worked on Selective 

Laser Melting (SLM) of biocompatible metals for rapid manufacturing of medical parts 

manufactured with titanium and cobolt-chromium and used glass blasting and ultrasonic 

ceramic filling as post processing techniques and measured the surface roughness on the 

top and side surfaces of the titanium and cobolt-chromium SLM samples and are as 

shown in Figure 2.14 [2-12]. 



38 

 

Figure 2.14: Top and Side surface roughness [2-12] 

2.5. Summary: 

As it can be observed from the past work, most of it either involves the immersion of the 

ultrasonic unit into the molten metal pool, which damages the horn that is immersed or 

the use of expensive equipment and processes. The equipment cost increases as the horn 

has to be replaced for each production run. It is important to develop an alternative 

approach, which is affordable and by which the same or nearly similar results can be 

achieved by ultrasonic treatment without actually damaging the equipment. Further, such 

an approach can be integrated with AM where rapid solidification is pre-dominant (due to 

dissimilar thermal gradient) along the build direction. 
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Chapter 3: Materials and Methodology 

In this chapter, the experimental setup and methodology used in this research are 

discussed. The experimental setup involves employing a low cost metal 3D printer 

originally developed by Joshua M. Pearce and his team at Michigan Technological 

University and an ultrasonic transducer setup developed in Center for Innovation in 

Additive Manufacturing (CIAM) at Youngstown State University. The ultrasonic setup to 

induce vibration during deposition includes a 50 kHz ultrasonic transducer, digital 

multimeters, control driver for ultrasonic transducer and a transformer to vary the power 

input to the transducer. The materials involved in the construction of each component are 

also explained in this chapter. 

3.1. Experimental Setup 

3.1.1. Low Cost Metal 3D Printer: 

The basic components of the low cost metal 3D printer as shown in Figure 3.1 are: 

1. Frame 

2. Carriage 

3. Welder mount 

4. Effector plate and mounts 

5. Magnetic bearings 

6. MIG welder 
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Figure 3.1: Low-Cost Metal 3D Printer 

The effector plate which fixtures the transducer and workpiece holder is supported by the 

frame connected to magnetic bearings present at both the bottom end of the effector plate 

and top end of the carriages. The carriages are mounted on the lead screw of the stepper 

motor and are supported on either side using support rods. The frame supports the entire 

assembly, including the mounted weld head, in this case, a Millermatic 140 Autoset with 

an input power of 115 V- 20 A  welder. 

The CAD model of the 3D printer designed by Michigan Technological University is 

shown in Figure 3.2. 
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Figure 3.2: Solidworks model of 3D metal printer [Source: Dr. Joshua Pearce, Michigan Tech 
University, 3-1] 

All the components of the metal 3D printer except for the magnetic bearings are 

machined using water jet cutting.  

The printer is driven using an Arduino Mega 2560 motherboard as shown in Figure 3.3 

with a 12v input voltage and uses Repetier software. Marlin firmware is used with 

customization for the inverted delta construction using Arduino software, by inverting the 

functions for the base plate movement and stepper motor. The Arduino Mega 2560 is also 

compatible with LCD display panels and advanced heat sensing applications, which are 

additional capabilities that can be integrated with this 3D printer.  
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Figure 3.3: Arduino Mega 2560 Motherboard 

As shown in Figure 3.4, the open source Repetier and Marlin firmware used for 

generating G-code, controls and interfacing with the metal 3D printer can be customized 

according to the demand and the functionality required e.g. #define BAUDRATE, 

#define DEFAULT_AXIS_STEPS_PER_UNIT.  

 

Figure 3.4: Arduino software interface 

 The changes required in the configuration file would involve defining the work envelope 

of the printer, the stepper motor configuration and defining the coordinate system that the 



45 

3D printer should follow, depending on the type of construction of the 3D printer e.g. 

Deltabot, Inverted delta etc. 

3.1.2. Ultrasonic Transducer: 

 A focused contact type piezoelectric transducer with an active area of 50 mm diameter 

and nominal frequency of 50 kHz is used for the experiment. It is capable of handling a 

voltage peak to peak of 1000Vpp. The horn is made of polystyrene. The transducer is 

shown in Figure 3.5. 

 

Figure 3.5: Ultrasonic transducer 

3.1.3. Transducer and Workpiece Holder: 

In order to maintain uniform deposition and to focus vibration on the spot of deposition, 

it is essential to hold both the transducer and work piece at the same area. In order to 

achieve this, a holder which fits within the metal printer is fabricated as shown in Figure 

3.6. It also helps to avoid interference of ultrasonic waves with the Arduino Mega 2560 

board. 
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Figure 3.6: Transducer and work piece holder 

 

3.1.4. Transducer Driver 

The driver consists of a variable DC power supply, dead time generation circuitry for 

forming non-overlapping “high” and “low” signals from the input pulse signal, a high and 

low side driver, and a half-bridge circuit constructed using identical N-channel 

MOSFETs. The power supply is a rectified and filtered sine wave from a variac plugged 

into a 120 V wall outlet. The variac is used to adjust the amplitude of the voltage signal 

applied to the transducer. A function generator (Agilent 33220A) is set to generate a 

pulse signal (0 - 5 V) at a certain frequency, which is applied as an input to the driver.  

The frequency of the pulse signal will control the frequency of the voltage signal applied 

to the transducer. The pulse signal is fed into the driver circuit via an optocoupler with a 

Schmitt trigger output (Fairchild Semiconductor H11L1V-M). The output of the 

optocoupler provides input to the dead time generation circuitry. This circuitry is used to 

guarantee that the high and low voltage signals applied to the transducer do not overlap, 
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which would form a short circuit and damage the driver. The circuitry uses nor gates and 

low pass filters to create two non-overlapping pulse signals, which provide input to the 

high and low side driver chip (International Rectifier IR2110PBF). The driver chip 

provides signals to the half bridge, which turn on the appropriate MOSFETs according to 

the pulse signals generated by the dead time generation circuitry. The half bridge 

switches power to the transducer from the positive or negative side of the DC power 

supply.  

The output voltage and current are monitored by measuring the voltage drops across 

certain resistors in the driver circuit. These were measured using Agilent 33401A 

multimeters. The circuit is capable of driving the transducer at 200 V (p-p) at up to 1 A 

(rms) and frequencies from 1 Hz to 1 MHz. The circuit of the driver is as shown in Figure 

3.7 and 3.8.  

 

Figure 3.7: Transducer Driver Circuit 
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Figure 3.8: Driver Circuit (continued) 

Two Agilent 34401A Digital Multimeters are used to measure the voltage and current 

input and a frequency modulator to input different frequencies are attached to the 

transducer.  

An Agilent oscilloscope image as shown in Figure 3.9 is acquired to determine the ideal 

vibration frequency to be used in this study and 38 kHz was determined to be ideal. 

The resistance values from R13, R11, R12a and R12b as shown in Figure 3.8 are used for 

power calculations 
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Figure 3.9: Oscilloscope image 

3.2. Methodology 

3.2.1. Weld Bead Deposition 

The Arduino board is connected to a 12v power supply and also to the USB port of the 

computer. The ultrasonic transducer which is connected to the digital multimeters and 

transformer is placed inside the holder and connected to the driver. The holder is held in 

place with a magnetized base. The arrangement of the equipment is as shown in Figure 

3.9. 
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Figure 3.10: Experimental setup 

ER70S-6 material is a mild steel material with a chemical composition Si - 0.80-1.15% 

Mn - 1.4-1.85% P - 0.025% C - 0.06-0.15% S - 0.035%, commonly used for welding is 

deposited using a Millermatic 140 Autoset on a 1/8” plate at a feed rate of 45 ipm. 

 

Figure 3.11: Weld bead selection 

As it can be seen in the above Figure 3.10, 45 ipm was the ideal feed rate with the current 

setup to achieve a good quality weld bead. The G-code for the printer allows the weld 
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gun to deposit in the area in contact with center of the transducer horn. The plate used for 

deposition is 1018 cold rolled SS plate with a thickness of 1/8”. Before depositing the 

material on a SS plate, while the plate was being vibrated ultrasonically, the digial 

multimeters were powered to 5 Vpp and the required frequency settings were preset, 

before activating the driver and transformer. Three frequency settings were considered 

i.e. 20 kHz, 38 kHz and 56 kHz at two different transformer settings i.e. at 50% capacity 

and 100% power capacity. Three weld beads per frequency per power settings were 

deposited.  

3.2.2. Sample Preparation 

Upon deposition, the samples were cut in the longitudinal direction (w.r.to deposition 

direction) from the middle of the bead using a band saw. The samples were then ground 

and polished using the Streurs polishing plates with the procedures shown in Tables 3.1 

and 3.2 

Table 3.1: Grinding 

Grinding Plane Grinding Fine Grinding 1 

Disc/Cloth MD-Piano MD-PLAN 

Grit/Grain Size 220 9m 

Abrasive diamond diamond 

Abrasive Dosing --- 3 

Speed (rpm) 300 150 

Applied Load (N) 30 30 

Lube H2O Green 
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Grinding Plane Grinding Fine Grinding 1 

Lube Dosing --- 7 

Time  as needed 5 min. 

 

Table 3.2: Polishing 

Polishing Diamond Polishing 1 Diamond Polishing 2 Oxide Polishing 

Disc/Cloth MD-DAC MD-NAP MD-CHEM 

Grain Size 3m 1m 0.04m 

Abrasive diamond diamond OP-U 

Abrasive 

Dosing 

3 3 7 

Speed (rpm) 150 150 150 

Load/spc. (N) 30 30 30 

Lubricant Green Green --- 

Lube Dosing 7 9 --- 

Time  4 min. 2  min. 1  min. 

 

As indicated in the tables, the first step was the mechanical material removal (grinding) 

in which non-planar sections caused by band saw are removed. Plane grinding was 

performed in order to ensure that the surfaces of the sample are flat and similar. Fine 

grinding produced the surfaces with deformations small enough to be removed by the 

polishing. The diamond polishing disc and abrasive suspended oxide solution were used 

to achieve the best possible planeness for optimum quality [3-2]. 
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The obtained mirror finished sample is etched in 2% Nital, which is a combination of 

ethyl alcohol and nitric acid.  

3.2.3. Optical Microscopy and Image processing: 

A Zeiss Axiophot optical microscope as shown in Figure 3.11 is used to acquire the 

microstructural images at 5X, 10X and 20X focus. 

 

Figure 3.12: Zeiss Axiophot Optical Microscope 

ImageJ is an open source Java image processing program with capabilites to display, edit, 

analyze, process, save and print 8-bit, 16-bit and 32-bit images. It supports standard 
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image processing functions such as contrast manipulation, sharpening, smoothing, edge 

detection and median filtering. This program was selected for image processing as it 

allows the user to calculate area and pixel value statistics along with image processing 

tools (e.g. noise filtering tools) for microstructure analysis [1]. ImageJ is used in this 

study to determine the average grain size and the count of the grains to determine the 

impact of ultrasonics on the microstructures. 

The sequence of steps that were followed in the image processing and analysis as shown 

in Figure 3.12: 

a) Cropping the image by specifying a standard selection area  

b) Applying the background correction plugin, which does the pixel modulation, 

threshold control, brightness and contrast correction 

c) Converting the image to binary and inverting it 

d) Removing the extra noise using the despeckle and median filter with a 1.5-2 pixel 

radius 

e) Use the watershed and analyze particles with the area selection from 1000µm2-

infinity and circularity from 0 (e.g. straight line) to 0.9 (almost circular profile) 

f) The obtained results are then exported to Microsoft excel  

g) Analysis on grain size, counts and correlation to vibration conditions are 

performed 
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Figure 3.13: Image processing and analysis using imageJ. a) Image from optical microscope; b) 
Selection box; c) Background corrected; d) Binary image; e) Noise adjusted; f) Report 
generation; g) plots 

 

3.2.4. Microhardness Testing: 

Microhardness testing was performed using a NANOVEA M1 Hardness tester as shown 

in Figure 3.13 and two sets of data were collected for both weld bead and heat effected 

zone for each sample. 
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Figure 3.14: NANOVEA M1 Hardness tester 

Hardness test was performed using the Berkovich indenter and an example of the 

measuring report is shown in Figure 3.14.  

 

Figure 3. 15: Measuring report of Berkovich indenter 

Following are the sequence of steps involved in the microhardness testing on the 

NANOVEA M1 hardness tester: 
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1) Load the sample on to the platform, which is mounted on the anti-vibration 

pneumatic vibration isolation table. 

2) Indenter information module saves the indenter details such as α and β values 

3) Start the stage control module of the Nano indentation program 

4) Move the stage under the indenter, so that the region of interest is under the 

indenter and auto contact the indenter using the stage controller software 

5) Start new test and input the load of 300mN, loading and unloading rate of 

160mN/min  and creep (time for indenter to load after 300mN force is achieved)  

of 15 seconds to start the test 

6) After the test is complete, the reports with all the hardness test analysis are 

generated 

ASTM E2546 standards are followed by NANOVEA software to calculate hardness and 

elastic modulus form the load-displacement curve as shown in Figure 3.15 [3-3].  
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Figure 3.16: Load- Displacement curve 

 

The area function for a Berkovich indenter is 

Ac=24.5hc2     (3.1) 

where hc is the contact depth and is calculated using  

hc =  hmax −
3∗ Pmax

4∗S
              (3.2) 

Where hmax, Pmax and S are derived from the curve and are maximum contact depth, 

maximum load and slope respectively [3-3]. 

The hardness is calculated using 
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𝐻 =
𝑃𝑚𝑎𝑥

𝐴𝑐
      (3.3) 

For Young’s modulus calculation, the reduced modulus is given as  

𝐸𝑟 = (
√𝜋

2
) ∗ (

𝑆

√𝐴𝑐
)     (3.4) 

1

𝐸𝑟
= (

1−𝑉2

𝐸
) + (

1−∗𝑉𝑖2

𝐸𝑖
)    (3.5) 

Where Ei and Vi are the Young’s modulus and Poisson’s ratio of the indenter and V is the 

Poisson’s ratio of the tested sample. 

Null hypothesis statistical techniques called ANOVA two factor with replication and 

single factor analysis were used to determine the impact of both power and frequency on 

the microstructures and hardness. 

3.3. Summary: 

In summary, this chapter detailed the construction of the experimental setup, sequence of 

steps involved in the weld bead deposition, sample preparation, image acquisition using 

optical microscopy, processing and analysis using ImageJ, statistical analysis using 

ANOVA to determine the impact of power and frequency of the ultrasonic transducer on 

the microstructures and hardness. 
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Chapter 4: Results and Analysis 

In this chapter, the data obtained from ImageJ and Nanovea hardness testing machine are 

presented and analyzed. The chapter is sub divided into three categories, namely Power 

calculations, which explains how energy input through vibration is collected from the 

multimeters and converted to power; Microstructure analysis, which explains the analysis 

of data obtained from the optical imaging and analysis software, ImageJ, and finally, 

Microhardness analysis, which explains the analysis of Vickers hardness testing. 

ANOVA analysis is used in order to find the statistical integrity of the data and also 

determine the influence of ultrasonic waves on grain structures. Also, a summary of the 

results and observations are presented. 

4.1. Power Calculations: 

Two transformer settings were used in generating two different power conditions each for 

the three conditions used: no power, low power and high power, for the transducer at 

individual frequencies of 20 kHz, 38 kHz and 56 kHz respectively. This power 

modulation is achieved with a controller present on the top of transformer powering the 

transducer. The power levels utilized are shown in Table 4.1. The samples created with 

the controller position 1 will be named Low Power (LP) and for the controller position 2 

High Power (HP) and the three frequencies will be named Low Frequency (LF), Medium 

Frequency (MF) and High Frequency (HF). The control samples created without 

vibration are named No Vibration (NV). 
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Table 4.1: Frequency and Power 

 

The power calculations are performed using the equations 4.1, 4.2 & 4.3 

𝐼 =  𝑉𝑎𝑐/0.33      (4.1) 

𝑉 = 𝑉𝑑𝑐 ∗ (
200047

47
)      (4.2) 

𝑃 = 𝑉 ∗ 𝐼        (4.3) 

The Vac and Vdc values were obtained from the digital multimeters. 

The design of experiments involving three trials selected for this study is shown in Table 

4.2. 

Frequency 
(kHz)

Controller 
Position 1 (W)

Controller 
Position 2 (W)

LP HP
20 (LF) 3 4.57
38 (MF) 10.65 19
56 (HF) 16.56 30.83
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Table 4.2: Design of Experiments 

 

The experiment was performed in the following order: 

1. HP LF 

2. HP MF 

3. HP HF 

4. LP LF 

5. LP MF 

6. LP HF 

 

 

Power (W)
Frequency 

(kHz) Sample

0 0 NV S1, NV S2, NV S3

LP LF 20 LP S1, 20 LP S2, 20 LP S3

LP MF 38 LP S1, 38 LP S2, 56 LP S3

LP HF 56 LP S1, 56 LP S2, 56 LP S3

HP LF 20 HP S1, 20 HP S2, 20 HP S3

HP MF 38 HP S1, 38 HP S2, 56 HP S3

HP HF 56 HP S1, 56 HP S2, 56 HP S3
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4.2. Microstructure analysis: 

Some of the microstructure images obtained from the optical microscopy mentioned in 

Chapter 3 are as shown in Figures 4.1-4.4. 

 

Figure 4.1: NV S3 
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Figure 4.2: 20 LP S1 

 

Figure 4.3: 38 HP S2 



66 

 

Figure 4.4: 56 LP S3 

As can be seen from images Figure 4.1-4.4, there are visual changes in the grain 

formation and propagation under the influence of ultrasonic waves during rapid 

solidification. Some porosity is observed as shown in Figure 4.5, due to the ultrasonic 

vibration, which is confirmed by SEM t microstructure analysis. 
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Figure 4.5: Porosity 38 HP S1 

The microstructures were analyzed in ImageJ using the steps defined in Chapter 3 and the 

average area (µm2), gain count information and standard deviation (SD) are presented in 

Table 4.3. 

Table 4.3: Microstructure analysis results 

 

Sample
Average area 

(µm2)
SD Grain count SD

NV 314.565 28.422 344 114.858

LF LP 347.397 47.134 238 35.791

LF HP 343.734 38.052 341 135.709

MF LP 326.206 37.474 367 56.630

MF HP 281.113 37.361 523 107.685

HF LP 288.698 5.606 590 67.575

HF HP 296.424 24.612 462 67.174
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From Figure 4.6, it can be observed that, there is a pattern of increase in the grain count 

when ultrasonic vibration is applied when compared to the control. The highest grain 

count was identified for the HFLP (56 kHz 16.56 W) and the MFHP (38 kHz 19 W), 

indicating that greater disruption in columnar grain structure is achieved through increase 

in frequency and power. It is interesting to observe that the grain count has reduced for 

LFLP (20 kHz 3 W) indicating refinement instead of disruption, which can be attributed 

to the increase in the average grain size as shown in Figure 4.7. In addition, Figure 4.7 

shows that there is a correlation between disrupting number of grains and refinement of 

average grain size (which decreases). 

Two factor ANOVA analysis with replication was performed on the obtained data to 

determine the effect of power and frequency on the average grain area and the analysis is 

shown in Table 4.4 

Table 4.4: ANOVA results- Grain area 

 

At 95% confidence interval, it can be observed from the analysis that there is no effect of 

power on the average grain size as the P-value > 0.05 and that frequency has a major 

impact on the grain area when compared to the power and both frequency and power 

combined has an impact on average grain area. 

Source of Variation SS df MS F P-value F crit

Power 4282.76 6 713.79 1.26 0.305976764 2.45

Frequency 831739.63 1 831739.63 1471.28 9.46608E-26 4.20

Power and Frequency 15856.82 6 2642.80 4.67 0.002067985 2.45

Within 15828.91 28 565.32

Total 867708.1248 41

ANOVA- Grain area (µm2)
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Figure 4.8: Load curve NV 
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Figure 4.9: Load curve MF LP 



73 

 

Figure 4.10: Load curve HF LP 

The highlighted region (red) indicates the elastic unloading area and is used for 

calculating hardness and Young’s modulus. The load curve shows a 300 mN load being 

applied on the region of interest at a loading and unloading rate of 160 mN/min, with a 

creep for 15 sec. The difference in the depth of penetration in Figures 4.9-4.11 is of 

interest.  



 

 

Sample

Hardness 

at HAZ 

(GPa)

SD

Hardness 

at WB 

(GPa)

SD

YM at 

HAZ 

(GPa)

SD

YM at 

WB 

(GPa)

SD

NV 5.148 1.231 7.479 1.458 161.730 19.298 198.984 45.461

LF LP 5.903 1.088 7.906 0.159 217.514 22.890 304.759 39.785

LF HP 5.322 1.067 7.046 0.332 234.971 32.506 250.819 69.983

MF LP 6.288 0.928 6.011 0.197 215.233 19.483 223.206 56.500

MF HP 5.296 1.209 7.212 1.734 251.767 43.073 309.820 98.018

HF LP 5.621 0.650 7.060 1.238 318.209 73.084 223.658 39.163

HF HP 5.607 0.585 8.728 1.453 236.664 72.737 252.218 62.656
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Table 4.7: ANOVA results- Hardness at HAZ 

 

 

It is observed from the results of ANOVA analysis that frequency, power and their 

interaction have a major impact on the hardness at HAZ.  

Another ANOVA two factor analysis with replication is used to determine the effect of 

power and frequency on the hardness at WB and the results are shown in Table 4.8. 

Table 4.8: ANOVA results- Hardness at WB 

 

Again it is observed from the results of ANOVA analysis that frequency, power, as well 

as their interactions have a major impact on the hardness of the weld bead. 

Figures 4.15 - 4.17 presents the effects of ultrasonic vibration on Young’s modulus. 

Source of Variation SS df MS F P-value F crit

Power 3853.3791 6 642.2298499 1298.217654 6.81845E-33 2.445259395

Frequency 7639.576281 1 7639.576281 15442.80883 6.05176E-40 4.195971819

Power & Frequency 3750.581385 6 625.0968976 1263.584724 9.94061E-33 2.445259395

Within 13.851634 28 0.494701214

Total 15257.3884 41

ANOVA- Hardness at HAZ

Source of Variation SS df MS F P-value F crit

Power 3837.203809 6 639.5339682 1000.380888 2.57568E-31 2.445259395

Frequency 6679.895372 1 6679.895372 10448.92061 1.41895E-37 4.195971819

Power & Frequency 3776.583238 6 629.4305396 984.5767596 3.21513E-31 2.445259395

Within 17.90013317 28 0.63929047

Total 14311.58255 41

ANOVA- Hardness at WB
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The plots indicate that there is a significant impact of the ultrasonic waves on the 

Young’s modulus of the samples.  In order to confirm this, a two factor ANOVA analysis 

with replication is performed to determine the effect of both frequency and power on 

Young’s modulus at HAZ and the results are shown in Table 4.9. 

Table 4.9: ANOVA results- Young's modulus at HAZ 

 

It can be observed that frequency and power individually had an impact on the Young’s 

modulus at HAZ, while the combination of both had no effect. 

Another ANOVA two factor analysis with replication is used to determine the effect of 

power and frequency on the Young’s modulus at WB and the results are shown in Table 

4.10. 

Table 4.10: ANOVA results- Young's modulus at WB 

 

It can be observed that only frequency had an impact on the Young’s modulus at WB and 

neither power alone nor the combination of power and frequency had an effect. 

Source of Variation SS df MS F P-value F crit

Power 37429.27834 6 6238.213056 5.893067767 0.000449937 2.445259395

Frequency 424866.013 1 424866.013 401.3592008 3.88012E-18 4.195971819

Power & Frequency 9956.002338 6 1659.333723 1.567526788 0.193542582 2.445259395

Within 29639.90446 28 1058.568016

Total 501891.1982 41

ANOVA

Source of Variation SS df MS F P-value F crit

Power 21388.56181 6 3564.760301 1.861743767 0.123066489 2.445259395

Frequency 505211.1974 1 505211.1974 263.853308 8.76535E-16 4.195971819

Power & Frequency 17926.17895 6 2987.696492 1.560364471 0.195670135 2.445259395

Within 53612.79581 28 1914.742707

Total 598138.7339 41

ANOVA- Young's modulus at WB
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frequency on the microstructures and hardness response variables that requires further 

analysis (through modeling and experimentation).  

References: 
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Chapter 5: Conclusion and Future work 

 

This study provided a broad introduction to manufacturing and its evolution from the 

traditional practices to Additive manufacturing (AM), concepts of microstructures, rapid 

solidification, ultrasound and power ultrasonics, transducers and welding in chapter 1. 

 In Chapter 2, the literature review and current findings on disruption of columnar grains, 

a review of literature focused on ultrasonic application for porosity reduction and grain 

structure refinement, modeling efforts of ultrasonic propagation, rapid solidification and 

applications of ultrasonics in Additive Manufacturing (AM) were presented. Also, 

various studies on the behavior of columnar grains during rapid solidification and under 

the influence of ultrasonics and the application of ultrasonics in industrial grade LENS 

technology were presented. Since this experiment is related to manufacturing and 

processing of materials, ultrasonic transducers which are applied for microstructure 

refinement and porosity control were emphasized. 

In Chapter 3, the experimental setup and methodology used in this research were 

discussed. The experimental setup involved a low cost metal 3D printer originally 

developed by Joshua M. Pearce and his team at Michigan Technological University and 

an ultrasonic transducer setup developed in Center for Innovation in Additive 

Manufacturing (CIAM) at Youngstown State University. The ultrasonic setup to induce 

vibration during deposition includes a 50 kHz ultrasonic transducer, digital multimeters, a 

driver for ultrasonic transducer and a transformer to vary the power input to the 

transducer. The materials involved in the construction of each component were also 

explained in this chapter. Also experimental techniques used in this study like the sample 
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preparation using Struers grinding and polishing wheels, etching with 2% Nital, optical 

microscopy for taking microstructure images, image processing using ImageJ and 

microhardness testing using Nanovea micro hardness testing machine were presented. 

The obtained results, were analyzed using ANOVA analysis for determining the 

statistical integrity of the data and statistically determine which of the parameters: power 

or frequency had a major impact on the hardness and microstructure. 

In Chapter 4, the resulting data obtained from ImageJ and Nanovea hardness testing 

machine were presented and analyzed. Power calculations, on energy input through 

vibration is determined along with the design of experiments; microstructure analysis; 

and microhardness analysis. ANOVA analysis was used in order to find the statistical 

impact of vibration parameters and resulting microhardness/strength. Also, a summary of 

the results and observations are presented. Though power had an impact on the increasing 

the number of grains, hardness at weld bead and young’s modulus at HAZ, it was found 

that the frequency and interaction between power and frequency had statistically 

significant impact on grain count, grain size, hardness at both WB and HAZ, and the 

Young’s modulus at both WB and HAZ. 

In summary, following are the research contributions from this study: 

 Fabrication of a control system for ultrasonic transducer and integration into an 

open source low cost metal printer. 

 Analysis of impact of ultrasonic vibration on grain count and average grain size, 

which was further validated by hardness testing at both weld bead and HAZ. 
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Future Work 

The future direction for this work should involve study on: 

1) Modeling of the propagation of ultrasonic waves during rapid solidification using 

FEA tool (due to the transient nature of solidifying metal from liquid to solid). 

2) Employing a broader range power and frequency that would lead to empirical 

modeling of the process. 

3) Secondary impact on rapid solidification (porosity, phase distribution, etc.) 

4) Influence of direction of applied vibration and interaction of vibration from 

different directions. 

5) Influence of wave format (e.g. sine vs. pulse) on the process. 

6) Correlating displacement on the substrate due to vibration and the grain structures 
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Appendix II: Instructions for Printer 
and Transducer control 

 
Printer control: 

1. Connect the USB cable from the Arduino motherboard to the computer. 

2. Turn ON the 12V power supply. 

3. Launch Repetier application 

4. Connect to the printer by pressing the connect button in Repetier 

5. Select home from the manual control tab 

6. Type the Gcode or select the object and slice to generate the Gcode 

Transducer control: 

1. Connect the digital Multimeters, transducer driver, transformer to the transducer 

2. Connect the frequency modulator and input the 0-5V and the required frequency 

3. Apply Glycerin between the polystyrene horn and the piezoelectric element 

4. Turn ON the driver switch and the transducer switch and adjust the power input 

accordingly. 
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